
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Design and Implementation of REST API for Academic Information
System
To cite this article: A A Prayogi et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 875 012047

View the article online for updates and enhancements.

This content was downloaded from IP address 78.157.36.66 on 25/03/2021 at 19:12

https://doi.org/10.1088/1757-899X/875/1/012047
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuJMCGgEEx9FGmhEfk2v8-LRuC0y7okCQPe45C3Vxham2msksjJ1_dV1k4U6go06DZXYrRRcoanYV3Rz2M0vc6EUz0OZHP1On2dsiCMCJM8B1Zl5z_97B_vRbnmEISikSnHJv40isHudD4U-VI_1hZ8KM9WpjATfDDR2T9hf31ed5LjMJ_pQg6k01l1RmUKVacVGpzj0f2bQSbjw2cEUPk_X1lUa9m_gZSebRkfV8W7_E315B9_lJx1vnojfYULMRCADpL8_pvXr1Pgxn2LI-0s&sig=Cg0ArKJSzLzjGhwrz9HN&adurl=https://ecs.confex.com/ecs/240/cfp.cgi%3Futm_source%3DIOPPW%26utm_medium%3DBanners%26utm_campaign%3D240Abstract%26utm_content%3DApr9

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

The 3rd EPI International Conference on Science and Engineering 2019 (EICSE2019)

IOP Conf. Series: Materials Science and Engineering 875 (2020) 012047

IOP Publishing

doi:10.1088/1757-899X/875/1/012047

1

Design and Implementation of REST API for Academic

Information System

A A Prayogi1*, M Niswar1, Indrabayu1, and M Rijal1

1Department of Informatics Engineering, Engineering Faculty, Hasanuddin University,

Makassar, Indonesia

*Email: aisprayogi@unhas.ac.id

Abstract. With the increased number of information systems used in an organization, there is

also an increased importance of data exchange between these systems. This research deals with

prototype development and performance analysis of Rest API for academic information system.

Rest API was developed using two different server technologies, NodeJS and PHP. The

prototype was developed on top of a database server using one sample table that represents

employee in a higher education institution. For each of the Rest API developed, there were 2

types of endpoint created. Experiment was set with one database containing a single table and

utilized Apache Jmeter to simulate up to 1000 concurrent requests. The results of the experiment

show NodeJS implementation of REST API consistently has better performance compared to

PHP based REST API implementation. NodeJS implementation reached 100% throughput for

up to 1000 concurrent requests, while PHP reached 48.70% throughput when serving the same

number of concurrent requests.

1. Introduction

The use of information system especially web-based information system in the academic field especially

in a higher education institution has become the norm. Information system holds important role in the

various business processes in a higher education institution, ranging from new student registration

process, course registration at the beginning of an academic period, end of academic period evaluation

process to graduation and alumnae information management process [1].

To accommodate and ensure the flow of these business process runs smoothly, there are also multiple

and diverse information systems set up. Some more common information systems used by a higher

education institution including Learning Management System (LMS), Content Management System

(CMS), Asset Management System, Student Registration System and Course Management System. In

most institution, these different type of information systems are developed either in-house (by

information-technology work unit), outsourced to a third-party vendor or customized from open-source

community-based project. The maintenance of an application based on proprietary solution comes from

the vendor itself. The process to develop new feature or to fix certain bugs need a lengthy administrative

process that lags behind the user time schedule. Customized open-sourced based solution also faces the

same problem, in which each bugs or new features must be registered first before it can be processed.

These circumstances then lead to new features or bug fixing fall short of user expectation and needs [2].

Within the institution there is a need to have a common and uniform data communication between

each information systems. The purpose of this uniform data communication is to prevent data

duplication and data mismatch stored within each information systems. With the uniform data

mailto:aisprayogi@unhas.ac.id

The 3rd EPI International Conference on Science and Engineering 2019 (EICSE2019)

IOP Conf. Series: Materials Science and Engineering 875 (2020) 012047

IOP Publishing

doi:10.1088/1757-899X/875/1/012047

2

communication format, new applications can be built easier and faster by using data stored in the

previously established systems. The number of smartphone usage among internet users has been

increased steadily every year. Smartphone users in Indonesia has reached 83.5 million users in 2018.

Although most information system is easily accessed from mobile web browser, using mobile native

apps has certain advantages over mobile website [3]. Mobile native apps need to communicate with the

existing information system server via Application Programming Interface (API).

There are many types of architecture can be chosen to build data communication between

information systems or applications. One of the options is using REST (Representational State Transfer

Protocol) API architecture. With REST architecture, web service can be built using simple methods and

underlying HTTP architecture. A prototype of REST API architecture for academic information system

built with two types of framework technologies. The prototypes then analyzed for performances with

three parameters (response time, throughput and packet loss) under multiple concurrent connections.

2. REST API

REST (Representational state transfer) is an architectural API (Application Programming Interface)

which provides client-server communications for Web Applications over HTTP protocol, making it

easily implemented since it is not bound to any transfer protocol. The three main design principles of

REST are addressability, uniform interface, and statelessness [4]. REST addresses acceptability by

defining endpoints in a directory structure [5] via different URI for extracting the data. The API works

on the principle of CRUD (Create, Read, Update, Delete), which correspond to the most popular

functions [4] INSERT, SELECT, UPDATE, and DELETE, in persistent data-storages such as SQL.

Calling a RESTful service over the HTTP protocol can be done in multiple programming languages.

In jQuery, a framework of Javascript, a REST server can be called from an Ajax query. A common

response of data is in the form of JSON (Javascript Object Notation) data. Typical JSON response can

be seen in Figure 1. Data can be returned as well in the form of XML (eXtensible Markup Language)

[4].

Figure 1. Examples of

JSON response

3. Server Side Technologies

Developing web services with REST API architecture currently can be done with various server

technologies. It is decided two server technologies most used, which are NodeJS and PHP.

3.1. NodeJS

Node JS is a web server technology based on JavaScript. It used V8 Javascript Engine with integrated

module add-ons. NodeJS used event-driven architecture to handle request from clients. With the event-

driven architecture, all requests from clients will be put to event queue. NodeJS single-threaded event

loop then pick one of the requests to check if the request require blocking I/O operation or complex

computation tasks. If it is, the request will be moved to different thread which taken from NodeJS

Internal Pool Thread [6]. After thread finished processing the request either blocking I/O operation or

complex computation tasks, it will send the response to back to event queue to be processed by the

NodeJS single-threaded event loop later. This process is shown Figure 2.

The 3rd EPI International Conference on Science and Engineering 2019 (EICSE2019)

IOP Conf. Series: Materials Science and Engineering 875 (2020) 012047

IOP Publishing

doi:10.1088/1757-899X/875/1/012047

3

Figure 2. NodeJS architecture [6]

3.2. PHP

PHP also know as PHP:Hypertext Preprocessor is a script language developed to add dynamism to the

static HTML page. It was first developed in 1994 by Rasmus Lerdorf. PHP script is processed by a

certain process called PHP interpreter in a web server to generate HTML code, or binary image data.

PHP evolved from procedural paradigm programming to object-oriented type programming in its latest

iteration (PHP 7).

4. Experiment

The experiment was designed to show how the two server technologies used to implement REST API

performed under multiple concurrent connections. There are 2 types of performances measurement used

in this experiment including request time and throughput. Request time measures elapsed time between

the time client send the request until the client received responses from server. Throughput is total

number of processed requests in certain amount of fixed time. Packet loss is measured as percentage of

packet lost with respects to packets sent.

Figure 3. Prototype

architecture

The 3rd EPI International Conference on Science and Engineering 2019 (EICSE2019)

IOP Conf. Series: Materials Science and Engineering 875 (2020) 012047

IOP Publishing

doi:10.1088/1757-899X/875/1/012047

4

The prototype built as shown in figure 3. Clients send requests by accessing certain URLs provided

by the server. Server was setup with two server technologies, NodeJS and PHP with Apache as web

server. Every time request received either by NodeJS or PHP, the request processed based on the

parameter and embedded data by the respected web server technology then return response in JSON

(Javascript Object Notation) format.

A database was setup within the server to serve as data repository for both NodeJS and PHP REST

API implementation. The database contains one table, called profilpegawai table. The table contains 5

fields and 3920 rows of data, copied from the current employee information management system

implanted in Hasanuddin University. The detail structure of the table can be seen in Figure 4.

Figure 4. Table profilpegawai structure details

For this experiment, two types of REST API endpoints was created as shown in table 1. The first

endpoint is used when a client wants to request all of rows, in this case employee data, from

profilpegawai table. The second endpoint is used for a client to request certain employee data which

matched the parameter NIP. Both endpoint responses are returned in JSON format.

Table 1. REST API endpoints

Parameter
URLs

NodeJS PHP

GET ALL http://localhost:3000/profilpegawai/
http://localhost:8080/rest-api/rest-

ci/api/profilpegawai

GET PARAMS http://localhost:3000/profilpegawai/:nip
http://localhost:8080/rest-api/rest-

ci/api/profilpegawai?nip=NIP

After setting up database and API endpoints, next step was to prepare simulation for testing scenario.

Apache JMeter was used to simulate requests from clients. To measure response time, for each NodeJS

and PHP implementation, 10 requests was made to each endpoint. Each request repeated in 30 iterations

and then the average of response time was calculated. Throughput was measured by simulating requests

from 1, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 requests for each endpoint in each NodeJS

and PHP implementation.

5. Result and Discussion

Response time for NodeJS REST API implementation shows significantly better result than those of

PHP implementation. When testing GET ALL endpoint, average response time for NodeJS was ranging

from 138ms to 156ms, while PHP implementation ranging from 244ms to 266ms. Complete results of

response time measurement for GET ALL endpoint are shown in table 2. Similar result was also shown

for the GET PARAMETER endpoint, in which NodeJS shows better results than its PHP counterpart.

The 3rd EPI International Conference on Science and Engineering 2019 (EICSE2019)

IOP Conf. Series: Materials Science and Engineering 875 (2020) 012047

IOP Publishing

doi:10.1088/1757-899X/875/1/012047

5

Table 2. Response time results for GET ALL endpoint

Request

PHP NODEJS

max

(ms)

min

(ms)
average (ms)

max

(ms)

min

(ms)
average (ms)

1 894 207 266 188 113 138

2 446 206 253 371 107 146

3 369 208 244 503 113 156

4 795 211 257 212 116 141

5 410 207 248 159 110 136

During throughput measurement, NodeJS implementation perform better compared to PHP

implementation. When using GET ALL endpoint, NodeJS implementation consistently able to handle

all requests from 1 to 1000 requests concurrently. PHP implementation on the other hand shows

decreasing in throughput performance when the number of concurrent requests reached 300 requests as

shown in table 3. When handling 1000 requests, PHP implementation only reached 48.70% throughput.

NodeJS also show better performance in throughput value when testing with GET PARAMETER

endpoint.

Table 3. Throughput measurement results for GET ALL endpoint

of

concurrent requests

THROUGHPUT

PHP NodeJS

1 100% 100%

100 100% 100%

200 100% 100%

300 90% 100%

400 93,25% 100%

500 90,20% 100%

600 85% 100%

700 71,43% 100%

800 57,63% 100%

900 50,11% 100%

1000 48,70% 100%

The experiment result shown NodeJS implementation have better performance when asked to handle

multiple concurrent requests. This type of situation was common real-world use case, in which a web

service should handle multiple request in almost the same time. NodeJS architecture with non-blocking

I/O single thread was crucial in handling simultaneous request while making sure all the requests is

served in the least amount of time.

6. Conclusion

In our prototype of REST API implementation for academic information system with two server

technologies, we explore the performance with two parameters, response time and throughput. Our

prototype with NodeJS and PHP with two endpoints. NodeJS implementation tend to show better

performance for both measurements in both endpoints. Further experiments need to be conducted to

find out how the NodeJS and PHP implementation of REST API perform under more complex database

setup and with more complex endpoints including I/O extensive operations.

The 3rd EPI International Conference on Science and Engineering 2019 (EICSE2019)

IOP Conf. Series: Materials Science and Engineering 875 (2020) 012047

IOP Publishing

doi:10.1088/1757-899X/875/1/012047

6

Acknowledgement

This work has been supported by Faculty of Engineering, Universitas Hasanuddin under 2019 Labo-

Based Education (LBE) grant.

References

[1] Aswati S, Mulyani N, Siagian Y and Zikra Syah A 2015 Peranan Sistem Informasi dalam

Perguruan Tinggi Jurnal Teknologi dan Sistem Informasi 1 79-86.

[2] Barata, R., Silva, S., Martinho, D., Cruz, L., & Guerra e Silva, L 2014 Open APIs in

Information Systems for Higher Education. Umea.

[3] Turner-McGrievy GM, Hales SB, Schoffman DE 2017 et al Choosing between responsive-design

websites versus mobile apps for your mobile behavioral intervention: presenting four case

studies. Transl Behav Med. 7(2) 224–232.

[4] Belqasmi, F., Singh, J., Melhem, S.Y.B., Glitho, R.H., 2012 SOAP-Based vs. RESTful Web

Services: A Case Study for Multimedia Conferencing IEEE Internet Comput. 16 54–63.

[5] Choi M. 2012 A Performance Analysis of RESTful Open API Information System Future

Generation Information Technology, Lecture Notes in Computer Science Springer Berlin

Heidelberg 59–64.

[6] Posa R. 2015 Node JS Architecture – Single Threaded Event Loop Retrieved from

https://www.journaldev.com/7462/node-js-architecture-single-threaded-event-loop.

