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Abstract

The article starts with a brief survey of Unprovability Theory as of autumn 2006.
Then, as an illustration of the subject’s model-theoretic methods, we re-prove exact
versions of unprovability results for the Paris-Harrington Principle and the Kanamori-
McAloon Principle using indiscernibles. In addition, we obtain a short accessible
proof of unprovability of the Paris-Harrington Principle. The proof employs old ideas
but uses only one colouring and directly extracts the set of indiscernibles from its
homogeneous set. We also present modified, abridged statements whose unprovability
proofs are especially simple. These proofs were tailored for teaching purposes.

The article is intended to be accessible to the widest possible audience of math-
ematicians, philosophers and computer scientists as a brief survey of the subject,
a guide through the literature in the field, an introduction to its model-theoretic
techniques and, finally, a model-theoretic proof of a modern theorem in the subject.
However, some understanding of logic is assumed on the part of the readers.

The intended audience of this paper consists of logicians, logic-aware mathematicians and
thinkers of other backgrounds who are interested in unprovable mathematical statements.
The paper starts with a brief survey, listing many important achievements and directions
of the subject. Most of the results speak for themselves and we omit a discussion of how
they are interrelated as well as the story of the subject’s big questions, goals, exciting
conjectures and dreams which is presumed to be partly known to the readers. The survey
is biased towards the Paris-Harrington Principle and its exact versions (understanding this
topic is an excellent first step for anyone who decides to study unprovability). In the
second part of the paper the reader will find full and very accessible unprovability proofs
developed for teaching purposes: the optimal unprovability proof of the Paris-Harrington
Principle, two abridged statements whose unprovability proofs are simplest possible and,
finally, a model-theoretic proof of some threshold results (exact unprovability results).

1 Brief survey

Peano Arithmetic
Peano Arithmetic (PA) is a first-order theory in the language of arithmetic L = {+,×, <
, 0, 1} that consists of the following axioms: associativity and commutativity of + and ×,
their neutral elements are 0 and 1 respectively, distributivity, discrete linear order axioms
for < (total order, there is a first element 0, no last element, every element has an immediate
successor, every nonzero element has an immediate predecessor), 1 is the successor of 0,
x < y → x + z < y + z and the induction scheme: for every L-formula ϕ(x, y), we have an
axiom ∀y[ ϕ(0, y) ∧ ∀x(ϕ(x, y) → ϕ(x + 1, y)) → ∀xϕ(x, y) ]. In this article we shall deal
only with Peano Arithmetic and some of its subsystems but for further study of the subject,
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beyond this article, the readers will eventually need to explore the whole story surrounding
the notions of logical strength and consistency strength of theories and understand the
picture of the scale of consistency strength. Although not required to understand the
current article, a list of theories that are important in the subject (stretching all way from
I∆0 and I∆0(exp) to the strongest extensions of ZFC) can be found on pages 39-40 in [37].

All concrete mathematics of the past can be conducted in Peano Arithmetic
It is common to identify theorems of PA with ‘finite mathematics’, that is the world of
mathematical theorems that can be formulated in L and whose proof does not require
the use of any notion of ‘infinite set’ in an essential way. Theorems of finite mathematics
include the table of derivatives, the table of integrals of elementary functions, for every
arithmetically definable complex function f , “if f is analytic on C and bounded then f is a
constant”, “in R24, there is a way to place 196560 non-overlapping unit spheres that touch
the unit sphere”, “the sum

∑
p, p + 2

both prime

1
p converges”, etc. (It is an exercise to check that

all these statements can be formulated in the language L and their usual proofs can be
conducted in Peano Arithmetic.) We give these examples in order to illustrate the extent
of what is meant by ‘finite mathematics’ and show that in this understanding, ‘finite
mathematics’ embraces not only finite combinatorial manipulations but all imaginable
mathematics whose objects can be somehow finitely approximated or finitely encoded,
including everyday ‘continuous’ mathematics and many branches of mathematics that seem
to use notions beyond that of a natural number but will usually have a way to avoid it by
approximations and coding.

Paris-Harrington Principle
Since Gödel’s Incompleteness Theorems, for almost half a century logicians did not have
examples of PA-unprovable statements that would not refer to diagonalisation or other
logicians’ tricks. The first PA-unprovable statements of ‘mathematical’ character (not
referring to arithmetisation of syntax and provability) appeared in 1976 in the work of
J. Paris (building upon joint work with L. Kirby [52]) and led to the formulation in [69] of
the Paris-Harrington Principle (denoted PH): “for any numbers m, n and c, there exists a
number N such that for every colouring f of m-subsets of {0, 1, . . . , N − 1} into c colours,
there is an f -homogeneous H ⊂ {0, 1, . . . , N − 1} of size n such that |H| > minH”. This
statement PH is not provable in Peano Arithmetic.

Many statements equivalent to PH have been studied: the Hercules-Hydra battle and
termination of Goodstein sequences by L. Kirby and J. Paris [72], the flipping principle of
L. Kirby [54], the arboreal statement by G. Mills [66], P. Pudlák’s Principle ([73], [42]),
the kiralic and regal principles by P. Clote and K. McAloon [26].

An important PA-unprovable statement was introduced in [47] by A. Kanamori and
K. McAloon. A function f in m arguments is called regressive if f(x0, x1, . . . , xm−1) ≤ x0

for all x0 < x1 < · · · < xm−1. For regressive functions of m arguments, we cannot guarantee
existence of a homogeneous set of size (m+1), e.g., for f(x0, x1, . . . , xm−1) = x0−1, every
set of size (m+1) is not homogeneous. However, we can talk about min-homogeneous sets:
a set H is called min-homogeneous if for all c0 < c1 < · · · < cm−1 and c0 < d1 < · · · < dm−1

in H, f(c0, c1, . . . , cm−1) = f(c0, d1, . . . , dm−1). Now, KM is the following statement: “for
any numbers m, a and n with n ≥ m, there exists b > a such that for every regressive
function f defined on m-subsets of [a, b], there is a min-homogeneous set H ⊂ [a, b] of size
at least n”. The statement KM is unprovable in PA and is equivalent to PH.

Indicators
First independence results grew out of indicator theory (best references are [53], [52] and
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[71]). In a model M � IΣ1, an initial segment I is called semi-regular if for every a ∈ I and
every function f : [0, a] → M (i.e., an M -coded set of pairs), the image of f is bounded in I.
Every semi-regular initial segment satisfies IΣ1. An initial segment I is called strong if for
every M -coded partition P : [I]3 → 2, there is an M -coded I-unbounded P -homogeneous
subset. Every strong initial segment is a model of PA. Other important classes of initial
segments (closed under certain externally-described combinatorial operations) include reg-
ular (satisfies BΣ2), n-extendible (corresponds to IΣn+1) and n-Ramsey (corresponds to
IΣn+1) initial segments. Now, if a Σ1-definable in IΣ1 Skolem function Y (x, y) is such that
for all a < b in M , Y (a, b) > N if and only if there is a strong initial segment between a and
b then the statement “for all a and c, there is b > a such that Y (a, b) > c” is unprovable in
Peano Arithmetic. The function Y (x, y) is called an indicator for strong initial segments
because it indicates whether the set [a, b] is large enough to accommodate a strong initial
segment. (Similarly for all other kinds of initial segments above.) All early Ramsey-style
independence results can be described in this setting. In case of the Paris-Harrington Prin-
ciple, the function Y (x, y) = the maximal c such that for every colouring P : [x, y]c → c,
there is a homogeneous subset H of size 2c such that |H| > minH is an indicator for strong
initial segments.

Many early indicator proofs were conducted in terms of a game between two players
where Player I tries to ensure that the final initial segment between a and b is, say, strong,
and Player II tries to prevent it. The game of finite (nonstandard) length is determined,
so it turns out that if a set is large enough then Player I has a winning strategy, otherwise
Player II has a winning strategy. Original sources are [52] and [71]. For another example
connecting games and independence results, see the general idea and the Peano Arithmetic
section in a recent article by P. Pudlák [74]. There is much more left to say about games
and independence results, e.g., about unprovability of existence of a winning strategy in
certain games.

Indicator theory ideas are also useful in the model-theoretic approach to Reverse Math-
ematics, in the spirit of the model-theoretic proof by J. Paris and L. Kirby in [52] that RT3
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(the infinite Ramsey Theorem for triples and two colours) implies all of PA, thus providing
an alternative to the recursion-theoretic approach to these matters. Modern-day examples
of such model-theoretic proofs in the style of indicator theory can be found in the articles
[14] and [15] by the author and A. Weiermann.

PH is an arithmetical version of large cardinals
The historical prototypes of the Paris-Harrigton Principle and the earlier PA-unprovable
statements of [70] are large cardinal axioms. In the case of arithmetic, closedness prop-
erties postulated by large cardinal axioms correspond to closedness properties of initial
segments of models of arithmetic under the (external) combinatorial properties described
above: semi-regularity, regularity, strength, extendibility and Ramseyness. This analogy
eventually led to the Paris-Harrington principle and was important in the early days of
the subject but was later abandoned and almost forgotten. It may be very fruitful to
have a fresh look at this analogy, especially having in mind the modern advances in the
study of large cardinals. J. Ketonen’s manuscripts [49], [51] provide an alternative way to
view such analogy, using ordinals, a theme that is closely connected with the fundamental
Ketonen-Solovay article [50].

Fragments of Peano Arithmetic
If we restrict the induction scheme to Σn-formulas, that is, arithmetical formulas of the
form ∃x1∀x2∃x3 . . . ϕ(x1, x2, . . . , xn, y), where ϕ is preceded by no more than n quantifiers
and itself contains no unbounded quantifiers, then the theory obtained is denoted by IΣn

(“induction for Σn-formulas”). Clearly, for every n, IΣn ⊆ IΣn+1 and PA =
⋃∞

n=1 IΣn.
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Also, it is known that for every n, IΣn 6= IΣn+1 since IΣn+1 proves Con(IΣn).
A useful alternative axiomatisation of IΣn uses an instance of the least-number principle

∀y[ ∃xϕ(x, y) → ∃z(ϕ(z, y) ∧ ∀w < z¬ϕ(w, y)] for every Σn-formula ϕ(x, y).
It is widely believed that all L-theorems of existing mathematics (apart from logicians’

discoveries we are talking about in this article) can be proved not only in PA but even in
IΣ2. It would be surprising if someone managed to find an existing theorem in mathematics
that can be formulated in L but does not have a proof formalisable in IΣ2.

For every k ∈ N, the statement PH(k+1) defined as “for all n and c, there exists N
such that for every colouring f of (k + 1)-subsets of {0, 1, . . . , N − 1} into c colours, there
is an f -homogeneous H ⊂ {0, 1, . . . , N − 1} of size at least n such that |H| > minH” is
IΣk-unprovable [71] and is equivalent to KM(k+1) (the Kanamori-McAloon Principle for
(k + 1)-subsets) and to RFNΣ1(IΣk), the 1-consistency of IΣk: ∀ϕ ∈ Σ1 (PrIΣk

(ϕ) → ϕ).
(It says “for all Σ1-statements ϕ, if IΣk proves ϕ then ϕ holds”. In order to write it as
a formula, it is necessary to use the satisfaction predicate for Σ1-formulas. Unprovability
of RFNΣ1(IΣk) in IΣk easily follows from Gödel’s Second Incompleteness Theorem: put
ϕ to be ∃x x 6= x to observe that RFNΣ1(IΣk) implies ConIΣk

.) A good exposition of 1-
consistency and reflection principles is in the old Smorynski’s paper [85], a good exposition
of the satisfaction predicate is in Kaye’s textbook [48].

Threshold results for PH and KM
Let log(n)(x) = log2(log2 . . . log2︸ ︷︷ ︸

n times

(x)) and the tower-function 2n(x) be defined as 20(x) = x,

2n+1(x) = 22n(x). Also, define log∗(m) as the minimal n such that 2n(2) ≥ m. The
Ramsey number R(k, c, m) is defined as the minimal number such that for any colouring
of k-subsets of {0, 1, 2, . . . , R(k, c, m)− 1} in c colours, there is a monochromatic subset of
size m. For any set X, we write [X]n for the set of its n-subsets. The set of all n-subsets
of {a, a + 1, . . . , b} will be denoted by [a, b]n, without any confusion. As usual, a natural
number N is identified with the set of its predecessors {0, 1, . . . , N − 1}.

For every function F (x), define PH(k)
F as the statement “for all n and c there exists N

such that for every f : [N ]k → c, there is a homogeneous H ⊆ N of size at least n and
such that F (minH) < |H|”. We say that f is F -regressive if for all x0 < x1 < · · · < xk−1,
we have f(x0, x1, . . . , xk−1) ≤ F (x0). Now define KM(k)

F as the statement “for all n there
exists N such that for every F -regressive f defined on [N ]k, there is a min-homogeneous
subset of N of size at least n”. Also, define PHF as ∀k PH(k)

F and KMF as ∀k KM(k)
F . It

is easy to see that for every strictly increasing F , PHF implies PH and KMF implies KM
thus making these statements PA-unprovable. A. Weiermann [89] proved that for every n,
PHlog(n) is PA-unprovable but PHlog∗ is PA-provable. In the case of fixed dimension, the
story is more complex. The following interesting result was first proved by Gyesik Lee [59]
for all n 6= k − 1 and later completed by L. Carlucci, G. Lee and A. Weiermann [22]: if
k ≥ 2 then

1. if n ≤ k − 1 then KM(k+1)

log(n) is IΣk-unprovable;

2. if n > k − 1 then IΣ1 proves KM(k+1)

log(n) .

Similar theorems hold for the family PH(k)

log(n) :

1. if n ≤ k then IΣk does not prove PH(k+1)

log(n) (A.Weiermann [89]);

2. if n > k then IΣ1 proves PH(k+1)

log(n) (G.Lee [59]).
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There are even slightly sharper threshold results for this case in [22]. Here is the picture
in the case k = 1 (see [56]): if A−1 is the inverse of the Ackermann function and {Fm}m∈ω

is the Grzegorczyk hierarchy of primitive recursive functions then:

1. IΣ1 6` PH(2)
log

A−1
;

2. for every m ∈ ω, IΣ1 ` PH(2)
log

F
−1
m

;

3. IΣ1 6` KM(2)
f , where f(x) = x

1
A−1(x) ;

4. for every m ∈ ω, IΣ1 ` KM(2)
fm

, where fm(x) = x
1

F
−1
m (x) .

In particular, KM(2)
log is provable but PH(2)

log is unprovable.

The reason for IΣ1-provability of PH(k+1)

log(n) and KM(k+1)

log(n) for large n comes from the
Erdös-Rado theorem [28], which implies that an upper bound for the Ramsey number
R(m, k + 1,m) is 2n(m) for some large enough n depending only on k. Given m and c,
let ` = max{m, c}. Consider any colouring f : [0, 2n(`)]k+1 → c. By the Ramsey Theorem,
there is H ⊂ [0, 2n(`)] of size at least ` which is f -homogeneous. Also, log(n)(minH) <

log(n)(2n(`)) = ` ≤ |H|. Thus IΣ1 ` PH(k+1)

log(n) .

A similar argument for IΣ1-provability of KM(k+1)

log(n) for large n goes as follows: consider

n such that R(m, k +1,m) < 2n(m) for all m. Let f be a log(n)-regressive function defined
on [0, 2n(m)]. Then the image of f is contained in [0,m]. Hence there is a homogeneous
(thus also min-homogeneous) subset H ⊆ [0, 2n(m)] of size at least m.

Kruskal’s Theorem and well-quasi-orders
Very often an unprovable statement can be viewed as a ‘miniaturisation’ of an infinitary
theorem. A spectacular example of miniaturisation is H. Friedman’s Theorem [79] on
unprovability of a finite version of Kruskal’s Theorem. Define a (nonplane, rooted) tree as
a partially ordered set with the least element and such that the set of all predecessors of
every point is linearly ordered. Infinite Kruskal’s Theorem says: if T1, T2, . . . is an infinite
sequence of finite trees then there are i < j such that Ti ETj , i.e., there is an inf-preserving
embedding from Ti into Tj (that is, trees are well-quasi-ordered by E). Friedman’s Theorem
says that neither the Infinite Kruskal Theorem nor its finite version (‘miniaturisation’) “for
all k there is N such that whenever 〈Ti〉Ni=1 is a sequence of finite trees such that for all
i ≤ N we have |Ti| ≤ k + i then there are i < j ≤ N such that Ti E Tj” is provable
in ATR0, a theory stronger than Peano Arithmetic. Here, |T | is the number of vertices
in T . Also, Kruskal’s theorem restricted to binary trees is unprovable in ACA0 (and its
finite version unprovable in PA) and Kruskal’s theorem for binary trees and two labels
unprovable in ATR0. (There are also important results by L. Gordeev about the strength
of Kruskal’s theorem with gap-condition and other unprovability results in [39, 40, 41].)
It was later shown by M. Loebl and J. Matoušek [60] that if the condition |Ti| ≤ k + i
is replaced by |Ti| ≤ k + 1

2 log2 i then the statement becomes IΣ1-provable but for the
condition |Ti| ≤ k + 4 log2 i, the statement is PA-unprovable. What happens between 1

2
and 4 was recently resolved by A. Weiermann [88]. Let α be Otter’s constant (α = 1

ρ ,
where ρ is the radius of convergence of

∑∞
i=0 tiz

i, where ti is the number of finite trees of
size i), α ≈ 2.955765 . . .. Then for any primitive recursive real number r,

1. if r ≤ 1
log2 α then the statement with the condition |Ti| ≤ k + r log i is IΣ1-provable;

2. if r > 1
log2 α then the statement is PA-unprovable.
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Similar results have been proved by A. Weiermann for plane trees, binary plane trees,
Higman’s lemma [92], ordinal notations [90], [88]. Several general theorems have recently
been proved by the author [12], giving an answer to the following question: if X is a
well-quasi-ordered combinatorial class (i.e., there is a fixed notion of size of objects and
for every n there are finitely-many objects of size n) such that for some function f , the
statement “for all K there is N such that whenever X1, X2, . . . , XN are in X and for
all i ≤ N , |Xi| < K + f(i) then for some i < j ≤ N , Xi E Xj” is unprovable in some
theory T , what is the exact threshold function that separates provable and T -unprovable
instances of the corresponding well-quasi-orderedness statements for Seq(X) (the set of all
finite sequences of elements of X), Cyc(X) (finite cycles of elements of X), Mult(X) (finite
multisets of X), Trees(X) (plane rooted trees labeled by X) and some other compound
combinatorial classes that inherit well-quasi-orderedness from X by a usual minimal bad
sequence argument? The proofs use Weiermann-style compression techniques and ideas
from analytic combinatorics. There should be ordinal-theoretic results closely connected to
these theorems (roughly: how the multiset-, sequence-, cycle-, tree- and other constructions
transform the maximal order-types of well-ordered linearisations of original well-quasi-
orders) but these results, to the author’s knowledge, haven’t yet been written down by
anyone.

Another important example is a theorem by H. Friedman, N. Robertson and P. Seymour
on unprovability of the Graph Minor Theorem [32]. For multigraphs G and H, we say that
H is a minor of G if H can be obtained from G by a succession of three elementary
operations: edge removal, edge contraction and removal of an isolated vertex. The first-
order version of their theorem states that the statement “for all k there is N such that
whenever G1, . . . , GN is a sequence of finite multigraphs such that for all i ≤ N we have
|Gi| ≤ k + i then for some i < j ≤ N , Gi is a minor of Gj” is not provable in Π1

1-CA0,
a very strong subsystem of second-order arithmetic. Multigraphs can well be replaced by
simple graphs in this formulation.

For a function f , let the statement GMf be “for all K there is N such that for any
sequence of simple graphs G1, G2, . . . , GN such that |Gi| < K + f(i), there are i < j such
that Gi is a minor of Gj”. It is now easy to conjecture that for every primitive recursive
real number a, if a ≤

√
2 then GMa·

√
log is IΣ1-provable but if a >

√
2 then GMa

√
log is

unprovable. So far it has been proved by the author in [12] that if a ≤
√

2 then GMa·
√

log

is IΣ1-provable and GM7 log is PA-unprovable. A certain lemma on graph enumeration
is currently missing for the proof of the full conjecture to go through. There are similar
conjectures about unprovability thresholds for Kruskal’s theorem with gap condition and
for graph minor theorem for subcubic graphs and for classes of graphs omitting certain
minors. This enterprise has to use analytic combinatorics, graph minor theory and Pólya
theory.

Well-quasi-order theory has been extensively studied in the framework of Reverse Math-
ematics ([83]), the study of logical strength and consistency strength of second-order arith-
metical assertions. Reverse Mathematics is the closest relative of first-order unprovability
theory and there is exchange of ideas flowing both ways. There are many results, methods
and ideas in Reverse Mathematics that are very relevant to the subject but we omit them
in this brief survey. It is difficult to draw a strict line between the two subjects and any
future exposition of first-order unprovability may have to incorporate some discussion of
relevant parts of Reverse Mathematics.

Single tree, single sequence and boolean relation theory
Here is a new way to obtain unprovable statements from existing statements that talk
about long sequences of objects by assembling elements of sequences of objects into one
single object to talk about, with order (or embeddability) relation between objects in the

6



sequence becoming order (or embeddability) relation between chunks of this single object.
For a tree T , let T [i] be the tree of nodes of T of height ≤ i. It has been proved by
H. Friedman in [35] that the statement “for all n and k there is K such that whenever
T is a rooted nonplane tree labeled by {1, 2, . . . , n} and every non-leaf has degree k then
there are i < j ≤ K such that T [i] is inf-preserving, label-preserving and leaf-preserving
embeddable into T [j]” is equivalent to 1-consistency of Π1

2-TI0, a system much stronger
than Peano Arithmetic, and even the statement with k = 2 already implies 1-consistency
of ATR0. There are also versions that involve a gap-condition. Another application of
similar ideas deals with Higman’s lemma. The statement “for all m there is K such that
for every K-sequence x1, x2, . . . , xK of elements of {1, 2, . . . ,m}, there are i < j < K

2 such
that xi, xi+1, . . . , x2i is a subsequence of xj , xj+1, . . . , x2j” is unprovable in IΣ2 (see [36]).

Another series of H. Friedman’s results under the general name of “boolean relation
theory” can be found in [38]: if we list all (second-order) statements of a certain simple
shape (all of them a priori equally simple and natural) and try to classify them according
to their truth, some of them turn out to be unprovable in some theories stronger than ZF,
e.g. the following statement from [38] is provably in ACA′ equivalent to 1-consistency of
the theory ZFC+{there is an n-Mahlo cardinal}n∈ω: “for any two functions f , g : Nk → N
such that there are two constants c, d > 1 with c · |x| < f(x), g(x) < d · |x| for all but finitely
many x ∈ Nk, there exist infinite sets A,B, C ⊆ N such that A ∪ .f(A) ⊆ C ∪ .g(B) and
A ∪ .f(B) ⊆ C ∪ .g(C)”, where |x| is the maximal element of the k-tuple x, f(A) is the
image of f on k-tuples of A and A ∪ .D means the union of A and D together with the
statement that they are disjoint.

Sine, zeta-function, diophantine approximation and universality
The results in this section spring from H. Friedman’s sine-principle [11]. For every n ≥ 1
and every function F of one argument, let us introduce the statement SPn

F : “for all m, there
is N such that for any sequence a1, a2, . . . , aN of rational numbers, there is H ⊆ A of size
m such that for any two n-element subsets ai1 < ai2 < · · · < ain and ai1 < ak2 < · · · < akn

in H, we have | sin(ai1 · ai2 · . . . · ain)− sin(ai1 · ak2 · . . . · akn)| < F (i1)”. For n ≥ 2 and any
function F (x) eventually dominated by ( 2

3 )log
(n−1)(x), the principle SPn+1

F is not provable
in IΣn. The proof in [11] uses the Rhin-Viola theorem on irrationality measure of π.

The sine-principle led to a series of exciting developments. What other functions can
be taken instead of sine so that the statement would still be unprovable? The following
theorem by the author and A. Weiermann [16] describes a large class of such functions.
Let f , g and h be three functions such that for any N ∈ N and any small ε > 0,

1. h is a periodic function with period a, continuous on its period;

2. f is such that for any b1, b2, . . . , bN , linearly independent over aQ and any c1, c2, . . . , cN ∈
[0, a), there is x ∈ Q such that for all i ∈ {1, 2, . . . , N}, |f(bi · x) mod a − ci| < ε;

3. g is any continuous function on a subset of R whose image contains [d, +∞) for some
d ∈ R.

Then the statement “for all m and n, there is N such that for any sequence 〈ai〉Ni=1 of
rational numbers, there is H ⊆ N of size m such that for any two n-sequences i1 < i2 <
. . . < in and i1 < k2 < . . . < kn of natural numbers smaller than N ,

|h(f(g(ai1 · ai2 · . . . · ain)))− h(f(g(ai1 · ak2 · . . . · akn)))| < 2−i1”

is unprovable in Peano Arithmetic and the versions for fixed n are unprovable in IΣn−1.
This class of functions includes sin(p(x1 ·x2 · . . . ·xn)), {p(x1 ·x2 · . . . ·xn)},

{
1

p(x1·x2·...·xn)

}
for any non-constant polynomial p (using H. Weyl’s theorem on simultaneous diophantine

7



approximation). In particular, the proof of this general theorem shows that unprovability of
the sine-principle can now be demonstrated using simultaneous diophantine approximation
instead of an argument involving irrationality measure of π. We have several conjectures
that suggest versions of these results in p-adic setting.

Another interesting example deals with the Riemann zeta-function [16]: for any σ ∈
R, consider the statement “for all m and n, there is N such that for any sequence
〈ai〉Ni=1 of rational numbers, there is H ⊆ N of size m such that for any two n-sequences
i1 < i2 < . . . < in and i1 < k2 < . . . < kn of natural numbers smaller than N ,
|ζ(σ + i · ai1 · ai2 · . . . · ain)− ζ(σ + i · ai1 · ak2 · . . . · akn)| < 2−i1”. For σ > 1, the un-
provability proof is similar to that for sin(x), using almost periodicity. For σ ∈ ( 1

2 , 1], the
unprovability proof uses a probabilistic argument.

The reason behind unprovability of these statements is that Ramsey-style assertions (in
this case the Kanamori-McAloon Principle) can be concealed in this setting by replacing
quantification over all possible colourings by the quantifier over all possible sequences
of rational numbers. E.g. in the case of the sine-function, what we need is that every
function is approximated by sine on some subset: for any ε > 0,K, n and any function
g : [K]n → [−1, 1], there is a sequence of rational numbers 〈a1, a2, . . . , aK〉 such that for
any i1 < . . . < in ≤ K, |g(i1, . . . , in) − sin(ai1 · . . . · ain)| < ε. This situation where all
possible patterns (e.g. functions, colourings, etc) are already present in one complex object
is called universality and there is more to say about using universal objects to reformulate
Ramsey-style statements.

The following unprovability results have been proved in [16], using discrete analogues
of S. Voronin’s universality theorem about the Riemann zeta-function. The statement “for
all n there is N such that whenever 〈ai〉Ni=1 are natural numbers, there is a subset H ⊂ N
of size n such that for all k < l < m in H,

| ζ(ak)(
3
4

+ i · al)− ζ(ak)(
3
4

+ i · am) |< 1
2k

”

is unprovable in IΣ1. The statement “for all n there is N such that whenever 〈ai〉Ni=1 are
natural numbers, there is a subset H ⊂ N of size n such that for all k < l < m in H,

| ζ(
1
ak

+ i · al)− ζ(
1
ak

+ i · am) |< 1
2k

”

is unprovable in IΣ1. Similar results will hold for a wide range of zeta- and L-functions.
Universality, in the broad understanding of the word, will be a rich source of unprovable

statements in the future. We want to encode and treat a random colouring of n-tuples, so
assertions that involve all possible patterns (or some ‘random’ patterns) of finite configura-
tions should attract our attention. Nowadays, it should be possible to show unprovability
of some (versions of) already existing strong conjectures in, say, number theory. A promis-
ing example that begs for an independence proof is Schinzel’s hypothesis H (that is rooted
in the work of 19th century mathematicians, e.g. Bunyakovskiy): “for any finite collection
of irreducible polynomials P1(x), P2(x), . . . , Pn(x) with integer coefficients and such that∏

i≤n Pi has no fixed prime divisor, there exist infinitely-many integers m such that for all
i ≤ n, Pi(m) are prime”. This conjecture is extremely strong (implying the twin-prime
conjecture and infinity of the set of primes of the form n2 + 1) and its formulation already
provides some necessary ingredients for the unprovability proof. (IΣ1-unprovability of hy-
pothesis H was already conjectured in the PhD thesis of A. Woods [93]).

Braids
Braids are very popular and interesting objects in today’s mainstream mathematics. The
n-strand braid group Bn is a group with the following presentation:

Bn = 〈σ1, . . . , σn−1; σiσj = σjσi for |i− j| ≥ 2, σiσjσi = σjσiσj for |i− j| = 1〉.
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A braid is called positive if it has a representation without σ−1
i for any i.

There are several independence results about braids, relying on P. Dehornoy’s left-
invariant ordering ≺ of positive braids as ωωω

and S. Burckel’s ordering of n-strand pos-
itive braids as ωωn−2

, see [27]. Some unprovability results immediately follow from IΣ2-
unprovability of transfinite induction up to ωωω

. The statement “for every K there is N
such that for any sequence B1, B2, . . . , BN of positive braids such that |Bi| < K + i, there
are i < j ≤ N such that Bi ≺ Bj” is not provable in IΣ2. (Here, |B| is the smallest number
of letters in a braid word representing B.) It is also possible to do a Friedman-style ar-
gument to turn a statement about a sequence of braids into a statement about comparing
internal segments of one long braid.

At the dawn of modern logic, early logicians, most notably K. Gödel, wrote about
ordinal descent through ωωω

with justification why this is an acceptable mathematical
principle. This ordinal was perceived by some people at that time as the biggest ordinal
that allows for a convincing verbal “justification” of why the corresponding ordinal descent
principle is true. This ordinal nowadays turns up in various natural mathematical con-
texts, see for example Higman’s lemma and S. Simpson’s article [82] on the Robson Basis
Theorem.

One more family of independence results comes from braid-theoretic analogues of the
hydra battle. Termination of the following game on positive braids is unprovable in IΣ2.
(These results have been proved jointly by Lorenzo Carlucci and the author in [13].) In
the rest of this section, we write i instead of σi. For numbers a, b, define a wave between
a and b as the braid word wa,b = a(a + 1)2 . . . (b− 1)2b2(b− 1)2 . . . (a + 1)2a if a < b and
wa,b = a(a−1)2 . . . (b+1)2b2(b+1)2 . . . (a−1)2a if a > b. A braid word is even if all blocks
of its consecutive equal letters are of even length and for neighbouring blocks consist of
numbers i and j that differ by 1. (We are temporarily restricting ourselves to even braids
in order not to worry about applications of braid relations.) Given a positive even braid
word w, we define a reduct w[k] for every k > 0 as follows. If w ends in 11 then w[k] is
obtained from w by deleting this 11. Otherwise let bmi

i be the first block of equal letters
(counting from right to left) of length mi > 2. Let b̂i be the closest occurrence of the letter
bi to the right of bmi

i if it exists and the empty word if there is no such occurrence. Let us
then write w as . . . bmi

i a u b̂i . . .. If a < bi then w[k] is defined as

. . . bmi−2
i (bi − 1)3 wk

bi−1,min u (bi − 1) u b̂i . . . ,

otherwise w[k] is . . . bmi−1
i (bi + 1)3 wk

bi+1,max u (bi + 1) u b̂i . . .. The sequence w[1][2] . . . [k]
consists of positive even braid words and decreases with respect to the braid ordering ≺.
Eventually it terminates but its termination is unprovable in IΣ2. There are versions
of this sequence for 3-strand braids [13]: a simple version, whose termination time is
Ackermannian and another one, formulated as a game, whose termination is unprovable in
IΣ2.

There is some hope to translate statements about braids into geometrical, topological
statements with some amount of ‘physical’ meaning, e.g. using the fact that braid groups
are fundamental groups of certain configuration spaces. This is a very rich topic with many
new results (all so far based on left-orderability of certain groups) being obtained these
days by P. Dehornoy, A. Weiermann, L. Carlucci and the author (for a survey, see [17]).

Long term rewriting
Another interesting twist in the story is the rewrite systems whose termination is PA-
unprovable. Good references are short articles by L. Beklemishev [6] and W. Buchholz
[20]. An early rewrite system that imitated the hydra was proposed by Dershowitz. Re-
cently, G. Moser [67] provided a full analysis of this system and related systems. Alternative
systems have been formulated by W. Buchholz and by H. Touzet [87]. There are also rel-
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evant results by I. Lepper. Here is an example by L. Beklemishev [5] presented as a battle
between a gardener and a worm. (It is not exactly a rewrite system but there are versions
of it formulated as a rewrite system in [6].) A worm is a finite sequence of natural numbers
f : {0, 1, . . . ,m} → N. For every worm w = f(0), f(1), . . . , f(m), define w[n] as follows. If
f(m) = 0 then chop it off, i.e., put w[n] = f(0), f(1), . . . , f(m − 1). Otherwise find the
maximal place k < m such that f(k) < f(n), define two words r = f(0), . . . , f(k) and
s = f(k + 1), . . . , f(m − 1), f(m) − 1 and set w[n] to be r followed by (n + 1) copies of
s. The statement ∀w∃n w[1][2] . . . [n] = ∅ (“every worm dies”) is unprovable in Peano
Arithmetic.

Other examples
Many other examples of unprovable statements and a discussion of the subject in its late
1970s - early 1980s state can be found in the four volumes [80], [81], [68] and [7], de-
voted entirely or partially to arithmetical unprovability results. In addition, I would like to
mention unprovable statements obtained by translating consistency statements for various
theories into non-solvability assertions about corresponding Diophantine equations (see
[63]), unprovable statements about Diophantine games [63], the Schütte-Simpson treat-
ment of finite sequences of natural numbers with gap-condition [78], K. McAloon’s [64],
[65] and Z. Ratajczyk’s [75],[76] theories of iterations of the Paris-Harrington Principle and
R. Sommer’s related result on transfinite induction [86], independence results on pointwise
induction by T. Arai [1], J. Avigad’s statement with update procedures [4], P. Clote’s
PhD thesis and his anti-basis approach to independence results [25], Cichon’s treatment
of Goodstein sequences [24], Bigorajska-Kotlarski series of results on partitioning α-large
sets (see e.g. [8], [9]), the Friedman-McAloon-Simpson early fundamental article [30] and
the subsequent paper by S. Shelah [84], J.-P. Ressayre’s statements unprovable in IΣ1, PA
and ZF that state existence of finite approximations of models of these theories [77], the
treatment of infinitary strong statements by means of J. Paris-style density assertions in
[14] and [15] by the author and A. Weiermann, the Kochen-Kripke proof with ultrapowers
[57], the Buchholz Hydra [19], L. Carlucci’s recent uniform treatment of hydras, worms
and sequences with gap condition [23] and H. Friedman’s many results on combinatorial
statements unprovable in ZFC+ large cardinals [31], [34]. (Many new unprovable state-
ments are announced regularly on H. Friedman’s webpage, so we shall not even attempt
to give an up-to-date account of these rapid developments here.)

The subject of first-order arithmetical unprovability has a big number of results, some
of them masterpieces, produced by different authors, and is rapidly developing these days.
Although it is one of the most central subjects in logic and is already seriously connected
with many mathematical disciplines, there are currently no comprehensive monographs, no
textbooks, not even surveys. This current sketchy and incomplete introduction is a mere
glimpse at the subject and is intended to be a modest patch in this state of affairs, without
any serious discussion of the subject’s goals, its big fundamental questions, its history, its
implications for philosophy of mathematics or its visions of the future and without any
attempt to analyse and systematise its methods and ideas.

Methods of proving unprovability
Unprovability proofs so far usually fall into one of two broad categories. The first category
consists of model-theoretic constructions that demonstrate how, assuming a statement, a
model of our strong theory can be built directly, ‘by hands’. Proofs of the first category
work very well for Ramsey-style statements and for strong theories. The second cate-
gory consists of combinatorial proofs springing from proof theory and the Ketonen-Solovay
article [50] (which shows combinatorially that the function arising from PH eventually
dominates every function of the Grzegorczyk-Schwichtenberg-Wainer hierarchy (since all
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PA-provably recursive functions occur in this hierarchy, the result follows)) or from the
study of well-quasi-ordered sets [79]. Most of the proofs in the volume [80] are of this cate-
gory, as well as the articles [61] and [62] by M. Loebl and J. Nešetřil. Proofs in this category
work very well (often better than model-theoretic proofs) at the lower end of consistency
strength and for well-quasi-orders, like trees, whose ordinal treatment is well-developed but
the model-theoretic treatment is currently absent.

Apart from the original articles we mentioned above, other good sources reporting
on proofs of the first category would be the book [43] by P. Hájek and P. Pudlák and
the papers [2], [3] by J. Avigad and R. Sommer (proof-theoretic aspects). A recent book
manuscript [58] by H. Kotlarski is an exposition of both approaches as well as of many
different proofs of Gödel’s Theorem. The second category is well explained in an early
article by W. Buchholz and S. Wainer [18], in the Friedman-Sheard article [33], in the
Fairtlough-Wainer paper [29] and in the recent article by A. Weiermann [91].

Apparently, there is also a third category of unprovability proofs, proofs that interpret
directly independent statements as reduction strategies for proof systems. We have little
to say about it and refer the reader to a recent article by L. Carlucci [21], an old paper by
H. Jervell [46] and the articles [44] and [45] by M. Hamano and M. Okada.

Once we have one unprovable statement, it is usually possible to find a series of math-
ematical statements in very different contexts that imply our statement, sometimes in a
very non-trivial way. It often happens that non-logical mathematical obstacles in proving
such implications are difficult and deep. In this way, the original Ramsey-theoretic and
well-quasi-order-theoretic reasons for unprovability may end up very well hidden, and new
mathematical statements appear natural and still carry a big amount of unprovability and
logical strength.

Some people somehow view research in unprovability in terms of big numbers and
fast-growing functions. Indeed, big numbers and fast-growing functions often occur in
our discourse. (For example, the Paris-Harrington Principle implies every Π2 theorem of
Peano Arithmetic, including totality of every PA-provably recursive function.) However,
this simple perception of the subject eventually misleads when one reaches the higher
strata of consistency strength where the philosophical status of unprovable statements is
very different. It is better, at least in the context of this article (and especially in the
context of statements unprovable in higher theories) to view unprovable statements as
possessing a large “amount of logical strength” that allows us to build approximations of
models of strong theories.

2 Unprovability of PH

Nowadays unprovability of the Paris-Harrington Principle in Peano Arithmetic is presented
via unprovability proof of KM followed by a proof that PH implies KM or by the combi-
natorial Ketonen-Solovay method using α-large sets or by a sequence of lemmas (gluing
different colourings) as in the original article [69]. A model-theoretic proof was promised
in the original article [69] but never appeared. This was a folklore understanding in the
1970s and 1980s that a model-theoretic proof can be written down. The closest it got is
in the treatment of n-extendible initial segments by J. Paris on pages 324-328 in [71] and
in the book by P. Hájek and P. Pudlák [43] but still far from being instantly accessible to
a wide audience. We shall give a single simple proof (inspired by the Kanamori-McAloon
proof [47]) that will be useful in logic courses. There will be one colouring which will yield
a desired set of indiscernibles among its large homogeneous set. To our knowledge, the
proof below is the first time a simple direct model-theoretic unprovability proof for PH
appears in print.
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Finally, let me mention that all statements below, unprovable in Peano Arithmetic, are
easy consequences of the Infinite Ramsey Theorem, so will usually be labeled as “true”.

Theorem 1. (Paris-Harrington)
The statement “for all a, k, m, c, there is b > a such that for every f : [a, b]k → c, there
is an f -homogeneous H ⊂ N of size m such that |H| > minH” is not provable in Peano
Arithmetic.

The readers who need a reminder of basic notions from logic (e.g., models of arithmetic,
overspill and the usual way in which sets, functions and formulas are encoded and treated
within a model of arithmetic) are referred to Kaye’s textbook [48].

Proof. Let M � IΣ1 be nonstandard, a, e ∈ M be nonstandard and ϕ1(z, x1, x2, . . . , xe),
. . . , ϕe(z, x1, x2, . . . , xe) be the first e ∆0-formulas in at most the free variables shown. In
particular, this list contains all ∆0-formulas of standard size. Denote R(2e+1, e+1, 5e+1)
by r(e). Let b ∈ M be minimal such that for every g : [a, b]4e+1 → 3e + 1, there is a g-
homogeneous H ⊂ [a, b] of size r(e) such that |H| > minH. We shall build a model of PA
between a and b.

First define a function f : [a, b]2e+1 → e + 2 as follows1: for c < d1 < d2 in [a, b], put

f(c, d1, d2) = min i ≤ e ∃p < c
(
ϕi(p, d1) 6↔ ϕi(p, d2)

)
if such i exists and e + 1 otherwise. (In order to write down this formula we should use a
formula that represents the satisfaction relation for ∆0-formulas.) Informally, f(c, d1, d2)
is the first formula (with a parameter smaller than c allowed) that distinguishes the tuples
d1 and d2.

Define another function h, defined on [a, b]2e+1, as follows:

h(c, d1, d2) = min p < c
(
ϕf(c,d1,d2)(p, d1) 6↔ ϕf(c,d1,d2)(p, d2)

)
if f(c, d1, d2) 6= e + 1 and c otherwise. I.e., the value h(c, d1, d2) is the first parameter p
with which ϕf(c,d1,d2) distinguishes d1 and d2.

Now let us introduce our colouring g : [a, b]4e+1 → 3e + 1 as follows:

g(c, d1, d2, d3, d4) =


0 if h(c, d1, d2) = h(c, d3, d4)

j if h(c, d1, d2) 6= h(c, d3, d4) and
0 < j ≤ 3e and h(c, d1, d2) ≡ j(mod 3e)

Choose a g-homogeneous set H ⊆ [a, b] of size at least r(e) and such that |H| > minH. Let
us show that the value of g on [H]4e+1 is 0. Suppose that the value of g on [H]4e+1 is j 6= 0.
Notice that then there are not more than

[
min H

3e

]
< |H|

2e points below minH that can be
values of h(minH, d1, d2) for d1 < d2 in H. Hence, by the pigeonhole principle, there are
d1 < d2 < d3 < d4 such that h(minH, d1, d2) = h(minH, d3, d4), which is a contradiction.
Hence the value of g on [H]4e+1 is 0.

Since |H| ≥ r(e), there is a set C ⊆ H of 5e + 1 points c0 < · · · < c5e in H such that
for any two (2e + 1)-tuples c < d1 < d2 and c′ < d′1 < d′2 in C, we have f(c, d1, d2) =
f(c′, d′1, d

′
2). If the value of f on [C]2e+1 is i 6= e + 1 then define p = h(c0, c3e+1, . . . , c5e).

Then for all d1 < d2 among {c1, . . . , c3e}, we have h(c0, d1, d2) = p because g ≡ 0 on
[H]4e+1. Hence

ϕi(p, c1, . . . , ce) 6↔ ϕi(p, ce+1, . . . , c2e) 6↔ ϕi(p, c2e+1, . . . , c3e) 6↔ ϕi(p, c1, . . . , ce),

1we shall often shorten c < a1 < · · · < ae < b1 < · · · < be as c < a < b
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which is impossible since we have only two truth values. Hence i = e + 1 and we can
conclude that the set C ′ = {c0 < c1 < · · · < c2e} is our desired set of indiscernible elements
(=indiscernibles): for any standard ∆0-formula ϕ(z, x1, . . . , xn) any c ∈ C ′, any d1 < · · · <
dn and e1 < · · · < en above c and any p < c, we have ϕ(p, d1, . . . , dn) ↔ ϕ(p, e1, . . . , en).
Now we shall repeat the usual argument that the initial segment I = supk∈N ck is a model
of Peano Arithmetic. Once we prove that, observe that I � PA +¬PH since b > I was the
minimal point for which a large homogeneous set exists for every colouring g : [a, b]4e+1 →
3e + 1.

To prove that I satisfies PA, we have to show that I is closed under addition and
multiplication and satisfies the induction scheme. All other axioms are inherited from M .
To show that I is closed under addition, it suffices to show that c1 + c2 < c3. If it was
the case that c1 + c2 ≥ c3 then for some p < c1, p + c2 = c3. Then, by indiscernibility
(using the formula z + x2 = x3 as ϕ), for any c > c2 in H, we have p + c2 = c, which is a
contradiction. Hence c1 + c2 < c3 and I is closed under addition. The same argument for
multiplication: if c1 · c2 > c3 then there is p < c1 such that p · c2 < c3 < p · c2 + c2. By
indiscernibility this would now mean that c4 < p · c2 + c2 < c3 + c2, which is impossible
since we already proved that c4 > c2 + c3. Hence I is a structure in the language of
arithmetic. Let us now show that the scheme of induction holds in I. Let p ∈ I and
ϕ(p, x1, x2, . . . , xn, x) be such that I � ∃x ∀x1∃x2∀x3 . . . ϕ(p, x1, x2, . . . , xn, x), i.e., we
take an arbitrary formula with a parameter p ∈ I and one free variable x and assume
that there is x ∈ I which satisfies it. We want to find a minimal such x in I. For some
k ∈ N and some ` ∈ I, we have 〈p, `〉 < ck and I � ∀x1∃x2∀x3 . . . ϕ(p, x1, . . . , xn, `).
By indiscernibility, for every d ≤ `, I � ∀x1∃x2∀x3 . . . ϕ(p, x1, . . . , xn, d) if and only if
M � ∀x1 < ck+1∃x2 < ck+2∀x3 < ck+3 . . . ϕ(p, x1, . . . xn, d). However, in M there is a
minimal d such that M � ∀x1 < ck+1∃x2 < ck+2∀x3 < ck+3 . . . ϕ(p, x1, . . . xn, d), hence
this d is minimal such that I � ∀x1∃x2∀x3 . . . ϕ(p, x1, . . . , xn, d). We have shown that
I � PA + ¬PH and our proof is complete.

In this proof, we actually needed much less from our nonstandard ground model than
that it satisfies IΣ1, namely ∆0-induction and existence of Ramsey numbers (i.e., closed-
ness under the tower-function) but the assumption of existence of Ramsey numbers can be
eliminated (by the overspill argument below), so ∆0-induction plus totality of exponenti-
ation is enough.

Also notice that the model of PA + ¬PH was constructed from just one nonstandard
instance of PH (the existence of b ∈ M such that for any colouring [a, b]4e+1 → 3e+1 there
exists a large homogeneous subset of size r(e)). Why would such an instance exist? We
could of course start with a ground model M � IΣ1 + PH and not worry any more (this
should be the pedagogically preferred option). However notice that for every standard
a, n ∈ M there is bn such that for any colouring [a, bn]4n+1 → 3n + 1, there exists a
homogeneous H of size r(n) such that |H| > minH (because PH holds in the “standard
model” part of M). Now do a ∆0-overspill argument to find the nonstandard numbers a,
e and b as needed in the beginning of the proof. (Notice also that this overspill argument
immediately re-proves the famous fact that every nonstandard model of IΣ1 has many
initial segments satisfying PA. Probably this is a well-known observation.)

A good exercise for the reader at this stage would be to modify the proof of Theorem 1
to show that the number of colours in PH can be fixed as 2 and the statement stays
unprovable. A stronger result (unprovability of the Paris-Harrington principle in fixed
dimension and two colours) belongs to J. Paris and is Lemma 29 in [71]. Another exercise
for the reader would be to modify the above proof and get unprovability with fixed a = 0.

13



3 Adapted version of PH

The unprovability proof for PH is now easy (as easy as for KM) but we can formulate
unprovable statements with yet simpler unprovability proofs if we sacrifice one exponent.
I suggest that logic courses can use the proofs below instead of proofs for PH or KM.

First, we present an adapted version of PH, whose unprovability is established easily
by one straightforward step, and the proof is rid of all unnecessary combinatorics.

Theorem 2. The statement “for all m, n and c, there exists N such that for every
f : [N ]n → c, there is an f -homogeneous H ⊂ N , of size at least m and such that |H| >
n · (2n·min H + 1)” is not a theorem of Peano Arithmetic.

Proof.
We shall prove unprovability already with c = 2. Let M � IΣ1 be nonstandard, e ∈ M rN,
and ϕ1(x1, . . . , xe, y), . . . , ϕe(x1, . . . , xe, y) be the enumeration of the first e ∆0-formulas in
at most the free variables shown. Suppose N ∈ M is the minimal point such that for every
f : [N ]2e+1 → 2, there is an f -monochromatic H ⊆ N such that |H| > e · (2e·min H + 1).
Define our colouring f : [N ]2e+1 → {0, 1} as follows: if {a < b1 < b2 < · · · < be < c1 <
· · · < ce} is a (2e + 1)-subset of N , put f(a, b1, . . . , be, c1, . . . , ce) = 0 if for all x < a,

{i ≤ e | ϕi(b1, . . . , be, x)} = {i ≤ e | ϕi(c1, . . . , ce, x)}

and 1 otherwise. Using the definition of N , extract an f -homogeneous set H ⊂ N of size
greater than e · (2e·min H + 1).

For every e-tuple b1 < b2 < · · · < be in H r {minH}, define the following sequence of
e-many subsets of [0,minH):

〈{x < minH | ϕ1(b1, . . . , be, x)}, . . . , {x < minH | ϕe(b1, . . . , be, x)}〉.

There can be no more than 2e·min H such sequences, hence, by the pigeonhole principle,
there are b1 < b2 < · · · < be < c1 < · · · < ce in H r {minH} such that

f(minH, b1, . . . , be, c1, . . . , ce) = 0.

Hence, by homogeneity, f is constant 0 on [H]2e+1.
Let d1 < · · · < de be the last e elements of H. Then for any a < b1 < · · · < be and

a < c1 < · · · < ce in H r {d1, . . . , de}, we have: for every x < a,

{i ≤ e | ϕi(b1, . . . , be, x)} = {i ≤ e | ϕi(d1, . . . , de, x)} = {i ≤ e | ϕi(c1, . . . , ce, x)},

which is the indiscernibility condition we need. Again define an initial segment I as the
supremum of the first N points of H and notice that I � PA and that I satisfies the negation
of our statement.

4 Adapted version of KM

For KM, there is also a short adapted version which we first presented in [10].

Theorem 3. The statement “for all m, a and n with n < m, there is b > a such that
for every f : [a, b]n → 2nb such that f(x1, . . . , xn) < 2n·x1 , there is an f -min-homogeneous
subset of [a, b] of size m” is not provable in Peano Arithmetic.
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Proof.
Let M � IΣ1 be a nonstandard ground model, e, a, b ∈ M r N, e < a < b and b ∈ M be
minimal such that for every function f defined on [a, b]e+1 such that f(x0, x1, . . . , xe) <
2e·x0 , there is a min-homogeneous subset of [a, b] of size 2e.

Let ϕ1(x0, x1, . . . , xe), . . . , ϕe(x0, x1, . . . , xe) be the first e ∆0-formulas in not more than
the e + 1 free variables shown. Define f as follows: for every x0 < x1 < · · · < xe in [a, b],
put

f(x0, x1, . . . , xe) =

〈 {p < x0 | ϕ1(p, x1, . . . , xe)}
...

{p < x0 | ϕe(p, x1, . . . , xe)}

〉
.

i.e., f(x0, x1, . . . , xe) is a code of a collection of e subsets of [0, x0−1), hence f(x0, x1, . . . , xe) <
2e·x0 . Extract an f -min-homogeneous subset H = {ci}2e

i=1 ⊆ [a, b] and notice that for every
∆0-formula ϕ(x0, x1, . . . , xn), any i0 < i1 < · · · < in and i0 < j1 < · · · < jn and all p < ci0 ,
we have M � ϕ(p, ci1 , . . . , cin) ↔ ϕ(p, cj1 , . . . , cjn), which is exactly our indiscernibility
condition. Again define an initial segment I as the supremum of the first N points of H
and notice that I � PA and that I satisfies the negation of our statement.

5 Model-theoretic proof of a threshold result for PH

The following theorem was first proved by A. Weiermann in [89] using ordinals.

Theorem 4. For every n ∈ ω, Peano Arithemtic does not prove PHlog(n) .

The combinatorial treatment of KM was done by G. Lee in [59], also using ordinals.

Theorem 5. For every n ∈ ω, Peano Arithmetic does not prove KMlog(n) .

We shall give one model-theoretic proof of both of these theorems. It is also possible
to show by a combinatorial argument how each of these statements implies PH, by a
usual trade-off where increased dimension allows for weaker largeness restrictions on a
homogeneous set. The reader can think of these possible combinatorial arguments as being
already incorporated into the complete model-theoretic proof below.

For every number a, let X(a) be the set coded by a. We fix a coding method such that
every subset of [0, a] has a code before 2a+1 +1. For example, let every X ⊆ [0, a] be coded
by

∑a
i=0 χ(i) · 2i, where χ is the characteristic function of X. Let us first write down the

proof for n = 1.

Proof.
As usual, take a nonstandard ground model M � IΣ1 and elements a > e > N. Let
ϕ1(z, x1, x2, . . . , xe), . . . , ϕe(z, x1, x2, . . . , xe) be the first e ∆0-formulas in at most the free
variables shown. In particular, this list will contain all ∆0-formulas of standard size.
Denote R(2e + 1, e + 2, 10e + 1) by r(e). Let b ∈ M be minimal such that for every
g : [a, b]8e+1 → 5e + 1 there is H ⊂ [a, b] of size at least r(e) such that |H| > log(minH).
Define f : [a, b]2e+1 → e + 2, the minimal formula of disagreement, as before: for c <
d1 < d2 in [a, b], put f(c, d1, d2) = min i ≤ e ∃p < c (ϕi(p, d1) 6↔ ϕi(p, d2)) if such
i exists and e + 1 otherwise. Define a regressive function h, the minimal parameter of
disagreement, as before: h(c, d1, d2) = min p < c (ϕf(c,d1,d2)(p, d1) 6↔ ϕf(c,d1,d2)(p, d2)) if
f(c, d1, d2) 6= e + 1 and c otherwise. Now, define a log-regressive function ` defined on
[a, b]4e+1. Let c < d1 < d2 < d3 < d4 be a (4e + 1)-subset in [a, b]. Let p1 = h(c, d1, d2),
p2 = h(c, d3, d4). Put

`(c, d1, d2, d3, d4) = min(X(p1)∆X(p2)) if p1 6= p2
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and log(c) otherwise. Here ∆ denotes the symmetric difference relation: A∆B = (ArB)∪
(B r A). Clearly, `(c, d1, d2, d3, d4) ≤ log(c).

Now, define the main colouring g : [a, b]8e+1 → 5e + 1 as follows:

g(c, d1, . . . , d8) =


0 if `(c, d1, . . . , d4) = `(c, d5, . . . , d8)

j if `(c, d1, . . . , d4) 6= `(c, d5, . . . , d8) and
0 < j ≤ 5e and `(c, d1, . . . , d4) ≡ j(mod 5e)

Extract a g-homogeneous H ⊂ [a, b] of size r(e) such that |H| > log(minH). Observe, as
usual, that g is constant 0 on [H]8e+1. Indeed, if g|[H]8e+1 is j 6= 0 then below log(minH)

there are at most
[

log(min H)
5e

]
possible values of `(minH, d1, d2, d3, d4), hence for |H|

4e suc-
cessive 4e-subsets in H r {minH}, there are not enough separate spaces, hence for some
d1 < · · · < d8, `(minH, d1, d2, d3, d4) = `(minH, d5, d6, d7, d8). Hence g|[H]8e+1 = 0.

Choose H1 ⊂ H of size 10e+1, homogeneous for f . This can be done by our definition
of r(e). Let H2 be H1 r {the last 4e elements of H1}.

Let us show that f |[H2]2e+1 = e+1. Suppose that f |[H2]2e+1 has constant value i 6= e+1
and we shall get a contradiction. List H2 as c < d1 < · · · < d6. Denote the value of
`(c, . . .) on H2 by p and let h(c, d1, d2) = p1, h(c, d3, d4) = p2, h(c, d5, d6) = p3. Let us
first notice that p1, p2 and p3 are all different. If two of them coincided, say p1 = p2 then
`(c, d1, d2, d3, d4) = p = log c and hence p1 = p3. So, let us assume p1 = p2 = p3 = q.
Since i 6= e + 1, we know that q < c. Suppose without loss of generality that ϕi(q, d1),
ϕi(q, d3) and ϕi(q, d5) are true (and ϕi(q, d2), ϕi(q, d4) and ϕi(q, d6) are false). Since
`(c, d1, d2, d3, d5) = `(c, d1, d2, d3, d4), we conclude that d3 and d5 disagree on q, which
contradicts our knowledge that ϕi(q, d3) and ϕi(q, d5) are both false. We arrived at a
contradiction, hence p1 6= p2, p1 6= p3 and p2 6= p3 and the sets X(p1),X(p2) and X(p3)
are different.

Notice that by definition of `, we have p ∈ X(p1) ⇔ p 6∈ X(p2), p ∈ X(p2) ⇔ p 6∈ X(p3)
and p ∈ X(p1) ⇔ p 6∈ X(p3), which are contradictory assertions. Hence f |[H2]2e+1 = e + 1
and H2 is our desired set of indiscernibles.

On the way we also proved PA 6` KMlog: indeed the set H1 is obtained as min-
homogeneous for the log-regressive function `.

Now the proof for arbitrary n. The idea is the same as in case n = 1. We shall make
n steps downstairs and focus the contradiction below log(n)(c).

Proof.
As usual, take a nonstandard ground model M � IΣ1 and elements a > e > N. Let
ϕ1(z, x1, x2, . . . , xe), . . . , ϕe(z, x1, x2, . . . , xe) be the first e ∆0-formulas in the free variables
shown. In particular, this list will contain all ∆0-formulas of standard size. Denote R(2e+
1, e + 2, 5 · 2n · e + 1) by r(e). Let b ∈ M be minimal such that for every g : [a, b]e·2

n+2+1 →
2n+2e + 1 there is H ⊂ [a, b] of size at least r(e) and such that |H| > log(n)(minH).

Define f : [a, b]2e+1 → e + 2, the minimal formula of disagreement as before: for c <
d1 < d2 in [a, b], put f(c, d1, d2) = min i ≤ e ∃p < c ϕi(p, d1) 6↔ ϕi(p, d2) if such i exists and
e+1 otherwise. Define a (regressive) function h, the minimal parameter of disagreement as
before: h(c, d1, d2) = min p < c

[
ϕf(c,d1,d2)(p, d1) 6↔ ϕf(c,d1,d2)(p, d2)

]
if f(c, d1, d2) 6= e+1

and c otherwise.
Now, define a log(n)-regressive function ` defined on [a, b]2

n+1·e+1. Let c < d1 < · · · <
d2n+1 be a (2n+1 ·e+1)-subset in [a, b]. First, define for every i = 1, 2, . . . , n+1 a sequence
of points {pi

k}2
i−1

k=1 as follows. For all k = 1, 2, . . . , 2n, put pn+1
k = h(c, d2k−1, d2k). For

every 1 ≤ i < n+1 and every k = 1, 2, . . . , 2i−1, put pi−1
k = min(X(pi

2k−1)∆X(pi
2k)). Now,
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put `(c, d1, . . . , d2n+1) = p1
1. Clearly, `(c, d1, . . . , d2n+1) ≤ log(n)(c). Now, define the main

colouring g : [a, b]2
n+2·e+1 → 2n+2e + 1 as follows: g(c, d1, . . . , d2n+1 , d2n+1+1 . . . , d2n+2) =

=


0 if `(c, d1, . . . , d2n+1) = `(c, d2n+1+1, . . . , d2n+2)

j if `(c, d1, . . . , d2n+1) 6= `(c, d2n+1+1, . . . , d2n+2) and
0 < j ≤ 2n+2e and `(c, d1, . . . , d2n+1) ≡ j(mod 2n+2e)

Choose a g-homogeneous set H ⊆ [a, b] of size r(e) such that |H| > log(n)(minH). Let us
show that the value of g on (2n+2 · e + 1)-subsets of H is 0. Suppose that the value of g on
(2n+2 ·e+1)-subsets of H is j 6= 0. Notice that then there are not more than

[
log(n)(min H)

2n+2e

]
points below log(n)(minH) that can possibly be values of `(minH, d1, . . . , d2n+1). Hence,
by the pigeonhole principle (using the fact that log(n)(min H)

2n+2e < |H|
2n+1e ), there are d1 < · · · <

d2n+1 < d2n+1+1 < · · · < d2n+2 such that `(c, d1, . . . , d2n+1) = `(c, d2n+1+1, . . . , d2n+2),
which is a contradiction. Hence the value of g on (2n+2e + 1)-subsets of H is 0.

Since |H| ≥ r(e), we can choose an f -homogeneous H ′ ⊆ H, of size 5 · 2n · e + 1.
Let us show that the value of f on (2e + 1)-subsets of H ′ is e + 1, thus producing our

desired set of indiscernibles. Let H ′′ = H ′ r {the last 2n+1 · e points of H ′}. List the set
H ′′ as c < d1 < · · · < d3·2n+1 .

Notice that the function `(c, . . .) is constant on H ′′. Denote the value of ` on H ′′ by p.
Again, show (by an argument similar to the argument above) that pn

1 6= pn
2 6= pn

3 6= pn
1 and

notice that since `(c, d1, . . . , d2n , d2n+1, . . . , d2n+1) =

= `(c, d1, . . . , d2n , d2n+1+1, . . . , d3·2n) = `(c, d2n+1, . . . , d2n+1 , d2n+1+1, . . . , d3·2n) = p,

we have p ∈ X(pn
1 ) ⇔ p 6∈ X(pn

2 ) ⇔ p ∈ X(pn
3 ) ⇔ p 6∈ X(pn

1 ), which is a contradiction.
Hence f is constant e + 1 on H ′′ and H ′′ is our desired set of indiscernibles.

It is clear that on the way we proved that Peano Arithmetic does not prove KMlog(n) :
notice that an `-min-homogeneous set of size r(e) produces the same set of indiscernibles
as in our proof.

We conjecture that the proof above can now be converted into a proof of the full
A. Weiermann’s threshold result from [89]: Peano Arithmetic does not prove PHf , where
f(n) = logH−1

ε0
(n)(n), where Hε0 is the ε0th function in the Hardy hierarchy (that eventually

dominates all PA-provably recursive functions).
Another approach to proving threshold results for PH would be to use Lemma 3.3. of

[47] (which gives KM-thresholds) and then prove combinatorial implications between PHf

and KMg for different functions f and g. In the case of PH-thresholds, this would require
the same amount of work as we did above.
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[47] Kanamori, A., McAloon, K. (1987). On Gödel incompleteness and finite combinatorics. An-
nals of Pure and Applied Logic, 33, pp. 23-41.

[48] Kaye, R. (1991). Models of Peano Arithmetic. Oxford Logic Guides.

[49] Ketonen, J. (1979). Set theory for a small universe, I. The Paris-Harrington Axiom. Unpub-
lished manuscript.

[50] Ketonen, J., Solovay, R. (1981). Rapidly growing Ramsey Functions. Annals of Mathematics
(ser 2) 113, pp. 267-314.

[51] Ketonen, J. (1981). Some Remarks on Finite Combinatorics. Unpublished Manuscript.

[52] Kirby, L., Paris, J.B. (1977). Initial segments of models of Peano’s axioms. Set theory and
hierarchy theory, V (Proc. Third Conf., Bierutowice, 1976), pp. 211–226. Lecture Notes in
Mathematics 619.

19



[53] Kirby, L. (1977). Initial segments of models of arithmetic. PhD Thesis, Manchester University.

[54] Kirby, L. (1982). Flipping properties in arithmetic. Journal of Symbolic Logic, 47, pp. 416-422.

[55] Kojman, M., Shelah, S. (1999). Regressive Ramsey numbers are ackermannian. Journal of
Combinatorial Theory, Ser. A, 86(1), pp. 177-181.

[56] Kojman, M., Lee, G., Omri, E., Weiermann, A. (2006). Sharp thresholds for the phase
transition between primitive recursive and ackermannian Ramsey numbers. Submitted.

[57] Kochen, S., Kripke, S. (1982). Nonstandard models of Peano Arithmetic. Logic and Algorith-
mic Monographie de l’Enseignment Mathematique, 30, pp. 275-295.

[58] Kotlarski, H. (2003). A model-theoretic approach to proof theory for arithmetic. Unpublished
book manuscript.

[59] Lee, G. (2005). Phase transitions in axiomatic thought. PhD Thesis. University of Münster.
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