Chapter 3

Linear solvers

3.1 Features of equation systems

In previous chapter, the algebraic equation systems arising from both Navier-Stokes and
mass equations were derived. It is to be stressed that each of these systems, in spite of
their coupling, is solved separately with the SIMPLE-like algorithm [32, 35]. The Navier-
Stokes system of equations solves the velocities V = {u, v, w} with the assumption of the
known pressure P* and temperature 7' fields. Then, the pressure correction system of
equations solves P’ with the guessed velocity field just evaluated in the previous step. Once
the velocities and pressures are corrected, it is the turn of the energy equation, where the
temperature T is obtained. Following this iterative procedure it is possible to uncouple the
equation systems and focus efforts on each of these systems.

Algorithms [8, 39, 9] which consider directly the coupling between velocity and pressure
fields within a single system of equations are not considered in this work, but most of the
ideas that will be exposed throughout this chapter can be extended to the coupled systems.

It is well known that Navier-Stokes equations, once discretized and linearized, give a set
of algebraic equation systems with non symmetric coefficients in their matrices. Meanwhile
the continuity equation leads to a linear system of equations with symmetric coefficient
matrix. This fact should be in mind when a solver is used which one suits for symmetric
matrices or suits for non symmetric matrices. It is to be mentioned that a symmetric
matrix can be considered as a special case of non symmetric matrix from the solver point
of view. Thus a solver which treats with non symmetric matrices deals also with the
symmetric matrices. Nevertheless, although such kind of solvers are robust and feasible for
any linear system of equations, the efficiency in symmetric matrices decreases. For instance,
for symmetric matrices the CG solver is faster than the robust BICGSTAB solver, which
performs double number of operations per iteration. Therefore, it is suggested to use a
solver for non symmetric matrices and another one for symmetric matrices instead of a
general and robust solver which is less efficient for symmetric matrices. Further guidelines
on suitable solvers for symmetric and non symmetric matrices may be found in {40].

In addition, any algebraic system includes the set of equations derived from the dis-
cretization of the boundary and initial conditions. Typical boundary conditions are non-slip
conditions, free-slip conditions, convective conditions and periodic conditions for Navier-
Stokes equations (see details in chapter 2). And the pressure gradient is fixed to a value

27

28 3. LINEAR SOLVERS

in the pressure correction equation . The initial conditions give the starting point of all
variables at time 7 = (. They all close the problem in order to supply only one solution at
each successive time step 7 + A7 (i.e. the linear system with the boundary conditions and
initial conditions included has a non singular matrix).

Furthermore, some of these conditions, say strong conditions, enhance the convergence
and offer stability to any solver. While the non-slip and initial conditions shall consider
strong sets of equations, the free-slip, fixed gradients, convective and periodic boundary
conditions are considered weak sets of equations. For instance, the pressure correction
system of equations plus zero gradient in boundaries appear in problems with bounded
domains. This system of equations is weakly closed. Since the matrix turns into singular,
there are an infinite number of shifted solutions. Luckily, if one point is fixed to a constant
value during all the procedure it is enough to get a single solution. Fixing a point means
replacing one of the equations of the system in order to obtain a non singular matrix. By
doing so, a shifted solution is obtained which matches with the pressure correction system
of equations.

Another example is a repeated flow pattern in some directions which is treated with
periodicity in these directions. So in these cases all boundary conditions are weak, and it
is necessary to fix a value in one point.

A simple example with either double periodicity or free gradient in a two dimensional
case shows an infinitive number of shifted solutions if no additional information (i.e. fixed
point) is given. The partial differential equation and the boundary conditions are

¢

oz;T;

=b, i={1,2}, z; € [0,2n]

b = cos(z;)sin(z2)

See Fig. 3.1 for different shifted solutions ¢ which match the partial differential equation.

As mentioned before, equation systems with strong or weak sets of boundary conditions
have different behaviours when attempts are made to solve them. In addition, these systems
are affected by other important factors: the stability and sensitivity of the problem of
perturbations. Since neither problem data nor computer arithmetic is exact the solution
will not be exact. How small changes in the system of equations affects the final solution is
a critical point in the discretization and the design of a robust or a stable solver.

From the point of view of the discretization process, stability is ensured if Scarborough’s
criterion [32] is satisfied. Or in other words, the coefficients of the matrix A are diagonally
dominant. Then, once the discretization is done, the sensitivity is dealt in consideration
to the solver. Let Az = b be a given system of equations, the sensitivity of this system is
expressed mathematically as

l1A + 6All2|lz + éz[]2 = ||b + 6b{|2

Az = b is a well-conditioned system if for small changes or perturbations in the system (i.e.
the matrix ||0 A||2 or the right hand side ||dz||;) the changes in the solution ||dz||; are equal
or smaller than the perturbations.

|[6A]l2, 1160][2 = (|6l

3.1. FEATURES OF EQUATION SYSTEMS 29

o
o

F-9

o
.\1..‘..1L|\1\\-q,..‘__‘

s
o

LTy

Figure 3.1: Two shifted solutions of the 2D problem with periodic boundary conditions.

Conversely, if small perturbations produce large changes in the solution, then it is said that
the system is ill-conditiconed.
1942, [|66H]2 < [d2(l2

[t is easy to imagine what it means when solving a linearized system with an iterative
procedure. Coefficients of matrix and right hand side term are updated at each iteration
in function of values of an approximate solution. Then the system is solved again for a
new iteration obtaining a different solution from the previous one and so on. For an ill-
conditioned system, the differences between successive solutions increase at each iteration,
i.e. the solution diverge.

This fact appears in both Navier-Stokes and pressure correction equation systems. From
Navier Stokes system the convective term is linearized af each iteration of the global pro-
cedure (see SIMPLE-like algorithm in previous chapter). For high Reynold’s numbers, this
term dominate over the rest of the terms in the set of equations. Similar situation happens
in the pressure correction system of equations for an incompressible fluid. Although the
coefficients of the matrix remain constant during the overall algorithm the right hand side

30 3. LINEAR SOLVERS

becomes very sensitive to small variations of the divergence of mass.

Since these equation systems are very sensitive to changes in solutions one simple way
to prevent the divergence is based on the underrelaxation of solutions.

k) — axfﬁ'l) +(1 - a)z®

Where « is the relaxation parameter, a scalar value within the range [0, 1].

Another more complicate way [41] but effective is based on the measure of how well or
ill-conditioned is the matrix problem. That is to the condition number of the matrix x(A).
A high value of the condition number points out an ill-conditioned matrix, while a low value
indicates a well-conditioned matrix. Therefore, if one changes the problem for another with
the same solution, say Az = b, but in addition, it has a reduced condition number

k(A) < k(A)

then this problem would be easier to solve. Details of such technique (the so called precon-
ditioning) are explained later on in this chapter.

3.1.1 Sparse matrix formats

The equation systems derived from CFD problems have been described mathematically.
Now is time to have a look, from the computational point of view. How to handle and solve
such equation systems is the principal argument of this work.

Since these equation systems contain several thousands (even millions) of unknowns in
three dimensional cases with only a few set of unknowns linked per equation, clearly there
are large matrices which many of the coefficients are zero. For practical reasons, a matrix
is considered sparse if there is an advantage in exploiting the zeros by saving enormous
computational storage and time of operations [14] (some operations are avoided where zero
values are involved).

Due to the structured grid of points over the domain, they were ordered with a lexi-
cographic or natural order. Such organization of unknowns that is ijk or any permutation
of index like jki, kij,... gives a matrix with a constant set of diagonals. A number of di-
agonals depends on the formulation (schemes of discretization) and the dimension of the
problem (two or three dimensional). For two dimensional problems, there arises 5-points
and 9-points formulations while for three dimensional problems there are 7-points and 19-
points formulations [42]. The distribution of non zero coefficients (within some example of
matrices) is shown in Figs. 3.2 and 3.3. Therefore it seems convenient and enough to store
the sets of non zero coefficients by diagonals.

3.1. FEATURES OF EQUATION SYSTEMS 31

7
V4
Vi

.. RN AR

Figure 3.2: 2D-5PF (left) and 2D-9PF (right) for a 10 x 10 case. Each of these squares has
10 x 10 entries.

) N
g 3
<
A_\ \Q\ \\ \
S "N N
N, N,
N \\\ N \ \
\ N AN
. N N
., N
N N, .

Figure 3.3: 3D-7PF (left) and 3D-19PF (right) for a 10 x 10 x 10 case. Each of these squares
has 100 x 100 entries.

Another option which exploits such kind of sparsity is the band format. It includes all
coefficients even zero entries contained between both sides of the main diagonal and fitted
in a narrowed band. Although the band width storage format is more general or flexible
than the diagonal storage format due to the possibility of modification of some zero entries

32 3. LINEAR SOLVERS

by non zero values, it needs to store more values, See Fig. 3.4 for a draft of the band
matrix storage format. Furthermore, a system with lexicographic ordering (i.e. the fjk

band width

Figure 3.4: The draft of the 2D-5PTF case with a band width painted in blue. It evolves the
five diagonals.

order) and periodicity in & direction leads to a wider band width than the ordered in ikj or
kij. So in this situation, any of these last orderings is suggested consequently leading to a
reduction of the band width. This problem of reordering can be seen in Figs. 3.5, 3.6, 3.7
for a 10 x 10 x 10 case with 7-point formulation,

Figure 3.5: The ijk ordering for a 10 x 10 x 10 case with 7-point formulation.

3.1. FEATURES OF EQUATION SYSTEMS 33

Figure 3.6: The ikj ordering for a 10 x 10 x 10 case with 7-point formulation.

Figure 3.7: The kij ordering for a 10 x 10 x 10 case with 7-point formulation.

For periodicity in k direction the ijk ordering has the widest band width. This fact will
be considered in the solvers or preconditioners which handle the system in band matrix
storage format like complete LU decompositions [14, 43].

M4 3. LINEAR SOLVERS

3.2 Solving equation systems

Nowadays a full description and even enumeration of all solvers present in the scientific
literature would be impossible. However this section is firstly aimed to present a review of
the most efficient solvers for CFD equation systems (i.e. the state of the art in CFD solvers).
Although the reader interested in general implementations of each solver will find further
details in the references, this section provides a compact view of them. And secondly, it
will be illustrated not only the advantages and disadvantages of the implementations and
efficiencies but also how to link them in order to obtain a more powerful solver by means
of the efficiencies linked.

3.2.1 LU solver

Solvers based on factorizations are widely used in narrow banded equation systems [14].
The factorization of a non singular matrix A in lower (L) and upper (U) matrices leads in
a direct procedure for the evaluation of the inverse so there by leads to a direct evaluation
of the solution for a given right hand side. Once given b and factorized A in L and U, the
solution is obtained in a two step process (see Alg. 3): a forward substitution followed by
a backward substitution.

Algorithm 3 Complete LU factorization: LU

evaluate complete LU factorization of A
Az = (LU)x=L{Uz)=Ly="»

solve Ly = b by forward substitution

y=L"1b
solve Uz = y by backward substitution
z=U"ly

Sparse matrices, symmetric or non symmetric, are stored in band matrix formats: A,
L and U. As mentioned in cases with periodicity, it is better to reorder the system of
equations before factorization in order to reduce the band width and definitely to save in
storage requirements and computations. For instance, the well known Cholesky factorization
[14] suits for symmetric matrices where only the half part of the band matrix is needed for
the factorization and storage. The Crout’s factorization [43] suits well for non symmetric
matrices but a partial pivoting by rows is recommended in order to reduce roundoff errors
produced in the inexact arithmetic of the machine.

Although this solver supplies directly the solution within the machine accuracy, it is only
feasible for relatively small size systems. This solver comes to fall into large equation systems
due to the requirements of memory and number of floating point operations. However, for
the pressure correction system of equations where the matrix remains constant along the
iterative algorithm of coupling and only the right hand side changes, it may be feasible to
compute and store just once such amount of data.

3.2. SOLVING EQUATION SYSTEMS 35

3.2.2 ILU solver

The incomplete LU factorization, also so called ILU factorization, overcomes the problems of
the complete LU factorization. It computes and stores the ‘main’ values of L and U matrices
from the factorization of such large matrix size. Since the ILU gives an approximation to
the matrix, it yields in a iterative method.

The several incomplete factorizations {10, 11, 12], are generalized in the concept of
fill-in or ILU(fill-in) and are stored in the band matrix format or the set of diagonals.
Furthermore, a threshold {26] can also be introduced to achieve a significant reduction of
coefficients in cases with a wide band width. These versions lead to different degrees of
sparsity, approximation and finally in more or less efficient iterative algorithms. The ILU
factorization proposed by Stone [10], and Zedan {8] for non symmetric matrices is presented
here (see Alg. 4).

Algorithm 4 Incomplete LU factorization: ILU

evaluate incomplete LU factorization of A
Az=(M - N)z=(LU—-N)z=b>
Mz*+1) = Mz®) — (Az® — p) = Mz®) + &) | such that (|M|| >> [|N]|
M(z*+D) — £B)) = Md®) = LUI® = r*)
LUd® = L(Ud®) = Ly*) = rk)

set a guess
k=0, zk)
r&) = p— Az(®)

while (||r®[|2 > ¢) do

k) = b — Az®)

solve Ly®) = r®) by forward substitution
yk) = [~1p(k)

solve Ud®) = y®) by backward substitution
d®) = y-1ylk)

update solution
gk+1) — (k) 4 g(k)

end while

The evaluation of coeflicients of the ILU factorization shall be described. Matrices
L and U are selected, such that the product of these two matrix, say M, gives a good
approximation to the matrix 4. A first option is the ILU(0) (i.e., the L and U matrices
have the same fill-in that the lower and the upper submatrices of A).

In order to fix ideas, an example for the 3D case with a 19-point formulation is given [11].
Setting an ijk ordering of the unknowns, each diagonal of the matrix A and its factorization
matrices L and U are represented in Figs. 3.8, 3.9 respectively.

36 3. LINEAR SOLVERS

ALY

/

AN

Figure 3.8: Matrix A with 19-point formulation for a 10 x 10 x 10 size. Each of these squares
has 100 x 100 entries.

N \
*\ \‘x
AY AY

AN AN

Figure 3.9: (Left) Lower matrix for a 10 x 10 x 10 size.(Right) Upper matrix for a 10x 10x 10
size.

After the product of L by U it can be seen that, in addition to the 19 entries in the
original matrix A, there are 24 additional coefficients in matrix M. Despite of the additional
entries, the equations to be used to determine the coefficients of L and U requires that the
19 coefficients in M remains unchanged from A. In Fig. 3.10, the original entries with points
filled in black and half part of the additional entries filled in blue are pictured.

’333)3%)33%‘)“) A).D‘)&}?))))D)))))))))))‘)))))))‘))))3))333?))3?)3

3.2. SOLVING EQUATION SYSTEMS 37

IWW

15WW TEW

TS5W

BWE

\
\

BW BE

=

BS

Figure 3.10; Computational molecule with 19 point formulation. Original entries are rep-
resented with black filled points. The half part of the additional entries are filled in blue.

The additional 24 entries can be partially canceled through the use of Taylor series
expansions and considering points from the 19 entries. For instance,

NN =a(-P +2N)

TWW = a(—-2P + 2W +)
BNE = a(-2P+ E+ N + B)
TSWW = a(-3P +2W + S+ T)

The implementation details can be found in Stone [10] and Zedan [11].

For periodic boundary conditions, it has been seen in previous section that the matrix
A contains few additional entries. These eniries match well for the additional entries of M,
so there is no need to cancel these coefficients. Therefore an LU for the 3D case is built
with or without periodicity just cancelling the additional entries from the original matrix.

The degree of cancellation is controlled by the cancellation parameter a within a range
of [0:1). Some numerical studies [12, 13] show a good performance for ¢ = 0.9 but it is
less stable than a = 0.5.

Another kind of factorization, SIS [13] (see Alg. 5) is implemented in order to reduce the
number of operations, therefore the time of computation per iteration is reduced. Having
a look into this algorithin, the computation of the residual vector is unnecessary.

38 3. LINEAR SOLVERS

Algorithm 5 Strongly Implicit Solver: SIS

evaluate incomplete LU factorization of A
Az =(M - N)z=(LU - N)x=b
Mz*+) = Nz®) 4 b | with ||M|| >> ||N||
Mz*+1D) = LU(k+1) = ()

LUz® = L(Uz*k+D) = Ly®K) = k)

set a guess
k=0, z®
rk) = p - Az(®
while (||r®)||; > €) do
evaluate new right hand side
&) = Nz®) 4+ p

solve Ly®) = c(*) by forward substitution
y® = [-10)

solve Uz*+1) = y¥) by backward substitution
2®+) = -1y

end while

For 2D cases, the number of new entries present in the N matrix is less than the
number of original entries present in the A matrix. Therefore the reduction of the number
of operations when performing the right hand side term c(*) instead of the residual r(*) is
clear. However, there is no advantage for the 3D case. The 24 additional entries are greater
than the 19 entries needed for the evaluation of the residual.

If the additional N entries are used the cancellation parameter is avoided so it is more
robust than SIP and MSIP. Finally, the periodic boundary conditions are treated implicitly
like in SIP or MSIP.

A variable ILU decomposition [26] can be also useful for some matrix whose bandwidth
is not well defined. In such cases a threshold parameter is used in order to neglect some
coefficients, thus decreasing time of computation and saving storage in memory. It is spe-
cially used in high order wavelet matrix transformations (see the section of multiresolution
analysis with wavelets). Following this method a robust ILU is defined without regarding
the real entries of the matrix.

3.3 Krylov solvers

In this section some Krylov solvers [40, 25] shall be described. Although the Krylov solvers
are in theory direct solvers, the inexact arithmetic of that operations leads to iterative
solvers. The derivation of Krylov solvers starts from the idea of finding out the solution for
z of the linear system Az = b by means of orthogonal directions of descent in a minimization
functional problem ¢(z) like

¢(a:)=%<a:,Aa:>—<a:,b>

VPP EE PRI DI I IS IS IN IS IS IS IS EDID I IS I IS I IS IS IDID ID ID ID ID D I 1P 1D 1D ID

3.3. KRYLOV SOLVERS 39

Let us assume that x = (&, x4}, then the minimal of the function ¢(x) (see Fig. 3.11 for
descent directions) which is also the solution to the Lnear system is found.

%l

Figure 3.11: Steepest descent directions over the surface of the function ¢ uutil they arrive
to the minimal of the function.

With the initial guess (% and the initial residual »9), the Krylov solver computes in
the k-th iteration the optimal correction pt*) over the k-th Krylov subspace associated with
Aand r k(4,10

K*A, r9 = spand A0 A0 420 Ak—17_(u)}

in the sense that the 2-norm of the residual r&*) = 6 — A(z9 + p'*)) is minimized. The
relation between the minimal residual correction, p**), and the orthogonality of the new
residual %) to the shifted Krylov space AK*(A, A9)

AKK(A, 1) = span{ar® 4200 4k=1,(0

s given by the following theorem.
Theorem The vector p*) € K*¥(A, r(9) satisfies
P = minl|b — A0 + p)|a, p e K*(A,7Y)
if and only if
0 — ApF L AKY(A, r9)
O

The Conjugate Gradieut solver (CG), the BiConjugate Gradient STABilized solver

(BICGSTAB), and the Generalized Minimal RESidual solver (GMRES) have been widely

used in CFD problems [44]. Features of Krylov solvers and guidelines about their imple-
mentations have been summarized.

40 3. LINEAR SOLVERS

3.3.1 CG solver

The Conjugate Gradient [40] (see Alg.6) is an effective solver for symmetric positive definite
matrices. It is based on the steepest descent solver but it is improved using conjugate
directions p{*). Each new direction is orthogonal to the set of previous directions. Moreover
it is scaled by the factor « in order to update the solution minimizing the residual norm.

Algorithm 6 Conjugate Gradient: CG

set a guess
k=0, z(k)
r®) = p— Az®)

while (||r®)||2 > €) do
p(k) =< r(k),r(k) >

evaluate new direction and scaled factor

if (k=0)
plk+1) = (k)
else
p®)

= ST
plk+1) = p(k) 4 gp(k)

end if
evaluate new direction and scaled factor

gkt = Ap(k+1)

pk)

T L pEHD) gk
update solution and residual

zk+1) = z(k) 4 qp(k+1)

rk+1) = (k) _ qqlk+1)

k=k+1

end while

«

In absence of roundoff errors the series of conjugate directions and series of residuals are
so called A-orthogonal. Then the following theorem is written.
Theorem. Let A be a symmetric positive definite matrix and p@,...,p(N-1) are A-
orthogonal, for any 2(®) € R¥ given the algorithm converges to the exact solution in less or
equal than N iterations. 0
This theorem guarantees not only the convergence of the algorithm but also in exact
arithmetic, it would be a direct solver with N steps.

3.3.2 BiCGSTAB solver

The conjugate gradient method is not suitable for non symmetric matrices because the series
of residual vectors loose its orthogonality. Thus a bi orthogonal process [45] is done in order

2233223333558 3333133153233333323333131333233I333231331333333312323)

3.3. KRYLOV SOLVERS 41

to improve the conjugate directions. For BiCGSTAB solver (see Alg. 7), the conjugate
directions and the residuals are updated in two steps. In this case two parameters o and §
are needed to scale the conjugate directions and residuals.

Algorithm 7 Bi Conjugate Gradient STABilized: BICGSTAB

set a guess
k=0,
rk) = p — Azk)

while (||r®)|); > €) do

p(k) =< r(o),r(k) >
evaluate new direction and scaled factor
if (k=0)
p(k+1) = p¥)

else

p(k) a
= LD o
p(k+l) - r(k) + ﬂ(p(k) —_ wq(k))
end if
evaluate new direction and scaled factor
q(k+1) = Ap(k+l)
p(k)
< r(0), glk+1) >
glk+1) — (k) _ aq(k)

a=

check direction
if (|[s®*V]l2 < ¢)
update solution
x(k+l) = x(k) + ap(k+1)
break while
end if

evaluate new direction and scaled factor
k1) — g g(k+1)
< kD) g(k+1) 5,

=< k1) 3(k+1) >

update solution and residual
D) = gk) 4 qplk+D) o g(k+1)
r(k+1) = s(k) - wt(k+1)

k=k+1

end while

w

BiCGSTAB solver can also be used in symmetric positive definite matrices instead of
CG solver. However, the convergence rate is equal to CG but at twice the cost per iteration.

42 3. LINEAR SOLVERS

3.3.3 GMRESR solver

Like BiCGSTAB solver, the Generalized Minimal RESidual solver [46] and the restarted ver-
sion GMRESR [47] deals with the non symmetric matrices. The orthogonalization process
is based on a modified version of the Gram-Schmidt orthogonalization [43]. Each direction
is found in order to minimize the following problem.

p*) = min||b — A(@*P)||a = min||r® — Ap||2, p € K*(4,r®)

Let us consider Vi the orthogonal basis for the Krylov’s subspace K*(A,(®) and H} the
upper k x k Hessenberg matrix generated from the orthogonalization process. The direction
p{*¥) can be computed as

p® = Viy®, o = HY|[rO)pe,

Where e; is the unit vector e; = (1,0,...,0)T. Substituting the last expression in the
minimization problem the below is found

k) = 20 4 ka(k) +— min|| ||r(°)||2e1 - Hky(k) |2

The solution of the minimization problem is done by a QR factorization with matrix trans-
formations: the Given'’s rotations.

QrvHi = Ry,

Introducing the QR factorization in the 2-norm of the minimization problem
Qe(llrllzer — Hiy™®) = QilIr®@||ze1 — Rxy®
The minimization problem is reduced to solve the folloWing triangular matrix system

Riy™ = QlIr®|ze1 = g&

Once evaluated y¥) the found direction p*¥) can be updated easily.

Like CG and BiCGSTAB, GMRES converges in no more than N steps so it could
be considered a direct solver. However, the storage of search directions is limited by the
available RAM of the computer. Therefore, a restarted version must be used leading to an
iterative solver, i.e. the named GMRESR(m).

Choosing m of the searched directions, the solution must be updated and directions
cleared. This procedure is repeated until convergence is achieved. If m is too small, GM-
RESR(m) may be slow to converge or even may be stagnated. A large than necessary value
of m will have good convergence rate per iteration but at highly computation cost (time
and storage). Although the range of the restart parameter is fixed between 5 and 50, it is
said to be problem dependent.

Moreover, the inexact arithmetic produces loses of orthogonality in the search of new
directions so a orthogonal check and a reorthogonalization process [48] is added in order to
improve from the robustness point of view the algorithm (see details in Alg. 8).

' AP IDED EDEDEDEDED IR IS IDEDEDED IS B ED IDIDID IO IDID IDIP ID ID I IDID DI I I I D I I D I I I I D

PADEDED B Bb ED D ED BD DD

i)

D

Y)

3.3. KRYLOV SOLVERS

Algorithm 8 Generalized Minimal RESidual Restarted: GMRESR(m)

set a guess
k=0, z*)
rk) = p— Az)
rik
B=r®z, q = i
g=g(1:k+1)=p(1,0,...,0T
while (||r®||z > ¢) do
orthogonalization by modified Gramm Schmidt
k=k+1
U =, v= Ag;
evaluate Hessenberg matrix
for (i=1 to k)
Hix =<gi, v >
vk = Uk — Hixgi
end for
Hiq1 = lloell2
check orthogonality, 6 = 10~3

if (||vll2 + 6llvell2 = |Ivllz)
for (i=1 tok)

b =<gi v >
Hiy=Hip—p
Vg = Uk — H4i
end for
end if
Gk+1 Hk+l,k
evaluate QR factorization by Given’s rotations
if (k>1)
Ht,k = Qk—lHt,k
end if

Y/ H;cz,k + H3+1,k

Hi _ Higq1k
8 = —>

k=
74
Hip = cxHi g — sk Hiy15y Hgy16 =0
9 =Gkg, |Ir®l2 = |ges1l

restart at m-th vector v
if (k = m)

solve Ry = w where R =upper triangular (H),,,, w = g(1:k)

y(k) =R lw
update solution
k) = Qy®
setk=0
end if

end while

44 3. LINEAR SOLVERS

3.4 Preconditioners

In the section 3.1 related with well and ill-conditioned systems it was mentioned that the
convergence rate of the iterative methods depends on the condition number k(A), or in
other words, on the spectral properties of the coefficient matrix A. Hence the linear system
is transformed into one that has the same solution but has better condition number.

Let us call M the non singular preconditioning matrix operating over the linear system
Az = b. The matrix A is approximate to the matrix M in such a way that

M YAz =M1

is easiest to solve than the original system, thus k(M ! A) < x(A), in spite of the additional
computational cost and storage. In this case, the preconditioner is applied to the right of
both sides of the linear system. There are two equivalent expressions, the so called left
preconditioner and the symmetric preconditioner.

AM Mz =b
M 3AM~iMiz = M~3b
Preconditioners can be applied explicitly, implicitly and both. However, an explicit left
preconditioner or a symmetric preconditioner can be implemented in a preprocess and post-

process steps. The implementation of each preconditioner into a general solver is outlined
in Algs. 9, 10.

Algorithm 9 Left preconditioner

precondition the problem
Ar=b, M
A=M"1A b=M1b

solve the preconditioned problem
solve Az = b

Algorithm 10 Symmetric preconditioner

precondition 1tthe pz;oblem

Az =b, M2, M2

A=M"3AM3, =M iz, b= M"3b
solve the preconditioned problem

solve Az = b

solve M~iz =1z

The left preconditioner can be considered as a scaling preprocess. Usually, the main
diagonal of matrix A, say D,4 serves as M preconditioner. Therefore, the storage is very
reduced and the inverse M1 can be computed directly by the inverse of all coefficients of
Dy.

A=MT1A=D4

BV EDEDEDED EDEDID D IDIDIDID IS ID IS IDID ID IBID IS ID D ED ID ED ED D ED IR ED ED D D BB ES ED 2D BB XD ED 2D ND NS

b

SADEDED B ED ED B IS B N

3.4. PRECONDITIONERS | 45

The right preconditioner is usually implemented implicitly in the algorithm. In the
scientific literature we found many kinds of preconditioners for Krylov’s solvers for sparse
matrix based on scaling [40], incomplete LU factorizations [49], polynomial preconditioners
[27] and sparse approximate inverses [29] (SPAI).

A diagonal preconditioner was explained also as an explicit left preconditioner. It is also
called point jacobi preconditioner, and it is usually considered thought as a scaling technique
instead of a preconditioner. Due to the low efficiency, more powerful preconditioners were
looked for such as those based on ILU factorizations or on SPAI.

The preconditioned Krylov’s solvers can be implemented by adding an intermediate step
into the search direction procedure. For instance, BICGSTAB and GMRESR algorithms
are rewritten (see Algs. 11, 12 respectively) including this intermediate step where it is
needed.

3.4.1 Factorizations and SPAI

Solvers based on ILU factorizations can be used directly as implicit preconditioners in
Krylov’s solvers. Our work has been focused on the incomplete factorization due to easy
implementation in fixed sparse matrix patterns, low computational cost and low storage
requirements. For instance, if our system has a symmetric coefficient matrix, the CG solver
has to be used with a symmetric incomplete factorization preconditioner like the Incomplete
Cholesky factorization thus leading in the well known ICCG solver [50]. For non symmetric
coefficient matrix, the ILU can be implemented into the BiCGSTAB or into the GMRESR.

On the other hand, the Sparse Approximate Inverse preconditioner is given as an alterna-
tive for the common preconditioners pointed above. It is known that a good preconditioner
M must have similar spectral properties to A. Moreover the inverse of the preconditioner
M~! must also have similar properties to A~!. Therefore we try to directly find the inverse
of the preconditioner by an approximation to the inverse of the matrix A. The inverse is
approximated by rows or columns in the dependence whether it is used as a left or a right
preconditioner.

One possible implementations is given by Grote [28). The main idea of SPAI consists
of guessing the entries of the inverse matrix and finding by minimization in the Frobenius
norm each row or column. The experience in such kind of matrix give us a guideline to
define quickly this shape in band. However the results provided by different authors [51]
show a problem dependent convergence behaviour.

In the following sections two acceleration techniques for any solver are provided. The
first one is based on the algebraic multigrid AMG [16, 18] and the second one on the mul-
tiresolution analysis MRA [20] with wavelets [23]. Both accelerators have similar properties
and convergence rates.

46

3. LINEAR SOLVERS

Algorithm 11 Preconditioned BiCGSTAB

set a guess
k=0,z®
rk) —p— Az(k)

while (||r®||; > ¢€) do

p(k) =< ,-(0),,-(#) >
evaluate new direction and scaled factor
if (k =0)
p(k+1) = p(k)
else
_ p(k) a
— plk=1) w
p(k+l) = r(k) + ﬂ(p(k) —_ wq(k))
end if

evaluate new direction and scaled factor
solve the preconditioned problem

Mp = pk+D)
q(k+1) = AI_)
p®)

= O g S

sk +1) = () _ gg(®)

check direction
if||s**M||2 < ¢)
update solution
2(+D) = £(k) 4 gp(k+D)
break while
end if

evaluate new direction and scaled factor
solve the preconditioned problem
M3 = 8(k+1)
t(+1) = Az
< t(""'l),»s(""'l) >
=< 1) 4(6+1)
update solution and residual
r(k+1) = 3(k) —_ wt(k+1)
k=k+1

w

end while

00000000 RGOY 00000000 CRCCCCTONNRNECOIOINSCRNOINONONOPONOGIEBTOICGROOSOGOONNBOSOOPTRTIORNTNT

3.4. PRECONDITIONERS

Algorithm 12 Preconditioned GMRESR(m)

-~ set a guess

- k=0, z®)

- solve the preconditioned problem
~ Mr&) = p - Az(®)

r(k)

B=1r®lg, ¢ = 3

- g=g(1:k+1)=p4(1,0,...,0)7
B while (J|r(®|)|2 > ¢€) do
orthogonalization by modified Gramm Schmidt
k=k+1
solve the preconditioned problem
My = Agk
Ve =0
- evaluate Hessenberg matrix
~ for (i=1 to k)
- Hiy =< gi,v >
vk = vk — Hixgi
~ end for
~ Hiy1k = ||vell2
check orthogonality, 6 = 10~3

~ if (J|vllz + ollvellz = [lvll2)
for (i=1tok)

P =< i,V >
- Hixy=Hix—p
8 Uk = Up — K¢i
_ end for
B end if
_ dk+1 Hk+1,k
- evaluate QR factorization by Given’s rotations
-~ if(k>1)
2 Hop = Qr-1Hop
= end if

v=\H{ +H{

Hp i Hiy1x
8p = ——=

k= T v
Hiep = cxHiep — 8eHip1 4, Hip1 6 =0
9=Gsg, [Ir®lz = |ges1l
restart at m-th vector v
if (k =m)
solve Ry = w where R =upper triangular (H) ..., w = g(1:k)
y®) = R~lw
update solution
a;(k) = Qy(k)
setk=0
= end if

end while

48 3. LINEAR SOLVERS

3.5 Algebraic Multigrid algorithm

There are numerous publications [15], tutorials,... about algebraic multigrid (AMG) and
here one refers mainly to Huttchinson [52] and Wesseling [16]. AMG is based on a hierarchy
of linear systems A;z; = b, constructed directly from the original linear system Az = b at
fine grid ! = 1 to a maximal level ! = l,,,, by means of transfer operators. The first system
A1z; = by is solved roughly and the error ey = x — x; is erased by adding succesive cor-
rections z; from the different levels | = 2,3..,l,,0.. Solving each system, different frequency
range of corrections are dealt with.

For instance, a two level multigrid scheme begins solving the first system A;x) = b
within a certain number vy of iterations. The measure of the difference from the numerical
solution z; to the exact solution x in this first level | = 1 is the error ¢y = z — ;.

If the frequency components of this error are analyzed at using the discrete Fourier
transform (DFT), the solver smoothes well the high frequency components and keeps the
lowest frequency components nearly untouched. For this reason it is said that the solver
acts as smoother of low frequency components of the error. This iterative process is called
the pre-smoothing step. An additional system may be found in order to compute this error
numerically and then correct the numerical solution.

| Aler = Az —z)=b - Aiz1 =1,

Unfortunately, the last linear system is computationally expensive as the first system. Fur-
thermore, this error solution contains low frequencies which cannot be solved efficiently by
the iterative solver at fine grid. Therefore a transformation of this system into another
one is carried out in order to convert the low frequency components into higher frequency
components. This transformation is done with the so called restriction R? and prolongation
P} operators [16].

Ay = RIA P}

by = Riry
Axzy = by

Having a look at such transformation a reduced system of equations is obtained, which
seems to be derived from a coarsest problem. Hence, the transformation receives the name
of coarse grid approximation [16] (CGA) of the original problem. Then, a post-smoothing
step is performed within v, iterations in order to obtain an approximation to the error e;
but in the coarse level | = 2, let us say z,.

This approximation to the error is also called the correction x; and it must be transferred
and added to the solution z; at fine grid. The prolongation operator transfers the vector
from the coarsest level [= 2 to the finest level { = 1.

Ty =121+ P21x2

Finally, this algorithm is repeated until a desired error threshold ¢ is achieved or a maximum
number of iterations it,,,, is done. The algebraic multigrid (see Alg. 13), the prediction
(see Alg. 14) and the correction (see Alg. 15) algorithms are written as follows:

\
P

‘)))))))))).)))DJ)))),)))))))))Q))))))))))))))))))))))))))))))

3

(ERERE

3.5. ALGEBRAIC MULTIGRID ALGORITHM

49

Algorithm 13 Algebraic Multi Grid: AMG

Fix parameters of multigrid cycle
lmaz, itmaz, V1,12, €
for(l=1 to lypez — 1)
evaluate matrix coeff. by Coarse Grid Approximation

A= R:+1Alpl‘+1

end do
set a guess in finest level
I=1, k=0, z{¥

while (J|r]l2 > € or k < itmaz)
smooth with v, iterations
solve Ay = b
if(l < lmaz)
8o to the coarser level | + 1
predict z; 4
add the correction to the level |
correct 1;

end if

k=k+1
end while

Algorithm 14 Prediction

evaluate right hand side of coarser level | +1
rl(lll) —_ b[- Alz’(yl)
bl+1 — R:+1r’(l'1)

set a guess at coarser level
I=1+1, k=0,zY =0
smooth with v, iterations
solve Ajz; = b
if(l < lynaz)
go to the coarser level | + 1
predict z;,
add the correction to the level |
correct z;

end if

50 3. LINEAR SOLVERS

Algorithm 15 Correction

add the correction to the level |
x}"‘) = :r:,(”) + P} +1:v§_';11)

smooth with v iterations
solve Ale = bl

3.5.1 Transfer operators

These operators transfer information from one level to the closest level. The restriction
operator does it from the fine level l to the coarse level | + 1 while the prediction transfer
operator does it in an opposite way, (i.e., from the coarse level to the fine level).

In order to give an easy explanation to such operators, a suitable set of two dimensional
piece wise constant [16] restriction and prolongation operators has been chosen and applied
to a two dimensional problem with 5-point formulation.

Let G; and G4, be a fine and coarse grid respectively defined over the domain (see
Fig. 3.12).

1={1,2,...,lmaz}

G = {(z1,z2) € Q, Q:[0,L1] x [0, L2]}

X . . n; L; .
z;(7) ={0,...,(j = Dhi,...,Li}, 5=1,..., 5=, b = ——, i ={1,2} s
1 1 2’ 1 EF_IT—],

Let (z,,z2) be a point in G;, associated with a (%, j);41 index point. Then, there is a
set of index points in G; which are placed at same position that G;;

Gy = {(24, 21, (20 + 1,251, (24,25 + 1), (20 + 1,25 + 1),

1 23 4 5 6 7 8 1 2 3 4

Figure 3.12: Example of two related grids: G; : 8 x 8 and G2 : 4 x 4. G, has double
size-mesh of G;.

......."'..' IO OGO OPBSOOSOOODPDOEBOOODOORDNODIDRSOOORNDOORISGNRNOG®UY

)

DI I B

!

3.5. ALGEBRAIC MULTIGRID ALGORITHM - 51

For a better comprehension, the stencil notation gives a simply representation in two
dimensions of these operators.

21:G R, 24 : G 2R
R*:Gi - G
Rti=[} 1]

z141 = Rz

z(4, i1 = (26, 251 + (20 + 1,25 + (24,25 + 1) + (20 + 1,25 + 1),

In this example (see Fig. 3.13), the restriction operator R performs a summation over
blocks of four grid points weighted by a unit factor.

ADANAYWEY

Figure 3.13: Restriction process over blocks of four grid points.

If natural ordering is considered by applying the restriction operator to the example
with fine level / = 1, and coarse level | = 2 leads to the matrix form

= (3(11 1)113(21 1)1’ ey 3(7’ 8)11 3(8’ 8)1){4X1

Ty = (3(1, 1)2, 3(2’ 1)2’ s 13(3v 4)2’ 3(4’ 4)2){6)&

2 p2
T2 = Rf:cl = Rl’le,z.’Bl

52 3. LINEAR SOLVERS
_ 11 -
11 4x8
R}, =
11
- 11 4x8 J32x64
F (1 1 T
1 1 4x8
Riy =
1 1
- 1 1 4x8 - 16x32

In general, weight factors in restriction operator must satisfy certain rule [16]:
hi41)
Y= (2
i

Where o varies from inside to boundary points and depends of boundary conditions imple-
mented. Here let us assume o = 2 in the whole domain. Then 3, ; R; ; = 4 everywhere.

Prolongation operator P (see Fig. 3.14) is expressed in matrix form as the transpose of
the restriction operator R. P,‘+1 = R:‘H’T.

PLi:Gi1» G

11
‘Pll+1=l:1 1}

— pl
T = P 17141

2(26,25) = 2(20 + 1,25 = (24,25 + 1)y = (20 + 1,25 + 1); = z(é, i

AP EDIDID D EDID IS I ESIDID ' D IDIDEDEDEDEDESEDEDIDED IS ED EDID ID IDIDIDEDED EDED ED D ED ED EB ED ED RS ED ED ELUED IS 1D JD D I D Wb

A X EREZERNNENEENNEESNNNANENENENNNENEEEENENNEENENENERNNNENE NN N

290800005000 ®

3.5. ALGEBRAIC MULTIGRID ALGORITHM 53

VLIV
2 s Al
TalAaly

2% ‘
ayaAr D
'M '
R

Figure 3.14: Prolongation process to blocks of four grid points.

Furthermore the product of both operators leads into a scaled identity matrix.
Pll+1 Rf+1 =al

In this example with piece wise constant operators, a = 4. However, it is possible to find
a pair of transfer operators were the product is equal to the identity. In such case, there is
an important feature between transfer operators

_ pl+1,T _ pl+l,-1
Py =R =R

This feature points out the ability to use a single matrix and its transpose like a prolon-
gation or a restriction operator. This idea will be recovered and exploited in multiresolution
analysis by wavelets [21].

Finally, the coarse grid approximation is evaluated by

— pit+lpit+l
A = 1y Rf,z AlPll+1,yPll+1,z

Seeing the example, each 2 x 2 set of equations on fine grid G; is transformed in to one
equation on coarse grid G;;; with the same stencil.

47
a=| 4y & A
49

n
L1

—_— w
A= At+1 At+1

8
Al+1

e
Al+1

54 3. LINEAR SOLVERS

Where

A6 5) = Af(24,25) + A7(2i + 1,29)
AL Gy 7) = AP(25,2j) + AP(25,25 + 1)
A (G G) = AP(2i+1,25) + AF(2 + 1,25 + 1)
p6g) = AP26,25+1)+ AP(2i+ 1,25+ 1)

P
Al+1

(i,5) = AP(2i,25) + AP(2 +1,25) +
AP(2i,2j + 1)+ AP(2i + 1,25 + 1) +
Af(26,25 + 1) + A (2i + 1,25 + 1) +
AP(2i+1,25) + AP(2i + 1,25 + 1) +
A$(21,25) + A2(24,25 + 1) +

A} (2i,25) + AT (2¢ + 1, 25)

Similar expressions can be obtained for the 9-point formulation, the 7-point formulation
and the 19-point formulation. Instead of a transfer operator acting over a 2 x 2 set of grid
points for a 5-point formulation, the extension can be derived at the 9-point formulation
with 3 x 3 set of grid points. In three dimensional cases, for the 7-point formulation there
is 2 x 2 x 2 set of grid points and for the 19-point formulation 3 x 3 x 3 set of grid points.

However, for three dimensional cases the stencil notation does not helps to the repre-
sentation of these operators and only an algebraic expression can be given as

_ pl41 pl+l pltl
A =Ry, Rf,y Rf,z Ale‘+1,thl+1,szl+1,z

A more detailed description of transfer operators is exposed in Zeeuw [17].

3.6 Multiresolution Analysis with wavelets

The basic idea behind wavelet multiresolution analysis [20] (MRA) is to represent a function
in terms of basis of functions called wavelets [23] having discrete scales and locations. In
other words, wavelet analysis can be viewed as a multilevel or multiresolution representation
of a function, where each level of resolution consists of basis of functions having the same
scale but located at different positions.

Therefore, a function (continuous or sampled), a vector or a matrix can be split by
wavelet analysis into low and high frequency parts. Both resulting parts have about half
the dimension of the original one. Again the part containing the low frequency components
can be decomposed in the same way. This procedure predestines the wavelets to serve as a
restriction and prolongation operators [22] in the usual multigrid method.

~
-

N : I A B DI ED IS IS IS IDED D ID I ID I ID IDID IDID IS ID D D ED ED EDED ED ED ED ED I ED ED N 15 B B U B N5 W

PED RSB ED B IS IS I B DA

3.6. MULTIRESOLUTION ANALYSIS WITH WAVELETS 55

3.6.1 Multilevel representation of a function

In order to develop a multilevel representation of a function f(z) in L?(R) a sequence of
embedded subspaces V; is looked for

{0}---cVacVicVpC V- C L*R)
with the following properties:
1. Ujez Vi is dense in L*(R).

2. Niez Vi = {0}.
3. The embedded subspaces are related by a scaling law

f(z) € Vi = f(22) € Vi,

4. Each subspace is spanned by integer translates of a single function g(z) such that

f@)eVhe= flz+1) eV

Since the space V) lies within the space Vj, we can express any function in V} in terms
of the basis of functions of V;. In particular,

o

$@)=) aid(2—i), i€Z

t=—00

where 1 is a finite number and a; is a square summation sequence. This equation is called
dilation equation or scaling relation.
If we define
i = 2292 ~ 1)
then ¢ ;, ¢ € Z forms a basis for the space V;. The dilation parameter ! shall be referred to

as the scale.
In general, a function may be approximated by the projection P, f onto the space V;:

o

Bf = Z aidi(z), i€Z

t=—00

and in fact P, f approaches f when ! — oo.
Let us now define a new subspace W, such that it is the orthogonal complement of
Viq1 in W,
Vi=Vime Wy, Vi LW

where @ represents a direct sum. Let us introduce a wavelet function ¢ such that ¢¥(z — 1)
form a basis for the subspace Wy. Then

Y = 2192z — 1)

56 3. LINEAR SOLVERS

It is a basis for W,. If in addition, the {¢)(x — ©), ¢ € Z} forms an orthonormal set of
functions, then it follows that {1;, l,i € Z} forms an orthonormal basis for L?(R).
Let us denote the projection of f on W; as Q;f. Then we have

Bf=Puf+Quuaf

This means that Q; f represents the detail that needs to be added to get from one level of
approximation to the next finer level of approximation.

Furthermore, since the space W, is contained in the space V, the wavelet function can
be expressed in terms of the scaling function at the next higher scale,

W(@)=) bip(2s-i), i€Z

i=—00
There is a relation between the so called filter coefficients a; and b;
b = (—1)'an_1-;

The derivation (53] of filter coefficients requires the solution of an N coefficient system where
the approximation of order p = % of any function f is involved.

3.6.2 Multiresolution decomposition and reconstruction

Multiresolution decomposition [54] takes the values ¢;; of a function f vector z; or a matrix
A; at level | and decomposes them into

1. The values ¢;;1; of the approximation, Py, f (low frequency components) at next
coarser level [+ 1.

2. The values diy,; of the detail component, Qi+1f = Pf — Pi+1f (high frequency
components) at next coarser level [+ 1.

Consider a function f. Let P, f denote the projection of f onto the subspace V; and Q,f
denote the projection onto the subspace W;. Thus,

o0

Pf=) abii(z), ci=<f,é:>

1=—00

Qif = Z di it i(2), dig =< [y >

1=—00

Since Wj, is the orthogonal complement of Vj,, in V]

Puf=Pf-Quf

Substituting this in
1i =< By fy B >

(AR EEEEEELEIIDENEEREREEEEREEREEREEREEEBEEERBENEEEEBEBEEREBEEEEEEEEEEEEEEEEFEREERER

3.6. MULTIRESOLUTION ANALYSIS WITH WAVELETS 57

leads to the following result:

1 00
C+14 = C,j05-2¢
V2
j=—00

Similarly, it can be shown that

1 [o o]
dit1i = 7 Z di jaN—1—j+2i

j=—00

Multiresolution reconstruction [54] uses coefficients c¢;y1; and di;,; at level [+1 to
reconstruct the coefficients ¢;; at next finer level .
Since Wy, is the orthogonal complement of Vj1; in W,

Bf=FPnf+Qunf

Substituting this in
ai=<Ff, o3 >

leads to o o
1 1 ;
% = 75 Z Cit1,50i-25 + 5 Z di1,(—1)'an—1-i+2;

J=—00 J=—00

3.6.3 Mallat’s transform and inverse transform

The Mallat’s transform [54] provides a simple means of transforming data from one level of
resolution, I, to the next coarser level of resolution / + 1. The inverse Mallat’s transform is
a transformation from the coarser level [+ 1 to the finer level L.

The Mallat’s transform algorithm implements the decomposition process as follows.
Consider a string of data ¢;; of finite and even length n which represents the approximation
, P f, to a function. For convenience, suppose that this data is periodic with periodn >> N.
Then the matrix form of multiresolution decomposition equation is

Cl+1,0 @G a G2 ‘- GN-1 0 €0

X 0 a a -+ an-2 0 a,

Cl+1,1 0 0 a - an-3 0 2

X 0 0 0 - an—4 0 ags

Cl41,2 =L .
X V2 0 0 O aN-1
an—1 0 O aN-2

Ci4+1,8-1 a2 a3 a4 -+ 0 - @ Cln—2
| ox] L & a2 a3 -+ 0 - a JLcm-1l

in which x represents information of no value. The effect of the periodicity is simply a wrap
around of the coefficients at the bottom left corner of the matrix.

58 , 3. LINEAR SOLVERS

A similar process gives the coefficients, dj,; of the detail which is lost in reducing the
resolution of the data. The matrix form is '

di+1,0 [aN-1 —aN-2 -+ —ag 0 [ap T
x 0 aN-1 - 4 0 €1
diy1,1 0 0 .- —ay 0 cl2
X 0 0 “ee as 0 . Cl,3
d[+1,2 =i_ . - .
X \/i 0 0 “oe s oo _ao
""ao 0 .o veon “ee al
diy1,3-1 anN-3 —an-4 -+ 0 o —ay—2 | | cia—2
| ox | —~ay-2 any-3 -+ 0 -+ an-1 JLgp-r

The inverse Mallat transform implements the reconstruction process. The matrix form

is
[ap] [a0 0 0 aN-1 a;] Ci41,0
a1 ai ap 0 0 as 0
€12 a2 a; ag 0 ‘a3 Cl41,1
3 as a al 0 a4 0
1 Cl41,2
V2 | an_2 ev-a any_g -+ - - anoy 0
aN—-1 GN—2 AQGN-3 **° e e 0
Cin—2 0 0 0O - ay-3 -+ 0 Cl41,2-1
| Cin—1 | 0 0 0 - av—2 -+ @ J| 0]
[an-1 0 0 cov —a@g . —GN-2 | diy1,0
—aN-—9 aN-_1 0 e ap “ee aN—3 0
aN-3 —GN—2 GN-1 ‘** —G2 ‘' —GN—4 di41,1
—aN_4 aN-—3 —aN-2 ‘** 0 ves aN-s 0
R) R disrz
\/i ay —ay as e e .o —ag 0
—ap a —@g e e e 0
0 0 0 s —ag e 0 dl+1,§-—1
L0 0 0 v e e oanar I 0

3.6.4 Wavelet transfer operators

Let us denote the Mallat transformations H,G of a vector z € R",with n even.

H,G:R" - R3
:c[=q,,-,i=0,---,n—1
) n-1
H$(=C[+1’i,1:=0,"', 2

000000000000)DOOOSONGCNIONININOGNOCGONIONOGOIBDNOIININOOSIOOPDOOIOGDRINOIBROSEGRONNOINOLOOSDNONOGDIYIYTYS

3.6. MULTIRESOLUTION ANALYSIS WITH WAVELETS 59

n-1
2

Gz = di41,51=0,- -+,
The Mallat transformations satisfy
HTH+G'G=1
HHT +GGT =1
GHT =HGT =0

We use I to denote the identity matrix of appropriate size. Therefore, H may be interpreted
as an averaging or smoothing operator whose smoothing effect increases with N. Conversely,
G can be viewed as a difference approximation operator.

Following the philosophy of the multigrid methods, we first apply to the l-system A;z; =
b; the iterative solver as pre-smoother v; times with the initial guess a:l(o . An approximate

solution xf"’) is obtained. In general, the smoother only reduces error components in the
direction of eigenvectors corresponding to large eigenvalues of A; [22]. But in the presence
of strong anisotropies, say in z-direction, the error e = g — g™ may contain not only
1]] 1 l

a part which is a low frequency in both the z and y-directions, but also a part which is a
high frequency in z direction. Consequently, we approximate the error el(”) in both spaces
Vzip1 ® Vyiyr and Wy ® Vg instead of only in Vzyy; ® Vy4 as in a standard
multigrid procedure. Where ® denotes the tensor product of the spaces, operators and
vectors. Then, the resulting coarse grid correction for the two level multigrid is

o = 2™ + [(HT ® HD AL (He ® Hy) + (GT ® HD) AL (G: ® Hy)(b — Az*™)

It may be viewed as an additive subspace correction with respect to the orthogonal subspaces
Vzi41 ® Vyiyr and Wiy ® V.

One has to remark that the transition from A4; to A;4; increases the band width moder-
ately as far as N becomes not too large. This fact must be kept in mind in order to obtain
a constant band width if an incomplete LU factorization with fixed number of off diagonals
is used for all levels.

3.6.5 The Haar’s wavelet transfer operator

The Haar basis [53] is an orthogonal basis which has been known since 1910. It is also the
earliest known example of wavelet basis, and perhaps one of the simplest. Furthermore,
Haar wavelets supplies transfer operators without increasing the bandwidth of matrix. In
this case N = 2 and the Mallat’s transformation is quite close to piece wise constant
restriction and prolongation operators described in the algebraic multigrid section.

a=1a=1

60 3. LINEAR SOLVERS

- [11] -
1 11 4x8
Hl2:t = "7 T
¥ 2 .
f [) :|
- 11 4x8 - 32x64
[I: 1 1] . 7
1 1 1 4x8
H12,!I = -ﬁ ‘e
[| | :l
- 1 1 4x8 - 16x32

Finally, the transformation of A; into A;,; for a 5-point formulation matrix leads

Ay = HyH, A H,H,
Atad) = F(A1(26,29) + A1(2i +1,29))
AaGd) = F(AP(i24)+ AP(2i,25 +1))
Aflin) = FUATQi+1,2) + AT2i+1,2) +1)

1
A?+1(i’j) = Z(A?(zi’zj + 1) + A{'(Zi + 1’2j + 1))

AP G5) =1 (AP(2,25) + AP (20 +1,25) +

AP(26,25 + 1)+ AP(2i + 1,25 + 1) +
1(26,25+1) + Af (20 +1,25 + 1) +

AP(2i+1,25) + AP (2 + 1,25+ 1) +
1(21,25) + A7(2¢,25 + 1) +

AP (2i,25) + AP(2i + 1,25))

For a 7-point formulation in a three dimensional case the Haar wavelet is already used
A = H,H,H AHHH]

For a 9-point formulation in a two dimensional case or a 19-point formulation in a three
dimensional case, it is better to use a wavelet with N > 2. For example the Daubechies
wavelet [53] of fourth order N = 4. However, as it was pointed out above, the pattern of the
resulting matrix changes to a more dense pattern. The number of diagonal entries increases
slightly at each level.

000000606 OCGCOGCSIOS)....................DA...........Q....Q.......l

N DIO2777I377377793999993933999999993%399999353 533

2333333)0%0>96

3.7. COMPARISON BETWEEN AMG AND MRA 61

3.7 Comparison between AMG and MRA

We have seen that AMG and MRA share the same algorithm. Both of them have different
grids or levels of resolution and the corrections or the details to the finest grid solution
are added. Furthermore, the algebraic expression of the coarse grid approximation is quite
similar. However, the transfer operators are implemented in different ways. For AMG,
the restriction and prolongation operators act in blocks well defined (i.e. 2 x 2, 3 x 3,
2x2x2and 3 x 3 x3). Hence it is necessary to know the grid size and the distribution
of grid points. For MRA based on wavelets, the transfer operators are applied directly as
they were defined: products between matrices and vectors. This fact gives to the wavelet
multiresolution analysis a great generalization to any sparse matrix pattern. Moreover, just
changing the order of a wavelet, say Daubechies with orders 4, 6, 12 and 20, different coarse
grid approximations can be more easily obtained than AMG does by blocking in predefined
sets of grid points.

Finally this generalization can be extended even to non structured grids in order to have
a non structured multigrid [55].

3.8 Stopping criteria

We have already described some families of iterative solvers based on ILU’s and Krylov’s
subspaces. In the algorithm of each iterative solver, there is a common step, the stopping
criterion. It decides when the algorithm has achieved the right solution within a certain
error. Since the error in such linear systems is never known, the 2-norm of the residual
vector ||r||2 has to be used.

[Ir|le = Ti2,j,k

ik
Thus, let k& be the k-th iteration, if the ||r(¥)||; is small enough, say smaller than a given
threshold ¢, the iterative solver can be stopped and get the solution of ().

Most solvers perform at least once the computation of the residual vector so it is easy
to implement the stopping criterion based on its 2-norm. Others like GMRESR performs
this computation directly without needing the residual vector. And others perform an
approximation to the residual like the SIS [13]. In any case, the 2-norm of the residual
vector leads to a good criterion of convergence to the solution.

However, this criterion must be generalized for all kind of problems. Different coefficient
matrices and right hand sides can have solutions with large values and generate large residual
values. Conversely, solutions with small values generate small residual values. Therefore a
relative residual norm p(*) should be used instead of the residual norm ||r(¥)||. For instance
the residual norm is divided by the factor ||b|]z which features the problem.

*)
&) _ lIrt®l2 ol
=02 g, # 0
[Ibll2
Another stopping criterion is based on a fixed number of iterations v. The solver stops
when the counter of iterations achieve this value. That happens, for example, in inner loops
of the multigrid in the pre-smoothing and the post-smoothing steps. In this case, the global

62 3. LINEAR SOLVERS

stopping criterion is based on the residual norm of the finest level. And the fixed number of
iterations can be used as local criterion. For example, the preconditioning step is included
in the krylov’s solver and since it has to be with low computational cost, it performs only
a fixed small number v of iterations.

Since the number of iterations does not change, we say that the criterion is static. In
other cases, the local number of iterations is dynamic and limited by a relative threshold e,
and a maximum number of iterations it,,.;. The relative threshold ¢, is usually fixed in the
range 70% — 90% of the residual norm ||r(%||; at the guessed solution or before performing
the local iterations.

& = o||r®|ls, a €[0.7,0.9]

Finally, there is another dynamic criterion based on the convergence rate of the local iter-
ative solver. The convergence rate * for the k-th iteration is expressed as

T(k_l)

rk

/) =

Representing B%) versus the iteration number stagnation can be detected in the iterative
procedure and exit the algorithm. This dynamic criterion is used in the decision of change
to a coarse grid or a coarse multiresolution within the multigrid algorithm.

These criteria are embedded in the multigrid algorithm 16 with a preconditioned solver 17.

3.9 Sequential performance of solvers

The scope of this section is to provide a comparison between the different solvers built in
the solver layer for a given model problem. The comparison is based on two issues: the time
spent in the resolution until a defined residual criterion and the amount of memory needed
to store the vectors and matrices involved in the computation of the solution. On the other
hand, the model problem is designed to show the stability and convergence behaviour of
each solver. The main idea underlying on this test is to find out a robust solver of a wide
range of CFD problems.

3.9.1 CFD model problem

We are interested on the behaviour of solvers for convection and diffusion equations under
the boundary conditions that produce ill conditioned linear systems. For this purpose, a
two-dimensional partial differential equation with different boundary conditions has been
designed: '
oup , s _ P, P _
Oz oy 0z Oy

(z,y) € 2:[0,2] x [0,2]

f

Where the velocity field V = {u,v} in function of the Reynolds number satisfies the mass
conservation equation.

u=z?(1-2y)Re, v=2x(y?—-y)Re

IEEDEDEDEDEDEDEDEDEDEDEDED EDEDEDEDED EDEDEDIDEDEDED EDEDED EDED EDEDED IPED IDIPD ID I I I I I I D I

J

DEDEDEDED EDED BB ED D

)

A EE R N NN N N NEIE NN NN A NN NN NN NN EEEENEENNNENEENEERNNNENENNERENNNNNNNNNRERER I'N_

3.9. SEQUENTIAL PERFORMANCE OF SOLVERS

63

Algorithm 16 AMG + solver + preconditioner + criteria

if(l=1)
fix parameters of multigrid cycle
l'maa:, itma.‘n M, ¢ Q, ﬂ

for(l =1 to lpez — 1)
evaluate matrix coeff. by Coarse Grid Approximation
A1 = Rf‘”A;P,‘_H
€& =¢€
end do
else
evaluate right hand side of coarse level | + 1
T =b — Az
b1 = Ry
l=1l+1
€& = ae
end if

set a guess in level |
k=0, z,(k)

global static iteration
while(p®) > ¢ and k < itmaz)
solve A;x; = b with preconditioner

if (I < lypaz)
go to the coarser level | +1
call AMG at 1+1

add the correction to the level |
o =a1+ P, T
solve A;x; = b; with preconditioner
end if
k=k+1;
end while

Algorithm 17 Preconditioned solver

local dynamic iteration

k-1
while(l'2oll2 > 6 and k < 1)
solve Ajz; = b
local static iteration
for (k=1tok=u)
solve Mip; = p
end for
end while

64 3. LINEAR SOLVERS

Then, the convective and diffusive terms are discretized to obtain the coefficient matrix A
with a 5-point formulation.

In order to satisfy all boundary conditions (i.e. Dirichlet, Neumann and periodic con-
ditions), a single solution ¢ is set to this problem.

¢ = cos(mz) + cos(my) + cos(3wzx) + cos(3my)

Finally, the right hand side b is evaluated from the product of the matrix A by the
vector ¢ instead of the integration of f at each volume V.

b= fV = A¢

If the solution ¢ is known, it is possible to evaluate and analyze at each iteration the
numerical error e(¥) at any iteration k. Therefore a comparison of the convergence rates
between solvers may be done. In this sense the Discrete Fourier Transform of the error help
us to explain the spectral properties of the different solvers.

3.9.2 Sequential performance

For the given problem, the performance of each solver in a single process np = 1 is done.
Since no communications are needed the convergence behaviour of each solver gives an idea
of how good may it be solving the problem in a np parallel environment.

Solvers are compared from two points of view: the convergence behaviour and the
memory resources required. A list of solvers is given in table 3.1.

Solver Implementation features
0| band LU Crout’s implementation + partial pivoting
1 | Gauss-Seidel not overrelaxed
2 ILU MSIP implementation, o = 0.5
3 | BiCGSTAB preconditioned with MSIP(a = 0.5)
4| GMRESR | restart=10, preconditioned with MSIP{a = 0.5)
5 AMG 10 levels, smoother MSIP(a = 0.5)
6 MRA 10 levels, smoother MSIP(a = 0.5)

Table 3.1: List of the solvers used in this test.

Each solver performs iterations until the normalized residual norm reaches the accuracy
e=10"1
[Ir®|l2
18112

A battery of cases for different Reynolds numbers and different square grid sizes I x I are
tested following Alg. 18. The results of the test, executed in the PC cluster (see appendix),
are grouped by the Reynolds number and represented with the pair of axis: size problem(x)
- time of computation(y). For Dirichlet boundary conditions, the results for three Reynolds
(0,10%,10*) are given in Figs. 3.15, 3.16 and 3.17.

<€

VPP PP EDEDEDESEDEDEDEDEDEDED DD D D D DI ED DD ED D D IV ES I D IS ED D IS ED I ID ID I ID ID ED I

EP PRI I I I

3.9. SEQUENTIAL PERFORMANCE OF SOLVERS

65

Algorithm 18 Sequential performance of solvers

for (solver = 0 to solver = 6)
for (Re = 0 to Re = 10000, Re = Re * 100)

for (I =32to 1 =512, I=1+2)
generate the problem Ax = b
fix accuracy of the solution to e = 1077
initialize unknown x = ()
tO0=start_wall_clock(gettimeofday)

solve Az = b such that szi: < €

t1=stop_wall clock{gettimeofday)
tcomp=ti-t0

write throughput: tcomp and memory resources

end for
end for
end for
1045 i
F | —B band LU |
B = - | 5 C
F | —-=— BICGSTAB | fﬁf
K GMRESR (10) Va
10° || —&— ACM, MRA // E
810" g :”/ 7
cC s
o -
8 L
» 10°}
10" =~
1072 =
10'3_ 1 l\\llll“‘ 1 !LJ]I]II 1 \I!III\I L lllllJ_IJ
70° 10° 10° 10° 10°
N

Figure 3.15: Time of computation at Re=0 for different size problemns.

66

3. LINEAR SOILVERS

seconds

10°

10*

107

102

10°

—_

10°

£ bandLU
- 5 G-S |
E . MSIP ya
E ~—— BICGSTAB e -
- & GMRESR (10) /' S
—; —8—— ACM, MRA /, g
E
i 1 RN 1 1 iLiLJII 1 1 lI]IHl | 1 llllil]
0 10° 10° 10°
N

Figure 3.16: Time of computation at Re=100 for different size problems.

seconds

10*

10°

10°

10’

10°

107

10°

—

- band LU

C o ERY v - 1

=l o MSIP /

3 = BICGSTAB

X S GMRESR (10) ;

| —8— ACM, MRA

E B

- A fe

F YAy .y /S

: // /T>/

/?,,

= / ///

E -.4/ -

[1 Li 1 /1] 1 llLIJIII L IJIEIII' | Ill]lIll

0° 10° 10° 10° 10°
N

Figure 3.17: Time of computation at Re=10000 for different size problems,

3.9. SEQUENTIAL PERFORMANCE OF SOLVERS 67

Although full results have not been shown due to the large amount of tested cases, the
above results show that ACM and MRA ave the best solvers for all Reynolds numbers and
problem sizes. Furthermore, the difference of time of computation among solvers grows with
the size problem, being the worst case for the pure diffusion problem, (i.e. Re = 0) where
the matrix is symmetric. For large Reynolds uumbers the matrix becomes non syminetric
and the solvers work better. Since the pure diffusion problem is the hardest case, we reduce
the number of cases here in after to such case and for any boundary condition.

For Neumann boundary conditions and for the pure diffusion case, (i.e. Re = 0), the
same sequential performance test is repeated. Since the Nenmann bouudary conditions lead
to a singular matrix, a point at the center of the domain is fixed in order to set a single
solution. The results represented in Fig. 3.18 are quite similar to the obtained for Dirichlet
boundary conditions.

104 — T i
. : band LU i ¥
10° = BEiy | f.
— MSIP
. BiICGSTAB | & /
——— GMRESR(10) |~ / o

10°E| —=— ACMMRA |/ 2

1
210
=
O
3
o 10°
10" =
2
10’2:—
G_ 1 & A‘Illl 1 JJJI!llI + | ||'JJ| ll]_lllll
10 107 107 0 10°

N

Figure 3.18: Tine of computation at Re=0 for different size problems.

Fig. $.18 shows that although BiICGSTAB reported good results the best convergence
behaviour is with ACM and MRA solvers.

The memory requirements for each solver at each size are represented in Fig. 3.19.

68

3. LINEAR SOLVERS

10 = 1
- = band LU f
i — G-8 !
106k = MSIP | o
3 —-— BICGSTAB /
: & GMRESR (10) | A
a —H— ACM, MRA j 4
10° :/
o F
v 10°F
10° -
10° =
1 1 llllllll . lll\l\!l L] IlIIiIJ‘ | Llllllll_
19,77 10° 10° 10° 10°
N

Figure 3.19: Memory requirements in Kbytes for different size problems.

It is worth noting that GMRES with a restart of 10 requires more memory resources
than the rest of solvers. A higher value of the restart parameter is also tested but it increases
largely the memory without a reduction of the time of computation. Therefore, ACM and
MRA are also better than BiICGSTADB and GMRESR from the cost-memory point of view.

P00 DPPDPDIBDD IO IBDOD3D32D23023155325)23233053557393357>22223220209 203

3.10. NOMENCLATURE

69

3.10 Nomenclature

discretization matrix

coeff. in A

filter coeff.

right hand side, filter coeff.
contro] volum

filter coeff.

auxiliar vector

unit vector

grid

similar to d

Hessenberg matrix, Haar wavelet
unknowns per direction
incomplete LU decomposition
index coordinate

Krylov space

lower matrix from LU

lower upper decomposition
coeff. of matrix L

auxiliar matrix for LU

has.ghqm‘bgm&ﬁ%@ 8

=~
!

prediction, projection
similar to d

matrix from QR, projection
QR factorization
similar to d

restriction, similar to @
Reynolds number
residual

similar to d

similar to d

upper matrix from LU
coeff. of matrix U,
Krylov base, subspace
similar to d

wavelet, subspace
similar to d

unknown

similar to d

similar to d

{u,v,w} fluid flow velocity components
{z,y,7} cartesian coordinates

ne g ge e Q‘*%‘l§m-&g©'ﬁ vz R

number of unknowns, similar to M

Greek symbols

relaxation parameter, scalar value
scalar value

general perturbation

condition number

precission

similar to 8

fixed number of iterations
domain

similar to 8

general variable, scaling function
wavelet function

similar to 8

VeSS E DR NI IWR

Other symbols

5— PF five point formulation

7 — PF seven point formulation

9 — PF nine point formulation

19 — PF nineteen point formulation

v volume of the CV

<,> inner product

|-]|2 Euclidean norm

<) tensor product

Subscripts

NGB general neighbour grid point
*, for all elements of a row

) * for all elements of a column
l level, go down to the level !
Superscripts

(k) k-th iteration

-1 inverse

T transpose

% square root

- modified value

[

go up to the level [

	Chapter 3 Linear solvers
	3.1 Features of equation systems
	3.1.1 Sparse matrix formats
	3.2 Solving equation systems
	3.2.1 LU solver
	3.2.2 ILU solver
	3.3 Krylov solvers
	3.3.1 CG solver
	3.3.2 BICGSTAB solver
	3.3.3 GMRESR solver
	3.4 Preconditioners
	3.4.1 Factorizations and SPAI
	3.5 Algebraic Multigrid algorithm
	3.5.1 Transfer operators
	3.6 Multiresolution Analysis with wavelets
	3.6.1 Multilevel representation of a function
	3.6.2 Multiresolution decomposition and reconstruction
	3.6.3 Mallat's transform and inverse transform
	3.6.4 Wavelet transfer operators
	3.6.5 The Haar's wavelet tranfers operators
	3.7 Comparoson between AMG and MRA
	3.8 Stopping criteria
	3.9 Sequential performance of solvers
	3.9.1 CFD model problem
	3.9.2 Sequential performance
	3.10 Nomenclature

