Hands-On
Domain-Driven
Design with
.NET Core

Hands-On Domain-Driven
Design with .NET Core

Tackling complexity in the heart of software by putting DDD
principles into practice

Alexey Zimarev

BIRMINGHAM - MUMBAI

Hands-On Domain-Driven Design with .NET
Core

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Chaitanya Nair
Content Development Editor: Rohit Singh
Technical Editor: Gaurav Gala

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Alishon Mendonsa

Production Coordinator: Nilesh Mohite

First published: April 2019
Production reference: 1300419
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-409-4

www.packtpub.com

To my wonderful family: my wife Olga, our sons Denis and Miklail, and our Siberian husky

Taiga. Thank you for your patience and for giving me time and space to complete this big work.
Without your support, this book would have never been published.

To my friend and colleague Sérgio Silveira Vaqueiro. We learned a lot from each other and I am

very happy to have an opportunity to work with you. Nearly all the code in this book is based on
the code we ve prepared for the Hands-on Event Sourcing workshop that we deliver together.

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Alexey Zimarev is a software architect with a present focus on domain models, Domain-
Driven Design (DDD), event sourcing, message-driven systems and microservices,
coaching, and mentoring. Alexey is also a contributor to several open source projects, such
as RestSharp and MassTransit, and is the organizer of the DDD Norway meetup.

About the reviewers

Marcin Budny is a software developer with over a decade of experience in designing and
building systems. He specializes in getting to the bottom of things and finding the worst-
case scenarios. Mostly focused on the .NET ecosystem, he likes to venture into other
territories to steal good ideas.

Marcin works mostly with Poland-based companies that cooperate with partners around
the globe. That has resulted in a broad spectrum of challenges that he has had to face,
which he has now turned into topics to share with his local software development
community.

In this book, Marcin debuts as a reviewer.

Nick Tune is the coauthor of two books, Patterns, Principles and Practices of Domain-Driven
Design (Wrox) and Designing Autonomous Teams and Services (O'Reilly), and frequently
writes about technical leadership at NT.Coding().

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

—_

Chapter 1: Why Domain-Driven Design?
Understanding the problem
Problem space and solution space
What went wrong with requirements
Dealing with complexity
Types of complexity
Categorizing complexity
Decision making and biases
Knowledge
Domain knowledge
Avoiding ignorance
Summary
Further reading

Chapter 2: Language and Context
Ubiquitous Language
Domain language
Sample application domain
Making implicit explicit
Domain language for classified ads
Language and context
Summary

Chapter 3: EventStorming
EventStorming
Modeling language
Visualization
Facilitating an EventStorming workshop
Who to invite
Preparing the space
Materials
The room
The workshop
Timing and scheduling
The beginning
During the workshop
After the workshop
Our first model
Summary

Table of Contents

Further reading

Chapter 4: Designing the Model
Domain model
What does the model represent?
Anemic domain model
Functional languages and anemic models
What to include in the domain model
Design considerations
CQRS
Design-level EventStorming
Getting deeper knowledge
Preparation for the workshop
Extended notation
Commands
Read models
Users
Policies
All together now
Modeling the reference domain
Summary

Further reading

Chapter 5: Implementing the Model
Technical requirements
Starting up the implementation

Creating projects
The framework
Transferring the model to code
Entities
Identities
Classified ad entity
Adding behavior
Ensuring correctness
Constraints for input values
Value objects
Factories
Domain services
Entity invariants
Domain events in code
Domain events as objects
Raising events
Events change state
Summary

Chapter 6: Acting with Commands
Technical requirements

69

70
71
7
72
74
74
75

79
80
80
81
81
82
83
84
85
86
90

91

92
93
93
93
95
96
96
98
99
101
102
102
103
112
117
125
132
133
136
139
146

147
147

[ii]

Table of Contents

Outside the domain model
Exposing the web API
Public API contracts
HTTP endpoints
Application layer
Handling commands
The command handler pattern
Application service
Summary

Chapter 7: Consistency Boundary
Technical requirements
Domain model consistency
Transaction boundaries
Aggregate pattern
Protecting invariants
Analyzing constraints for a command
Enforcing the rules
Entities inside an aggregate
Summary

Chapter 8: Aggregate Persistence
Technical requirements
Aggregate persistence
Repository and units of work
Implementation for RavenDB
Implementation of Entity Framework Core
Summary

Chapter 9: CQRS - The Read Side
Technical requirements
Adding user profiles
User profile domain concerns
Domain project organization
Adding new value objects
User profile aggregate root
Application side for the user profile
The query side
CQRS and read-to-write mismatch
Queries and read models
Implementing queries
Query API
Queries with RavenDB
Queries with Entity Framework
Summary

Chapter 10: Event Sourcing

148
148
148
151
157
160
161
165
175

177
177
178
178
184
194
194
202
205
217

218
218
219
219
222
240
252

254
255
255
257
257
259
262
264
274
274
277
278
279
283
290
297

2908

[iii]

Table of Contents

Technical requirements
Why Event Sourcing
Issues with state persistence
What is Event Sourcing?
Event Sourcing around us
Event Sourced aggregates
Event streams
Event stores
Event-oriented persistence
Writing to Event Store
Reading from Event Store
The wiring infrastructure

The aggregate store in application services

Running the event-sourced app
Summary
Further reading

Chapter 11: Projections and Queries
Events and queries
Building read models from events
Projections
Subscriptions
Implementing projections
Catch-up subscriptions
Cross-aggregate projections
Projecting events from two aggregates
Multiple projections per subscription
Event links and special streams
Enriching read models
Querying from a projection
Upcasting events
Persistent storage
Checkpoints
Persisting read models
Wrapping up
Summary

Chapter 12: Bounded Context
The single model trap
Starting small
Complexity, again
Big ball of mud
Structuring systems
Linguistic boundaries
Team autonomy
Limiting work in progress

[iv]

299
300
301
305
307
308
309
310
312
313
318
321
324
329
333
334

335
336
337
338
340
344
344
356
356
358
365
367
369
372
378
378
382
388
393

394
395
395
396
398
404
405

410
411

Table of Contents

Improving throughput 411

Conway's law 412

Loose coupling, high alignment 413

Geography 415

Summary 416
Other Books You May Enjoy 417
Index 420

[v]

Preface

This book will help you solve complex business problems by understanding users better,
finding the right problem to solve, and building lean, event-driven systems to give your
customers what they really want. You will be taken through the fundamentals of Domain-
Driven Design (DDD) principles and how it can be applied using modern tools such as
EventStorming, Event Sourcing, and CQRS. Through this book, you will learn how DDD
applies directly to various architectural styles, such as REST, reactive systems, and
microservices. You will empower teams to work flexibly with improved services and
decoupled interactions.

Who this book is for

This book is for .NET developers who have an intermediate level understanding of C#, and
for those who seek to deliver value, not just write code. An intermediate level of
competence in JavaScript will be helpful for the UI chapters.

What this book covers

Chapter 1, Why Domain-Driven Design?, covers the concepts of problem and solution
spaces, requirements specifications, complexity, knowledge, and ignorance. These topics
have a significant impact on how and what we deliver.

Chapter 2, Language and Context, deep dives into the importance of language and explains
Ubiquitous Language.

Chapter 3, EventStorming, explores one of the most popular techniques for domain
modeling and goes through some practical tips on how to organize useful workshops
between domain experts and developers.

Chapter 4, Designing the Model, goes deeper into the modeling process, with more of a
focus on artifacts that can help us to start writing code and deliver initial prototypes as
soon as possible.

Chapter 5, Implementing the Model, forms the basis for our domain model implemented in
code. We will go through different styles of performing the behavior in domain entities and
also write some tests.

Preface

Chapter 6, Acting with Commands, shows how to implement commands, and how
commands are the glue between our domain model and the world outside it. We will learn
how to make our model useful by letting people interact with it.

Chapter 7, Consistency Boundary, takes a closer look at entity persistence, and its scope will
be our focus. We will learn what types of consistency we need to deal with and how
important it is to understand consistency boundaries.

Chapter 8, Aggregate Persistence, takes a deep dive into the topic of aggregate persistence.
We will find a way to store our domain objects in a database and see our application
working for the first time.

Chapter 9, CQRS - The Read Side, covers the read side of CQRS and explains what the read
models are. You will learn how to use Ubiquitous Language for queries and see how to
implement CQRS with one database.

Chapter 10, Event Sourcing, shows how events can be used to persist the state of an object,
instead of using traditional persistence mechanisms. We will cover the concept of event
streams and see how streams relate to aggregates. We will use the Event Store to persist our
aggregates in streams and load them back.

Chapter 11, Projections and Queries, takes you through the challenges of querying the Event
Sourced system and solving these challenges by using separate read models and
projections.

Chapter 12, Bounded Context, makes you familiar with the concept of Bounded Contexts.
We will identify contexts in our project and separate the system into pieces. We will also
learn about the Context Map, which shows the landscape of Bounded Contexts for the
entire system and their relationships.

Chapter 13, Splitting the System, gives practical advice about identifying Bounded Contexts
and implementing more than one context in the sample application. This chapter is
available as an online chapter at: https://www.packtpub.com/sites/default/files/
downloads/Splitting_the_System.pdf.

To get the most out of this book

In order to follow the instructions in this book, you need to have intermediate-level
understanding of C#. Other requirements are mentioned at the relevant instances in the
respective chapters.

[2]

Preface

Diagrams for this book are created using Miro, an online collaboration tool, and draw. io,
the free online service for creating diagrams and wireframes. The line style and the font are
used intentionally, to embrace the temporal nature and usefulness of all models and
diagrams

Download the example code files

You can download the example code files for this book from your account at
www . packtpub . com. If you purchased this book elsewhere, you can visit
www . packtpub . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

LN e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Domain-Driven-Design-with-.NET-Core. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this

book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781788834094_ColorImages.pdf

[3]

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WwebStorm-10* . dmg disk image file as another disk in
your system."

A block of code is set as follows:

html, body, #map {
height: 100%;
margin: 0;
padding: 0

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]

exten => s,1,Dial (Zap/1130)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => 1i,1,Voicemail (s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[4]

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

[5]

Why Domain-Driven Design?

The software industry appeared back in the early 1960s and has been growing ever since.
There have been predictions that one day all software will be written and software
developers will no longer be needed, but this prophecy has never become reality, and the
growing army of software engineers is working hard to satisfy the continually increasing
demand.

However, from the very early days of the industry, the number of projects that were
delivered very late and massively over budget, plus the number of failed projects, was
overwhelming. The 2015 CHAQOS report by the Standish Group (https://www.
projectsmart.co.uk/white-papers/chaos-report .pdf) suggests that from 2011 to 2015,
the percentage of successful IT projects remained unchanged at a level of just 22%. Over
19% of projects failed, and the rest experienced challenges. Although the report might set
somewhat controversial expectations for project success, it still paints a picture that is
familiar to many. These numbers are astonishing. Over four decades, a lot of methods have
been developed and advertised as silver bullets for software project management, but there
has been little or no change in the number of successful projects.

One of the critical factors that define the success of any IT project is understanding the
problem that the system is supposed to solve. We are all very familiar with systems that do
not solve the problems they claim to answer or do it very inefficiently. Both the SCRUM
and XP software development methodologies embrace interacting with users and
understanding their problems.

The term Domain-Driven Design (DDD) was coined by Eric Evans in his now-iconic book
Domain-Driven Design: Tackling Complexity in the Heart of Software published by Addison-
Wesley back in 2004. More than a decade after the book was published, interest in the
practices and principles described in the book started to grow exponentially. Many factors
influenced this growth in popularity, but the most important one is that DDD explains how
people from the software industry can build an understanding of their users' needs and
create software systems that solve the problem and make an impact.

Why Domain-Driven Design? Chapter 1

In this chapter, we will discuss how understanding the business domain, building domain
knowledge, and distinguishing essential complexity from accidental complexity can help in
creating software that matters.

The objective of this chapter is to explore the following topics:

e Problem space versus solution space

¢ What went wrong with requirements

¢ Understanding complexity

¢ The role of knowledge in software development

Understanding the problem

We rarely write software to just write some code. Of course, we can create a pet project for
fun and to learn new technologies, but professionally we build software to help other
people to do their work better, faster, and more efficiently. Otherwise, there is no point in
writing any software in the first place. It means that we need to have a problem that we
intend to solve. Cognitive psychology defines the issue as a restriction between the current
state and the desired state.

Problem space and solution space

In their book Human Problem Solving, Allen Newell and Herbert Simon outlined

the problem space theory. The theory states that humans solve problems by searching for a
solution in the problem space. The problem space describes the initial and desired states, as
well as possible intermediate states. It can also contain specific constraints and rules that
define the context of the problem. In the software industry, people operating in the problem
space are usually customers and users.

Each real problem demands a solution, and if we search properly in the problem space, we
can outline which steps we need to take to move from the initial state to the desired state.
This outline and all the details about the solution form a solution space.

[7]

Why Domain-Driven Design? Chapter 1

The classic story of problem and solution spaces, which get completely detached from each
other during the implementation, is the story of writing in space. The story goes that in the
1960s, space-exploring nations realized that the usual ballpoint pens wouldn't work in
space due to the lack of gravity. NASA then spent a million dollars to develop a pen that
would work in space, and the Soviets decided to use the good old pencil, which costs
almost nothing.

This story is so compelling that it is still circulating, and was even used in the TV show The
West Wing, with Martin Sheen playing the US president. It is so easy to believe, not only
because we are used to wasteful spending by government-funded bodies, but mostly
because we have seen so many examples of inefficiency and misinterpretation of real-world
issues, adding enormous unnecessary complexity to their proposed solutions and solving
problems that don't exist.

This story is a myth. NASA also tried using pencils but decided to get rid of them due to
the production of microdust, tips breaking, and the potential flammability of wooden
pencils. A private company called Fisher developed what is now known as a space pen.
Later, NASA tested the pen and decided to use it. The company also got an order from the
Soviet Union, and pens were sold across the world. The price was the same for

everyone, $2.39 per pen.

Here you can see the other part of the problem space/solution space issue. Although the
problem itself appeared to be simple, additional constraints, which we could also call non-
functional requirements, or, to be more precise, operational requirements, made it more
complicated than it looked at first glance.

Jumping to a solution is very easy, and since most of us have a rather rich experience of
solving everyday problems, we can find solutions for many issues almost immediately.
However, as Bart Barthelemy and Candace Dalmagne-Rouge suggest in their article When
You 're Innovating, Resist Looking for Solutions (2013, Harvard Business Review https://hbr.
org/2013/09/when-youre-innovating-resist-1), thinking about solutions prevents our
brain from thinking about the problem. Instead, we start going deeper into the solution that
first came to our mind, adding more levels of detail and making it the most ideal solution
for a given problem.

[8]

Why Domain-Driven Design? Chapter 1

There's one more aspect to consider when searching for a solution to a given problem.
There is a danger of fixating all your attention on one particular solution, which might
not be the best one at all but it was the first to come to mind, based on your previous
experiences, your current understanding of the problem, and other factors:

Solution
@Final /
Solution
Solution \
Best
Solution
Good 0
Idea /
@ @
Solution
Problem /
Best
Solution \

Refinement versus exploration

The exploratory approach to find and choose solutions involves quite a lot of work to try
out a few different things, instead of concentrating on the iterative improvement of the
original good idea. However, the answer that is found during this type of exploration will
most probably be much more precise and valuable. We will discuss fixation on the first
possible solution later in this chapter.

What went wrong with requirements

We are all familiar with the idea of requirements for software. Developers rarely have
direct contact with whoever wants to solve a problem. Usually, some dedicated people,
such as requirements analysts, business analysts, or product managers, talk to customers
and generalize the outcomes of these conversations in the form of functional requirements.

[9]

Why Domain-Driven Design? Chapter 1

Requirements can have different forms, from large documents called a requirements
specification to more agile means such as user stories. Let's have a look at this example:

"Every day, the system shall generate, for each hotel, a list of guests expected to check in
and check out on that day.”

As you can see, this statement only describes the solution. We cannot possibly know what
the user is doing and what problem our system will be solving. Additional requirements
might be specified, further refining the solution, but a description of the problem is never
included in functional requirements.

In contrast, with user stories, we have more insight into what our user wants. Let's review
this real-life user story: “As a warehouse manager, I need to be able to print a stock-level report so
that I can order items when they are out of stock.” In this case, we have an insight into what our
user wants. However, this user story already dictates what the developers need to do. It is
describing the solution. The real problem is probably that the customer needs a more
efficient procurement process, so they never run out of stock. Or, they need an advanced
purchase forecasting system, so they can improve throughput without stockpiling
additional inventory in their warehouse.

We should not think that the requirements are a waste of time. There are many excellent
analysts out there who produce high-quality requirements specifications. However, it is
vital to understand that these requirements almost always represent the understanding of
the actual problem from the point of view of the person who wrote them. A misconception
that spending more and more time and money on writing higher-quality requirements
prevails in the industry.

However, lean and agile methodologies embrace more direct communication between
developers and end users. Understanding the problem by all stakeholders, from end users
to developers and testers, finding solutions together, eliminating assumptions, building
prototypes for end users to evaluate—all these things are being adopted by successful
teams, and as we will see later in the book, they are also closely related to DDD.

Dealing with complexity

Before writing about complexity, I tried to find some fancy, striking definition of the word
itself, but it appeared to be a complex task on its own. Merriam-Webster defines the word
complexity as the quality or state of being complex and this definition is rather obvious and
might even sound silly. Therefore, we need to dive a bit deeper into this subject and
understand more about complexity.

[10]

Why Domain-Driven Design? Chapter 1

In software, the idea of complexity is not much different from the real world. Most software
is written to deal with real-world problems. Those problems might sound simple but be
intrinsically complex, or even wicked. Without a doubt, the problem space complexity will
be reflected in the software that tries to solve such a problem. Realizing what kind of
complexity we are dealing with when creating software thus becomes very important.

Types of complexity

In 1986, the Turing Award winner Fred Brooks wrote a paper called No Silver Bullet —
Essence and Accident in Software Engineering in which he made a distinction between two
types of complexity—essential and accidental complexity. Essential complexity comes from
the domain, from the problem itself, and it cannot be removed without decreasing the
scope of the problem. In contrast, accidental complexity is brought to the solution by the
solution itself—this could be a framework, a database, or some other infrastructure,

with different kinds of optimization and integration.

Brooks argued that the level of accidental complexity decreased substantially when the
software industry became more mature. High-level programming languages and efficient
tooling give programmers more time to work on business problems. However, as we can
see today, more than 30 years later, the industry still struggles to fight accidental
complexity. Indeed, we have power tools in our hands, but most of those tools come with
the cost of spending the time to learn the tool itself. New JavaScript frameworks appear
every year and each of them is different, so before writing anything useful, we need to learn
how to be efficient when using the framework of choice. I wrote some JavaScript code
many years ago and I saw Angular as a blessing until I realized that I spend more time
fighting with it than writing anything meaningful. Or take an example of containers that
promised us to bring an easy way to host our applications in isolation, without all that
hassle with physical or virtual machines. But then we needed an orchestrator, and we got
quite a few, spent time learning to work with them until we got Kubernetes to rule them all
and now we spend more time writing YAML files than actual code. We will discuss some
possible reasons for this phenomenon in the next section.

[11]

Why Domain-Driven Design? Chapter 1

You probably noticed that essential complexity has a strong relation to the problem space,
and accidental complexity leans towards the solution space. However, we often seem to get
problem statements that are more complex than the problems themselves. Usually, this
happens due to problems being mixed with solutions, as we discussed earlier, or due to a
lack of understanding.

Gojko Adzi¢, a software delivery consultant and the author of several influential books,
such as Specification by Example and Impact Mapping, gives this example in his workshop:

" A software-as-a-service company got a feature request to provide a particular report in
real time, which previously was executed once a month on schedule. After a few months of
development, salespeople tried to get an estimated delivery date. The development
department then reported that the feature would take at least six more months to deliver
and the total cost would be around £1 million. It was because the data source for this
report is in a transactional database and running it in real time would mean significant
performance degradation, so additional measures such as data replication, geographical
distribution, and sharding were required.

The company then decided to analyze the actual need that the customer who requested this
feature had. It turned out that the customer wanted to perform the same operations as they
were doing before, but instead of doing it monthly, they wanted it weekly. When asked
about the desired outcome of the whole feature, the customer then said that running the
same report batched once a week would solve the problem. Rescheduling the database job
was by far an easier operation that redesigning the whole system, while the impact for the
end customer was the same.”

This example clearly shows that not understanding the problem can lead to severe
consequences. We as developers love principles like DRY. We seek abstraction that will
make our code more elegant and concise. However, often that might be entirely
unnecessary. Sometimes we fall to the trap of using some tool or framework that promises
to solve all issues in the world, easily. Again, that never comes without a cost. As a .NET
developer, I can clearly see this when I look at the current obsession with dependency
injection among the community.

[12]

Why Domain-Driven Design? Chapter 1

True enough, Microsoft finally made a DI container that makes sense, but when I see it
being used in a small console app just to initialize the logger, I get upset. Sometimes, more
code is being written just to satisfy the tool, the framework, the environment, than the code
that delivers the actual value. What seemed to be the essential complexity in this example
turned out to be a waste:

>

Development output

Time

Complexity growth over time

The preceding graph shows that with the ever-growing complexity of the system, the
essential complexity is being pushed down and the accidental complexity takes over. You
might have doubts about the fact that accidental complexity keeps growing over time when
the desired functionality almost flatters out. How could this happen, definitely we can't
spend time only creating more accidental complexity? When systems become more
prominent, a lot of effort is required to make the system work as a whole and to manage
large data models, which large systems tend to have. Supportive code grows and a lot of
effort is being spent to keep the system running. We bring cache, optimize queries, split
and merge databases, the list goes on. In the end, we might actually decide to reduce the
scope of the desired functionality just to keep the system running without too many
glitches.

[13]

Why Domain-Driven Design? Chapter 1

DDD helps you focus on solving complex domain problems and concentrates on the
essential complexity. For sure, dealing with a new fancy front-end tool or use a cloud
document database is fun. But without understanding what problem are we trying to solve,
it all might be just waste. It is much more valuable to any business to get something useful
first and try it out than getting a perfect piece of state-of-the-art software that misses the
point entirely. To do this, DDD offers several useful techniques for managing complexity
by splitting the system into smaller parts and making these parts focus on solving a set of
related problems. These techniques are described later in this book.

The rule of thumb when dealing with complexity is—embrace essential, or as we might call
it, domain complexity, and eliminate or decrease the accidental complexity. Your goal as a
developer is not to create too much accidental complexity. Hence, very often, accidental
complexity is caused by over-engineering.

Categorizing complexity

When dealing with problems, we don't always know whether these problems are complex.
And if they are complex, how complex? Is there a tool for measuring complexity? If there is,
it would be beneficial to measure, or at least categorize, the problem's complexity before
starting to solve it. Such measurement would help to regulate the solution's complexity as
well, since complex problems also demand a complex solution, with rare exceptions to this
rule. If you disagree, we will be getting deeper into this topic in the following section.

In 2007, Dave Snowden and Mary Boone published a paper called A Leader’s Framework for
Decision Making in Harvard Business Review, 2007. This paper won the Outstanding
Practitioner-Oriented Publication in OB award from the Academy of Management's
Organizational Behavior division. What is so unique about it, and which framework does it
describe?

The framework is Cynefin. This word is Welsh for something like habitat, accustomed,
familiar. Snowden started to work on it back in 1999 when he worked at IBM. The work
was so valuable that IBM established the Cynefin Center for Organizational Complexity,
and Dave Snowden was its founder and director.

[14]

Why Domain-Driven Design? Chapter 1

Cynefin divides all problems into five categories or complexity domains. By describing the
properties of problems that fall into each domain, it provides a sense of place for any given
problem. After the problem is categorized into one of the domains, Cynefin then also offers
some practical approaches to deal with this kind of problem:

Complex Complicated
Probe Sense
Sense Analyze
Respond Respond
Emergent Good Practice

SACt Sense
dity Categorize
Respond Respond
Novel

Best Practice

Cynefin framework, image by Dave Snowden

These five realms have specific characteristics, and the framework provides attributes for
both, identifying to which domain your problem belongs, and how the problem needs to be
addressed.

The first domain is Simple, or Obvious. Here, you have problems that can be described as
known knowns, where best practices and an established set of rules are available, and there is
a direct link between a cause and a consequence. The sequence of actions for this domain is
sense-categorize-response. Establish facts (sense), identify processes and rules (categorize),
and execute them (response).

Snowden, however, warns about the tendency for people to wrongly classify problems as
simple. He identifies three cases for this:

¢ Oversimplification: This correlates with some of the cognitive biases described
in the following section.

¢ Entrained thinking: When people blindly use the skills and experiences they
have obtained in the past and therefore become blinded to new ways of thinking.

¢ Complacency: When things go well, people tend to relax and overestimate their
ability to react to the changing world. The danger of this case is that when a
problem is classified as simple, it can quickly escalate to the chaotic domain due
to a failure to adequately assess the risks. Notice the shortcut from Simple to
Chaotic domain at the bottom of the diagram, which is often being missed by
those who study the framework.

[15]

Why Domain-Driven Design? Chapter 1

For this book, it is important to remember two main things:

e If you identify the problem as obvious, you probably don't want to set up a
complex solution and perhaps would even consider buying some off-the-shelf
software to solve the problem, if any software is required at all.

¢ Beware, however, of wrongly classifying more complex problems in this domain
to avoid applying the wrong best practices instead of doing more thorough
exploration and research.

The second domain is Complicated. Here, you find problems that require expertise and
skill to find the relation between cause and effect, since there is no single answer to these
problems. These are known unknowns. The sequence of actions in this realm is sense-analyze-
respond. As we can see, analyze replaces categorize because there is no clear categorization of
facts in this domain. Proper analysis needs to be done to identify which good practice to
apply. Categorization can be done here too, but you need to go through more choices and
analyze the consequences as well. That is where previous experience is necessary.
Engineering problems are typically in this category, where a clearly understood problem
requires a sophisticated technical solution.

In this realm, assigning qualified people to do some design up front and then perform the
implementation makes perfect sense. When a thorough analysis is done, the risk of
implementation failure is low. Here, it makes sense to apply DDD patterns for both
strategic and tactical design, and to the implementation, but you could probably avoid
more advanced exploratory techniques such as EventStorming. Also, you might spend less
time on knowledge crunching, if the problem is thoroughly understood.

Complex is the third complexity domain in Cynefin. Here, we encounter something that
no one has done before. Making even a rough estimate is impossible. It is hard or
impossible to predict the reaction to our action, and we can only find out about the impact
that we have made in retrospect. The sequence of actions in this domain is probe-sense-
respond. There are no right answers here and no practices to rely upon. Previous experience
won't help either. These are unknown unknowns, and this is the place where all innovation
happens. Here, we find our core domain, the concept, which we will get to later in the
book.

The course of action for the complex realm is led by experiments and prototypes. There is
very little sense in creating a big design up front since we have no idea how it will work
and how the world will react to what we are doing. Work here needs to be done in small
iterations with continuous and intensive feedback.

[16]

Why Domain-Driven Design? Chapter 1

Advanced modeling and implementation techniques that are lean enough to respond to
changes quickly are the perfect fit in this context. In particular, modeling using
EventStorming and implementation using event-sourcing are very much at home in the
complex domain. A thorough strategic design is necessary, but some tactical patterns of
DDD can be safely ignored when doing spikes and prototypes, to save time. However,
again, event-sourcing could be your best friend. Both EventStorming and event-sourcing
are described later in the book.

The fourth domain is Chaotic. This is where hellfire burns and the Earth spins faster than
it should. No one wants to be here. Appropriate actions here are act-sense-respond, since
there is no time for spikes. It is probably not the best place for DDD since there is no time or
budget for any sort of design available at this stage.

Disorder is the fifth and final realm, right in the middle. The reason for it is that when
being at this stage, it is unclear which complexity context applies to the situation. The only
way out from disorder is to try breaking the problem into smaller pieces that can be then
categorized into those four complexity contexts and then deal with them accordingly.

This is only a brief overview of the categorization of complexity. There is more to it, and I
hope your mind gets curious to see examples, videos, and articles about the topic. That was
the exact reason for me to bring it in, so please feel free to stop reading now and explore the
complexity topic some more. For this book the most important outcome is that DDD can be
applied almost everywhere, but it is of virtually no use in obvious and chaotic domains.
Using EventStorming as a design technique in complex systems would be useful for both
complicated and complex domains, along with event-sourcing, which suits complex
domains best.

Decision making and biases

The human brain processes a tremendous amount of information every single second. We
do many things on autopilot, driven by instinct and habit. Most of our daily routines are
like this. Other areas of brain activity are thinking, learning, and decision-making. Such
actions are performed significantly more slowly and require much more power than the
automatic operations.

[17]

Why Domain-Driven Design? Chapter 1

Dual process theory in psychology suggests that these types of brain activity are indeed
entirely different and there are two different processes for two kinds of thinking. One is the
implicit, automatic, unconscious process, and the other one is an explicit conscious process.
Unconscious processes are formed over a long time and are also very hard to change
because changing such a process would require developing a new habit, and this is not an
easy task. Conscious processes, however, can be altered through logical reasoning and
education.

These processes, or systems, happily co-exist in one brain but are rather different in the way
they operate. Keith Stanovich and Richard West coined the names implicit system, or
System 1 and explicit system, or System 2 (Individual difference in reasoning: implications for
the rationality debate? Behavioral and Brain Sciences 2000). Daniel Kahneman, in his award-
winning book Thinking Fast and Slow (New York: Farrar, Straus and Giroux, 2011), assigned
several attributes to each system:

System 1 System 2
Fast Slow
Implicit Explicit
What you see is all there is Logical and Sceptical
Effortless Effortful
Uncontrolled Deliberately controlled
No self-awareness Self-awareness
Assessing situation Getting new information
Delivering updates Making decisions

System 1 and System 2

[18]

Why Domain-Driven Design? Chapter 1

What does all this have to do with DDD? Well, the point here is more about how we make
decisions. It is scientifically proven that all humans are biased, one way or another. As
developers, we have our own ways of solving technical problems and of course we're ready
to pick up the fight when being challenged by the business about the way we write
software to solve their problems. At the other hand, our customers are also biased towards
their ways, they probably already were earning money without our software or, they might
have some other system created twenty years ago by ancient Cobol programmers and it
somehow works, so they just want a modern or even cloud-based version of the same thing.
The point I am trying to make here is that we should strive to mitigate our biases and be
more open to what other people say and still not fall into a trap of their own biases. It was
not without a reason for Google People Operations team to create the Unconscious Bias @
Work workshop to help their colleagues to become aware of their biases and show some
methods to deal with them.

The Cynefin complexity model requires us to at least categorize the complexity we are
dealing with in our problem space (and also sometimes in the solution space). But to assign
the right category, we need to make a lot of decisions, and here we often get our System

1 responding and making assumptions based on our biases and experiences from the past,
rather than engaging System 2 to start reasoning and thinking. Of course, every one of us is
familiar with a colleague exclaiming yeah, that’s easy! before you can even finish describing
the problem. We also often see people organizing endless meetings and conference calls to
discuss something that we assume to be a straightforward decision to make.

Cognitive biases are playing a crucial role here. Some biases can profoundly influence
decision-making, and this is definitely System 1 speaking. Here are some of the biases and
heuristics that can affect your thinking about system design:

e Choice-supportive bias: If you have chosen something, you will be positive
about this choice even though it might have been proven to contain significant
flaws. Typically, this happens when we come up with the first model and try to
stick to it at all costs, even if it becomes evident that the model is not optimal and
needs to be changed. Also, this bias can be observed when you choose a
technology to use, such as a database or a framework.

¢ Confirmation bias: Very similar to the previous one, confirmation bias makes
you only hear arguments that support your choice or position and ignore
arguments that contradict the arguments that support your choice, although
these arguments may show that your opinion is wrong.

e Band-wagon effect: When the majority of people in the room agree on
something, this something begins to make more sense to the minority that
previously disagreed. Without engaging System 2, the opinion of the majority
gets more credit without any objective reason. Remember that what the majority
decides is not the best choice by default!

[19]

Why Domain-Driven Design? Chapter 1

¢ Overconfidence: Too often, people tend to be too optimistic about their abilities.
This bias might cause them to take more significant risks and make the wrong
decisions that have no objective grounds but are based exclusively on their
opinion. The most obvious example of this is the estimation process. People
invariably underestimate rather than overestimate the time and effort they are
going to spend on a problem.

¢ Availability heuristic: The information we have is not always all the information
that we can get about a particular problem. People tend to base their decisions
only on the information in hand, without even trying to get more details. This
often leads to an over-simplification of the domain problem and an
underestimation of the essential complexity. This heuristic can also trick us when
we make technological decisions and choose something that has always worked
without analyzing the operational requirements, which might be much higher
than our technology can handle.

The importance of knowing how our decision-making process works is hard to
overestimate. The books referenced in this section contain much more information about
human behavior and different factors that can have a negative impact on our cognitive
abilities. We need to remember to turn on System 2 in order to make better decisions that
are not based on emotions and biases.

Knowledge

Many junior developers tend to think that software development is just typing code, and
when they become more experienced in typing, get to know more IDE shortcuts, and know
frameworks and libraries by heart, they will be ninja developers, able to write something
like Instagram in a couple of days.

Well, the reality is harshly different. In fact, after getting some experience and after
deliberately spending months and maybe years in death-marches towards impossible
deadlines and unrealistic goals, people usually slow down. They begin to understand that
writing code immediately after receiving a specification might not be the best idea. The
reason for this might already be apparent to you if you have read all the previous sections.
Being obsessed with solutions instead of understanding the problem, ignoring essential
complexity and conforming to biases—all these factors influence us when we are
developing software. As soon as we get more experience and learn from our own mistakes
and, preferably, from the errors of others, we will realize that the most crucial part of
writing useful, valuable software is the knowledge about the problem space, for which we
are building a solution.

[20]

Why Domain-Driven Design? Chapter 1

Domain knowledge

Not all knowledge is equally useful when building a software system. Knowing about
writing Java code in the financial domain might not be very beneficial when you start
creating an iOS app for real-estate management. Of course, principles such as clean code,
DRY, and so on are helpful no matter what programming language you use. But
knowledge of one domain might be vastly different from what you need for another
domain.

That is where we encounter the concept of domain knowledge. Domain knowledge is
knowledge about the domain in which you are going to operate with your software. If you
are building a trading system, your domain is financial trading, and you need to gain some
knowledge about trading to understand what your users are talking about and what they
want.

This all comes to getting into the problem space. If you are not able to at least understand
the terminology of the problem space, it would be hard (if not impossible) to even speak to
your future users. If you lack domain knowledge, the only source of information for you
would be the specification. When you do have at least some domain knowledge,
conversations with your users become more fruitful since you can understand what they
are talking about. One of the consequences of this is building trust between the customer
and the developer. Such trust is hard to overestimate. A trusted person gets more insight
and mistakes are forgiven more easily. By speaking the domain language to domain experts
(your users and customers), you also gain credibility, and they see you and your colleagues
as more competent people.

Obtaining domain knowledge is not an easy task. People specialize in their domains for
years, they become experts in their domains, and they do this kind of work for a living.
Software developers and business analysts do something else, and that particular problem
domain might be little known or completely unknown when they need to obtain domain
knowledge.

The art of obtaining domain knowledge is through effective collaboration. Domain experts
are the source of ultimate truth (at least, we want to treat them like this). However, they
might not be. Some organizations have fragmented knowledge; some might just be wrong.
Knowledge crunching in such environments is even harder, but there might be bits and
pieces of information waiting to be found at the desks of some low-level clerks, and your
task is to see it.

[21]

Why Domain-Driven Design? Chapter 1

The general advice here is to talk to many different people from inside the domain, from
the management of the whole organization, and from adjacent domains. There are several
ways to obtain domain knowledge, and here are some of them:

e Conversations are the most popular method, formalized as meetings. However,
conversations often turn into a mess without any visible outcome. Still, some
value is there, but you need to listen carefully and ask many questions to get
valuable information.

¢ Observation is a very powerful technique. Software people need to fight their
introversion, leave the ivory tower and go to a trading floor, to a warehouse, to a
hotel, to a place where business runs, and then talk to people and see how they
work. Jeff Patton gave many good examples in his talk at the DDD Exchange
2017 (https ://skillsmatter.com/skillscasts/10127-empathy-driven-
design).

e Domain Storytelling, a technique proposed by Stefan Hofer and his colleagues
from Hamburg University (http://domainstorytelling.org/), advocates using
pictograms, arrows, and a little bit of text, plus numbering actions sequentially,
to describe different interactions inside the domain. This technique is easy to use,
and typically there is not much to explain to people participating in such a
workshop before they start using it to deliver the knowledge.

¢ EventStorming was invented by Alberto Brandolini. He explains the method in
his book Introducing EventStorming (2017, Leanpub), and we will also go into
more detail later in this book when we start analyzing our sample domain.
EventStorming uses post-it notes and a paper roll to model all kinds of activities
in a straightforward fashion. Workshop participants write facts from the past
(events) on post-its and put them on the wall, trying to make a timeline. It allows
the discovery of activities, workflows, business processes, and more. Very often,
it also uncovers ambiguities, assumptions, implicit terminology, confusion, and
sometimes conflicts and anger. In short—everything that the domain knowledge
consists of.

[22]

Why Domain-Driven Design? Chapter 1

Avoiding ignhorance

Back in 2000, Philip Armour published an article called Five Orders of

Ignorance (Communications of the ACM, Volume 43 Issue 10, Oct. 2000), with the subtitle
Viewing software development as knowledge acquisition and ignorance reduction. This message
very much correlates with Alberto's quote from the previous section, although it is
somewhat less catchy but by no means less powerful. The article argues that increasing
domain knowledge and decreasing ignorance are two keys to creating software that
delivers value.

The article concentrates on ignorance and identifies five levels of it:

¢ The zero ignorance level, which authors call the lack of ignorance, is the lowest. On
this level, you have no ignorance because you have most of the knowledge and
know what to do and how to do it.

e The first level is the lack of knowledge. It is when you don't know something, but
you realize and accept this fact. You want to get more knowledge and decrease
your ignorance to level zero, so you have channels to obtain the knowledge.

¢ The second level also called the lack of awareness, is when you don't know that
you don't know. Most commonly, this occurs when you get a specification that
describes a solution without specifying which problem this solution is trying to
solve. This level can also be observed when people pretend to have competence
they do not possess, and at the same time are ignorant of it. Such people might be
lacking both business and technical knowledge. A lot of wrong decisions are
made at this level of ignorance.

e The third level is the lack of process. On this level, you don't even know how to
find out about your lack of awareness. Literally, you don't have a way to figure
out you don't know that you don't know, which sounds like inception, but that's
exactly what it is. It is tough to do anything on this level since apparently there is
no way to access end users, even to ask if you understand their problem or not,
in order to get down to level two. Essentially, with the lack of process, it is nearly
impossible to find out if the problem you're trying to solve even exists. Building a
system might be the only choice in this case, since it will be the only way to get
any feedback.

e The fourth and last level of ignorance is meta-ignorance. It is when you don't
know about the five degrees of ignorance.

[23]

Why Domain-Driven Design? Chapter 1

As you can see, ignorance is the opposite of knowledge. The only way to decrease
ignorance is to increase understanding. A high level of ignorance, conscious or
subconscious, leads to a lack of knowledge and a misinterpretation of the problem, and
therefore increases the chance of building the wrong solution:

Important decisions

made here
Ignorance
First version goes

/ to production

vi0

Ignorance is highest at the earliest stages

Eric Evans, the father of DDD, describes the upfront design as locking in our ignorance. The
issue with the upfront design is that we do it at the beginning of a project, and this is when
we have the least knowledge and the most ignorance. It has become the norm to make most
of the important decisions about the design and architecture of the software at the very
beginning of a project when there is virtually nothing to base such decisions on. This
practice is quite obviously not optimal.

[24]

Why Domain-Driven Design? Chapter 1

In the article Introducing Deliberate Discovery (https://dannorth.net/2010/08/30/
introducing-deliberate-discovery/), Dan North suggests that we realize our position of
being on at least the second level of ignorance when we start any project. In particular, the
following three risks need to be taken into account:

o A few unpredictable bad things will happen during the project.
e Being unpredictable, these things are unknown in advance.
e Being bad, these things will negatively impact the project.

To mitigate these risks, Dan recommends using INTRODUCING DELIBERATE
DISCOVERY, that is, seeking knowledge from the start. Since not all knowledge is equally
important, we need to try to identify those sensitive areas where ignorance is creating the
most impediments. By raising knowledge levels in these areas, we enable progress. At the
same time, we need to keep an eye on new troublesome areas and resolve them too; and
this process is continuous and iterative.

Summary

In this chapter, we briefly touched on the concepts of problem and solution spaces,
requirements specifications, complexity, knowledge, and ignorance. Although at first, these
topics don't seem to be directly related to software development, they have a significant
impact on how and what we deliver.

Don't fall into the trap of thinking that you can deliver valuable solutions to your customers
just by writing code and that you can deliver faster and better by typing more characters
per second and writing cleaner code. Customers do not care about your code or how fast
you type. They only care that your software solves their problems in a way that hasn't been
done before. As Gojko AdZi¢ wrote in his sweet little book about impact mapping (Impact
Mapping: Making a Big Impact With Software Products and Projects, 2012, published

by Provoking Thoughts), you cannot only formulate user stories like this:

e As a someone
e To do something
¢ I need to use some functionality

[25]

Why Domain-Driven Design? Chapter 1

Your user, someone, might be already doing something by executing some functionality even
without your software: using a pen and paper, using Excel, or using a system from one of
your competitors. What you need to ensure is that you make a difference, make an impact.
Your system will let people work faster, more efficiently, allow them to save money or even
not to do this work at all if you completely automate it.

To build such software, you must understand the problems of your users. You need to
crunch the domain knowledge, decrease the level of ignorance, accurately classify the
problem's complexity, and try to avoid cognitive biases on the way to your goal. This is an
essential part of DDD, although not all of these topics are covered in the original Domain-
Driven Design: Tackling Complexity in the Heart of Software by Eric Evans, although known by
the DDD community as the Blue Book.

In the next chapter, we will do a deep dive into the importance of language and discover
the definition of Ubiquitous Language.

Further reading

Here is a list of information you can refer to:

e A Leader’s Framework for Decision Making, Snowden D J, Boone M E.
(2007), Harvard Business Review 2007 November issue

o Thinking, Fast and Slow (First edition), Kahneman, Daniel (2011), New York:
Farrar, Straus, and Giroux

e Impact Mapping: Making a Big Impact With Software Products and Projects, AdZi¢, G.
(2012), Provoking Thoughts.

[26]

