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Chapter I

Introduction by Examples

Systems of ordinary differential equations in the Euclidean space Rn are given by

ẏ = f(y), (0.1)

where f : U → Rn with an open set U ⊂ Rn. If f is sufficiently smooth and an initial value
y(0) = y0 is prescribed, it is known that the problem has a unique solution y : (−α, α)→ Rn

for some α > 0. This solution can be extended until it approaches the border of U .
In the present lecture we are interested in differential equations, where the solution is

known to evolve on a submanifold of Rn, and the vector field f(y) is often only defined on this
submanifold. We start with presenting a few typical examples, which serve as motivation for
the topic. Later, we shall give a precise definition of differential equations on submanifolds,
we shall discuss their numerical treatment, and we shall analyze them rigorously.

I.1 Differential equation on a sphere – the rigid body
Let I1, I2, I3 be the principal moments of inertia of a rigid body. The angular momentum
vector y = (y1, y2, y3)T then satisfies Euler’s equations of motion

ẏ1 = (I−1
3 − I−1

2 ) y3 y2

ẏ2 = (I−1
1 − I−1

3 ) y1 y3

ẏ3 = (I−1
2 − I−1

1 ) y2 y1

or


ẏ1

ẏ2

ẏ3

 =


0 −y3 y2

y3 0 −y1

−y2 y1 0



y1/I1

y2/I2

y3/I3

 . (1.1)

Fig. I.1: Euler’s equation of motion for I1 = 1.6, I2 = 1, I3 = 2/3; left picture: vector field
on the sphere; right picture: some solution curves.
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This differential equation has the property that the function

C(y) = 1
2

(
y2

1 + y2
2 + y2

3

)
(1.2)

is exactly preserved along solutions, a property that can be checked by differentiation:
d
dtC

(
y(t)

)
= . . . = 0. As a consequence, the solution remains forever on the sphere with

radius that is determined by the initial values. The left picture of Figure I.1 shows the vector
f(y) attached to selected points y of the unit sphere.

To study further properties of the solution we write the differential equation as

ẏ = B(y)∇H(y) with B(y) =


0 −y3 y2

y3 0 −y1

−y2 y1 0

 , H(y) = 1
2

(
y2

1
I1

+ y2
2
I2

+ y2
3
I3

)
.

The function H(y) is called Hamiltonian of the system, whereas C(y) of (1.2) is called
Casimir function. Exploiting the skew-symmetry of the matrix B(y), we obtain d

dtH(y(t)) =
∇H(y(t))TB(y)∇H(y(t)) = 0, which implies the preservation of the Hamiltonian H(y) along
solutions of (1.1). Consequently, solutions lie on the intersection of a sphere C(y) = Const
with an ellipsoid H(y) = Const, and give rise to the closed curves of the right picture in
Figure I.1. Solutions are therefore typically periodic.

Numerical solutions are displayed in Figure I.2. The top picture shows the numerical
result, when the explicit Euler method yn+1 = yn + hf(yn) is applied with step size h =
0.025 and with the initial value y0 = (cos(0.9), 0, sin(0.9)). The numerical solution drifts
away from the manifold. The bottom left picture shows the result of the trapezoidal rule
yn+1 = yn + h

2 (f(yn+1) + f(yn)) with h = 1, where the numerical solution is orthogonally

Fig. I.2: Top picture: integration with explicit Euler; bottom left picture: trapezoidal rule
with projection onto the sphere; bottom right picture: implicit midpoint rule.
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projected onto the sphere after every step. The bottom right picture considers the implicit
mid-point rule yn+1 = yn + hf(1

2(yn+1 + yn)) with h = 1. Even without any projection, the
solution agrees extremely well with the exact solution. All these behaviours will be explained
in later chapters.

I.2 Problems in control theory
In control theory one often encounters problems of the form

ẏ = f(y, u)
0 = g(y),

(2.1)

where u(t) is a control function that permits to steer the motion y(t) of a mechanical system.
Differentiating the algebraic equation g(y(t)) = 0 with respect to time yields g′(y)f(y, u) = 0.
Under suitable regularity assumptions this relation permits us to express u as a function of y
(using the implicit function theorem). Inserting u = G(y) into (2.1) gives a differential
equation for y on the manifold M = {y ; g(y) = 0}.

θ1
θ2

θ3

θ4

Fig. I.3: Sketch of an articulated robot arm.

Example 2.1 (articulated robot arm). Consider n > 2 segments of fixed length 1 that are
connected with joints as illustrated in Figure I.3. We assume that the starting point of
the first segment is fixed at the origin. Denoting by θj the angle of the jth segment with
respect to the horizontal axis, the endpoint of the last segment is given by g(θ), where for
θ = (θ1, . . . , θn) we have

g(θ) =
(

cos θ1 + cos θ2 + . . .+ cos θn
sin θ1 + sin θ2 + . . .+ sin θn

)
. (2.2)

The problem consists in finding the motion θ(t) of the articulated robot arm such that the
endpoint of the last segment follows a given parametrized curve γ(t) in the plane and

‖θ̇(t)‖ → min subject to g(θ(t)) = γ(t).
Differentiating the algebraic relation with respect to time yields the underdetermined linear
equation g′(θ(t))θ̇(t) = γ̇(t) for θ̇(t) (two linear equations for n > 2 unknowns). Among all
solutions of this linear system, the Euclidean norm of θ̇(t) is minimized when this vector is
perpendicular to ker g′(θ(t)). Because of (ker g′(θ))⊥ = Im g′(θ)T, this leads to the problem

θ̇ = g′(θ)Tu, g(θ) = γ(t), (2.3)
which is of the form (2.1), if we add the trivial equation ṫ = 1 to the system, and interpret
y = (θ, t). This is a differential equation on the manifold M = {(θ, t) ; g(θ)− γ(t) = 0}.

The differentiated constraint yields g′(θ)g′(θ)Tu = γ̇(t), which permits to express u in
terms of (θ, t) as long as the Jacobian matrix g′(θ) has full rank 2. In this case we get

θ̇ = g′(θ)T
(
g′(θ)g′(θ)T

)−1
γ̇(t),

a differential equation that can be solved numerically by standard approaches. As in the
previous example, care has to be taken to avoid a drift from the manifold M.
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I.3 Constrained mechanical systems
A rich treasure trove of differential equations on manifolds are constrained mechanical sys-
tems (or multi-body systems). Let q = (q1, . . . , qn)T be generalized coordinates of a conserva-
tive mechanical system with kinetic energy T (q̇) = 1

2 q̇
TM q̇ (symmetric positive definite mass

matrix M) and potential energy U(q), which is subject to holonomic constraints g(q) = 0
(here, g : Rn → Rm with m < n). The equations of motion are then given by

q̇ = v

M v̇ = −∇U(q)− g′(q)Tλ

0 = g(q).
(3.1)

To find a differential equation on a submanifold we differentiate the algebraic constraint to
obtain g′(q)v = 0. A second differentiation yields

g′′(q)(v, v)− g′(q)M−1(∇U(q) + g′(q)Tλ) = 0,

which permits to express λ in terms of (q, v) provided that g′(q) is of full rank m (Exercise 6).
Inserted into (3.1) we obtain a differential equations for (q, v) on the submanifold

M = {(q, v) ; g(q) = 0, g′(q)v = 0}.

Example 3.1 (mathematical pendulum). Consider a weight on the end of a massless cord
suspended from a pivot, without friction. We let the pivot be at the origin and denote by
q = (q1, q2)T the Cartesian coordinates of the weight. Assuming unit mass, unit gravity
constant, and unit length of the cord we have T (q̇) = 1

2 q̇
Tq̇, U(q) = q2, and constraint

g(q) = qTq − 1. The equations of motion are therefore

q̇1 = v1, v̇1 = −λq1,

q̇2 = v2, v̇2 = −1− λq2,
0 = q2

1 + q2
2 − 1, (3.2)

which represent a differential equation on the submanifold

M = {(q1, q2, v1, v2) ; q2
1 + q2

2 = 1, q1v1 + q2v2 = 0}.

We have presented this simple example to become familiar with
multi-body systems. It should not be misleading, because a much
simpler formulation is possible in this case by the use of polar coordi-
nates q1 = sinα, q2 = − cosα. A short computation shows that the
system (3.2) is indeed equivalent to the familiar equation

α

α̈ + sinα = 0.

Remark. In general it is not possible to determine minimal coordinates (where the number
of coordinates equals the number of degrees of freedom of the mechanical system). Even if it
is possible, they are usually only locally defined and the differential equations become much
more complicated as the formulation (3.1). Our next example illustrates such a situation
and shows the importance of considering differential equations on manifolds.
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Fig. I.4: Multi-body system; graphics by J.-P. Eckmann & M. Hairer.

Example 3.2. We consider a mechanical system, where six rigid corner pieces are joined
together to form a ring (see the illustration of Figure I.4). At the contact of any two
pieces the only degree of freedom is rotation around their common axis. For a mathematical
formulation we denote the position of the corners of the six pieces by qi = (qi1, qi2, qi3)T ∈ R3,
i = 1, . . . , 6, which constitute 6 × 3 = 18 variables. It is convenient to use in addition the
notation q0 = q6. Let us start with the description of the constraints:
(1) the motion of one piece (red) is prescribed, i.e., q0, q1, q2 are given functions of time

that satisfy ‖q1 − q0‖2 = ‖q2 − q1‖2 = 1 and (q1 − q0) ⊥ (q2 − q1) (9 conditions),
(2) distance between neighbor corners is unity (4 additional conditions),
(3) orthogonality between neighbor edges (qn−1−qn) ⊥ (qn+1−qn) (5 additional conditions).
These conditions define the constraint g(q) = γ(t), where g : R18 → R18 is given by

g3i+j(q) = qij for i = 0, 1, 2, j = 1, 2, 3,
g8+j(q) = ‖qj+1 − qj‖2

2 − 1 for j = 2, 3, 4, 5,
g12+j(q) = (qj+1 − qj)T(qj − qj−1) for j = 2, 3, 4, 5, 6,

(3.3)

and
γk(t) =

{
qij(t) for k = 3(i− 1) + j, i = 1, 2, 3, j = 1, 2, 3,

0 else.
The constraint condition g(q) = γ(t) represents 18 (linear and quadratic) equations for 18
unknowns q = (q11, q12, q13, q21, q22, q23, . . . , q63)T. For a consistent vector γ(t), this nonlinear
equation possesses as solution a discrete point and a one-dimensional closed curve in R18

(without proof, see also Exercise 7). To get a nontrivial dynamics we assume that the initial
value lies on the one-dimensional curve.

To complete the description of the problem, we assume that the mass of the pieces is
unity and concentrated in their corner, and the motion is without friction. The kinetic and
potential energies are then given by

T (q̇) = 1
2

6∑
i=1

q̇T
i q̇i, U(q) =

6∑
i=1

qi3,

where the potential only takes gravity into account. The equations of motion are obtained
by (3.1) with the constraint replaced by g(q)− γ(t) = 0.
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Remark. The fact that the equation g(q) = γ(t) admits a one-dimensional submanifold as
solution shows that the 18 equations are not independent. For a numerical treatment we can
remove one (carefully chosen) constraint and work with the remaining 17 constraints. This
can be done with the help of a QR decomposition of g′(q) which is anyway required during
the integration.

I.4 Exercises
1. Compute all stationary solutions of the system (1.1) and identify them in Figure I.1. Explain

the behaviour of the solutions close to these points.

2. If the principal moments of inertia satisfy I1 = I2 6= I3, the rigid body is called a symmetrical
top. In this situation, solve analytically Euler’s equations of motion (1.1).

3. For a vector θ = (θ1, . . . , θn) of angles consider the function g(θ) of (2.2). Prove that g′(θ) is
of full rank 2 if and only if there exists a pair of subscripts i, j such that

θi − θj 6= 0 mod π.

4. Consider the problem (2.3) and assume that initial values satisfy θi(t0) = θj(t0). Prove that
the solution then satisfies θi(t) = θj(t) wherever it exists.

5. Find a differential equation (on a submanifold) that describes the solution of the problem

θ̇2
1 + (θ̇2 − θ̇1)2 + . . .+ (θ̇n − θ̇n−1)2 → min

subject to the constraint g(θ)− γ(t) = 0, where g(θ) is as in (2.2).

6. Consider a n×n matrix M and a m×n matrix G (with m < n). Under the assumptions that
M is a symmetric positive definite matrix and G is of full rank m, prove that the matrices(

M GT

G 0

)
and GM−1GT

are invertible.

7. Consider the function g : R18 → R18 defined in (3.3), and compute the Jacobian matrix g′(q)
for the two (admissible) points

a = (1, 0, 0; 0, 0, 0; 0, 1, 0; 0, 1, 1; 0, 0, 1; 1, 0, 1)
b = (1, 0, 0; 0, 0, 0; 0, 1, 0; 0, 1, 1; 1, 1, 1; 1, 0, 1).

Prove that g′(a) is invertible, but g′(b) is singular and of rank 17.
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Submanifolds of Rn

The Euclidean space Rn is a differentiable manifold. In this chapter we give a short intro-
duction to submanifolds of Rn. Our emphasis is on characterizations that are suitable for
numerical computations. We further discuss the tangent space, differentiable mappings, and
differential equations on submanifolds.

II.1 Definition and characterization of submanifolds
Submanifolds of Rn are nonlinear analogues of linear subspaces. They extend the notion of
curves and surfaces. In the following a diffeomorphism ϕ : U → V between open sets is a
continuously differentiable mapping having a continuously differentiable inverse.

Definition 1.1 (submanifold). A set M ⊂ Rn is a submanifold of Rn if for every a ∈ M
there exist open sets U, V ⊂ Rn with a ∈ U and a diffeomorphism ϕ : U → V such that

ϕ(U ∩M) = ϕ(U) ∩ (Rk × {0}).

The number k is called dimension of M and n−k is its codimension. A pair (U,ϕ) is called
chart on M, and the union of all charts is called (maximal) atlas.

x1

x2

U
θ

r

V
ϕ

Fig. II.1: Definition of a submanifold of Rn.

Figure II.1 illustrates the circle {(x1, x2) ; x2
1 + x2

2 = 1} as a submanifold of R2. A
possible choice for the diffeomorphism ϕ(x1, x2) = (θ, r) is the mapping defined by polar
coordinates x1 = (1 + r) cos θ, x2 = (1 + r) sin θ.

Submanifolds of dimension k = 0 are discrete points in Rn. Submanifolds of maximal
dimension k = n are open sets in Rn. Every linear or affine subspace of Rn is a submanifold.
However, the set {(x, y) ; xy = 0} is not a submanifold of R2 because, close to the origin, it
is not diffeomorph to a straight line.
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Lemma 1.2 (level set representation). A set M⊂ Rn is a submanifold of Rn if and only if
for every a ∈ M there exist an open set U ⊂ Rn with a ∈ U , and a differentiable mapping
g : U → Rn−k with g(a) = 0 and g′(a) of maximal rank n− k, such that

U ∩M = g−1(0).

Proof. For the “only if” part it is sufficient to take for g(x) the last n−k components of ϕ(x).
For the proof of the “if” part we assume (after a possible permutation of the components of
x ∈ Rn) that the submatrix of g′(a) consisting of the last n − k columns is invertible. The
function

ϕ(x) =
(
x1. . . . , xk, g1(x), . . . , gn−k(x)

)T

is then a local diffeomorphism close to a and satisfies the condition of Definition 1.1.

Lemma 1.3 (local parametrization). A set M ⊂ Rn is a submanifold of Rn if and only
if for every a ∈ M there exist open sets a ∈ U ⊂ Rn and W ⊂ Rk, and a continuously
differentiable mapping η : W → U with η(0) = a and η′(0) of maximal rank k, such that

U ∩M = η(W ),

and η : W → U ∩M is a homeomorphism.

Proof. For the “only if” part we put W = {z ∈ Rk ; (z,0) ∈ ϕ(U)} and η(z) = ϕ−1(z,0).
Here, (z,0) denotes the vector, where z is completed with zeros to a vector in Rn.

To prove the “if” part, we consider η : W → U and we assume (after a possible permu-
tation of the coordinates in the image space) that the submatrix of η′(0) consisting of the
first k rows is invertible. We then define for y ∈ W × Rn−k ⊂ Rn

ψ(y) =
(
η1(ŷ), . . . , ηk(ŷ), ηk+1(ŷ)− yk+1, . . . , ηn(ŷ)− yn

)T

where ŷ denotes the vector consisting of the first k components of y. The Jacobian matrix
ψ′(0) is invertible, so that ψ is a local diffeomorphism close to ψ(0) = a, i.e., there exist
open neighborhoods U1 ⊂ U of a and V ⊂ W × Rn−k of 0, such that ψ : V → U1 is a
diffeomorphism. We now put ϕ = ψ−1 : U1 → V .

The property ϕ(U1 ∩M) ⊃ ϕ(U1) ∩ (Rk × {0}) follows immediately from the fact that,
for y ∈ ϕ(U1) with yk+1 = . . . = yn = 0, we have ψ(y) = η(ŷ) ∈ U1 ∩ η(W ) = U1 ∩M. To
prove the inverse inclusion, we take y ∈ ϕ(U1 ∩M) = ϕ(U1 ∩ η(W )) so that y = ϕ(η(z)) for
some z ∈ W and hence also ψ(y) = η(z). If U1 is chosen as a sufficiently small neighborhood
of a, the vectors z and ŷ = (y1, . . . , yk)T are both close to 0 (this follows from the fact that
η : W → U ∩M is a homeomorphism). If we denote by η̂ the first k components of the
function η, it follows from ψ(y) = η(z) that η̂(ŷ) = η̂(z). However, since η̂′(0) is nonsingular,
η̂ is a local diffeomorphism close to 0, and we obtain ŷ = z. The relation ψ(y) = η(z) = η(ŷ)
thus implies yk+1 = . . . = yn = 0, which completes the proof.

Fig. II.2: Curves in R2 which are not submanifolds.
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Remark. One cannot remove the assumption “η : W → U ∩ M is a homeomorphism”
from the characterization in Lemma 1.3. As counter-example serves the curve η(t) = ((1 +
0.1t2) cos t, (1+0.1t2) sin t) which satisfies all other assumptions of Lemma 1.3, but the image
η(R) is not a submanifold of R2 (left picture of Figure II.2). The injectivity of η(t) is even
not sufficient as shown in the right picture of Figure II.2.

Example 1.4 (torus). Consider the circle (x, z) = (d + ρ cosα, ρ sinα) (with 0 < ρ < d)
and rotate it around the z-axis. This gives the parametrization

η(α, β) =

(d+ ρ cosα) cos β
(d+ ρ cosα) sin β

ρ sinα


of a torus. One can check that η′(α, β) is of maximal rank 2
and that η is locally a homeomorphism.

Example 1.5 (Möbius strip). Consider a segment of lenght
2 (parametrized by −1 < t < 1), rotate it around its centre
and, at the same time, move this centre twice as fast along
a circle of radius d. This gives the parametrization

η(t, α) =

(d+ t cosα) cos 2α
(d+ t cosα) sin 2α

t sinα

 .
Example 1.6 (orthogonal group). The set

O(n) = {X ; XTX = I }

is a submanifold of dimension n(n − 1)/2 of the space Mn(R) = Rn·n of all n-dimensional
matrices. For the proof of this statement we consider the mapping

g : Mn(R)→ Symn(R) ≈ Rn(n+1)/2

defined by g(X) = XTX−I (the symbol Symn(R) denotes the space of all symmetric matrices
of dimension n). This mapping is differentiable and we have g−1(0) = O(n). It therefore
suffices to prove that g′(A) is of maximal rank for every matrix A ∈ O(n). The derivative of
g(X) is g′(A)H = ATH+HTA. For an arbitrary symmetric matrix B, the choice H = AB/2
shows that g′(A)H = B. Therefore, g′(A) : Mn(R)→ Symn(R) is surjective (i.e., of maximal
rank), and O(n) is a submanifold of codimension n(n+ 1)/2.

II.2 Tangent space
Curves. For a regular parametric curve γ : I → Rn, the tangent
at a = γ(0) is the straight line given by τ(t) = a + tv, where
v = γ̇(0) 6= 0. Shifting the origin to the point a, the tangent in a
at the curve M = γ(I) becomes the linear space

TaM = {tv | t ∈ R}. .5

.5

x1

x2

a
v

In the original variables, the tangent is the affine space a+ TaM⊂ Rn.
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Surfaces in R3. As an example, consider the ellipsoid

M =
{

(x, y, z)
∣∣∣∣ x2

a2 + y2

b2 + z2

c2 = 1
}

with parametrization ϕ(α, θ) =

a cosα sin θ
b sinα sin θ
c cos θ

 .
To determine the tangent plane at a = (x0, y0, z0) = ϕ(α0, θ0) ∈ M, we consider the para-
metric curves γ(t) = ϕ(t, θ0) and δ(t) = ϕ(α0, t); see Figure II.3. The left picture shows also
the tangents (in grey) τ(t) = a + tv1 with v1 = γ̇(α0) and σ(t) = a + tv2 with v2 = δ̇(θ0).
The vectors v1 and v2 span the tangent space. It is given by a+ TaM, where

TaM = {t1v1 + t2v2 | t1, t2 ∈ R} with v1 = ∂ϕ

∂α
(α0, θ0), v2 = ∂ϕ

∂θ
(α0, θ0).

The tangent of other curves lying in M and passing through a is also in a + TaM (see the
right picture of Figure II.3).

v2

v1

Fig. II.3: Illustration of the definition of the tangent space.

Definition 2.1 (tangent space). Let M⊂ Rn be a submanifold of Rn and let a ∈ M. The
tangent space of M at a is the linear space given by

TaM =

v ∈ Rn

∣∣∣∣∣∣ there exists a continuously differentiable γ : (−ε, ε)→ Rn such that
γ(t) ∈M for t ∈ (−ε, ε) and γ(0) = a and γ̇(0) = v

 .
This definition gives a nice geometric interpretation of the tangent space. Algebraic

characterizations with explicit formulas are given in the following theorem.

Theorem 2.2. Consider a submanifold M⊂ Rn of dimension k and let a ∈M.
• If, close to a, M is given by a local parametrization η : W → Rn, i.e., we have
U ∩M = {η(z) | z ∈ W}, where η(z0) = a with z0 ∈ W ⊂ Rk, then

TaM = Im η′(z0) = {η′(z0) t | t ∈ Rk}. (2.1)

• If M is locally given by U ∩M = {x ∈ U | g(x) = 0}, then

TaM = ker g′(a) = {v ∈ Rn | g′(a)v = 0}. (2.2)

Proof. Let δ(s) be a curve in Rk satisfying δ(0) = z0 and δ̇(0) = t (for example the straight
line δ(s) = z0 + st). The curve γ(s) := η(δ(s)) is then a curve lying in M, and satisfying
γ(0) = η(z0) = a and γ̇(0) = η′(z0) δ̇(0) = η′(z0) t. This implies Im η′(z0) ⊂ TaM.

If γ(t) is a curve lying in M and satisfying γ(0) = a and γ̇(0) = v, then we have
g(γ(t)) = 0 and hence also g′(a)γ̇(0) = 0. This implies TaM⊂ ker g′(a).

By definition of the submanifold M, the two linear spaces Im η′(z0) and ker g′(a) have
the same dimension k. From the inclusions Im η′(z0) ⊂ TaM⊂ ker g′(a) we therefore deduce
the identities Im η′(z0) = TaM = ker g′(a).
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The definition of differentiability of a function f : A→ Rm at a point a requires that f is
defined in an open neighborhood of a ∈ A. Our aim is to extend the notion of differentiability
to functions that are defined on a manifold M with positive codimension, but not on a
neighborhood of it.

Consider a function f :M→N between two submanifolds, and let (U,ϕ) and (V, ψ) be
charts of M and N , respectively. If f(U ∩M) ⊂ V ∩N , we can consider the mapping fϕψ
defined by (

ψ ◦ f ◦ ϕ−1
)
(z,0) =

(
fϕψ(z),0

)
. (2.3)

Here, z is a vector of the dimension of M, such that (z,0) ∈ ϕ(U). By the definition of a
submanifold, ϕ−1(z,0) ∈ U ∩M, so that f can be applied to ϕ−1(z,0) and has an image in
V ∩N . A final application of ψ yields

(
fϕψ(z),0

)
, where fϕψ(z) is a vector with dimension

of that of the submanifold N .

Definition 2.3. A function f : M → N is differentiable at a ∈ M, if there exist a chart
(U,ϕ) of M with a ∈ U and a chart (V, ψ) of N with f(a) ∈ V , such that the function
fϕψ(z) of (2.3) is differentiable at z0 given by ϕ(a) = (z0,0).

If this property is satisfied for all a ∈M and if fϕψ(z) is continuously differentiable, then
the function f is called continuously differentiable (or of class C1).

This definition is meaningful, because fϕψ(z) is well-defined in a neighborhood of z0.
Moreover, it is independent of the choice of charts, because for two charts (Ui, ϕi) the function
ϕ−1

1 ◦ ϕ2 is differentiable, where it is defined. We remark that due to the fact that N is
a submanifold of Rn, an equivalent definition would be to require that (f ◦ ϕ−1)(z,0) is
differentiable at z0. In the following we denote fϕ(z) := (f ◦ ϕ−1)(z,0).

Next we give a meaning to the derivative of a C1-function f : M → N . We consider a
continuously differentiable curve γ : (−ε, ε) → Rn with γ(t) ∈ M, γ(0) = a, and γ̇(0) = v,
so that v ∈ TaM. The curve δ(t) := f(γ(t)) then satisfies δ(t) ∈ N , δ(0) = f(a), and it is
continuously differentiable, because it can be written as δ = (f ◦ϕ−1)◦ (ϕ◦γ) = fϕ ◦ (ϕ◦γ).
Its derivative at the origin is δ̇(0) = f ′ϕ(ϕ(a))ϕ′(a)γ̇(0) ∈ Tf(a)N . This formula may give the
impression that δ̇(0) depends on the diffeomorphism ϕ. This is not the case, because δ(t)
is independent of ϕ. Moreover, we see that δ̇(0) only depends on v = γ̇(0) and not on the
complete curve γ(t). This justifies the following definition.

Definition 2.4. For a mapping f :M→N of class C1 we define

Taf : TaM→ Tf(a)N by (Taf)(v) = w,

where for a tangent vector v = γ̇(0) ∈ TaM we have w = δ̇(0) ∈ Tf(a)N with δ(t) = f(γ(t)).
The linear mapping Taf is called tangent map (or derivative) of f at a.

It is straight-forward to define mappings f : M→ N of class Ck (k times continuously
differentiable mappings). In this case one has to require that the diffeomorphisms ϕ of the
charts (U,ϕ) of the manifold are also mappings of class Ck.

II.3 Differential equations on submanifolds
We are interested in differential equations whose solutions evolve on a submanifold. If this
is the case, so that y(t) is a differentiable curve with values in M⊂ Rn, then (by definition
of the tangent space) its derivative ẏ(t) satisfies ẏ(t) ∈ Ty(t)M for all t. This motivates the
following definition.
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Definition 3.1. Let M ⊂ Rn be a submanifold. A vector field on M is a C1-mapping
f :M→ Rn such that

f(y) ∈ TyM for all y ∈M. (3.1)
For such a vector field,

ẏ = f(y)
is called differential equation on the submanifold M, and a function y : I → M satisfying
ẏ(t) = f(y(t)) for all t ∈ I is called integral curve or simply solution of the equation.

All examples of Chapter I are differential equations on submanifolds. Euler’s equations
of motion (I.1.1) are a differential equation on the sphere M = {y ∈ R3 ; ‖y‖2

2 − 1 = 0}.
Since yTf(y) = 0 in this case, it follows from the second characterization of Theorem 2.2
that (3.1) is satisfied.

We next study the existence and uniqueness of solutions for differential equations on a
submanifold. If the vector field f(y) is defined on an open neighborhood of M, this is a
consequence from classical theory. If it is only defined on M, additional considerations are
necessary.
Theorem 3.2 (existence and uniqueness). Consider a differential equation ẏ = f(y) on a
submanifold M ⊂ Rn with a C1 vector field f : M → Rn. For every y0 ∈ M there then
exist a maximal open interval I = I(y0) and a C2 function y : I →M satisfying
(1) y(t) is a solution of ẏ = f(y) on I satisfying y(0) = y0,
(2) if ŷ : J → M is a solution of ẏ = f(y), y(0) = y0 on the interval J , then J ⊂ I and
ŷ(t) = y(t) for t ∈ J .
Proof. Local existence and uniqueness. Consider an arbitrary y1 ∈ M and a chart (U,ϕ)
with y1 ∈ U . We use the local parameterization y = η(z) = ϕ−1(z,0) of the manifold (see
Lemma 1.3) and we write the differential equation in terms of z. For functions y(t) and
z(t) related by y(t) = η(z(t)) we have ẏ(t) = η′(z(t))ż(t), so that the initial value problem
ẏ = f(y), y(t1) = y1 becomes

η′(z) ż = f(η(z)), z(t1) = z1

with z1 given by y1 = η(z1). Premultiplication with η′(z)T yields the following differential
equation for z:

ż = f̃(z), f̃(z) =
(
η′(z)Tη′(z)

)−1
η′(z)Tf(η(z)). (3.2)

The matrix η′(z)Tη′(z) is invertible in z1 (and hence also in a neighborhood), because η′(z1)
is known to be of maximal rank. For a sufficiently smooth manifold M the function f̃ is
of class C1. Since (3.2) is a differential equation in an Euclidean space, we can apply the
classical theory which yields the local existence and uniqueness of a solution z(t). Because of
f(η(z)) ∈ Tη(z)M = Im η′(z), the function y(t) = η(z(t)) is seen to be a solution of ẏ = f(y).

Global uniqueness. Let I, J be open intervals, and let y : I →M and ŷ : J →M be two
solutions of ẏ = f(y) satisfying y(0) = ŷ(0) = y0. To prove that both functions coincide on
the interval I ∩ J , we consider the set

K = {t ∈ I ∩ J ; y(t) = ŷ(t)}.

This set in nonempty (0 ∈ K) and closed in I ∩ J (y(t) and ŷ(t) are continuous). Since
I ∩J is a connected set (an interval), it is sufficient to prove that K is also open. In fact, for
t1 ∈ K, we can choose a chart ofM containing y(t1) = ŷ(t1). The above local existence and
uniqueness result shows that we have y(t) = ŷ(t) for t in a neighborhood of t1. This proves
that K is open and, consequently, K = I ∩ J .
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Maximality of the interval I = I(y0). We consider all open intervals J such that the
problem ẏ = f(y), y(0) = y0 admits a solution on J . We then let I(y0) be the union of all
these intervals. For t ∈ I(y0) there exists J with t ∈ J , and we can define y(t) as the value
of the function y : J → M. By the uniqueness result, this is well defined and provides a
solution on the maximal interval I(y0).

The solution of a differential equation depends on the initial data. We adopt the notation
φt(y0) = y(t) for the solution of ẏ = f(y) at time t corresponding to the initial condition
y(0) = y0. It is called the flow (exact flow in contrast to a discrete flow) of the differential
equation. We also consider

D = {(t, y0) ; y0 ∈M, t ∈ I(y0)} and φ : D →M, φ(t, y0) := φt(y0). (3.3)

Theorem 3.3 (dependence on initial values). Consider a differential equation ẏ = f(y) on
a submanifoldM⊂ Rn with a C1 vector field f :M→ Rn. Then, the set D of (3.3) is open
in R×M, and the flow mapping φ : D →M is of class C1.

Proof. We first study differentiability for small t. We fix y0 ∈M, we consider a chart (U,ϕ)
with y0 ∈ U , and we let z0 be defined by ϕ(y0) = (z0,0). As in the first part of the proof of
Theorem 3.2 we consider the differential equation (3.2) in local coordinates, which allows us
to apply classical results. In fact, the flow φ̂(t, z) := φ̂t(z) of (3.2) is well defined in an open
neighborhood of (0, z0), and it is of class C1 as function of (t, z). Since the flow of the original
differential equation can be expressed via y = η(z) as φt(y) = (φt ◦ ϕ−1)(z,0) = η(φ̂t(z)),
it is well defined in an open neighborhood of (0, y0) (as long as φ(t, y) remains in the same
chart). It follows from Definition 2.3 that φ(t, y) is of class C1 in this neighborhood.

We next consider an initial value y0 ∈ M and a finite interval [0, t̂ ], on which the
solution y(t) = φt(y0) exists, i.e., (t̂, y0) ∈ D. We shall prove below that it is possible to
partition this interval into subintervals 0 = t0 < t1 < t2 < . . . < tN = t̂, such that for every
i ∈ {0, . . . , N − 1} there exists a chart (Ui, ϕi) such that y(s) ∈ Ui for all s ∈ [ti, ti+1] (see
Figure II.4). The statement then follows from the fact that

φ(t, y) = φt(y) =
(
φt−tN−1 ◦ φtN−1−tN−2 ◦ . . . ◦ φt2−t1 ◦ φt1

)
(y). (3.4)

By the local argument above each of the mappings φti+1−ti (for i ∈ {0, . . . , N −2}) is of class
C1 in a neighborhood of φti(y0), and the mapping (t, y) 7→ φt−tN−1(y) is defined and of class
C1 for (t, y) in a neighborhood of (tN , φtN−1(y0)). This proves that D is open and that the
composition (3.4) is of class C1.

The existence of such a partitioning follows from a compactness argument. For a fixed
τ ∈ [0, t̂ ] there exists an open interval Iτ (with τ ∈ Iτ ) and a chart (Uτ , ϕτ ), such that

y(t0)
y(t1) y(t2)

y(t3)

y(t4)

U0
U1

U2

U3

Fig. II.4: Patching together of the solution defined on charts.
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y(s) ∈ Uτ for all s ∈ Iτ . The family {Iτ}τ∈[0,t̂ ] is an open covering of the compact interval
[0, t̂ ]. By the Heine–Borel theorem we know that already finitely many intervals Iτ cover
the whole interval. This completes the proof of the theorem.

The following result on the propagation of perturbations in initial values will be an
essential ingredient of the convergence analysis of numerical integrators on submanifolds.
Corollary 3.4 (propagation of perturbations). Consider a differential equation ẏ = f(y)
on a submanifold M ⊂ Rn with a C1 vector field f : M → Rn. Suppose that the solution
y(t) = φt(y0) exists for 0 ≤ t ≤ t̂. Then there exist δ > 0 and a constant C, such that

‖φt−τ (y1)− φt−τ (y2)‖ ≤ C ‖y1 − y2‖ for 0 ≤ τ ≤ t ≤ t̂

for all y1, y2 ∈ Kτ (δ), where the compact neighborhood of the solution is given by

Kτ (δ) =
{
y ∈M ; ‖y − φτ (y0)‖ ≤ δ

}
. (3.5)

Proof. As in the proof of Theorem 3.3 we cover the solution φt(y0) for 0 ≤ t ≤ t̂ by
finitely many charts (Ui, ϕi). Since the sets Ui are open, there exists δ0 > 0, such that
Kτ (δ0) ⊂ Ui for all τ ∈ [ti, ti+1] and all i ∈ {0, . . . , N − 1}. By the smoothness of the flow
mapping (Theorem 3.3) and a compactness argument there exists 0 < δ ≤ δ0 such that for
τ ∈ [ti, ti+1], for y ∈ Kτ (δ), and for τ ≤ t ≤ t̂, the solution φt−τ (y) remains in Kt(δ0).

We now consider τ ∈ [ti, ti+1] and y1, y2 ∈ Kτ (δ) and we let local coordinates z1, z2 be
given by ϕi(y1) = (z1,0) and ϕi(y2) = (z2,0). The mean value theorem, applied to the C1

mapping ν(z) = (φt−τ ◦ ϕ−1
i )(z,0), yields the existence of a constant Ci such that

‖φt−τ (y1)− φt−τ (y2)‖ = ‖(φt−τ ◦ ϕ−1
i )(z1,0)− (φt−τ ◦ ϕ−1

i )(z2,0)‖ ≤ Ci ‖z1 − z2‖

for all y1, y2 ∈ Kτ (δ). A compactness argument implies that the constant Ci can be chosen
independent of τ ∈ [ti, ti+1] and of t ∈ [τ, t̂ ]. A further application of the mean value theorem
yields

‖z1 − z2‖ = ‖ϕi(y1)− ϕi(y2)‖ ≤ Di‖y1 − y2‖,
which proves the statement of the corollary with C = maxi=0,...,N−1CiDi.

II.4 Differential equations on Lie groups
A Lie group is a group G which is a differentiable manifold, and for which the product is
a differentiable mapping G × G → G. We restrict our considerations to matrix Lie groups,
that is, Lie groups which are subgroups of GL(n), the group of invertible n × n matrices
with the usual matrix product as the group operation.1

An important example is the set

O(n) =
{
X ∈ GL(n) ; XTX = I

}
of all orthogonal matrices, which is a submanifold of dimension n(n−1)/2 (see Example 1.6).
With the usual product of matrices the set O(n) is a group with unit element I (the identity).
Since the matrix multiplication is a differentiable mapping, O(n) is a Lie group.

1Section II.4 is nearly identical to Section IV.6 of the monograph Geometric Numerical Integration by
Hairer, Lubich, and Wanner. For further reading on Lie groups we refer to the monographs Applications of Lie
Groups to Differential Equations by Olver (1986) and to Lie Groups, Lie Algebras and Their Representations
by Varadarajan (1974).
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Tab. II.1: Some matrix Lie groups and their corresponding Lie algebras.

Lie group Lie algebra

GL(n) = {X ; detX 6= 0} gl(n) = {Z ; arbitrary matrix}
general linear group Lie algebra of n× n matrices

SL(n) = {X ; detX = 1} sl(n) = {Z ; trace(Z) = 0}
special linear group special linear Lie algebra

O(n) = {X ; XTX = I} so(n) = {Z ; ZT + Z = 0}
orthogonal group skew-symmetric matrices

SO(n) = {X ∈ O(n) ; detX = 1} so(n) = {Z ; ZT + Z = 0}
special orthogonal group skew-symmetric matrices

Sp(n) = {X ; XTJX = J} sp(n) = {Z ; JZ + ZTJ = 0}
symplectic group

Table II.1 lists further prominent examples. The symplectic group is only defined for
even n, and the matrix J given by

J =
(

0 −I
I 0

)

determines the symplectic structure on R2n.
As the following lemma shows, the tangent space g = TIG at the identity I of a matrix

Lie group G is closed under forming commutators of its elements. This makes g an algebra,
the Lie algebra of the Lie group G.

Lemma 4.1 (Lie Bracket and Lie Algebra). Let G be a matrix Lie group and let g = TIG
be the tangent space at the identity. The Lie bracket (or commutator)

[A,B] = AB −BA (4.1)

defines an operation g × g → g which is bilinear, skew-symmetric ([A,B] = −[B,A]), and
satisfies the Jacobi identity[

A, [B,C]
]

+
[
C, [A,B]

]
+
[
B, [C,A]

]
= 0. (4.2)

Proof. By definition of the tangent space, for A,B ∈ g, there exist differentiable paths
α(t), β(t) (|t| < ε) in G such that α(t) = I + tA + o(t) and β(t) = I + tB + o(t). Consider
now the path γ(t) in G defined by

γ(t) = α(
√
t)β(
√
t)α(
√
t)−1β(

√
t)−1 for t ≥ 0.

An elementary computation then yields

γ(t) = I + t[A,B] + o(t).

With the extension γ(t) = γ(−t)−1 for negative t, this is a differentiable path in G satisfying
γ(0) = I and γ̇(0) = [A,B]. Hence [A,B] ∈ g by definition of the tangent space. The
properties of the Lie bracket can be verified in a straightforward way.
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Example 4.2. Consider again the orthogonal group O(n), see Example 1.6. Since the
derivative of g(X) = XTX − I at the identity is g′(I)H = ITH +HTI = H +HT, it follows
from the second part of Theorem 2.2 that the Lie algebra corresponding to O(n) consists of
all skew-symmetric matrices. The right column of Table II.1 gives the Lie algebras of the
other Lie groups listed there.

The following basic lemma shows that the exponential map

exp(A) =
∑
k≥0

1
k! A

k

yields a local parametrization of the Lie group near the identity, with the Lie algebra (a
linear space) as the parameter space. We recall that the mapping Y (t) = exp(tA)Y0 is the
solution of the matrix differential equation Ẏ = AY , Y (0) = Y0.

Lemma 4.3 (Exponential map). Consider a matrix Lie group G and its Lie algebra g. The
matrix exponential maps the Lie algebra into the Lie group,

exp : g→ G,

i.e., for A ∈ g we have exp(A) ∈ G. Moreover, exp is a local diffeomorphism in a neigh-
bourhood of A = 0.

Proof. For A ∈ g, it follows from the definition of the tangent space g = TIG that there
exists a differentiable path α(t) in G satisfying α(0) = I and α̇(0) = A. For a fixed Y ∈ G,
the path γ(t) := α(t)Y is in G and satisfies γ(0) = Y and γ̇(0) = AY . Consequently,
AY ∈ TYG and Ẏ = AY defines a differential equation on the manifold G. The solution
Y (t) = exp(tA) is therefore in G for all t.

Since exp(H) − exp(0) = H + O(H2), the derivative of the exponential map at A = 0
is the identity, and it follows from the inverse function theorem that exp is a local diffeo-
morphism close to A = 0.

The proof of Lemma 4.3 shows that for a matrix Lie group G the tangent space at Y ∈ G
has the form

TYG = {AY ; A ∈ g}. (4.3)
By Definition 3.1, differential equations on a matrix Lie group (considered as a manifold)
can therefore be written as

Ẏ = A(Y )Y (4.4)
where A(Y ) ∈ g for all Y ∈ G. The following theorem summarizes this discussion.

Theorem 4.4. Let G be a matrix Lie group and g its Lie algebra. If A(Y ) ∈ g for all Y ∈ G
and if Y0 ∈ G, then the solution of (4.4) satisfies Y (t) ∈ G for all t.

II.5 Exercises
1. Consider the 2-dimensional torus of Example 1.4. Find a function g : R3 → R such that the

manifold is given by M = {x ; g(x) = 0}. Prove that g′(x) 6= 0 for all x ∈M.
Result. g(x) =

(
x2

1 + x2
2 + x2

3 + d2 − ρ2)2 − 4 d2(x2
1 + x2

2).
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2. Which of the following sets are submanifolds? Draw pictures if possible.

{(t, t2) ∈ R2 ; t ∈ R} {(t, t2) ∈ R2 ; t ≥ 0}
{(t2, t3) ∈ R2 ; t ∈ R} {(t2, t3) ∈ R2 ; t 6= 0}
{(x, y) ∈ R2 ; x > 0, y > 0} {(x, y, z) ∈ R3 ; x = y = z = 0}
{(x, y, z) ∈ R3 ; x2 + y2 − z2 = 1} {(x, y, z) ∈ R3 ; x2 + y2 − z2 = 0}

3. The circle S1 = {x ∈ R2 ; ‖x‖ = 1} is a submanifold of R2. Prove that it cannot be covered
by only one chart (U,ϕ).

4. Prove that the cylinder M = S1 × R is a submanifold of R3.
a) Find a function g : R3 → R such that M is a level set of g.
b) Find local parametrizations of the cylinder.
c) Find an atlas of the cylinder (i.e., a union of charts that cover M).

5. Let M⊂ Rn and N ⊂ Rm be two submanifolds. Prove that the product

M×N = {(x, y) ∈ Rn × Rm ; x ∈M, y ∈ N}

is a submanifold of Rn × Rm.

6. Prove that the set

{(cos t+ 2) cosλt, (cos t+ 2) sinλt, sin t) ∈ R3 ; t ∈ R} (5.1)

is a submanifold of R3 for λ = 2/13 (see the figure).
For λ =

√
2 the set (5.1) is not a submanifold and it is

everywhere dense in the torus{
(cosu+ 2) cos v, (cosu+ 2) sin v, sin u) ; u, v ∈ R

}
.

Hint. Using continued fractions (see Section I.6 of the
textbook “Analysis by Its History” by Hairer & Wanner),
prove that the set {`+ k

√
2 ; `, k ∈ Z} is dense in R.

7. Consider the n-dimensional sphere Sn ⊂ Rn+1, and let N = (0, . . . , 0, 1) be its ‘north pole’.
Define the stereographic projection σ : Sn \ {N} → Rn by

σ(x1, . . . , xn, xn+1) = 1
1− xn+1

(
x1, . . . , xn

)T
.

a) For any x ∈ Sn\{N}, prove that σ(x) is the point where the line trough N and x intersects
the hyperplane xn+1 = 0 (which is identified with Rn).

Rn
N

x

z = σ(x)

Fig. II.5: Stereographic projection.
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b) Prove that σ is bijective, and that its inverse η = σ−1 is given by

η(z1, . . . , zn) = 1
‖z‖2 + 1

(
2z1, . . . , 2zn, ‖z‖2 − 1

)T
.

c) For any z ∈ Rn, prove that the matrix η′(z) is of full rank n. Determine for which z ∈ Rn

the first n lines of η′(z) are not linearly independent.
d) For a fixed x ∈ Sn \ {N} with xn+1 6= 0, find a chart (U,ϕ) with x ∈ U by following the
proof of Lemma 1.3.

8. LetM, N , P be submanifolds, and let g :M→N , f : N → P be C1-mappings. Prove that
the composition f ◦ g is a C1-mapping, and that its tangent map satisfies

Ta(f ◦ g) = Tg(a)f ◦ Tag .

9. Consider a compact submanifold M (e.g., the sphere or the torus) and a C1 vector field
f(y) on M. Prove that for every y0 ∈ M the solution y(t) of the initial value problem
ẏ = f(y), y(0) = y0 exists for all t ∈ (−∞,+∞).

10. Prove that SL(n) is a Lie group of dimension n2 − 1, and that sl(n) is its Lie algebra (see
Table II.1 for the definitions of SL(n) and sl(n)).

11. Let G be a matrix Lie group and g its Lie algebra. Prove that for X ∈ G and A ∈ g we have
XAX−1 ∈ g.
Hint. Consider the path γ(t) = Xα(t)X−1.



Chapter III

Integrators on Manifolds

We consider ordinary differential equations

ẏ = f(y), y(0) = y0 (0.1)

on a submanifoldM, i.e., we assume that f(y) ∈ TyM for all y ∈M. This chapter is devoted
to the numerical solution of such problems. We discuss projection methods, integrators
based on local coordinates, and Magnus series methods for linear differential equations on
Lie groups. We also show how the global error can be estimated (global convergence).

III.1 Projection methods
We start by assuming that the vector field f(y) is well defined in an open neighborhood of
the manifold M. In principle it is then possible to apply any numerical integrator (Runge–
Kutta, multistep, etc.) to the differential equation (0.1) without taking care of the manifold.
However, as we have seen in Chapter I (for example in Figure I.2), the numerical solution will
usually drift away from the manifold and often looses a physical interpretation. A natural
approach for avoiding such unphysical approximations is by projection1.

Algorithm 1.1 (Standard projection method). Assume that yn ∈ M. One step yn 7→ yn+1
is defined as follows (see Fig. III.1):
• Compute ỹn+1 = Φh(yn), where Φh is an arbitrary one-step method applied to ẏ = f(y);
• project the value ỹn+1 onto the manifold M to obtain yn+1 ∈M.

M
Φh

ỹ1

y0

y1 y2
y3

Fig. III.1: Illustration of the standard projection method.

For yn ∈M the distance of ỹn+1 to the manifold M is of the size of the local error, i.e.,
O(hp+1) for a method of order p. Therefore, we do not expect that this projection algorithm
destroys the convergence order of the method.

1For more details consult the following monographs: Sections IV.4 and V.4.1 of Geometric Numerical
Integration by Hairer, Lubich and Wanner (2006), Section VII.2 of Solving Ordinary Differential Equations II
by Hairer and Wanner (1996), and Section 5.3.3 of Numerical Methods in Multibody Dynamics by Eich-
Soellner and Führer (1998).
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In some situations the projection step is straight-forward. IfM is the unit sphere (e.g., for
Euler’s equation of motion for a rigid body, Section I.1), we simply divide the approximation
ỹn+1 by its Euclidean norm to get a vector of length one.

If the manifold is given by a local parametrization y = η(z), we compute zn+1 by minimiz-
ing ‖η(zn+1)− ỹn+1‖ in a suitable norm, and then we put yn+1 = η(zn+1). But this situation
is not important in practice, because we can treat directly the differential equation (II.3.2)
for z, if explicit formulas for the parametrization are known. This yields approximations zn
and yn := η(zn), which lie on the manifold by definition.

Projection step, if the manifold is given as a level set. For all examples of Chapter I
the manifold M is given as the level set of a smooth function g(y) = (g1(y), . . . , gm(y))T.
This is by far the most important situation. For the computation of yn+1 (projection step)
we have to solve the constrained minimization problem

‖yn+1 − ỹn+1‖ → min subject to g(yn+1) = 0. (1.1)

In the case of the Euclidean norm, a standard approach is to introduce Lagrange multipliers
λ = (λ1, . . . , λm)T, and to consider the Lagrange function

L(yn+1, λ) = 1
2 ‖yn+1 − ỹn+1‖2 − g(yn+1)Tλ.

The necessary condition ∂L/∂yn+1 = 0 then leads to the system

yn+1 = ỹn+1 + g′(ỹn+1)Tλ

0 = g(yn+1).
(1.2)

We have replaced yn+1 with ỹn+1 in the argument of g′(y) in order to save some evaluations
of g′(y). Inserting the first relation of (1.2) into the second gives a nonlinear equation for λ,
which can be efficiently solved by simplified Newton iterations:

∆λi = −
(
g′(ỹn+1)g′(ỹn+1)T

)−1
g
(
ỹn+1 + g′(ỹn+1)Tλi

)
, λi+1 = λi + ∆λi.

For the choice λ0 = 0 the first increment ∆λ0 is of size O(hp+1), so that the convergence
is usually extremely fast. Often, one simplified Newton iteration is sufficient to achieve the
desired precision.

Internal projection. We assume here that the vector field f(y) is only defined on the man-
ifoldM, and not on a whole neighborhood. It may also happen that the differential equation
has a different (stability) behavior outside the manifold. In this case we are interested in
numerical methods that evaluate the vector field only on the manifold.

The idea is the following. We denote by π(y) a smooth projection of a vector y onto the
manifold. Since π(y) = y for y ∈M, the solution of the differential equation

ẏ = f(π(y)), y(0) = y0 ∈M (1.3)

is identical to that of (0.1). We then apply our integrator to (1.3) instead of (0.1). For a
Runge–Kutta method, e.g.,

k1 = f(π(yn))
k2 = f(π(yn + a21hk1))

yn+1 = yn + h(b1k1 + b2k2),

this means that we do not only project yn+1 onto the manifold, but also the vector yn+a21hk1
before computing k2.
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Example 1.2 (volume preservation). Consider a matrix differential equation Ẏ = A(Y )Y ,
where traceA(Y ) = 0 for all Y . We know from Theorem II.4.4 that the solution stays on
the manifoldM = {Y ; detY = Const}. Let Ỹn+1 be the numerical approximation obtained
with an arbitrary one-step method. We consider the Frobenius norm ‖Y ‖F =

√∑
i,j |yij|2

for measuring the distance to the manifold M. Using g′(Y )(HY ) = traceH detY for the
function g(Y ) = detY with H chosen such that the product HY contains only one non-zero
element, the projection step (1.2) is seen to become (see Exercises 1 and 2)

Yn+1 = Ỹn+1 + µỸ −T
n+1, (1.4)

where the scalar µ is given by µ = λ det Ỹn+1. This leads to the scalar nonlinear equation
det(Ỹn+1 + µỸ −T

n+1) = detYn, for which simplified Newton iterations become

det
(
Ỹn+1 + µiỸ

−T
n+1

)(
1 + (µi+1 − µi) trace

(
(Ỹ T

n+1Ỹn+1)−1
))

= detYn.

If the QR-decomposition of Ỹn+1 is available from the computation of det Ỹn+1, the value of
trace((Ỹ T

n+1Ỹn+1)−1) can be computed efficiently with O(n3/3) flops.
The above projection is preferable to Yn+1 = c Ỹn+1, where c ∈ R is chosen such that

detYn+1 = detYn. This latter projection is already ill-conditioned for diagonal matrices with
entries that differ by several magnitudes.

Example 1.3 (orthogonal matrices). As a second example let us consider Ẏ = F (Y ), where
the solution Y (t) is known to be an orthogonal matrix or, more generally, an n × k matrix
satisfying Y TY = I (Stiefel manifold). The projection step (1.1) requires the solution of the
problem

‖Y − Ỹ ‖F → min subject to Y TY = I, (1.5)

where Ỹ is a given matrix. This projection can be computed as follows: compute the
singular value decomposition Ỹ = UTΣV , where UT and V are n × k and k × k matrices
with orthonormal columns, Σ = diag(σ1, . . . , σk), and the singular values σ1 ≥ . . . ≥ σk are
all close to 1. Then the solution of (1.5) is given by the product Y = UTV (see Exercise 3
for some hints).

This procedure has a different interpretation: the orthogonal projection is the first factor
of the polar decomposition Ỹ = Y R (where Y has orthonormal columns and R is symmetric
positive definite). The equivalence is seen from the polar decomposition Ỹ = (UTV )(V TΣV ).

III.2 Numerical methods based on local coordinates
Let y = η(z) be a local parametrization of the manifold M. As discussed in Section II.3,
the differential equation (0.1) on the manifold M is then equivalent to

ż = η′(z)+f(η(z)), (2.1)

where A+ = (ATA)−1AT denotes the pseudo-inverse of a matrix with full column rank. The
solutions of (0.1) and (2.1) are related via y(t) = η(z(t)), so that any approximation zn of
z(tn) also provides an approximation yn = η(zn) ≈ y(tn). The idea is to apply the numerical
integrator in the parameter space rather than in the space whereM is embedded. In contrast
to projection methods (Section III.1), the numerical integrators of this section evaluate f(y)
only on the manifold M.
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Algorithm 2.1 (Local Coordinates Approach). Assume that yn ∈ M and that y = η(z) is
a local parametrization of M. One step yn 7→ yn+1 is defined as follows (see Fig. III.2):

• determine zn in the parameter space, such that η(zn) = yn ;
• compute z̃n+1 = Φh(zn), the result of the numerical method Φh applied to (2.1);
• define the numerical solution by yn+1 = η( z̃n+1).

It is important to remark that the parametrization y = η(z) can be changed at every step.

z0

z̃1

y0

z1 z̃2

y1
y2 y3

y4

Fig. III.2: The numerical solution of differential equations on manifolds via local coordinates.

There are many possible choices of local coordinates. For the mathematical pendulum
of Example I.3.1, where M =

{
(q1, q2, v1, v2) | q2

1 + q2
2 = 1, q1v1 + q2v2 = 0

}
, a standard

parametrization is q1 = sinα, q2 = − cosα, v1 = ω cosα, and v2 = ω sinα. In the new
coordinates (α, ω) the problem becomes simply α̇ = ω, ω̇ = − sinα. Another typical choice
is the exponential map η(Z) = exp(Z) for differential equations on Lie groups. In this
section we are mainly interested in the situation where the manifold is given as the level set
of a smooth function g(y), and we discuss two commonly used choices which do not use any
special structure of the manifold.

Generalized Coordinate Partitioning. We assume that the manifold is given by M =
{y ∈ Rn ; g(y) = 0}, where g : Rn → Rm has a Jacobian with full rank m < n at y = a. We
can then find a partitioning y = (y1, y2), such that ∂g/∂y2(a) is invertible. In this case we
can choose the components of y1 as local coordinates. The function y = η(z) is then given by
y1 = z and y2 = η2(z), where η2(z) is implicitly defined by g(z, η2(z)) = 0, and (2.1) reduces
to ż = f1(η(z)), where f1(y) denotes the first n−m components of f(y). This approach has
been promoted by Wehage and Haug2 in the context of constrained mechanical systems, and
the partitioning is found by Gaussian elimination with full pivoting applied to the matrix
g′(a). Another way of finding the partitioning is by the use of the QR decomposition with
column change.

a

ηa(z)

Qz

g′(a)Tu

Tangent Space Parametrization. Let the manifold M be
given as the level set of a smooth function g : Rn → Rm. We
compute an orthonormal basis of the tangent space TaM =
ker g′(a) at a = yn, and we collect the basis vectors as columns
of the matrix Q, which is of dimension n × (n − m). This
matrix satisfies QTQ = I and g′(a)Q = 0. We then consider
the parametrization

ηa(z) = a+Qz + g′(a)Tu(z), (2.2)
where u(z) is defined by g(ηa(z)) = 0. The existence and local uniqueness of u(z) with
u(0) = 0 follows for small z from the implicit function theorem. In fact, the function
F (z, u) := g(a + Qz + g′(a)Tu) satisfies F (0,0) = 0 and its derivative with respect to u is

2Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems,
Mechanical Design 104 (1982) 247–255.
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for (z, u) = (0,0) the matrix g′(a)g′(a)T, which is invertible because g′(a) is assumed to be
of full rank. Differentiating y(t) = ηa(z(t)) with respect to time yields(

Q+ g′(a)Tu′(z)
)
ż = ẏ = f(y) = f(ηa(z)).

Because of QTQ = I and g′(a)Q = 0, a premultiplication with QT leads to the equation

ż = QTf(ηa(z)), (2.3)

which corresponds to (2.1). If we apply a numerical method to (2.3), every function eval-
uation requires the projection of an element of the tangent space onto the manifold. This
procedure is illustrated in Fig. III.2, and was originally proposed by Potra and Rheinboldt3

for the solution of the Euler–Lagrange equations of constrained multibody systems.

III.3 Derivative of the exponential and its inverse
The exponential function exp plays an important role as local parametrization of Lie groups
(Section II.4). In view of the differential equation (2.1) we need the derivative of exp and its
inverse. Elegant formulas are obtained by the use of matrix commutators [Ω, A] = ΩA−AΩ.
If we suppose Ω fixed, this expression defines a linear operator A 7→ [Ω, A]

ad Ω(A) = [Ω, A], (3.1)

which is called the adjoint operator. Let us start by computing the derivatives of Ωk. The
product rule for differentiation yields(

d

dΩ Ωk
)
H = HΩk−1 + ΩHΩk−2 + . . .+ Ωk−1H, (3.2)

and this equals kHΩk−1 if Ω and H commute. Therefore, it is natural to write (3.2) as
kHΩk−1 to which are added correction terms involving commutators and iterated commu-
tators. In the cases k = 2 and k = 3 we have

HΩ + ΩH = 2HΩ + ad Ω(H)

HΩ2 + ΩHΩ + Ω2H = 3HΩ2 + 3
(
ad Ω(H)

)
Ω + ad 2

Ω(H),

where ad i
Ω denotes the iterated application of the linear operator ad Ω. With the convention

ad 0
Ω(H) = H we obtain by induction on k that(

d

dΩ Ωk
)
H =

k−1∑
i=0

(
k

i+ 1

)(
ad i

Ω(H)
)

Ωk−i−1. (3.3)

This is seen by applying Leibniz’ rule to Ωk+1 = Ω·Ωk and by using the identity Ω(ad i
Ω(H)) =

(ad i
Ω(H))Ω + ad i+1

Ω (H).
Lemma 3.1. The derivative of exp Ω = ∑

k≥0
1
k! Ωk is given by(

d

dΩ exp Ω
)
H =

(
d expΩ(H)

)
exp Ω,

where
d expΩ(H) =

∑
k≥0

1
(k + 1)! ad k

Ω(H). (3.4)

The series (3.4) converges for all matrices Ω.
3On the numerical solution of Euler–Lagrange equations, Mech. Struct. & Mech. 19 (1991) 1–18; see also

page 476 of the monograph Solving Ordinary Differential Equations II by Hairer and Wanner (1996).
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Proof. Multiplying (3.3) by (k!)−1 and summing, then exchanging the sums and putting
j = k − i− 1 yields(

d

dΩ exp Ω
)
H =

∑
k≥0

1
k!

k−1∑
i=0

(
k

i+ 1

)(
ad i

Ω(H)
)

Ωk−i−1 =
∑
i≥0

∑
j≥0

1
(i+ 1)! j!

(
ad i

Ω(H)
)

Ωj.

The convergence of the series follows from the boundedness of the linear operator ad Ω (we
have ‖ad Ω‖ ≤ 2‖Ω‖).

Lemma 3.2. If the eigenvalues of the linear operator ad Ω are different from 2`πi with
` ∈ {±1,±2, . . .}, then d expΩ is invertible. Furthermore, we have for ‖Ω‖ < π that

d exp−1
Ω (H) =

∑
k≥0

Bk

k! ad k
Ω(H), (3.5)

where Bk are the Bernoulli numbers, defined by ∑k≥0(Bk/k!)xk = x/(ex − 1).
Proof. The eigenvalues of d expΩ are µ = ∑

k≥0 λ
k/(k + 1)! = (eλ − 1)/λ, where λ is an

eigenvalue of ad Ω. By our assumption, the values µ are non-zero, so that d expΩ is invertible.
By definition of the Bernoulli numbers, the composition of (3.5) with (3.4) gives the identity.
Convergence for ‖Ω‖ < π follows from ‖ad Ω‖ ≤ 2‖Ω‖ and from the fact that the radius of
convergence of the series for x/(ex − 1) is 2π.

III.4 Methods based on the Magnus series expansion
Our next aim is the numerical solution of differential equations (II.4.4) on Lie groups. For
this purpose we consider linear matrix differential equations of the form

Ẏ = A(t)Y. (4.1)
No assumption on the matrix A(t) is made for the moment (apart from continuous depen-
dence on t). For the scalar case, the solution of (4.1) with Y (0) = Y0 is given by

Y (t) = exp
(∫ t

0
A(τ) dτ

)
Y0. (4.2)

Also in the case where the matrices A(t) and
∫ t
0 A(τ) dτ commute, (4.2) is the solution of

(4.1). In the general non-commutative case we search for a matrix function Ω(t) such that
Y (t) = exp(Ω(t))Y0

solves (4.1). The main ingredient for the solution will be the inverse of the derivative of the
matrix exponential. It has been studied in Section III.3.
Theorem 4.1 (Magnus 1954). The solution of the differential equation (4.1) can be written
as Y (t) = exp(Ω(t))Y0 with Ω(t) given by

Ω̇ = d exp−1
Ω (A(t)), Ω(0) = 0. (4.3)

As long as ‖Ω(t)‖ < π, the convergence of the series expansion (3.5) of d exp−1
Ω is assured.

Proof. Comparing the derivative of Y (t) = exp(Ω(t))Y0,

Ẏ (t) =
(
d

dΩ exp(Ω(t))
)

Ω̇(t)Y0 =
(
d expΩ(t)(Ω̇(t))

)
exp(Ω(t))Y0,

with (4.1) we obtain A(t) = d expΩ(t)(Ω̇(t)). Applying the inverse operator d exp−1
Ω to this

relation yields the differential equation (4.3) for Ω(t). The statement on the convergence is
a consequence of Lemma 3.2.
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The first few Bernoulli numbers are B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0. The
differential equation (4.3) therefore becomes

Ω̇ = A(t)− 1
2

[
Ω, A(t)

]
+ 1

12

[
Ω,
[
Ω, A(t)

] ]
+ . . . ,

which is nonlinear in Ω. Applying Picard fixed point iteration after integration yields

Ω(t) =
∫ t

0
A(τ) dτ − 1

2

∫ t

0

[∫ τ

0
A(σ) dσ,A(τ)

]
dτ

+ 1
4

∫ t

0

[∫ τ

0

[∫ σ

0
A(µ) dµ,A(σ)

]
dσ,A(τ)

]
dτ (4.4)

+ 1
12

∫ t

0

[∫ τ

0
A(σ) dσ,

[∫ τ

0
A(µ) dµ,A(τ)

]]
dτ + . . . ,

which is the so-called Magnus expansion. For smooth matrices A(t) the remainder in (4.4) is
of size O(t5) so that the truncated series inserted into Y (t) = exp(Ω(t))Y0 gives an excellent
approximation to the solution of (4.1) for small t.

Numerical Methods Based on the Magnus Expansion. The matrix Ω can be consid-
ered as local coordinates for Y = exp(Ω)Yn. The differential equation (4.3) corresponds to
equation (2.1) in the general situation. Following the steps in Algorithm 2.1 we let Ωn = 0,
we compute an approximation Ωn+1 of Ω(h) given by (4.4) with A(tn + τ) instead of A(τ),
and we finally put Yn+1 = exp(Ωn+1)Yn. For Ωn+1 it is natural to take a suitable trunca-
tion of the Magnus expansion with the integrals approximated by numerical quadrature.4 A
related approach is to replace A(t) locally by an interpolation polynomial

Â(t) =
s∑
i=1

`i(t)A(tn + cih),

and to solve Ẏ = Â(t)Y on [tn, tn + h] by the use of the truncated series (4.4).

Theorem 4.2. Consider a quadrature formula (bi, ci)si=1 of order p ≥ s, and let Y (t) and
Z(t) be solutions of Ẏ = A(t)Y and Ż = Â(t)Z, respectively, satisfying Y (tn) = Z(tn).
Then, Z(tn + h)− Y (tn + h) = O(hp+1).

Proof. We write the differential equation for Z as Ż = A(t)Z + (Â(t)−A(t))Z and use the
variation of constants formula to get

Z(tn + h)− Y (tn + h) =
∫ tn+h

tn
R(tn + h, τ)

(
Â(τ)− A(τ)

)
Z(τ) dτ.

Applying our quadrature formula to this integral gives zero as result, and the remainder is
of size O(hp+1). Details of the proof are omitted.

4Iserles and Nørsett, On the solution of linear differential equations in Lie groups (1999);
Zanna, Collocation and relaxed collocation for the Fer and the Magnus expansions (1999).
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Example 4.3. As a first example, we use the midpoint rule (c1 = 1/2, b1 = 1). In this case
the interpolation polynomial is constant, and the method becomes

Yn+1 = exp
(
hA(tn + h/2)

)
Yn, (4.5)

which is of order 2.

Example 4.4. The two-stage Gauss quadrature is given by c1,2 = 1/2 ±
√

3/6, b1,2 =
1/2. The interpolation polynomial is of degree one and we have to apply (4.4) to get an
approximation Yn+1. Since we are interested in a fourth order approximation, we can neglect
the remainder term (indicated by . . . in (4.4)). Computing analytically the iterated integrals
over products of `i(t) we obtain

Yn+1 = exp
(
h

2 (A1 + A2) +
√

3h2

12 [A2, A1]
)
Yn, (4.6)

where A1 = A(tn + c1h) and A2 = A(tn + c2h). This is a method of order four. The terms
of (4.4) with triple integrals give O(h4) expressions, whose leading term vanishes by the
symmetry of the method (Exercise 6). Therefore, they need not be considered.

Remark. All numerical methods of this section are of the form Yn+1 = exp(hΩn)Yn, where
Ωn is a linear combination of A(tn + cih) and of their commutators. If A(t) ∈ g for all t,
then also hΩn lies in the Lie algebra g, so that the numerical solution stays in the Lie group
G if Y0 ∈ G (this is a consequence of Lemma II.4.3).

III.5 Convergence of methods on submanifolds
Consider a differential equation ẏ = f(y) on a submanifold M ⊂ Rm, and a numerical
integrator yn+1 = Φh(yn) with a discrete flow map5 Φh : M→M. If the vector field f(y)
and the integrator Φh(y) are defined and sufficiently smooth in a neighborhood of M, then
we can apply the well-established convergence results in the linear space Rm. In particular,
for a method of order p we have that the global error can be estimated as ‖yn−y(nh)‖ ≤ chp

for nh ≤ t̂ with c depending on t̂, if the step size h is sufficiently small. Since the exact
solution y(t) stays on the submanifold M, this implies that the numerical approximation
stays O(hp)-close to the submanifold on compact time intervals [0, t̂ ].

In the rest of this section we focus on the situation, where f(y) and Φh(y) are only
defined (and smooth) on the submanifold M, and there is no natural smooth extension to
a neighborhood of M.

Definition 5.1 (local error and order of consistency). Let a differential equation ẏ = f(y)
with sufficiently smooth vector field be given on a submanifold M ⊂ Rm. A numerical
integrator Φh :M→M is of order p, if for every compact set K ⊂ M there exists h0 > 0
such that for all h satisfying 0 < h ≤ h0 and for all y0 ∈ K the local truncation error can be
estimated as

‖Φh(y0)− y(h)‖ ≤ C0 h
p+1.

Here, y(t) denotes the solution of ẏ = f(y) that satisfies y(0) = y0, the norm is that of Rm,
and the constant C0 depends on K but is independent of h.

5Typically, Φh(y) is defined implicitly by algebraic equations, and it is well defined only for sufficiently
small h ≤ h0 with h0 depending on y. It may happen that there is no uniform h0 > 0 such that Φh(y) exists
for all y ∈M and for h ≤ h0. By abuse of notation, we nevertheless write Φh :M→M in this situation.
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Notice that the local error has to be estimated only for y0 in the submanifold M. This
is usually much easier than estimating a suitable extension on an open neighborhood ofM.
However, this makes sense only if Φh :M→M, which implies that the numerical solution
stays for ever on the submanifold.

Theorem 5.2 (convergence). Consider a sufficiently smooth differential equation ẏ = f(y)
on a submanifoldM⊂ Rm, and an initial value y0 ∈M such that the solution y(t) = φt(y0)
exists for 0 ≤ t ≤ t̂. If the numerical integrator yn+1 = Φh(yn) is of order p and yields
approximations satisfying yn ∈ M for nh ≤ t̂, then there exists h0 > 0 such that for
0 < h ≤ h0 the global error can be estimated as

‖yn − y(nh)‖ ≤ c hp for nh ≤ t̂.

The constant c is independent on h, but depends on the length t̂ of the considered interval.

Proof. We consider the compact neighborhood

K = {y ∈M ; ∃ τ ∈ [0, t̂ ] with ‖y − y(τ)‖ ≤ δ}

of the solution, where δ > 0 is given by Corol-
lary II.3.4. As long as yn ∈ K, it follows from
Definition 5.1 that ‖yn+1 − φh(yn)‖ ≤ C0 h

p+1.
Assume for the moment that yn ∈ Knh(δ)

and φh(yn−1) ∈ Knh(δ) for nh = tn ≤ t̂, where
Kτ (δ) = {y ∈ M ; ‖y − y(τ)‖ ≤ δ}. Using
φt−tn(yn) = φt−tn+1(φh(yn)), Corollary II.3.4 then
yields

 .  .  .

.

.

.

y0

t0 t1 t2 t3 tn = t

exact solutions

numerical method yn

E1

E2

E3

En = en

e1
e2 en−1

y(tn)

y1
y2

y3

‖φt−tn+1(yn+1)− φt−tn(yn)‖ ≤ C ‖yn+1 − φh(yn)‖ ≤ C C0 h
p+1

for tn+1 ≤ t ≤ t̂. Summing up, we thus obtain for nh = tn ≤ t̂

‖yn − y(tn)‖ ≤
n−1∑
j=0
‖φtn−tj+1(yj+1)− φtn−tj(yj)‖ ≤ C C0 (nh)hp,

which proves the statement with c = C C0 t̂. Our assumptions yn ∈ Knh(δ) and φh(yn−1) ∈
Knh(δ) are justified a posteriori, if h is assumed to be sufficiently small.

In the figure, the local errors are ej+1 = yj+1 − φh(yj), and the transported local errors
are Ej+1 = φtn−tj+1(yj+1)− φtn−tj(yj).

III.6 Exercises
1. For n-dimensional square matrices Y consider the function g(Y ) = detY . Prove that

g′(Y )(HY ) = traceH detY.

Hint. Expand det(Y + εHY ) in powers of ε.

2. Elaborate Example 1.2 for the special case where Y is a matrix of dimension 2. In particular,
show that (1.4) is the same as (1.2), and check the formulas for the simplified Newton
iterations.
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3. Show that for given Ỹ the solution of the problem (1.5) is Y = UTV , where Ỹ = UTΣV is
the singular value decomposition of Ỹ .
Hint. Since ‖UTSV ‖F = ‖S‖F holds for all orthogonal matrices U and V , it is sufficient to
consider the case Ỹ = (Σ, 0)T with Σ = diag(σ1, . . . , σk). Prove that

‖(Σ, 0)T − Y ‖2F ≥
k∑
i=1

(σi − 1)2

for all matrices Y satisfying Y TY = I.

4. Rodrigues formula. Prove that

exp(Ω) = I + sinα
α

Ω + 1
2
(sin(α/2)

α/2
)2

Ω2 for Ω =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


where α =

√
ω2

1 + ω2
2 + ω2

3. This formula allows for an efficient computation of the matrix
exponential, if we are concerned with problems in the Lie proup O(3).

5. The solution of Ẏ = A(Y )Y, Y (0) = Y0, is given by Y (t) = exp
(
Ω(t)

)
Y0, where Ω(t) solves

the differential equation
Ω̇ = d exp−1

Ω (A(Y (t)).

Prove that the first terms of the t-expansion of Ω(t) are given by

Ω(t) = tA(Y0) + t2

2 A
′(Y0)A(Y0)Y0 + t3

6
(
A′(Y0)2A(Y0)Y 2

0 +A′(Y0)A(Y0)2Y0

+ A′′(Y0)
(
A(Y0)Y0, A(Y0)Y0

)
− 1

2
[
A(Y0), A′(Y0)A(Y0)Y0

])
+ . . .

6. For the numerical solution of Ẏ = A(t)Y consider the method Yn 7→ Yn+1 defined by Yn+1 =
Z(tn + h), where Z(t) is the solution of

Ż = Â(t)Z, Z(tn) = Yn,

and Â(t) is the interpolation polynomial based on symmetric nodes c1, . . . , cs, i.e., we have
cs+1−i + ci = 1 for all i.
a) Prove that this method is symmetric.
b) Show that Yn+1 = exp(Ω(h))Yn holds, where Ω(h) has an expansion in odd powers of h.
This justifies the omission of the terms involving triple integrals in Example 4.4.

7. Consider the projection method of Algorithm 1.1, where Φh represents an explicit Runge-
Kutta method of order p (e.g., the explicit Euler method) and the numerical approximation
is obtained by orthogonal projection onto the submanifold. Prove that, for sufficiently small
h, the projection method is of order p according to Definition 5.1.



Chapter IV

Differential-Algebraic Equations

The most general form of a differential-algebraic system is that of an implicit differential
equation

F (u̇, u) = 0 (0.1)
where F and u have the same dimension. We always assume F to be sufficiently differentiable.
A non-autonomous system is brought to the form (0.1) by appending t to the vector u, and
by adding the equation ṫ = 1. If ∂F/∂u̇ is invertible we can locally solve (0.1) for u̇ to obtain
an ordinary differential equation. In this chapter we are interested in problems (0.1) where
∂F/∂u̇ is singular.1

IV.1 Linear equations with constant coefficients
The simplest and best understood problems of the form (0.1) are linear differential equations
with constant coefficients

Bu̇+ Au = d(t). (1.1)
In looking for solutions of the form u(t) = eλtu0 (if d(t) ≡ 0) we are led to consider the
“matrix pencil” A+λB. When A+λB is singular for all values of λ, then (1.1) has either no
solution or infinitely many solutions for a given initial value (Exercise 1). We shall therefore
deal only with regular matrix pencils, i.e., with problems where the polynomial det(A+λB)
does not vanish identically. The key to the solution of (1.1) is the following simultaneous
transformation of A and B to canonical form.
Theorem 1.1 (Weierstrass 1868, Kronecker 1890). Let A + λB be a regular matrix pencil.
Then there exist nonsingular matrices P and Q such that

PAQ =
(
C 0
0 I

)
, PBQ =

(
I 0
0 N

)
(1.2)

where N = blockdiag (N1, . . . , Nk), each Ni is of the form

Ni =


0 1 0

. . . . . .
0 1

0 0

 of dimension mi , (1.3)

and C can be assumed to be in Jordan canonical form.
1The text of this chapter is taken from Section VII.1 of the monograph Solving Ordinary Differential

Equations II by Hairer and Wanner (1996).
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Proof. (Gantmacher 1954 (Chap. XII), see also Exercises 3 and 4). We fix some c such that
A+ cB is invertible. If we multiply

A+ λB = A+ cB + (λ− c)B

by the inverse of A + cB and then transform (A + cB)−1B to Jordan canonical form we
obtain (

I 0
0 I

)
+ (λ− c)

(
J1 0
0 J2

)
. (1.4)

Here, J1 contains the Jordan blocks with non-zero eigenvalues, J2 those with zero eigenvalues
(the dimension of J1 is just the degree of the polynomial det(A+λB)). Consequently, J1 and
I−cJ2 are both invertible and multiplying (1.4) from the left by blockdiag (J−1

1 , (I−cJ2)−1)
gives (

J−1
1 (I − cJ1) 0

0 I

)
+ λ

(
I 0
0 (I − cJ2)−1J2

)
.

The matrices J−1
1 (I − cJ1) and (I − cJ2)−1J2 can then be brought to Jordan canonical form.

Since all eigenvalues of (I − cJ2)−1J2 are zero, we obtain the desired decomposition (1.2).

Theorem 1.1 allows us to solve the differential-algebraic system (1.1) as follows: we
premultiply (1.1) by P and use the transformation

u = Q
(
y
z

)
, P d(t) =

(
η(t)
δ(t)

)
.

This decouples the differential-algebraic system (1.1) into

ẏ + Cy = η(t), Nż + z = δ(t). (1.5)

The equation for y is just an ordinary differential equation. The relation for z decouples
again into k subsystems, each of the form (with m = mi)

ż2 + z1 = δ1(t)
...

żm + zm−1 = δm−1(t)
zm = δm(t).

(1.6)

Here zm is determined by the last equation, and the other components are computed recur-
sively by repeated differentiation. Exactly m− 1 differentiations are necessary to obtain

z1(t) = δ1(t)− δ̇2(t) + δ̈3(t)∓ . . .+ (−1)m−1δ(m−1)
m (t). (1.7)

The integer (maxmi) is called the index of nilpotency of the matrix pencil A+ λB. It does
not depend on the particular transformation used to get (1.2) (see Exercise 5).

IV.2 Differentiation index
The previous example shows that certain equations of the differential-algebraic system (1.6)
have to be differentiated m−1 times to get an explicit expression of all solution components.
One more differentiation gives ordinary differential equations for all components. This moti-
vates the following index definition for general nonlinear problems (Gear and Petzold 1983,
1984; Gear, Gupta, and Leimkuhler 1985, Gear 1990, Campbell and Gear 1995).
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Definition 2.1. Equation (0.1) has differentiation index m, if m is the minimal number of
analytical differentiations

F (u̇, u) = 0, dF (u̇, u)
dt = 0 , . . . ,

dmF (u̇, u)
dtm = 0 (2.1)

such that equations (2.1) allow us to extract by algebraic manipulations an explicit ordinary
differential system u̇ = a(u) (which is called the “underlying ODE”).

Note that for linear equations with constant coefficients the differentiation index and
the index of nilpotency are the same. Let us discuss the (differentiation) index for some
important special cases.
Systems of index 1. Differential-algebraic systems of the form

ẏ = f(y, z)
0 = g(y, z)

(2.2)

have no occurrence of ż. We therefore differentiate the second equation of (2.2) to obtain

ż = −g−1
z (y, z)gy(y, z)f(y, z)

which is possible if gz is invertible in a neighbourhood of the solution. The problem (2.2),
for invertible gz, is thus of differentiation index 1.

In practice, it is not necessary to know the differential equation for z. If initial values
satisfy g(y0, z0) = 0 (we call them consistent) and if the matrix gz(y0, z0) is invertible, then
the implicit function theorem guarantees the existence of a unique function z = ζ(y) (defined
close to (y0, z0)) such that g(y, ζ(y)) = 0. The problem then reduces locally to the ordinary
differential equation ẏ = f(y, ζ(y)), which can be solved by any numerical integrator.
Systems of index 2. In the system

ẏ = f(y, z)
0 = g(y)

(2.3)

where the variable z is absent in the algebraic constraint, we obtain by differentiation of the
second relation of (2.3) the “hidden constraint”

0 = gy(y)f(y, z). (2.4)

If gy(y)fz(y, z) is invertible in a neighbourhood of the solution, then the first equation of
(2.3) together with (2.4) constitute an index 1 problem. Differentiation of (2.4) yields the
missing differential equation for z, so that the problem (2.3) is of differentiation index 2.

If the initial values satisfy 0 = g(y0) and 0 = gy(y0)f(y0, z0), we call them consistent. If
in addition the matrix gy(y0)fz(y0, z0) is invertible, the implicit function theorem implies the
local existence of a function z = ζ(y) satisfying gy(y)f(y, ζ(y)) = 0 in a neighborhood of y0.
We thus obtain the differential equation

ẏ = f(y, ζ(y)) on the manifold M = {y ; g(y) = 0}.

The property f(y, ζ(y)) ∈ TyM follows from gy(y)f(y, ζ(y)) = 0. All numerical approaches
of Chapter III can be applied to solve such problems.
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System (2.3) is a representative of the larger class of problems of type (2.2) with singular
gz. If we assume that gz has constant rank in a neighbourhood of the solution, we can
eliminate certain algebraic variables from 0 = g(y, z) until the system is of the form (2.3).
This can be done as follows: if there exists a pair (i, j) such that ∂gi/∂zj 6= 0 at the initial
value then, by the implicit function theorem, the relation gi(y, z) = 0 permits us to express
zj in terms of y and the other components of z. We can thus eliminate the variable zj
from the system. Repeating this procedure we arrive at the situation, where gz vanishes at
the initial value. From the constant rank assumption it follows that gz vanishes in a whole
neighborhood of the initial value, so that g is already independent of z.
Systems of index 3. Problems of the form

ẏ = f(y, z)
ż = k(y, z, u)
0 = g(y)

(2.5)

are of differentiation index 3, if

gy(y)fz(y, z)ku(y, z, u) is invertible (2.6)

in a neighborhood of the solution. To see this, we differentiate twice the algebraic relation
of (2.5), which yields

0 = (gyf)(y, z), 0 = (gyy(f, f))(y, z) + (gyfyf)(y, z) + (gyfzk)(y, z, u). (2.7)

A third differentiation permits to express u̇ in terms of (y, z, u) provided that (2.6) is satisfied.
This proves index 3 of the system (2.5).

Consistent inital values (y0, z0, u0) must satisfy g(y0) = 0 and the two conditions (2.7).
Under the condition (2.6) an application of the implicit function theorem permits to express
u in terms of (y, z) from the second relation of (2.7), i.e., u = ν(y, z). Inserting this relation
into the differential-algebraic system (2.5) yields an ordinary differential equation for (y, z)
on the manifold

M = {(y, z) ; g(y) = 0, gy(y)f(y, z) = 0}.
The assumption (2.6) implies that gy(y) and gy(y)fz(y, z) have full rank, so that M is a
manifold. It follows from (2.7) that the vector field lies in the tangent space T(y,z)M for all
(y, z) ∈M.

IV.3 Control problems
Many problems of control theory lead to ordinary differential equations of the form

ẏ = f(y, u),

where u represents a set of controls. These controls must be applied so that the solution
satisfies some constraints 0 = g(y) (or 0 = g(y, u)). They often lead to a differential-algebraic
system of index 2, as it is the case for the example of Section I.2.
Optimal control problems are differential equations ẏ = f(y, u) formulated in such a way
that the control u(t) has to minimize some cost functional. The Euler–Lagrange equation
then often becomes a differential-algebraic system (Pontryagin, Boltyanskij, Gamkrelidze
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& Mishchenko 1961, Athans & Falb 1966, Campbell 1982). We demonstrate this on the
problem

ẏ = f(y, u), y(0) = y0 (3.1)
with cost functional

J(u) =
∫ 1

0
ϕ
(
y(t), u(t)

)
dt. (3.2)

For a given function u(t) the solution y(t) is determined by (3.1). In order to find conditions
for u(t) that minimize J(u) of (3.2), we consider the perturbed control u(t) + εδu(t) where
δu(t) is an arbitrary function and ε a small parameter. To this control there corresponds a
solution y(t) + εδy(t) +O(ε2) of (3.1); we have (by comparing powers of ε)

δẏ(t) = fy(t)δy(t) + fu(t)δu(t), δy(0) = 0,

where, as usual, fy(t) = fy(y(t), u(t)), etc. Linearization of (3.2) shows that

J(u+ εδu)− J(u) = ε
∫ 1

0

(
ϕy(t)δy(t) + ϕu(t)δu(t)

)
dt+O(ε2)

so that ∫ 1

0

(
ϕy(t)δy(t) + ϕu(t)δu(t)

)
dt = 0 (3.3)

is a necessary condition for u(t) to be an optimal solution of our problem. In order to express
δy in terms of δu in (3.3), we introduce the adjoint differential equation

v̇ = −fy(t)Tv − ϕy(t)T, v(1) = 0

with inhomogeneity ϕy(t)T. Hence we have (see Exercise 6)∫ 1

0
ϕy(t)δy(t) dt =

∫ 1

0
vT(t)fu(t)δu(t) dt.

Inserted into (3.3) this gives the necessary condition∫ 1

0

(
vT(t)fu(t) + ϕu(t)

)
δu(t) dt = 0.

Since this relation has to be satisfied for all δu we obtain the necessary relation

vT(t)fu(t) + ϕu(t) = 0

by the so-called “fundamental lemma of variational calculus”.
In summary, we have proved that a solution of the above optimal control problem has to

satisfy the system
ẏ = f(y, u), y(0) = y0

v̇ = −fy(y, u)Tv − ϕy(y, u)T, v(1) = 0
0 = vTfu(y, u) + ϕu(y, u).

(3.4)

This is a boundary value differential-algebraic problem. It can also be obtained directly from
the Pontryagin minimum principle (see Pontryagin et al. 1961, Athans and Falb 1966).

Differentiation of the algebraic relation in (3.4) shows that the system (3.4) has index 1
if the matrix

n∑
i=1

vi
∂2fi
∂u2 (y, u) + ∂2ϕ

∂u2 (y, u)

is invertible along the solution. A situation where the system (3.4) has index 3 is presented
in Exercise 7.
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IV.4 Mechanical systems
An interesting class of differential-algebraic systems appears in mechanical modeling of con-
strained systems. A choice method for deriving the equations of motion of mechanical sys-
tems is the Lagrange-Hamilton principle, whose long history goes back to merely theological
ideas of Leibniz and Maupertuis.
Mechanical systems in minimal coordinates. Let q = (q1, . . . , qn)T be minimal2 gener-
alized coordinates of a system and vi = q̇i the velocities. Suppose a function L(q, q̇) is given;
then the Euler equations of the variational problem∫ t2

t1
L(q, q̇) dt = min !

are given by
d
dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0, k = 1, . . . , n, (4.1)

which represent a second order differential equations for the coordinates qk. The great
discovery of Lagrange (1788) is that for L = T − U , where T (q, q̇) = 1

2 q̇
TM(q) q̇ (with

a symmetric positive matrix M(q)) is the kinetic energy and U(q) the potential energy,
the differential equation (4.1) describes the movement of the corresponding “conservative
system”. Written as a first order differential equation, it is given by

q̇ = v

M(q) v̇ = f(q, v),
(4.2)

where f(q, v) = − ∂
∂q

(M(q)v)v +∇qT (q, v) −∇qU(q). For the important special case where
M is constant, we simply have f(q, v) = −∇qU(q).

Example 4.1. The mathematical pendulum of length ` has one degree of freedom. We
choose as generalized coordinate the angle α = q1 such that T = m`2α̇2/2 and U =
−`mg cosα. Then (4.1) becomes ` α̈ = −g sinα, the well-known pendulum equation.

Constrained mechanical systems. Suppose now that the generalized coordinates q =
(q1, . . . , qn)T are constrained by the relations g1(q) = 0, . . . , gm(q) = 0 (or shortly g(q) = 0)
on their movement. If these relations are independent (we assume that g′(q) has full rank
m) the number of degrees of freedom is n−m. An example is the mathematical pendulum
considered in Cartesian coordinates. We again assume that the kinetic energy is given by
T (q, q̇) = 1

2 q̇
TM(q) q̇ with a symmetric positive matrix M(q), and the potential energy is

U(q). To obtain the equations of motion we proceed in three steps:

• we introduce minimal coordinates of the system, i.e., a parametrization q = η(z) of
the submanifold N = {q ; g(q) = 0},
• we write down the equations of motion in minimal coordinates z, and
• we rewrite these equations in the original variables q.

Using our parametrization q = η(z) and its time derivative q̇ = η′(z)ż, the kinetic and
potential energies become

T̂ (z, ż) = T (η(z), η′(z)ż) = 1
2 ż

TM̂(z) ż with M̂(z) = η′(z)TM(η(z)) η′(z)

2Minimal means that the dimension of q equals the number of degrees of freedom in the system.
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and Û(z) = U(η(z)). With the Lagrangian L̂(z, ż) = L(η(z), η′(z)ż) = T̂ (z, ż) − Û(z) the
equations of motion, written in minimal coordinates z, are therefore

d
dt

(
∂L̂

∂ż
(z, ż)

)
− ∂L̂

∂z
(z, ż) = 0. (4.3)

We have to rewrite these equations in the original variables q. Using the relations

∂L̂

∂ż
(z, ż) = ∂L

∂q̇
(q, q̇) η′(z)

∂L̂

∂z
(z, ż) = ∂L

∂q
(q, q̇) η′(z) + ∂L

∂q̇
(q, q̇) η′′(z)(ż, ·)

d
dt

(
∂L̂

∂ż
(z, ż)

)
= d

dt

(
∂L

∂q̇
(q, q̇)

)
η′(z) + ∂L

∂q̇
(q, q̇) η′′(z)(ż, ·)

the equations (4.3) become( d
dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇)

)
η′(z) = 0. (4.4)

Any vector w satisfying wTη′(z) = 0 is orthogonal to the image Im η′(z). However, from
the characterization of the tangent space (Theorem II.2.2) we know that Im η′(z) = TqN =
ker g′(q). Using the identity (ker g′(q))⊥ = Im g′(q)T, we obtain that the equation (4.4) is
equivalent to ( d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇)

)T
= −g′(q)Tλ

which can also be written as

q̇ = v

M(q) v̇ = f(q, v)−G(q)Tλ

0 = g(q),
(4.5)

where we denote G(q) = g′(q), and f(q, v) is as in (4.2). For the mathematical pendulum,
written in Cartesian coordinates, these equations have been considered in Example I.3.1.
Various formulations are possible for such a problem, each of which leads to a different
numerical approach.
Index 3 Formulation (position level, descriptor form). If we formally multiply the second
equation of (4.5) by M(q)−1, the system (4.5) becomes of the form (2.5) with (q, v, λ) in the
roles of (y, z, u). The condition (2.6), written out for (4.5), is

G(q)M(q)−1G(q)T is invertible . (4.6)

This is satisfied, if the rows of the matrix G(q) are linearly independent, i.e., the constraints
g(q) = 0 are independent. Under this assumption, the system (4.5) is an index 3 problem.
Index 2 Formulation (velocity level). Differentiation of the algebraic relation in (4.5) gives

0 = G(q)v. (4.7)

If we replace the algebraic relation in (4.5) by (4.7), we obtain a system of the form (2.3)
with (q, u) in the role of y and λ in that of z. One verifies that because of (4.6) the first two
equations of (4.5) together with (4.7) represent a problem of index 2.
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Index 1 Formulation (acceleration level). If we differentiate twice the constraint in (4.5),
the resulting equation together with the second equation of (4.5) yield(

M(q) GT (q)
G(q) 0

)(
v̇
λ

)
=
(

f(q, v)
−gqq(q)(v, v)

)
. (4.8)

This allows us to express v̇ and λ as functions of q, v, provided that the matrix in (4.8) is
invertible (see Exercise I.6). Hence, the first equation of (4.5) together with (4.8) consitute
an index 1 problem.

All these formulations are mathematically equivalent, if the initial values are consistent,
i.e., if (q0, v0) satisfy g(q0) = 0 and g′(q0)v0 = 0, and if λ0 = λ(q0, v0) where the function
λ(q, v) is defined by (4.8). However, if for example the index 1 or the index 2 system is inte-
grated numerically, the constraints of the original problem will no longer be exactly satisfied.
It is recommended to consider the problem as a differential equation on the manifold, and
to force the solution to remain on the manifold.
Constrained mechanical system as differential equation on a manifold. Inserting
the function λ(q, v) obtained from (4.8) into the system (4.5), the first two equations of (4.5)
represent an ordinary differential equation on the submanifold

M = {(q, v) ; g(q) = 0, g′(q)v = 0}.

This is equivalent to the index 1 formulation. Applying the numerical techniques of Chap-
ter III (projection methods and local state space form approaches) to the problem, one has
to be careful that the numerical solution not only satisfies the given constraint g(q) = 0, but
also the hidden constraint g′(q)v = 0.

IV.5 Exercises
1. Compute the general solution of the linear differential-algebraic equation( 1 2

2 4

)(
u̇1
u̇2

)
+
( 1 0

1 1

)(
u1
u2

)
=
(
t2

3 t

)
.

Is there a solution for every pair of initial values (u1(0), u2(0)) ?

2. Prove that the initial value problem

Bu̇+Au = 0, u(0) = 0

has a unique solution if and only if the matrix pencil A+ λB is regular.
Hint for the “only if” part. If n is the dimension of u, choose arbitrarily n + 1 distinct λi
and vectors vi 6= 0 satisfying (A + λiB)vi = 0. Then take a linear combination, such that∑
αivi = 0, but

∑
αie

λixvi 6≡ 0.

3. (Stewart 1972). Let A + λB be a regular matrix pencil. Show that there exist unitary
matrices Q and Z such that

QAZ =
(
A11 A12
0 A22

)
, QBZ =

(
B11 B12
0 B22

)
(5.1)

are both triangular. Furthermore, the submatrices A22 and B11 are invertible, and the
diagonal elements of B22 are all 0.
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Hint (compare with the Schur decomposition of a matrix). Let λ1 be a zero of det(A+ λB)
and v1 6= 0 be such that (A+ λ1B)v1 = 0. Verify that Bv1 6= 0 and that

AZ1 = Q1

(−λ1β ∗
0 Ã

)
, BZ1 = Q1

(
β ∗
0 B̃

)
where β = ‖Bv1‖/‖v1‖, and Q1, Z1 are unitary matrices (orthogonal if λ1 is real) whose first
columns are scalar multiples of Bv1 and v1, respectively. The matrix pencil Ã+ λB̃ is again
regular and this procedure can be continued until det(Ã + λB̃) = Const which implies that
det B̃ = 0. In this case we take a vector v2 6= 0 such that B̃v2 = 0 and transform Ã+λB̃ with
unitary matrices Q2, Z2, whose first columns are Ãv2 and v2, respectively. For a practical
computation of the decomposition (5.1) see the monograph of Golub and Van Loan (1989),
Section 7.7.

4. Under the assumptions of Exercise 3 show that there exist matrices S and T such that(
I S
0 I

)(
A11 A12
0 A22

)(
I T
0 I

)
=
(
A11 0
0 A22

)
,

(
I S
0 I

)(
B11 B12
0 B22

)(
I T
0 I

)
=
(
B11 0
0 B22

)
.

Hint. These matrices have to satisfy

A11T +A12 + SA22 = 0 (5.2)

B11T +B12 + SB22 = 0 (5.3)

and can be computed as follows: the first column of T is obtained from (5.3) because B11 is
invertible and the first column of SB22 vanishes; then the first column of S is given by (5.2)
because A22 is invertible; the second column of SB22 is then known and we can compute the
second column of T from (5.3), etc.

5. Prove that the index of nilpotency of a regular matrix pencil A+λB does not depend on the
choice of P and Q in (1.2).
Hint. Consider two different decompositions of the form (1.2) and denote the matrices which
appear by C1, N1 and C2, N2, respectively. Show the existence of a regular matrix T such
that N2 = T−1N1T .

6. For the linear initial value problem

ẏ = A(t)y + f(t), y(0) = 0

consider the adjoint problem

v̇ = −A(t)Tv − g(t), v(1) = 0.

Prove that ∫ 1

0
g(t)Ty(t) dt =

∫ 1

0
v(t)Tf(t) dt.

7. Consider a linear optimal control problem with quadratic cost functional

ẏ = Ay +Bu+ f(t), y(0) = y0

J(u) = 1
2

∫ 1

0

(
y(t)TCy(t) + u(t)TDu(t)

)
dt,

where C and D are symmetric, positive semi-definite matrices.
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a) Prove that J(u) is minimal if and only if

ẏ = Ay +Bu+ f(t), y(0) = y0

v̇ = −ATv − Cy, v(1) = 0
0 = BTv +Du.

(5.4)

b) If D is positive definite, then (5.4) has index 1.
c) If D = 0 and BTCB is positive definite, then (5.4) has index 3.

8. Consider the double pendulum in the configuration of the small fig-
ure to the right. The pendulum is fixed at the origin, the two mass
points have coordinates (x1, y1) and (x2, y2). The kinetic and potential
energies are given by

T = m1
2 (ẋ2

1 + ẏ2
1) + m2

2 (ẋ2
2 + ẏ2

2)

U = m1g y1 +m2g y2.

m1

`1α

m2

`2 β

a) Determine the constraints and give the descriptor form (differential-algebraic equation of
index 3) of the equations of motion for the mechanical system in Cartesian coordinates.
b) Let α and β be the generalized coordinates of the double pendulum. Write the equations
of motion in terms of these minimal coordinates.



Chapter V

Numerical Methods for DAEs

We have seen in Chapter IV how differential-algebraic equations (DAEs) can be interpreted as
differential equations on manifolds. Therefore, all numerical approaches (projection methods
and integrators based on local coordinates) discussed in Chapter III can be applied to solve
these problems. Here, we consider direct numerical methods for problems of the form

M u̇ = F (u), u(0) = u0, (0.1)

where M is a constant, but possibly singular matrix, and the initial value is such that the
problem possesses a unique solution. For this it is necessary that F (u0) lies in the range of
the matrix M . All problems of Chapter IV can be written in this form. For the problems of
the form (IV.2.2) or (IV.2.3) the matrix M is diagonal, with entries 1 in the first part, and
entries 0 in the rest. For an implicit differential equation F0(v̇, v) = 0, we can introduce a
new variable for the derivative and thus obtain the system v̇ = w, F0(w, v) = 0, which is of
the form (0.1) for the vector u = (v, w).

In the first sections of the present chapter, we consider a numerical approach which
requires only the knowledge of the data M and F (u) of the problem, and not that of the
underlying manifold of the DAE. It can be sketched as follows:

• apply formally any numerical method to the differential equation u̇ = M−1F (u),
• rewrite the formulas in such a way that the inverse of M is no longer present,
• investigate whether the resulting numerical scheme makes sense for singular M .

Whereas the definition of the numerical schemes, following this approach, is extremely simple,
their analysis (local accuracy, stability, and convergence) needs more effort.

V.1 Runge–Kutta and multistep methods
Let us start with applying the above approach to the explicit and implicit Euler methods.
For the explicit Euler method we obtain

un+1 = un + hM−1F (un) or M(un+1 − un) = hF (un).

If the matrix M is singular, this relation does not permit us to compute un+1 for a given
un, and the above approach does not lead to a numerical approximation. The implicit Euler
method yields

M(un+1 − un) = hF (un+1), (1.1)
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which represents a nonlinear system for un+1. Application of simplified Newton iterations
requires the solution of linear equations with the matrix

M − hF ′(un). (1.2)

If the matrix pencil, formed by the matrices M and F ′(un) is regular, then the matrix (1.2) is
invertible for sufficiently small step size h, and simplified Newton iterations are feasible. We
shall study in the next sections, when the solution un+1 of (1.1) exists, so that the implicit
Euler method is well defined for small h.
Linear multistep methods. Applying a multistep formula to the system u̇ = M−1F (u)
and multiplying the relation with M yields (notice that αk 6= 0)

M
k∑
j=0

αj un+j = h
k∑
j=0

βj F (un+j). (1.3)

If the method is explicit, i.e., βk = 0, this relation does not permit the computation of un+k
when M is singular. Therefore, only implicit methods make sense in this context. As for the
implicit Euler method, an application of simplified Newton iterations leads to linear systems
with the matrix

αkM − hβk F ′(un+k−1).
This again requires the matrix pencil formed by M and F ′(un+k−1) to be regular.
Runge–Kutta methods. Using this approach with Runge–Kutta methods as numerical
integrator leads to the system

M(Uni − un) = h
s∑
j=1

aij F (Unj), i = 1, . . . , s

M(un+1 − un) = h
s∑
i=1

bi F (Uni).
(1.4)

Consider first the upper relation of (1.4), which is supposed to define the internal stages
Uni for i = 1, . . . , s. Applying simplified Newton iterations yields linear systems with the
matrix1

I ⊗M − hA⊗ F ′(un). (1.5)
Suppose that the invertible matrix T is such that T−1AT is upper triangular with the
eigenvalues λi of A on the diagonal. The matrix T ⊗ I then transforms (1.5) to block upper
triangular form with diagonal blocks of the form M−hλiF ′(un). If the matrix pencil formed
by M and F ′(un) is regular, and if λi 6= 0 for all i (which means that A is non-singular)
then the matrix (1.5) is invertible for sufficiently small h, and simplified Newton iterations
can be performed.

Assume for the moment that the system (1.4) has a (locally) unique solution Un1, . . . , Uns.
The right-hand side of the lower relation of (1.4) is then determined, and it seems hopeless to
get a unique approximation un+1 when M is singular. However, if the Runge–Kutta matrix
A = (aij)si,j=1 is invertible, we can compute the vector (F (Un1), . . . , F (Uns)) from the upper
part of (1.4) and insert it into the lower part. This gives

M(un+1 − un) =
s∑
i=1

bi
s∑
j=1

wijM(Unj − un),

1For two matrices A and B, the tensor product is defined as A⊗B = (aijB)si,j=1.
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where wij are the entries of the inverse A−1 of the Runge–Kutta matrix. As long as M is
invertible, we can simplify this relation by M and thus obtain

un+1 − un =
s∑
j=1

( s∑
i=1

biwij

)
(Unj − un). (1.6)

For invertible M , the complete system (1.4) is therefore equivalent to the system, where the
lower relation of (1.4) is replaced with (1.6). This formulation is perfectly adapted to the
solution of problems (0.1) with singular M .2

Invariance with respect to linear transformations. In many situations (either for
theoretical investigations or for practical issues like step size selection) it is convenient to
have a very simple form of the matrix M in (0.1). We can always decompose the matrix M
(e.g., by Gaussian elimination with total pivoting) as

M = S
(
I 0
0 0

)
T, (1.7)

where S and T are invertible matrices and the dimension of I represents the rank of M .
Inserting this into (0.1), multiplying by S−1, and using the transformed quantities

Tu =
(
y
z

)
, S−1F (u) = S−1F

(
T−1

(
y
z

))
=
(
f(y, z)
g(y, z)

)
, (1.8)

gives
ẏ = f(y, z)
0 = g(y, z),

(1.9)

a problem that has been extensively studied in Chapter IV. At the moment we do not make
any assumption on the index of the problem.

It is interesting to note that all numerical methods considered in this section are invariant
with respect to this transformation. If we consider transformed variables

Tun =
(
yn
zn

)
, TUni =

(
Yni
Zni

)
(1.10)

also for the numerical solution, this means that the diagram

problem (0.1) problem (1.9)

{un} {yn, zn}

numer. method numer. method

transf. (1.8)-

transf. (1.10)-
? ?

commutes. An important consequence of this commutativity is that all results (existence
of a numerical solution, convergence, asymptotic expansions, . . .) for semi-explicit systems
(1.9) and the approach of this section also apply to differential-algebraic equations (0.1) with
singular M .

2By the way, the use of (1.6) is recommended for an implementation of implicit Runge–Kutta methods.
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V.2 Index 1 problems
We consider the differential-algebraic equation

ẏ = f(y, z), y(0) = y0

0 = g(y, z), z(0) = z0
(2.1)

with initial values satisfying g(y0, z0) = 0. In this section we assume that gz is invertible along
the solution, so that the problem is of differentiation index 1. As discussed in Section IV.2,
the algebraic equation of (2.1) can then be solved for z and yields and equivalent relation
z = ζ(y). In this section we study the accuracy and convergence of multistep methods as
well as Runge–Kutta methods.
Linear multistep methods. For the problem (2.1), a linear multistep method applied in
the form (1.3) reads

k∑
j=0

αj yn+j = h
k∑
j=0

βj f(yn+j, zn+j), 0 =
k∑
j=0

βj g(yn+j, zn+j). (2.2)

If the starting approximations are consistent, i.e., g(yj, zj) = 0 for j = 0, 1, . . . , k − 1,
and if βk 6= 0, then the second relation of (2.2) is equivalent to g(yn+k, zn+k) = 0 for all
n. This means that zn+k = ζ(yn+k) for all n, and the numerical approximation for the y
component is the result of the multistep method applied to the ordinary differential equation
ẏ = f(y, ζ(y)). Classical convergence theory thus tells us that the global error in the y
component is of the size O(hp), if p is the classical order of the method. It follows from
zn = ζ(yn) and z(nh) = ζ(y(nh)) that the same bounds hold also for the z component.

In practice, for example when the relation g(yn+k, zn+k) = 0 is not explicitly used (e.g.,
when the formulation with a general matrix M is used), then (due to errors in the starting ap-
proximations or due to round-off errors) the difference equation (2.2) for gn+j = g(yn+j, zn+j)
has to be stable. This means that all zeros of the characteristic polynomial σ(ζ) = ∑k

j=0 βjζ
j

have to lie in the unit circle, and those with modulus one have to be simple.
Runge–Kutta methods. Applying an implicit Runge–Kutta method (1.4) with invertible
Runge–Kutta matrix A to the system (2.1) yields

Yni − yn = h
s∑
j=1

aij f(Ynj, Znj), i = 1, . . . , s

0 = g(Yni, Zni), i = 1, . . . , s

yn+1 − yn = h
s∑
i=1

bi f(Yni, Zni)

zn+1 − zn =
s∑
j=1

( s∑
i=1

biwij

)
(Znj − zn).

(2.3)

The second relation shows that the internal stages satisfy Zni = ζ(Yni) for i = 1, . . . , s.
Consequently, the y component is precisely the same as if we apply the Runge–Kutta method
to the ordinary differential equation ẏ = f(y, ζ(y)). Classical convergence results therefore
yield yn − y(nh) = O(hp) on compact intervals 0 ≤ nh ≤ T , where p denotes the order of
the method.

If the method is stiffly accurate, i.e., the Runge–Kutta coefficients satisfy asj = bj for all j,
then we have yn+1 = Yns. Moreover, the Runge–Kutta coefficients satisfy ∑s

i=1 biwij = 0 for
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j = 1, . . . , s−1, and ∑s
i=1 biwis = 1. Consequently, we have zn+1 = Zns and thus also zn+1 =

ζ(yn+1). The convergence estimate for the y component therefore implies zn−z(nh) = O(hp)
on compact intervals 0 ≤ nh ≤ T .

For methods that are not stiffly accurate, the so-called stage order plays an important
role. One says that a Runge–Kutta method has stage order q, if the coefficients satisfy the
simplifying condition

C(q) :
s∑
j=1

aijc
k−1
j = cki

k
, i = 1, . . . , s, k = 1, . . . q. (2.4)

This is equivalent to ∑s
j=1 aij p(cj) =

∫ ci
0 p(τ) dτ for polynomials p(τ) of degree ≤ q− 1, and

means that the quadrature rules for the internal stages have an order at least q. For the z
component we have the following convergence result.

Theorem 2.1 (order reduction3). Consider the system (2.1) with initial values satisfy-
ing g(y0, z0) = 0, and assume that gz is invertible in a neighborhood of the exact solution
(y(t), z(t)). Let the Runge-Kutta method be of order p, of stage order q, with invertible ma-
trix A, and denote4 ρ = 1−∑s

j=1
∑s
i=1 biwij. Then the numerical solution of (2.3) has global

error satisfying
zn − z(nh) = O(hr) for tn = nh ≤ T,

where
a) r = p for stiffly accurate methods,
b) r = min(p, q + 1) if the stability function satisfies −1 ≤ ρ < 1,
c) r = min(p− 1, q) if ρ = +1.
d) If |ρ| > 1, the numerical solution diverges.

Proof. Part (a) has already been discussed. For the remaining cases we proceed as follows:
we first observe that condition C(q) and order p imply

z(tn + cih) = z(tn) + h
s∑
j=1

aij ż(tn + cjh) +O(hq+1) (2.5)

z(tn+1) = z(tn) + h
s∑
i=1

bi ż(tn + cih) +O(hp+1). (2.6)

Since A is invertible we can compute ż(tn + cjh) from (2.5) and insert it into (2.6). This
gives

z(tn+1) = ρ z(tn) + bTA−1Ẑn +O(hp+1) +O(hq+1), (2.7)
where Ẑn = (z(tn + c1h), . . . , z(tn + csh))T. We then denote the global error by ∆zn =
zn− z(tn), and ∆Zn = Zn− Ẑn, where Zn = (Zn1, . . . , Zns)T. Subtracting (2.7) from the last
relation of (2.3) yields

∆zn+1 = ρ∆zn + bTA−1∆Zn +O(hp+1) +O(hq+1). (2.8)

Our next aim is to estimate ∆Zn. For this we have to consider the y component of the
system. By definition of the method, the values yn, Yni are those of the Runge-Kutta method

3This order reduction in the z component was first studied in a more general context by L.R. Petzold,
Order results for implicit Runge–Kutta methods applied to differential/algebraic systems. SIAM J. Numer.
Anal. 23 (1986) 837–852.

4The expression ρ equals the value at infinity of the stability function.
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applied to ẏ = f(y, ζ(y)). It thus follows from the classical convergence theory for ordinary
differential equations that yn − y(tn) = ep(tn)hp +O(hp+1). Since equation (2.5) also holds
with z(t) replaced by y(t), we can subtract this formula from the first relation of (2.3) and
so obtain

Yni − y(tn + cih) = yn − y(tn)

+ h
s∑
j=1

aij

(
f
(
Ynj, ζ(Ynj)

)
− f

(
y(tn + cjh), ζ(y(tn + cjh)

))
+O(hq+1).

Since yn − y(tn) = O(hp), this implies that

Yni − y(tn + cih) = O(hν) with ν = min(p, q + 1).

By the second relation of (2.3) we have Zni − z(tn + cih) = ζ(Yni)− ζ(y(tn + cih)) = O(hν),
and equation (2.8) becomes

∆zn+1 = ρ∆zn + δn+1, where δn+1 = O(hν).

Repeated insertion of this formula gives

∆zn =
n∑
i=1

ρn−i δi,

because ∆z0 = 0. This proves the statement for ρ 6= −1. For the case ρ = −1 the error ∆zn
is a sum of differences δj+1− δj. Since δn+1 is actually of the form δn+1 = d(tn)hν +O(hν+1)
we have δj+1 − δj = O(hν+1) and the statement also follows in this situation.

Example 2.2 (Radau IIA methods). One of the most important integrators for the numer-
ical solution of differential-algebraic equations are the so-called Radau IIA methods. The
nodes c1, . . . , cs are the zeros of

ds−1

dxs−1

(
xs−1(x− 1)s

)
,

and the weights b1, . . . , bs are chosen such that the quadrature formula is interpolatory,
which implies that it is of order p = 2s− 1. Ehle (1969) and Axelsson (1969) independently
proposed to consider coefficients aij by imposing condition C(s) of (2.4). The special case for
s = 1 is nothing other than the implicit Euler method. The coefficients (matrix aij together
with the ci in the left column and the bj in the bottom row) are given in Table V.1 for the
cases s = 2 and s = 3.

The methods have classical order p = 2s−1, stage order q = s, the Runge–Kutta matrix is
invertible, and the weights satisfy bj = asj for all j. For more details we refer to Section IV.5
of the monograph Solving Ordinary Differential Equations II by Hairer and Wanner.

Tab. V.1: Radau IIA methods of order 3 and 5

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

4−
√

6
10

88− 7
√

6
360

296− 169
√

6
1800

−2 + 3
√

6
225

4 +
√

6
10

296 + 169
√

6
1800

88 + 7
√

6
360

−2− 3
√

6
225

1 16−
√

6
36

16 +
√

6
36

1
9

16−
√

6
36

16 +
√

6
36

1
9
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V.3 Index 2 problems
We next consider semi-explicit problems

ẏ = f(y, z), y(0) = y0

0 = g(y), z(0) = z0
(3.1)

where the initial values satisfy g(y0) = 0 and gy(y0)f(y0, z0) = 0. We assume that f and g
are sufficiently differentiable and that

gy(y)fz(y, z) is invertible (3.2)

in a neighbourhood of the solution, so that the problem has index 2. Recall that this problem
can be considered as a differential equation on the manifold M = {y ; g(y) = 0}.

In this section we restrict our considerations to implicit Runge–Kutta methods with
invertible matrix (aij), and coefficients satisfying bj = asj for all j (stiffly accurate methods).
For the problem (3.1) they are defined by

Yni − yn = h
s∑
j=1

aij f(Ynj, Znj), 0 = g(Yni), i = 1, . . . , s (3.3)

with a numerical approximation after one step given by yn+1 = Yns, zn+1 = Zns. Notice that
the internal stages and the numerical solution do not depend on zn. The value of zn only
specifies the solution branch of gy(y)f(y, z) = 0 to which the expressions Znj remain close.
Moreover, the numerical solution yn stays on the manifold M for all n.

The convergence results of this section are also valid for index 2 systems of the form
ẏ = f(y, z), 0 = g(y, z), if they can be transformed to (3.1) without any differentiation
(see the discussion of index 2 systems in Section IV.2). This is because the method (3.3) is
invariant with respect to these transformations.

Theorem 3.1 (existence and uniqueness of numerical solution). Consider yn ∈ M, let ζ
be a value satisfying gy(yn)f(yn, ζ) = 0, and assume that (3.2) holds in a neighborhood of
(yn, ζ). If the Runge–Kutta matrix (aij) is invertible, then there exists h0 > 0 such that the
nonlinear system (3.3) possesses for |h| ≤ h0 a locally unique solution which satisfies

Yni − yn = O(h), Zni − ζ = O(h). (3.4)

Proof. We shall prove that the solution (Yni, Zni) of (3.3) can be expressed as a smooth
function of h (for sufficiently small h). A direct application of the implicit function theorem
is not possible due to the presence of the factor h in front of the Znj dependence.

The idea is to use the fundamental theorem of calculus

g(Yni)− g(yn) =
∫ 1

0
gy
(
yn + τ(Yni − yn)

)
(Yni − yn) dτ,

so that the second relation of (3.3), after division by h, can be written as∫ 1

0
gy
(
yn + τ(Yni − yn)

)
dτ ·

s∑
j=1

aijf(Ynj, Znj) = 0, i = 1, . . . , s, (3.5)

which is the discrete analogue of the hidden constraint gy(y)f(y, z) = 0. We now apply the
implicit function theorem to the system formed by (3.5) and the first relation of (3.3). For
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h = 0, our assumptions imply that the values Yni = yn and Zni = ζ satisfy the system.
Furthermore, the derivative with repect to (Yni, Zni) at h = 0 and (Yni, Zni) = (yn, ζ) is of
the form (

I ⊗ I 0
O(1) A⊗ (gyfz)(yn, ζ)

)
,

which is invertible because of (3.2). Therefore the implicit function theorem yields the
existence of a locally unique solution of (3.3).

The method (3.3) represents a numerical one-step method on the manifold M. In view
of an application of the convergence theorem of Section III.5 we have to study the local
error. Recall that the local error is the difference (yn+1 − yn(tn+1), zn+1 − zn(tn+1)), where
(yn(t), zn(t)) is the solution of (3.1) with consistent initial values yn(tn) = yn, zn(tn) = zn.

Theorem 3.2 (local error estimate). Consider a differential-algebraic equation (3.1) satis-
fying (3.2), and apply an implicit Runge–Kutta method (3.3) with invertible matrix (aij) and
coefficients satisfying bj = asj for all j. If the quadrature formula formed by (bi, ci)si=1 is of
order p, and the method has stage order q, then we have the estimate

yn+1 − yn(tn + h) = O(hmin(p+1,q+2)), zn+1 − zn(tn + h) = O(hq).

Proof. Inspired by the proof of Theorem 3.1, we consider the nonlinear system for (Yi, Zi),
i = 1, . . . , s,

Yi − yn = h
s∑
j=1

aij f(Yj, Zj) + hδi∫ 1

0
gy
(
yn + τ(Yi − yn)

)
dτ ·

( s∑
j=1

aijf(Yj, Zj) + δi

)
= 0,

(3.6)

where the second equation is known to be equivalent to g(Yi) = 0. For δi = 0 we obtain the
numerical solution (Yi, Zi) = (Yni, Zni) of (3.3). The exact solution at the quadrature points
(Yi, Zi) = (yn(tn + cih), zn(tn + cih)) satisfies (3.6) with δi = O(hq) for i = 1, . . . , s− 1, and
δs = O(hp). We are interested in the dependence of the solution (Yi, Zi) on the parameters
δi, when the step size h 6= 0 is fixed. We see that the derivative of the system (3.6) with
respect to (Yi, Zi) at the numerical approximation (Yni, Zni) is of the form(

I ⊗ I +O(h) O(h)
O(1) A⊗ (gyfz)(yn, zn) +O(h)

)
,

which is invertible for sufficiently small h. The implicit function theorem therefore implies
that

Yni − yn(tn + cih) = O(δ), Zni − zn(tn + cih) = O(δ),

where δ = maxi=1,...,s δi = O(hq). This proves the estimate for the local error of the z
component. Some further considerations are necessary for the local error of the y component.

First, we notice that due to the factor h in the right-hand side of the upper equation of
(3.6), we have the improved estimate Yni − yn(tn + cih) = O(hq+1) for all i. For the local
error ∆yn+1 = yn+1 − yn(tn + h) of the y component we thus obtain

∆yn+1 = h fz(yn, zn)
s∑
j=1

bj
(
Znj − zn(tn + cjh)

)
+O(hq+2) +O(hp+1). (3.7)
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On the other hand, we have

0 = g(yn+1)− g(yn(tn + h)) = gy(yn)∆yn+1 +O(h∆yn+1) = gy(yn)∆yn+1 +O(hq+2).

Multiplying equation (3.7) with gy(yn) yields

0 = h gy(yn)fz(yn, zn)
s∑
j=1

bj
(
Znj − zn(tn + cjh)

)
+O(hq+2) +O(hp+1).

Since gy(yn)fz(yn, zn) is invertible by (3.2), the expression h
∑s
j=1 bj(Znj − zn(tn + cjh)) is

of size O(hq+2) + O(hp+1). Inserted into (3.7) we finally get the stated estimate for the y
component.

Remark. Whereas the estimate for the local error of the z component is in general optimal,
that for the y component can be improved in some interesting situations. For example, for the
Radau IIA methods of Example 2.2, we have for the y component yn+1−yn(tn+h) = O(hp+1).
This property is known as superconvergence.

Convergence for the y component. The numerical method (3.3) can be considered as
a mapping yn 7→ yn+1 on the submanifold M. The approximations zn only influence the
choice of the solution, when the equation 0 = gy(y)f(y, z) has more than one solutions z for
a given y. Theorem III.5.2 can therefore be applied and yields the estimate for the global
error

yn − y(tn) = O(hmin(p,q+1)) for tn = nh ≤ T.

Convergence for the z component. The numerical solution zn is defined locally and
there is no propagation of errors. The error is therefore a superposition of the local error for
the z component and the global error of the y component. Since we have p ≥ q for stiffly
accurate methods, this implies

zn − z(tn) = O(hq) for tn = nh ≤ T.

V.4 Constrained mechanical systems
We consider constrained mechanical systems with kinetic energy T (q̇) = 1

2 q̇
TM q̇ and poten-

tial energy U(q). Here and in the next section we assume the matrix M symmetric, positive
definite, and independent of q. The equations of motion become more structured if we use
the momentum coordinates p = ∂L

∂q̇
= Mq̇ in place of the velocity coordinates v = q̇. As

explained in Section IV.4 the equations of motion are given by

q̇ = M−1p

ṗ = −∇U(q)−G(q)Tλ

0 = g(q),
(4.1)

where G(q) = g′(q). This system has many remarkable properties: it exactly preserves the
total energy

H(p, q) = 1
2 p

TM−1p+ U(q), (4.2)
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and the flow is a symplectic and volume preserving transformation. It is not the aim of
this lecture to discuss these topics5, we concentrate on the fact that the system (4.1) is a
differential-algebraic equation of index 3 and can be considered as a differential equation on
the manifold

M =
{

(p, q) ; g(q) = 0, G(q)M−1p = 0
}
. (4.3)

Symplectic Euler method for constrained mechanical systems. We integrate the
p and λ variables by the implicit Euler and the q variable by the explicit Euler method. This
leads to the discretization

p̂n+1 = pn − h (∇U(qn) +G(qn)Tλn+1)
qn+1 = qn + hM−1 p̂n+1

0 = g(qn+1).
(4.4)

The numerical approximation (p̂n+1, qn+1) satisfies the constraint g(q) = 0, but not the
hidden constraint G(q)M−1p = 0. To get an approximation (pn+1, qn+1) ∈ M, we append
the projection

pn+1 = p̂n+1 − hG(qn+1)Tµn+1

0 = G(qn+1)M−1 pn+1.
(4.5)

Let us discuss some basic properties of this method.

Existence and Uniqueness of the Numerical Solution. Inserting the definition of qn+1
from the second line of (4.4) into 0 = g(qn+1) gives a nonlinear system for p̂n+1 and hλn+1.
Due to the factor h in front of M−1p̂n+1, the implicit function theorem cannot be directly
applied to prove existence and uniqueness of the numerical solution. We therefore write this
equation as

0 = g(qn+1) = g(qn) +
∫ 1

0
G
(
qn + τ(qn+1 − qn)

)
(qn+1 − qn) dτ.

We now use g(qn) = 0, insert the definition of qn+1 from the second line of (4.4) and divide
by h. Together with the first line of (4.4) this yields the system F

(
p̂n+1, hλn+1, h

)
= 0 with

F
(
p, ν, h

)
=

 p− pn + h∇U(qn) +G(qn)Tν∫ 1

0
G
(
qn + τhM−1p

)
M−1p dτ

 .
Since (pn, qn) ∈M with M from (4.3), we have F (pn, 0, 0) = 0. Furthermore,

∂F

∂(p, ν)
(
pn, 0, 0

)
=
(

I G(qn)T

G(qn)M−1 0

)
,

and this matrix is invertible, because we always assume the matrix G(q) to be of full rank.
Consequently, an application of the implicit function theorem proves that the numerical so-
lution (p̂n+1, hλn+1) (and hence also qn+1) exists and is locally unique for sufficiently small h.
The projection step (4.5) represents a linear system for pn+1 and hµn+1 with invertible ma-
trix.

5They are treated in the monograph Geometric Numerical Integration by Hairer, Lubich, and Wanner.
This and the next section are taken from this monograph.
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Convergence of Order 1. The above use of the implicit function theorem yields the rough
estimates

p̂n+1 = pn +O(h), hλn+1 = O(h), hµn+1 = O(h),
which, together with the equations (4.4) and (4.5), give

qn+1 = qn(tn+1) +O(h2), pn+1 = pn(tn+1)−G(qn(tn+1))Tν +O(h2),

where (pn(t), qn(t)) is the solution of (4.1) passing through (pn, qn) ∈M at t = tn. Inserting
these relations into the second equation of (4.5) we get

0 = G(qn(t))M−1pn(t)−G(qn(t))M−1G(qn(t))Tν +O(h2)

at t = tn+1. Since G(qn(t))M−1pn(t) = 0 , and G(qn(t))M−1G(qn(t))T is invertible, we have
ν = O(h2). The local error is therefore of size O(h2) in both components.

The convergence proof is now a direct application of Theorem III.5.2, because the method
is a mapping Φh : M → M on the solution manifold. This proves that the global error
satisfies pn − p(tn) = O(h) and qn − q(tn) = O(h) as long as tn = nh ≤ Const.
Numerical Experiment (spherical pendulum). We denote by q1, q2, q3 the Cartesian
coordinates of a point with mass m = 1 that is connected with a massless rod of length
` = 1 to the origin. The kinetic and potential energies are T = 1

2(q̇2
1 + q̇2

2 + q̇2
3) and U = q3,

respectively, and the constraint is the fixed length of the rod. We thus get the system

q̇1 = p1 ṗ1 = − q1λ

q̇2 = p2 ṗ2 = − q2λ

q̇3 = p3 ṗ3 = − 1− q3λ

0 = 1
2(q2

1 + q2
2 + q2

3 − 1).

(4.6)

Figure V.1 (upper picture) shows the numerical solution (vertical coordinate q3) over many
periods obtained by method (4.4)-(4.5). We observe a regular qualitatively correct behavior.
For the implicit Euler method (i.e., the argument qn is replaced with qn+1 in (4.4)) the
numerical solution, obtained with the same step size and the same initial values, is less
satisfactory. Already after one period the solution deteriorates and the system loses energy.
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Fig. V.1: Spherical pendulum problem solved with the symplectic Euler method (4.4)-
(4.5) and with the implicit Euler method; initial value q0 = (sin(1.3), 0, cos(1.3)), p0 =
(3 cos(1.3), 6.5,−3 sin(1.3)), step size h = 0.01.
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V.5 Shake and Rattle
The numerical method (4.4)-(4.5) is only of order 1 and it is not symmetric. Here we present
an algorithm that is of order 2, symmetric and symplectic. The original derivation is based
on the fact that the system (4.1) is equivalent to the second order differential equation
Mq̈ = −∇U(q)−G(q)Tλ with constraint g(q) = 0.
SHAKE. Ryckaert, Ciccotti, and Berendsen (1977) propose the method

qn+1 − 2qn + qn−1 = −h2M−1
(
∇U(qn) +G(qn)Tλn

)
0 = g(qn+1)

(5.1)

for computations in molecular dynamics. The p component, not used in the recursion, is
approximated by the symmetric finite difference pn = M(qn+1 − qn−1)/2h.
RATTLE. The three-term recursion (5.1) may lead to an accumulation of round-off errors,
and a reformulation as a one-step method is desirable. Introducing a new variable via
qn+1−qn = hM−1pn+1/2, the method (5.1) becomes pn+1/2−pn−1/2 = −h(∇U(qn)+G(qn)Tλn)
and the momentum approximation leads to pn+1/2 + pn−1/2 = 2pn. Elimination of either
pn+1/2 or pn−1/2 leads to the formulae

pn+1/2 = pn −
h

2

(
∇U(qn) +G(qn)Tλn

)
qn+1 = qn + hM−1pn+1/2, 0 = g(qn+1)
pn+1 = pn+1/2 −

h

2

(
∇U(qn+1) +G(qn+1)Tλn+1

)
.

(5.2)

The difficulty with this formulation is that λn+1 is not yet available at this step (it is com-
puted together with qn+2). As a remedy, Andersen (1983) suggests replacing the last line in
(5.2) with a projection step similar to (4.5)

pn+1 = pn+1/2 −
h

2

(
∇U(qn+1) +G(qn+1)Tµn

)
0 = G(qn+1)M−1pn+1.

(5.3)

This modification, called RATTLE, has the further advantage that the numerical approxi-
mation (pn+1, qn+1) lies on the solution manifold M.

Theorem 5.1. The RATTLE method is symmetric, symplectic, and convergent of order 2.

Proof. If we add the consistency conditions g(qn) = 0, G(qn)M−1pn = 0 of the initial values
to the RATTLE algorithm, the symmetry of the method follows at once by exchanging
h ↔ −h, pn+1 ↔ pn, qn+1 ↔ qn, and λn ↔ µn. We do not discuss the symplecticity in this
lecture, and refer to the monograph Geometric Numerical Integration.

The implicit function theorem applied to the two systems (5.2) and (5.3) shows that

pn+1/2 = pn +O(h), hλn = O(h), pn+1 = pn+1/2 +O(h), hµn = O(h),

and, inserted into (5.2), yields

qn+1 = q(tn+1) +O(h2), pn+1 = p(tn+1)−G(q(tn+1))Tν +O(h2).

Convergence of order one follows therefore in the same way as for method (4.4)-(4.5) by
applying the convergence Theorem III.5.2. Since the order of a symmetric method is always
even, this implies convergence of order two.
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V.6 Exercises
1. (Gear, Hsu, and Petzold 1981, Gear and Petzold 1984). Consider the problem(

0 0
1 η t

)(
ẏ
ż

)
+
(

1 η t
0 1 + η

)(
y
z

)
=
(
f(t)
g(t)

)
. (6.1)

Prove that the system (6.1) has differentiation index 2 for all values of η, and that the
z-component of the exact solution is given by z(t) = g(t)− d

dtf(t).

2. A straight-forward application of the implicit Euler method to the differential-algebraic equa-
tion (6.1) would be(

0 0
1 η tn+1

)(
yn+1 − yn
zn+1 − zn

)
+ h

(
1 η tn+1
0 1 + η

)(
yn+1
zn+1

)
= h

(
f(tn+1)
g(tn+1)

)
. (6.2)

Prove that this method yields the recursion

zn+1 = η

1 + η
zn + 1

1 + η

(
g(tn+1)− f(tn+1)− f(tn)

h

)
.

Hence, the method is convergent for η > −1/2, but unstable for η < −1/2. For η = −1 the
numerical solution does not exist.

3. Introducing the new variable u = ż, the system (6.1) becomes equivalent to1 0 0
0 1 0
0 0 0


ẏż
u̇

+

0 1 + η η t
0 0 −1
1 η t 0


yz
u

 =

g(t)
0
f(t)

 , (6.3)

which is of the form (0.1). Prove that this system has differentiation index 3.

4. Using the approach of the present chapter, apply the implicit Euler method to the system
(6.3). Is the resulting discretization equivalent to (6.2)?

5. Consider the differential-algebraic equation

ẏ = (ez−1 + 1)/2, 0 = y − t

with consistent initial values y(0) = 0 and z(0) = 1. Prove that we are concerned with a
problem of index 2, and the corresponding manifold is M = {(t, y) ; y − t = 0}.
Prove that the implicit Euler method, applied to this problem with starting approximation
y0 = h and z0 = 1 does not have a solution.
Remark. This exercise shows that a numerical method for index 2 problems may fail if the
initial value is not O(h2) close to the manifold.


