

Information Systems

RALPH STAIR • GEORGE REYNOLDS

Fundamentals of Information Systems, Sixth Edition

Ralph M. Stair & George W. Reynolds

Executive Vice President and Publisher: Jonathan Hulbert

Executive Vice President of Editorial, Business: lack W. Calhoun

Publisher: Joe Sabatino

Sr. Acquisitions Editor: Charles McCormick, Jr.

Sr. Product Manager: Kate Mason

Marketing Manager: Adam Marsh

Sr. Marketing Communications Manager: Libby Shipp

Marketing Coordinator: Suellen Ruttkay

Editorial Assistant: Nora Heink

Sr. Content Project Manager: Jill Braiewa

Media Editor: Chris Valentine

Sr. Art Director: Stacy Jenkins Shirley

Print Buyer: Julio Esperas

Cover Designer: cmiller design

Cover Photos: © Getty Images

Compositor: Value Chain

Proofreader: Green Pen Quality Assurance

Indexer: Alexandra Nickerson

© 2012 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at **www.cengage.com/permissions**Further permissions questions can be emailed to

permissionrequest@cengage.com

Student Edition:

ISBN-13: 978-0-8400-6218-5 ISBN-10: 0-8400-6218-4

Instructor's Edition:

ISBN-13: 978-1-111-53165-2 ISBN-10: 1-111-53165-X

Course Technology

20 Channel Center Street Boston, MA 02210 USA

Some of the product names and company names used in this book have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used throughout this book is intended for instructional purposes only. At the time this book was printed, any such data was fictional and not belonging to any real persons or companies.

Course Technology, a part of Cengage Learning, reserves the right to revise this publication and make changes from time to time in its content without notice.

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil and Japan. Locate your local office at:

www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Course Technology, visit www.cengage.com/coursetechnology

Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com

CENGAGE brain

Printed in the United States of America 1 2 3 4 5 6 7 16 15 14 13 12 11 10

An Introduction to Information Systems in Organizations

PRINCIPLES

LEARNING OBJECTIVES

- The value of information is directly linked to how it helps decision makers achieve the organization's goals.
- Knowing the potential impact of information systems and having the ability to put this knowledge to work can result in a successful personal career, organizations that reach their goals, and a society with a higher quality of life.
- System users, business managers, and information systems professionals must work together to build a successful information system.
- The use of information systems to add value to the organization can also give an organization a competitive advantage.
- IS personnel is a key to unlocking the potential of any new or modified system.

- Distinguish data from information and describe the characteristics used to evaluate the quality of data.
- Identify the basic types of business information systems and discuss who uses them, how they are used, and what kinds of benefits they deliver.
- Identify the major steps of the systems development process and state the goal of each.
- Identify the value-added processes in the supply chain and describe the role of information systems within them.
- Identify some of the strategies employed to lower costs or improve service.
- Define the term competitive advantage and discuss how organizations are using information systems to gain such an advantage.
- Define the types of roles, functions, and careers available in information systems.

Information Systems in the Global Economy > Braskem S.A., Brazil

The Power of Information in the Petrochemical Industry

You've probably heard that "information is power." In fact, the power of information depends on how it serves a specific need at a certain time. For example, when you are deciding which automobile to buy, the fact that the Yankees won the 2009 World Series is of no value to you. Information is most powerful when it enables strategic decision making. It must be delivered to the right person at the right time with as little effort as possible. For businesses, correctly managing strategic information can mean the difference between success and failure. Consequently, today's businesses invest a large percentage of their budgets in systems designed to deliver the right information to the right people at the right time. Such is the case for Braskem S.A.

Braskem S.A. is the largest petrochemical company in Latin America, with annual revenue of \$13 billion (US) and 5,500 employees. Braskem was created in 2002 out of the merger of six Brazilian companies. Its 13 chemical plants produce basic raw materials such as ethylene, propylene, and chlorine, which are used in the production of thermoplastic resins. Braskem then sells the resins to manufacturers of plastic products. Toothbrushes, baby bottles, backpacks, automotive parts, and computer parts are all made from thermoplastic resins produced by Braskem, ExxonMobile, Dow Chemical, and other petrochemical companies.

Recently, Braskem invested heavily in an information systems (IS) development effort to provide all of its 4,000 office and production staff access to information from one central source using one system. In planning and developing the new system, Braskem IS managers needed to consider many factors. The system would handle science and research information as well as production, business, and financial information. Such enterprise-wide systems are often referred to as enterprise resource planning systems (ERPs). Braskem wanted the system to be implemented within a year—a tall order for an ERP. Braskem executives also wanted the system to help the company's employees make it one of the world's top 10 petrochemical companies.

Although this may seem a lot to ask of an IS, information systems do directly influence the implementation of smart business processes. An IS can either hamper people from proper business practices or it can help them establish best practices across an organization. "Best practices" refers to insightful business practices that are proven to provide a competitive advantage. Braskem wanted its new information systems to help establish best practices and streamline its essential business processes. Braskem's chief information officer (CIO), Stefan Lanna Lepecki, investigated what type of information systems the top global petrochemical companies were using. He soon discovered that 9 of the top 10 companies used information systems developed by SAP.

SAP is a multinational software development and consulting corporation with head-quarters in Waldorf, Germany. Having worked with major petrochemical companies, SAP system engineers were well acquainted with the business and with systems that guide best business practices. After gaining the approval of the steering committee, top executives, and even the workers in the plant, Braskem hired SAP to build the new system. Rather than viewing the project as a technology initiative, Braskem embraced it as a business process transformation. Systems engineers, business managers, and hourly employees would all be involved.

Braskem's CIO kept customization requests to a minimum to implement a system that, for the most part, used the same standard SAP software that other petrochemical compa-

nies used. The system required Braskem to get a new technology infrastructure including new hardware, databases, telecommunications equipment, and software. It was implemented within one year. In the final stages of development, Braskem instituted a rigorous training regimen for the 4,000 employees who would be working with the system. Using simulations, each employee was required to advance through eight skill levels before being allowed to use the real system. Although training required 63,930 people hours, it ensured that employees used the best practices and procedures that the system supported. The result was an improvement of business processes across the enterprise.

Braskem no longer suffers the frustration of working with different systems at different sites. Today, information flows freely among Braskem's plants and offices, with executives, managers, and employees accessing up-to-the-minute information from any Braskem location. They can also access the system from mobile devices when they travel. The company has reduced its maintenance, repair, and operations costs. The improved efficiency of its systems also allows Braskem to reduce the amount of inventory it keeps on hand because inventory now ships when it rolls off the production line. In general, business tasks require fewer people and take less time with the new system. The system also complies with government regulations such as the Sarbanes-Oxley Act designed to keep business practices transparent. The new IS puts Braskem in an ideal position to gain market share and reach its goals.

As you read this chapter, consider the following:

- How might the information system used at Braskem depend on the various components of a computer-based information system: hardware, software, databases, telecommunications, people, and procedures?
- How do computer-based information systems like Braskem's help businesses implement best practices?

Why Learn
About Information
Systems in
Organizations?

Information systems are used in almost every imaginable profession. Entrepreneurs and small business owners use information systems to reach customers around the world. Sales representatives use information systems to advertise products, communicate with customers, and analyze sales trends. Managers use them to make multimillion-dollar decisions, such as whether to build a manufacturing plant or research a cancer drug. Financial advisors use information systems to advise their clients to help them save for their children's education and retirement. From a small music store to huge multinational companies, businesses of all sizes could not survive without information systems to perform accounting and finance operations. Regardless of your college major or chosen career, information systems are indispensable tools to help you achieve your career goals. Learning about information systems can help you land your first job, earn promotions, and advance your career.

Why learn about information systems in organizations? What is in it for you? Learning about information systems will help you achieve your goals. Let's get started by exploring the basics of information systems.

People and organizations use information every day. Many retail chains, for example, collect data from their stores to help them stock what customers want and to reduce costs. The components that are used are often called an information system. An **information system** (**IS**) is a set of interrelated components that collect, manipulate, store, and disseminate data and information and provide a feedback mechanism to meet an objective. ¹ It is the feedback mechanism that helps organizations achieve their goals, such as increasing profits or improving customer service. ² Businesses can use information systems to increase revenues and reduce costs. This book emphasizes the benefits of an information system, including speed, accuracy, increased revenues, and reduced costs.

Today we live in an information economy.³ Information itself has value, and commerce often involves the exchange of information rather than tangible goods. Systems based on

computers are increasingly being used to create, store, and transfer information. Using information systems, investors make multimillion-dollar decisions, financial institutions transfer billions of dollars around the world electronically, and manufacturers order supplies and distribute goods faster than ever before. Computers and information systems will continue to change businesses and the way we live. To prepare for these innovations, you need to be familiar with fundamental information concepts.

INFORMATION CONCEPTS

Information is a central concept of this book. The term is used in the title of the book, in this section, and in almost every chapter. To be an effective manager in any area of business, you need to understand that information is one of an organization's most valuable resources. This term, however, is often confused with *data*.

Data, Information, and Knowledge

Data consists of raw facts, such as an employee number, total hours worked in a week, inventory part numbers, or sales orders. As shown in Table 1.1, several types of data can represent these facts. When facts are arranged in a meaningful manner, they become information. Information is a collection of facts organized and processed so that they have additional value beyond the value of the individual facts. For example, sales managers might find that knowing the total monthly sales suits their purpose more (i.e., is more valuable) than knowing the number of sales for each sales representative. Providing information to customers can also help companies increase revenues and profits. FedEx, a worldwide leader in shipping packages and products around the world, believes that information about a package can be as important as the package itself for many of its customers. In Increasingly, information generated by FedEx and other organizations is being placed on the Internet. In addition, many universities are now placing course information and content on the Internet. Using the Open Course Ware program, the Massachusetts Institute of Technology (MIT) places class notes and contents on the Internet for many of its courses.

Data	Represented by
Alphanumeric data	Numbers, letters, and other characters
Image data	Graphic images and pictures
Audio data	Sound, noise, or tones
Video data	Moving images or pictures

Data represents real-world things. Hospitals and healthcare organizations, for example, maintain patient medical data, which represents actual patients with specific health situations. In many cases, hospitals and healthcare organizations are converting data to electronic form. Some have developed electronic records management (ERM) systems to store, organize, and control important data. However, data—raw facts—has little value beyond its existence. The U.S. federal stimulus plan could invest as much as \$2 billion into helping healthcare organizations develop a medical records program to store and use the vast amount of medical

Here is another example of the difference between data and information. Consider data as pieces of railroad track in a model railroad kit. Each piece of track has limited inherent value as a single object. However, if you define a relationship among the pieces of the track, they will gain value. By arranging the pieces in a certain way, a railroad layout begins to

data that is generated each year.⁶ Medical records systems can be used to generate critical

health-related information, saving money and lives.

data

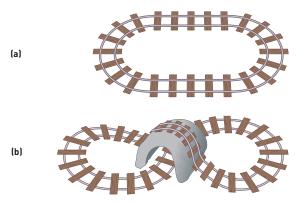
Raw facts, such as an employee number, total hours worked in a week, inventory part numbers, or sales orders.

information

A collection of facts organized in such a way that they have additional value beyond the value of the individual facts.

Table 1.1
Types of Data

com


6 Part

Information Systems in Perspective

emerge (see Figure 1.1a). Data and information work the same way. Rules and relationships can be set up to organize data into useful, valuable information.

Figure 1.1

Defining and Organizing Relationships Among Data Creates Information

The type of information created depends on the relationships defined among existing data. For example, you could rearrange the pieces of track to form different layouts. Adding new or different data means you can redefine relationships and create new information. For instance, adding new pieces to the track can greatly increase the value—in this case, variety and fun—of the final product. You can now create a more elaborate railroad layout (see Figure 1.1b). Likewise, a sales manager could add specific product data to his or her sales data to create monthly sales information organized by product line. The manager could use this information to determine which product lines are the most popular and profitable.

Turning data into information is a process, or a set of logically related tasks performed to achieve a defined outcome. The process of defining relationships among data to create useful information requires knowledge. Knowledge is the awareness and understanding of a set of information and the ways that information can be made useful to support a specific task or reach a decision. Having knowledge means understanding relationships in information. Part of the knowledge you need to build a railroad layout, for instance, is the understanding of how much space you have for the layout, how many trains will run on the track, and how fast they will travel. Selecting or rejecting facts according to their relevancy to particular tasks is based on the knowledge used in the process of converting data into information. Therefore, you can also think of information as data made more useful through the application of knowledge. Knowledge workers (KWs) are people who create, use, and disseminate knowledge and are usually professionals in science, engineering, business, and other areas.⁷ A knowledge management system (KMS) is an organized collection of people, procedures, software, databases, and devices used to create, store, and use the organization's knowledge and experience.8 Research has shown that the success of a KMS is linked to how easy it is to use and how satisfied users are with it.9

In some cases, people organize or process data mentally or manually. In other cases, they use a computer. Where the data comes from or how it is processed is less important than whether the data is transformed into results that are useful and valuable. This transformation process is shown in Figure 1.2.

process

A set of logically related tasks performed to achieve a defined outcome.

knowledge

The awareness and understanding of a set of information and ways that information can be made useful to support a specific task or reach a decision.

Figure 1.2

The Process of Transforming Data into Information

The Characteristics of Valuable Information

To be valuable to managers and decision makers, information should have the characteristics described in Table 1.2. These characteristics make the information more valuable to an organization. Many shipping companies, for example, can determine the exact location of

inventory items and packages in their systems, and this information makes them responsive to their customers. In contrast, if an organization's information is not accurate or complete, people can make poor decisions, costing thousands, or even millions, of dollars. If an inaccurate forecast of future demand indicates that sales will be very high when the opposite is true, an organization can invest millions of dollars in a new plant that is not needed. Furthermore, if information is not relevant, not delivered to decision makers in a timely fashion, or too complex to understand, it can be of little value to the organization.

Table 1.2

Characteristics of Valuable Information

Characteristics	Definitions	
Accessible	Information should be easily accessible by authorized users so they can obtain it in the right format and at the right time to meet their needs.	
Accurate	Accurate information is error free. In some cases, inaccurate information is generated because inaccurate data is fed into the transformation process. (This is commonly called garbage in, garbage out [GIGO].)	
Complete	Complete information contains all the important facts. For example, an investment report that does not include all important costs is not complete.	
Economical	Information should also be relatively economical to produce. Decision makers must always balance the value of information with the cost of producing it.	
Flexible	Flexible information can be used for a variety of purposes. For example, information on how much inventory is on hand for a particular part can be used by a sales representative in closing a sale, by a production manager to determine whether more inventory is needed, and by a financial executive to determine the total value the company has invested in inventory.	
Relevant	Relevant information is important to the decision maker. Information showing that lumber prices might drop might not be relevant to a computer chip manufacturer.	
Reliable	Reliable information can be trusted by users. In many cases, the reliability of the information depends on the reliability of the data-collection method. In other instances, reliability depends on the source of the information. A rumor from an unknown source that oil prices might go up might not be reliable.	
Secure	Information should be secure from access by unauthorized users.	
Simple	Information should be simple, not overly complex. Sophisticated and detailed information might not be needed. In fact, too much information can cause information overload, whereby a decision maker has too much information and is unable to determine what is really important.	
Timely	Timely information is delivered when it is needed. Knowing last week's weather conditions will not help when trying to decide what coat to wear today.	
Verifiable	Information should be verifiable. This means that you can check it to make sure it is correct, perhaps by checking many sources for the same information.	

Depending on the type of data you need, some quality attributes become more valuable than others. For example, with market-intelligence data, some inaccuracy and incompleteness is acceptable, but timeliness is essential. Getco, a Chicago-based stock-trading company, requires the most timely market information possible so it can place profitable trades. 10 Getco uses an approach called high-frequency trading that requires powerful and very fast computers to make its trades. On some days, Getco can account for 10 to 20 percent of the total trading volume for some stocks. Market intelligence might alert you that competitors are about to make a major price cut. The exact details and timing of the price cut might not be as important as being warned far enough in advance to plan how to react. On the other hand, accuracy, verifiability, and completeness are critical for data used in accounting to manage company assets such as cash, inventory, and equipment.

The Value of Information

The value of information is directly linked to how it helps decision makers achieve their organization's goals. Valuable information can help people in their organizations perform tasks more efficiently and effectively. Consider a market forecast that predicts a high demand for a new product. If you use this information to develop the new product and your company makes an additional profit of \$10,000, the value of this information to the company is \$10,000 minus the cost of the information. Valuable information can also help managers decide whether to invest in additional information systems and technology. A new computerized ordering system might cost \$30,000 but generate an additional \$50,000 in sales. The value added by the new system is the additional revenue from the increased sales of \$20,000. Most corporations have cost reduction as a primary goal. Using information systems, some manufacturing companies have slashed inventory costs by millions of dollars. Other companies have increased inventory levels to increase profits. Walmart, for example, uses information about certain regions of the country and specific situations to increase needed inventory levels of certain products and improve overall profitability. In other cases, the value of information can be realized in cost savings. Shermag, a Canadian furniture manufacturing company, was able to use a sophisticated computer system to achieve the company's cost reduction goal.¹¹ The company was able to reduce total costs by more than 20 percent by using optimization software to reduce material and manufacturing costs.

WHAT IS AN INFORMATION SYSTEM?

As mentioned previously, an information system (IS) is a set of interrelated elements or components that collect (input), manipulate (process), store, and disseminate (output) data and information and provide a corrective reaction (feedback mechanism) to meet an objective (see Figure 1.3). The feedback mechanism is the component that helps organizations achieve their goals, such as increasing profits or improving customer service.

Figure 1.3

The Components of an Information System

Feedback is critical to the successful operation of a system.

Input Processing Output

Input, Processing, Output, Feedback

InputIn information systems, **input** is the activity of gathering and capturing raw data. In pro-

The activity of gathering and capturing raw data.

Processing

compiled and sent to students.

In information systems, **processing** means converting or transforming data into useful outputs. Processing can involve making calculations, comparing data and taking alternative actions, and storing data for future use. Processing data into useful information is critical in business settings.

ducing paychecks, for example, the number of hours every employee works must be collected

before paychecks can be calculated or printed. In a university grading system, instructors must submit student grades before a summary of grades for the semester or quarter can be

Processing can be done manually or with computer assistance. In a payroll application, the number of hours each employee worked must be converted into net, or take-home, pay. Other inputs often include employee ID number and department. The processing can first involve multiplying the number of hours worked by the employee's hourly pay rate to get gross pay. If weekly hours worked exceed 40, overtime pay might also be included. Then deductions—for example, federal and state taxes or contributions to insurance or savings plans—are subtracted from gross pay to get net pay.

processing

input

Converting or transforming data into useful outputs.

After these calculations and comparisons are performed, the results are typically stored. *Storage* involves keeping data and information available for future use, including output, discussed next.

Output

In information systems, **output** involves producing useful information, usually in the form of documents and reports. Outputs can include paychecks for employees, reports for managers, and information supplied to stockholders, banks, government agencies, and other groups. In some cases, output from one system can become input for another. For example, output from a system that processes sales orders can be used as input to a customer billing system.

Feedback

In information systems, feedback is information from the system that is used to make changes to input or processing activities. For example, errors or problems might make it necessary to correct input data or change a process. Consider a payroll example. Perhaps the number of hours an employee worked was entered as 400 instead of 40. Fortunately, most information systems check to make sure that data falls within certain ranges. For number of hours worked, the range might be from 0 to 100 because it is unlikely that an employee would work more than 100 hours in a week. The information system would determine that 400 hours is out of range and provide feedback. The feedback is used to check and correct the input on the number of hours worked to 40. If undetected, this error would result in a very high net pay on the printed paycheck!

Feedback is also important for managers and decision makers. For example, a furniture maker could use a computerized feedback system to link its suppliers and plants. The output from an information system might indicate that inventory levels for mahogany and oak are getting low—a potential problem. A manager could use this feedback to decide to order more wood from a supplier. These new inventory orders then become input to the system. In addition to this reactive approach, a computer system can also be proactive—predicting future events to avoid problems. This concept, often called **forecasting**, can be used to estimate future sales and order more inventory before a shortage occurs. According to the CIO of Coty Fragrance, which produces Jennifer Lopez and Vera Wang brands, "If we can't meet demand, it annoys the retailers, the consumers lose interest, and we lose sales." Forecasting is also used to predict the strength and landfall sites of hurricanes, future stock-market values, and who will win a political election. Disappointed with existing weather forecasting systems, Robert Baron developed a more sophisticated forecasting approach that used radar data along with other meteorological data to forecast storms and weather. Today, his weather forecasting software generates about \$25 million in annual revenues.

output

Production of useful information, usually in the form of documents and reports.

feedback

Output that is used to make changes to input or processing activities.

forecasting

Predicting future events to avoid problems.

Forecasting systems can help meteorologists predict the strength and landfall sites of tropical storms.

(Source: Courtesy of AP Photo/Bullit Marquez.)

Manual and Computerized Information Systems

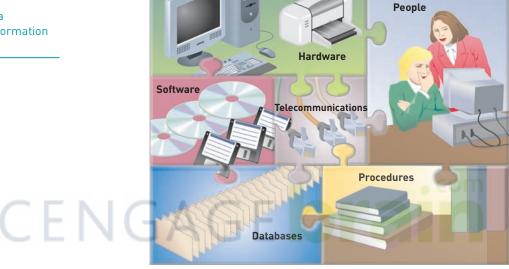
As discussed earlier, an information system can be manual or computerized. For example, some investment analysts manually draw charts and trend lines to assist them in making investment decisions. Tracking data on stock prices (input) over the last few months or years, these analysts develop patterns on graph paper (processing) that help them determine what stock prices are likely to do in the next few days or weeks (output). Some investors have made millions of dollars using manual stock analysis information systems. Of course, today many excellent computerized information systems follow stock indexes and markets and suggest when large blocks of stocks should be purchased or sold (called *program trading*) to take advantage of market discrepancies.

Computer-Based Information Systems

A computer-based information system (CBIS) is a single set of hardware, software, databases, telecommunications, people, and procedures that are configured to collect, manipulate, store, and process data into information. Lloyd's Insurance in London used a CBIS to reduce paper transactions and convert to an electronic insurance system. The CBIS allows Lloyd's to insure people and property more efficiently and effectively. Lloyd's often insures the unusual, including actress Betty Grable's legs, Rolling Stone Keith Richards's hands, and a possible appearance of the Loch Ness Monster (Nessie) in Scotland, which would result in a large payment for the person first seeing the monster.

The components of a CBIS are illustrated in Figure 1.4. *Information technology (IT)* refers to hardware, software, databases, and telecommunications. Telecommunications also includes networks and the Internet. A business's **technology infrastructure** includes all the hardware, software, databases, telecommunications, people, and procedures that are configured to collect, manipulate, store, and process data into information. The technology infrastructure is a set of shared IS resources that form the foundation of each computer-based information system.

computer-based information system (CBIS)


A single set of hardware, software, databases, telecommunications, people, and procedures that are configured to collect, manipulate, store, and process data into information.

technology infrastructure

All the hardware, software, databases, telecommunications, people, and procedures that are configured to collect, manipulate, store, and process data into information.

Figure 1.4

The Components of a Computer-Based Information System

hardware

The physical components of a computer that perform the input, processing, storage, and output activities of the computer.

Hardware

Hardware consists of the physical components of a computer that perform the input, processing, storage, and output activities of the computer. Input devices include keyboards, mice, and other pointing devices; automatic scanning devices; and equipment that can read magnetic ink characters. Processing devices include computer chips that contain the central processing unit and main memory. Advances in chip design allow faster speeds, less power consumption, and larger storage capacity. Some specialized computer chips will be able to monitor power consumption for companies and homeowners. ¹⁴ SanDisk and other

companies make small, portable chips that are used to conveniently store programs, data files, and more. 15 The publisher of this book, for example, used this type of chip storage device to send promotional material for this book to professors and instructors.

Processor speed is also important. Today's more advanced processor chips have the power of 1990s-era supercomputers that occupied a room measuring 10 feet by 40 feet. A large IBM computer used by U.S. Livermore National Laboratories to analyze nuclear explosions is one of the fastest computers in the world (up to 300 teraflops—300 trillion operations per second). 16 The super-fast computer, called Blue Gene, costs about \$40 million. 17 It received

the National Medal of Technology and Innovation award from President Barack Obama. Small, inexpensive computers and handheld devices are also becoming popular. Inexpensive netbooks are small, inexpensive laptop computers that can cost less than \$500 and be used primarily to connect to the Internet. 18 In addition, the iPhone by Apple Computer can perform many functions that can be done on a desktop or laptop computer.¹⁹ The One Laptop Per Child computer costs less than \$200.20 The Classmate PC by Intel will cost about \$300 and include some educational software.

Both computers are intended for regions of the world that can't afford traditional personal computers. The country of Peru, for example, has purchased about 350,000 laptops loaded with about 100 books for children, who also teach their parents how to use the inexpensive computers.²¹ According to the founder of One Laptop Per Child, "If that doesn't give you goose bumps, I don't know what will."

The many types of output devices include printers and computer screens. Some touchsensitive computer screens, for example, can be used to execute functions or complete programs, such as connecting to the Internet or running a new computer game or word processing program.²² Many special-purpose hardware devices have also been developed. Computerized event data recorders (EDRs) are now being placed into vehicles. Like an airplane's black box, EDRs record vehicle speed, possible engine problems, driver performance, and more. The technology is being used to document and monitor vehicle operation, determine the cause of accidents, and investigate whether truck drivers are taking required breaks. In one case, an EDR was used to help convict a driver of vehicular homicide. In another case, an EDR in a police officer's car showed that the officer may have run a stop light and accelerated to more than 70 miles per hour on a road with a speed limit of 35 miles per hour before an accident that killed two teenagers.²³

Software

Software consists of the computer programs that govern the operation of the computer. These programs allow a computer to process payroll, send bills to customers, and provide managers with information to increase profits, reduce costs, and provide better customer service. Fab Lab software, for example, controls tools such as cutters, milling machines, and other devices.²⁴ One Fab Lab system, which costs about \$20,000, has been used to make radio frequency tags to track animals in Norway, engine parts to allow tractors to run on processed castor beans in India, and many other fabrication applications. SalesForce (www.salesforce.com) sells software to help companies manage their salesforce and help improve customer satisfaction.²⁵

The two types of software are system software, such as Microsoft Windows Vista and Windows 7, which controls basic computer operations, including start-up and printing, and applications software, such as Microsoft Office 2010, which allows you to accomplish specific tasks, including word processing or tabulating numbers. ²⁶ Software is needed for computers of all sizes, from small handheld computers to large supercomputers. The Android operating system by Google and Microsoft's Mobile 6.5, for example, are operating systems for cell phones and small portable devices.²⁷ Although most software can be installed from CDs, many of today's software packages can be downloaded through the Internet.

The One Laptop Per Child Computer costs less than \$200, and is designed for regions of the world that can't afford traditional personal computers.

Chapter 1

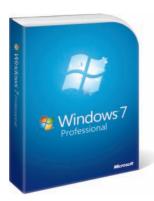
(Source: Courtesy of AFP/Getty Images.)

software

The computer programs that govern the operation of the computer.

Part

12


Information Systems in Perspective

Sophisticated application software, such as Adobe Creative Suite 4, can be used to design, develop, print, and place professional-quality advertising, brochures, posters, prints, and videos on the Internet.²⁸ Nvidia's GeForce 3D is software that can display images on a computer screen that appear three-dimensional (3D) when viewed using special glasses.²⁹

Windows 7 is systems software that controls basic computer operations, including start-up and printing.

(Source: Courtesy of Microsoft Corporation.)

database

An organized collection of facts and information.

Databases

A database is an organized collection of facts and information, typically consisting of two or more related data files. An organization's database can contain facts and information on customers, employees, inventory, competitors' sales, online purchases, and much more. A database manager for a large bank, for example, has developed a patented security process that generates a random numeric code from a customer's bank card that can be verified by a computer system through a customer database.³⁰ Once the bank card and customer have been verified, the customer can make financial transactions.

Data can be stored in large data centers, within computers of all sizes, in the Internet, and in smart cell phones and small computing devices.³¹ The New York Stock Exchange (NYSE) and other exchanges are using database systems to get better business information and intelligence to help them run successful and profitable operations.³² The huge increase in database storage requirements, however, often requires more storage devices, more space to house the additional storage devices, and additional electricity to operate them.³³

telecommunications

The electronic transmission of signals for communications; enables organizations to carry out their processes and tasks through effective computer networks.

Telecommunications, Networks, and the Internet

Telecommunications is the electronic transmission of signals for communications, which enables organizations to carry out their processes and tasks through effective computer networks. Telecommunications can take place through wired, wireless, and satellite transmissions. The Associated Press was one of the first users of telecommunications in the 1920s, sending news over 103,000 miles of wire in the United States and almost 10,000 miles of cable across the ocean. Today, telecommunications is used by organizations of all sizes and individuals around the world. With telecommunications, people can work at home or while traveling. This approach to work, often called *telecommuting*, allows a telecommuter living in England to send his or her work to the United States, China, or any location with telecommunications capabilities.

Networks connect computers and equipment in a building, around the country, or around the world to enable electronic communication. Wireless transmission allows aircraft drones, such as Boeing's Scan Eagle, to fly using a remote control system to monitor commercial buildings or enemy positions.³⁵ The drones are smaller and less- expensive versions of the Predator and Global Hawk drones that the U.S. military used in the Afghanistan and Iraq conflicts. According to a Navy Rear Admiral, "There are all sorts of levels of stealthiness. Operators have been deploying it in an undetectable fashion; at a certain low altitude, you can't hear it or see it."

networks

Computers and equipment that are connected in a building, around the country, or around the world to enable electronic communication.

The Internet is the world's largest computer network, consisting of thousands of interconnected networks, all freely exchanging information. Research firms, colleges, universities, high schools, hospitals, and businesses are just a few examples of organizations using the Internet. Beth Israel Deaconess Medical Center, for example, allows doctors to use its Internet site to provide better patient care and reduce costs.³⁶ The doctors pay a monthly service fee to use the hospital's Internet site. Increasingly, businesses and people are using the Internet to run and deliver important applications, such as accessing vast databases, performing sophisticated business analysis, and getting a variety of reports. This concept, called cloud computing, allows people to get the information they need from the Internet (the cloud) instead of from desktop or corporate computers.³⁷ According to the CIO of Avon Products, "Today, wherever you are, you can connect to all the information you need." Some applications are available to everyone (public cloud computing), while other applications are only available to corporate employees and managers (private cloud computing).³⁸

Internet

The world's largest computer network, consisting of thousands of interconnected networks, all freely exchanging information.

Doctors use cloud computing and other types of Web sites to provide better patient care and reduce

(Source: © B Busco/Getty Images.)

People use the Internet to research information, buy and sell products and services, make travel arrangements, conduct banking, download music and videos, read books, and listen to radio programs, among other activities.³⁹ Bank of America allows people to check their bank balances and pay their bills on the Internet using Apple's iPhone and other handheld devices. 40 Internet sites like MySpace (www.myspace.com) and Facebook (www.facebook.com) have become popular places to connect with friends and colleagues. People can also send short messages of up to 140 characters using Twitter (www.twitter.com) over the Internet. 41 Some people, however, fear that this increased usage can lead to problems, including criminals hacking into the Internet and gaining access to sensitive personal information.

Large computers, personal computers, and today's cell phones, such as Apple's iPhone, can access the Internet.⁴² This not only speeds communications, but also allows people to conduct business electronically. Internet users can create Web logs (blogs) to store and share their thoughts and ideas with others around the world. Using *podcasting*, <mark>you can</mark> download audio programs or music from the Internet to play on computers or music players. One of the authors of this book uses podcasts to obtain information on information systems and technology.

The World Wide Web (WWW), or the Web, is a network of links on the Internet to documents containing text, graphics, video, and sound. Information about the documents and access to them are controlled and provided by tens of thousands of special computers called Web servers. The Web is one of many services available over the Internet and provides access to millions of documents. New Internet technologies and increased Internet communications and collaboration are collectively called Web 2.0. 43

ETHICAL AND SOCIETAL ISSUES

Who Is Interested in Your Social Network Updates?

More than two-thirds of the world's online population use social networks such as Facebook, MySpace, and Twitter to stay in touch with friends. It is likely that you are one of them. In 2008, social networks became more popular than e-mail, with 66.8 percent of Internet users accessing member communities. Most members of social networks use a posting feature that allows them to share their day-to-day thoughts and activities with their circle of friends. Facebook calls these postings "updates," while Twitter calls them "tweets." Most users do not realize the value of their comments, updates, or tweets to people outside their circle.

Businesses are flocking to social networks to harvest consumer sentiment for use in guiding product development. They are also watching social networks to confront negative publicity. The broad scale use of social networks and the careful analysis of billions of messages have made it possible to collect public sentiment and build customer relations in a manner never done before. But sifting through the babble to discover comments of interest is challenging.

A number of information system companies have sprung up to provide products designed to monitor social media. Companies such as Alterian, Radian6, Attensity, Visible Technologies, Conversion, and Nielsen Online provide social media monitoring systems for businesses and organizations. As a young technology, there is no standard approach to social media monitoring. Similar to a search engine, the systems typically traverse the continuous streams of comments in social networks, looking for key terms related to specified products. Artificial intelligence (AI) techniques that automate the interpretation of user comments make it possible to quickly identify comments of particular interest. Ultimately, they generate analytic and performance reports for the human expert to evaluate. Systems that monitor social media enable useful information to be drawn from billions of seemingly mundane and unrelated messages.

Monitoring social media can focus on brand reputation management, public relations, or even market research.

Companies such as Comcast, a major communications company, hire full-time social media experts who interact with customers online to address problems and complaints. For example, if you complain about Comcast service on Twitter, you might be contacted by a Comcast employee offering to help you.

The social network service owners are well aware of the value of the information that flows over their networks. Most of them

intend to build their business through the comments and attention of their members. Whether through targeted ads or selling access to user data, social networks can become very lucrative businesses. Why else would Twitter, a service with apparently no business model, be worth over a billion dollars? Twitter's goal is to grow to one billion members and provide interested parties with the pulse of the planet.

How do users feel about their "personal" comments being harvested to make billions for Internet companies? With social network growth rates in 2009 ranging from 228 percent for Facebook to 1,382 percent for Twitter, users are either unaware or unconcerned. Regardless of what users think, it is likely that businesses will increasingly analyze the continuous flow of data over social networks to generate insights they can use.

Discussion Questions

- 1. Do you think it is ethical for social networks to sell access to user information to businesses for market research and other uses? Why or why not?
- 2. What service does the monitoring of social media ultimately provide for consumers?

Critical Thinking Questions

- 1. What competitive advantage does the monitoring of social media provide to companies that invest in it?
- 2. Why is the monitoring of social media considered a CBIS?

SOURCES: Ostrow, Adam, "Social Networking More Popular than Email," Mashable, March 9, 2009, http://mashable.com/2009/03/09/socialnetworking-more-popular-than-email; Zabin, Jeff, "Finding Out What They're Saying About You Is Worth Every Penny," E-Commerce Times, November 12, 2009, www.ecommercetimes.com/rsstory/68624.html; Bensen, Connie, "Do you know what people are saying about you?" Reuters UK, September 14, 2009, http://blogs.reuters.com/great-debate-uk/2009/09/14/do-you-know-whatpeople-are- saying-about-you; Schonfeld, Erick, "Twitter's Internal Strategy Laid Bare: To Be "The Pulse of the Planet," TechCrunch, July 16, 2009, www.techcrunch.com/2009/07/16/twitters-internal-strategy-laid-bare-tobe-the-pulse-of- the-planet; Reisner, Rebecca, "Comcast's Twitter Man," Business Week, January 13, 2009, www.businessweek.com/managing/ content/jan2009/ca20090113_373506.htm; McCarthy, Carolina, "Nielsen: Twitter's growing really, really, really, really fast," CNET, March 2009, http:// news.cnet.com/8301-13577 3-10200161-36.html; Nielsen Staff, "Social Networking's New Global Footprint," NielsenWire, March 9, 2009, http:// blog.nielsen.com/nielsenwire/global/social-networking-new-globalfootprint/.

The technology used to create the Internet is also being applied within companies and organizations to create intranets, which allow people in an organization to exchange information and work on projects. ING DIRECT Canada (www.ingdirect.ca/en), for example, used its intranet to get ideas from its employees. According to one corporate executive, "Many of the ideas we've been able to implement are from front-line staff who talk to our customers every day and know what they want." 44 Companies often use intranets to connect its employees around the globe. An extranet is a network based on Web technologies that allows selected outsiders, such as business partners and customers, to access authorized resources of a company's intranet. Many people use extranets every day without realizing it—to track shipped goods, order products from their suppliers, or access customer assistance from other companies. Penske Truck Leasing, for example, uses an extranet (www.MyFleetAtPenske.com) for Penske leasing companies and its customers. 45 The extranet site allows customers to schedule maintenance, find Penske fuel stops, receive emergency roadside assistance, participate in driver training programs, and more. If you log on to the FedEx site (www.fedex.com) to check the status of a package, for example, you are using an extranet.

🏉 FedEx Tracking - FedEx Shipping - FedEx Web Site - Windows Internet Explore ○ Podex http://www.fedex.com/us/ ▼ ++ X lo Bing File Edit View Favorites Tools Help FedEx Tracking - FedEx Shipping - FedEx Web Site 🏠 ▼ 🔝 ▼ 📑 扁 ▼ Page ▼ Safety ▼ Tools ▼ 🕡 ▼ FedEx. Package/Envelope Freight Expedited Office/Print Services * Login FedEx First Overnight: User ID: Forgot? morning. fedex.com Pack and Ship I want to: with the pros and you could win big Ship, get rates and transit times, schedule a pickup Remember Me Lo ◀fedex.com and find locations all in one place on fedex.com Guide to Services Visit Promotions Center > New Customer Center ▶ Set up your account; get a welcome kit Our Services > Get service details; learn how to pack and ship. Holiday Shipping Information Choose your account options Track Shipments/FedEx Office Orders Enter any combination of up to 30 Introducing Guide to Services We understand. You have options mbers: (one per line) Fuel Surcharge Information More News You can also track FedEx Office Think FedEx First ders by entering order nu Explore FedEx FedEx Companies ← ■ 100%

intranet

An internal network based on Web technologies that allows people within an organization to exchange information and work on projects.

extranet

A network based on Web technologies that allows selected outsiders, such as business partners and customers, to access authorized resources of a company's intranet.

When you log on to the FedEx site (www.fedex.com) to check the status of a package, you are using an extranet.

(Source: www.fedex.com.)

People

People are the most important element in most computer-based information systems. They make the difference between success and failure for most organizations. Information systems personnel include all the people who manage, run, program, and maintain the system, including the CIO, who manages the IS department. 46 Users are people who work with information systems to get results. Users include financial executives, marketing representatives, manufacturing operators, and many others. Certain computer users are also IS personnel.

The chief information officer (CIO) manages the Information Systems department, which includes all the people who manage, run, program, and maintain a computer-based information system.

(Source: © Ryan McVay/Getty Images.)

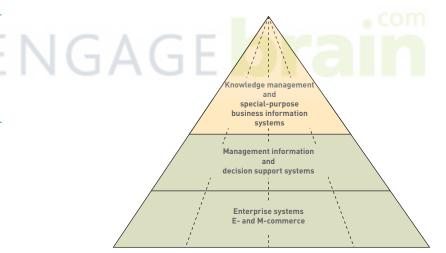
procedures

The strategies, policies, methods, and rules for using a CBIS.

Procedures

Procedures include the strategies, policies, methods, and rules for using the CBIS, including the operation, maintenance, and security of the computer. For example, some procedures describe when each program should be run. Others describe who can access facts in the database or what to do if a disaster, such as a fire, earthquake, or hurricane, renders the CBIS unusable. Good procedures can help companies take advantage of new opportunities and avoid potential disasters. Poorly developed and inadequately implemented procedures, however, can cause people to waste their time on useless rules or result in inadequate responses to disasters, such as hurricanes or tornadoes.

Now that we have looked at computer-based information systems in general, we will briefly examine the most common types used in business today. These IS types are covered in greater detail in Part 3.


BUSINESS INFORMATION SYSTEMS

The most common types of information systems used in business organizations are those designed for electronic and mobile commerce, transaction processing, management information, and decision support. In addition, some organizations employ special-purpose systems, such as virtual reality, that not every organization uses. Although these systems are discussed in separate sections in this chapter and explained in greater detail later, they are often integrated in one product and delivered by the same software package. See Figure 1.5. For example, some business information systems process transactions, deliver information, and support decisions. Figure 1.6 shows a simple overview of the development of important business information systems discussed in this section.

Figure 1.5

Business Information Systems

Business information systems are often integrated in one product and can be delivered by the same software package.



Figure 1.6

The Development of Important **Business Information Systems**

Chapter 1

Electronic and Mobile Commerce

E-commerce involves any business transaction executed electronically between companies (business-to-business, or B2B), companies and consumers (business-to-consumer, or B2C), consumers and other consumers (consumer-to-consumer, or C2C), business and the public sector, and consumers and the public sector.⁴⁷ Some of the stimulus funds in 2009, for example, were aimed at increasing electronic record keeping and electronic commerce for healthcare facilities. 48 E-commerce offers opportunities for businesses of all sizes to market and sell at a low cost worldwide, allowing them to enter the global market. Mobile commerce (m-commerce) is the use of mobile, wireless devices to place orders and conduct business. M-commerce relies on wireless communications that managers and corporations use to place orders and conduct business with handheld computers, portable phones, laptop computers connected to a network, and other mobile devices. Today, mobile commerce has exploded in popularity with advances in smartphones, including Apple's iPhone.⁴⁹ Customers are using their cell phones to purchase concert tickets from companies such as Ticketmaster Entertainment (www.ticketmaster.com) and Tickets (www.tickets.com).50

e-commerce

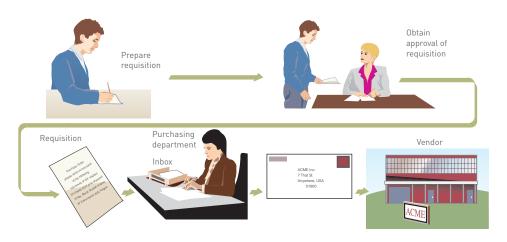
Any business transaction executed electronically between companies (business-to-business, or B2B), companies and consumers (business-to-consumer, or B2C), consumers and other consumers (consumer-to-consumer, or C2C), business and the public sector, and consumers and the public sector.

mobile commerce (mcommerce)

Transactions conducted anywhere, anytime.

With mobile commerce (mcommerce), people can use cell phones to pay for goods and services anywhere, anytime.

(Source: Courtesy of Davie Hinshaw/ MCT/Landov.)


E-commerce offers many advantages for streamlining work activities. Figure 1.7 provides a brief example of how e-commerce can simplify the process of purchasing new office furniture from an office supply company. In the manual system, a corporate office worker must get approval for a purchase that exceeds a certain amount. That request goes to the purchasing department, which generates a formal purchase order to procure the goods from the approved vendor. Business-to-business e-commerce automates the entire process. Employees go directly to the supplier's Web site, find the item in a catalog, and order what they need at a price set by their company. If management approval is required, the manager is notified automatically. As the use of e-commerce systems grows, companies are phasing out their traditional systems. The resulting growth of e-commerce is creating many new business opportunities.

18 Part 1

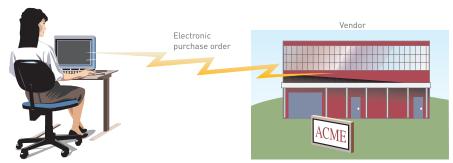

Information Systems in Perspective

Figure 1.7

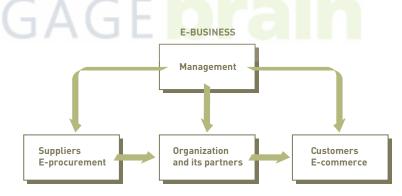
E-Commerce Greatly Simplifies Purchasing

Traditional process for placing a purchase order

E-commerce process for placing a purchase order

E-commerce can enhance a company's stock prices and market value. Today, several e-commerce firms have teamed up with more traditional brick-and-mortar businesses to draw from each other's strengths. For example, e-commerce customers can order products on a Web site and pick them up at a nearby store.

In addition to e-commerce, business information systems use telecommunications and the Internet to perform many related tasks. *Electronic procurement (e-procurement)*, for example, involves using information systems and the Internet to acquire parts and supplies. *Electronic business* (e-business) goes beyond e-commerce and e-procurement by using information systems and the Internet to perform all business-related tasks and functions, such as accounting, finance, marketing, manufacturing, and human resource activities. E-business also includes working with customers, suppliers, strategic partners, and stakeholders. Compared to traditional business strategy, e-business strategy is flexible and adaptable. See Figure 1.8.

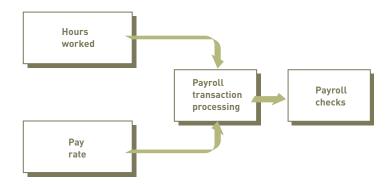

electronic business (e-business)

Using information systems and the Internet to perform all business-related tasks and functions.

Figure 1.8

Electronic Business

E-business goes beyond ecommerce to include using information systems and the Internet to perform all businessrelated tasks and functions, such as accounting, finance, marketing, manufacturing, and human resources activities.


Enterprise Systems: Transaction Processing Systems and Enterprise Resource Planning

Enterprise systems that process daily transactions have evolved over the years and offer important solutions for businesses of all sizes. Traditional transaction processing systems are still being used, but increasingly, companies are turning to enterprise resource planning systems. These systems are discussed next.

Transaction Processing Systems

Since the 1950s, computers have been used to perform common business applications. Many of these early systems were designed to reduce costs by automating routine, labor-intensive business transactions. A transaction is any business-related exchange such as payments to employees, sales to customers, or payments to suppliers. Processing business transactions was the first computer application developed for most organizations. A transaction processing system (TPS) is an organized collection of people, procedures, software, databases, and devices used to perform and record business transactions. If you understand a transaction processing system, you understand basic business operations and functions.

One of the first business systems to be computerized was the payroll system (see Figure 1.9). The primary inputs for a payroll TPS are the number of employee hours worked during the week and the pay rate. The primary output consists of paychecks. Early payroll systems produced employee paychecks and related reports required by state and federal agencies, such as the Internal Revenue Service. Other routine applications include sales ordering, customer billing and customer relationship management, and inventory control.

Enterprise systems help organizations perform and integrate important tasks, such as paying employees and suppliers, controlling inventory, sending invoices, and ordering supplies. In the past, companies accomplished these tasks using traditional transaction processing systems. Today, they are increasingly being performed by enterprise resource planning systems.

Enterprise Resource Planning

An enterprise resource planning (ERP) system is a set of integrated programs that manages the vital business operations for an entire multisite, global organization. ⁵¹ Pick n Pay, a South African (SA) food retailer, used ERP to reduce costs and the prices paid by customers. According to the chief executive officer, "We are happy to play our part in ensuring that SA's economy continues to perform well, particularly given the pressures being felt globally."52

Information and Decision Support Systems

The benefits provided by an effective TPS or ERP, including reduced processing costs and reductions in needed personnel, are substantial and justify their associated costs in computing equipment, computer programs, and specialized personnel and supplies. Companies soon realized that they could use the data stored in these systems to help managers make better decisions, whether in human resource management, marketing, or administration. Satisfying the needs of managers and decision makers continues to be a major factor in developing information systems.

transaction

Any business-related exchange, such as payments to employees, sales to customers, and payments to suppliers.

transaction processing system (TPS)

An organized collection of people, procedures, software, databases, and devices used to perform and record business transactions.

Figure 1.9

A Payroll Transaction **Processing System**

In a payroll TPS, the inputs (numbers of employee hours worked and pay rates) go through a transformation process to produce outputs (paychecks).

enterprise resource planning (ERP) system

A set of integrated programs capable of managing a company's vital business operations for an entire multisite, global organization.

20 Part 1

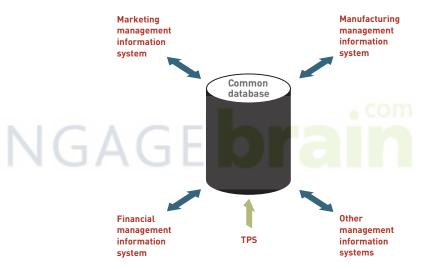
Information Systems in Perspective

SAP AG, a German software company, is one of the leading suppliers of ERP software. The company employs more than 50,000 people in more than 120 countries.

(Source: www.sap.com.)

management information system (MIS)

An organized collection of people, procedures, software, databases, and devices that provides routine information to managers and decision makers.


Figure 1.10

Management Information System

Functional management information systems draw data from the organization's transaction processing system.

Management Information Systems


A management information system (MIS) is an organized collection of people, procedures, software, databases, and devices that provides routine information to managers and decision makers. An MIS focuses on operational efficiency. Manufacturing, marketing, production, finance, and other functional areas are supported by MISs and linked through a common database. MISs typically provide standard reports generated with data and information from the TPS or ERP (see Figure 1.10). Dell Computer, for example, used manufacturing MIS software to develop a variety of reports on its manufacturing processes and costs.⁵³ Dell was able to double its product variety, while saving about \$1 million annually in manufacturing costs as a result.

MISs were first developed in the 1960s and typically use information systems to produce managerial reports. In many cases, these early reports were produced periodically—daily, weekly, monthly, or yearly. Because of their value to managers, MISs have proliferated throughout the management ranks.

Decision Support Systems

By the 1980s, dramatic improvements in technology resulted in information systems that were less expensive but more powerful than earlier systems. People quickly recognized that computer systems could support additional decision-making activities. A decision support system (DSS) is an organized collection of people, procedures, software, databases, and devices that support problem-specific decision making. The focus of a DSS is on making effective decisions. Whereas an MIS helps an organization "do things right," a DSS helps a manager "do the right thing."54

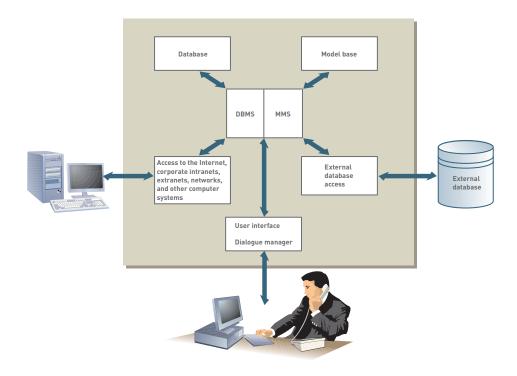
decision support system (DSS)

An organized collection of people, procedures, software, databases, and devices used to support problem-specific decision making.

Endeca provides Discovery for Design, decision support software that helps businesspeople assess risk and analyze performance. The data shown here is for electronic component development.

(Source: Courtesy of Endeca Technologies, Inc.)

A DSS can include a collection of models used to support a decision maker or user (model base), a collection of facts and information to assist in decision making (database), and systems and procedures (user interface or dialogue manager) that help decision makers and other users interact with the DSS (see Figure 1.11). Software is often used to manage the database—the database management system (DBMS)—and the model base—the model management system (MMS). Not all DSSs have all of these components.


In addition to DSSs for managers, other systems use the same approach to support groups and executives. A group support system includes the DSS elements just described as well as software, called groupware, to help groups make effective decisions. Kraft, for example, used iPhones and other mobile devices to help managers and workers stay connected and work together on important projects.⁵⁵ An executive support system, also called an executive information system, helps top-level managers, including a firm's president, vice presidents, and members of the board of directors, make better decisions. Healthland and Performance Management Institute, a healthcare company, has developed an executive information system to help small community and rural hospital executives make better decisions about delivering quality health care to patients and increasing the efficient delivery of healthcare services for hospitals.⁵⁶ The American Recovery and Reinvestment Act provides funds for qualifying healthcare companies that invest in better information and decision support systems. An executive support system can assist with strategic planning, top-level organizing and staffing, strategic control, and crisis management.

22

Information Systems in Perspective

Figure 1.11

Essential DSS Elements

Specialized Business Information Systems: Knowledge Management, Artificial Intelligence, Expert Systems, and Virtual Reality

In addition to TPSs, MISs, and DSSs, organizations often rely on specialized systems. Many use *knowledge management systems (KMSs)*, an organized collection of people, procedures, software, databases, and devices, to create, store, share, and use the organization's knowledge and experience.⁵⁷ Advent, a San Francisco company that develops investment software for hedge funds, used a KMS to help its employees locate and use critical knowledge to help its customers.⁵⁸

In addition to knowledge management, companies use other types of specialized systems. Experimental systems in cars can help prevent accidents. These new systems allow cars to communicate with each other using radio chips installed in their trunks. When two or more cars move too close together, the specialized systems sound alarms and brake in some cases. Some specialized systems are based on the notion of artificial intelligence (AI), in which the computer system takes on the characteristics of human intelligence. The field of artificial intelligence includes several subfields (see Figure 1.12). Some people predict that, in the future, we will have nanobots, small molecular-sized robots, traveling throughout our bodies and in our bloodstream, monitoring our health. Other nanobots will be embedded in products and services.

artificial intelligence (AI)

A field in which the computer system takes on the characteristics of human intelligence.

A Nissan Motor Company car swerves back into its lane on its own shortly after it ran off the track during a test of the Lane Departure Prevention feature, which also sounds a warning when the car veers out of its lane.

(Source: © AP Photo/Katsumi Kasahara.)

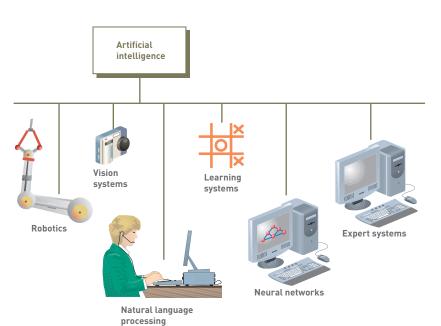


Figure 1.12

The Major Elements of Artificial Intelligence

Artificial Intelligence

Robotics is an area of artificial intelligence in which machines take over complex, dangerous, routine, or boring tasks, such as welding car frames or assembling computer systems and components. Honda Motor has spent millions of dollars on advanced robotics that allows a person to give orders to a computer using only his or her thoughts. The new system uses a special helmet that can measure and transmit brain activity to a computer. ⁶¹ A robot used by a Staples distribution center in the Denver area is able to locate items in a 100,000 square foot warehouse and pack them into containers to be shipped to other Staples stores. ⁶² Vision systems allow robots and other devices to "see," store, and process visual images. Natural language processing involves computers understanding and acting on verbal or written commands in English, Spanish, or other human languages. Learning systems allow computers to learn from past mistakes or experiences, such as playing games or making business decisions. Neural networks is a branch of artificial intelligence that allows computers to recognize and act on patterns or trends. ⁶³ Some successful stock, options, and futures traders use neural networks to spot trends and improve the profitability of their investments.

Expert Systems

Expert systems give the computer the ability to make suggestions and function like an expert in a particular field, helping enhance the performance of the novice user. The unique value of expert systems is that they allow organizations to capture and use the wisdom of experts and specialists.⁶⁴ Therefore, years of experience and specific skills are not completely lost when a human expert dies, retires, or leaves for another job. The U.S. Army uses the Knowledge and Information Fusion Exchange (KnIFE) expert system to help soldiers in the field make better military decisions based on successful decisions made in previous military engagements. The collection of data, rules, procedures, and relationships that must be followed to achieve value or the proper outcome is contained in the expert system's knowledge base.

Virtual Reality and Multimedia

Virtual reality and multimedia are specialized systems that are valuable for many businesses and nonprofit organizations. Many imitate or act like real environments. These unique systems are discussed in this section.

expert system

A system that gives a computer the ability to make suggestions and function like an expert in a particular field.

knowledge base

The collection of data, rules, procedures, and relationships that must be followed to achieve value or the proper outcome.

24

virtual reality

The simulation of a real or imagined environment that can be experienced visually in three dimensions.

The Cave Automatic Virtual Environment (CAVE) is a virtual reality room that allows users to completely immerse themselves in a virtual car interior while operating a workstation in a factory.

(Source: © Sipa via AP Images.)

Virtual reality is the simulation of a real or imagined environment that can be experienced visually in three dimensions.⁶⁵ One healthcare company, for example, is experimenting with a virtual reality game designed to help treat cancer in young adults and children. Developed by HopeLab (*www.hopelab.org*), the virtual reality game called Re-Mission shows young adults and children how to combat cancer.

Originally, virtual reality referred to immersive virtual reality, which means the user becomes fully immersed in an artificial, computer-generated 3D world. The virtual world is presented in full scale and relates properly to the human size. Virtual reality can also refer to applications that are not fully immersive, such as mouse-controlled navigation through a 3D environment on a graphics monitor, stereo viewing from the monitor via stereo glasses, stereo projection systems, and others. Boeing, for example, used virtual reality and computer simulation to help design and build its Dreamliner 787.⁶⁶ The company used 3D models from Dassault Systems to design and manufacture the new aircraft. Retail stores are using virtual reality to help advertise high-end products on the Internet.

Figure 1.13

A Head-Mounted Display

The head-mounted display (HMD) was the first device to provide the wearer with an immersive experience. A typical HMD houses two miniature display screens and an optical system that channels the images from the screens to the eyes, thereby presenting a stereo view of a virtual world. A motion tracker continuously measures the position and orientation of the user's head and allows the imagegenerating computer to adjust the scene representation to the current view. As a result, the viewer can look around and walk through the surrounding virtual environment.

[Source: Courtesy of 5DT, Inc. www. 5dt.com.]

A variety of input devices, such as head-mounted displays (see Figure 1.13), data gloves, joysticks, and handheld wands, allow the user to navigate through a virtual environment and to interact with virtual objects. Directional sound, tactile and force feedback devices, voice recognition, and other technologies enrich the immersive experience. Because several people can share and interact in the same environment, virtual reality can be a powerful medium for communication, entertainment, and learning.

Multimedia is a natural extension of virtual reality. It can include photos and images, the manipulation of sound, and special 3D effects. Once used primarily in movies, 3D technology can be used by companies to design products, such as motorcycles, jet engines, bridges, and more.⁶⁷ Autodesk, for example, makes exciting 3D software that companies can use to design large skyscrapers and other buildings.⁶⁸ The software can also be used by Hollywood animators to develop action and animated movies.

SYSTEMS DEVELOPMENT

Systems development is the activity of creating or modifying information systems. Systems development projects can range from small to very large and are conducted in fields as diverse as stock analysis and video game development. Individuals from around the world are using the steps of systems development to create unique applications for the iPhone.⁶⁹ Apple has special tools for iPhone application developers, including GPS capabilities and audio streaming, to make it easier for people to craft unique applications. Apple is also allowing these systems developers to charge users in a variety of ways, including fixed prices and subscription fees. Recall that individuals and companies are increasingly developing "cloud computing" applications that can be run from the Internet. 70 These applications have additional systems development challenges, such as making sure that the data and programs on the Internet are safe and secure from hackers and corporate spies.

People inside a company can develop systems, or companies can use outsourcing, hiring an outside company to perform some or all of a systems development project. Outsourcing allows a company to focus on what it does best and delegate other functions to companies with expertise in systems development. The drug company Pfizer, for example, used outsourcing to allow about 4,000 of its busy employees to outsource some of their jobs functions to other individuals or companies around the globe, allowing them to concentrate on key tasks.⁷¹ Any outsourcing decision should depend on the company and the project being considered for outsourcing.

Some systems development efforts fail to meet their cost or schedule goals. Systems development failures can be a result of poor planning and scheduling, insufficient management of risk, poor requirements determination, and lack of user involvement. One strategy for improving the results of a systems development project is to divide it into several steps, each with a well-defined goal and set of tasks to accomplish (see Figure 1.14). These steps are summarized next.

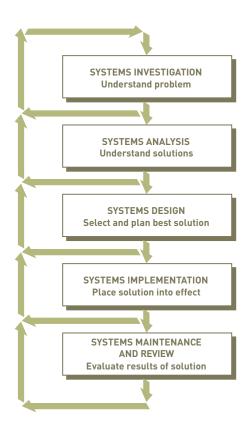
Systems Investigation and Analysis

The first two steps of systems development are systems investigation and analysis. The goal of the systems investigation is to gain a clear understanding of the problem to be solved or opportunity to be addressed. After an organization understands the problem, the next question is, "Is the problem worth solving?" Given that organizations have limited resourcespeople and money—this question deserves careful consideration. If the decision is to continue with the solution, the next step, systems analysis, defines the problems and opportunities of the existing system. During systems investigation and analysis, as well as design maintenance and review, discussed next, the project must have the complete support of top-level managers and focus on developing systems that achieve business goals.

systems development

The activity of creating or modifying existing business systems.

Chapter 1


26

Part 1

Information Systems in Perspective

Figure 1.14

An Overview of Systems Development

Systems Design, Implementation, and Maintenance and Review

Systems design determines how the new system should be developed to meet the business needs defined during systems analysis. For some companies, this involves environmental design that attempts to use systems development approaches that are kind to the environment and make a profit. Gazelle, for example, used systems design to develop the software and systems needed to recycle computer and electronic systems for a profit. According to the company founder, "What we're doing here is buying dollars for 80 cents." Systems implementation involves creating or acquiring the various system components (hardware, software, databases, etc.) defined in the design step, assembling them, and putting the new system into operation. For many organizations, this includes purchasing software, hardware, databases, and other IS components. The purpose of systems maintenance and review is to check and modify the system so that it continues to meet changing business needs. Increasingly, companies are hiring outside companies to do their design, implementation, maintenance, and review functions.

ORGANIZATIONS AND INFORMATION SYSTEMS

organization

A formal collection of people and other resources established to accomplish a set of goals.

An **organization** is a formal collection of people and other resources established to accomplish a set of goals. The primary goal of a for-profit organization is to maximize shareholder value, often measured by the price of the company stock. Nonprofit organizations include social groups, religious groups, universities, and other organizations that do not have profit as their goal. As discussed in this chapter, the ability of an organization to achieve its goals is often a function of the organization's overall structure, culture, and ability to change.

An organization is a system, which means that it has inputs, processing mechanisms, outputs, and feedback. An organization constantly uses money, people, materials, machines and other equipment, data, information, and decisions. As shown in Figure 1.15, resources

such as materials, people, and money serve as inputs to the organizational system from the environment, go through a transformation mechanism, and then are produced as outputs to the environment. The outputs from the transformation mechanism are usually goods or services, which are of higher relative value than the inputs alone. Through adding value or worth, organizations attempt to increase performance and achieve their goals. According to one chief information officer (CIO) for a large healthcare company, "As business executives, other than the CEO, CIOs are best positioned to help drive business outcomes ... to increase top- and bottom-line performance."

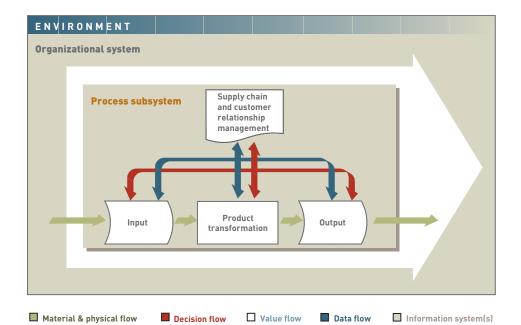


Figure 1.15

A General Model of an Organization

Information systems support and work within all parts of an organizational process. Although not shown in this simple model, input to the process subsystem can come from internal and external sources. Just prior to entering the subsystem, data is external. After it enters the subsystem, it becomes internal. Likewise, goods and services can be output to either internal or external systems.

Providing value to a stakeholder—customer, supplier, manager, shareholder, or employee—is the primary goal of any organization. The value chain, first described by Michael Porter in a 1985 *Harvard Business Review* article, reveals how organizations can add value to their products and services. The value chain is a series (chain) of activities that includes inbound logistics, warehouse and storage, production and manufacturing, finished product storage, outbound logistics, marketing and sales, and customer service (see Figure 1.16). You investigate each activity in the chain to determine how to increase the value perceived by a customer. Depending on the customer, value might mean lower price, better service, higher quality, or uniqueness of product. The value comes from the skill, knowledge, time, and energy that the company invests in the product or activity. The value chain is just as important to companies that don't manufacture products, such as tax preparers, retail stores, legal firms, and other service providers. By adding a significant amount of value to their products and services, companies ensure success.

value chain

A series (chain) of activities that includes inbound logistics, warehouse and storage, production, finished product storage, outbound logistics, marketing and sales, and customer service.

28

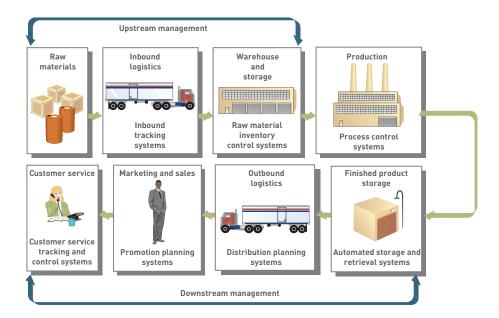
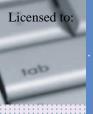

Information Systems in Perspective

Figure 1.16

The Value Chain of a Manufacturing Company

Part 1

Managing raw materials, inbound logistics, and warehouse and storage facilities is called *upstream management*. Managing finished product storage, outbound logistics, marketing and sales, and customer service is called *downstream management*.



Combining a value chain with justin-time (JIT) inventory means companies can deliver materials or parts when they are needed. Ball Aerospace uses JIT to help reduce inventory costs and enhance customer satisfaction.

(Source: AP Photo/Denver Post, R. J. Sangosti.)

CENGAGE brain

INFORMATION SYSTEMS @ WORK

Aldra Manages Workflow to Support Customization

Aldra Fenster und Türen GmbH, or Aldra for short, is a leading door and window manufacturer with over 300 dealers in Germany and Scandinavia. Aldra is well known for its precision craftsmanship in manufacturing intricate, custom-designed windows. In the early 1970s, the company developed a unique method of manufacturing windows from plastic. Combined with its customization service, this cost-saving manufacturing innovation gave Aldra a leg up on the competition.

Aldra's custom window design and manufacturing has created challenges in its corporate workflow and information processing. Mass-producing windows and doors in standard sizes is far easier than creating custom designs, where production techniques change from one item to the next. At Aldra, most orders have unique requirements in terms of size, shape, materials, function, and embedded technology. To support custom orders, Aldra must provide considerable flexibility in both its manufacturing processes and its information systems.

Providing customized manufacturing does not excuse Aldra from meeting the tight deadlines imposed by costly construction projects. Aggressive construction schedules rarely allow for the extra time required to produce custom products. Aldra found that the complexities of building its high-quality products were causing confusion in the order processing system and delays in manufacturing, leading to missed deadlines. Order specifications were sometimes incomplete or incorrect, and correcting orders is time consuming. Lack of coordination among departments resulted in additional errors that occasionally resulted in costly idle time on the production line. The lack of coordination also led to errors in calculating manufacturing costs, which reduced profits. Aldra set out to implement a new system that would assist the company in managing its value chain and corporate workflow.

Aldra purchased information systems from Infor Corporation that allowed the company to better coordinate efforts across departments. Using the software, Aldra now models its critical core processes (workflows) and then uses the models to improve communication across the value chain. The models define the specific employees involved in the various stages of the process.

The system then generates daily activities for each employee displayed in a particular area on the computer desktop. As activities approach their deadline, they are moved to the top of the list. Employees also receive e-mail notices of new or pressing actions needing attention.

Aldra's new workflow management system depends on a corporate-wide system that stores and manipulates all order details. Top managers can view orders to see how they are progressing through the value chain so that they can intervene when necessary.

Aldra implemented the new system in an unusually short amount of time. The company spent three days installing the system, another three days training managers in how to model workflow processes, and two weeks to model processes and train users. The benefits of the new system were almost immediately apparent. Within weeks, the company's adherence to delivery dates was improved by over 95 percent. Cost estimates are now reliably calculated. Employees make more productive use of their time, and customers are happy. Aldra is looking to expand the use of its new systems to other areas of its business.

Discussion Questions

- 1. What problems did Aldra's new information systems address, and what was the root of those problems?
- 2. How did Aldra's new systems assist employees in being more productive?

Critical Thinking Questions

- 1. What lessons can be learned from this case in terms of managing information in a value chain?
- 2. How does an organization determine when it is worthwhile to invest in a system such as Aldra's workflow management system?

SOURCES: Infor Staff, "Aldra Fenster und Türen GmbH," Aldra Customer Profile, accessed December 24, 2009, www.infor.com/content/casestudies/296661; Infor ERP systems Web site, accessed December 24, 2009; Aldra Web site (translated), accessed December 24, 2009, www.aldra.de.

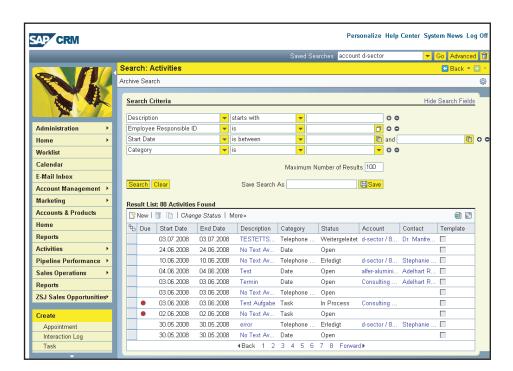
30

Part 1

Information Systems in Perspective

Walmart's use of information systems is an integral part of its operation. The company gives suppliers access to its inventory system, so the suppliers can monitor the database and automatically send another shipment when stocks are low, eliminating the need for purchase orders. This speeds delivery time, lowers Walmart's inventory carrying costs, and reduces

[Source: www.walmart.com.]


stockout costs.

Managing the supply chain and customer relationships are two key elements of managing the value chain. *Supply chain management (SCM)* helps determine what supplies are required for the value chain, what quantities are needed to meet customer demand, how the supplies should be processed (manufactured) into finished goods and services, and how the shipment of supplies and products to customers should be scheduled, monitored, and controlled.⁷⁴ Companies use a number of approaches to manage their supply chain. Some automotive companies, for example, require that their suppliers locate close to manufacturing plants. Other companies have considered purchasing suppliers to manage their supply chain.⁷⁵ Sysco, a Texas-based food distribution company, uses a sophisticated supply chain management system that incorporates software and databases to prepare and ship over 20 million tons of meats, produce, and other food items to restaurants and other outlets every year.⁷⁶ The huge company supplies one in three cafeterias, sports stadiums, restaurants, and other food stores.

Customer relationship management (CRM) programs help companies of all sizes manage all aspects of customer encounters, including marketing and advertising, sales, customer service after the sale, and programs to retain loyal customers. Often, CRM software uses a variety of information sources, including sales from retail stores, surveys, e-mail, and Internet browsing habits, to compile comprehensive customer profiles. CRM systems can also get customer feedback to help design new products and services. See Figure 1.17. To be of most benefit, CRM programs must be tailored for each company or organization. Duke Energy, an energy holding company, uses Convergys (www.convergys.com) to provide CRM software that is specifically configured to help the energy company manage its customer's use of energy grids and energy services. Sales Force, and other companies develop and sell CRM software. ORM software can also be purchased as a service and delivered over the Internet instead of being installed on corporate computers.

Figure 1.17

SAP CRM

Companies in more than 25 industries use SAP CRM to reduce cost and increase decision-making ability in all aspects of their customer relationship management.

(Source: www.sap.com.)

Organizational Culture and Change

Culture is a set of major understandings and assumptions shared by a group, such as within an ethnic group or a country. Organizational culture consists of the major understandings and assumptions for a business, corporation, or other organization. The understandings, which can include common beliefs, values, and approaches to decision making, are often not stated or documented as goals or formal policies. For example, Procter & Gamble has an organizational culture that places an extremely high value on understanding its customers and their needs. As another example, employees might be expected to be clean-cut, wear conservative outfits, and be courteous in dealing with all customers. Sometimes organizational culture is formed over years. In other cases, top-level managers can form it rapidly by starting a "casual Friday" dress policy. Organizational culture can also have a positive effect on the successful development of new information systems that support the organization's culture. Some healthcare professionals believe that a good organizational culture can improve patient health and safety.⁸⁰

Organizational change deals with how for-profit and nonprofit organizations plan for, implement, and handle change. Change can be caused by internal factors, such as those initiated by employees at all levels, or by external factors, such as activities wrought by competitors, stockholders, federal and state laws, community regulations, natural occurrences (such as hurricanes), and general economic conditions. Organizational change occurs when two or more organizations merge. When organizations merge, however, integrating their information systems can be critical to future success. When VeriSign, for example, acquired and merged with a number of companies, it had to integrate various information systems.⁸¹ According to the chief information officer of VeriSign, "By being decisive and making the goals and objectives clear, we were able to fuse multiple teams into a single unit, which in the end was smaller and far more productive."

Change can be sustaining or disruptive. 82 Sustaining change can help an organization improve the supply of raw materials, the production process, and the products and services it offers. Developing new manufacturing equipment to make disk drives is an example of a sustaining change for a computer manufacturer. The new equipment might reduce the costs of producing the disk drives and improve overall performance. Disruptive change, on the other hand, can completely transform an industry or create new ones, which can harm an organization's performance or even put it out of business. In general, disruptive technologies might not originally have good performance, low cost, or even strong demand. Over time, however,

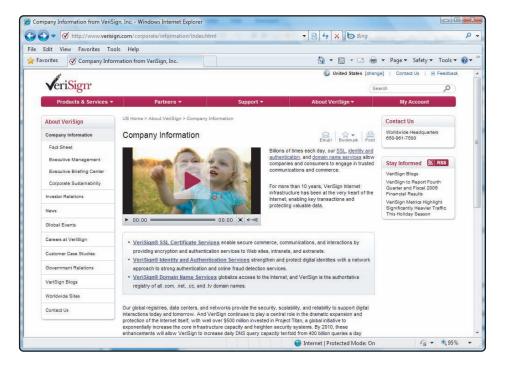
culture

A set of major understandings and assumptions shared by a group.

organizational culture

The major understandings and assumptions for a business, corporation, or other organization.

organizational change


How for-profit and nonprofit organizations plan for, implement, and handle change.

32

they often replace existing technologies. They can cause profitable, stable companies to fail when they don't change or adopt the new technology. On a positive note, disruptive change often results in new, successful companies and offers consumers the potential of new products and services at reduced costs and superior performance. An institute called Singularity University, located at the NASA Ames Research Center in California, offers workshops on how to deal with disruptive change. ⁸³ The purpose of the institute is to prepare managers and executives for the fast, ever-changing nature of information systems.

When VeriSign acquired and merged with a number of companies, it had to integrate various information systems.

(Source: www.verisign.com.)

User Satisfaction and Technology Acceptance

To be effective, reengineering and continuous improvement efforts must result in satisfied users and be accepted and used throughout the organization. Over the years, IS researchers have studied user satisfaction and technology acceptance as they relate to IS attitudes and usage. ⁸⁴ Although user satisfaction and technology acceptance started as two separate theories, some believe that they are related concepts. ⁸⁵

User satisfaction with a computer system and the information it generates often depend on the quality of the system and the value of the information it delivers to users. ⁸⁶ A quality information system is usually flexible, efficient, accessible, and timely. Recall that quality information is accurate, reliable, current, complete, and delivered in the proper format. ⁸⁷

The technology acceptance model (TAM) specifies the factors that can lead to better attitudes about the information system, along with higher acceptance and usage of the system in an organization. These factors include the perceived usefulness of the technology, the ease of its use, the quality of the information system, and the degree to which the organization supports its use. Studies have shown that user satisfaction and technology acceptance are critical in health care. Doctors and other healthcare professionals need training and time to accept and use medical records technology and databases to reduce medical errors and save lives.

You can determine the actual usage of an information system by the amount of technology diffusion and infusion. ⁹¹ **Technology diffusion** is a measure of how widely technology is spread throughout an organization. An organization in which computers and information systems are located in most departments and areas has a high level of technology diffusion. ⁹² Some online merchants such as Amazon.com have a high diffusion and use computer systems to perform most of their business functions, including marketing, purchasing,

technology acceptance model

A model that describes the factors leading to higher levels of acceptance and usage of technology.

technology diffusion

A measure of how widely technology is spread throughout the organization.

and billing. Technology infusion, on the other hand, is the extent to which technology permeates an area or department. In other words, it is a measure of how deeply embedded technology is in an area of the organization. Some architectural firms, for example, use computers in all aspects of designing a building from drafting to final blueprints. See Figure 1.18. The design area, thus, has a high level of infusion. Of course, a firm can have a high level of infusion in one part of its operations and a low level of diffusion overall. The architectural firm might use computers in all aspects of design (high infusion in the design area), but not to perform other business functions, including billing, purchasing, and marketing (low diffusion). Diffusion and infusion often depend on the technology available now and in the future, the size and type of the organization, and the environmental factors that include the competition, government regulations, suppliers, and so on. This is often called the technology, organization, and environment (TOE) framework.⁹³

technology infusion

The extent to which technology is deeply integrated into an area or department.

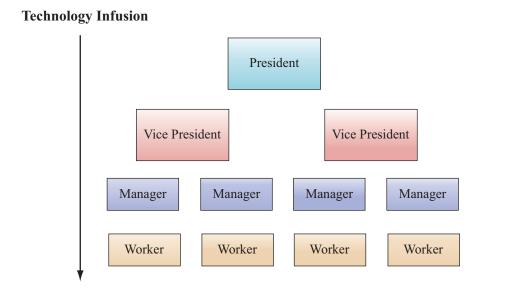


Figure 1.18 Technology Infusion and

Diffusion

Although an organization might have a high level of diffusion and infusion, with computers throughout the organization, this does not necessarily mean that information systems are being used to their full potential. In fact, the assimilation and use of expensive computer technology throughout organizations varies greatly. 94 Providing support and help to employees usually increases the use of a new information system. 95 Companies also hope that a high level of diffusion, infusion, satisfaction, and acceptance will lead to greater performance and profitability.⁹⁶ How appropriate and useful the information system is to the tasks or activities being performed, often called Task-Technology Fit (TTF), can also lead to greater performance and profitability.⁹⁷

Technology Diffusion

COMPETITIVE ADVANTAGE

A competitive advantage is a significant and (ideally) long-term benefit to a company over its competition, and can result in higher-quality products, better customer service, and lower costs. According to the chief information officer of a large consulting company, "An efficiently run IT organization can be a significant source of competitive advantage."98 An organization often uses its information system to help achieve a competitive advantage. A large Canadian furniture manufacturing company, for example, achieved a competitive advantage by reducing total operating costs by more than 20 percent using its information

competitive advantage

A significant and (ideally) long-term benefit to a company over its competition.

34 Part

Information Systems in Perspective

system to streamline its supply chain and reduce the cost of wood and other raw materials.⁹⁹ In his book *Good to Great,* Jim Collins outlines how technology can be used to accelerate companies to greatness.¹⁰⁰ Table 1.3 shows how a few companies accomplished this move. Ultimately, it is not how much a company spends on information systems but how it makes and manages investments in technology. Companies can spend less and get more value.

Table 1.3

How Some Companies Used Technologies to Move from Good to Great

(Source: Data from Jim Collins, *Good to Great*, Harper Collins Books, 2001, p. 300.)

Company	Business	Competitive Use of Information Systems
Gillette	Shaving products	Developed advanced computerized manufacturing systems to produce high-quality products at low cost
Walgreens	Drug and convenience stores	Developed satellite communications systems to link local stores to centralized computer systems
Wells Fargo	Financial services	Developed 24-hour banking, ATMs, investments, and increased customer service using information systems

Taking advantage of the existing situation, including an economic downturn, can also help a firm achieve a competitive advantage. In 2009 and 2010, while some companies struggled with the economy and slumping sales, other companies were investing in information systems to give them a long-term advantage. UPS, for example, planned on investing about \$1 billion in new information systems. According to the company's CIO, "We firmly believe the strong companies will come out of this downturn stronger. This is an opportunity to get your company positioned to grow on the upturn."

Factors That Lead Firms to Seek Competitive Advantage

A number of factors can lead to attaining a competitive advantage. Michael Porter, a prominent management theorist, suggested a now widely accepted competitive forces model, also called the **five-forces model**. The five forces include (1) the rivalry among existing competitors, (2) the threat of new entrants, (3) the threat of substitute products and services, (4) the bargaining power of buyers, and (5) the bargaining power of suppliers. The more these forces combine in any instance, the more likely firms will seek competitive advantage and the more dramatic the results of such an advantage will be.

Rivalry Among Existing Competitors

Typically, highly competitive industries are characterized by high fixed costs of entering or leaving the industry, low degrees of product differentiation, and many competitors. Although all firms are rivals with their competitors, industries with stronger rivalries tend to have more firms seeking competitive advantage. To gain an advantage over competitors, companies constantly analyze how they use their resources and assets. This *resource-based view* is an approach to acquiring and controlling assets or resources that can help the company achieve a competitive advantage. For example, a transportation company might decide to invest in radio-frequency technology to tag and trace products as they move from one location to another.

Threat of New Entrants

A threat appears when entry and exit costs to an industry are low and the technology needed to start and maintain a business is commonly available. For example, a small restaurant is threatened by new competitors. Owners of small restaurants do not require millions of dollars to start the business, food costs do not decline substantially for large volumes, and food processing and preparation equipment is easily available. When the threat of new market entrants is high, the desire to seek and maintain competitive advantage to dissuade new entrants is also usually high.

Threat of Substitute Products and Services

Companies that offer one type of goods or services are threatened by other companies that offer similar goods or services. The more consumers can obtain similar products and services

five-forces model

A widely accepted model that identifies five key factors that can lead to attainment of competitive advantage, including (1) the rivalry among existing competitors, (2) the threat of new entrants, (3) the threat of substitute products and services, (4) the bargaining power of buyers, and (5) the bargaining power of suppliers.

that satisfy their needs, the more likely firms are to try to establish competitive advantage. For example, consider the photographic industry. When digital cameras became popular, traditional film companies had to respond to stay competitive and profitable. Traditional film companies, such as Kodak and others, started to offer additional products and enhanced services, including digital cameras, the ability to produce digital images from traditional film cameras, and Web sites that could be used to store and view pictures.

In the restaurant industry, competition is fierce because entry costs are low. Therefore, a small restaurant that enters the market can be a threat to existing restaurants.

(Source: © 2010, Emin Kuliyev. Used under license from Shutterstock.com.)

Bargaining Power of Customers and Suppliers

Large customers tend to influence a firm, and this influence can increase significantly if the customers can threaten to switch to rival companies. When customers have a lot of bargaining power, companies increase their competitive advantage to retain their customers. Similarly, when the bargaining power of suppliers is strong, companies need to improve their competitive advantage to maintain their bargaining position. Suppliers can also help an organization gain a competitive advantage. Some suppliers enter into strategic alliances with firms and eventually act as a part of the company. Suppliers and companies can use telecommunications to link their computers and personnel to react quickly and provide parts or supplies as necessary to satisfy customers.

Strategic Planning for Competitive Advantage

To be competitive, a company must be fast, nimble, flexible, innovative, productive, economical, and customer oriented. It must also align its IS strategy with general business strategies and objectives. ¹⁰² Given the five market forces previously mentioned, Porter and others have proposed a number of strategies to attain competitive advantage, including cost leadership, differentiation, niche strategy, altering the industry structure, creating new products and services, and improving existing product lines and services. ¹⁰³ In some cases, one of these strategies becomes dominant. For example, with a cost leadership strategy, cost can be the key consideration, at the expense of other factors if need be.

- Cost leadership. Deliver the lowest possible cost for products and services. Walmart and
 other discount retailers have used this strategy for years. Cost leadership is often achieved
 by reducing the costs of raw materials through aggressive negotiations with suppliers,
 becoming more efficient with production and manufacturing processes, and reducing
 warehousing and shipping costs. Some companies use outsourcing to cut costs when
 making products or completing services.
- Differentiation. Deliver different products and services. This strategy can involve
 producing a variety of products, giving customers more choices, or delivering higherquality products and services. Many car companies make different models that use the
 same basic parts and components, giving customers more options. Other car companies
 attempt to increase perceived quality and safety to differentiate their products and appeal
 to consumers who are willing to pay higher prices for these features. Companies that try
 to differentiate their products often strive to uncover and eliminate counterfeit products
 produced and delivered by others.

36

Walmart and other discount retailers have used a cost leadership strategy to deliver the lowest possible price for products and services.

(Source: © Jeff Zelevansky/Getty Images.)

Niche strategy. Deliver to only a small, niche market. Porsche, for example, doesn't
produce inexpensive economy cars. It makes high-performance sports cars and SUVs.
Rolex only makes high-quality, expensive watches. It doesn't make inexpensive, plastic
watches that can be purchased for \$20 or less.

Porsche is an example of a company with a niche strategy, producing only high-performance sports cars and SUVs.

(Source: © 2010, Max Earey. Used under license from Shutterstock.com.)

strategic alliance (strategic partnership)

An agreement between two or more companies that involves the joint production and distribution of goods and services.

- Altering the industry structure. Change the industry to become more favorable to the company or organization. The introduction of low-fare airline carriers, such as Southwest Airlines, has forever changed the airline industry, making it difficult for traditional airlines to make high profit margins. Creating strategic alliances can also alter the industry structure. A strategic alliance, also called a strategic partnership, is an agreement between two or more companies that involves the joint production and distribution of goods and services. The investment firm American Diversified Holdings, for example, developed a strategic alliance with Invent Pharmaceuticals to help the pharmaceutical company with investments, regulatory issues, and business operations. 104 According to the chairman of American Diversified Holdings, "This alliance with Invent Pharma will enhance our investment focus in the biotech industry."
- Creating new products and services. Introduce new products and services periodically
 or frequently. This strategy always helps a firm gain a competitive advantage, especially
 for the computer industry and other high-tech businesses. If an organization does not
 introduce new products and services every few months, the company can quickly stagnate,
 lose market share, and decline. Companies that stay on top are constantly developing

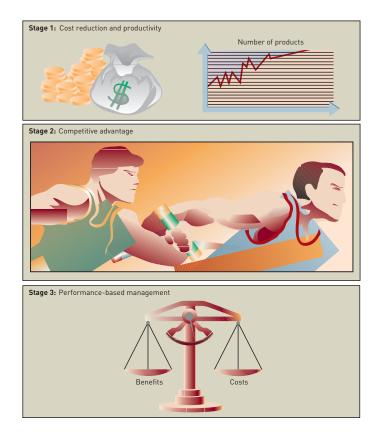
Chapter 1

- new products and services. Apple Computer, for example, introduced the iPod, iPhone, and iPad as new products.
- Improving existing product lines and services. Make real or perceived improvements to existing product lines and services. Manufacturers of household products are always advertising new and improved products. In some cases, the improvements are more perceived than actual refinements; usually, only minor changes are made to the existing product, such as to reduce the amount of sugar in breakfast cereal.
- Other strategies. Some companies seek strong *growth* in sales, hoping that it can increase profits in the long run due to increased sales. Being the first to market is another competitive strategy. Apple Computer was one of the first companies to offer complete and ready-to-use personal computers. Some companies offer *customized* products and services to achieve a competitive advantage. Dell, for example, builds custom PCs for consumers. Hire the best people is another example of a competitive strategy. The assumption is that the best people will determine the best products and services to deliver to the market and the best approach to deliver these products and services. Having agile information systems that can rapidly change with changing conditions and environments can be a key to information systems success and a competitive advantage. 105 Achieving a high level of efficiency and effectiveness is an important challenge of developing an agile information system. Other challenges included satisfying various governmental regulations, meeting customer requirements, and maintaining a good growth level. Innovation is another competitive strategy. 106 Vodafone relied on outside help to provide innovative solutions in its wireless business. 107 According its chief executive, "The only way to create a fertile environment for innovation is to have open platforms and leverage them." Natural Selection, a San Diego company, originally developed a computer program that attempted to analyze past inventions and suggest future ones. 108 Although the original program was not an immediate success, the approach has been used by General Electric, the U.S. Air Force, and others to cut costs and streamline delivery routes of products. According to one expert, "Successful innovations are often built on the back of failed ones." A lack of innovation can lead to a loss in competitiveness and long-term profitability. 109 Some believe that less innovation has led to lower productivity, lower profits, and lower wages and salaries for managers and workers. Companies can also combine one or more of these strategies. In addition to customization, Dell attempts to offer low-cost computers (cost leadership) and top-notch service (differentiation).

PERFORMANCE-BASED INFORMATION SYSTEMS

Businesses have passed through at least three major stages in their use of information systems. In the first stage, organizations focused on using information systems to reduce costs and improve productivity. TransUnion, a large credit reporting company, reduced computerrelated costs by about \$2.5 million annually by investing \$50,000 in a corporate social networking Internet site.¹¹⁰ According to the chief technology officer, "The savings mostly come out of teams that would have historically said 'Buy me more hardware' or 'I need a new software tool' who figured out how to solve their problems without asking for those things." In another example, the National ePrescribing Patient Safety Initiative offers powerful software to doctors to reduce medication errors and costs. Companies can also use software tools, such as Apptio's IT Cost Optimization Solutions, to cut the costs of computer upgrades, reduce the number of computers, and help determine what to charge business units for providing computer services and equipment.¹¹¹

The second stage was defined by Porter and others. It was oriented toward gaining a competitive advantage. In many cases, companies spent large amounts on information systems and downplayed the costs.


Today, companies are shifting from strategic management to performance-based management of their information systems. In this third stage, companies carefully consider both 38 Par

Information Systems in Perspective

strategic advantage and costs. They use productivity, return on investment (ROI), net present value, and other measures of performance to evaluate the contributions their information systems make to their businesses. Figure 1.19 illustrates these stages. This balanced approach attempts to reduce costs and increase revenues.

Figure 1.19

Three Stages in the Business Use of Information Systems

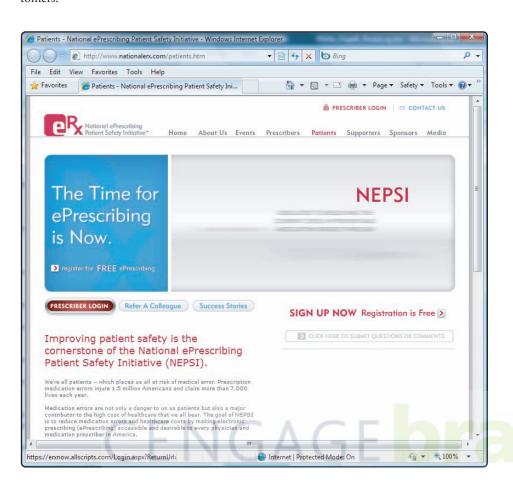
productivity

A measure of the output achieved divided by the input required.

Developing information systems that measure and control productivity is a key element for most organizations. **Productivity** is a measure of the output achieved divided by the input required. A higher level of output for a given level of input means greater productivity; a lower level of output for a given level of input means lower productivity. The numbers assigned to productivity levels are not always based on labor hours—productivity can be based on factors such as the amount of raw materials used, resulting quality, or time to produce the goods or service. The value of the productivity number is not as significant as how it compares with other time periods, settings, and organizations. Xerox has developed an information system to increase printer productivity and reduce costs called Lean Document Production (LDP) solutions. According to one researcher, "These solutions, which Xerox has implemented in approximately 100 sites to date, have provided dramatic productivity and cost improvements for both print shops and document-manufacturing facilities."

Productivity = (Output / Input) \times 100%

After a basic level of productivity is measured, an information system can monitor and compare it over time to see whether productivity is increasing. Then, a company can take corrective action if productivity drops below certain levels. An automotive company, for example, might use robots in assembling new cars to increase its labor productivity and reduce costs. In addition to measuring productivity, an information system can be used within a process to significantly increase productivity. Thus, improved productivity can result in faster customer response, lower costs, and increased customer satisfaction.



Return on Investment and the Value of Information Systems

One measure of IS value is return on investment (ROI). This measure investigates the additional profits or benefits that are generated as a percentage of the investment in IS technology. A small business that generates an additional profit of \$20,000 for the year as a result of an investment of \$100,000 for additional computer equipment and software would have a return on investment of 20 percent (\$20,000/\$100,000). ROI calculations can be complex, including investment returns over multiple years and the impact of the time value of money. According to the chief technology officer for the Financial Industry Regulatory Authority, "ROI is a key metric for technology initiatives." Some researchers believe that how an IS function is managed and run is one of the best indicators of the value of the system to the organization and its return on investment. 114 Because of the importance of ROI, many computer companies provide ROI calculators to potential customers. ROI calculators are typically provided on a vendor's Web site and can be used to estimate returns. Kodak, for example, has an ROI calculator for many of its products based on lifetime value to customers. 115

return on investment (ROI)

One measure of IS value that investigates the additional profits or benefits that are generated as a percentage of the investment in IS technology.

The National ePrescribing Patient Safety Initiative offers software to doctors to reduce medication errors and costs

(Source: www.nationalerx.com.)

Earnings Growth

Another measure of IS value is the increase in profit, or earnings growth, the system brings. For instance, a mail-order company might install an order-processing system that generates a seven percent earnings growth compared with the previous year.

Market Share and Speed to Market

Market share is the percentage of sales that a product or service has in relation to the total market. If installing a new online catalog increases sales, it might help a company increase its market share by 20 percent. Information systems can also help organizations bring new 40 Part

Information Systems in Perspective

products and services to customers in less time. This is often called speed to market. Speed can also be a critical performance objective for many organizations. The New York Stock Exchange, for example, is building a large facility the size of several football fields to house super-fast trading systems that can be used by large hedge funds and institutional investors. ¹¹⁶

Customer Awareness and Satisfaction

Although customer satisfaction can be difficult to quantify, about half of today's best global companies measure the performance of their information systems based on feedback from internal and external users. Some companies and nonprofit organizations use surveys and questionnaires to determine whether the IS investment has increased customer awareness and satisfaction.

Total Cost of Ownership

Another way to measure the value of information systems was developed by the Gartner Group and is called the **total cost of ownership** (TCO). TCO is the sum of all costs over the life of the information system, including the costs to acquire components such as the technology, technical support, administrative costs, and end-user operations. Hitachi uses TCO to promote its projectors to businesses and individuals.¹¹⁷ TCO is also used by many other companies to rate and select hardware, software, databases, and other computer-related components.

Return on investment, earnings growth, market share, customer satisfaction, and TCO are only a few measures that companies use to plan for and maximize the value of their IS investments. Regardless of the difficulties, organizations must attempt to evaluate the contributions that information systems make to assess their progress and plan for the future. Information systems and personnel are too important to leave to chance.

Risk

In addition to the return-on-investment measures of a new or modified system discussed earlier, managers must also consider the risks of designing, developing, and implementing these systems. Information systems can sometimes be costly failures. The risks of designing, developing, and implementing new or modified systems are covered in more detail in Chapter 8, which discuss systems development.

CAREERS IN INFORMATION SYSTEMS

Realizing the benefits of any information system requires competent and motivated IS personnel, and many companies offer excellent job opportunities. As mentioned earlier, knowledge workers (KWs) are people who create, use, and disseminate knowledge. They are usually professionals in science, engineering, business, and other areas that specialize in information systems. Numerous schools have degree programs with such titles as information systems, computer information systems, and management information systems. These programs are typically offered by information schools, business schools, and within computer science departments. Information systems skills can also help people start their own companies.

Skills that some experts believe are important for IS workers to have include those in the following list. Nontechnical skills are also important for IS personnel, including communication skills, a detailed knowledge of the organization, and how information systems can help the organization achieve its goals. All of the following skills are discussed in the chapters throughout this book.

- 1. Program and application development
- 2. Help Desk and technical support
- 3. Project management

The sum of all costs over the life of an information system, including the costs to acquire components such as the technology, technical support, administrative costs, and end-user operations.

- 4. Networking
- 5. Business intelligence
- 6. Security
- 7. Web 2.0
- 8. Data center
- 9. Telecommunications.

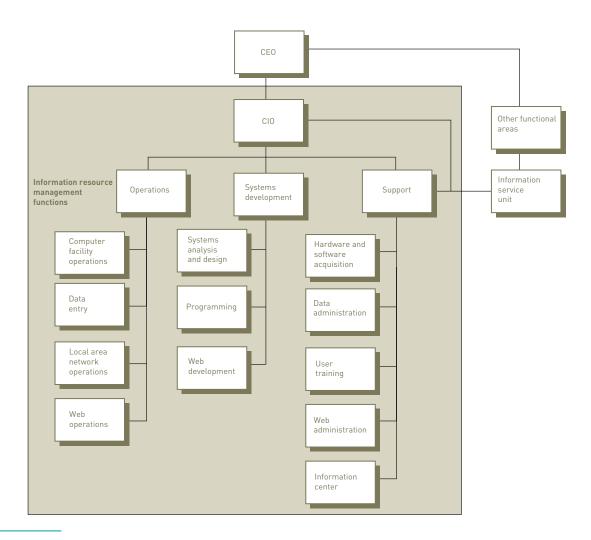
The U.S. Department of Labor's Bureau of Labor Statistics (www.bls.gov) publishes the fastest growing occupations and predicts that many technology jobs will increase through 2012 or beyond. Table 1.4 summarizes some of the best places to work as an IS professional.¹¹⁹ Career development opportunities, training, benefits, retention, diversity, and the nature of the work itself are just a few of the qualities these top employers offer.

Table 1.4

Best Places to Work as an IS Professional

Chapter 1

Source: "Best Places to Work in IT," Computerworld, June 16, 2009.


Company	Additional Benefits	
General Mills	Auto service facilities and fitness center	
Genentech	Relaxation, meditation, and mindfulness programs	
San Diego Gas & Electric	Good retirement program	
University of Pennsylvania	Many excellent campus events and activities	
Monsanto	Flex schedules and telecommuting options	
Securian Financial Group	Career growth opportunities	
Verizon	Innovation and working with new technologies	
JM Family Enterprises	Employee growth and deals on the Toyota vehicles the company represents	
USAA	Flexible work schedules	
University of Miami	Good compensation plan and many university benefits	

Opportunities in information systems are also available to people from foreign countries, including Russia and India. The U.S. H-1B and L-1 visa programs seek to allow skilled employees from foreign lands into the United States. These programs, however, are limited and usually in high demand. The L-1 visa program is often used for intracompany transfers for multinational companies. The H-1B program can be used for new employees.

Roles, Functions, and Careers in IS

IS offers many exciting and rewarding careers. Professionals with careers in information systems can work in an IS department or outside a traditional IS department as Web developers, computer programmers, systems analysts, computer operators, and many other positions. There are also opportunities for IS professionals in the public sector. The U.S. stimulus package of 2009, for example, budgeted about \$1 billion to develop better systems, including computer programs to deliver disability claims for the federal government.¹²⁰ This massive project will require a large number of IS professionals. In addition to technical skills, IS professionals need skills in written and verbal communication, an understanding of organizations and the way they operate, and the ability to work with people and in groups. Today, many good information, business, and computer science schools require these business and communications skills of their graduates. At the end of every chapter, you will find career exercises that will help you explore careers in IS and career areas that interest you.

Most medium to large organizations manage information resources through an IS department. In smaller businesses, one or more people might manage information resources, with support from outsourced services. (Recall that outsourcing is also popular with larger organizations.) As shown in Figure 1.20, the IS organization has three primary responsibilities: operations, systems development, and support.

Figure 1.20

The Three Primary Responsibilities of Information Systems

Each of these elements—
operations, systems development,
and support—contains subelements that are critical to the
efficient and effective performance
of the organization.

Web developers create and maintain company Web sites.

(Source: © iStockphoto/David H. Lewis.)

Operations

System operators primarily run and maintain IS equipment, and are typically trained at technical schools or through on-the-job experience. They are responsible for efficiently starting, stopping, and correctly operating mainframe systems, networks, tape drives, disk devices, printers, and so on. Other operations include scheduling, hardware maintenance, and preparing input and output. Data-entry operators convert data into a form the computer system can use, using terminals or other devices to enter business transactions, such as sales orders and payroll data. In addition, companies might have local area network and Web operators who run the local network and any Web sites the company has.

Systems Development

The systems development component of a typical IS department focuses on specific development projects and ongoing maintenance and review. Systems analysts and programmers, for example, address these concerns to achieve and maintain IS effectiveness. The role of a systems analyst is multifaceted. Systems analysts help users determine what outputs they need from the system and construct plans for developing the necessary programs that produce these outputs. Systems analysts then work with one or more programmers to make sure that the appropriate programs are purchased, modified from existing programs, or developed. A computer programmer uses the plans created by the systems analyst to develop or adapt one or more computer programs that produce the desired outputs. A meteorologist and several part-time programmers from the University of Alabama developed weather forecasting software that used radar data along with other meteorological data to forecast storms and weather. 121 Today, the weather forecasting company employs about 100 people, including many programmers, to keep the software current. To help businesses select the best analysts and programmers, companies such as TopCoder offer tests to evaluate the proficiency and competence of current IS employees or job candidates. TopCoder Collegiate Challenge allows programming students to compete with other programmers around the world. 122 In addition, with the dramatic increase in the use of the Internet, intranets, and extranets, many companies have Web or Internet developers who create effective and attractive Web sites for customers, internal personnel, suppliers, stockholders, and others who have a business relationship with the company.

Support

The support component of a typical IS department provides user assistance in hardware and software acquisition and use, data administration, user training and assistance, and Web administration. Increasingly, training is done using the Internet. Microsoft, for example, offers free training in areas including time management, marketing, sales, and others (office.microsoft.com/en-us/officelive/FX102119031033.aspx). Other companies, such as Hewlett Packard (www.hp.com/sbso), also offer online training courses and programs. In many cases, support is delivered through an information center.

IS personnel provide assistance in hardware and software acquisition, data administration, user training and assistance, and Web administration.

(Source: © iStockphoto/Chris Schmidt 1

Because IS hardware and software are costly, a specialized support group often manages computer hardware and software acquisitions. This group sets guidelines and standards for the rest of the organization to follow in making purchases. A database administrator focuses on planning, policies, and procedures regarding the use of corporate data and information. For example, database administrators develop and disseminate information about the 44 Part

Information Systems in Perspective

information center

A support function that provides users with assistance, training, application development, documentation, equipment selection and setup, standards, technical assistance, and troubleshooting.

information service unit

A miniature IS department.

corporate databases for developers of IS applications. In addition, the database administrator monitors and controls database use. Web administration is another key area for support staff. With the increased use of the Internet and corporate Web sites, Web administrators are sometimes asked to regulate and monitor Internet use by employees and managers to make sure that it is authorized and appropriate. User training is a key to get the most from any information system, and the support area ensures that appropriate training is available. Training can be provided by internal staff or from external sources.

The support component typically operates the information center. An **information** center provides users with assistance, training, application development, documentation, equipment selection and setup, standards, technical assistance, and troubleshooting. Although many firms have attempted to phase out information centers, others have changed their focus from technical training to helping users find ways to maximize the benefits of the information resource.

Information Service Units

An information service unit is basically a miniature IS department attached and directly reporting to a functional area in a large organization. Notice the information service unit shown in Figure 1.20. Even though this unit is usually staffed by IS professionals, the project assignments and the resources necessary to accomplish these projects are provided by the functional area to which it reports. Depending on the policies of the organization, the salaries of IS professionals staffing the information service unit might be budgeted to either the IS department or the functional area.

Typical IS Titles and Functions

The organizational chart shown in Figure 1.20 is a simplified model of an IS department in a typical medium-sized or large organization. Many organizations have even larger departments, with increasingly specialized positions such as librarian or quality assurance manager. Smaller firms often combine the roles shown in Figure 1.20 into fewer formal positions.

Chief Information Officer

The role of the chief information officer (CIO) is to employ an IS department's equipment and personnel to help the organization attain its goals. ¹²³ The CIO is usually a vice president concerned with the overall needs of the organization, sets corporate-wide policies, and plans, manages, and acquires information systems. ¹²⁴ In one survey, more than 60 percent of CIOs reported directly to the president of the company or the chief executive officer (CEO). According to another survey, almost 80 percent of CIOs are actively involved in or consulted on most major decisions. The CIO of Sunoco and President of the Society for Information Management described one of his duties as follows: "In 30 seconds, be able to describe how your company makes money. Make sure that your style and behavior are aligned with your company's culture and style." ¹²⁵ The chief information officer of the Financial Industry Regulatory Authority agrees with this approach and said: "New CIOs need to understand how the business functions and build strong relationships with their business partners." ¹²⁶ CIOs can also help companies avoid damaging ethical challenges by monitoring how companies are complying with a large number of laws and regulations. ¹²⁷

The high level of the CIO position reflects that information is one of the organization's most important resources. A good CIO is typically a visionary who provides leadership and direction to the IS department to help an organization achieve its goals. CIOs need both technical and business skills. In giving advice to other CIOs, the CIO of Wipro said, "Keep in close touch with the business side and focus on delivering continuous business value." ¹²⁸ For federal agencies, the Clinger-Cohen Act of 1996 requires that a CIO coordinate the purchase and management of information systems. ¹²⁹ The U.S. federal government has also instituted a CIO position to manage federal IS projects, including budgets and deadlines. ¹³⁰ In 2009, Vivek Kundra was the first person appointed to this new position—CIO of the United States.

A company's CIO is usually a vice president who sets corporate-wide policies, and plans, manages, and acquires information systems.

Chapter 1

(Source: © iStockphoto/Jacob Wackerhausen.)

Depending on the size of the IS department, several people might work in senior IS managerial levels. Some job titles associated with IS management are the CIO, vice president of information systems, manager of information systems, and chief technology officer (CTO). A central role of all these people is to communicate with other areas of the organization to determine changing needs. Often these employees are part of an advisory or steering committee that helps the CIO and other IS managers make decisions about the use of information systems. Together they can best decide what information systems will support corporate goals. The CTO, for example, typically works under a CIO and specializes in networks and related equipment and technology.

LAN Administrators

Local area network (LAN) administrators set up and manage the network hardware, software, and security processes. They manage the addition of new users, software, and devices to the network. They also isolate and fix operations problems. LAN administrators are in high demand and often solve both technical and nontechnical problems.

Internet Careers

The use of the Internet to conduct business continues to grow and has stimulated a steady need for skilled personnel to develop and coordinate Internet usage. As shown in Figure 1.20, these careers are in the areas of Web operations, Web development, and Web administration. As with other areas in IS, many top-level administrative jobs are related to the Internet. These career opportunities are found in both traditional companies and those that specialize in the Internet.

Internet jobs within a traditional company include Internet strategists and administrators, Internet systems developers, Internet programmers, and Internet or Web site operators. Some companies suggest a new position, chief Internet officer, with responsibilities and a salary similar to the CIO's.

In addition to traditional companies, Internet companies offer exciting career opportunities. These companies include Google, Amazon.com, Yahoo!, eBay, and many others. Systest, for example, specializes in finding and eliminating digital bugs that could halt the operation of a computer system.¹³¹

Often, the people filling IS roles have completed some form of certification. Certification is a process for testing skills and knowledge resulting in an endorsement by the certifying authority that an individual is capable of performing a particular job. Certification frequently involves specific, vendor-provided or vendor-endorsed coursework. Popular certification programs include Microsoft Certified Systems Engineer, Certified Information Systems Security Professional (CISSP), Oracle Certified Professional, Cisco Certified Security Professional (CCSP), and many others.

certification

A process for testing skills and knowledge, which results in a statement by the certifying authority that confirms an individual is capable of performing a particular kind of job.

46

Other IS Careers

To respond to the increase in attacks on computers, new and exciting careers have developed in security and fraud detection and prevention. Today, many companies have IS security positions, such as a chief information security officer or a chief privacy officer. Some universities offer degree programs in security or privacy. It is even possible to work from home in an IS field. Programmers, systems developers, and others are also working from home in developing new information systems.

In addition to working for an IS department in an organization, IS personnel can work for large consulting firms, such as Accenture (*www.accenture.com*), IBM (*www.ibm.com/services*), EDS (*www.eds.com*), and others. ¹³² Some consulting jobs can entail frequent travel because consultants are assigned to work on various projects wherever the client is. Such roles require excellent project management and people skills in addition to IS technical skills. Related career opportunities include computer training, computer and computer equipment salespersons, computer repair and maintenance, and many others.

Other IS career opportunities include being employed by technology companies, such as Microsoft (www.microsoft.com), Google (www.google.com), Dell (www.dell.com), and many others. Such a role enables an individual to work on the cutting edge of technology, which can be extremely challenging and exciting. As some computer companies cut their services to customers, new companies are being formed to fill the need. With names such as Speak with a Geek and Geek Squad, which is located in many Best Buy stores, these companies are helping people and organizations with their computer-related problems that computer vendors are no longer solving.

Some people start their own IS businesses from scratch, such as Craig Newmark, founder of Craig's List. ¹³³ In the mid 1990s, Newmark was working for a large financial services firm and wanted to give something back to society by developing an e-mail list for arts and technology events in the San Francisco area. This early e-mail list turned into Craig's List. According to Newmark, to run a successful business, you should "Treat people like you want to be treated, including providing good customer service. Listening skills and effective communication are essential." Other people are becoming IS entrepreneurs, working from home writing programs, working on IS projects with larger businesses, or developing new applications for the iPhone or similar devices.

Working in Teams

Most IS careers involve working in project teams that can consist of many of the positions and roles discussed earlier. Thus, it is always good for IS professionals to have good communications skills and the ability to work with other people. Many colleges and universities have courses in information systems and related areas that require students to work in project teams. At the end of every chapter in this book, we have "team activities" that require teamwork to complete a project. You may be required to complete one or more of these teamoriented assignments.

Getting the best team of IS personnel to work on important projects is critical in successfully developing new information systems or modifying existing ones.¹³⁴ Increasingly, companies and IS departments seek teams with varying degrees of skills, ages, and approaches. According to the managing director of Accenture, a large IS consulting company, "Every project team we build has an entire spectrum of age and experience represented. Diversity guarantees the best project result and usually some layer of innovation."¹³⁵

Finding a Job in IS

Traditional approaches to finding a job in the information systems area include on-campus visits from recruiters and referrals from professors, friends, and family members. Many colleges and universities have excellent programs to help students develop résumés and conduct job interviews. Developing an online résumé can be critical to finding a good job. Many companies accept résumés online and use software to search for keywords and skills used to screen job candidates. Thus, having the right keywords and skills can mean the difference between getting a job interview and not being considered.

Increasingly, students are using the Internet and other sources to find IS jobs. Many Web sites, such as Dice.com, CareerBuilder.com, TheLadders.com, LinkedIn.com, Computerjobs.com, and Monster.com, post job opportunities for Internet careers and more traditional careers. 136 Most large companies list job opportunities on their Web sites. These sites allow prospective job hunters to browse job opportunities, locations, salaries, benefits, and other factors. In addition, some sites allow job hunters to post their résumés. Many of the social networking sites, including MySpace and Facebook, can be used to help get job leads. Corporate recruiters also use the Internet or Web logs (blogs) to gather information on existing job candidates or to locate new job candidates. In addition, many professional organizations and user groups can be helpful in finding a job, staying current once employed, and seeking new career opportunities, including the Association for Computer Machinery (ACM - www.acm.org), the Association of Information Technology Professionals (AITP www.aitp.org), Apple User Groups (www.apple.com/usergroups), and Linux users groups located around the world. Many companies, including Microsoft, Viacom, and others, use Twitter, an Internet site that allows short messages of 140 characters or less, to advertise job openings. 137 People who have quit jobs or have been laid off often use informal networks of colleagues or business acquaintances to help find new jobs. 138

As with other areas in IS, many toplevel administrative jobs are related to the Internet, such as Internet systems developers and Internet programmers.

(Source: © iStockphoto/Frances Twitty.)

GLOBAL CHALLENGES IN INFORMATION SYSTEMS

Changes in society as a result of increased international trade and cultural exchange, often called globalization, have always had a significant impact on organizations and their information systems. In his book The World Is Flat, Thomas Friedman describes three eras of globalization. ¹³⁹ (See Table 1.5.) According to Friedman, we have progressed from the globalization of countries to the globalization of multinational corporations and individuals. Today, people in remote areas can use the Internet to compete with and contribute to other people, the largest corporations, and entire countries. These workers are empowered by highspeed Internet access, making the world flatter. In the Globalization 3.0 era, designing a new airplane or computer can be separated into smaller subtasks and then completed by a person or small group that can do the best job. These workers can be located in India, China, Russia, Europe, and other areas of the world. The subtasks can then be combined or reassembled into the complete design. This approach can be used to prepare tax returns, diagnose a patient's medical condition, fix a broken computer, and many other tasks.

Global markets have expanded. People and companies can get products and services from around the world, instead of around the corner or across town. These opportunities, however, introduce numerous obstacles and issues, including challenges involving culture, language, and many others.

48 Part

Information Systems in Perspective

Table 1.5	
Eras of Globaliza	ition

Era	Dates	Characterized by
Globalization 1.0	Late 1400–1800	Countries with the power to explore and influence the world
Globalization 2.0	1800–2000	Multinational corporations that have plants, warehouses, and offices around the world
Globalization 3.0	2000-today	Individuals from around the world who can compete and influence other people, corporations, and countries by using the Internet and powerful technology tools

- Cultural challenges. Countries and regional areas have their own cultures and customs that can significantly affect individuals and organizations involved in global trade.
- Language challenges. Language differences can make it difficult to translate exact meanings from one language to another.
- Time and distance challenges. Time and distance issues can be difficult to overcome for
 individuals and organizations involved with global trade in remote locations. Large time
 differences make it difficult to talk to people on the other side of the world. With long
 distance, it can take days to get a product, a critical part, or a piece of equipment from
 one location to another location.
- Infrastructure challenges. High-quality electricity and water might not be available in certain parts of the world. Telephone services, Internet connections, and skilled employees might be expensive or not readily available.
- Currency challenges. The value of different currencies can vary significantly over time, making international trade more difficult and complex.
- Product and service challenges. Traditional products that are physical or tangible, such as an automobile or bicycle, can be difficult to deliver to the global market. However, electronic products (e-products) and electronic services (e-services) can be delivered to customers electronically, over the phone, networks, through the Internet, or other electronic means. Software, music, books, manuals, and advice can all be delivered globally and over the Internet.
- Technology transfer issues. Most governments don't allow certain military-related
 equipment and systems to be sold to some countries. Even so, some believe that foreign
 companies are stealing intellectual property, trade secrets, and copyrighted materials, and
 counterfeiting products and services.
- State, regional, and national laws. Each state, region, and country has a set of laws that must be obeyed by citizens and organizations operating in the country. These laws can deal with a variety of issues, including trade secrets, patents, copyrights, protection of personal or financial data, privacy, and much more. Laws restricting how data enters or exits a country are often called *transborder data-flow* laws. Keeping track of these laws and incorporating them into the procedures and computer systems of multinational and transnational organizations can be very difficult and time consuming, requiring expert legal advice.
 - Trade agreements. Countries often enter into trade agreements with each other. The North American Free Trade Agreement (NAFTA) and the Central American Free Trade Agreement (CAFTA) are examples. The European Union (EU) is another example of a group of countries with an international trade agreement. He EU is a collection of mostly European countries that have joined together for peace and prosperity. Additional trade agreements include the Australia-United States Free Trade Agreement (AUSFTA), signed into law in 2005, and the Korean-United States Free Trade Agreement (KORUS-FTA), signed into law in 2007. Free trade agreements have been established between Bolivia and Mexico, Canada and Costa Rica, Canada and Israel, Chile and Korea, Mexico and Japan, the United States and Jordan, and many others. He

SUMMARY

Principle:

The value of information is directly linked to how it helps decision makers achieve the organization's goals.

Data consists of raw facts; information is data transformed into a meaningful form. The process of defining relationships among data requires knowledge. Knowledge is an awareness and understanding of a set of information and the way that information can support a specific task. To be valuable, information must have several characteristics: It should be accurate, complete, economical to produce, flexible, reliable, relevant, simple to understand, timely, verifiable, accessible, and secure. The value of information is directly linked to how it helps people achieve their organization's goals.

Information systems are sets of interrelated elements that collect (input), manipulate and store (process), and disseminate (output) data and information. Input is the activity of capturing and gathering new data, processing involves converting or transforming data into useful outputs, and output involves producing useful information. Feedback is the output that is used to make adjustments or changes to input or processing activities.

Principle:

Knowing the potential impact of information systems and having the ability to put this knowledge to work can result in a successful personal career, organizations that reach their goals, and a society with a higher quality of life.

Information systems play an important role in today's businesses and society. The key to understanding the existing variety of systems begins with learning their fundamentals. The types of systems used within organizations can be classified into four basic groups: (1) e-commerce and mcommerce, (2) TPS and ERP, (3) MIS and DSS, and (4) specialized business information systems.

E-commerce involves any business transaction executed electronically between parties such as companies (businessto-business), companies and consumers (business-toconsumer), business and the public sector, and consumers and the public sector. The major volume of e-commerce and its fastest-growing segment is business-to-business transactions that make purchasing easier for big corporations. E-commerce offers opportunities for small businesses by enabling them to market and sell at a low cost worldwide, thus enabling them to enter the global market. Mobile commerce (m-commerce) are transactions conducted anywhere, anytime. M-commerce relies on the use of wireless communications to allows managers and

corporations to place orders and conduct business using handheld computers, portable phones, laptop computers connected to a network, and other mobile devices.

The most fundamental system is the transaction processing system (TPS). A transaction is any businessrelated exchange. The TPS handles the large volume of business transactions that occur daily within an organization. TPSs include order processing, purchasing, accounting, and related systems.

An enterprise resource planning (ERP) system is a set of integrated programs that is capable of managing a company's vital business operations for an entire multisite, global organization. Although the scope of an ERP system may vary from company to company, most ERP systems provide integrated software to support the manufacturing and finance business functions of an organization.

A management information system (MIS) uses the information from a TPS to generate information that is useful for management decision making. The focus of an MIS is primarily on operational efficiency. A decision support system (DSS) is an organized collection of people, procedures, databases, and devices used to support problem-specific decision making. The DSS differs from an MIS in the support given to users, the decision emphasis, the development and approach, and system components, speed, and output. The specialized business information systems include knowledge management systems, artificial intelligence systems, expert systems, multimedia, and virtual reality systems. Knowledge management systems are organized collections of people, procedures, software, databases and devices used to create, store, share, and use the organization's knowledge and experience.

Principle:

System users, business managers, and information systems professionals must work together to build a successful information system.

Systems development is the activity of creating or modifying existing business systems. The goal of the systems investigation is to gain a clear understanding of the problem to be solved or opportunity to be addressed. If the decision is to continue with the solution, the next step, systems analysis, defines the problems and opportunities of the existing system. Systems design determines how the new system will work to meet the business needs defined during systems analysis. Systems implementation involves creating or acquiring the various system components (hardware, software, databases, etc.) defined in the design step, assembling them, and putting the new system into operation. The purpose of systems maintenance and review is to check and modify the system so that it continues to meet changing business needs.

Principle:

The use of information systems to add value to the organization can also give an organization a competitive advantage.

An organization is a formal collection of people and various other resources established to accomplish a set of goals. The primary goal of a for-profit organization is to maximize shareholder value. Nonprofit organizations include social groups, religious groups, universities, and other organizations that do not have profit as the primary goal. Organizations are systems with inputs, transformation mechanisms, and outputs.

Value-added processes increase the relative worth of the combined inputs on their way to becoming final outputs of the organization. The value chain is a series (chain) of activities that includes (1) inbound logistics, (2) warehouse and storage, (3) production, (4) finished product storage, (5) outbound logistics, (6) marketing and sales, and (7) customer service.

Supply chain management (SCM) helps determine what supplies are required, what quantities are needed to meet customer demand, how the supplies are to be processed (manufactured) into finished goods and services, and how the shipment of supplies and products to customers is to be scheduled, monitored, and controlled. Customer relationship management (CRM) programs help a company manage all aspects of customer encounters, including marketing and advertising, sales, customer service after the sale, and programs to help keep and retain loyal customers. CRM can help a company collect customer data, contact customers, educate customers on new products, and actively sell products to existing and new customers.

Organizations use information systems to support organizational goals. Because information systems typically are designed to improve productivity, methods for measuring the system's impact on productivity should be devised. In the late 1980s and early 1990s, overall productivity did not seem to increase with increases in investments in information systems. Often called the *productivity paradox*, this situation troubled many economists who were expecting to see dramatic productivity gains. In the early 2000s, however, productivity again seemed on the rise.

Organizational culture and change are important internal issues that affect most organizations. Organizational culture consists of the major understandings and assumptions for a business, a corporation, or an organization. Organizational change deals with how for-profit and nonprofit organizations plan for, implement, and handle change. Change can be caused by internal or external factors. Many European countries, for example, adopted the euro, a single European currency, which changed how financial companies do business and how they use their information systems.

User satisfaction with a computer system and the information it generates often depends on the quality of the system and the resulting information. A quality information system is usually flexible, efficient, accessible, and timely.

The extent to which technology is used throughout an organization is a function of technology diffusion, infusion, and acceptance. Technology diffusion is a measure of how widely technology is in place throughout an organization. Technology infusion is the extent to which technology permeates an area or department. The technology acceptance model (TAM) investigates factors, such as perceived usefulness of the technology, ease of use of the technology, the quality of the information system, and the degree to which the organization supports the use of the information system, to predict IS usage and performance.

Competitive advantage is usually embodied in either a product or service that has the most added value to consumers and that is unavailable from the competition or in an internal system that delivers benefits to a firm not enjoyed by its competition. The five-forces model covers factors that lead firms to seek competitive advantage: rivalry among existing competitors, the threat of new market entrants, the threat of substitute products and services, the bargaining power of buyers, and the bargaining power of suppliers. Three strategies to address these factors and to attain competitive advantage include altering the industry structure, creating new products and services, and improving existing product lines and services.

The ability of an information system to provide or maintain competitive advantage should also be determined. Several strategies for achieving competitive advantage include enhancing existing products or services or developing new ones, as well as changing the existing industry or creating a new one.

Developing information systems that measure and control productivity is a key element for most organizations. A useful measure of the value of an IS project is return on investment (ROI). This measure investigates the additional profits or benefits that are generated as a percentage of the investment in IS technology. Total cost of ownership (TCO) can also be a useful measure.

Principle:

IS personnel is a key to unlocking the potential of any new or modified system.

Information systems personnel typically work in an IS department that employs a chief information officer, systems analysts, computer programmers, computer operators, and a number of other people. The overall role of the chief information officer (CIO) is to employ an IS department's equipment and personnel in a manner that will help the organization attain its goals. Systems analysts help users determine what outputs they need from the system and construct the plans for developing the necessary programs that produce these outputs. Systems analysts then work with one or more programmers to make sure that the appropriate programs are purchased, modified from existing programs, or developed. The major responsibility of a computer programmer is to use the plans developed by the systems analyst to develop or adapt one or more computer programs

Chapter 1

that produce the desired outputs. Computer operators are responsible for starting, stopping, and correctly operating mainframe systems, networks, tape drives, disk devices, printers, and so on. LAN administrators set up and manage the network hardware, software, and security processes. Trained personnel are also increasingly needed to set up and manage a company's Internet site, including Internet strategists, Internet systems developers, Internet programmers, and Web site operators. Information systems personnel may also work in other functional departments or areas in a support capacity. In addition to technical skills, IS personnel also need skills in written and verbal communication, an understanding of organizations and the way they operate, and the ability to work with people (users). In general, IS personnel are charged with maintaining the broadest enterprise-wide perspective.

In addition to working for an IS department in an organization, IS personnel can work for one of the large consulting firms, such as Accenture, EDS, and others. Another IS career opportunity is to be employed by a hardware or software vendor developing or selling products.

Today's information systems have led to greater globalization. High-speed Internet access and networks that can connect individuals and organizations around the world create more international opportunities. Global markets have expanded. People and companies can get products and services from around the world, instead of around the corner or across town. These opportunities, however, introduce numerous obstacles and issues, including challenges involving culture, language, and many others.

CHAPTER 1: SELF-ASSESSMENT TEST

software, databases and devices used to create, store, share,

and use the organization's experience and knowledge?

a. TPS (transaction processing system)

c. DSS (decision support system)

b. MIS (management information system)

d. KMS (knowledge management system)

The value of information is directly linked to how it helps decision makers achieve the organization's goals.	System users, business managers, and information systems professionals must work together to build a successful infor-
 A(n) is a set of interrelated components that collect, manipulate, and disseminate data and information and provide a feedback mechanism to meet an objective. What consists of raw facts, such as an employee number? a. bytes b. data c. information d. knowledge 	mation system. 6. What involves creating or acquiring the various system components (hardware, software, databases, etc.) defined in the design step, assembling them, and putting the new system into operation? a. systems implementation b. systems review c. systems development d. systems design
Knowing the potential impact of information systems and having the ability to put this knowledge to work can result in a successful personal career, organizations that reach their goals, and a society with a higher quality of life.	 7 involves anytime, anywhere commerce that uses wireless communications. 8 involves contracting with outside professional services to meet specific business needs.
3. A(n) consists of hardware, software, databases, telecommunications, people, and procedures.	The use of information systems to add value to the organization can also give an organization a competitive advantage.
 4. Computer programs that govern the operation of a computer system are called a. feedback b. feedforward c. software d. transaction processing system 	 change can help an organization improve raw materials supply, the production process, and the products and services offered by the organization. Technology infusion is a measure of how widely technology is spread throughout an organization. True or False?
5. What is an organized collection of people, procedures,	

IS personnel is a key to unlocking the potential of any new or modified system.

11. Who is involved in helping users determine what outputs they need and constructing the plans needed to produce these outputs?

52

Part 1

Information Systems in Perspective

- a. the CIO
- b. the applications programmer
- c. the systems programmer
- d. the systems analyst
- 12. An information center provides users with assistance, training, and application development. True or False?
- 13. The ______ is typically in charge of the information systems department or area in a company.

CHAPTER 1: SELF-ASSESSMENT TEST ANSWERS

(1) information system (2) b (3) computer-based information system (CBIS) (4) c (5) d (6) a (7) Mobile commerce (m-commerce) (8) Outsourcing (9) Sustaining (10) False (11) d (12) True (13) chief information officer (CIO)

REVIEW QUESTIONS

- 1. What are the components of any information system?
- 2. Describe the different types of data.
- 3. Identify at least six characteristics of valuable information.
- 4. What is a computer-based information system? What are its components?
- 5. What are the most common types of computer-based information systems used in business organizations today? Give an example of each.
- What is the difference between e-commerce and m-commerce?
- 7. Describe three applications of multimedia.
- What is a knowledge management system? Give an example.
- 9. What is the technology acceptance model (TAM)?

- 10. What is user satisfaction?
- 11. What are some general strategies employed by organizations to achieve competitive advantage?
- 12. Define the term *productivity*. Why is it difficult to measure the impact that investments in information systems have on productivity?
- 13. What is customer relationship management?
- 14. What is the total cost of ownership?
- 15. What is the role of the systems analyst? What is the role of the programmer?
- 16. What is the operations component of a typical IS department?
- 17. What is the role of the chief information officer?

DISCUSSION QUESTIONS

- 1. Describe the "ideal" automated auto license plate renewal system for the drivers in your state. Describe the input, processing, output, and feedback associated with this system.
- Describe the "ideal" automated class registration system for a college or university. Compare this "ideal" system with what is available at your college or university.
- 3. You have decided to open an Internet site to buy and sell used music CDs to other students. Describe the value chain for your new business.
- 4. How is it that useful information can vary widely from the quality attributes of valuable information?
- 5. What is the difference between DSS and knowledge management?
- 6. Discuss the potential use of virtual reality to enhance the learning experience for new automobile drivers. How might such a system operate? What are the benefits and potential drawbacks of such a system?
- Discuss how information systems are linked to the business objectives of an organization.

- 8. You have been hired to work in the IS area of a manufacturing company that is starting to use the Internet to order parts from its suppliers and offer sales and support to its customers. What types of Internet positions would you expect to see at the company?
- 9. How would you measure technology diffusion and infusion?
- 10. You have been asked to participate in the preparation of your company's strategic plan. Specifically, your task is to analyze the competitive marketplace using Porter's five-forces model. Prepare your analysis, using your knowledge of a business you have worked for or have an interest in working for.
- 11. Based on the analysis you performed in the preceding discussion question, what possible strategies could your organization adopt to address these challenges? What role could information systems play in these strategies? Use Porter's strategies as a guide.
- 12. You have been hired as a sales representative for a sporting goods store. You would like the IS department to develop

Chapter 1

- new software to give you reports on which customers are spending the most at your store. Describe your role in getting the new software developed. Describe the roles of the systems analysts and the computer programmers.
- 13. Imagine that you are the CIO for a large, multinational company. Outline a few of your key responsibilities.
- 14. You have decided to open an Internet site to buy and sell used music CDs to other students. Describe the supply chain for your new business.
- 15. What sort of IS position would be most appealing to you—working as a member of an IS organization, being a consultant, or working for an IS hardware or software vendor? Why?
- 16. What are your career goals, and how can a computer-based information system be used to achieve them?

PROBLEM-SOLVING EXERCISES

- 1. Prepare a data disk and a backup disk for the problemsolving exercises and other computer-based assignments you will complete in this class. Create one directory for each chapter in the textbook (you should have 9 directories). As you work through the problem-solving exercises and complete other work using the computer, save your assignments for each chapter in the appropriate directory. On the label of each disk be sure to include your name, course, and section. On one disk, write "Working Copy"; on the other, write "Backup."
- 2. Search through several business magazines (Business Week, Computerworld, PC Week, etc.) or an Internet search engine for recent articles that describe potential social or ethical issues related to the use of an information system. Use word-processing software to write a one-page report summarizing what you discovered.
- Using a word-processing program, write a detailed job description of a systems analyst for a medium-sized manufacturing company. Use a graphics program to make a presentation on the requirements for the new CIO.

TEAM ACTIVITIES

- 1. Before you can do a team activity, you need a team! The class members may self-select their teams, or the instructor may assign members to groups. Once your group has been formed, meet and introduce yourselves to each other. You will need to find out the first name, hometown, major, and e-mail address and phone number of each member. Find out one interesting fact about each member of your team, as well. Come up with a name for your team. Put the information on each team member into a database and print enough copies for each team member and your instructor.
- 2. Have your team interview a company that recently introduced new technology. Write a brief report that describes the extent of technology infusion and diffusion.
- 3. With your team, interview one or more instructors or professors at your college or university. Describe how they keep current with the latest teaching and research developments in their field.

WEB EXERCISES

1. Throughout this book, you will see how the Internet provides a vast amount of information to individuals and organizations. We will stress the World Wide Web, or simply the Web, which is an important part of the Internet. Most large universities and organizations have an address on the Internet, called a Web site or home page. The address of the Web site for the publisher of this text is

www.cengage.com. You can gain access to the Internet through a browser, such as Internet Explorer or Netscape. Using an Internet browser, go to the Web site for this publisher. What did you find? Try to obtain information on this book. You may be asked to develop a report or send an e-mail message to your instructor about what you found.

54 Part 1

Information Systems in Perspective

- Go to an Internet search engine, such as www.google.com or www.yahoo.com, and search for information about artificial intelligence. Write a brief report that summarizes what you found.
- 3. Use the Internet to search for information about a company that has excellent or poor product quality in your estima-

tion. You can use a search engine, such as Google, or a database at your college or university. Write a brief report describing what you found. What leads to higher-quality products? How can an information system help a company produce higher quality products?

CAREER EXERCISES

- 1. In the Career Exercises found at the end of every chapter, you will explore how material in the chapter can help you excel in your college major or chosen career. Write a brief report on the career that appeals to you the most. Do the same for two other careers that interest you.
- 2. Research careers in finance, management, information systems, and two other career areas that interest you. Describe
- the job opportunities, job duties, and the possible starting salaries for each career area in a report.
- 3. Pick the five best companies for your career. Describe how each company uses information systems to help achieve a competitive advantage.

CASE STUDIES

Case One

Information System as an Effective Force Against H1N1 Pandemic

Information systems are valuable to businesses for tracking business activities in real-time, as they occur. They are also valuable to the medical community for tracking the spread of viruses such as the H1N1 virus, also known as the swine flu. New Jersey-based Emergency Medical Associates (EMA) operates 21 emergency rooms in hospitals across New Jersey, New York, and Pennsylvania. With information mined from its diverse locations, EMA is in an ideal position to spot an outbreak of the flu in its early stages. All it requires is an information system to provide valuable information in a timely manner.

EMA's CIO and information systems specialists applied proven business information management techniques to their medical information needs. They understood that tracking medical statistics across their 21 emergency rooms was similar to tracking sales statistics across retail outlets. They required the same business intelligence (BI) and reporting tools used by successful businesses. Business intelligence or BI systems are designed to extract, or mine, useful information out of the data collected by businesses or organizations into databases. That data may consist of detailed sales information collected at the time of a sale or patient symptom information collected at the time of an examination.

EMA began by installing a database management system from Oracle. The database was shared by all of its 21 emergency rooms over a high-speed private network. EMA then contracted with SAP to install its BusinessObjects XI tool set to function as the company's BI platform. BusinessObjects can sort and sift through data in the database to find patterns and exceptions. Combining the BusinessObjects system with other software including Xcelsius and Crystal Reports (powerful reporting software), and Web Intelligence (providing a Web interface to the system), EMA created a system that generates insightful reports and visualizations about medical conditions on a regular schedule and on demand.

Today, EMA physicians and nurses, depending on their needs, can access 27 dashboards, which provide statistics displayed in charts and lists that are updated as information is entered into the database. They also have access to 30 daily reports from the system informing them of the current status in all of their emergency rooms and of any changes in the status quo. The system allows users to customize their view of the data to focus on the information that is most important to their work.

Using its new information system, EMA was the first to spot the outbreak of H1N1 in the Northeast. Doctors knew that about 6 percent of patients complain of flu-like symptoms on any given day. When the EMA BI system reported that 30 percent of patients were arriving with flu symptoms, the doctors warned the country that H1N1 was on the move. This alert provided medical professionals and citizens the time needed to take action.

Chapter 1

Discussion Questions

- 1. What role did business intelligence software play in catching an H1N1 outbreak in the northeastern United States.?
- 2. How does a system such as EMA's BI system use human intelligence and machine intelligence to support decision making?

Critical Thinking Questions

- 1. How do the BI needs of business professionals and medical professionals differ? How are they alike?
- 2. How does this case study reflect the need for standardized digital medical records systems in the U.S.? How might such standards influence the country's ability to keep its population healthy?

SOURCES: Lai, Eric, "BI helps New York-area hospitals track, fight H1N1," Computerworld, October 8, 2009, www.computerworld.com/s/article/ 9139121/BI_helps_New_York_area_hospitals_track_ fight_H1N1? source=rss news; EMA Web site, accessed November 12, 2009, www.ema-ed.com; SAP staff, "Emergency Medical Associates Stays Ahead of Swine Flu Outbreaks This Back-To-School Season with Sap® Software," SAP Press Release, September 14, 2009, www.sap.com/about/newsroom/topicrooms/business- objects/press.epx?pressid=11826.

Case Two

Creativity Moves Up the Value Chain

Creativity Inc. deals in beads, baubles, and stylized paper to "bring crafters' dreams to reality by providing the materials to give life to their ideas and imagination." Creativity owns five well-known brands in the craft industry: Autumn Leaves, Blue Moon Beads, Crop in Style, DND, Hip in a Hurry, and Westrim Crafts. The company is one of the top five wholesale suppliers to national craft chains in the United States with 500 employees at four office and warehouse locations in California and one in Hong Kong.

Creativity outsources the manufacturing of its designs to production facilities across Asia. Crates of assorted beads, scrapbooking supplies, and papercrafting materials flow through Creativity's port-side warehouses to craft stores and department stores across the U.S. In this way, Creativity facilitates the value chain for craft retailers.

In 2007, Creativity found its business model challenged by growing globalization and economic hardships. To save money, some of its customers decided to "do away with the middleman," and purchase crafting materials directly from the Asian manufacturers. Creativity needed to find new ways to provide value to its customers.

Creativity's challenges are not unique. Many businesses are facing growing competition from low-cost manufacturers and service providers in developing countries. To survive, they need to find a way to move up the value chain—that is, to provide valuable services beyond upstream management of the supply chain. Many are turning to information systems to assist in that move.

Creativity turned to IBM's Cognos 8 Business Intelligence suite to identify high-value products that could not be manufactured by its low-cost overseas competitors. The company acquired data about purchase transactions from retailers in craft-related markets and added that data to its data warehouse. Using the Cognos software and Smart Software's SmartForecast program, Creativity determined a need for more "design-oriented, fashion-oriented" products—especially ones associated with popular U.S. media, such as television shows and celebrities.

By shifting its focus to fashion-based craft products, Creativity made up for the business it lost in the low-cost crafting material market. In fact, fashion-oriented products are now the dominant portion of its business, comprising more than 50 percent of its products and a much higher percentage of its profits.

Creativity also uses Cognos to determine which customer segments are most profitable. The company can then focus its efforts in those areas to boost profitability. In addition, Creativity created an "Analytical Center of Excellence" composed of representatives from all of its brands. By improving communication between its brands and sharing its research findings, Creativity elevated the corporate awareness of the entire company and created an environment where everyone is working towards common goals. To further communication, CIO Jim Mulholland used Cognos to develop a software dashboard that provides corporate news and information on the desktops of company managers across its brands. These communication improvements help safeguard against duplication of effort. Each brand is aware of what the other brands are experiencing and working on, allowing brands to learn from each other.

Creativity and other struggling businesses want to create valuable information from low-cost data to learn how to work more intelligently and efficiently. Integrating data from transactions, call centers, Web logs, sales reps, external sources, and elsewhere into data warehouses for analysis allows companies to discover what products are likely to sell, what products return the highest profits, where to cut costs, where to invest for the highest return, and other key information to fuel smart decision making. Many businesses are counting on information systems to provide the knowledge to survive tough economic times.

Discussion Questions

- 1. Describe the global economic forces that pushed Creativity to move up the value chain.
- 2. What information did Creativity use to boost its profits and remain solvent?

Critical Thinking Questions

- 1. What role does communication play in creating savings for a multibrand company like Creative?
- 2. What lessons does Creative's story provide for U.S. businesses? What does this forecast for the global marketplace in general?

56

Part 1

Information Systems in Perspective

SOURCES: Mitchell, Robert, "Smart and cheap: Business intelligence on a budget," *Computerworld*, May 14, 2009, *www.computerworld.com*; Creativity Inc. Web site, access December 26, 2009, *www.creativityinc.com*; Cognos Web site, accessed December 26, 2009, *www-01.ibm.com/software/data/cognos*.

Questions for Web Case

See the Web site for this book to read about the Altitude Online case for this chapter. The following questions cover this Web case.

Altitude Online: Outgrowing Systems

Discussion Questions

- 1. Why do you think it's a problem for Altitude Online to use different information systems in its branch locations?
- 2. What information do you think Jon should collect from the branch offices to plan the new centralized information system?

Critical Thinking Questions

1. With Jon's education and experience, he could design and implement a new information system for Altitude Online himself. What would be the benefits and drawbacks of doing the job himself compared to contracting with an information systems contractor? 2. While Jon is visiting the branch offices, how might he prepare them for the inevitable upheaval caused by the upcoming overhaul to the information system?

Altitude Online: Addressing the Needs of the Organization

Discussion Questions

- 1. What are the advantages of Altitude Online adopting a new ERP system compared to simply connecting existing corporate systems?
- 2. Why isn't an out-of-the-box ERP system enough for Altitude Online? What additional needs does the company have? Is this the case for businesses in other industries as well?

Critical Thinking Questions

- 1. Why do you think Jon is taking weeks to directly communicate with stakeholders about the new system?
- 2. Why do you think Jon and the system administrators decided to outsource the software for this system to an ERP company rather than developing it from scratch themselves?

NOTES

Sources for the opening vignette: SAP staff, "Braskem - Pursuing Growth and Synergy Through Mergers and Acquisitions," SAP Customer References Web page, accessed November 12, 2009, www.sap.com/usa/solutions/business-suite/customers; Braskem Web site, accessed November 12, 2009, www.braskem.com.br; Accenture staff, "Braskem: SAP Solutions," Accenture Client Successes Web page, accessed November 12, 2009, www.accenture.com/Global/Technology/Enterprise_Solutions/SAP_Solutions/Client_Successes/Braskem.htm.

- 1 Ramiller, N., et al, "Management Implications in Information Systems Research," *Journal of the Association for Information* Systems, Vol. 10, 2009, p. 474.
- 2 Lurie, N., & Swaminathan, J. M., "Is timely information always better? The effect of feedback frequency on decision making," *Organizational Behavior and Human Decision Processes*, March 2009, p. 315.
- 3 Pinch, Trevor, "Selling Technology: The Changing Shape of Sales in an Information Economy," *Industrial & Labor Relations Review*, Vol. 23, October 2008, p. 331.
- 4 Marcial, Gene, "How Expeditors Move the Freight," *Business Week*, November 16, 2009, p. 93.
- 5 MIT Open Course Ware home page, http://ocw.mit.edu/OcwWeb/ web/home/home/index.htm, accessed October 6, 2009.
- 6 Kolbasuk McGee, Marianne, "A \$20 Billion Shot In the Arm," InformationWeek, March 16, 2009, p. 27.
- 7 Moon, M, "Knowledge Worker Productivity," Journal of Digital Asset Management, August 2009, p. 178.

- 8 Hahn, J., et al, "Knowledge Management Systems and Organizational Knowledge Processing Systems," *Decision Support Systems*, November 2009, pp. 332.
- 9 Lai, J., "How Reward, Computer Self-efficacy, and Perceived Power Security Affect Knowledge Management Systems Success," Journal of the American Society for Information Science and Technology, February 2009, p. 332.
- 10 Patterson, Scott, "Meet Getco," *The Wall Street Journal*, August 27, 2009, p. C1.
- 11 D'Amours, M., et al, "Optimization Helps Shermag Gain Competitive Advantage," *Interfaces*, July-August, 2009, p. 329.
- 12 Henschen, Doug, "Predictive Analysis: A Matter of Survival," InformationWeek, March 2, 2009, p. 29.
- 13 Farrell, Maureen, "Weatherman," Forbes, March 16, 2009, p. 58.
- 14 DiColo, Jerry, "Chip Makers to Benefit From Utility Smart Meters," The Wall Street Journal, April 1, 2009, p. B6.
- 15 Clark, Don, "SanDisk Sees Leap for Data Storage Chips," *The Wall Street Journal*, February 10, 2009, p. B5.
- 16 Lawrence Livermore National Laboratory home page, www.llnl.gov, accessed on October 6, 2009.
- 17 IBM Web site, www-03.ibm.com/systems/deepcomputing/bluegene, accessed on October 16, 2009.
- 18 Clark, D. and Scheck, J., "High-Tech Companies Take Up Netbooks," The Wall Street Journal, January 6, 2009, p. B6.
- 19 Mossberg, Walter, "Some Favorite Apps," The Wall Street Journal, March 26, 2009, p. D1.

- 20 Staff, "Bringing Technology to the Bush," *The Australian Financial Review,* "August 31, 2009, p. 28.
- 21 Tham, Irene, "Changing the World, One Laptop at a Time," *The Straits Time*, July 16, 2009.
- 22 Wildstrom, Stephen, "Touch-Sensitive Desktops," *Business Week*, March 23, 2009, p. 97.
- 23 Urgo, Jacqueline, "Witness in Higbee Trial Describes 'Crazy Driving'," The Philadelphia Inquirer, May 12, 2009, p. B01.
- 24 Fab Lab, http://fab.cba.mit.edu, accessed August 25, 2007.
- 25 Hamm, Steve, "Tech Spending," Business Week, March 23, 2009, p. 72.
- 26 Burrows, Peter, "Will Windows 7 Reboot PC Sales?," *Business Week*, September 14, 2009, p. 20.
- 27 Scheck, Justin, "PC Makers Try Google, Challenging Microsoft," The Wall Street Journal, April 1, 2009, p. B1.
- 28 "Adobe Creative Suite 4," www.adobe.com/products/creativesuite, accessed December 10, 2009.
- 29 Wildstrom, Stephen, "Coming at You: 3D on Your PC," Business Week, January 19, 2009, p. 65.
- 30 Dearne, Karen, "Cheap Solution for Security," *The Australian*, May 26, 2009, p. 25.
- 31 Weier, Mary Hayes, "New Apps Help iPhones Get Down to Business," *Information Week*, March 23, 2009, p. 17.
- 32 Lai, Eric, "NYSE Turns to Appliances In BI Consolidation Effort," Computerworld, January 1, 2009, p. 3.
- 33 Delahunty, Steve, "Smarter, Not More, Storage," *Information Week,* April 13, 2009, p. 38.
- 34 Woolley, Scott, "Extraterrestrial Dreams," Forbes, April 13, 2009, p. 36
- Fulghum, David, "Unmanned Aircraft," Aviation Week & Space Technology, August 17, 2009, p. 20.
- 36 Kolbasuk McGee, Marianne, "Hospitals Getting Docs on Hosted E-Records," *Information Week*, June 22, 2009, p. 17.
- 37 Hamm, Steve, "Cloud Computing's Big Bang for Business," Business Week, June 15, 2009, p. 42.
- 38 Foley, John, "10 Cloud Computing Predictions," *Information Week,* February 2, 2009, p. 20.
- 39 Mossberg, Walter, "The Latest Kindle," *The Wall Street Journal,* June 11, 2009, p. D1.
- 40 Worthen, Ben, "Mobile Banking Finds New Users," *The Wall Street Journal*, February 3, 2009, p. D1.
- 41 Angwin, Julia, "My New Twitter Flock," *The Wall Street Journal,* March 14, 2009, p. W2.
- 42 Boudreau, John, "Applications Change How We Use Mobile Devices," *Tampa Tribune*, April 6, 2009, p. 13.
- 43 Weier, Mary Hayes, "Collaboration Is Key to Increased Efficiency," Information Week, September 14, 2009, p. 90.
- 44 Grant, Tavia, "Workplace Democracy," *The Globe and Mail*, May 30, 2009, p. B14.
- 45 Staff, "Penske Launches Improved Extranet," *Bulk Transporter*, June 1, 2009, p. 50.
- 46 Staff, "CIO Profiles: Ken Silva," Information Week, September 7, 2009, p. 8.
- 47 Huang, M., "Marketing and Electronic Commerce," *Electronic Commerce Research and Applications*, October 16, 2009, p. 4.
- 48 Goldstein, Jacob, "Stimulus Funds for E-Records," *The Wall Street Journal*, March 24, 2009, p. B1.
- 49 Boudreau, John, "Applications Change How We Use Mobile Devices," *Tampa Tribune*, April 6, 2009, p. 13.
- 50 Silver, S. and Smith, E., "Two Services to Sell Tickets on Cellphones," The Wall Street Journal, April 1, 2009, p. B7.
- 51 Su, Y., "Why Are Enterprise Resource Planning Systems Indispensible?" *Journal of European Operations Research*, May 10, 2010, p. 81.
- 52 Mawson, Nicola, "Pick n Pay Goes for Growth in a Big Way," *Business Day*, April 24, 2009.
- 53 www.dell.com ,accessed on 10-12-09.

- 54 Fagerholt, Kjetil, et al, "An Ocean Of Opportunities," *OR/MS Today*, April 2009, p. 26.
- 55 Weier, Mary Hayes, "Business Gone Mobile," *Information Week*, March 30, 2009, p. 23.
- 56 Staff, "Healthland to Deliver Business Intelligence for Smaller Hospitals," *TechWeb*, September 8, 2009.
- 57 Conley, C., et al, "Factors Critical to Knowledge Management Success," Advances in Developing Human Resources, August 2009, p. 334.
- 58 Larger, Marshall, "Investing in Knowledge Management," *Customer Relationship Management*, "June 2009, p. 46.
- 59 Staff, "Science Advances Will Make Us All Cyborgs," *The Sun*, September 22, 2009, p. 8.
- 60 Kroeker, K. "Medical Nanobot," Association for Computer Machinery, September 2009, p. 18.
- 61 Rowley, Ian, "Drive, He Thought," Business Week, April 20, 2009, p. 10.
- 62 Steiner, Christopher, "A Bot in Time Saves Nine," Forbes, March 16, 2009, p. 40.
- 63 Staff, "Artificial Neural Networks," Biotech Business Week, October 5, 2009, p. 404.
- 64 Feng, W., Duan, Y., Fu, Z., & Mathews, "Understanding Expert Systems Applications from a Knowledge Transfer Perspective," Knowledge Management Research & Practice, June, 2009, p. 131.
- 65 Walton, T., "Virtual Reality is Reality," *Design Management Review*, Winter 2009, p. 6.
- 66 Boeing: Commercial Airplanes 747 Home page, www.boeing.com/commercial/787family, accessed October 7, 2009.
- 67 Copeland, Michael, "3-D Gets Down to Business," *Fortune*, March 30, 2009, p. 32.
- 68 Foust, Dean, "Top Performing Companies," *Business Week*, April 6, 2009, p. 40.
- 69 Kane, Yukare Iwatani, "Apple Woos Developers With New iPhone," The Wall Street Journal, March 18, 2009, p. B6.
- 70 Wildstrom, Stephen, "What to Entrust to The Cloud," *Business Week*, April 6, 2009, p. 89.
- 71 McGregor, Jena, "The Chore Goes Offshore," *Business Week*, March 23, 2009, p. 50.
- 72 Randall, David, "Be Green and Make A Buck," Forbes, March 2, 2009, p. 40.
- 73 Staff, "CIO Profiles: Phil Fasano," *InformationWeek*, May 25, 2009, p. 14
- 74 Dong, S., et al, "Information Technology in Supply Chains," Information Systems Research, March 2009, p. 18.
- 75 Sanders, Peter, "Boeing Tightens Its Grip on Dreamliner Production," The Wall Street Journal, July 2, 2009, p. B1.
- 76 Yang, Jia Lynn, "Veggie Tales," Fortune, June 8, 2009, p. 25.
- 77 Huifen, Chen, "Courting the Small Enterprise," *The Business Times Singapore*, September 22, 2009.
- 78 Staff, "Duke Energy Signs Agreement with Convergys," Telecomworld, September 16, 2009.
- 79 Weier, Mary Hayes, "CRM as A Service," *InformationWeek*, February 2, 2009, p. 16.
- 80 Singer, S., et al, "Identifying Organizational Cultures That Promote Patient Safety," *Health Care Management Review*, "October-December 2009, p. 300.
- 81 Staff, "CIO Profiles: Ken Silva," *InformationWeek*, September 7, 2009, p. 8.
- 82 Christensen, Clayton, *The Innovator's Dilemma*, Harvard Business School Press, 1997, p. 225 and *The Inventor's Solution*, Harvard Business School Press, 2003.
- 83 Gibson, Ellen, "The School of Future Knocks," *BusinessWeek,* March 23, 2009, p. 44.
- 84 Conry-Murray, Andrew, "A Measure of Satisfaction," *InformationWeek*, January 26, 2009, p. 19.
- 85 Wixom, Barbara and Todd, Peter, "A Theoretical Integration of User Satisfaction and Technology Acceptance," *Information Systems Research*, March 2005, p. 85.

- 86 Bailey, J. and Pearson, W., "Development of a Tool for Measuring and Analyzing Computer User Satisfaction," *Management Science*, 29(5), 1983, p. 530.
- 87 Chaparro, Barbara, et al, "Using the End-User Computing Satisfaction Instrument to Measure Satisfaction with a Web Site," Decision Sciences, May 2005, p. 341.
- 88 Schwarz, A. and Chin, W., "Toward an Understanding of the Nature and Definition of IT Acceptance," *Journal of the Association for Information Systems*, April 2007, p. 230.
- 89 Davis, F., "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology," MIS Quarterly, 13(3) 1989, p. 319. Kwon, et al, "A Test of the Technology Acceptance Model," Proceedings of the Hawaii International Conference on System Sciences, January 4–7, 2000.
- 90 Ilie, V., et al, "Paper Versus Electronic Medical Records," *Decision Sciences*, May 2009, p. 213.
- 91 Barki, H., et al, "Information System Use-Related Activity," Information Systems Research, June 2007, p. 173.
- 92 Loch, Christoph and Huberman, Bernardo, "A Punctuated-Equilibrium Model of Technology Diffusion," *Management Science*, February 1999, p. 160.
- 93 Tornatzky, L. and Fleischer, M., "The Process of Technological Innovation," *Lexington Books*, Lexington, MA, 1990; Zhu, K. and Kraemer, K., "Post-Adoption Variations in Usage and Value of E-Business by Organizations," *Information Systems Research*, March 2005, p. 61.
- 94 Armstrong, Curtis and Sambamurthy, V., "Information Technology Assimilation in Firms," *Information Systems Research*, April 1999, p. 304.
- 95 Sykes, T. and Venkatesh, V., "Model of Acceptance with Peer Support," *MIS Quarterly*, June 2009, p. 371.
- 96 Agarwal, Ritu and Prasad, Jayesh, "Are Individual Differences Germane to the Acceptance of New Information Technology?" Decision Sciences, Spring 1999, p. 361.
- 97 Fuller, R. and Denis, A., "Does Fit Matter?" *Information Systems Research*, March 2009, p. 2.
- 98 Gupta, Aseem, "CIO Profiles: Aseem Gupta," InformationWeek, April 20, 2009, p. 14.
- 99 D'Amours, M., et al, "Optimization Helps Shermag Gain Competitive Advantage," *Interfaces*, July-August, 2009, p. 329.
- 100 Collins, Jim, *Good to Great*, Harper Collins Books, 2001, p. 300.
- 101 Murphy, Chris, "In for the Long Haul," *InformationWeek*, January 19, 2009, p. 38.
- 102 Porter, M. E., Competitive Advantage: Creating and Sustaining Superior Performance, New York: Free Press, 1985; Competitive Strategy: Techniques for Analyzing Industries and Competitors, The Free Press, 1980; and Competitive Advantage of Nations, The Free Press, 1990.
- 103 Porter, M. E. and Millar, V., "How Information Systems Give You Competitive Advantage," *Journal of Business Strategy*, Winter 1985. *See also* Porter, M. E., *Competitive Advantage* (New York: Free Press, 1985).
- 104 Staff, "American Diversified Holdings Enters into Broad Strategic Alliance with Leading Biotech Company," *Biotech Business Week*, September 21, 2009.
- 105 Goodhue, D., et al, "Addressing Business Agility Challenges with Enterprise Systems," MIS Quarterly Executive, June 2009, p. 73.
- 106 Brynjolfsson, Erik, et al, "The New, Faster Face of Innovation," *The Wall Street Journal*, August 17, 2009, p. R3.
- 107 Capell, Kerry, "Vodafone: Embracing Open Source with Open Arms," BusinessWeek, April 20, 2009, p. 52.
- 108 Reena, J., "Dusting Off a Big Idea in Hard Times," *BusinessWeek*, June 22, 2009, p. 44.
- 109 Mandel, Michael, "Innovation Interrupted," *BusinessWeek*, June 15, 2009, p. 35.

- 110 Murphy, Chris, "TransUnioin Finds Cost Savings, Seeks More," InformationWeek, March 23, 2009, p. 24.
- 111 Foley, John, "Cost Control," InformationWeek, March 2, 2009, p. 18.
- 112 Rai, S., et al, "LDP—0.R. Enhanced Productivity Improvements for the Printing Industry," *Interfaces*, January 2009, p. 69.
- 113 Staff, "CIO Profiles: Marty Colburn," *InformationWeek*, March 16, 2009, p. 16.
- 114 Tiwana, A., "Governance-Knowledge Fit in Systems Development Projects," *Information Systems Research*, June 2009, p. 180.
- 115 Staff, "Kodak Insite Campaign Manager," *Print Week,* July 10, 2009, p. 28.
- 116 Patterson S. and Ng, S., "NYSE's Fast-Trade Hub," *The Wall Street Journal*, July 30, 2009, p. C1.
- 117 Staff, "Hitachi's Quintet of Projectors," *AV Magazine*, September 1, 2009, p. 28.
- 118 Hoffman, Thomas, "9 Hottest Skills for 09," *Computerworld,* January 1, 2009, p. 26.
- 119 Staff, "100 Best Places to Work in IT in 2009," *Computerworld,* June 16, 2009.
- 120 Hoover, Nicholas, "\$1 B Plan Includes New Data Center," InformationWeek, March 2, 2009, p. 26.
- 121 Farrell, Maureen, "Weatherman," Forbes, March 16, 2009, p. 58.
- 122 Top Coder Collegiate Challenge, www.topcoder.com, accessed September 2, 2007.
- 123 Preston, D., et al, "Examining the Antecedents and Consequences of CIO Strategic Decision-Making Authority," *Decision Sciences*, November 2008, p. 605.
- 124 May, Thornton, "CIOs Are Entering a Career Ice Age," Computerworld, January 12, 2009, p. 17.
- 125 Staff, "CIO Profiles: Peter Whatnell," *InformationWeek,* February 23, 2009, p. 12.
- 126 Staff, "CIO Profiles: Marty Colburn," *InformationWeek*, March 16, 2009, p. 16.
- 127 Pratt, Mary, "Steering Clear of Scandal," *Computerworld*, August 17, 2009, p. 22.
- 128 Staff, "CIO Profiles: Laxman Kumar Badiga," *InformationWeek,* March 2, 2009, p. 16.
- 129 Copeland, Michael, "Who's on the CTO Short List," *Fortune*, March 30, 2009, p. 18.
- 130 Hoover, Nick, "Fed CIO Scrutinizes Spending, Eyes Cloud," *InformationWeek*, March 16, 2009, p. 19.
- 131 www.systest.com, accessed November 9, 2007.
- 132 www.ibm.com/services, www.eds.com, and www.accenture.com, accessed November 15, 2009.
- 133 Garone, Elizabeth, "Growing a List of Opportunities," *The Wall Street Journal*, February 24, 2009, p. D5.
- 134 Anderson, Howard, "Project Triage: Skimpy Must Die," InformationWeek, March 16, 2009, p. 14.
- 135 King, Julia, "Your New-Age Workforce," *Computerworld,* January 1, 2009, p. 24.
- 136 Boyle, Matthew, "Enough to Make Monster Tremble," BusinessWeek, July 6, 2009, p. 43.
- 137 Needleman, Sarah, "A New Job Just a Tweet Away," *The Wall Street Journal*, September 8, 2009, p. B7.
- 138 Brandel, Mary, "Laid Off? Here's Your Net," *Computerworld*, August 17, 2009, p. 17.
- 139 Friedman, Thomas, *The World Is Flat*, Farrar, Straus and Giroux, 2005, p. 488.
- 140 European Commission Web site, http://ec.europa.eu/trade/index_en.htm, accessed December 10, 2009.
- 141 Foreign Trade Information Web site, www.sice.oas.org/agreements_e.asp, accessed December 10, 2009.