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Abstract

It is well-known that dynamic programming algorithms can utilize tree de-
compositions to provide a way to solve some NP -hard graph optimization
problems where the complexity is polynomial in the number of nodes and
edges in the graph, but exponential in the width of the underlying tree de-
composition. However, there has been relatively little computational work
done to determine the practical utility of such dynamic programming al-
gorithms. We have developed software to construct tree decompositions
using various heuristics and have created a fast, memory-efficient dynamic
programming implementation for solving maximum weighted independent
set. We describe our software and the algorithms we have implemented,
focusing on memory saving techniques for the dynamic programming. We
compare the running time and memory usage of our implementation with
other techniques for solving maximum weighted independent set, including
a commercial integer programming solver and a semi-definite programming
solver. Our results indicate that it is possible to solve some instances where
the underlying decomposition has width much larger than suggested by the
literature. For certain types of problems, our dynamic programming code
runs several times faster than these other methods.
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1. Introduction

Tree decompositions were introduced by Robertson and Seymour in 1984 in
one of their papers on structural graph theory [22]. These decompositions
provide a combinatorial metric for the “distance” from a graph to a tree,
known as the width of a decomposition. The minimal achievable width for
a graph is its treewidth, and can be thought of as a measure of how “tree-
like” a graph is. Although tree decompositions were introduced as tools
for proving the Graph Minors Theorem [21], these mappings have gained
importance in computational graph theory, as they allow numerous NP -hard
graph problems to be solved in polynomial time for graphs with bounded
treewidth [11]. We begin by giving some necessary definitions, then proceed
to describe how to compute and use these decompositions in algorithms.

Formally, a tree decomposition of a graph G = (V,E) is a pair (X,T ),
where X = {X1, . . . , Xn} is a collection of subsets of V , and T = (I, F ) is a
tree with I = {1, . . . , n}, satisfying three conditions:

1. the union of the subsets Xi is equal to the vertex set V (1 ≤ i ≤ n),

2. for every edge uv in G, {u, v} ⊆ Xi for some i ∈ {1, 2, . . . , n}, and

3. for every v ∈ V , if Xi and Xj contain v for some i, j ∈ {1, 2, . . . , n},
then Xk also contains v for all k on the (unique) path in T connecting
i and j. In other words, the set of nodes whose subsets contain v form
a connected sub-tree of T .

The subsets Xi are often referred to as bags of vertices. The width of a
tree decomposition ({X1, . . . , Xn}, T ) is the maximum over i ∈ {1, 2, . . . , n}
of |Xi| − 1, and the treewidth of a graph G, denoted τ(G), is the minimum
width over all tree decompositions of G. The negative one in the defini-
tion is purely cosmetic, and was chosen so that trees (and more generally,
forests) have treewidth one. An optimal tree decomposition for a graph G is
a decomposition (X,T ) with width τ(G).

2. Constructing Tree Decompositions

Our primary interest in tree decompositions is to determine their practical
utility for solving discrete optimization problems via dynamic programming.
Dynamic programming recursions that exploit tree decompositions often re-
quire some kind of exhaustive search at each tree node, and this search is
typically exponential in the size of the bags. Thus, it is very important for us
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to be able to generate decompositions with as small a width as possible. Re-
sults of Seymour and Thomas [25] show that finding optimal decompositions
is NP -hard, so we resort to heuristic methods for generating decompositions
of “low” width.

Here we give a very brief overview of existing algorithms - a more com-
prehensive survey can be found in [16]. The algorithms for finding low-width
tree decompositions are generally divided into two classes - “theoretical” and
“computational.” The former category includes, for example, the linear al-
gorithm of Bodlaender [8] which checks if a tree decomposition of width at
most k exists (for a fixed constant k), and the approximation algorithms of
Amir [3]. These are generally considered computationally intractible due to
very large hidden constants and complexity of implementation - e.g. Bod-
laender’s algorithm was shown by Röhrig [23] to have too high a computa-
tional cost even when k = 4. The approximation algorithms of Amir have
been tested on graphs with up to 570 nodes, but require several hours of
running time.

Most computational work has been done utilizing heuristics which offer
no guarantee on their maximum deviation from optimality. One of the most
common methods for constructing tree decompositions is based on known al-
gorithms for decomposing chordal graphs, which are characterized by having
no induced cycles of length greater than three. An elimination ordering is a
permutation of the vertex set of a graph, commonly used to guide the addi-
tion of edges to make the graph chordal, a process known as triangulation.
A valid tree decomposition for the triangulated graph can be formed with
bags consisting of the sets of higher numbered neighbors for each vertex in
the elimination ordering. Since a tree decomposition for a graph is valid for
all subgraphs on the same vertex set, this simultaneously yields a decompo-
sition for the original graph. The specifics of these kinds of procedures are
well-known in the literature and we provide pseudocode of our implemen-
tations of two algorithms that create tree decompositions for a graph given
an ordering of its vertices. We require a function GetNeighbors(G, v,W )
that returns the neighbors of vertex v in the graph that are also contained in
the set of vertices W . Algorithm 1 describes the elimination of a vertex from
a graph, and Algorithm 2 describes the details of our implementation of the
tree decomposition construction algorithm outlined in [12]. We describe our
implementation of the procedure given in [9] in Algorithm 3.
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Algorithm 1 Eliminate a vertex v from G

1: procedure Eliminate(G,v,W ,del). Graph G = (V,E), v ∈ V , W ⊆ V
2: Eliminate the vertex v from G and optionally delete it from G if

del==true

3: Set N(v) = GetNeighbors(G,v,W )
4: for u,w ∈ N(v) so that u 6= w do
5: E = E ∪ {u,w} . Add the edge {u,w} to the graph G
6: end for
7: if del==true then
8: Delete the vertex v from the graph G
9: end if

10: end procedure

Algorithm 2 Construct a tree decomposition using Gavril’s algorithm

1: procedure Gavril(G,π) . Graph G = (V,E), π a permutation of V
2: Constructs a tree decomposition T = (X, (I, F )) with Xi the bag of

vertices for tree node i ∈ I and (I, F ) a tree
3: Initialize T = (X, (I, F )) with X = I = F = ∅ and k = 0.
4: H = G; n = |V |
5: for i = 1 to n− 1 do . Triangulate G
6: H=Eliminate(H,πi, {πi+1, . . . , πn}, false)
7: end for
8: k = 1, I = {1}, X1 = {πn}, t[πn] = 1 . t[] is an n-long array
9: for i = n− 1 to 1 do . Iterate backwards through π to construct T

10: Bi = GetNeighbors(H,πi, {πi+1, . . . , πn})
11: Find m = j such that j ≤ k for all πk ∈ Bi
12: if Bi = Xt[m] then
13: Xt[m] = Xt[m] ∪ {πi}
14: t[πi] = t[m]
15: else
16: k = k + 1
17: I = I ∪ {k}; Xk = Bi ∪ {πi}; F = F ∪ (k, t[m]) . Update T
18: t[πi] = k
19: end if
20: end for
21: return T = (X, (I, F ))
22: end procedure
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Algorithm 3 Construct a tree decomposition using the Bodlaender-Koster
algorithm

1: procedure BK(G,π) . Graph G = (V,E), π a permutation of V
2: Constructs a tree decomposition T = (X, (I, F )) with Xi the bag of

vertices for tree node i ∈ I and (I, F ) a tree
3: H = G; n = |V |
4: Initialize T = (X, (I, F )) with I = {1, 2, . . . , n} and Xi = ∅ for all
i ∈ I

5: for i = 1 to n− 1 do . Triangulate G
6: H=Eliminate(H,πi, {πi+1, . . . , πn}, false)
7: end for
8: for i = 0 to n− 1 do . Iterate through π to construct T
9: Bi = GetNeighbors(H,πi, {πi+1, . . . , πn})

10: Xπi = {πi} ∪Bi . Construct the bag for tree node i
11: Find m = πj such that j ≤ k for all πk ∈ Bi
12: F = F ∪ {i,m} . Add the edge (i,m} to the tree
13: Eliminate(H,πi, Bi, false) . Add edges among πi’s forward

neighbors
14: end for
15: return T = (X, (I, F ))
16: end procedure

2.1 Elimination Ordering Heuristics

As our primary goal is to quickly generate tree decompositions of low width,
we implemented a number of commonly used heuristics from the literature
for generating elimination orderings. Since our purpose was to utilize and
implement established heuristics, we do not describe the inner workings of
each heuristic, but instead provide a reference describing each heuristic, and
how to invoke it with our software.

All of the elimination ordering heuristics we implemented are available
via a call to the function find elimination ordering which places the
ordering in a user-provided location. The user can optionally provide a
starting vertex for the heuristic and can also specify whether or not to add
the edges produced during triangulation to the input graph.

We ran our algorithm on a set of more than 500 graphs generously pro-
vided to us by Hans Bodlaender. These are graphs that were previously
available on the TreewidthLIB site [7]. We restrict our computational re-
sults to only those 248 graphs containing 100 nodes or more. We ran each
heuristic on each of these graphs with a random starting vertex and a time
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Best Worst Avg. Best Worst
Heuristic Avg. Width Width Width Time Time Time Avg.

[Reference] Width Rank Rank Rank Rank Rank Rank Time
MinDegree [13] 72.3 1 9 3.94 1 6 3.42 0.17

MCS [5] 78.95 1 10 7.38 4 10 6.81 205.1
MCS-M [5] 105.11 1 10 8.41 1 10 8.35 186.70
LEX-M [24] 99.4 1 10 8.37 1 7 9.52 232.8
MinFill [14] 66.7 1 7 1.53 4 10 7.83 21.4

MetisMMD [18, 20] 69.75 1 9 3.04 1 8 2.23 0.04
MetisNodeND [18] 71.91 1 10 5.12 1 8 2.56 0.05

AMD [2] 72.1 1 10 3.9 1 7 1.85 0.03
MMD [20] 72 1 10 4.07 1 6 3.93 0.18

MinMaxDegree 72 1 10 6.83 3 10 6.84 28.6

Table 1: A comparison of the performance of elimination ordering heuristics
on a set of test graphs

limit of 7200 seconds. For each run, we recorded the running time (in sec-
onds) and the width of the resulting tree decomposition. Table 1 presents the
results of these computational experiments. For each heuristic, we provide a
reference from the literature and its performance in terms of both width and
running time. The average width and running times are computed across all
248 decompositions. For the width and running time rankings, we provide
the best, worst, and average ranking of each heuristic in terms of both width
and running time where a ranking of one indicates the heuristic is the top
performer and a rank of ten means it is the worst. As an example of how
to interpret the results, in terms of width, the MinDegree heuristic was the
top-ranked heuristic on at least one problem, it was ranked as low as ninth
on one instance, and its average width ranking was 3.94.

We can view the relative performance of each heuristic on this set of
benchmark graphs by plotting the average width and running time rankings
in the width-time plane. In Figure 1, we see that Greedy Minimum Fill,
Metis MMD, and Approximate Minimum Degree (AMD) are not dominated
by any other heuristic in either dimension. If one requires a decomposition
with as small a width as possible, then Greedy Minimum Fill is a good
choice. For larger graphs where running time becomes an issue, then the
best choices are probably Metis MMD or Approximate Minimum Degree.
While the slower, more complex heuristics such as LEXM performed poorly
on many of the problems, we have seen cases where they dramatically out-
performs all the other heuristics. For example, on the problem 1dc.256
from the DIMACS Independent Set Challenge [26], the LEXM heuristic
produces a decomposition with width 78. However, Greedy Minimum Fill,
Metis MMD, and Approximate Minimum Degree produce widths of 119, 132,
and 128, respectively. Thus, while Greedy Minimum Fill, Metis MMD, and
Approximate Minimum Degree are superior on most instances, exceptions
exist where the other heuristics produce decompositions with much lower
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Figure 1: A comparison of the average width and average running time of
various heuristics on a large set of benchmark problems

widths.

3. Solving Maximum Weighted Independent Set

Having described how to construct tree decompositions, we now describe
how we use these decompositions as part of a dynamic programming algo-
rithm to solve maximum weighted independent set (MWIS). The dynamic
programming recursion for using tree decompositions to solve MWIS is well-
known [6, 9]. The general idea is to root the tree decomposition and work
upwards from the leaves, maintaining a dynamic programming table at each
node in the tree. Given a tree node j, we denote its bag of vertices as
Xj and let Gj denote the subgraph induced by all the vertices contained
in bags at or beneath tree node j in the rooted tree decomposition. For
each independent set U ⊆ Xj , there is a table entry with value fj(U) equal
to the weight of the maximum weight independent set S ⊆ Gj such that
S ∩Xj = U . Since Gr = G, the largest value in the table for the root node
r gives the weight of the maximum weight independent set in G. We now
briefly describe the computation of fr(U) via dynamic programming.

For a leaf node l in the tree and an independent set U ⊆ Xl, the value of
fl(U) is just the actual weight w(U) of U since there are no vertices outside
of Xl ⊆ Gl to consider. For a non-leaf node j with d child nodes c1, c2, . . . , cd
and some independent set U ⊆ Xj , fj(U) can be calculated in terms of the
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values stored at the child nodes via the dynamic programming equation

fj(U) = w(U) +
d∑
i=1

max{fci(V )− w(V ∩ U) : V ∩Xj = U ∩Xci}. (1)

In other words, for every independent set U ⊆ Xj , we must look at the
table for each child tree node ci to find all independent sets V ⊆ Xci that
contain the same vertices as U from Xci∩Xj . To compute the value of fj(U)
we need to find the set V that has the largest value when one excludes their
intersection.

There are two fundamental operations required in this dynamic pro-
gramming recursion. First, we must have a fast method for finding all the
independent sets in a bag of vertices. Second, for every independent set U
that we find in a child node ci, we must store it in such a way that the
lookups required to compute equation (1) at the parent can be done very
quickly. We describe the implementation of these operations in the next
section.

3.1 Implementation Details

3.1.1 Set operations

The most important low-level operations in the dynamic programming al-
gorithm are set operations: finding the intersection or union of two sets
and checking if a particular vertex is in a set. For performance to be com-
petitive with other methods on large problems, these operations must be
performed quickly and in a memory-efficient manner. Since we are al-
ways dealing with subsets of a known set (typically a bag of vertices in
the tree decomposition), we are able to represent subsets of vertices as bit
vectors and perform the intersection, union, and containment operations
via bitwise AND (∧) and OR (∨) operations. As an example, suppose
we have some bag of vertices B = {2, 4, 6, 8, 10, 11, 12, 15} and two subsets
S, T ⊂ B with S = {2, 8, 10, 15} and T = {4, 6, 10, 11, 15}. The set S is
represented as 10011001 and T as 01101101. To check if the i-th vertex of
B is in S, we check to see if S ∧ (2i) is non-zero. To calculate the union
S∪T = {2, 4, 6, 8, 10, 11, 15}, we compute 10011001∨01101101 = 11111101.

When a tree decomposition has width less than the processor’s word size
(typically 32- or 64-bits), each of these bitwise operations can be done using
a single CPU instruction. For larger width decompositions, we developed a
bigint t type to represent the required larger bitmasks as an array of 32-
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or 64-bit words. The code for the bigint t type is included in our software
distribution and allows us to handle decompositions with arbitrarily large
widths, as long as memory is available.

3.1.2 Finding all independent sets

A fundamental kernel in the dynamic programming algorithm for MWIS is
finding all the independent sets in a graph. In particular, for each bag of
vertices Xj in the tree decomposition, we must find all the independent sets
in the subgraph induced by Xj . As there are 2|Xj | sets to consider, it is
clear that this search must be done efficiently, especially for larger widths.
Algorithm 4 provides pseudocode for our implementation of this procedure,
which takes advantage of the bitwise representation of subsets.

In Algorithm 4, we create a list S of all the independent sets contained
in a graph G = (V,E) with n vertices. The sets are represented by the
bitmasks s that range from 0 (representing the empty set) up to 2n − 1
(representing all of V ). In line 9 we check to see if there is some edge in
the current set s that prevents it from being independent. When we find
a non-independent set s′, then in line 18 we are often able to advance the
current value of s by a large amount. For example, if we know that the
bitmask 1100100 does not represent an independent set, then any mask of
the form 11001·· cannot represent an independent set. This allows us to
advance to the bitmask 1101000 in the loop by adding 100 to 1100100.

3.1.3 Memory-efficient storage

We now describe our storage methods that allow for efficient lookups when
performing the dynamic programming recursion. Since we root the tree prior
to beginning the dynamic programming, the parent-child relationship of all
nodes in the tree is completely known when we search for independent sets
and update the tables. As all of the operations required by the dynamic
programming equation (1) involve the intersection of an independent set
with its parent tree node’s bag, we do not need an entry in the table of tree
node i for every independent set U ⊆ Xi. In particular, if j is the parent
of tree node i, then we have an entry in i’s table only for the independent
sets in Xi ∩ Xj , reducing the amount of storage required by the dynamic
programming tables.

Nevertheless, when processing a tree node j that has child node ci, for
every independent set U ⊆ Xj , we must still quickly find the entry for U∩Xci

in the table for tree node ci. Since all sets are represented as bitmasks, the

8



Algorithm 4 Find all the weighted independent sets in a graph G = (V,E)

1: procedure FindAllWIS(G)
2: Let A be the adjacency matrix of G so that that the row A[i] is

a bitmask representing i’s neighbors and let W [i] denote the weight of
vertex i

3: S = {(∅, 0)}; n = |V |; s = 1 . Store the empty set with weight 0
4: while s < 2n − 1 do . Loop over all non-empty subsets
5: is independent=true; i = w = 0
6: while i < n and is independent do
7: if bit i is set in s then . Vertex i is in the current set s
8: w = w +W [i] . Update the weight w of the current set s
9: if s ∧A[i] then . s contains some edge (i, ·)

10: is independent=false

11: end if
12: end if
13: i = i+ 1 . Consider the next vertex in V
14: end while
15: if is independent then
16: S = S ∪ (s, w); s = s+ 1 . Add the set and consider next

bitmask
17: else . Jump over 2b non-independent sets
18: s = s+ 2b (b the least significant bit of s)
19: end if
20: end while
21: return S
22: end procedure

natural solution to this problem is to utilize hash tables. As the width of our
decompositions grow, the dynamic programming tables can occupy a great
deal of memory, and so it is essential for the hash table implementation to
be fast and lightweight. Rather than attempt to write our own hash, we
experimented with several well-known existing implementations, including
the Standard Template Library (STL) map and unordered map as well as
the Boost hashtable. However, in our experience all of these consumed far
too much memory to handle larger width graphs, and we settled upon a
fast, open source, macro-based implementation called uthash[15]. This has
proved to be much faster and very robust, allowing us to handle decomposi-
tions with much larger widths than alternative hash table implementations.
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3.1.4 Dynamic programming implementation

We now provide the details of our dynamic programming implementation
for solving MWIS. Algorithm 5 describes how we compute the dynamic
programming tables at each node in the tree. In line 7, we generate a list
of all the independent sets contained in the subgraph induced by Xk, the
bag associated with tree node k. In practice, we do not actually store this
list but instead process each set as it is encountered for a slight savings in
memory. For each independent set s discovered, we compute its value in
the dynamic programming table in line 16 and then incorporate s into the
table Dk in lines 17-24. Note that for each independent set, we store the
triple (sp, s, fk(sp)) where sp is the intersection of s with the parent bag,
and fk(sp) is the value associated with this set in the dynamic programming
table. The bitmask for s is stored as it enables the reconstruction of the
full solution. However, this storage is not necessary if one wishes to simply
determine the optimal weight.

Having described how we compute the dynamic programming table for
each tree node j, it is now straightforward to solve MWIS for an input graph.
Algorithm 6 returns the weight m of the maximum weighted independent set
inG. However, it typically only gives us limited information about the actual
optimal solution discovered since the entry (s, s,m) in the tableDr only gives
us the vertices in this solution that are contained in the bag Xr. The actual
solution itself can be reconstructed very quickly by descending back down
the tree starting at the root node. Given a pre-order walk σ of the rooted
tree decomposition, and the set s that represents this solution’s intersection
with the root node’s bag, Algorithm 7 describes how to reconstruct the
corresponding actual optimal solution that has weight m.

3.2 Memory Usage

The obvious bottleneck for the dynamic programming algorithm is the stor-
age of the hash tables Dk at each tree node k. As mentioned previously,
one way we reduce the memory requirements is by storing a single entry
(sp, s, fk(sp)) for each independent set sp in the intersection of a tree node’s
bag with its parent’s. Nevertheless, the memory usage for our algorithm
can still be extremely large. Below we describe another optimization that
proved to be quite beneficial in practice.
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Algorithm 5 Compute the dynamic programming table for a node in the
tree decomposition

1: procedure ComputeDPTable(G, T ,k)
2: . Graph G, tree decomposition T = (X, (I, F )), node k
3: Let c1, c2, . . . , cd denote the children of tree node k and let p denote

the parent
4: Let Dj be the dynamic programming hash table for tree node j
5: Let fj(s) be the value associated with a set s in the table
6: Let H = G[Xk] be the subgraph of G induced by k’s bag
7: S = FindAllWIS(H) . S is a set of ordered pairs (s, w(s))
8: for all s ∈ S do
9: z = w(s)

10: for i = 1 to d do
11: ti = s ∩Xci . ti is the part of s contained in child i’s bag
12: Look up the entry for ti in the table Dci : (ti, ·, fci(ti))
13: z = z + fci(t)
14: end for
15: Let sp = s ∩Xp

16: fk(sp) = z − w(sp) . Subtract the weight of the parent
intersection

17: if (sp, ·, ·) /∈ Dk then . Check the hash table for the key sp
18: Dk = Dk ∪ (sp, s, fk(sp)). Add a new entry to the hash table
19: else . The key sp exists in the hash table
20: Let (sp, s

′, x) be the current entry stored in Dk for sp
21: if fk(sp) > x then
22: Update the value for sp in Dk: s

′ = s and x = fk(sp)
23: end if
24: end if
25: end for
26: return Dk

27: end procedure

3.2.1 Refining the tree decomposition

In order to run Algorithm 7, one must maintain the dynamic programming
tables for all tree nodes in memory. However, if one wishes to just determine
the weight of the maximum weighted independent set, then one can free
tables from memory once the parent tree node is processed. When we reach
the root node r in the tree, we know the weight of an optimal solution m and
some set s ⊆ Xr that represents the intersection of this optimal solution with

11



Algorithm 6 Solve maximum weighted independent set

1: procedure MWIS(G, T , σ)
2: Generate an ordering π using find elimination ordering

3: Create a tree decomposition T = (X, (I, F )) by running
Gavril(G, π) or BK(G, π).

4: Root the tree T at an arbitrary node r and construct a post-order
walk σ of T

5: for i = 1 to |X| do
6: ComputeDPTable(G,T ,σ[i])
7: end for
8: m = 0 . m will hold the max weight
9: for all entries (s, s, x) in the root table Dr do

10: m = max(m,x)
11: end for
12: return m
13: end procedure

Algorithm 7 Reconstruct the MWIS

1: procedure ReconstructSolution(T , σ, s)
2: Let S = s . S will hold the optimal solution
3: Let opt int sets be an |X|-long vector of sets
4: Let opt int sets[σ[0]] = s
5: for i = 0 to |X| do
6: for all child tree nodes j of σ[i] do
7: tp = opt int sets[σ[i]] ∩Xj . t is the part of opt. sol. in Xj

8: Let (tp, t, fj(tp)) be the entry corresponding to tp in table Dj

9: S = S ∪ {t} . Append the set t to the optimal solution
10: end for
11: end for
12: return S
13: end procedure

Xr. In practice, the set s typically contains only a few vertices and is often
empty. Nevertheless, s still gives us information about the optimal solution
that we can exploit. In particular, we know that any vertex v ∈ Xr \ {s} is
not in the optimal solution, and we know that all vertices neighboring some
vertex in s are not in the optimal solution. Therefore, all these vertices can
be removed from the bags of the tree decomposition and we can re-run the
dynamic programming algorithm on the refined tree. Since this new tree
typically has smaller width, the running time of the dynamic programming

12



Figure 2: The maximum independent set in the graph is {A,D,F,H}, and
A is the only vertex in this set also in the root node. Therefore, B and C
can be removed from the tree decomposition in the refinement procedure.

algorithm on the new tree is exponentially smaller, and the tables require
much less space, allowing us to store them in memory in order to reconstruct
the solution.

3.2.2 Memory usage estimation

Even with the refined tree, the memory required to process a single tree
node can still be too large, so we analyzed the memory consumption in
more detail. Given a tree node i and its parent p, we have a single entry for
each independent set contained in the intersection of Y = Xi ∩Xp. When
the relevant subgraph induced by Y is very sparse, there can be O(2|Y |)
independent sets to store, and so the memory consumption can truly be
exponential in the size of Y . However, the density of the subgraph plays a
critical role in the actual expected number of independent sets contained in
such a subgraph.

Under a few basic assumptions, we can estimate the expected total num-
ber of independent sets contained in a subgraph and use this to determine
if a tree decomposition-based approach is tractable. Given some set Y as
above, let H be the subgraph induced by Y . Denote the number of vertices
in H as w and the number of edges as s and assume that the probability
of any two vertices in H being joined by an edge is the same for all pairs
of vertices. Then the probability of any two vertices u, v in H not being
joined by an edge is ρ = 1− s/

(
w
2

)
, and so the probability that some set of q

vertices from Y represents an independent set is ρ(q2). The expected number
of independent sets in H is then

E[|FindAllWIS(H)|] = 1 +
w∑
k=1

(
w

k

)
ρ(k2). (2)
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We were unable to determine an asymptotic formula for equation (2), but
we can compute the sum directly. Our software is able to compute this
value exactly using multiple precision arithmetic, and in the next section we
demonstrate that it is typically a very good estimate of the number of inde-
pendent sets found and stored over the course of the dynamic programming
algorithm implementation.

4. Computational Results

Our goals are to compare the overall performance of our dynamic program-
ming algorithm with other well-established methods, to explore how our
algorithm’s performance scales as we alter various properties of the graphs,
and to examine the traditional wisdom regarding the maximum width graphs
that can be handled via tree decomposition-based dynamic programming.
All of the experiments in this section were conducted using a standard Linux
compute node equipped with 16GB of RAM and two quad-core AMD pro-
cessors.

4.1 Partial k-trees

One of the challenges in analyzing the performance of our algorithms was
finding a suitable set of graphs with a wide variety of sizes and densities with
known upper bounds on the treewidth. Fortunately, it is straightforward to
generate such graphs, using the definition of partial k-trees. The class of k-
trees is defined recursively. In the smallest case, a clique on k+1 vertices is a
k-tree. Otherwise, for n > k, a k-tree G on n+1 vertices can be constructed
from a k-tree H on n vertices by adding a new vertex v adjacent to some
set of k vertices which form a clique in H. A k-tree has treewidth exactly k
(the bags of the optimal tree decomposition are the cliques of size k + 1).
The set of all subgraphs of k-trees is known as the partial k-trees. It easy
to see that any partial k-tree has treewidth at most k (one can derive a
valid tree decomposition of width k from that of the k-tree which contains
it). Furthermore, any graph with treewidth at most k is the subgraph of
some k-tree [19]. Thus the set of all graphs with treewidth at most k can
be generated by finding all k-trees and their subgraphs, leading us to an
easy randomized generator for graphs of bounded treewidth. The INDDGO
software distribution includes an executable, gen pkt, to produce randomly
generated partial k-trees.
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Figure 3: The running time and memory usage of the other methods re-
main roughly constant as the width varies while n and m remain constant.
The tree decomposition based approach requires more memory as the width
increases.

4.2 Comparison with other algorithms

We compared the runtime and memory usage of our algorithm against other
well-known implementations: the commercial mixed integer programming
solver, Gurobi, and two freely available branch and bound algorithms for
MWIS based on the semi-definite programming (SDP) relaxation [10]. One
of the SDP-based codes uses an interior point method (IPM ) to solve the
SDP, and the other uses a boundary point method (BPM ).

For experiments with Gurobi, we formulate the MWIS instance as a
pure 0/1 integer programming (IP) problem and then produce an input file
that is read directly by Gurobi. The two implementations based on the
SDP relaxation are able to read problem instances directly from so-called
DIMACS files [26] so that no translation is necessary. Before presenting the
results, we note that it is not our intention to claim superiority of any one
implementation over another. Instead, we are primarily interested in the
scaling behavior of each implementation in terms of the size of the instance,
measured in terms of the number of nodes, number of edges, or width of a
given tree decomposition.

In our first computational experiment, we generated a set of 40 partial
k-trees. Each of these graphs has 256 nodes and approximately 2056 edges,
with k running from 11 to 50 and p (the probability of keeping an edge in
the k-tree) varying from 0.17 to 0.81. We created tree decompositions us-
ing the Greedy Minimum Fill heuristic and Gavril’s algorithm, and ran our
dynamic programming algorithm along with the SDP codes and Gurobi. In
Figure 3, we see that the running time and memory usage of our dynamic
programming are in line with the other methods until we reach the graphs
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Number Avg. Max Avg. Max
Implementation Completed Time Time Mem (GB) Mem(GB)

Gurobi 80 26 499 0.18 1.21
BPM 51 53819 432226 0.18 0.87
IPM 32 58835 442509 3.35 16.01
TD 56 87 795 2.02 24.16

TD with refinement 62 134 2375 1.05 17.58

Table 2: A comparison of the performance of four different WIS implemen-
tations on a set of 80 partial k-trees. Average and maximum values apply
only to completed graphs.

with width 40. At this point, both the memory usage and running times for
our dynamic programming begin to increase very rapidly and require signif-
icantly more resources than the other methods. This supports the notion
that, all other things being equal, the underlying treewidth of a graph does
not affect the running time of the SDP- or IP-based methods whereas the
running time and memory usage of the dynamic programming implementa-
tion are both very sensitive to the width of the tree decomposition.

In the next set of experiments, we generated 80 partial k-trees with the
number of nodes n ∈ {1000, 2000, 4000, 8000}, k ∈ {15, 30, 60, 90, 120}, and
keeping edges in the k-trees with probabilities p ∈ {0.2, 0.4, 0.6, 0.8}. We ran
each of the four codes on all of the graphs, recording the running time and
memory usage of each run. While Gurobi was able to produce an optimal
solution for all 80 instances, the other methods met with varying degrees of
success. When running our algorithm and keeping all of the dynamic pro-
gramming tables in memory, we completed 56 of the 80 graphs and ran out
of memory on the remainder. If we used the refinement procedure discussed
in Section 3.2, we were able to complete 62 of the 80 graphs. The BPM
and IPM implementations completed 51 of 80 and 32 of 80 graphs, respec-
tively. Running time was typically the bottleneck for these methods (we
imposed a limit of five days computing time). However, in fairness to these
two methods, we note that neither was designed to handle graphs with large
numbers of nodes or edges. In fact, these implementations can occasionally
solve smaller instances that our dynamic programming implementation can-
not. Some specific details summarizing the results of these computations
are given in Table 2.

Since Gurobi is clearly the most successful of these methods for solving
instances from our data set, we made some more detailed comparisons of
the performance of our dynamic programming algorithm utilizing the tree
refinement procedure. We find that this variant of our dynamic program-
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Gurobi Refined TD
n m time memory time memory

1000 17721 0.543 29008 0.54 17528
2000 35721 1.684 52516 0.99 26104
4000 71721 4.423 98700 2.76 53040
8000 143721 19.618 194284 8.72 101236
1000 23628 0.764 38348 0.36 9416
2000 47628 2.35 70140 0.75 17096
4000 95628 10.424 133872 2.85 30664
8000 191628 44.986 254920 8.6 56176

Table 3: A comparison of the dynamic programming algorithm versus
Gurobi on a particular family of partial k-trees with k = 30 and p = .8.

ming implementation can be up to 5 times faster than Gurobi on certain
graphs. A more detailed inspection of the results shows that our implemen-
tation is faster on all partial k-trees in our test set with k = 15 or 30 and
p = 0.6 or p = 0.8. These are lower width instances that share the majority
of edges with the original k-tree. Since each bag in the tree decomposition
of these graphs is somewhat dense, equation (2) implies that the dynamic
programming tables remain small, leading to lower memory usage and faster
running times. Table 3 contains some more detailed information regarding
the instances with k = 30 and p = 0.8. It is worth noting that on all of
these instances where our running time is lower, our memory usage is also
substantially less than Gurobi ’s.

4.3 Results on large width graphs

Due to the theoretical exponential growth in running time and memory
usage, the traditional thinking has been that graphs with larger widths
cannot be handled by dynamic programming based on tree decompositions.
For example, Hüffner, et al, [17] state that “As a rule of thumb, the typical
border of practical feasibility lies somewhere below a treewidth of 20 for the
underlying graph.” In this section, we run our algorithm on a particular class
of partial k-trees where we increase the parameter k as much as possible.
This allows us to find the optimal solution to weighted independent set
instances on graphs with 10,000 nodes where the width of the underlying
decomposition is as large as 708.

For this experiment, we generated partial k-trees with 10,000 nodes,
p = 0.9 and k ∈ {100, 200, . . . , 700}. The resulting seven graphs have up to
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running Total DP
m width time table entries memory(GB)

895455 103 112 6,395,909 0.32
1781910 205 790 29,554,406 1.14
2659365 306 3638 78,361,001 3.00
3527820 405 14353 165,086,196 7.70
4387275 505 33223 289,374,021 12.80
5237730 615 93450 478,397,538 20.92
6079185 708 168411 715,022,103 36.99

Table 4: Details of our algorithm’s performance on a set of high width graphs
with 10,000 nodes and up to 6 million edges.
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Figure 4: The memory usage and running time of our dynamic programming
algorithm on large-width graphs.

six million edges and we solved them to optimality on a server with 512 GB
RAM. Table 4 presents the running time and memory usage of our procedure
on these graphs, and these values are plotted in Figure 4

4.4 Estimating the Memory Usage

Virtually all of the storage required by our dynamic programming algorithm
is related to the storage of the tables at each tree node. Given a tree node k
with bag Xk and its parent’s bag Xp, recall that for each independent set s
contained in the subgraph induced by Xk, there is an entry in the dynamic
programming table for s∩Xp (see line 15 of Algorithm 5). Thus, in order to
estimate the number of dynamic programming table entries required for tree
node k, we apply our estimate from equation (2) to the subgraph induced
by Xk ∩Xp.

We ran an experiment on a set of graphs to test the empirical accuracy
of formula (2) as a tool for estimating the total number of table entries
necessary for the dynamic programming. The first set of graphs consisted
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# of DP Est. # of
Graph (n,m) width entries DP entries

ch150.tsp (150,432) 19 7456 18825.8
celar07pp (162,764) 18 1677 1763.4

a280.tsp-pp-003 (169,490) 19 7262 37576.9
a280.tsp-pp (261,749) 19 9065 39847.2
celar08pp (265,1029) 18 3321 3591.1
a280.tsp (280,788) 20 10532 79877.1

Table 5: A comparison of the accuracy of our formula for estimating the
number of dynamic programming table entries required by our algorithm

purely of partial k-trees. On these graphs, our estimate was within 10% of
the actual value in every case. However, since the procedure that we use to
randomly generate partial k-trees adheres closely to the assumptions behind
equation (2), we also ran the same procedure on a set of 48 graphs taken
from Hans Bodlaender’s TreewidthLib [7] that contained anywhere between
50 and 1290 nodes. For these graphs, our estimate of the total number of
independent sets was within an average of 87% of the actual value, typically
over-estimating the required number of entries. Details of this comparison
for some of these graphs are shown in Table 5

5. Obtaining and Running the Code

The latest stable version of our tree decomposition and dynamic program-
ming code is freely available via github at https://github.com/bdsullivan/
INDDGO. One can download a compressed archive of the code and build it
following the instructions contained therein.

5.1 Algorithm options

During the course of developing our code for solving MWIS via tree decom-
positions, we experimented with many different options for various stages
of the procedure: the heuristic used to determine the elimination ordering,
the algorithm used to construct a tree decomposition from an elimination
ordering, different techniques to root the tree, different methods to process a
tree node, and so on. We also experimented with so-called nice tree decom-
positions which allow a particularly simple dynamic programming algorithm
for MWIS [9]. While dynamic programming using nice decompositions was
generally slower in our experiments, our software allows one to experiment
with these types of decompositions. It is not possible to give an exhaustive
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Figure 5: The figure on the left shows a diagram of a width 35 decomposition
where tree nodes are red if their bag has 36 vertices, blue if 35 vertices, and
gradations of purple for smaller bag sizes. The diagram on the right shows
the same decomposition after it is transformed into a nice decomposition
with the make nice option.

comparison of all the options provided by our software, but we give a brief
description of many of the implemented options in Table 6. The main binary
created by compiling INDDGO is serial wis and all of the options listed
below are accessible via command line switches.

5.2 Example Usage

A typical use of the code is to create a decomposition using some elimination
ordering heuristic and then solve MWIS. The following command does this
for a small sample graph included with the distribution, using the AMD
heuristic for the elimination ordering. We also generate a file that can be
processed by Graphviz [1] for visualization. Some sample visualizations of
the decomposition are given in Figure 5.

serial_wis -f ../sample_graphs/1dc.64.dimacs -gviz 1dc.64.gviz -amd -gavril

file n m w obj

1dc.64.dimacs 64 543 35 10

Additional details on the dynamic programming can be produced by adding
the -v option.
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Option Description
-gavril Uses Gavril’s algorithm [12] to construct a tree decompo-

sition from an elimination ordering
-bk Uses the algorithm of Bodlaender-Koster [9] to construct

a tree decomposition from an elimination ordering
-make nice Transforms the decomposition into a nice decomposition
-w <file> Writes the decomposition to a file in a DIMACS-like format
-t <file> Reads the decomposition from a file
-gviz

<file>

Writes the decomposition in .dot format for Graphviz

-root <v> Roots the tree at node v
-asp root Uses the algorithm of Aspvall, et al,[4] to determine a suit-

able root node
-child root Considers the structure of the parent/child relationship

when rooting the tree
-dfs Uses a depth-first search to generate the post order walk

(breadth-first is default)
-nonniceDP Uses non-nice dynamic programming routines for a nice

decomposition
-del ch Deletes the dynamic programming tables once they have

been processed
-pc Searches for independent sets by trying to modify an ex-

isting child’s table
-split bag Divides a tree node’s bag into two parts prior to searching

for ind. sets
-async tbl Does the DP operation one child node at a time rather

than all at once
-mem est Uses equation (2) to estimate the memory usage of the

algorithm

Table 6: Some of the options available with serial wis in INDDGO
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6. Conclusion

In this paper, we have described an efficient and freely available software li-
brary for generating tree decompositions and running dynamic programming
to solve weighted independent set instances. Our software offers easy-to-use
implementations of many well-known heuristics for producing elimination
orderings that lead to low-width tree decompositions. Our dynamic pro-
gramming code is particularly memory efficient and computational experi-
ments indicate that our implementation is competitive and even superior to
state of the art methods for certain types of MWIS instances. While sparse
graphs with large widths present memory consumption difficulties that our
code is currently unable to handle, we have nevertheless demonstrated that
dynamic programming on decompositions with very large widths can be fea-
sible in some cases, casting doubt on the conventional wisdom. While our
code currently is able to solve only weighted independent set, our software
framework is designed so that other dynamic programming algorithms can
be incorporated in a modular fashion. Finally, we mention that we have
created a parallel version of our software that is able to generate tree de-
compositions and solve weighted independent set instances using distributed
memory architectures [27].
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