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Arithmetic for Computers 
n  Operations on integers 

n  Addition and subtraction 
n  Multiplication and division 
n  Dealing with overflow 

n  Floating-point real numbers 
n  Representation and operations  

§3.1 Introduction 
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Integer Addition 
n  Example: 7 + 6 

§3.2 A
ddition and S

ubtraction 

n  Overflow if result out of range 
n  Adding +ve and –ve operands, no overflow 
n  Adding two +ve operands 

n  Overflow if result sign is 1 

n  Adding two –ve operands 
n  Overflow if result sign is 0 
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Integer Addition Example 1 
n  Consider adding the numbers 7 and 6 

represented in 2’s complement using 4 bits. 
What is the result of the computation? 
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Integer Addition Example 1 
n  Consider adding the numbers 7 and 6 

represented in 2’s complement using 4 bits. 
What is the result of the computation? 

        7:    0 1 1 1 
        6:    0 1 1 0 
             ------------ 
                1 1 0 1   Result is negative (-3)!  

      Overflow. 
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Integer Addition Example 2 
n  Consider adding the numbers -7 and -6 

represented in 2’s complement using 4 bits. 
What is the result of the computation? 
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Integer Addition Example 2 
n  Consider adding the numbers -7 and -6 

represented in 2’s complement using 4 bits. 
What is the result of the computation? 

        7 è -7:    0 1 1 1 è 1 0 0 0 è 1 0 0 1 
        6 è -6:    0 1 1 0 è 1 0 0 1 è 1 0 1 0 
                                                       ------------ 
                                                          0 0 1 1    
 
Result is positive (3)! Overflow. 
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Integer Subtraction 
n  Add negation of second operand 
n  Example: 7 – 6 = 7 + (–6) 

 +7:  0000 0000 … 0000 0111 
–6:  1111 1111 … 1111 1010 
+1:  0000 0000 … 0000 0001 

n  Overflow if result out of range 
n  Subtracting two +ve or two –ve operands, no overflow 
n  Subtracting +ve from –ve operand 

n  Overflow if result sign is 0 

n  Subtracting –ve from +ve operand 
n  Overflow if result sign is 1 
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Integer Subtraction Example 1 
n  Consider subtracting 7 from -6 assuming that the 

numbers are represented in 2’s complement 
using 4 bits. What is the result of the 
computation? 
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Integer Subtraction Example 1 
n  Consider subtracting 7 from -6 assuming that the 

numbers are represented in 2’s complement 
using 4 bits. What is the result of the 
computation? 

        -6:    1 0 1 0 
        -7:    1 0 0 1 
             ------------ 
                0 0 1 1   Result is positive (3)!   

     Overflow. 



Chapter 3 — Arithmetic for Computers — 11 

Integer Subtraction Example 2 
n  Consider subtracting -7 from 6 assuming that the 

numbers are represented in 2’s complement 
using 4 bits. What is the result of the 
computation? 
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Integer Subtraction Example 2 
n  Consider subtracting -7 from 6 assuming that the 

numbers are represented in 2’s complement 
using 4 bits. What is the result of the 
computation? 

     6 – (-7) = 6 + 7 
 
      6: 0 1 1 0 
      7: 0 1 1 1 
         --------- 
          1 0 0 1  The result is negative (-3). Overflow. 
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When Overflow Occurs 

Operation Operand A Operand B Result indicating 
overflow 

A+B ≥ 0 ≥ 0 < 0 
A+B < 0 < 0 ≥ 0 
A-B ≥ 0 < 0 < 0 
A-B < 0 ≥ 0 ≥ 0 
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Dealing with Overflow 
n  Some languages (e.g., C) ignore overflow 

n  Use MIPS addu, addui, subu instructions 
n  Other languages (e.g., Ada, Fortran) 

require raising an exception 
n  Use MIPS add, addi, sub instructions 
n  On overflow, invoke exception handler 

n  Save PC in exception program counter (EPC) 
register 

n  Jump to predefined handler address 
n  mfc0 (move from coprocessor reg) instruction can 

retrieve EPC value, to return after corrective action 
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Arithmetic for Multimedia 
n  Graphics and media processing operates 

on vectors of 8-bit and 16-bit data 
n  Use 64-bit adder, with partitioned carry chain 

n  Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors 
n  SIMD (single-instruction, multiple-data) 

n  Saturating operations 
n  On overflow, result is largest representable 

value 
n  c.f. 2s-complement modulo arithmetic 

n  E.g., clipping in audio, saturation in video 
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Multiplication 
n  Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 
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Multiplication Hardware 

Initially 0 
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Multiplication 
n  Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 

0 0 0 0 1 0 0 0 
1 0 0 1 

0 0 0 0 0 0 0 0 
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Multiplication 
n  Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 

0 0 0 0 1 0 0 0 
1 0 0 1 

0 0 0 0 1 0 0 0 
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Multiplication 
n  Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 

0 0 0 1 0 0 0 0 
0 1 0 0  

0 0 0 0 1 0 0 0 
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Multiplication 
n  Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 

0 0 1 0 0 0 0 0 
0 0 1 0  

0 0 0 0 1 0 0 0 
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Multiplication 
n  Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 

0 1 0 0 0 0 0 0 
0 0 0 1  

0 0 0 0 1 0 0 0 
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Multiplication 
n  Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 

0 0 0 0 0 0 0 0 
0 0 0 0  

0 1 0 0 1 0 0 0 
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Optimized Multiplier 
n  Perform steps in parallel: add/shift 

n  One cycle per partial-product addition 
n  That’s ok, if frequency of multiplications is low 

Multiplier in half right of Product register 
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Faster Multiplier 
n  Uses multiple adders 

n  Cost/performance tradeoff 

n  Can be pipelined 
n  Several multiplications performed in parallel 
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MIPS Multiplication 
n  Two 32-bit registers for product 

n  HI: most-significant 32 bits 
n  LO: least-significant 32-bits 

n  Instructions 
n  mult rs, rt  /  multu rs, rt 

n  64-bit product in HI/LO 

n  mfhi rd  /  mflo rd 
n  Move from HI/LO to rd 
n  Can test HI value to see if product overflows 32 bits 

n  mul rd, rs, rt 

n  Least-significant 32 bits of product –> rd 
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Division 
n  Check for 0 divisor 
n  Long division approach 

n  If divisor ≤ dividend bits 
n  1 bit in quotient, subtract 

n  Otherwise 
n  0 bit in quotient, bring down next 

dividend bit 

n  Restoring division 
n  Do the subtract, and if remainder 

goes < 0, add divisor back 
n  Signed division 

n  Divide using absolute values 
n  Adjust sign of quotient and remainder 

as required 

        1001 
1000 1001010 
    -1000 
        10 
        101  
        1010 
       -1000 
          10 

n-bit operands yield n-bit 
quotient and remainder 

quotient 

dividend 

remainder 

divisor 

§3.4 D
ivision 

Grammar school algorithm: 
Try to see how big a number can be 

subtracted, creating a digit of the quotient 
on each attempt. 
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Division Hardware 

Initially dividend 

Initially divisor 
in left half 
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Division Hardware 

85 12 Dividend 
(initially = 
 remainder) 

divisor 
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Division Hardware 

  85 12 dividend divisor 
-12 
 73 

 1 

remainder 
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Division Hardware 

  85 12 dividend divisor 
-12 
 73 

 2 

-12 
61  remainder 
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Division Hardware 

  85 12 dividend divisor 
-12 
 73 

 3 

-12 
61  

-12 
 49 remainder 
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Division Hardware 

  85 12 dividend divisor 
-12 
 73 

 4 

-12 
61  

-12 
 49 
-12 
  37 remainder 
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Division Hardware 

  85 12 dividend divisor 
-12 
 73 

 5 

-12 
61  

-12 
 49 
-12 
  37 
-12 
  25 remainder 
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Division Hardware 

  85 12 dividend divisor 
-12 
 73 

 6 

-12 
61  

-12 
 49 
-12 
  37 
-12 
  25 
-12 

  13 remainder 
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Division Hardware 

  85 12 dividend divisor 
-12 
 73 

 7 

-12 
61  

-12 
 49 
-12 
  37 
-12 
  25 
-12 

  13 
-12 

    1 remainder 
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Division Hardware 

  85 12 dividend divisor 
-12 
 73 

 7 

-12 
61  

-12 
 49 
-12 
  37 
-12 
  25 
-12 

  13 
-12 

    1 
-12 
-11 

remainder < 0 
add divisor to 
remainder 
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Division Hardware 

  85 12 dividend divisor 
-12 
 73 

 7 

-12 
61  

-12 
 49 
-12 
  37 
-12 
  25 
-12 

  13 
-12 

    1 
-12 
-11 

remainder 
+12 
    1 

quotient 
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Division Hardware 

Initially dividend 

Initially divisor 
in left half 

10000000 

10010100 



Chapter 3 — Arithmetic for Computers — 40 

Division Hardware 

Initially dividend 

Initially divisor 
in left half 

01000000 

00010100 

0001 
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Division Hardware 

Initially dividend 

Initially divisor 
in left half 

00100000 

00010100 

0010 
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Division Hardware 

Initially dividend 

Initially divisor 
in left half 

00010000 

00010100 

0100 
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Division Hardware 

Initially dividend 

Initially divisor 
in left half 

00001000 

00000100 

1001 
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Optimized Divider 

n  One cycle per partial-remainder subtraction 
n  Looks a lot like a multiplier! 

n  Same hardware can be used for both 
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Faster Division 
n  Can’t use parallel hardware as in multiplier 

n  Subtraction is conditional on sign of remainder 
n  Faster dividers (e.g., SRT division) 

generate multiple quotient bits per step 
n  Still require multiple steps 
n  Uses a lookup table for guessing several 

quotient bits per step 
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MIPS Division 
n  Use HI/LO registers for result 

n  HI: 32-bit remainder 
n  LO: 32-bit quotient 

n  Instructions 
n  div rs, rt  /  divu rs, rt 

n  No overflow or divide-by-0 checking 
n  Software must perform checks if required 

n  Use mfhi, mflo to access result 
n  E.g., mfhi $s3 

mflo $s2 
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Floating Point 
n  Representation for non-integer numbers 

n  Including very small and very large numbers 
n  Like scientific notation 

n  –2.34 × 1056 
n  +0.002 × 10–4 
n  +987.02 × 109 

n  In binary 
n  ±1. s1 s2 …2 × 2yyyy  (+- 1 + s1 x 2 -1 + s2 x 2 ^ -2 …) 

n  Types float and double in C 

normalized 

not normalized 

§3.5 Floating P
oint 



Floating-Point Numbers  
n  Suppose you are told to use the following 

representation for floating point numbers 
using 4 bits: bit 3 (sign), bit 2 (exponent of 
2), and bits 1 and 0 (fraction of 2). Assume 
that numbers are normalized, i.e., the 
number is (-1)sign x (1 + 2exponent). 

n  What are the possible numbers that can be 
represented? 
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Floating-Point Numbers  
n  Suppose you are told to use the following representation for floating 

point numbers using 4 bits: bit 3 (sign), bit 2 (exponent of 2), and bits 
1 and 0 (fraction of 2). Assume that numbers are normalized, i.e., 
the number is (-1)sign x (1 + 2exponent). 

n  What are the possible numbers that can be represented? 

n  Answer: exponent can be 0 or 1. Fraction can be 
00, 11, 10, or 01 (which means 0, (2-1 + 2-2 = 
0.75), 2-1= 0.5, or 2-2 = 0.25). So, the possible 
numbers are: 

n  ±1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5 
n  How do get numbers < 1? 
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Floating-Point Numbers  
n  Suppose you are told to use the following representation for floating 

point numbers using 4 bits: bit 3 (sign), bit 2 (exponent of 2), and bits 
1 and 0 (fraction of 2). Assume that numbers are normalized, i.e., 
the number is (-1)sign x (1 + 2exponent). 

n  What are the possible numbers that can be represented? 
n  Answer: exponent can be 0 or 1. Fraction can be 00, 11, 

10, or 01 (which means 0, (2-1 + 2-2 = 0.75), 2-1= 0.5, or 
2-2 = 0.25). So, the possible numbers are: 

n  ±1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5 
n  How do we get numbers < 1? 

n  Answer: Need a negative exponent (more 
about this later) 
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Floating Point Standard 
n  Defined by IEEE Std 754-1985 
n  Developed in response to divergence of 

representations 
n  Portability issues for scientific code 

n  Now almost universally adopted 
n  Two representations 

n  Single precision (32-bit) 
n  Double precision (64-bit)  
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IEEE Floating-Point Format 

n  S: sign bit (0 ⇒ non-negative, 1 ⇒ negative) 
n  Normalize significand: 1.0 ≤ |significand| < 2.0 

n  Always has a leading pre-binary-point 1 bit, so no need to 
represent it explicitly (hidden bit) 

n  Significand is Fraction with the “1.” restored 
n  Exponent: excess representation: actual exponent + Bias 

n  Ensures exponent is unsigned 
n  Single: Bias = 127; Double: Bias = 1023 

S Exponent Fraction 

single: 8 bits 
double: 11 bits 

single: 23 bits 
double: 52 bits 

Bias)(ExponentS 2Fraction)(11)(x −×+×−=
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Single-Precision Range 
n  Exponents 00000000 and 11111111 reserved 
n  Smallest value 

n  Exponent: 00000001 
⇒ actual exponent = 1 – 127 = –126 

n  Fraction: 000…00 ⇒ significand = 1.0 
n  ±1.0 × 2–126 ≈ ±1.2 × 10–38 

n  Largest value 
n  exponent: 11111110 
⇒ actual exponent = 254 – 127 = +127 

n  Fraction: 111…11 ⇒ significand ≈ 2.0 
n  ±2.0 × 2+127 ≈ ±3.4 × 10+38 
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Double-Precision Range 
n  Exponents 0000…00 and 1111…11 reserved 
n  Smallest value 

n  Exponent: 00000000001 
⇒ actual exponent = 1 – 1023 = –1022 

n  Fraction: 000…00 ⇒ significand = 1.0 
n  ±1.0 × 2–1022 ≈ ±2.2 × 10–308 

n  Largest value 
n  Exponent: 11111111110 
⇒ actual exponent = 2046 – 1023 = +1023 

n  Fraction: 111…11 ⇒ significand ≈ 2.0 
n  ±2.0 × 2+1023 ≈ ±1.8 × 10+308 
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Floating-Point Precision 
n  Relative precision 

n  all fraction bits are significant 
n  Single: approx 2–23 

n  Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal 
digits of precision 

n  Double: approx 2–52 

n  Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal 
digits of precision 
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Floating-Point Example 
n  Represent –0.75 

n  –0.75 = (–1)1 × 1.12 × 2–1 

n  S = 1 
n  Fraction = 1000…002 
n  Exponent = –1 + Bias 

n  Single: –1 + 127 = 126 = 011111102 
n  Double: –1 + 1023 = 1022 = 011111111102 

n  Single: 1011111101000…00 
n  Double: 1011111111101000…00 
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Floating-Point Example 
n  Represent –0.75 

n  –0.75 = (–1)1 × 1.12 × 2–1 

n  S = 1 
n  Fraction = 1000…002 
n  Exponent = –1 + Bias 

n  Single: –1 + 127 = 126 = 011111102 
n  Double: –1 + 1023 = 1022 = 011111111102 

n  Single: 1011111101000…00 
n  Double: 1011111111101000…00 
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Floating-Point Example 
n  What number is represented by the single-

precision float 
 11000000101000…00 

n  S = 1 
n  Fraction = 01000…002 
n  Fxponent = 100000012 = 129 

n  x = (–1)1 × (1 + 012) × 2(129 – 127) 
 = (–1) × 1.25 × 22 
 = –5.0 
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Denormal Numbers 
n  Exponent = 000...0 ⇒ hidden bit is 0 

n  Smaller than normal numbers 
n  allow for gradual underflow, with 

diminishing precision 

n  Denormal with fraction = 000...0 

Two representations 
of 0.0! 

BiasS 2Fraction)(01)(x −×+×−=

0.0±=×+×−= −BiasS 20)(01)(x
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Infinities and NaNs 
n  Exponent = 111...1, Fraction = 000...0 

n  ±Infinity 
n  Can be used in subsequent calculations, 

avoiding need for overflow check 
n  Exponent = 111...1, Fraction ≠ 000...0 

n  Not-a-Number (NaN) 
n  Indicates illegal or undefined result 

n  e.g., 0.0 / 0.0 
n  Can be used in subsequent calculations 
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Floating-Point Addition 
n  Consider a 4-digit decimal example 

n  9.999 × 101 + 1.610 × 10–1 

n  1. Align decimal points 
n  Shift number with smaller exponent 
n  9.999 × 101 + 0.016 × 101 

n  2. Add significands 
n  9.999 × 101 + 0.016 × 101 = 10.015 × 101 

n  3. Normalize result & check for over/underflow 
n  1.0015 × 102 

n  4. Round and renormalize if necessary 
n  1.002 × 102 
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Floating-Point Addition 
n  Now consider a 4-digit binary example 

n  1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375) 
n  1. Align binary points 

n  Shift number with smaller exponent 
n  1.0002 × 2–1 + –0.1112 × 2–1 

n  2. Add significands 
n  1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1 

n  3. Normalize result & check for over/underflow 
n  1.0002 × 2–4, with no over/underflow 

n  4. Round and renormalize if necessary 
n  1.0002 × 2–4 (no change)  = 0.0625 
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FP Adder Hardware 
n  Much more complex than integer adder 
n  Doing it in one clock cycle would take too 

long 
n  Much longer than integer operations 
n  Slower clock would penalize all instructions 

n  FP adder usually takes several cycles 
n  Can be pipelined 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 

Multiplexer to 
select largest  
exponent 

Multiplexer to 
select significand 
of smallest number 

Multiplexer to 
select significand 
of largest number 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 
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Floating-Point Multiplication 
n  Consider a 4-digit decimal example 

n  1.110 × 1010 × 9.200 × 10–5 

n  1. Add exponents 
n  For biased exponents, subtract bias from sum 
n  New exponent = 10 + –5 = 5 

n  2. Multiply significands 
n  1.110 × 9.200 = 10.212  ⇒  10.212 × 105 

n  3. Normalize result & check for over/underflow 
n  1.0212 × 106 

n  4. Round and renormalize if necessary 
n  1.021 × 106 

n  5. Determine sign of result from signs of operands 
n  +1.021 × 106 
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Floating-Point Multiplication 
n  Now consider a 4-digit binary example 

n  1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375) 
n  1. Add exponents 

n  Unbiased: –1 + –2 = –3 
n  Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127 

n  2. Multiply significands 
n  1.0002 × 1.1102 = 1.1102  ⇒  1.1102 × 2–3 

n  3. Normalize result & check for over/underflow 
n  1.1102 × 2–3 (no change) with no over/underflow 

n  4. Round and renormalize if necessary 
n  1.1102 × 2–3 (no change) 

n  5. Determine sign: +ve × –ve ⇒ –ve 
n  –1.1102 × 2–3  = –0.21875 
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FP Arithmetic Hardware 
n  FP multiplier is of similar complexity to FP 

adder 
n  But uses a multiplier for significands instead of 

an adder 
n  FP arithmetic hardware usually does 

n  Addition, subtraction, multiplication, division, 
reciprocal, square-root 

n  FP ↔ integer conversion 
n  Operations usually takes several cycles 

n  Can be pipelined 
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FP Instructions in MIPS 
n  FP hardware is coprocessor 1 

n  Adjunct processor that extends the ISA 
n  Separate FP registers 

n  32 single-precision: $f0, $f1, … $f31 
n  Paired for double-precision: $f0/$f1, $f2/$f3, … 

n  Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s 
n  FP instructions operate only on FP registers 

n  Programs generally don’t do integer ops on FP data, 
or vice versa 

n  More registers with minimal code-size impact 
n  FP load and store instructions 

n  lwc1, ldc1, swc1, sdc1 
n  e.g., ldc1 $f8, 32($sp) 
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FP Instructions in MIPS 
n  Single-precision arithmetic 

n  add.s, sub.s, mul.s, div.s 
n  e.g., add.s $f0, $f1, $f6 

n  Double-precision arithmetic 
n  add.d, sub.d, mul.d, div.d 

n  e.g., mul.d $f4, $f4, $f6 
n  Single- and double-precision comparison 

n  c.xx.s, c.xx.d (xx is eq, lt, le, …) 
n  Sets or clears FP condition-code bit 

n  e.g. c.lt.s $f3, $f4 
n  Branch on FP condition code true or false 

n  bc1t, bc1f 
n  e.g., bc1t TargetLabel 
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FP Example: °F to °C 
n  C code: 
 float f2c (float fahr) { 
  return ((5.0/9.0)*(fahr - 32.0)); 
} 

n  fahr in $f12, result in $f0, literals in global memory 
space 

n  Compiled MIPS code: 
 f2c: lwc1  $f16, const5($gp) 
     lwc1  $f18, const9($gp) 
     div.s $f16, $f16, $f18 
     lwc1  $f18, const32($gp) 
     sub.s $f18, $f12, $f18 
     mul.s $f0,  $f16, $f18 
     jr    $ra 
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FP Example: Array Multiplication 
n  X = X + Y × Z 

n  All 32 × 32 matrices, 64-bit double-precision elements 
n  C code: 
 void mm (double x[][], 
         double y[][], double z[][]) { 
  int i, j, k; 
  for (i = 0; i! = 32; i = i + 1) 
    for (j = 0; j! = 32; j = j + 1) 
      for (k = 0; k! = 32; k = k + 1) 
        x[i][j] = x[i][j] 
                  + y[i][k] * z[k][j]; 
} 

n  Addresses of x, y, z in $a0, $a1, $a2, and 
i, j, k in $s0, $s1, $s2 



Chapter 3 — Arithmetic for Computers — 74 

Storing multi-dimensional arrays 
Consider a 3 x  2 matrix stored in memory in row major order, 
 i.e., elements are stored row by row. Each element is 4-bytes 
long. What is the byte offset of element i,j? 
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Storing multi-dimensional arrays 
Consider a 3 x  2 matrix stored in memory in row major order, 
 i.e., elements are stored row by row. Each element is 4-bytes 
long. What is the byte offset of element i,j? 

A00   A01 
A10   A11 
A20   A21 

[i,j] = (i * row dim + j)  * size element 
 
[1,1] = (1 * 2 + 1) * 4 = 12 
 
[2,0] = (2*2 + 0) * 4 = 16 

A00 
A01 

A10 
A11 

A20 
A21 

4 

0 

8 
12 

16 
20 

Absolute address [i,j] = array base address + (i * row dim + j)  * size element 
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Storing multi-dimensional arrays 
Write MIPS code to load into $t4, element A [i,j] assuming that  
The base address of A is in $s0, i is in $s1, j in $s2, each 
element of A is 4 bytes and A is a 10 x 20 matrix. 

Absolute address [i,j] = array base address + (i * row dim + j)  * size element 
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Storing multi-dimensional arrays 
Write MIPS code to load into $t4, element A [i,j] assuming that  
The base address of A is in $s0, i is in $s1, j in $s2, each 
element of A is 4 bytes and A is a 10 x 20 matrix. 

Absolute address [i,j] = array base address + (i * row dim + j)  * size element 
 

addi  $t1, $0, 20  # $t1 = 20 
mul  $t1, $s1, $t1  # $t1 = i * 20 
add  $t1, $t1, $s2  # $t1 = i * 20 + j 
sll  $t1, $t1, 2  # $t1 = (i * 20 + j) * 4 
add  $t1, $t1, $s0  # $t1 = Addr[A] + (i * 20 + j) * 4  
lw  $t4, 0 ($t1)  # $t4 = A[i,j]                 
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FP Example: Array Multiplication 
n   MIPS code: 
    li   $t1, 32       # $t1 = 32 (row size/loop end) 

    li   $s0, 0        # i = 0; initialize 1st for loop 

L1: li   $s1, 0        # j = 0; restart 2nd for loop 

L2: li   $s2, 0        # k = 0; restart 3rd for loop 

    sll  $t2, $s0, 5   # $t2 = i * 32 (size of row of x) 

    addu $t2, $t2, $s1 # $t2 = i * size(row) + j 

    sll  $t2, $t2, 3   # $t2 = byte offset of [i][j] 

    addu $t2, $a0, $t2 # $t2 = byte address of x[i][j] 

    l.d  $f4, 0($t2)   # $f4 = 8 bytes of x[i][j] 

L3: sll  $t0, $s2, 5   # $t0 = k * 32 (size of row of z) 

    addu $t0, $t0, $s1 # $t0 = k * size(row) + j 

    sll  $t0, $t0, 3   # $t0 = byte offset of [k][j] 

    addu $t0, $a2, $t0 # $t0 = byte address of z[k][j] 

    l.d  $f16, 0($t0)  # $f16 = 8 bytes of z[k][j] 

    … 
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FP Example: Array Multiplication 
    … 

    sll  $t0, $s0, 5       # $t0 = i*32 (size of row of y) 

    addu  $t0, $t0, $s2    # $t0 = i*size(row) + k 

    sll   $t0, $t0, 3      # $t0 = byte offset of [i][k] 

    addu  $t0, $a1, $t0    # $t0 = byte address of y[i][k] 

    l.d   $f18, 0($t0)     # $f18 = 8 bytes of y[i][k] 

    mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j] 

    add.d $f4, $f4, $f16   # f4=x[i][j] + y[i][k]*z[k][j] 

    addiu $s2, $s2, 1      # $k k + 1 

    bne   $s2, $t1, L3     # if (k != 32) go to L3 

    s.d   $f4, 0($t2)      # x[i][j] = $f4 

    addiu $s1, $s1, 1      # $j = j + 1 

    bne   $s1, $t1, L2     # if (j != 32) go to L2 

    addiu $s0, $s0, 1      # $i = i + 1 

    bne   $s0, $t1, L1     # if (i != 32) go to L1 
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Accurate Arithmetic 
n  IEEE Std 754 specifies additional rounding 

control 
n  Not all real numbers in the FP range can be 

represented. 
n  Extra bits of precision (guard, round, sticky) 
n  Choice of rounding modes 
n  Allows programmer to fine-tune numerical behavior of 

a computation 
n  Not all FP units implement all options 

n  Most programming languages and FP libraries just 
use defaults 

n  Trade-off between hardware complexity, 
performance, and market requirements 
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Rounding with Guard Digits 
n  Add 2.5610 x 100 to 2.3410 x 102 assuming 3 significant decimal 

digits. Round to the nearest decimal number, first with guard and 
round digits, and then without them. 

n  With guard and round digits: 

       2.3400 x 102  
       + 0.0256 x 102  
         ---------- 
          2.3656 x 102 è 2.37 x  102  

n  Without guard and round digits: 

       2.34 x 102  
       + 0.02 x 102  
         ------ 
          2.36 x 102 



Subword Parallellism 
n  Graphics and audio applications can take 

advantage of performing simultaneous 
operations on short vectors 
n  Example:  128-bit adder: 

n  Sixteen 8-bit adds 
n  Eight 16-bit adds 
n  Four 32-bit adds 

n  Also called data-level parallelism, vector 
parallelism, or Single Instruction, Multiple 
Data (SIMD) 
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x86 FP Architecture 
n  Originally based on 8087 FP coprocessor 

n  8 × 80-bit extended-precision registers 
n  Used as a push-down stack 
n  Registers indexed from TOS: ST(0), ST(1), … 

n  FP values are 32-bit or 64 in memory 
n  Converted on load/store of memory operand 
n  Integer operands can also be converted 

on load/store 
n  Very difficult to generate and optimize code 

n  Result: poor FP performance 
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x86 FP Instructions 

n  Optional variations 
n  I: integer operand 
n  P: pop operand from stack 
n  R: reverse operand order 
n  But not all combinations allowed 

Data transfer Arithmetic Compare Transcendental 
FILD  mem/ST(i) 

FISTP mem/ST(i) 

FLDPI 

FLD1 

FLDZ 

FIADDP  mem/ST(i) 

FISUBRP mem/ST(i) 
FIMULP  mem/ST(i) 
FIDIVRP mem/ST(i) 

FSQRT 

FABS 

FRNDINT 

FICOMP 

FIUCOMP 

FSTSW AX/mem 

FPATAN 

F2XMI 

FCOS 

FPTAN 

FPREM 

FPSIN 

FYL2X 
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Streaming SIMD Extension 2 (SSE2) 

n  Adds 4 × 128-bit registers 
n  Extended to 8 registers in AMD64/EM64T 

n  Can be used for multiple FP operands 
n  2 × 64-bit double precision 
n  4 × 32-bit double precision 
n  Instructions operate on them simultaneously 

n  Single-Instruction Multiple-Data 



Matrix Multiply 
n  Unoptimized code: 

1. void dgemm (int n, double* A, double* B, double* C) 

2. { 

3.  for (int i = 0; i < n; ++i) 

4.    for (int j = 0; j < n; ++j) 

5.    { 

6.     double cij = C[i+j*n]; /* cij = C[i][j] */ 

7.     for(int k = 0; k < n; k++ ) 

8.      cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */ 

9.     C[i+j*n] = cij; /* C[i][j] = cij */ 

10.   } 

11. } 
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Matrix Multiply 
n  x86 assembly code: 
1. vmovsd (%r10),%xmm0  # Load 1 element of C into %xmm0 

2. mov %rsi,%rcx        # register %rcx = %rsi 

3. xor %eax,%eax        # register %eax = 0 

4. vmovsd (%rcx),%xmm1  # Load 1 element of B into %xmm1 

5. add %r9,%rcx         # register %rcx = %rcx + %r9 

6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1, 
element of A 

7. add $0x1,%rax        # register %rax = %rax + 1 

8. cmp %eax,%edi        # compare %eax to %edi 

9. vaddsd %xmm1,%xmm0,%xmm0 # Add %xmm1, %xmm0 

10. jg 30 <dgemm+0x30>  # jump if %eax > %edi 

11. add $0x1,%r11d      # register %r11 = %r11 + 1 

12. vmovsd %xmm0,(%r10) # Store %xmm0 into C element 
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Matrix Multiply 
n  Optimized C code: 
1. #include <x86intrin.h> 

2. void dgemm (int n, double* A, double* B, double* C) 

3. { 

4.  for ( int i = 0; i < n; i+=4 ) 

5.   for ( int j = 0; j < n; j++ ) { 

6.    __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i]
[j] */ 

7.    for( int k = 0; k < n; k++ ) 

8.     c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */ 

9.              _mm256_mul_pd(_mm256_load_pd(A+i+k*n), 

10.             _mm256_broadcast_sd(B+k+j*n))); 

11.   _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */ 

12.  } 

13. } 
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Matrix Multiply 
n  Optimized x86 assembly code: 
1. vmovapd (%r11),%ymm0      # Load 4 elements of C into %ymm0 

2. mov %rbx,%rcx             # register %rcx = %rbx 

3. xor %eax,%eax             # register %eax = 0 

4. vbroadcastsd (%rax,%r8,1),%ymm1 # Make 4 copies of B element 

5. add $0x8,%rax             # register %rax = %rax + 8 

6. vmulpd (%rcx),%ymm1,%ymm1 # Parallel mul %ymm1,4 A elements 

7. add %r9,%rcx              # register %rcx = %rcx + %r9 

8. cmp %r10,%rax             # compare %r10 to %rax 

9. vaddpd %ymm1,%ymm0,%ymm0  # Parallel add %ymm1, %ymm0 

10. jne 50 <dgemm+0x50>      # jump if not %r10 != %rax 

11. add $0x1,%esi            # register % esi = % esi + 1 

12. vmovapd %ymm0,(%r11)     # Store %ymm0 into 4 C elements 
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Fallacy: Right Shift and Division 
n  Left shift by i places multiplies an integer 

by 2i 
n  Right shift divides by 2i? 

n  Only for unsigned integers 
n  For signed integers 

n  Arithmetic right shift: replicate the sign bit 
n  e.g., –5 / 4 

n  111110112 >> 2 = 111111102 = –2 
n  Rounds toward –∞ 

n  c.f. 111110112 >> 2 = 001111102 = +62 

§3.9 Fallacies and P
itfalls 
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Pitfall: FP Addition is not Associative 

n  Parallel programs may interleave 
operations in unexpected orders 
n  Assumptions of associativity may fail 

(x+y)+z x+(y+z)
x -1.50E+38 -1.50E+38
y 1.50E+38
z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00
1.50E+38

n  Need to validate parallel programs under 
varying degrees of parallelism 
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Fallacy: Who Cares About FP Accuracy? 

n  Important for scientific code 
n  But for everyday consumer use? 

n  “My bank balance is out by 0.0002¢!” L 

n  The Intel Pentium FDIV bug in 1994 
n  The market expects accuracy 
n  See Colwell, The Pentium Chronicles 
n  Intel recalled the flawed microprocessor at a  

cost of $500 million! 
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Concluding Remarks 
n  Bits have no inherent meaning 

n  Interpretation depends on the instructions 
applied 

n  Computer representations of numbers 
n  Finite range and precision 
n  Need to account for this in programs 

§3.9 C
oncluding R
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Concluding Remarks 
n  ISAs support arithmetic 

n  Signed and unsigned integers 
n  Two’s complement and IEEE 754 are 

standard. 
n  Floating-point approximation to reals 

n  Bounded range and precision 
n  Operations can overflow and underflow 



Chapter 3 — Arithmetic for Computers — 95 

Concluding Remarks 
n  MIPS ISA 

n  Core instructions: 54 most frequently used 
n  100% of SPECINT, 97% of SPECFP 

n  Other instructions: less frequent 
n  Rest of book concentrates on: 

n  add, addi, addu, addiu, sub, subu, AND, 
ANDI, OR, Ori, NOR, sll, srl 

n  lui, lw, sw,lhu,sh, lbu,sb,  
n  ll, sc 
n  beq, bne, j, jal, jr, 
n  slt, slti, sltu, sltiu 


