
THE QUANTUM DOUBLE AS A HOPF ALGEBRA

In this text we discuss the generalized quantum double construction. It is a detailed
treatment of the results described without proofs in [2, Chpt. 3, §3].
We give several exercises in the text.
The homework exercise is 2.9.

1. Introduction

In the last lecture we have learned that the category of modules over a braided Hopf
algebra H is a braided monoidal category. A braided Hopf algebra is a rather sophisticated
algebraic object, it is not easy to give interesting nontrivial examples. In this text we
develop a theory that will lead to a concrete recipe which produces a nontrivial braided
Hopf algebra D(A) (called Drinfeld’s quantum double) for any finite dimensional Hopf
algebra A with invertible antipode! We will furthermore use this technique to produce an
important example of a quantum group, namely the quantized universal enveloping algebra
of the Lie algebra sl2 of traceless 2× 2-matrices.
Conventions: In this text Hopf algebras will be assumed to have invertible antipodes.
Although we will be working with several Hopf algebras at the same time, we use the same
notations for the associated (co)algebra maps, units and antipodes: it will always be clear
from context which maps we are dealing with.

2. Hopf algebra pairings

The linear dual A∗ = Homk(A, k) of a finite dimensional Hopf algebra A canonically
inherits a Hopf algebra structure from A. Indeed, by finite dimensionality we may identify
(A⊗ A)∗ ' A∗ ⊗ A∗ as vector spaces. The Hopf algebra maps of A∗ are then given by

(fg)(a) =
∑
(a)

f(a(1))g(a(2)), 1(a) = ε(a),

∆(f)(a⊗ a′) = f(aa′), ε(f) = f(1), S(f)(a) = f(S(a))

for a, a′ ∈ A and f, g ∈ A∗, where we use Sweedler’s notation ∆(a) =
∑

(a) a(1) ⊗ a(2). In

other words, the algebra (resp. coalgebra) maps of A induce the coalgebra (resp. algebra)
maps of A∗. An important role will be played by Hopf algebras of the form A∗,cop, in
which the comultiplication ∆ and the antipode S of A∗ are replaced by the opposite
comultiplication ∆op and S−1 respectively.

Exercise 2.1. (i) Show that the above maps turn A∗ into a Hopf algebra.
(ii) Let G be a finite group and k[G] the group algebra of G, with its canonical Hopf algebra
structure (see [2, Chpt. 2 §1.4]). Identify k[G]∗ as vector space with the space Funk(G) of
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2 THE QUANTUM DOUBLE AS A HOPF ALGEBRA

k-valued functions on G (a function f ∈ Funk(G) uniquely extends to a k-linear functional
on k[G]). Hence Funk(G) inherits a Hopf algebra structure from k[G]∗. Give the explicit
formulas for the resulting Hopf algebra maps on Funk(G).

A second basic construction is the product Hopf algebra A ⊗ B of two Hopf algebras A
and B. It is the Hopf algebra structure on the vector space A⊗B determined by

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′,

∆(a⊗ b) =
∑

(a),(b)

(a(1) ⊗ b(1))⊗ (a(2) ⊗ b(2)),

ε(a⊗ b) = ε(a)ε(b),

S(a⊗ b) = S(a)⊗ S(b)

for a, a′ ∈ A and b, b′ ∈ B.
As a Hopf algebra, the quantum double D(A) of a finite dimensional Hopf algebra A

will be obtained from the product Hopf algebra A⊗A∗,cop by adjusting the algebra struc-
ture appropriately. The adjustment in the multiplication uses the fact that the two Hopf
algebras A and A∗,cop are dual to each other. It translates into the following elementary
properties of the bilinear form ϕ : A× A∗,cop → k,

(2.1) ϕ(a, b) = b(a), a ∈ A, b ∈ A∗,cop.

Lemma 2.2. The pairing ϕ (see (2.1)) satisfies:
(i) Compatibility of the (co)units

ϕ(a, 1) = ε(a),

ϕ(1, b) = ε(b).
(2.2)

(ii) Compatibility of the (co)multiplications

ϕ(aa′, b) =
∑
(b)

ϕ(a, b(2))ϕ(a′, b(1)),

ϕ(a, bb′) =
∑
(a)

ϕ(a(1), b)ϕ(a(2), b
′).

(2.3)

(iii) Compatibility of the antipodes

(2.4) ϕ(S(a), b) = ϕ(a, S−1(b)).

Proof. (i) The unit element of A∗,cop is the counit ε of A, hence

ϕ(a, 1) = ϕ(a, ε) = ε(a).

The counit of A∗,cop is ε(b) = b(1) (b ∈ A∗,cop), hence ϕ(1, b) = ε(b).
(ii) The comultiplication ∆(b) =

∑
(b) b(1) ⊗ b(2) of A∗,cop is characterized by the property∑

(b)

b(2)(a)b(1)(a
′) = b(aa′)
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for a, a′ ∈ A. Translated in terms of ϕ we get the first equality of (2.3). The multiplication
in A∗,cop is defined by

(bb′)(a) =
∑
(a)

b(a(1))b
′(a(2))

for b, b′ ∈ B and a ∈ A. Translated in terms of ϕ we get the second equality of (2.3).
(iii) We have

ϕ(S(a), b) = b(S(a)) = (S−1(b))(a) = ϕ(a, S−1(b)),

where the second equality is by the definition of the antipode of A∗,cop. �

Definition 2.3. (i) A bilinear pairing

ϕ : A×B → k

of bialgebras A and B is called a bialgebra pairing if it satisfies (2.2) and (2.3) for all
a, a′ ∈ A and b, b′ ∈ B.
(ii) If A and B are Hopf algebras then a bialgebra pairing ϕ : A×B → k is called a Hopf
pairing if it satisfies (2.4) for all a ∈ A and b ∈ B.

For a Hopf pairing ϕ : A×B → k we define

IA = {a ∈ A | ϕ(a, b) = 0 ∀ b ∈ B},
IB = {b ∈ B | ϕ(a, b) = 0 ∀ a ∈ A}.

We say that the pairing ϕ is nondegenerate if IA = {0} and IB = {0}.
Examples. (i) For two Hopf algebras A and B, the Hopf pairing

ϕ0(a, b) = ε(a)ε(b)

is called the trivial Hopf pairing between A and B. It is highly degenerate, since IA =
Ker(ε) and IB = Ker(ε) are the augmentation ideals of A and B, respectively.
(ii) The canonical Hopf pairing (2.1) between a finite dimensional Hopf algebra A and its
dual A∗,cop is nondegenerate.

Exercise 2.4. Let ϕ : A × B → k be a nondegenerate Hopf pairing between two finite
dimensional Hopf algebras A and B. Show that b 7→ ϕ

(
·, b

)
defines an isomorphism ψ :

B
∼−→ A∗,cop of Hopf algebras.

Remark. Under the assumptions of the previous exercise, the identification of B with
A∗,cop as Hopf algebras by the map ψ turns the Hopf pairing ϕ into the canonical Hopf
pairing (2.1): (ψ(b))(a) = ϕ(a, b) for a ∈ A and b ∈ B.

In examples it is often easy to check whether a given bialgebra pairing A × B → k
between Hopf algebras A and B is a Hopf pairing, in view of the following exercise.

Exercise 2.5. Suppose that ϕ : A × B → k is a bialgebra pairing of the Hopf algebras A
and B. Suppose that A (resp. B) is generated as algebra by {a1, . . . , ar} (resp. {b1, . . . , bs})
and that

∆(ai) ∈ V ⊗ V, i = 1, . . . , r
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where V = spank{a1, . . . , ar, 1} ⊂ A. Show that ϕ is a Hopf pairing if

ϕ(S(ai), bj) = ϕ(ai, S
−1(bj))

for i = 1, . . . , r and j = 1, . . . , s.

Lemma 2.6. Let ϕ : A×B → k be a Hopf pairing between Hopf algebras A and B.
(i) IA ⊂ A and IB ⊂ B are Hopf ideals.
(ii) The Hopf pairing ϕ descends canonically to a nondegenerate Hopf pairing ϕ between
the quotient Hopf algebras A/IA and B/IB.

Proof. (i) We consider IA ⊂ A. First note that IA is a two-sided ideal in A. Indeed, IA is
clearly closed under addition, and for a, a′ ∈ A and x ∈ IA we have for all b ∈ B,

ϕ
(
axa′, b

)
=

∑
(b)

ϕ
(
a, b(3)

)
ϕ
(
x, b(2)

)
ϕ
(
a′, b(1)

)
= 0,

hence axa′ ∈ IA.
Let a ∈ IA and b ∈ B. Then ε(a) = ϕ(a, 1) = 0 and ϕ(S(a), b) = ϕ(a, S−1(b)) = 0. It

follows that IA ⊂ Ker(ε) and S(IA) ⊆ IA.
Let a ∈ IA and write ∆(a) =

∑
(a) a(1) ⊗ a(2). The linear functional

b⊗ b′ 7→
∑
(a)

ϕ(a(1), b)ϕ(a(2), b
′)

on B ⊗B is identically zero, since the right hand side equals

ϕ(a, bb′) = 0.

It is now a straightforward exercise in linear algebra to conclude that ∆(a) ∈ IA⊗A+A⊗IA.
(ii) The nondegenerate Hopf pairing ϕ between A/IA and B/IB is defined by

ϕ(a+ IA, b+ IB) = ϕ(a, b).

It satisfies all the desired properties. �

Exercise 2.7. Fill in the remaining details of the proof of Lemma 2.6.

We shortly recall the construction of the tensor algebra T (V ) of a k-vector space V . As
a vector space, it equals

T (V ) =
∞⊕

m=0

V ⊗m, V ⊗0 := k.

The algebra structure is

(v1 ⊗ · · · ⊗ vl)(v
′
1 ⊗ · · · ⊗ v′m) := v1 ⊗ · · · ⊗ vl ⊗ v′1 ⊗ · · · ⊗ v′m

for vi, v
′
j ∈ V with unit 1 ∈ k = V ⊗0. Note that v1v2 · · · vm = v1 ⊗ · · · ⊗ vm in the tensor

algebra T (V ), hence T (V ) is algebraically generated by V . If V is finite dimensional with
basis a1, . . . , ar, then T (V ) is the free algebra with generators a1, . . . , ar (i.e. the set of
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words in {a1, . . . , ar} forms a basis of T (V )). This leads to the universal property of the
tensor algebra,

Homk(V,A) ' HomAlg(T (V ), A)

for any algebra A, where Homk stand for k-linear morphisms and HomAlg for algebra mor-
phisms.

Remark. A tensor algebra T (V ) may have many different Hopf algebra structures, one of
which is its canonical, cocommutative Hopf algebra structure determined by

∆(v) = v ⊗ 1 + 1⊗ v,

ε(v) = 0, S(v) = −v

for v ∈ V .

Many examples of (Hopf) algebras are defined by specifying generators {a1, . . . , ar} and
relations. It is constructed as the associated free algebra T (V ) divided out by a two-sided
ideal incorporating the desired relations between the generators.
Example. If we impose the generators of a free algebra to be commutative we are led to
symmetric algebras. The symmetric algebra S(V ) of a vector space V is T (V )/I with I
the two-sided ideal generated by v ⊗ w − w ⊗ v for all v, w ∈ V . It satisfies the universal
property

Homk(V,A) ' HomAlg(S(V ), A)

for commutative algebras A.
Another important example is the universal enveloping algebra U(g) of a Lie algebra g.

It is a quotient of T (g) by a Hopf ideal I(g) (with respect to the canonical cocommutative
Hopf algebra structure on T (g)), hence U(g) is a cocommutative Hopf algebra. We come
back to (deformations of) universal enveloping algebras in more detail at a later stage.

The following lemma shows that, under mild assumptions, nontrivial bialgebra pairings
ϕ : A×B → k can be easily constructed if A and B are free as algebras.

Lemma 2.8. Suppose A (resp. B) is a free algebra with generators a1, . . . , ar (resp.
b1, . . . , bs). So A = T (V ) and B = T (W ) with V (resp. W ) the vector space with lin-
ear basis {a1, . . . , ar} (resp. {b1, . . . , bs}). Suppose that the free algebras A and B are
equipped with bialgebra structures such that

∆(V ) ⊂ (V ⊕ k)⊗2.

Given a bilinear form ψ : V ×W → k, there exists a unique bialgebra pairing ϕ : A×B → k
such that ϕ|V×W = ψ.

Remark. Under the assumptions of Lemma 2.8, (V ⊗W )∗ is in one-to-one correspondence
with the set of bialgebra pairings ϕ : A × B → k. This identification turns the set of
bialgebra pairings ϕ : A×B → k into a vector space.
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Proof. Suppose ϕ : A×B → k is a bialgebra pairing extending the linear functional ψ on
V ×W . Then by (2.3), for v1, . . . , vk ∈ V and b ∈ B,

(2.5) ϕ(v1v2 · · · vk, b) =
∑
(b)

ϕ(v1, b(k))ϕ(v2, b(k−1)) · · ·ϕ(vk, b(1)).

Combined with (2.2) we conclude that ϕ is uniquely determined by its restriction to
(
V ⊕

k
)
×B. For v ∈ V and w1, . . . , wl ∈ W we have by (2.3),

(2.6) ϕ(v, w1w2 · · ·wl) =
∑
(v)

ϕ(v(1), w1)ϕ(v(2), w2) · · ·ϕ(v(l), wl).

Since v(i) ∈ V ⊕k by the assumptions, (2.2) and (2.6) imply that ϕ is uniquely determined
by ϕ|V×W .

It remains to show that a given ψ ∈ (V ⊗W )∗ extends to a bialgebra pairing ϕ : A×B →
k. We first define ϕ : A×B → k as the unique bilinear form satisfying (2.2), ϕ|V×W = ψ,
and satisfying (2.6) and (2.5). The pairing ϕ is well defined since ∆(V ) ⊂ (V ⊕ k)⊗2. It
remains to show that ϕ is a bialgebra pairing.

The (co)unit axioms (2.2) are by assumption. We discuss now the proof of the first
equality

(2.7) ϕ(aa′, b) =
∑
(b)

ϕ(a, b(2))ϕ(a′, b(1)), a, a′ ∈ A, b ∈ B

of the (co)multiplication axiom (2.3).
For a = 1 the equality (2.7) is valid by (2.2) and by the counit axiom,∑

(b)

ϕ(1, b(2))ϕ(a′, b(1)) = ϕ
(
a′,

∑
(b)

ε(b(2))b(1))
)

= ϕ(a′, b).

In the same way one shows that (2.7) is valid for a′ = 1. By linearity it remains to prove
(2.7) in case that a = v1 · · · vm and a′ = vm+1 · · · vl for vi ∈ V and 1 ≤ m < l. In this case
we expand ϕ(aa′, b) by (2.5) and contract the first m terms (respectively the last l − m
terms) by the same formula applied in reversed order,

ϕ(v1 · · · vl, b) =
∑
(b)

ϕ(v1, b(l)) · · ·ϕ(vm, b(l−m+1))ϕ(vm+1, b(l−m)) · · ·ϕ(vl, b(1))

=
∑
(b)

ϕ(v1 · · · vm, b(l−m+1))ϕ(vm+1, b(l−m)) · · ·ϕ(vl, b(1))

=
∑
(b)

ϕ(v1 · · · vm, b(2))ϕ(vm+1 · · · vl, b(1)).

The proof of the second equality of the (co)multiplication axiom (2.3) can be verified in
an analogous manner. �
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Remark. If the free algebras A and B in the above lemma are Hopf algebras, then Exercise
2.5 gives a handy criterion to verify whether the constructed bialgebra pairing ϕ is a Hopf
pairing.

Exercise 2.9. Let A and B be Hopf algebras with Hopf pairing ϕ : A×B → k.
(i) Show that the bilinear map B × A→ B, (b, a) 7→ ba with

ba =
∑
(b)

ϕ
(
a, b(2)

)
b(1),

is a right A-action on B (i.e. b1 = b and (ba)a′ = baa′).
(ii) Prove that the bilinear map B × A→ A, (b, a) 7→ b · a with

b · a =
∑
(a)

ϕ
(
S−1(a(1)), b

)
a(2),

is a left B-action on A (i.e. 1 · a = a and b · (b′ · a) = (bb′) · a). Here you may use that
ε(S(a)) = ε(a) for a ∈ A (which you will be asked to prove in Exercise 3.2(i)).

3. The quantum double as a Hopf algebra

In this section we discuss the following theorem in detail.

Theorem 3.1. Let ϕ : A × B → k be a Hopf pairing between Hopf algebras A and B.
There exists a unique Hopf algebra structure on A⊗B satisfying the following conditions:

(i) The canonical linear embedding a 7→ a ⊗ 1 (resp. b 7→ 1 ⊗ b) of A (resp. B) into
A⊗B is a morphism of Hopf algebras.

(ii) For a ∈ A and b ∈ B the multiplication rules are determined by

(a⊗ 1)(1⊗ b) = a⊗ b,

(1⊗ b)(a⊗ 1) =
∑

(a),(b)

ϕ
(
S−1(a(1)), b(1)

)
ϕ
(
a(3), b(3)

)
a(2) ⊗ b(2).(3.1)

The resulting Hopf algebra is denoted by Dϕ(A,B). It is called the generalized double of A
and B with respect to the pairing ϕ.

Note that the second equation in (3.1) tells you how to rewrite a product of the form
(1⊗b)(a⊗1) into a sum of products of the form (a′⊗1)(1⊗b′) = a′⊗b′. You can thus think
of it as a “straightening rule” which allows you, in combination with the first property (i)
of the new algebra structure, to rewrite any complicated product in Dϕ(A,B) as a finite
sum of terms of the form a′ ⊗ b′.

Observe that the straightening rule in Dϕ(A,B) can be expressed in terms of the two
actions of exercise 2.9 as

(1⊗ b)(a⊗ 1) =
∑

(a),(b)

b(1) · a(1) ⊗ b
a(2)

(2)
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for a ∈ A and b ∈ B. This links the present constructions to Kassel’s [1, Chpt. IX]
treatment of quantum doubles using matched pairs of Hopf algebras.

Under the additional assumptions that ϕ : A × B → k is a nondegenerate Hopf pair-
ing between finite dimensional Hopf algebras A and B, we will show next week that the
associated generalized quantum double Dϕ(A,B) is a braided Hopf algebra.
Example. We consider examples with A = k[G] and B = Funk(G)cop for a finite group G.
(i) Let ϕ0 : k[G]×Funk(G)cop → k be the trivial Hopf pairing. It is given by ϕ0(g, f) = f(e)
for g ∈ G and f ∈ Funk(G), with e ∈ G the unit element. In this case the straightening
rule gives

(e⊗ f)(g ⊗ 1) =
∑
(f)

ϕ0(g
−1, f(1))ϕ0(g, f(3))g ⊗ f(2)

= g ⊗
∑
(f)

f(1)(e)f(3)(e)f(2)

= g ⊗ f(e · e) = g ⊗ f,

hence Dϕ(A,B) is the usual product Hopf algebra A⊗B.
(ii) Let ϕ : k[G]× Funk(G)cop → k be the canonical Hopf pairing. It is given by ϕ(g, f) =
f(g) for g ∈ G and f ∈ Funk(G). In this case the straightening rule gives

(e⊗ f)(g ⊗ 1) =
∑
(f)

ϕ(g−1, f(1))ϕ(g, f(3))g ⊗ f(2)

= g ⊗
∑
(f)

f(1)(g
−1)f(3)(g)f(2)

= g ⊗ (f ◦ Ad(g)),

where Ad(g) : G → G is given by Ad(g)(g′) = gg′g−1 for g, g′ ∈ G. The resulting Hopf
algebra D(G) := Dϕ(A,B) is called the quantum double of the finite group G.

Exercise 3.2. Let A be a Hopf algebra.
(i) Show that ε(S(a)) = ε(a) for all a ∈ A.
Fix a second Hopf algebra B and let ϕ0 : A×B → k be the trivial Hopf pairing.
(ii) Prove that Dϕ0(A,B) is the standard product Hopf algebra A⊗B.

For the remainder of the section we fix two Hopf algebras A and B and a Hopf pairing
ϕ : A×B → k. We divide the proof of Theorem 3.1 in two parts. In the first step we deal
with the algebra structure of Dϕ(A,B).

Lemma 3.3. There exists a unique algebra structure on A⊗B satisfying

(i) The canonical linear embeddings of A and B into A⊗B are algebra homomorphisms.
(ii) The multiplication rules (3.1) hold.

We will denote the resulting algebra by Dϕ(A,B) (in accordance with Theorem 3.1).
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Proof. If A ⊗ B has a multiplication turning it into an associative algebra and satisfying
the conditions of the lemma, then it is given on elements in the spanning set {a⊗b}a∈A,b∈B

of A⊗B by

(3.2) (a⊗ b)(a′ ⊗ b′) =
∑

(a′),(b)

ϕ
(
S−1(a′(1)), b(1)

)
ϕ
(
a′(3), b(3)

)
aa′(2) ⊗ b(2)b

′

for a, a′ ∈ A and b, b′ ∈ B. Indeed, this follows from writing (a⊗ b)(a′⊗ b′) as the product
(a ⊗ 1)(1 ⊗ b)(a′ ⊗ 1)(1 ⊗ b′) and using the straightening rule for the product of the two
middle terms. This implies the uniqueness of the algebra structure.

For the existence we use (3.2) as the definition of a linear map µ : (A⊗B)⊗2 → A⊗B.
Write (a⊗ b)(a′ ⊗ b′) := µ((a⊗ b)⊗ (a′ ⊗ b′)). We have to show that

1. A⊗B is an associative algebra with respect to µ, with unit 1⊗ 1.
2. With respect to the algebra structure on A⊗B as defined in 1, the canonical linear

embeddings of A and B into A⊗B are algebra homomorphisms.
3. With respect to the algebra structure on A⊗B as defined in 1, the multiplication

rules (3.1) are valid in A⊗B.

Proof of 1. The element 1⊗ 1 ∈ A⊗B serves as right unit, since

(a⊗ b)(1⊗ 1) =
∑
(b)

ϕ(1, b(1))ϕ(1, b(3))a⊗ b(2)

= a⊗
(∑

(b)

ε(b(1))ε(b(3))b(2)

)
= a⊗ b

where the last equality is by the counit axiom applied twice. Similarly one shows that 1⊗1
serves as left unit.

Proving the associativity of the product (3.2) is more elaborate. It consists of showing
that ((a⊗ b)(a′ ⊗ b′))(a′′ ⊗ b′′) and (a⊗ b)((a′ ⊗ b′)(a′′ ⊗ b′′)) are equal to∑

(b),(a′),(b′),(a′′)

{
ϕ
(
S−1(a′(1)), b(1)

)
ϕ
(
a′(3), b(5)

)
ϕ
(
S−1(a′′(1)), b

′
(1)

)
ϕ
(
S−1(a′′(2)), b(2)

)
×ϕ

(
a′′(4), b(4)

)
ϕ
(
a′′(5), b

′
(3)

)}
aa′(2)a

′′
(3) ⊗ b(3)b

′
(2)b

′′.

This is a typical exercise in advanced Hopf-algebra computations!
Proof of 2. If a = a′ = 1 in (3.2), then it gives

(1⊗ b)(1⊗ b′) =
∑
(b)

ϕ
(
1, b(1)

)
ϕ
(
1, b(3)

)
1⊗ b(2)b

′

= 1⊗
∑
(b)

ε(b(1))ε(b(3))b(2)b
′

= 1⊗ bb′
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for b, b′ ∈ B. Similarly, (a⊗ 1)(a′ ⊗ 1) = aa′ ⊗ 1 for a, a′ ∈ A.
Proof of 3. For b = 1 and a′ = 1, (3.2) gives

(a⊗ 1)(1⊗ b′) = ϕ(1, 1)ϕ(1, 1)a1⊗ 1b′ = a⊗ b′.

For a = 1 and b′ = 1 (3.2) immediately reduces to the straightening rule of (3.1). �

Exercise 3.4. Fill in the details of part 1 of the proof of Lemma 3.3.

The proof of Theorem 3.1 is now completed by the following lemma.

Lemma 3.5. The algebra Dϕ(A,B) of Lemma 3.3 has a unique Hopf algebra structure
such that the canonical algebra embeddings of A and B in Dϕ(A,B) are Hopf algebra
homomorphisms.

Proof. To avoid confusion, we denote during the proof of the lemma ∆A, εA and SA (resp.
∆B, εB and SB) for the comultiplication, counit and antipode of A (resp. B).

If the algebra Dϕ(A,B) has a comultiplication ∆, counit ε and antipode S turning
Dϕ(A,B) into a Hopf algebra and satisfying the additional requirements of the lemma,
then ∆, ε and S are unique. To show this fact, we express ∆, ε and S in terms of the Hopf
algebra maps of A and B.

For the counit, ε : Dϕ(A,B) → k is an algebra homomorphism, so

(3.3) ε(a⊗ b) = ε(a⊗ 1)ε(1⊗ b) = εA(a)εB(b).

Similarly, the comultiplication ∆ : Dϕ(A,B) → Dϕ(A,B)⊗2 is an algebra homomorphism,
so

(3.4) ∆(a⊗ b) = ∆(a⊗ 1)∆(1⊗ b) =
∑

(a),(b)

(a(1) ⊗ b(1))⊗ (a(2) ⊗ b(2)),

which should be viewed as identities in the product algebra Dϕ(A,B)⊗2. Finally, S :
Dϕ(A,B) → Dϕ(A,B)op is an algebra homomorphism, so

(3.5) S(a⊗ b) = S(1⊗ b)S(a⊗ 1) = (1⊗ SB(b))(SA(a)⊗ 1),

viewed as identities in the algebra Dϕ(A,B).
To prove the existence of the Hopf algebra structure on Dϕ(A,B), we use (3.3), (3.4)

and (3.5) as the definition of ε : Dϕ(A,B) → k, ∆ : Dϕ(A,B) → Dϕ(A,B)⊗2 and S :
Dϕ(A,B) → Dϕ(A,B)op as linear maps. We need to verify the following properties.

1. The three maps ε, ∆ and S are algebra homomorphisms.
2. The algebra Dϕ(A,B) becomes a Hopf algebra with comultiplication ∆, counit ε

and antipode S.
3. The canonical algebra embeddings of A and B into Dϕ(A,B) are Hopf-algebra

homomorphisms.

Proof of 1. For the map ε we have to show that ε(1⊗ 1) = 1, which is trivial, and that

(3.6) ε((a⊗ b)(a′ ⊗ b′)) = εA(a)εB(b)εA(a′)εB(b′).
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We start with the left hand side, which by (3.2) can be expressed as∑
(a′),(b)

ϕ
(
S−1

A (a′(1)), b(1)
)
ϕ
(
a′(3), b(3)

)
ε
(
aa′(2) ⊗ b(2)b

′).
By the definition of ε and by the bilinearity of ϕ, this equals∑

(a′),(b)

ϕ
(
S−1

A (a′(1)), b(1)εB(b(2))
)
ϕ
(
εA(a′(2))a

′
(3), b(3)

)
εA(a)εB(b′).

Applying the counit axiom for A and B, we get∑
(a′),(b)

ϕ
(
S−1

A (a′(1)), b(1)
)
ϕ
(
a′(2), b(2)

)
εA(a)εB(b′)

Now we apply the (co)multiplication axiom (2.3) for the pairing ϕ to see that the last
expression equals ∑

(a′)

ϕ
(
a′(2)S

−1
A (a′(1)), b

)
εA(a)εB(b′).

The antipode axiom for A and the fact that SA : A → Aop is an algebra homomorphism
now reduces this expression to

εA(a′)ϕ(1, b)εA(a)εB(b′).

Applying the (co)unit axiom (2.2) for ϕ we finally obtain the right hand side of (3.6).
The verifications that ∆ and S are algebra homomorphisms are even more elaborate!

For the multiplicativity of ∆ we have, in view of (3.4) and (3.2), that

∆(a⊗ b)∆(a′ ⊗ b′) =
∑

(a),(b),(a′),(b′)

(
(a(1) ⊗ b(1))(a

′
(1) ⊗ b′(1))

)
⊗

(
(a(2) ⊗ b(2))(a

′
(2) ⊗ b′(2))

)
=

∑
(a),(b),(a′),(b′)

ϕ
(
S−1(a′(1)), b(1)

)
ϕ
(
a′(3), b(3)

)
ϕ
(
S−1(a′(4)), b(4)

)
ϕ
(
a′(6), b(6)

)
× (a(1)a

′
(2) ⊗ b(2)b

′
(1))⊗ (a(2)a

′
(5) ⊗ b(5)b

′
(2))

=
∑

(a),(b),(a′),(b′)

ϕ
(
S−1(a′(1)), b(1)

)
ϕ
(
a′(4), b(4)

)
×

(
(a(1) ⊗ 1)Ψ(a′(2), b(2))(1⊗ b′(1))

)
⊗ (a(2)a

′
(3) ⊗ b(3)b

′
(2))

with

Ψ(a, b) =
∑

(a),(b)

ϕ
(
a(2), b(2)

)
ϕ
(
S−1(a(3)), b(3)

)
a(1) ⊗ b(1) ∈ Dϕ(A,B).
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We singled out the term Ψ(a, b) because it can be drastically simplified by (2.3), the
antipode axiom and the counit axiom,

Ψ(a, b) =
∑

(a),(b)

ϕ
(
a(2), b(2)

)
ϕ
(
S−1(a(3)), b(3)

)
a(1) ⊗ b(1)

=
∑

(a),(b)

ϕ
(
S−1(a(3))a(2), b(2)

)
a(1) ⊗ b(1)

=
∑

(a),(b)

εA(a(2))εB(b(2))a(1) ⊗ b(1)

= a⊗ b.

Hence we obtain

∆(a⊗ b)∆(a′ ⊗ b′) =
∑

(a),(b),(a′),(b′)

ϕ
(
S−1(a′(1)), b(1)

)
ϕ
(
a′(4), b(4)

)
× (a(1)a

′
(2) ⊗ b(2)b

′
(1))⊗ (a(2)a

′
(3) ⊗ b(3)b

′
(2)).

On the other hand, by (3.4) and (3.2) we have

∆((a⊗ b)(a′ ⊗ b′)) =
∑

(a′),(b)

ϕ
(
S−1(a′(1)), b(1)

)
ϕ
(
a′(3), b(3)

)
∆(aa′(2) ⊗ b(2)b

′)

=
∑

(a),(b),(a′),(b′)

ϕ
(
S−1(a′(1)), b(1)

)
ϕ
(
a′(4), b(4)

)
× (a(1)a

′
(2) ⊗ b(2)b

′
(1))⊗ (a(2)a

′
(3) ⊗ b(3)b

′
(2))

in Dϕ(A,B)⊗2. Comparing the expressions we conclude that

∆(a⊗ b)∆(a′ ⊗ b′) = ∆((a⊗ b)(a′ ⊗ b′))

in Dϕ(A,B)⊗2. The verification of

(3.7) S((a⊗ b)(a′ ⊗ b′)) = S(a′ ⊗ b′)S(a⊗ b)

in Dϕ(A,B) is left as an exercise.
Proof of 2 and 3. By the definitions of the maps ∆, ε and S we have

(3.8) ∆(a⊗1) =
∑
(a)

(a(1)⊗1)⊗ (a(2)⊗1), ε(a⊗1) = εA(a), S(a⊗1) = SA(a)⊗1

for a ∈ A, and analogous formulas hold when ∆, ε and S are applied to elements of
the form 1 ⊗ b for b ∈ B. Hence the Hopf algebra axioms for ∆, ε and S are trivially
satisfied on the subalgebras A⊗1 and 1⊗B of Dϕ(A,B). Since these subalgebras generate
Dϕ(A,B), and ∆, ε and S are algebra morphisms by 1, we conclude that the Hopf algebra
axioms hold in general. Returning to the formulas (3.8) and the analogous formulas for B,
we conclude that the canonical algebra embeddings of A and B into Dϕ(A,B) are Hopf
algebra morphisms. �
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Exercise 3.6. Prove that

S(a⊗ b) =
∑

(a),(b)

ϕ
(
a(1), b(1)

)
ϕ
(
a(3), S(b(3))

)(
S(a(2))⊗ S(b(2))

)
in Dϕ(A,B).

Exercise 3.7. This is a continuation of exercise 2.1 part (ii). We thus identify Funk(G)
with k[G]∗ for the given finite group G. The canonical nondegenerate Hopf pairing for k[G]
is

ϕ(g, f) = f(g), g ∈ G, f ∈ Funk(G)

when viewed as bilinear map ϕ : k[G]× Funk(G)cop → k.
(i) For g ∈ G define eg ∈ Funk(G) by eg(h) = δg,h for h ∈ G, where δg,h is the Kronecker
delta function (it equals one if g = h, and zero otherwise). Show that {eg}g∈G is a linear
basis of Funk(G) satisfying

egeh = δg,heg, 1 =
∑
g∈G

eg,

∆(eg) =
∑

u,v∈G:
uv=g

eu ⊗ ev, ε(eg) = δg,e,

S(eg) = eg−1

for g, h ∈ G.
(ii) The Hopf algebra D(G) := Dϕ(k[G],Funk(G)cop) is called the quantum double of the
finite group G. Describe its Hopf algebra structure in terms of the linear basis B = {g ⊗
eh}g,h∈G of D(G).
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