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Preface

Computational Intelligence comprises concepts, paradigms, algorithms, and
implementations of systems that are supposed to exhibit intelligent behavior in
complex environments. It relies heavily on sub-symbolic, predominantly
nature-analog or atleast nature-inspired methods. These methods have the advan-
tage that they tolerate incomplete, imprecise and uncertain knowledge and thus also
facilitate finding solutions that are approximative, manageable and robust at the
same time.

The choice of topics in this book reflects the most important fields in the area of
computational intelligence. Classical fields such as artificial neural networks, fuzzy
systems, and evolutionary algorithms are described in considerable detail. However,
methods such as ant colony optimization and probabilistic graphical models are
discussed as well, although a complete coverage of all approaches and develop-
ments is clearly impossible to achieve in a single volume.

Rather than to strive for completeness, our goal is to give a methodical intro-
duction to the area of Computational Intelligence. Hence we try not only to present
fundamental concepts and their implementations, but also explain the theoretical
background of proposed problem solutions. In addition, we hope to convey to a
reader what is necessary in order to apply these methods successfully.

In the second edition we paid tribute to recent developments in computational
intelligence. We also considered the helpful remarks of our readers while revising
the book. In addition to the previous edition you can find the new chapters on
swarm intelligence and new sections on deep learning, fuzzy data analysis, and
decision graphs.

This textbook is primarily meant as a companion book for lectures on the
covered topics in the area of computational intelligence. However, it may also
be used for self-study by students and practitioners from industry and com-
merce. This book is based on notes of lectures, exercise lessons, and seminars
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that have been given by the authors for many years. On the book’s website
http://www.computational-intelligence.eu/ a lot of additional material for lectures
on neural networks, evolutionary algorithms, fuzzy systems and Bayesian net-
works can be found, including module descriptions, lecture slides, and exercises.
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1Introduction toComputational
Intelligence

1.1 Intelligent Systems

Complex problem settings in widely differing technical, commercial, and financial
fields evoke an increasing need for computer applications that must show “intelligent
behavior.” These applications are desired to support decision-making, to control
processes, to recognize and interpret patterns, or to maneuver vehicles or robots
autonomously in unknown environments. Novel approaches, methods, tools and
programming environments have been developed to accomplish such tasks.

Seen from a higher level of abstraction, the general requirements for developing
such an “intelligent system” are ultimately always the same, namely simulating intel-
ligent thinking and actions in a certain field of application (Russel and Norvig 2009).
For this purpose, the knowledge about this field must be represented and processed.
The quality of the resulting system mainly depends on how well the knowledge rep-
resentation problem is solved in the development process. There is no such thing as
the “best” method. Rather one has to sift through many available approaches to find
those that fit the application area of the intelligent system best.

The mechanisms and processes that underlie intelligent behavior are examined
in the research area of artificial intelligence. Similar to most other areas of com-
puter science (or science in general), computational intelligence (CI) comprises both
theoretical aspects (how and why do these system work?) and application-oriented
aspects (where and when can these systems be used?).

At the beginning of the development of intelligent systems, researchers often
focused the idea of seeing “a human being as a machine”—an idea that stems from
the age of enlightenment. They ventured to create an (artificial) intelligence that
can both think creatively and solve problems in the way a human can. This intel-
ligence was also meant to exhibit forms of both consciousness and emotions. In
the infancy of the field, the typical way to design an artificial intelligence was to
describe a symbolic basis of the relevant mechanisms. This includes the top-down
perspective of problem solving, which mainly addresses the question why these sys-
tems work. The answer to this question is usually given with the help of a symbolic
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2 1 Introduction to Computational Intelligence

representation and a logic-based inferencemechanism. Techniques that are examples
of these approaches include rule-based expert systems, automatic theorem provers,
and many operations research techniques which underlie modern planning and
scheduling software. Although these traditional approaches have been very success-
ful in some cases, they do have limitations, especially when it comes to scalability.
A tiny complication of the problem to solve often causes an increase of complexity
that cannot be handled feasibly. As a consequence, although these approaches usu-
ally guarantee an optimal, precise, or correct solution, they are rarely applicable to
practical problems.

Consequently, efficient method to represent and process knowledge are still a
research topic. For certain types of problems, techniques that are inspired by natural
or biological processes proved successful. These approaches signify a paradigm
change away from symbolic representations and towards inference strategies for
adaptation and learning. Among such methods we find artificial neural networks,
evolutionary algorithms, bayes networks, and fuzzy systems. These novel methods
have demonstrated their usefulness in many application areas, often in combination
with traditional problem-solving techniques.

1.2 Computational Intelligence

The research area of computational intelligence (CI) comprises concepts, paradigms,
algorithms, and implementations to develop systems that exhibit intelligent behav-
ior in complex environments. Typically, sub-symbolic and nature-analogousmethods
are adopted that tolerate incomplete, imprecise, and uncertain knowledge. As a con-
sequence, the resulting approaches allow for approximate, manageable, robust, and
resource-efficient solutions (Kacprzyk and Pedrycz 2015).

The general strategy that is adopted in the area of computational intelligence is
to apply approximation techniques and methods that can find coarse, incomplete,
or only partially valid solutions to given problems. As a reward for dispensing with
guaranteed correctness and completeness, solutions are found in a tolerable time
frame and within a bearable budget. Such solutions often consist of relatively sim-
ple sub-functions, which, through interaction, lead to complex and self-organized
behavior. As a consequence, these heuristic approaches can usually not be analyzed
in a classical fashion, but, in exchange, they offer the possibility to quickly find
approximate solutions to problems that are difficult to solve in other ways.

It is obvious that an area as diverse as computational intelligence cannot be cov-
ered exhaustively in about 570 pages. Therefore we confine ourselves to four core
techniques that are frequently used in practice. In the first two parts of this book,
so-called nature-analogous or natured-inspiredmethods are discussed. Here the gov-
erning idea is to analyze problem-solving strategies as they occur in nature. Certain
aspects of such solution strategies are then mimicked or simulated in a computer,
usually without striving tomodel the original systems correctly and exhaustively, nor
even ensuring the biological plausibility of the simulation. Particularly successful
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and thus practically relevant representatives of this kind are artificial neural net-
works (Haykin 2008), evolutionary algorithms (Rozenberg et al. 2012) ant colony
optimization (Dorigo and Stützle 2004).

Many ideas and principles in the area of artificial neural networks are inspired by
neuroscience. Artificial neural networks are information processing systems whose
structure and functionality simulates the nervous systems and particularly the brain of
animals and human beings. They consist of a large number of fairly simple processing
units, the so-called neurons, which work in parallel. These neurons send informa-
tion in the form of action potentials via directed links to other neurons. Based on
knowledge about the functionality of biological neural networks, one tries to model
and mimic them, especially to achieve learning capability.

Evolutionary algorithms draw on ideas from biological evolution, in which organ-
isms, over many generations, get adapted to environmental conditions. They address
certain classes of optimization problems and belong to the family of metaheuristics,
which offers algorithms to approximately solve may types of optimization prob-
lems. Metaheuristics are defined by an abstract sequence of steps that are applicable
to more or less arbitrary problem descriptions. However, every single step must
be implemented in a problem-specific fashion. Metaheuristics are often applied to
problems for which no efficient solution algorithm is known. Although finding an
optimal solution is usually not guaranteed and thus a found solution can, in prin-
ciple, be arbitrarily bad compared to the optimal solution, metaheuristics offer the
possibility to obtain (sufficiently) good solutions in a reasonable time frame. Here
biologically inspiredmethods such as particle swarm optimization (or computational
swarm intelligence) have proven themselves to be noteworthy candidates to employ
in theory and practice.

The latter two parts of the book focus on integrating uncertain, vague and incom-
plete knowledge into the problem-solving strategy. The governing idea in these parts
is that for human beings even imperfect knowledge can be very valuable. Therefore
it is desirable to enable computers to work with such knowledge as well and not
just precise and certain knowledge. Particularly successful approaches that can han-
dle such knowledge are fuzzy systems (Kruse et al. 1994; Michels et al. 2006) and
Bayesian and Markov networks (Borgelt et al. 2009; Kjaerulff and Madsen 2008).

In fuzzy systems, vague knowledge, which may be provided by a human expert
or formulated intuitively by a system developer, is formalized with the help of fuzzy
logic and fuzzy set theory. Fuzzy approaches can also be used to derive inference
mechanisms, thus giving rise to approximate reasoning methods. Fuzzy systems are
routinely applied in control engineering because in many application scenarios a
precise and complete modeling of the system is impractical or even impossible.

Bayesian networks aremeans to efficiently store and reasonwith uncertain knowl-
edge in complex application areas. Formally, a Bayesian network is a probabilistic
graphicalmodel that represents a set of randomvariables and their conditional depen-
dences by a directed acyclic graph. Due to the probabilistic representation, one can
easily draw inferences based on new information. In addition, Bayesian networks
are well suited for dependence analysis and learning from data.
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In many applications, hybrid computational intelligence systems, for instance,
neuro-fuzzy systems, have proven to be highly useful. Sometimes these techniques
are also combined with related methods, e.g., from the area of machine learning or
case-based reasoning (Hüllermeier et al. 2010).

1.3 About the Second Edition of This Book

Our main objective with this textbook is to give a methodical introduction to the
field of computational intelligence. Therefore we focus on fundamental concepts and
their implementation and strive to explain the theoretical background of proposed
solutions to certain problems. We hope to convey to a reader all that is necessary
for a profound application of the discussed methods. This book requires only fairly
basic knowledge of mathematics, as we tried to introduce all necessary concepts and
tools in this book in order to make it as self-contained as possible. Furthermore, the
four parts about artificial neural networks, evolutionary algorithms, fuzzy systems,
and Bayesian networks can be studied independently of each other as we tried to
avoid dependences between the parts or requiring prerequisites from earlier parts.

Chapters on deep learning, computational swarm intelligence, and fuzzy data
analysis complement the second version of this book and accomodate for recent
developments of different aspects of computational intelligence.

This book would not be the same without the many contributions by Frank
Klawonn and Christian Moewes for the parts on fuzzy systems and evolutionary
algorithms from the first edition.

This book is intended as an accompanying book for lectures about the field of
computational intelligence and is fundamentally basedonwritten notes about lectures
that the first author has given periodically for students of different areas for almost
20 years. On the website

http://www.computational-intelligence.eu

module descriptions, lecture slidesmatching the book, exercise sheets with solutions,
sample exams, software demos, literature references, references to organizations,
journals, software tools, and additional material can be found for all four parts,
i.e., artificial neural networks, evolutionary algorithms, fuzzy systems, and Bayesian
networks. This additional material covers a total of four modules, i.e., lectures with
corresponding exercise lessons.
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2Introduction toNeural Networks

(Artificial) neural networks are information processing systems, whose structure and
operation principles are inspired by the nervous system and the brain of animals and
humans. They consist of a large number of fairly simple units, the so-called neurons,
which are working in parallel. These neurons communicate by sending information
in the form of activation signals, along directed connections, to each other.

A commonly used synonym for “neural network” is the term “connectionist
model.” The research area that is devoted to the study of connectionist models is
called “connectionism.” Furthermore, the expression “parallel distributed process-
ing” can often be found in relation to (artificial) neural networks.

2.1 Motivation

(Artificial) neural networks are studied for various reasons: in (neuro-)biology and
(neuro-)physiology, but also in psychology, one ismainly interested in their similarity
to biological nervous systems. In these areas (artificial) neural networks are used as
computational models with which one tries to simulate and thus to understand the
mechanisms of nerve and brain functions. Especially in computer science, but also
in other engineering sciences, one tries to mimic certain cognitive powers of humans
(especially learning ability) using functional elements of the nervous system and
the brain. In physics, certain mathematical models that are analogous to (artificial)
neural networks are employed to describe specific physical phenomena. An example
are models of magnetism, for instance, the Ising model.

As can already be seen from this brief list, the study of (artificial) neural networks
is a highly interdisciplinary research area. However, in this book we widely neglect
the use of (artificial) neural networks in physics (even though we draw on examples
from physics to explain certain network models) and consider their biological basis
only very briefly (see the next section). Rather we focus on the mathematical and
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engineering aspects, particularly the use of (artificial) neural networks in the area of
computer science that is commonly called “artificial intelligence.”

While the reasons why biologists study (artificial) neural networks are fairly obvi-
ous, we may have to justify why neural networks are (or should be) studied in arti-
ficial intelligence. The reason is that the paradigm of classical artificial intelligence
(sometimes called, in a somewhat pejorativemanner, GOFAI—“good old-fashioned
artificial intelligence”) is based on a very strong hypothesis about how machines can
bemade to behave “intelligently.” This hypothesis says that the essential requirement
for intelligent behavior is the ability to manipulate symbols and symbol structures
that are represented by physical structures. Here symbol means a token that refers
to an object or a situation. This relation is interpreted in an operational manner: the
system can perceive and/or manipulate the object referred to. This hypothesis was
first formulated explicitly by Newell and Simon (1976):

Physical Symbol System Hypothesis: A physical-symbol system has the nec-
essary and sufficient means for general intelligent action.

As amatter of fact, classical artificial intelligence concentrated, based on this hypoth-
esis, on symbolic forms of representing knowledge and in particular on propositional
and predicate logic. (Artificial) neural networks, on the other hand, are no physical
symbol systems, since they do not process symbols, but rathermuchmore elementary
signals, which, taken individually, rarely have a (clear) meaning. As a consequence,
(artificial) neural networks are often called “sub-symbolic.” However, if the ability to
process symbols is necessary to produce intelligent behavior, then it is unnecessary
to study (artificial) neural networks in artificial intelligence.

There is no doubt that classical artificial intelligence has achieved remarkable
successes: nowadays computers can automatically solve many types of puzzles and
brain-twisters and can play games like chess and Reversi (also known as Othello) on
an extremely high level. However, when it comes to mimicking perception (seeing,
hearing, etc.), computers usually perform fairly poorly compared to humans—at
least if symbolic representations are relied upon: here computers are often too slow,
too inflexible, and too little tolerant to noise and faults. We may conjecture that the
problem is that in order to recognize patterns—a core task of perception—symbolic
representations are not very well suited, because there are no adequate symbols on
this level of processing. Rather “raw” (measurement) data needs to be structured and
summarized before symbolic methods can effectively be applied. Hence it appears to
be reasonable to examine the mechanisms of sub-symbolic information processing
in natural intelligent systems—that is, animals and humans—in more detail and
possibly to exploit these mechanisms to mimic intelligent behavior.

Additional arguments why studying (artificial) neural networks may be beneficial
arise from the following observations:

• Expert systems that use symbolic representations usually become slower with a
larger knowledge base, because larger sets of rules need to be traversed. Human
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experts, however, usually become faster. Maybe a non-symbolic representation (as
it is used in natural neural networks) is more efficient.

• Despite the fairly long switching time of natural neurons (in the order of several
milliseconds) essential cognitive tasks (like recognizing an object) are solved in a
fraction of a second. If neural processingwere sequential, only about 100 switching
operations could be performed (“100-step rule”). Hence high parallelization must
be present, which is easy to achieve with neural networks, but much more difficult
to implement with other approaches.

• There is a large number of successful applications of (artificial) neural networks
in industry, commerce, and finance.

2.2 Biological Background

As already mentioned, (artificial) neural networks are inspired by the structure and
the operation principles of the nervous system and particularly the brain of animals
and humans. In fact, the neural network models that we study in this book are
not very close to their biological original, since they are too simplified to model the
characteristics of natural neural networks correctly. Nevertheless we briefly consider
natural neural networks here, because they formed the starting point for investigating
artificial neural networks. The description follows Anderson (1995).

The nervous systemof animals consists of the brain (in so-called “lower” life forms
often only referred to as the “central nervous system”), the different sensory systems,
which collect information from the different body parts (visual, auditory, olfactory,
gustatory, thermal, tactile, etc., information), and the motor system, which controls
movements. The greater part of information processing happens in the brain/central
nervous system, although the amount of preprocessing outside the brain can be
considerable, for example, in the retina of the eye.

W.r.t. processing information, the neurons are the most important components of
the nervous system.1 According to common estimates, there are about 100 billion
(1011) neurons in the human brain, of which a fairly large part is active in parallel.
Neurons process information mainly by interacting with each other.

A neuron is a cell that collects and transmits electrical activity. Neurons exist
in many different shapes and sizes. Nevertheless, one can derive a “prototypical”
neuron that resembles all kinds of neurons to some degree (although this is a fairly
severe simplification). This prototype is shown schematically in Fig. 2.1. The cell
body of the neuron, which contains the nucleus, is also called soma. It has a diam-
eter of about 5–100µm (micrometer, 1µm = 10−6 m). From the cell body extend
several short, heavily ramified branches that are called dendrites. In addition, it has
a long extension called axon. The axon can be between a few millimeters and one

1The nervous system consists not only of neurons, not even for the largest part. Besides neurons
there are various other cells, for instance, the so-called glia cells, which have a supporting function.
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Fig. 2.1 Prototypical structure of biological neurons

meter long. Axon and dendrites differ in the structure and the properties of the cell
membrane. In particular, the axon is often covered by amyelin sheath.

The axons are the fixed paths along which neurons communicate with each other.
The axon of a neuron leads to the dendrites of other neurons. At its end the axon
is heavily ramified and possesses at the ends of these branches terminal buttons.
Each terminal button almost touches a dendrite or the cell body of another neuron.
The gap between a terminal button and a dendrite is usually between 10 and 50nm
(nanometer; 1nm = 10−9 m) wide. Such a place, at which an axon and a dendrite
almost touch each other, is called synapse.

Themost common form of communication between neurons is that a terminal but-
ton of the axon releases certain chemicals, the so-called neurotransmitters, which
act on the membrane of the receiving dendrite and change its polarization (its elec-
trical potential). Usually the inside of the cell membrane, which encloses the whole
neuron, is about 70mV (millivolts; 1mV = 10−3 V) more negative than its outside,
because the concentration of negative ions is greater on the inside, while the concen-
tration of positive ions is greater on the outside. Depending on the type of the released
neurotransmitter, the potential difference may be reduced or increased on the side
of the dendrite. Synapses that reduce the potential difference are called excitatory,
those that increase it are called inhibitory.

In an adult human all connections between neurons are completely established
and no new connections are created (again this is a severe simplification). An average
neuron possesses between 1000 and 10,000 connections to other neurons. The change
of the electrical potential that is caused by a single synapse is fairly small, but the
individual excitatory and inhibitory effects can accumulate (counting the excitatory
influences as positive and the inhibitory ones as negative). If the excitatory net input
is large enough, the potential difference in the cell body can be significantly reduced.
If the reduction is large enough, the axon’s base is depolarized. This depolarization is
caused by positive sodium ions entering the cell. As a consequence, the inside of the
cell becomes temporarily (for about one millisecond) more positive than its outside.
Afterwards the potential difference is rebuilt by positive potassium ions leaving the
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cell. Finally, the original distribution of sodium and potassium ions is reestablished
by special ion pumps in the cell membrane.

The sudden, temporary change of the electrical potential, which is called action
potential, propagates along the axon. The propagation speed lies between 0.5 and
130m/s, depending on the properties of the axon. In particular, it depends on how
heavily the axon is covered with a myelin sheath (the more myelin, the faster the
action potential is propagated). When this nerve impulse reaches the end of the axon,
it causes neurotransmitters to be released at the terminal buttons, thus passing the
signal on to the next cell, where the process is repeated.

In summary: changes of the electrical potential are accumulated at the cell body
of a neuron and, if they reach a certain threshold, are propagated along the axon. This
nerve impulse causes that neurotransmitters are released by the terminal buttons at
the end of the axon, thus inducing a change of the electrical potential in the receiving
neuron. Even though this description is heavily simplified, it captures the essentials
of neural information processing on the level of individual neurons.

In the human nervous system information is encoded by continuously changing
quantities, primarily two: the electrical potential of the neuron’s membrane and the
number of nerve impulses that a neuron transmits per second. The latter is also
called the firing rate of the neuron. It is commonly assumed that the number of
impulses is more important than their shape (in the sense of a change of the electrical
potential), although competing theories of neural coding exist. A neuron can emit
100 or even more impulses per second. The higher the firing rate, the higher the
influence a neuron has on connected neurons. However, in artificial neural networks
this frequency coding of information is usually not emulated.
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3Threshold LogicUnits

The description of biological neural networks in the preceding chapter makes it
natural to model neurons as threshold logic units: if a neuron receives enough
excitatory input that is not compensated by equally strong inhibitory input, it becomes
active and sends a signal to other neurons. Such a model was already examined very
early in much detail by McCulloch and Pitts (1943). As a consequence, threshold
logic units are also known as McCulloch–Pitts neurons. Another name which is
commonly used for a threshold logic unit is perceptron, even though the processing
units that (Rosenblatt 1958, 1962) called “perceptrons” are actually somewhat more
complex than simple threshold logic units.1

3.1 Definition and Examples

Definition 3.1 A threshold logic unit is a simple processing unit for real-valued
numbers with n inputs x1, . . . , xn and one output y. The unit as a whole possesses
a threshold θ . To each input xi a weight wi is assigned. A threshold logic unit
computes the function

y =
{
1 if

∑n
i=1wi xi ≥ θ,

0 otherwise.

The inputs are often combined into an input vector x = (x1, . . . , xn) and the weights
into a weight vector w = (w1, . . . ,wn). With the help of the scalar product the
condition tested by a threshold logic unit may then also be written as wx ≥ θ .

1In a perceptron there is, besides the actual threshold logic unit, an input layer that executes additional
operations on the input signals. However, this input layer consists of immutable functional elements
and therefore is often neglected.

15
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Fig. 3.1 Representation of a
threshold logic unit

Fig. 3.2 A threshold logic
unit for the conjunction
x1 ∧ x2

We depict a threshold logic unit as shown in Fig. 3.1. That is, we draw it as a
circle, in which the threshold θ is recorded. Each input is drawn as an arrow that
points to the circle and that is labeled with the weight of the input. The output of the
threshold logic unit is shown as an arrow that points away from the circle.

To illustrate how threshold logic units work and to demonstrate their capabilities,
we consider a couple of simple examples. Figure3.2 shows on the left a threshold
logic unit with two inputs x1 and x2, which carry the weights w1 = 3 and w2 = 2,
respectively. The threshold is θ = 4. If we assume that the input variables can only
have values 0 and 1, we obtain the table shown in Fig. 3.2 on the right. Clearly, this
threshold logic unit computes the conjunction of its inputs: only if both inputs are
active (that is, equal to 1), it becomes active itself and outputs a 1.

Figure3.3 shows another threshold logic unit with two inputs, which differs
from the one shown in Fig. 3.2 by a negative threshold θ = −1 and one negative
weight w2 = −2. Due to the negative threshold it is active (that is, outputs a 1) even
if both inputs are inactive (that is, are equal to 0). Intuitively, the negative weight
corresponds to an inhibitory synapse: if the corresponding input becomes active (that
is, equal to 1), the threshold logic unit is deactivated and its output becomes 0. We
can also observe here that positive weights correspond to excitatory synapses: even
if the input x2 inhibits the threshold logic unit, (that is, if x2 = 1), it can become
active, namely if it is “excited” by an active input x1 (that is, by x1 = 1). In summary,
this threshold logic unit computes the function show in the table in Fig. 3.3 on the
right, that is, the implication y = x2 → x1.

An example for a threshold logic unit with three inputs is shown in Fig. 3.4 on the
left. This threshold logic unit already computes a fairly complex function, namely
the logical expression y = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3). The truth table of this
function and the computations that are carried out by the threshold logic unit for

Fig. 3.3 A threshold logic
unit for the
implication x2 → x1
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Fig. 3.4 A threshold logic
unit for (x1 ∧ x2) ∨ (x1 ∧
x3) ∨ (x2 ∧ x3)

the different input vectors are shown in Fig. 3.4 on the right. This and the preceding
threshold logic unit may lead us to presume that negations (in logical expressions)
are (often) represented by negative weights.

3.2 Geometric Interpretation

The condition that is tested by a threshold logic unit in order to decide whether
it should output a 0 or a 1 is very similar to the equation of a straight line (cf.
Sect. 10.1). Indeed, the computation of a threshold logic unit can easily be interpreted
geometrically if we turn this condition into a line, plane or hyperplane equation, that
is, if we consider the equation

n∑
i=1

wi xi = θ or
n∑

i=1

wi xi − θ = 0.

(Note that the line equation differs from the actual condition in that is uses “=”
instead of “≥.” This is taken care of below, where the inequality is reinstated.) The
resulting geometric interpretation is illustrated in Figs. 3.5, 3.6 and 3.8.

Figure3.5 repeats on the left the threshold logic unit for the conjunction considered
above. In the diagram on the right the input space of this threshold logic unit is shown.
The input vectors, which are listed in the table in Fig. 3.2 on the right, are marked
according to the output of the threshold logic unit: a filled circle indicates that the
threshold logic unit yields output 1 for this point, while an empty circle indicates that
it yields output 0. In addition, the diagram shows the straight line described by the
equation 3x1 + 2x2 = 4, which corresponds to the decision border of the threshold
logic unit. It is easy to verify that the threshold logic unit yields output 1 for all points
to the right of this line and output 0 for all points to the left of it, even if we allow
for other input values than 0 and 1.

On which side the output of the threshold logic unit is 1 and on which it is 0
can also be read from the line equation: it is well known that the coefficients of x1
and x2 are the elements of a normal vector of the line (cf. also Sect. 10.1, which
collects some important facts about straight lines and their equations.) The side of
the line to which this normal vector points if it is attached to a point on the line is
the side on which the output is 1. Indeed, the normal vector n = (3, 2) that can be

http://dx.doi.org/10.1007/978-1-4471-7296-3_10
http://dx.doi.org/10.1007/978-1-4471-7296-3_10
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Fig. 3.5 Geometry of the threshold logic unit for x1 ∧ x2. The straight line shown in the right
diagram has the equation 3x1 + 2x2 = 4; for the gray half-plane it is 3x1 + 2x2 ≥ 4

Fig. 3.6 Geometry of the threshold logic unit for x2 → x1: The straight line shown in the right
diagram has the equation 2x1 − 2x2 = −1; for the gray half-plane it is 2x1 − 2x2 ≥ −1

read from the equation 3x1 + 2x2 = 4 points to the right top and thus to the side on
which the point (1, 1) is located. Hence the threshold logic unit yields output 1 in
the half-plane 3x1 + 2x2 ≥ 4, which is shown in gray in Fig. 3.5.

Analogously, Fig. 3.6 shows the threshold logic unit computing the implication
x2 → x1 and its inputs space. The straight line drawn into this input space corre-
sponds to its decision border: it separates the points of the input space for which the
output is 0 from those for which the output is 1. Since the normal vector n = (2,−2)
that can be read from the equation 2x1 − 2x2 = −1 points to the bottom right, the
output is 1 for all points below the line and 0 for all points above it. This coincides
with the computations listed in the table in Fig. 3.3, which are represented by filled
and empty circles in the diagram in Fig. 3.6. Generally, the threshold logic unit yields
output 1 for points in the gray half-plane shown in Fig. 3.6.

Naturally the computations of threshold logic units with more than two inputs can
be interpreted geometrically as well. However, due to the limited spatial imagination
of humans, we have to confine ourselves to threshold logic units with no more than
three inputs. With three inputs the separating line turns into a separating plane.
We illustrate this by depicting the input space of a threshold logic unit with three
inputs as a unit cube as it is shown in Fig. 3.7.With this diagram, let us reconsider the
example of a threshold logic unit with three inputs studied in the preceding section,

Fig. 3.7 Graphical
representation of ternary
Boolean functions
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Fig. 3.8 Geometry of the threshold logic unit for the function (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3):
The plane shown in the left diagram is described by the equation 2x1 − 2x2 + 2x3 = 1

which is repeated in Fig. 3.8. Into the unit cube on the right of this figure the plane
with the equation 2x1 − 2x2 + 2x3 = 1 is drawn in gray, which corresponds to the
decision rule of this threshold logic unit. In addition, all input vectors, for which
the table in Fig. 3.4 lists an output of 1, are marked with a filled circle. For all other
corners of the unit cube the output is 0. Like in the two-dimensional case we can
again read the side of the plane on which the output is 1 from the normal vector of the
plane: from the plane equation we derive the normal vector n = (2,−2, 2), which
points out of the drawing plane to the top right.

3.3 Limitations

The examples studied in the preceding section—especially the threshold logic unit
with three inputs—may lead us to presume that threshold logic units are fairly power-
ful processing units. Unfortunately, though, single threshold logic units are severely
limited in their expressive and computational power. We know from the geomet-
ric interpretation of their computations that threshold logic units can represent only
functions that are, as one says, linearly separable, that is, functions for which the
points with output 1 can be separated from the points with output 0 by a linear
function—that is, by a line, plane or hyperplane.

Unfortunately, though, not all functions are linearly separable. A very simple
example of a function that is not linearly separable is the biimplication (that is,
x1 ↔ x2), the truth table of which is shown in Fig. 3.9 on the left. From the graphical
representation of this function, which is shown in the same figure on the right, we
can already see that there is no separating line. As a consequence, there cannot be
any threshold logic unit computing this function.

The formal proof is executed by the common method of reductio ad absurdum
(proof by contradiction). We assume that there exists a threshold logic unit with

Fig. 3.9 The biimplication
problem: there is no
separating straight line
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Table 3.1 The number of all
Boolean functions of n inputs
and the number of them that
are linearly separable (Widner
(1960) cited according to Zell
(1996))

Inputs Boolean functions Linearly separable
functions

1 22
1
= 4 4

2 22
2
= 16 14

3 22
3
= 256 104

4 22
4
= 65536 1774

5 22
5 ≈ 4.3 · 109 94572

6 22
6 ≈ 1.8 · 1019 5.0 · 106

weights w1 and w2 and threshold θ that computes the biimplication. Then it is

due to (0, 0) �→ 1 : 0 ≥ θ, (1)
due to (1, 0) �→ 0 : w1 < θ, (2)
due to (0, 1) �→ 0 : w2 < θ, (3)
due to (1, 1) �→ 1 : w1 + w2 ≥ θ. (4)

From (2) and (3) it follows w1 + w2 < 2θ , which together with (4) yields 2θ > θ , or
θ > 0. However, this contradicts (1). Therefore there is no threshold logic unit that
computes the biimplication.

The fact that only linearly separable functions can be represented may appear to
be, at first sight, a small and bearable restriction, since only two of the 16 possible
Boolean functions of two variables are not linearly separable (namely the biimplica-
tion and the exclusive or). However, if the number of inputs is increased, the fraction
of all Boolean functions that are linearly separable drops rapidly (see Table3.1).
For a larger number of inputs (single) threshold logic units can therefore compute
“almost no” Boolean functions (relative to all possible ones).

3.4 Networks of Threshold Logic Units

As demonstrated in the preceding section, threshold logic units are severely limited.
However, up to now we only considered single threshold logic units. The powers of
threshold logic units can be increased considerably if we combine several threshold
logic units, that is, if we consider networks of threshold logic units.

As an example, we consider a possible solution for the biimplication problem
with the help of three threshold logic units that are organized into two layers. This
solution exploits the logical equivalence

x1 ↔ x2 ≡ (x1 → x2) ∧ (x2 → x1),

which divides the biimplication into three functions. From Figs. 3.3 and 3.6 we
already know that the implication x2 → x1 is linearly separable. In the implica-
tion x1 → x2 the variables are merely exchanged, so it is linearly separable as well.
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Fig. 3.10 Combining
several threshold logic units

Finally we know from Figs. 3.2 and 3.5 that the conjunction of two Boolean variables
is linearly separable. As a consequence, we only have to connect the correspond-
ing threshold logic units, see Fig. 3.10. Thus we obtain a network with two layers,
corresponding to the nested structure of the logical expression.

Intuitively, the two threshold logic units on the left (first layer) compute new
Boolean coordinates y1 and y2 for the input vectors, so that the transformed input
vectors in the input space of the threshold logic unit on the right (second layer)
become linearly separable. This is illustrated geometrically with the two diagrams
shown in Fig. 3.11. The separating line g1 corresponds to the upper threshold logic
unit and describes the implication y1 = x1 → x2: for all points above this line the
output is 1, for all points below it the output is 0. The separating line g2 belongs to
the lower threshold logic unit and describes the implication y2 = x2 → x1: for all
points above the line the output is 0, for all points below it the output is 1.

The threshold logic units on the left assign the new coordinates (y1, y2) = (0, 1) to
the input vector b =̂ (x1, x2) = (1, 0) and the new coordinates (y1, y2) = (1, 0) to the
input vectord =̂ (x1, x2) = (0, 1), while they assign the coordinates (y1, y2) = (1, 1)
to both the input vector a =̂ (x1, x2) = (0, 0) and the input vector c =̂ (x1, x2) =
(1, 1) (see Fig. 3.11 on the right). After this transformation the input vectors for
which the output is 1 can easily be separated from those for which the output is 0,
for instance, by the line g3 that is shown in the diagram in Fig. 3.11 on the right.

It can be shown that all Boolean functions with an arbitrary number of inputs
can be computed by networks of threshold logic units, simply by exploiting logical
equivalences to divide these functions in such a way that all occurring sub-functions
are linearly separable. With the help of the disjunctive normal form (or, analogously,

Fig. 3.11 Geometric
interpretation of combining
multiple threshold logic units
into a network to compute
the biimplication
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the conjunctive normal form) one can even show that the networks only need to have
two layers, regardless of the Boolean function to represent

Algorithm 3.1 (Representation of Boolean Functions)
Let y = f (x1, . . . , xn) be a Boolean function of n variables.

1. Represent the Boolean function f (x1, . . . , xn) in disjunctive normal form. That
is, determine D f = K1 ∨ . . . ∨ Km , where all K j are conjunctions of n literals,
that is, K j = l j1 ∧ . . . ∧ l jn with l j i = xi (positive literal) or l j i = ¬xi (negative
literal).

2. For each conjunction K j of the disjunctive normal form create one neuron (with
n inputs—one input for each of the variables) where

wji =
{

2 if l j i = xi ,
−2 if l j i = ¬xi ,

and θ j = n − 1 + 1

2

n∑
i=1

wji .

3. Create one output neuron (with m inputs—one input for each of the neurons
created in step 2) where

w(n+1)k = 2, k = 1, . . . ,m, and θn+1 = 1.

In the network constructed in this way every neuron created in step 2 computes a
conjunction and the output neuron computes their disjunction.

Intuitively, each neuron in the first layer describes a hyperplane that separates the
corner of the hypercube, for which the conjunction is 1, from the rest of the unit
hypercube. The equation of this hyperplane is easy to determine: its normal vector
points from the center of the unit hypercube to the corner that is cut off and thus is 1
in all components in which the position vector of the corner has value 1, and it is −1
in all components in which the position vector of the corner has the value 0. (As an
illustration consider the three-dimensional case.) We multiply this normal vector
with 2 in order to obtain an integer threshold. The threshold has to be determined in
such a way that it is exceeded only if all inputs that carry a weight of 2 are 1 and all
other inputs are 0. The formula stated in step 2 yields such a value.

To compute the disjunction of the outputs of the neurons created in step 2, we
have to separate, in anm-dimensional unit hypercube of the conjunctions, the corner
(0, . . . , 0), for which the output is 0, from all other corners, for which the output is 1.
This can be achieved, for instance, with the hyperplane that possesses the normal
vector (1, . . . , 1) and the weight vector ( 12 , 0, . . . , 0). (As an illustration consider the
three-dimensional case again.) The parameters of the output neuron stated in step 3
are then simply read from the corresponding equation.
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3.5 Training the Parameters

By interpreting the computations of a threshold logic unit geometrically, as shown
in Sect. 3.2, we have (at least for functions with 2 and 3 variables) a simple method
to find, for a given linearly separable function, a threshold logic unit that computes
it: we determine a line, plane, or hyperplane that separates the points for which the
output is 1 from those for which the output is 0. From the equation describing this
line, plane, or hyperplane we can then easily read the weights and the threshold.

However, this methods becomes difficult and finally infeasible if the function
to compute has more than three arguments, because we cannot imagine the input
space of such a function. Furthermore it is impossible to automate this methods,
because we find a suitable separating line or plane by “visual inspection” of the
point sets to separate. This “visual inspection” cannot be mimicked directly by a
computer. In order to be able to determine the parameters of a threshold logic unit
with a computer, so that it computes a given function, we need a different approach.
The principle consists in starting with randomly chosen values for the weights and
the threshold and then changing these values step by step until the desired function
is computed. The slow, stepwise adaptation of the weights and the threshold is also
called learning or—in order to avoid confusionswith themuchmore complex human
learning process—the training of the threshold logic units.

In order to find a method to adapt the weights and the threshold, we start from the
following consideration: depending on the values of the weights and the threshold,
the computation of the threshold logic unit will be more or less correct. Therefore,
we can define an error function e(w1, . . . ,wn, θ), which states how well, for given
weights and threshold, the computed function coincides with the desired one. Our
objective is, of course, to determine the weights and the threshold in such a way that
the error vanishes, that is, that the error function becomes 0. To achieve this, we try
to reduce the value of the error function in every step.

We illustrate this procedure with the help of a very simple example, namely
a threshold logic unit with only one input. The parameters of this unit are to be
determined in such a way that it computes the negation. Such a threshold logic unit
is shown in Fig. 3.12 together with the two training examples for the negation: if the
input is 0, the output should be 1, if the input is 1, the output should be 0.

The error function we define first, as it appears to be natural, as the absolute value
of the difference between the desired and the actual output. This function is shown in
Fig. 3.13. The left diagram shows the error for the input x = 0, for which an output
of 1 is desired. Since the threshold logic unit computes a 1 if xw ≥ θ , the error is 0 for
a negative threshold and 1 for a positive threshold. (Obviously the weight does not

Fig. 3.12 A threshold logic unit with a single input and training examples for the negation
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Fig. 3.13 Error of computing the negation w.r.t. the threshold

have any influence, because it is multiplied with the input, which is 0.) The middle
diagram shows the error for the input x = 1, for which an output of 0 is desired.
Here both the weight and the threshold have an influence. If the weights is less than
the threshold, we have xw < θ and thus the output, and consequently the error is 0.
The diagram on the right shows the sum of these individual errors.

From the right diagram a human can now easily read how the weight and the
threshold have to be chosen so that the threshold logic unit computes the negation:
the values of these parameters must lie in the triangle in the lower left of the w-θ
plane, in which the error is 0. However, it is not yet possible to automatically adapt
the parameters with this function, because the global “visual inspection” of the error
function, which a human relies on to find the solution, cannot be mimicked directly
in a computer. Rather we would have to be able to read from the shape of the function
at the point, which is given by the current weight and the current threshold, in which
directions we have to change the weight and the threshold so that the error is reduced.
With this error function, however, this is impossible, because it consists of “plateaus”
or “terraces.” In “almost all” points (the “edges” of the error function are the only
exceptions) the error stays the same in all directions.2

In order to circumvent this problem, we modify the error function. Where the
threshold logic unit produces the wrong output, we consider how far the threshold
is exceeded (for a desired output of 0) or how far it is underrun (for a desired output
of 1). Intuitively, we may say that the computation is “the more wrong” the farther
the threshold is exceeded for a desired output of 0, or the farther the threshold is
underrun for a desired output of 1. The modified error function is shown in Fig. 3.14.
Again the left diagram shows the error for the input x = 0, the middle diagram the
error for the input x = 1 and the right diagram the sum of these individual errors.

If a threshold logic unit now produces a wrong output, we adapt the weight and
the threshold in such a way that the error is reduced. That is, we try to “descent in
the error landscape”. With the modified error function this is possible, because we
can read from it “locally” (that is, without a visual inspection of the whole error
function, but merely by looking at the shape of the error function at the point that

2The somewhat imprecise notion “almost all points” can bemademathematically precise by drawing
on measure theory: the set of points at which the error function changes has measure 0.
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Fig. 3.14 Error of computing the negation w.r.t. how far the threshold is exceeded or underrun

Fig. 3.15 Directions of the weight and threshold changes

is given by the current values of the weight and the threshold) in which directions
we have to change the weight and the threshold: we simply move in the direction
in which the error function has the strongest downward slope. Intuitively, we follow
the common scout advice how to find water: always go downhill. The directions that
result from this rule are shown schematically in Fig. 3.15. The arrows indicate how
the weight and the threshold should be adapted in different regions of the parameter
space. In those regions, in which no arrows are drawn, weight and threshold are left
unchanged, because there is no error.

The adaptation rules that are shown in Fig. 3.15 can be applied in two different
ways. In the first place, we may consider the inputs x = 0 and x = 1 alternatingly
and may adapt the weight and the threshold according to the corresponding rules.
That is, first we adapt the weight and the threshold according to the left diagram,
then we adapt them according to the middle diagram, then we adapt them again
according to the left diagram and so forth until the error vanishes. This way of
training a neural network is called online learning or online training, since with
every training example that becomes available, a training step can be carried out.

The second option consists in not applying the changes immediately after every
training example, but aggregating them over all training examples. Only at the end of
a (learning/training) epoch, that is, after all training examples have been traversed,
the aggregated changes are applied. Then the training examples are traversed again
and at the end the weight and the threshold are adapted and so forth until the error
vanishes. This way of training is called batch learning or batch training, since
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Fig. 3.16 Training processes with initial values θ = 3
2 , w = 2 and learning rate 1

Fig. 3.17 Learned threshold logic unit for the negation and its geometric interpretation

all training examples have to be available together (in a batch), and corresponds to
adapting weight and threshold according to the diagram on the right.

Figure3.16 shows the training processes for the initial values θ = 3
2 and w = 2.

Both online training (left) and batch training (middle) use a learning rate of 1. The
learning rate states by how much the weight and the threshold are changed, and
thus how “fast” the training is. (However, the learning rate should also not be chosen
arbitrarily large, see Chap.5.) If the learning rate is 1, theweight and the threshold are
increased or reduced by 1. In order to illustrate the “descent in the error landscape”,
the batch training is repeated in a three-dimensional diagram in Fig. 3.16 on the right.
The final, fully trained threshold logic unit (with θ = − 1

2 and w = −1) is shown,
together with its geometric interpretation, in Fig. 3.17.

In this simple example, we derived the adaptation rules directly from a visual
inspection of the error function. An alternative way of obtaining these adaptation
rules are the following considerations: if a threshold logic unit produces an output
of 1 instead of a desired 0, then the threshold is too small and/or the weights are
too large. Hence we should increase the threshold a bit and reduce the weights. Of
course, the latter is reasonable only if the corresponding input is 1, as otherwise
the weight has no influence on the output.) Contrariwise, if a threshold logic unit
produces an output of 0 instead of a desired 1, then the threshold is too large and/or
the weights are too small. Hence the threshold should be reduced and the weights
should be increased (provided, of course, that the corresponding input is 1).

For our simple threshold logic unit the changes shown in Fig. 3.15 have exactly
these effects. However, the considerations above have the advantage that they can be
applied to threshold logic units with more than one input. Therefore, we can define
the following general training method for threshold logic units:

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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Fig. 3.18 Turning the
threshold into a weight

Definition 3.2 Let x = (x1, . . . , xn) be an input vector of a threshold logic unit,
o the desired output for this input vector and y the actual output of the threshold
logic unit. If y 
= o, then, in order to reduce the error, the threshold θ and the weight
vector w = (w1, . . . ,wn) are adapted as follows:

θ(new) = θ(old) + Δθ with Δθ = −η(o − y),

∀i ∈ {1, . . . , n} : w(new)
i = w(old)

i + Δwi with Δwi = η(o − y)xi ,

where η is a parameter that is called learning rate. It determines the severity of the
weight and threshold changes. This method is called the delta rule or Widrow–Hoff
procedure (Widrow and Hoff 1960).

In this definition, we have to distinguish between an adaptation of the threshold and
adaptations of the weights, because the directions of these changes are opposite to
each other (opposite signs for η(t − y) and η(t − y)xi , respectively). However, we
can unify the adaptation rules by turning the threshold into a weight. The rationale
of this transformation is illustrated in Fig. 3.18: the threshold is fixed to 0 and to
compensate this reduction in the number of parameters, an additional (imaginary)
input x0 is introduced, which has a fixed value of 1. This input is weighted with
the negated threshold. The two threshold logic units are clearly equivalent, since
the left one tests the condition

∑n
i=1 wi xi ≥ θ , the right one tests

∑n
i=1 wi xi − θ ≥

0, in order to determine the output. Note that the same effect is produced if the
additional input has the fixed value −1 and is weighted with the threshold directly.
This alternative way of turning the threshold into a weight is also very common.

Regardless of how the threshold is turned into a weight, we obtain the same
adaptation directions for all parameters. With a negated threshold: if the output is 1
instead of 0, then both the wi as well as −θ should be reduced. If the output is 0
instead of 1, both the wi as well as −θ should be increased. On the other hand, with
an unnegated θ and a fixed input of−1, we obtain a uniform rule, because the needed
negative sign is produced by the input. Therefore we can determine the adaptation
direction of all parameters by simply subtracting the actual from the desired output.
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Thus we can formulate the delta rule as follows: Let x = (x0 = 1, x1, . . . , xn) be
an extended input vector of a threshold logic unit (note the additional input x0 = 1),
o the desired output for this input vector and y the actual output of the threshold
logic unit. If y 
= o, then, in order to reduce the error, the extended weight vector
w = (w0 = −θ,w1, . . . ,wn) (note the addedweightw0 = −θ ) is adapted as follows:

∀i ∈ {0, 1, . . . , n} : w(new)
i = w(old)

i + Δwi with Δwi = η(o − y)xi .

We point out this possibility here, because it can often be used, for example, to
simplify derivations (see, for instance, Sect. 5.4). However, for the sake of clarity,
we maintain the distinction of weight and threshold for the remainder of this chapter.

With the help of the delta rule we can now state two algorithms for training a
threshold logic unit: an online version and a batch version. In order to formulate
these algorithms, we assume that we are given a set L = {(x1, o1), …, (xm, om)} of
training examples, each of which consist of an input vector xi ∈ R

n and the desired
outputoi ∈ {0, 1} for this input vector, i = 1, . . . ,m. Furthermore, let arbitrary initial
weights w and an arbitrary initial threshold θ be given (e.g., chosen randomly).
We consider online training first

Algorithm 3.2 (Online Training of a Threshold Logic Unit)

procedure online_training (var w, var θ, L , η);
var y, e; (* output, sum of errors *)
begin

repeat
e := 0; (* initialize the sum of errors *)
for all (x, o) ∈ L do begin (* traverse the examples *)

if (wx ≥ θ) then y := 1; (* compute the output of *)
else y := 0; (* the threshold logic unit *)

if (y 
= o) then begin (* if the output is wrong *)
θ := θ − η(o − y); (* adapt the threshold *)
w := w + η(o − y)x; (* and the weights *)
e := e + |o − y|; (* sum the errors *)

end;
end;

until (e ≤ 0); (* repeat the computations *)
end; (* until the error vanishes *)

Obviously, this algorithm repeatedly applies the delta rule until the sum of errors over
all training examples vanishes. Note that in this algorithm the weight adaptation is
written in vector form, which, however, is clearly equivalent to an adaptation of the
individual weights. Let us now turn to the batch version

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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Algorithm 3.3 (Batch Training of a Threshold Logic Unit)

procedure batch_training (var w, var θ, L , η);
var y, e, (* output, sum of errors *)

θc, wc; (* aggregated changes *)
begin

repeat
e := 0; θc := 0; wc := 0; (* initializations *)
for all (x, o) ∈ L do begin (* traverse the examples *)

if (wx ≥ θ) then y := 1; (* compute the output of *)
else y := 0; (* the threshold logic unit *)

if (y 
= o) then begin (* if the output is wrong *)
θc := θc − η(o − y); (* sum the threshold and *)
wc := wc + η(o − y)x; (* the weight changes *)
e := e + |o − y|; (* sum the errors *)

end;
end;
θ := θ + θc; (* adapt the threshold *)
w := w + wc; (* and the weights *)

until (e ≤ 0); (* repeat the computations *)
end; (* until the error vanishes *)

In this algorithm the delta rule is applied in a modified form, since for each traversal
of the training examples the same threshold and the same weights are used. If the
output is wrong the computed changes are not applied directly, but summed in the
variables θc and wc. Only after all training examples have been visited, the threshold
and the weights are adapted with the help of these variables.

To illustrate the operation of these two algorithms, Table3.2 shows the online
training of the simple threshold logic unit considered above, which is to be trained
in such a way that it computes the negation. Like in Fig. 3.16 on p. 26 the initial
values are θ = 3

2 and w = 3. It is easy to check that the online training shown here
in tabular form corresponds exactly to the one shown graphically in Fig. 3.16 on
the left. Analogously, Table3.3 shows batch training. It corresponds exactly to the
procedure depicted in Fig. 3.16 in the middle or on the right.

As another example we consider a threshold logic unit with two inputs that is
to be trained in such a way that it computes the conjunction of its inputs. Such a
threshold logic unit is shown, together with the corresponding training examples,
in Fig. 3.20. For this example, we only consider online training. The corresponding
training procedure for the initial values θ = w1 = w2 = 0 with learning rate 1 is
shown in Table3.4. As for the negation the training is successful and finally yields
the threshold θ = 3 and theweightsw1 = 2 andw2 = 1. The resulting threshold logic
unit is shown, together with its geometric interpretation, in Fig. 3.21. Note that this
threshold logic unit indeed computes the conjunction, even though the point (1, 1)
lies on the separating line, because it yields output 1 not only for points to the right
of the line, but also for all points on the line (Fig. 3.19).
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Table 3.2 Online training of a threshold logic unit for the negationwith initial values θ = 3
2 ,w = 2

and learning rate 1

Epoch x o xw y e Δθ Δw θ w

1.5 2

1 0 1 −1.5 0 1 −1 0 0.5 2

1 0 1.5 1 −1 1 −1 1.5 1

2 0 1 −1.5 0 1 −1 0 0.5 1

1 0 0.5 1 −1 1 −1 1.5 0

3 0 1 −1.5 0 1 −1 0 0.5 0

1 0 0.5 0 0 0 0 0.5 0

4 0 1 −0.5 0 1 −1 0 −0.5 0

1 0 0.5 1 −1 1 −1 0.5 −1

5 0 1 −0.5 0 1 −1 0 −0.5 −1

1 0 −0.5 0 0 0 0 −0.5 −1

6 0 1 0.5 1 0 0 0 −0.5 −1

1 0 −0.5 0 0 0 0 −0.5 −1

Table 3.3 Batch training of a threshold logic unit for the negation with initial values θ = 3
2 , w = 2

and learning rate 1

Epoch x o xw y e Δθ Δw θ w

1.5 2

1 0 1 −1.5 0 1 −1 0 1.5 1

1 0 0.5 1 −1 1 −1

2 0 1 −1.5 0 1 −1 0 0.5 1

1 0 −0.5 0 0 0 0

3 0 1 −0.5 0 1 −1 0 0.5 0

1 0 0.5 1 −1 1 −1

4 0 1 −0.5 0 1 −1 0 −0.5 0

1 0 −0.5 0 0 0 0

5 0 1 0.5 1 0 0 0 0.5 −1

1 0 0.5 1 −1 1 −1

6 0 1 −0.5 0 1 −1 0 −0.5 −1

1 0 −1.5 0 0 0 0

7 0 1 0.5 1 0 0 0 −0.5 −1

1 0 −0.5 0 0 0 0
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Table 3.4 Training of a threshold logic unit for the conjunction

Epoch x1 x2 o xw y e Δθ Δw1 Δw2 θ w1 w2

0 0 0

1 0 0 0 0 1 −1 1 0 0 1 0 0

0 1 0 −1 0 0 0 0 0 1 0 0

1 0 0 −1 0 0 0 0 0 1 0 0

1 1 1 −1 0 1 −1 1 1 0 1 1

2 0 0 0 0 1 −1 1 0 0 1 1 1

0 1 0 0 1 −1 1 0 −1 2 1 0

1 0 0 −1 0 0 0 0 0 2 1 0

1 1 1 −1 0 1 −1 1 1 1 2 1

3 0 0 0 −1 0 0 0 0 0 1 2 1

0 1 0 0 1 −1 1 0 −1 2 2 0

1 0 0 0 1 −1 1 −1 0 3 1 0

1 1 1 −2 0 1 −1 1 1 2 2 1

4 0 0 0 −2 0 0 0 0 0 2 2 1

0 1 0 −1 0 0 0 0 0 2 2 1

1 0 0 0 1 −1 1 −1 0 3 1 1

1 1 1 −1 0 1 −1 1 1 2 2 2

5 0 0 0 −2 0 0 0 0 0 2 2 2

0 1 0 0 1 −1 1 0 −1 3 2 1

1 0 0 −1 0 0 0 0 0 3 2 1

1 1 1 0 1 0 0 0 0 3 2 1

6 0 0 0 −3 0 0 0 0 0 3 2 1

0 1 0 −2 0 0 0 0 0 3 2 1

1 0 0 −1 0 0 0 0 0 3 2 1

1 1 1 0 1 0 0 0 0 3 2 1

Fig. 3.19 Learned threshold logic unit for the negation and its geometric interpretation

After we have seen two examples of successful training, we naturally face the
question whether Algorithms 3.2 and 3.3 always achieve their objective. As a first
step, we can assert that these algorithms do not terminate if the function to be learned
is not linearly separable. This is illustrated in Fig. 3.5 with the help of the online
training procedure for the biimplication. Epochs 2 and 3 are clearly identical and
will thus be repeated indefinitely, without a solution ever being found. However, this
is not surprising, since the training procedure terminates only if the sum of the errors
over all training examples vanishes. Since we know from Sect. 3.3 that there is no
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Fig. 3.20 A threshold logic
unit with two inputs and
training examples for the
conjunction y = x1 ∧ x2

Fig. 3.21 Geometry of the
learned threshold logic unit
for x1 ∧ x2. The straight line
shown on the right is
described by the equation
2x1 + x2 = 3

threshold logic unit that computes the biimplication, the error can never vanish and
thus the algorithm cannot terminate.

For linearly separable functions, however, that is, for functions that can actually
be computed by a threshold logic unit, it is guaranteed that the algorithms find a
solution. That is, the following theorem holds:

Theorem 3.1 (Convergence Theorem for the Delta Rule)
Let L = {(x1, o1), . . . (xm, om)} be a set of training examples, each consisting of
an input vector xi ∈ R

n and the desired output oi ∈ {0, 1} for this input vector.
Furthermore, let L0 = {(x, o) ∈ L | o = 0} and L1 = {(x, o) ∈ L | o = 1}. If L0

Table 3.5 Training of a threshold logic unit for the biimplication

Epoch x1 x2 o xw y e Δθ Δw1 Δw2 θ w1 w2

0 0 0

1 0 0 1 0 1 0 0 0 0 0 0 0

0 1 0 0 1 −1 1 0 −1 1 0 −1

1 0 0 −1 0 0 0 0 0 1 0 −1

1 1 1 −2 0 1 −1 1 1 0 1 0

2 0 0 1 0 1 0 0 0 0 0 1 0

0 1 0 0 1 −1 1 0 −1 1 1 −1

1 0 0 0 1 −1 1 −1 0 2 0 −1

1 1 1 −3 0 1 −1 1 1 1 1 0

3 0 0 1 0 1 0 0 0 0 0 1 0

0 1 0 0 1 −1 1 0 −1 1 1 −1

1 0 0 0 1 −1 1 −1 0 2 0 −1

1 1 1 −3 0 1 −1 1 1 1 1 0
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and L1 are linearly separable, that is, if there exist w ∈ R
n and θ ∈ R such that

∀(x, 0) ∈ L0 : wx < θ and

∀(x, 1) ∈ L1 : wx ≥ θ,

then the Algorithms 3.2 and 3.3 terminate.

Proof The proof, which we do not want to spell out here, can be found, for example
in Roja (1996) or in Nauck (1997).

Since both algorithms terminate only when the error vanishes, the computed values
for the threshold and the weights are a solution of the learning problem (Table3.5).

3.6 Variants

All examples that we considered up to now referred to logical functions and we
encoded false as 0 and true as 1. However, this encoding has the disadvantage that
with an input of false the corresponding weight cannot be changed, because the
formula for the weight change contains the input as a factor (see Definition 3.2 on
p. 27). This disadvantage can, in certain situations, slow down training unnecessarily,
since a weight can only be adapted if the corresponding input is true.

To avoid this problem, the ADALINE model (ADAptive LINear Element) relies
on the encoding false =̂ − 1 and true =̂ + 1. Thus an input of false also leads,
provided the output is wrong, to a weight adaptation. Indeed, the delta rule was
originally developed for the ADALINE model (Widrow and Hoff 1960), so that
strictly we may only speak of the delta rule or the Widrow–Hoff procedure if the
ADALINE model is employed. Although the procedure is equally applicable (and
has the same convergence properties) for the encoding false =̂ 0 and true =̂ 1 (see
the preceding section), it is sometimes called error correction procedure to avoid
confusion (Nilsson 1965, 1998). We ignore this distinction here, because it is due to
historical rather than conceptual reasons.

3.7 Training Networks

After simple neuro-computers had been used successfully for pattern recognition
tasks at the end of the 1950s (for example, (Rosenblatt 1958)), the simple and fast
delta rule training method had been developed by Widrows and Hoff (1960) and the
perceptron convergence theorem (corresponds to the convergence theorem for the
delta rule) had been proven by Rosenblatt (1962), great expectations were placed
in the development of (artificial) neural networks. This started the “first bloom” of
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neural network research, in which it was believed that one had already discovered
the core principles underlying systems that are able to learn.

Only after Minsky and Papert (1969) carried out a careful mathematical analysis
of the perceptron and pointed out in all clarity that threshold logic units can compute
only linearly separable functions, the limitations of the models and procedures used
at the time were properly recognized. Although it was already known from the early
works of McCulloch and Pitts (1943), that the limitations of the expressive and
computational power can be lifted using networks of threshold logic units (since, for
example, such networks can compute arbitrary Boolean functions), training methods
were confined to single threshold logic units.

Unfortunately, transferring the training procedures to networks of threshold logic
units turned out to be a surprisingly difficult problem. For example, the delta rule
derives the weight adaptation from the difference between the actual and the desired
output (seeDefinition 3.2 on p. 27).However, a desired output is available only for the
neuron that yields the output of the network as a whole. For all other threshold logic
units, which carry out some kind of preprocessing and transmit their outputs only
to other threshold logic units, no such desired output can be given. As an example,
consider the biimplication problem and the structure of the network that we proposed
as a solution for this problem (Fig. 3.10 on p. 21): the training examples do not state
desired outputs for the two threshold logic units on the left. One of the main reasons
for this is that the necessary coordinate transformation is not uniquely determined:
separating lines in the input spacemay just as well be placed in a completely different
way (for example, perpendicular to the bisectrix) or onemay direct the normal vectors
somewhat differently.

As a consequence (artificial) neural networks were seen as a “research dead end”
and the so-called “dark age” of neural network research began.Onlywhen the training
procedure of error backpropagation was developed, the area was revived. This
procedure was described first in Werbo (1974), but did not receive any attention.
Only when (Rumelhart et al. 1986a; 1986b) independently developed the method
again and advertised it in the research community, the modern age (“second bloom”)
of (artificial) neural network began, which last to the present day.

We consider error backpropagation only in Chap.5, since it cannot be applied
directly to threshold logic units. It requires that the activation of a neuron does not
jump at a crisply defined threshold from 0 to 1, but that the activation rises slowly,
according to a differentiable function. For networks consisting of pure threshold
logic units still no training method is known.
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4General Neural Networks

In this chapter we introduce a general model of (artificial) neural networks that
captures (more or less) all special forms,whichwe consider in the following chapters.
We start by defining the structure of an (artificial) neural network and then describe
generally the operation and finally the training of an (artificial) neural network.

4.1 Structure of Neural Networks

In the preceding chapter we already considered briefly networks of threshold logic
units. The way in which we represented these networks suggests to describe neural
networks with the help of a graph (in the sense of graph theory). Therefore we first
define the notion of a graph and a few useful notions, which we draw on in the
following definitions and the subsequent chapters.

Definition 4.1 A (directed) graph is a pairG = (V, E) consisting of a (finite) set V
of vertices or nodes and a (finite) set E ⊆ V × V of edges. We say that an edge
e = (u, v) ∈ E is directed from the vertex u to the vertex v.

It is, of course, also possible to define undirected graphs (for example, by using
unordered pairs {u, v} for the edges). However, to describe neural networks we only
need directed graphs, since the connections between neurons are always directed.

Definition 4.2 Let G = (V, E) be a (directed) graph and u ∈ V a vertex. The ver-
tices of the set

pred(u) = {v ∈ V | (v, u) ∈ E}

37
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are called the predecessors of the vertex u and the vertices of the set

succ(u) = {v ∈ V | (u, v) ∈ E}
are called the successors of the vertex u.

Definition 4.3 An (artificial) neural network is a (directed) graph G = (U,C)

whose vertices u ∈ U are called neurons or units and whose edges c ∈ C are called
connections. The set U of vertices is divided into the set Uin of input neurons, the
set Uout of output neurons and the set Uhidden of hidden neurons. It is

U = Uin ∪Uout ∪Uhidden,

Uin �= ∅, Uout �= ∅, Uhidden ∩ (Uin ∪Uout) = ∅.

Each connection (v, u) ∈ C carries a weight wuv and to each neuron u ∈ U three
(real-valued) quantities are assigned: the network input netu , the activation actu ,
and the output outu . In addition, each input neuron u ∈ Uin has a fourth (real-valued)
quantity, the external input extu . Each neuron u ∈ U also possesses three functions:

the network input function f (u)
net : R2|pred(u)|+κ1(u) → R,

the activation function f (u)
act : Rκ2(u) → R, and

the output function f (u)
out : R → R,

with which the network input netu , the activation actu and the output outu of the
neuron u are computed. κ1(u) and κ2(u) depend on the type and the number of
arguments of the functions (see below).

The neurons are divided into input, output, and hidden neurons in order to specify
which neurons receive input from the environment (input neurons) and which emit
output to the environment (output neurons). The remaining neurons have no contact
with the environment (but only with other neurons) and thus are “hidden.”

Note that the set Uin of input neurons and the set Uout of output neurons need
not be disjoint: A neuron can be both input and output neuron. In Chap.8 we even
consider networks (so-called Hopfield networks) in which all neurons are both input
and output neurons and there are no hidden neurons.

Note also that in the index of a weight wuv the neuron to which the correspond-
ing connection leads is named first. The reason for this order is that the graph of
a neural network is often described by an adjacency matrix which instead of the
values 1 (connection) and 0 (no connection) contains the weights of the connec-
tions (if a weight is zero, the corresponding connection does not exist). Due to
reasons that will be studied in more detail in Chap.5 it is advantageous to collect
the weights of the connections that lead to a specific neuron in the same matrix
row (and not in the same matrix column). Since the elements of a matrix are
indexed according to the rule “row first, then column,” the neuron is named first
to which the connections lead. Thus we obtain the following scheme (with r = |U |):

http://dx.doi.org/10.1007/978-1-4471-7296-3_8
http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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Fig. 4.1 A simple (artificial)
neural network

u1 u2 . . . ur⎛
⎜⎜⎜⎝
wu1u1 wu1u2 . . . wu1ur
wu2u1 wu2u2 wu2ur

...
...

wuru1 wuru2 . . . wurur

⎞
⎟⎟⎟⎠
u1
u2
...

ur

This matrix is to be read from the top to the right: the columns correspond to the
neurons, from which the connections emanate, the rows to the neurons to which the
connections lead. (Note that neuronsmay also be connected to themselves—diagonal
elements of the above matrix.) This matrix and the corresponding weighted graph
(i.e., graph with weighted edges) are called the network structure .

According to the network structure, we distinguish two fundamental types of
neural networks: if the graph that describes the network structure of a neural network
is acyclic—that is, if it does not contain loops1 and no directed cycles—the network
is called a feed forward network. However, if the graph contains loops or directed
cycles, it is called a recurrent network. The reasons for these names are, of course,
that in a neural network information can be transmitted only along the (directed)
connections. If the graph is acyclic, there is only one direction, namely forward,
from the input neurons to the output neurons. However, if there are loops or directed
cycles, outputs can be coupled back to inputs. In the subsequent chapters we first
consider different types of feed forward networks, since they are easier to analyze.
In Chaps. 8 and 9 we then turn to recurrent networks.

To illustrate the definition of the structure of a neural network, we consider as an
example the network with three neurons (that is, U = {u1, u2, u3}), that is shown
in Fig. 4.1. The neurons u1 and u2 are input neurons (that is, Uin = {u1, u2}). They
receive the external inputs x1 and x2, respectively. The neuron u3 is the only output
neuron (that is, Uout = {u3}). It produces the output y of the neural network. This
network does not contain any hidden neurons (that is, Uhidden = ∅).

There is a total of four connections between the neurons (that is, the graph has the
edges C = {(u1, u2), (u1, u3), (u2, u3), (u3, u1)}), the weights of which are indi-
cated by the numbers with which the arrows are labeled that represent these connec-
tions (for example, wu3u2 = 3). This network is recurrent, as there are two directed

1A loop is an edge/connection from a vertex to this vertex itself, that is, an edge e = (v, v) with a
vertex v ∈ V .

http://dx.doi.org/10.1007/978-1-4471-7296-3_8
http://dx.doi.org/10.1007/978-1-4471-7296-3_9


40 4 General Neural Networks

cycles (for instance, the cycle (u1, u3), (u3, u1)). If we describe the network structure
by a matrix (as explained above), we obtain the 3 × 3 matrix

u1 u2 u3⎛
⎝ 0 0 4

1 0 0
−2 3 0

⎞
⎠u1
u2
u3

Note that the neuron, from which a connection emanates, selects the column, while
the neuron, to which a connection leads, selects the row, in which the corresponding
connection weight is entered.

4.2 Operation of Neural Networks

To describe the operation of neural networks we have to specify (1) how a single
neuron computes its output from its inputs (that is, the outputs of its predecessors)
and (2) how the computations of the different neurons are organized, in particular,
how the external input is processed and in what order the neurons are updated.

Let us first consider a single neuron. Every neuron can be seen as a simple proces-
sor, the structure of which is shown in Fig. 4.2. The network input function f (u)

net
computes the network input netu from the inputs inuv1 , . . . , inuvn , which correspond
to the outputs outv1 , . . . , outvn of the predecessors of the neuron u, and the con-
nection weights wuv1 , . . . ,wuvn . This computation can be influenced by additional
parameters σ1, . . . , σl (see, for instance, Sect. 6.5). From the network input, a certain

number of parameters θ1, . . . , θk , and possibly a feedback of the current activation
of the neuron u (see, for instance, Chap. 9) the activation function f (u)

act computes the

new activation actu of the neuron u. Finally the output function f (u)
out computes the

output of the neuron u from its activation. The external input extu sets the (initial)
activation of the neuron u, if it is an input neuron (see below).

Fig. 4.2 Structure of a generalized neuron

http://dx.doi.org/10.1007/978-1-4471-7296-3_6
http://dx.doi.org/10.1007/978-1-4471-7296-3_9
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The number κ1(u) of the additional arguments of the network input function and
the number κ2(u) of the arguments of the activation function depend on the type
of these functions and the structure of the neuron (for example, whether there is a
feedback of the current activation or not). They may differ for each of the neurons of
a neural network. Usually the network input function has only 2|pred(u)| arguments
(namely the outputs of the predecessor neurons and the corresponding connection
weights), since no other parameters enter it. The activation function usually has two
arguments: the network input and a parameter, which may be, for instance (as in the
preceding chapter), a threshold. The output function, on the other hand, has only
the activation as its argument and usually serves the purpose to scale the output to a
desired output range, most commonly by a linear mapping.

Note that the network input function is often written with vector arguments

f (u)
net (wu, inu) = f (u)

net (wuv1 , . . . ,wuvn , inuv1 , . . . , inuvn )

= f (u)
net (wuv1 , . . . ,wuvn , outv1 , . . . , outvn ).

This is analogous to the way in which we have worked with a weight vector w and
an input vector x in the preceding chapter.

Having clarified the operation of a single neuron, we turn to the neural network as
a whole. We divide the computations of a neural network into two phases: the input
phase, in which the external inputs are fed into the network, and the work phase, in
which the output of the neural network is computed.

The input phase serves the purpose to initialize the network. In this phase the
activations of the input neurons are set to the values of the corresponding external
inputs. The activations of the remaining neurons are initialized arbitrarily, usually by
simply setting them to 0. In addition, the output function is applied to the initialized
activations, so that all neurons produce initial outputs.

In the work phase, the external inputs are switched off and the activations and
outputs of the neurons are recomputed (possibly multiple times). To achieve this, the
network input function, the activation function and the output function are applied as
described above. If a neuron does not receive any network input, because it does not
have any predecessors, we define that it simply maintains its activation (and thus also
its output). Essentially this is only important for the input neurons in a feed forward
network. For these input neurons, which do not have predecessors, this definition is
meant to guarantee that they always possess a well-defined activation (and output),
since the external inputs are switched off in the work phase.

The recomputations are terminated either if the network reaches a stable state,
that is, if further recomputations do not change the outputs of the neurons anymore,
or if a predetermined number of recomputations has been carried out.

The temporal order of the recomputations is not generally fixed (although there
are, depending on there network type, certain orders that suggest themselves). For
example, all neurons of a network may recompute their outputs at the same time
(synchronous update ), drawing on the old outputs of their predecessors. Or we may
define an order of the neurons in which they compute their new output one ofter
the other (asynchronous update ). In this case the new outputs of other neurons may
already be used as inputs for subsequent computations.
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Fig. 4.3 A simple (artificial)
neural network. The numbers
in the neurons state the
threshold of the activation
function, the labels at the
arrows the connection
weights

For a feed forward network the computations usually follow a topological
ordering2 of the neurons, as no redundant computations are carried out in this way.
Note that for recurrent networks the final output may depend on the order in which
the neurons recompute their outputs as well as on how many recomputations are
carried out.

As an example, we reconsider the (artificial) neural network consisting of three
neurons that is shown in Fig. 4.1. We assume that all have the weighted sum of the
outputs of their predecessors as their network input functions. That is,

f (u)
net (wu, inu) =

∑
v∈pred(u)

wuvinuv =
∑

v∈pred(u)

wuvoutv.

We also assume that the activation function of all neurons is the threshold function

f (u)
act (netu, θ) =

{
1, ifnetu ≥ θ,

0, otherwise.

If we write the threshold into the neurons, as we did in the preceding chapter, we can
represent the neural network as shown in Fig. 4.3. Finally, we assume that the output
function of all neurons is the identity, that is,

f (u)
out (actu) = actu .

Therefore we need not distinguish between activation and output.
We consider first how this network operates if it receives the inputs x1 = 1 and

x2 = 0 and updates the outputs of the neurons in the order u3, u1, u2, u3, u1, u2,
u3, . . .. The corresponding computations are shown in Table4.1.

In the input phase, the activations of the input neurons u1 and u2 are initializedwith
the values of the external inputs extu1 = x1 = 1 and extu2 = x2 = 0, respectively.
The activation of the output neuron u3 is initialized to the (arbitrarily chosen) value 0.
Since we assumed that the output function is the identity, we need not carry out any
calculations in the input phase, but simply copy the external inputs. The neurons now
have the outputs outu1 = 1 and outu2 = outu3 = 0 (see Table4.1).

2A topological ordering is a numbering of the vertices of a directed graph, such that all edges
are directed from a vertex with a lower number to a vertex with a higher number. A topological
ordering exists only for acyclic graphs, that is, for feed forward networks. For feed forward networks
an update following a topological ordering ensures that all inputs of a neuron are already available
(have already been computed), before it (re-)computes its own activation and output.
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Table 4.1 Computations carried out by the simple neural network shown in Fig. 4.1 for the
input (x1 = 1, x2 = 0) if the activations are updated in the order u3, u1, u2, u3, u1, u2, u3, . . .

The work phase starts with an update of the neuron u3. Its network input is the
weighted sum of the outputs of neurons u1 and u2, which are weighted with −2
and 3, respectively, that is, netu3 = −2 · 1 + 3 · 0 = −2. Since −2 is less than 1, the
activation (and thus the output) of the neuron u3 is set to 0. In the next step of the
work phase the output of the neuron u1 is updated. (Note that its external input is no
longer available, but has been switched off.) Since it receives the network input 0,
its activation (and thus its output) is set to 0. Likewise, the network input of the
neuron u2 is 0 and thus its activation (and its output as well) is also set to 0 in the
third step. After two additional steps it becomes clear that we have reached a stable
state, since after the fifth step of the work phase we have exactly the same situation
as after the second step. Therefore the work phase is terminated and the activation 0
of the output neuron u3 yields the output y = 0 of the neural network.

That a stable state is reached is due to the fact that the neurons were updated
in the order u3, u1, u2, u3, u1, u2, u3, . . .. If we chose, as an alternative, the order
u3, u2, u1, u3, u2, u1, u3, . . ., we observe a completely different behavior that is
shown in Table4.2. In the seventh step of the work phase it becomes clear that the
outputs of all three neurons oscillate and thus that no stable state can be reached:
the situation after the seventh step is identical to the one after the first step and thus
the computations will repeat indefinitely. Hence we cannot terminate the work phase,
because a stable state has been reached, but have to chose a different criterion, for
example, that a certain number of update steps have been computed. However, in this

Table 4.2 Computations carried out by the neural network shown in Fig. 4.1 for the input
(x1 = 1, x2 = 0) if the activations are updated in the order u3, u2, u1, u3, u2, u1, u3, . . .
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case the output of the neural network depends on the step, after which the work phase
is terminated. If it is terminated after step k with (k − 1) mod 6 < 3, the activation
of the output neuron u3 and thus the output of the network is y = 0. However, if the
work phase is terminated after step k with (k − 1) mod 6 ≥ 3, the activation of the
output neuron u3 and thus the output of the network is y = 1.

4.3 Training Neural Networks

One of the most enticing properties of (artificial) neural networks is the possibility
to train them for certain tasks with the help of example data. To some degree we
already considered this possibility in the preceding chapter with the help of the delta
rule. Although the delta rule is only applicable for single threshold logic units and
cannot be transferred to networks directly, it already illustrates the basic principle:
training a neural network consists in adapting the connection weights and possibly
some other parameters (like thresholds) such that a certain criterion is optimized.

Depending on the type of the training data and the criterion to optimize we can
distinguish two fundamental learning tasks: fixed and free.

Definition 4.4 A fixed learning task Lfixed for a neural network with n input neu-
rons, that is,Uin = {u1, . . . , un}, andm output neurons, that is,Uout = {v1, . . . , vm},
is a set of training patterns l = (

i (l), o (l)
)
, each consisting of an input vector

i (l) = (
ext(l)u1 , . . . , ext

(l)
un

)
and an output vector o (l) = (

o(l)
v1 , . . . , o(l)

vm

)
.

If we are given a fixed learning task, we desire to train a neural network in such a
way that it produces for all training patterns l ∈ Lfixed the outputs contained in the
output vector o (l) if the external inputs of the corresponding input vector i (l) are fed
into the network.

In practice, this optimum can rarely be achieved and thus one may have to accept
a partial or approximate solution. In order to determine how well a neural network
solves a fixed learning task, an error function is employed, which measures how
well the actual outputs coincide with the desired outputs in the training patterns.
Commonly this error function is defined as the sum of squared deviations of desired
and actual output over all training patterns and all output neurons. That is, the error
of a neural network w.r.t. a fixed learning task Lfixed is defined as

e =
∑

l∈Lfixed

e(l) =
∑

v∈Uout

ev =
∑

l∈Lfixed

∑
v∈Uout

e(l)
v ,

where

e(l)
v =

(
o(l)
v − out(l)v

)2
is the individual error for a training pattern l and an output neuron v.

The square of the deviations of the desired and the actual output is chosen for
various reasons. In the first place, it is clear that we cannot simply sum the deviations
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directly, since then positive and negative deviations could cancel, thus producing a
misleading impression of the actual quality of the network. Therefore we have to
sum (at least) the absolute values of the deviations.

However, the square of the deviation of the actual and the desired output has at
least two advantages over the absolute value: in the first place it is continuously
differentiable everywhere, while the derivative of the absolute value does not exist/is
discontinuous at 0. It is desirable that the error function is continuously differentiable,
because this simplifies thederivationof the update rules for theweights (seeSect. 5.4).
Second, large deviations from the desired output are weighted more severely, so that
there is a tendency that during training individual strongdeviations (i.e., for individual
training patterns) from the desired value are avoided.

Let us now turn to free learning tasks.

Definition 4.5 A free learning task L free for a neural network with n input neurons,
that is, Uin = {u1, . . . , un}, is a set of training patterns l = (

i (l)
)
, each of which

consists of an input vector i (l) = (
ext(l)u1 , . . . , ext

(l)
un

)
.

While the training patterns of a fixed learning task contain a desired output, which
allows us to compute an error, free learning tasks need a different criterion in order
to assess how well a neural network solves the task. In principle, with a free learning
task for a neural network we ask for a training result that “produces similar outputs
for similar inputs,” where the outputs can be chosen by the training method. The
objective of the training can be, for example, to group the input vectors into clusters
of similar vectors (clustering or cluster analysis), so that for all vectors in a cluster
the same output is produced (see, for instance, Sect. 7.2).

If we are given a free learning task, the most important aspect for training a
neural network is how the similarity between the training patterns is measured. This
may be defined, for example, with the help of a distance function (details about
distance functions can be found in Sect. 6.1). The outputs that are produced for a
group of similar input vectors are then often assigned by choosing representatives or
by forming prototypes (see Chap.7 for details).

In the remainder of this sectionwe consider somegeneral aspects of training neural
networks that are relevant in practice. It is, for instance, advisable to normalize the
inputs of a neural network in order to avoid certain numerical problems, which
can result from an unequal scaling of the different input variables. Most commonly,
each input variable is scaled in such a way that it has the arithmetic mean 0 and
the variance 1. To achieve this, one computes from the input vectors of the training
patterns l of the learning task L for each input neuron uk

μk = 1

|L|
∑
l∈L

ext(l)uk and σk =
√

1

|L|
∑
l∈L

(
ext(l)uk − μk

)2
,

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_7
http://dx.doi.org/10.1007/978-1-4471-7296-3_6
http://dx.doi.org/10.1007/978-1-4471-7296-3_7
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that is, the arithmetic mean and the standard deviation of the external inputs.3 Then
the external inputs are transformed according to

ext(l)(new)
uk = ext(l)(old)uk − μk

σk
.

This normalization can be carried out as a preprocessing step or (in a feed forward
network) by the output function of the input neurons.

Up to now we assumed (sometimes implicitly) that the inputs and outputs of
a neural network are real numbers. However, in practice we often face nominal
attributes (often also called symbolic), for example, color, vehicle type, marital status
etc. If we want to process such attributes with a neural network, we have to transform
them into numbers. Although it may seem natural to simply number the different
values of such attributes, this can lead to undesired effects if the numbers do not reflect
a natural order of the values (and even then it may not be appropriate to choose equal
steps between neighboring values). A better option is a so-called 1-in-n encoding, in
which each nominal attribute is assigned as many (input or output) neurons as it has
values: each neuron corresponds to one attribute value. With the input of a training
pattern, the neuron that corresponds to the obtaining value of the nominal attribute
is set to 1, while all other neurons that belong to the same attribute are set to 0. That
is, only 1 in n neurons (where n is the number of attributes values) is set to 1, the
others to 0, which explains the name of this encoding.

3The second formula is based on the maximum likelihood estimator for the variance of a normal
distribution. In statistics often the unbiased estimator is preferred, which differs from the one used
above only by using |L| − 1 instead of |L|. For the normalization this difference is negligible.
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Having described the structure, the operation, and the training of (artificial) neural
networks in a general fashion in the preceding chapter, we turn in this and the
subsequent chapters to specific forms of (artificial) neural networks. We start with
the best-known and most widely used form, the so-called multilayer perceptron
(MLP), which is closely related to the networks of threshold logic units we studied
in Chap.3. They exhibit a strictly layered structure (see the definition below) and
may employ other activation functions than a step at a crisp threshold.

5.1 Definition and Examples

Definition 5.1 An r-layer perceptron is a neural network with a graphG = (U,C)

that satisfies the following restrictions:

1. Uin ∩Uout = ∅,

2. Uhidden = U (1)
hidden ∪ · · · ∪U (r−2)

hidden, ∀1 ≤ i< j ≤ r − 2 : U (i)
hidden ∩U ( j)

hidden=∅,

3. C ⊆ (
Uin ×U (1)

hidden

) ∪ (⋃r−3
i=1 U

(i)
hidden ×U (i+1)

hidden

) ∪ (
U (r−2)
hidden ×Uout

)
or, if there are no hidden neurons (r = 2,Uhidden = ∅), C ⊆ Uin ×Uout.

The network input function of each hidden and each output neuron is the weighted
sum (weighted with the connection weights) of the inputs, that is,

∀u ∈ Uhidden ∪Uout : f (u)
net (wu, inu) = wu inu =

∑
v∈pred(u)

wuvoutv.

The activation function of each neuron is a so-called sigmoid function, that is, a
monotonically nondecreasing function with

f : R → [0, 1] with lim
x→−∞ f (x) = 0 and lim

x→∞ f (x) = 1.

47
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Fig. 5.1 General structure of an r -layered perceptron

The activation function of each output neuron is either also a sigmoid function or a
linear function fact(net, θ) = αnet − θ .

Intuitively, the restrictions of the graph in this definition mean that a multilayer
perceptron consists of an input and an output layer (the neurons of the sets Uin

and Uout) and none, one, or several hidden layers (the neurons in the sets U (i)
hidden)

between them. Connections exist only between the neurons of consecutive layers,
that is, between the input layer and the first hidden layer, between consecutive hidden
layers and between the last hidden layer and the output layer (see Fig. 5.1). Note that
according to this definition a multilayer perceptron has always at least two layers,
namely the input and the output layer.

Examples of sigmoid activation functions, all of which have a parameter, namely
a bias value θ , are shown in Fig. 5.2. The threshold logic units we studied in Chap.3
employ exclusively the (Heaviside or unit) step function as their activation function.
The advantages of other activation functions are discussed in Sect. 5.2. Here we
remark only that instead of the listed unipolar sigmoid functions (limx→−∞ f (x) =
0) sometimes bipolar sigmoid functions (limx→−∞ f (x) = −1) are employed. An
example of such a function is the hyperbolic tangent (see Fig. 5.3), which is closely
related to the logistic function. In addition, it should be clear that any unipolar
sigmoid function can be turned into a bipolar one by simply multiplying it by 2
and subtracting 1. Using bipolar sigmoid activation functions does not cause any
fundamental differences. In this book we therefore confine ourselves to unipolar
sigmoid activation functions. All considerations and derivations of the subsequent
sections can easily be transferred to bipolar functions.

The strictly layered structure of a multilayer perceptron and the special network
input function of the hidden as well as the output neurons suggest to describe the
network structure with the help of a weight matrix, as already discussed in Chap.4.
In this way the computations carried out by a multilayer perceptron can be written
in a simpler way, using vector and matrix notation. However, for this purpose we
do not use a weight matrix for the network as a whole (although this would be

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_4
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Fig. 5.2 Different unipolar sigmoid activation functions

Fig. 5.3 The hyperbolic tangent, a bipolar sigmoid function

possible as well), but one matrix for the connections between one layer and the
next: let U1 = {v1, . . . , vm} and U2 = {u1, . . . , un} be the neurons of two layers of
a multilayer perceptron, where U2 may follow U1. We construct an n × m matrix

W =

⎛
⎜⎜⎜⎝
wu1v1 wu1v2 . . . wu1vm
wu2v1 wu2v2 . . . wu2vm
...

...
...

wunv1 wunv2 . . . wunvm

⎞
⎟⎟⎟⎠
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Fig. 5.4 A three-layer
perceptron for the
biimplication

of the weights of the connections between these two layers, settingwui v j = 0 if there
is no connection between neuron v j and neuron ui . The advantage of such a matrix
is that it allows us to write the network input of the neurons of the layer U2 as

netU2 = W · inU2 = W · outU1

where netU2 = (netu1 , . . . , netun )
� and inU2 = outU1 = (outv1 , . . . , outvm )� (the

superscript � means that the vector is transposed, that is, that it is turned from a row
vector into a column vector—as if it were a n × 1 or m × 1 matrix).

The placement of the weights in the matrix is determined by the convention that
matrix-vector equations are written with column vectors as well as the common rules
of matrix-vector multiplication. This explains why we fixed the order of the indices
of the weights in Definition 4.3 on p. 38 in such a way that the neuron is written first
to which the connection leads.

As a first example of a multilayer perceptron we reconsider the network of thresh-
old logic units studied in Sect. 3.4 that computes the biimplication. This network is
shown in Fig. 5.4 as a three-layer perceptron. Note that compared to Fig. 3.10 on
p. 21 there are two additional neurons, namely the two input neurons. Formally these
two neurons are needed, because our definition of a neural network only allows us
to assign weights to the edges of the graph, but not directly to the inputs. Hence
we need the input neuron so that we have edges to the neurons of the hidden layer
to which we can assign the input weights. (Note, however, that the input neurons
may also transform the input quantities if they possess a suitable output function.
For example, if the logarithm of an input is to be used for the computations of a
neural network, we simply choose fout(act) ≡ log(act) for the corresponding input
neuron.)

To illustrate thematrix notation of theweights,we describe the connectionweights
of this network by two matrices. We obtain

W1 =
(−2 2

2 −2

)
and W2 = (

2 2
)
,

where the matrixW1 contains the weights of the connections from the input layer to
the hidden layer and the matrixW2 contains the weights of the connections from the
hidden layer to the output layer.

http://dx.doi.org/10.1007/978-1-4471-7296-3_4
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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Fig. 5.5 The Fredkin gate (Fredkin and Toffoli 1982)

Fig. 5.6 Geometric interpretation of the function that is computed by a Fredkin gate (ignoring the
input s which is simply passed through)

As another example we consider the Fredkin gate, which plays an important
role in so-called conservative logic1 (Fredkin and Toffoli 1982). This gate has three
inputs: s, x1 and x2, and three outputs: s, y1 and y2 (see Fig. 5.5). The “switch
variable” s is always passed through without change. The inputs x1 and x2 are
connected either parallel or crossed to the two outputs y1 and y2, depending on
whether the switch variable s has value 0 or value 1. The function that is computed
by a Fredkin gate is shown in Fig. 5.5 as a table and geometrically in Fig. 5.6.

Figure5.7 shows a three-layer perceptron that computes the function of the Fred-
kin gate (ignoring the switch variable s, which is merely passed through without
change). Actually, this network consists of two separate three-layer perceptrons,
since there are no connections from any of the neurons in the hidden layer to both
output neurons. This is, of course, not always the case for multilayer perceptron with
more than one output, but a result of the special function of the Fredkin gate.

To illustrate thematrix notation of theweightswewrite theweights of this network
in two matrices. We obtain

W1 =

⎛
⎜⎜⎝
2 −2 0
2 2 0
0 2 2
0 −2 2

⎞
⎟⎟⎠ and W2 =

(
2 0 2 0
0 2 0 2

)
,

1Conservative logic is a mathematical model for computations and computational powers of com-
puters, in which the fundamental physical principles that govern computing machines are explicitly
taken into account. Among these principles are, for instance, that the speed with which information
can travel as well as the amount of information that can be stored in the state of a finite system are
both finite (Fredkin and Toffoli 1982).
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Fig. 5.7 A three-layer
perceptron that computes the
function of the Fredkin gate
(see Fig. 5.5)

where the matrix W1 represents the connections from the input layer to the hidden
layer and the matrix W2 the connections from the hidden layer to the output layer.
Note that in these matrices zero elements correspond to missing/absent connections.

With the help of the matrix notation of the weights it is easy to show why sigmoid
or generally nonlinear activation functions are decisive for the computational capa-
bilities of a multilayer perceptron. Suppose all activation and output functions were
linear, that is, functions fact(net, θ) = αnet − θ . Then such a multilayer perceptron
can always be reduced to a two-layer perceptron (only input and output layer).

As mentioned above, we have for two consecutive layers U1 and U2

netU2 = W · inU2 = W · outU1 .

If all activation function are linear, then the activations of the neurons of the layerU2
can also be determined by a matrix-vector calculation, namely by

actU2 = Dact · netU2 − θ ,

where actU2 = (actu1 , . . . , actun )
� is the vector of activations of the neurons of

layer U2, Dact is an n × n diagonal matrix of the factors αui , i = 1, . . . , n, and
θ = (θu1 , . . . , θun )

� is a bias vector. If the output function is a linear function as
well, we have analogously

outU2 = Dout · actU2 − ξ ,

where outU2 = (outu1 , . . . , outun )
� is the vector of outputs of the neurons of

layerU2,Dout is again an n × n diagonal matrix of factors and finally ξ = (ξu1 , . . . ,

ξun )
� is again a bias vector. Therefore we can write the computation of the outputs

of the neurons of layerU2 from the outputs of the neurons of the preceding layerU1
as

outU2 = Dout ·
(
Dact ·

(
W · outU1

) − θ
) − ξ ,

which can be simplified to

outU2 = A12 · outU1 + b12,
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Fig. 5.8 Approximating a
continuous function with
step functions

with an n × m matrix A12 and an n-dimensional vector b12. Analogously, we obtain
for the computations of outputs of the neurons of a layerU3, which follows layerU2,
from the outputs of the neurons of layer U2

outU3 = A23 · outU2 + b23,

and therefore for computing the outputs of the neurons of layer U3 from the outputs
of the neurons of layer U1

outU3 = A13 · outU1 + b13,

where A13 = A23 · A12 and b13 = A23 · b12 + b23. As a consequence, the compu-
tations of two consecutive layers can be reduced to a single layer. It should be clear
that by iterating this result we can incorporate the computations of arbitrarily many
layers. Therefore multilayer perceptrons can compute only affine transformations if
the activation and output functions of all neurons are linear. For more complex tasks
nonlinear activation functions are needed.

5.2 Function Approximation

In this section, we study in more detail what we gain compared to threshold logic
units (that is, neurons with the (Heaviside or unit) step function as their activation
function) if we allow for other activation function.2 In a first step we demonstrate
that all Riemann-integrable functions can be approximated by four-layer perceptrons
with arbitrary accuracy, provided that the output neuron has the identity, instead of
a step function, as its activation function.

The principle is illustrated in Figs. 5.8 and 5.9 for a unary function: the function
to compute is approximated by a step function (see Fig. 5.8). For each step border xi
we create a neuron in the first hidden layer of a multilayer perceptron with a total of
four layers (see Fig. 5.9). This neuron serves the purpose to determine on which side
of the step border an input values lies.

2In the following we assume implicitly that the output function of all neurons is the identity. Only
the activation functions are exchanged.
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Fig. 5.9 A neural network that computes the step function shown in Fig. 5.8 (“id” instead of a
threshold value means that this neuron uses the identity instead of a threshold function)

In the second hidden layer we create one neuron for each step, which receives
input from the two neurons in the first hidden layer that refer to the values xi and
xi+1 marking the borders of this step (see Fig. 5.9). The weights and the threshold are
chosen in such a way that the neuron is activated if the input value is no less than xi ,
but less than xi+1, that is, if the input values lies in the range of the step. Note that in
this way only exactly one neuron on the second hidden layer can be active, namely
the one representing the step in which the input value lies.

The connections from the neurons of the second hidden layer to the output neuron
are weighted with the function values of the stair steps that are represented by the
neurons. Since only one neuron can be active on the second hidden layer, the output
neuron receives as input the height of the stair step, in which the input value lies.
Since the activation function of the output neuron is the identity, this value is emitted
unchanged. As a consequence, the four-layer perceptron shown in Fig. 5.9 computes
exactly the step function sketched in Fig. 5.8.

It should be clear that the approximation accuracy can be increased arbitrarily by
making the stair steps sufficiently small. It may help to recall the introduction of the
notion of an integral in calculus by Riemann upper and lower sums: for any given
error limit ε > 0 there exists a step width δ(ε) > 0, such that the Riemann upper and
lower sum differ by less than ε. Therefore we can state the following theorem:

Theorem 5.1 Any Riemann-integrable function can be approximated with arbitrary
accuracy by a multilayer perceptron.

Note that this theorem only requires that the function to represent is Riemann-
integrable. It need not be continuous. That is, the function to represent may have
“jumps.” However it may have only finitely many “jumps” of finite height in the
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Fig. 5.10 Limits of the
theorem about
approximating a function by
a multilayer perceptron

region in which it is to be approximated by a multilayer perceptron. In other words,
the function must be continuous “almost everywhere.”

Note also that in this theorem, the approximation error is measured by the area
between the function to approximate and the output of the multilayer perceptron.
This area can be made arbitrarily small by increasing the number of neurons (i.e.,
by increasing the number of stair steps). However, this does not guarantee that for a
givenmultilayer perceptron, which achieves a certain approximation accuracy in this
sense, the difference between its output and the function to approximate is less than
a certain error bound everywhere. The function could, for instance, possess a very
thin spike, which is not captured by any stair step (see Fig. 5.10). In such a case the
area between the function to represent and the output of the multilayer perceptron
is small (because the spike is thin and thus encloses only a small area), but at the
location of the spike the deviation of the output from the true function value can
nevertheless be considerable.

Naturally, the idea to approximate a given function by a step function can
directly be transferred to functions with multiple arguments: the input space is
divided—depending on the arity of the function—into rectangles, boxes, or generally
hyperboxes, to each of which a function value is assigned. It should be clear that a
four-layer perceptron can be constructed again that computes the higher dimensional
“step function.” Since we can also increase the approximation accuracy arbitrarily
by making the rectangles, boxes or hyperboxes sufficiently small, the above theorem
is not limited to unary functions, but holds for functions of arbitrary arity.

Even though the above theorem attests multilayer perceptrons a high expressive
power, one has to concede that it is of little use in practice. The reason is clear
that in order to achieve a sufficiently accurate approximation we have to chose step
functions with a very small step width (and thus very many steps). This then forces
us to construct multilayer perceptrons with a possibly huge number of neurons (one
neuron for each step and for each step border).

In order to understand how multilayer perceptrons can approximate functions
much better, we consider the case of a unary function in a little more detail. It is easy
to see that we can save one layer if we do not use the absolute, but the relative height
of a step (that is, the change w.r.t. the preceding step) as the weight of the connection
to the output neuron. This idea is illustrated in Figs. 5.11 and 5.12. Every neuron
of the hidden layer represents a step border and determines whether an input values
lies to the left or to the right of this border. If it lies to the right, the neuron becomes
active (outputs a 1). If it lies to the left, the neuron remains inactive (outputs a 0).
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Fig.5.11 Representing the step function shown in Fig. 5.8 by a weighted sum of (Heaviside) step
functions. It is Δyi = yi − yi−1

Fig. 5.12 A neural network
that computes the step
function shown in Fig. 5.8 as
a weighted sum of
(Heaviside) step functions,
cf. Fig. 5.11 (“id” instead of
a threshold means that this
neuron has the identity
instead of a threshold
function as its activation
function)

The output neuron then receives as an additional network input the relative height of
the stair step (that is, the change compared to the preceding stair step). Since always
all those neurons of the hidden layer are active for which the step border lies to the
left of the current input value, the weights add up to the height of the stair step.3 Note
that the (relative) step heights may as well be negative and therefore the function to
approximate need not be monotonically nondecreasing.

3Note that this approach is not easily transferred to functions with multiple arguments. For this to
be possible, the influences of the two or more inputs have to be independent in a certain sense.
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Fig.5.13 Approximation of a continuous function by a weighted sum of semi-linear functions. It
is Δyi = yi − yi−1

Fig. 5.14 A neural network
that computes the piecewise
linear function shown in
Fig. 5.13 by a weighted sum
of semi-linear functions. It is
Δx = xi+1 − xi and
θi = xi

Δx (“id” means again
that the activation function of
the output neuron is the
identity)

Although we saved a layer of neurons in this way, we still need a fairly large
number of neurons to achieve a good approximation, since we need sufficiently
narrow steps. However, we can improve the accuracy of the approximation not only
by reducing thewidth of the steps, but also by changing the activation functions of the
neurons in the hidden layer. For example, if we replace the step functions by semi-
linear functions, we can approximate the function by a piecewise linear function.
This is illustrated in Fig. 5.13. Needless to say that the step heights Δyi may also be
negative. The corresponding three-layer perceptron is shown in Fig. 5.14.
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It is clear that with this approach and the same “step width” Δx , the error is much
smaller than with step functions. Or the other way round: in order to stay below
a given error limit we need considerably fewer neurons in the hidden layer. The
number of neurons can be reduced even further if the steps are not made equally
wide, but if one employs narrower ones where the function is heavily curved (and
thus a linear approximation is poor) and fewer where it is almost linear. By using
curved activation functions—like the logistic function—the approximation may be
improved further or the same accuracy may be achieved with even fewer neurons.

The principle that we exploited above to eliminate one hidden layer of the mul-
tilayer perceptron may not be directly transferable to functions with multiple argu-
ments, because in two or more dimensions we certainly have to engird, in two steps,
the regions for which the weights of the connections to the output layer state the
function values. However, with stronger mathematical tools and a few and fairly
weak additional assumptions it can be shown that for functions with multiple argu-
ments a single hidden layer suffices as well. To be more specific, it can be shown
that a multilayer perceptron can approximate any continuous function (note that this
is a stronger condition than in Theorem 5.1, which only required that the function is
Riemann-integrable) on a compact part of the Rn with arbitrary accuracy, provided
the activation function of the neurons is not a polynomial (which, however, is implic-
itly excluded in our definition by the limit conditions anyway). This statement holds
even in the stronger sense that the difference between the output of the multilayer
perceptron and the function to approximate is everywhere smaller than a given error
bound ε (while Theorem 5.1 only states that the area between the output and the
actual function can be made arbitrarily small). An overview of results concerning
the approximation powers of multilayer perceptrons and a proof of the mentioned
theorem can be found, for example, in Pinkus (1999).

Note, however, that these results are relevant only in as far as they ensure that
it is not the choice of a structure with only one hidden layer that already rules out
the possibility to approximate certain (continuous) functions sufficiently well. That
is, they ensure that there are no fundamental obstacles. These results do not say
anything, though, about how, for a given network structure and particularly a given
number of hidden neurons, one can find the parameter values with which the best
possible approximation accuracy is achieved.

One should also be careful not to read from thementioned theorem that multilayer
perceptronswithmore than one hidden layer are useless, because they do not increase
the expressive power of multilayer perceptrons (even though it is often cited as
an argument in this direction). With a second hidden layer it may sometimes be
possible to compute the function to represent in a much simpler fashion. Multilayer
perceptrons with two hidden layers may also have advantages when we have to train
them. However, since multilayer perceptrons with more that one hidden layer are
much more difficult to analyze, little is known about such possibilities.
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5.3 Logistic Regression

Having convinced ourselves thatmultilayer perceptronswith general activation func-
tions have considerable expressive and computational powers, we now turn to the
task of determining their parameterswith the help of training examples. InChap.4we
already mentioned that we need an error function for this and that the most common
error function is the sum of the squared errors over the output neurons and the train-
ing patterns. This sum of squared errors is to be minimized by suitable adaptations
of the weights and the parameters of the activation functions. This approach leads to
method of least squares, also known as regression, which is well known in calculus
and statistics, where it is used to determine best fit lines (regression lines) and gen-
erally best fit polynomials for a given set of data points (xi , yi ). The fundamentals
of this methods are recalled in Sect. 10.2.

Although we are not interested in best fit lines or polynomials here, the method
is worth studying. The reason is that computing a best fit polynomial can also
be used to determine other best fit functions, namely if we succeed in finding an
appropriate transformation that reduces the problem to the task of finding a regres-
sion polynomial. For instance, best fit functions of the form

y = axb

canbe foundbydetermining a regression line: ifwe take the logarithmof the equation,
we obtain

ln y = ln a + b · ln x .
This equation can be handled by computing a regression line.Wemerely have to take
the logarithms of the data points (xi , yi ) and work with the transformed values.4

For (artificial) neural networks it is important that for the logistic function

y = Y

1 + ea+bx
,

where Y , a, and b are constants, there also exists a transformation with which the
problem can be reduced to the task of computing a regression line (so-called logis-
tic regression). The logistic function is very frequently employed as an activation
function (see also Sect. 5.4). If we can find a method to determine a logistic regres-
sion function, we immediately possess a method to determine the parameters of a
two-layered perceptron with a single input, since the value of a is the bias value of
the output neuron and the value of b is the weight of the input.

However, how can we “linearize” the logistic function, that is, how can we trans-
form it in such a way that the problem is reduced to the task of finding a regression
line? We start by forming the reciprocal value of the logistic equation

1

y
= 1 + ea+bx

Y
.

4Note, however, that with this approach the sum of squared errors is minimized in the transformed
space (coordinates x ′ = ln x and y′ = ln y), but this does not imply that it is also minimized in the
original space (coordinates x and y). Nevertheless this approach usually yields very good results
or at least an initial solution that may then be improved by other means.

http://dx.doi.org/10.1007/978-1-4471-7296-3_4
http://dx.doi.org/10.1007/978-1-4471-7296-3_10
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Therefore it is
Y − y

y
= ea+bx .

Taking the logarithm of this equation yields

ln

(
Y − y

y

)
= a + bx .

This equation can easily be handled by finding a regression line if we transform the
y-values according to the left-hand side of this equation. (Note that we need to know
the value of Y , which effectively describes a scaling, to compute this transformation.)
This transformation is commonly known as logit transformation. It corresponds to
a kind of inverse of the logistic function. By finding a regression line for the data
points that are transformed accordingly, we (indirectly) obtain a regression curve for
the original data points.5

To illustrate the procedure, we consider a simple example. The table below shows
a data set consisting of five points (x1, y1), . . . , (x5, y5):

x 1 2 3 4 5
y 0.4 1.0 3.0 5.0 5.6

We transform these data points with

z = ln

(
Y − y

y

)
, Y = 6.

The transformed data points are

x 1 2 3 4 5
z 2.64 1.61 0.00 −1.61 −2.64

To set up the system of normal equations, we compute

5∑
i=1

xi = 15,
5∑

i=1

x2i = 55,
5∑

i=1

zi = 0,
5∑

i=1

xi zi ≈ −13.775.

Thus we obtain the (linear) equation system (normal equations)

5a + 15b = 0,
15a + 55b = −13.775,

5Note again that with this procedure the sum of squared errors is minimized in the transformed
space (coordinates x and z = ln

( Y−y
y

)
), but this does not imply that it is also minimized in the

original space (coordinates x and y), cf. the preceding footnote.
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Fig.5.15 Transformed data (left) and original data (right) as well as the computed regression line
(transformed data) and the corresponding regression curve (original data)

which possesses the solution a ≈ 4.133 and b ≈ −1.3775. Hence the regression line
for the transformed data is

z ≈ 4.133 − 1.3775x

and the regression curve for the original data consequently

y ≈ 6

1 + e4.133−1.3775x
.

These two regression functions are shown, together with the (transformed and orig-
inal, respectively) data points, in Fig. 5.15.

The resulting regression curve for the original data can be computed by a neuron
with one input x that has the network input function fnet(x) ≡ wx with w = b ≈
−1.3775, the logistic activation function fact(net, θ) ≡ (1 + e−(net−θ))−1 with the
parameter θ = a ≈ 4.133 and the output function fout(act) ≡ 6act.

Note that with the help of logistic regression we can compute not only the para-
meters of a neuron with a single input, but—in analogy tomulti-linear regression,
see Sect. 10.2—also the parameters of a neuron with multiple inputs. However, since
the sum of squared errors can be determined only for output neurons, this method
is limited to two-layer perceptrons (that is, with only an input and an output layer,
but without any hidden layer). It is not possible to directly transfer it to three- and
multilayer perceptrons. Thus we face essentially the same problem as in Sect. 3.7,
where we could not transfer the delta rule. Therefore we consider in the next section
a different method, which can be extended to multilayer perceptrons.

5.4 Gradient Descent

In the following we consider the method of gradient descent to determine the para-
meters of a multilayer perceptron. In principle, this method relies on the same idea
as the procedure studied in Sect. 3.5: depending on the values of the weights and the
biases, the output of the multilayer perceptron will be more or less correct. If we can

http://dx.doi.org/10.1007/978-1-4471-7296-3_10
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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Fig. 5.16 Intuitive
interpretation of the gradient
of a real-valued function
z = f (x, y) at a
point p = (x0, y0). It is
∇z|(x0,y0) =(

∂z
∂x |(x0,y0), ∂z

∂y |(x0,y0)
)

derive from the error function in which directions we have to change the weights and
the bias values in order to reduce the error, we obtain a possibility to train the para-
meters of the network. We simply make a small step into these directions, determine
the directions of change again, make another small step, and so on—in the same way
as we proceeded in Sect. 3.5 (cf. Fig. 3.16 on p. 26).

However, in Sect. 3.5 we could not derive the change directions directly from the
natural error function (cf. Fig. 3.13 on p. 24), but had to invest additional thought in
order to modify the error function appropriately. However, this was necessary only,
because we used the (Heaviside or unit) step function as the activation function, due
to which the error function consisted of “plateaus” or “terraces.” In the multilayer
perceptrons we are studying here, however, we have other choices for the activation
functions at our disposal (cf. Fig. 5.2 on p. 49). In particular, we may choose a
differentiable activation function, preferably the logistic function. Such a choice
has the following advantage: if the activation function is differentiable, then the error
function is differentiable as well.6 Hence we can determine the directions, in which
theweights and the bias values have to be changed by simply computing the gradient
of the error function.

Intuitively the gradient describes the slope of a function (see Fig. 5.16). Formally,
computing the gradient yields a vector field. That is, the gradient assigns to each
point of the domain of the function a vector, the elements of which are the partial
derivatives of the functionw.r.t. its arguments (also known asdirectionderivatives).
This vector is often simply called the gradient of the function at the given point (see
Fig. 5.16). It points into the direction of the steepest slope of the function at this
point. Forming a gradient (in a point or for a whole function) is commonly denoted
by the differential operator ∇ (pronounced: nabla).

Training a neural network thus becomes very simple: the weights and the bias
values are initialized randomly. Then the gradient of the error function is computed
at the point that is given by these weights and bias values. Since we want to minimize
the error, but the gradient points into the direction of the steepest slope, we make a
small step in the opposite direction. At the new point (new weights and bias values),
we recompute the gradient, etc., until we reach a minimum of the error function.

6Unless the output function is not differentiable. However, we usually assume (implicitly) that the
output function is the identity and thus does not introduce any problems.

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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With these considerations the general procedure should be clear. Therefore we
now turn to a detailed formal derivation of the adaptation rules for the weights and
bias values. In order to avoid unnecessary and clumsy distinctions of special cases,
we denote in the following the set of neurons of the input layer of an r -layered
perceptron with U0, the sets of neurons of the r − 2 hidden layers with U1 to Ur−2,
and the set of neurons of the output layer (sometimes) with Ur−1. We start from the
total error of a multilayer perceptron with output neuronsUout w.r.t. a fixed learning
task Lfixed, which is defined as (cf. Sect. 4.3)

e =
∑

l∈Lfixed

e(l) =
∑

v∈Uout

ev =
∑

l∈Lfixed

∑
v∈Uout

e(l)
v ,

that is, as the sum of the individual errors over all output neurons v and all training
patterns l. Let u be a neuron of the output layer or a hidden layer, that is, u ∈ Uk ,
0 < k < r . Its predecessors are the neurons pred(u) = {p1, . . . , pn} ⊆ Uk−1; the
corresponding (extended) weight vector is wu = (−θu,wup1 , . . . ,wupn ). Note the
additional vector element −θu : as shown in Sect. 3.5, a bias value can be turned into
a weight, so that all parameters can be treated in a uniform manner (see Fig. 3.18 on
p. 27). Here we exploit this possibility to simplify the derivations.

We now compute the gradient of the total error w.r.t. these weights, that is,

∇wu e = ∂e

∂wu
=

(
− ∂e

∂θu
,

∂e

∂wup1
, . . . ,

∂e

∂wupn

)
.

As the total error is the sum of the individual errors over the training patterns, we get

∇wu e = ∂e

∂wu
= ∂

∂wu

∑
l∈Lfixed

e(l) =
∑

l∈Lfixed

∂e(l)

∂wu
.

Hence we can confine ourselves to the error e(l) for a single training pattern l. This
error depends on the weights in wu only via the network input net(l)u = wu in

(l)
u

with the (extended) network input vector in(l)
u = (

1, out(l)p1 , . . . , out
(l)
pn

)
. We apply

the chain rule and obtain

∇wu e
(l) = ∂e(l)

∂wu
= ∂e(l)

∂net(l)u

∂net(l)u

∂wu

.

Since net(l)u = wu in
(l)
u , we get for the second factor immediately

∂net(l)u
∂wu

= in(l)
u .

For the first factor we consider the error e(l) for the training pattern l = (
i (l), o (l)

)
.

This error is

e(l) =
∑

v∈Uout

e(l)
u =

∑
v∈Uout

(
o(l)
v − out(l)v

)2
,

that is, the sum of errors over all output neurons. Therefore we have

∂e(l)

∂net(l)u
=

∂
∑

v∈Uout

(
o(l)
v − out(l)v

)2
∂net(l)u

=
∑

v∈Uout

∂
(
o(l)
v − out(l)v

)2
∂net(l)u

.

http://dx.doi.org/10.1007/978-1-4471-7296-3_4
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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Since the actual output out(l)v of an output neuron v depends on the network input net(l)u
of the considered neuron u, it is

∂e(l)

∂net(l)u
= −2

∑
v∈Uout

(
o(l)
v − out(l)v

) ∂out(l)v

∂net(l)u︸ ︷︷ ︸
δ
(l)
u

.

This also introduces the abbreviation δ
(l)
u for the sum over the output neurons that

occurs here and that plays an important role below.
To determine the sums δ

(l)
u we have to distinguish two cases: if u is an output

neuron, we can simplify the expression for δ
(l)
u considerably, because the output of

all other output neurons are clearly independent of the network input of the neuron u.
Therefore all terms of the sum vanish except the one with v = u. We obtain

∀u ∈ Uout : δ(l)
u =

(
o(l)
u − out(l)u

) ∂out(l)u

∂net(l)u
Therefore the gradient is

∀u ∈ Uout : ∇wu e
(l)
u = ∂e(l)

u

∂wu
= −2

(
o(l)
u − out(l)u

) ∂out(l)u

∂net(l)u
in(l)

u ,

which implies the general weight change

∀u ∈ Uout : Δw(l)
u = −η

2
∇wu e

(l)
u = η

(
o(l)
u − out(l)u

) ∂out(l)u

∂net(l)u
in(l)

u .

The negatives sign disappears, because we have to minimize the error and thus
have to move in the direction opposite to the gradient, since the gradient points
into the direction of the steepest slope of the error function. The constant factor 2
is incorporated into the learning rate η.7 A typical value for the learning rate is
η = 0.2.

Note, however, that this is only theweight change that results froma single training
pattern l, since we neglected the sum over the training patterns at the beginning. In
other words, this is the adaptation rule for online training, in which the weights are
adapted after each training pattern (cf. p. 25f and Algorithm 3.2 on p. 28). For batch
trainingwe have to sum the changes described by the above formula over all training
patterns rather than changing the parameters directly (cf. p. 26f and Algorithm 3.3 on
p. 29f), since the weights are adapted only at the end of a (learning/training) epoch,
that is, after all training patterns have been visited.

In the above formula for the weight changes we cannot determine the derivative
of the output out(l)u w.r.t. the network input net(l)u generally, because the output is

7In order to avoid this factor right from the start, the error of an output neuron is sometimes defined

as e(l)
u = 1

2

(
o(l)
u − out(l)u

)2. In this way the factor 2 simply cancels in the derivation.

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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computed from the network input with the help of the output function fout and the
activation function fact of the neuron u. That is, we have

out(l)u = fout
(
act(l)u

) = fout
(
fact

(
net(l)u

))
,

and there are several choices for these two functions.
To simplify matters, we assume here that the activation function does not take any

extra parameters.8 It may be, for instance, the logistic function, which is the most
common choice. Furthermore we assume for the sake of simplicity that the output
function fout is the identity and thus that we can neglect it. Then we obtain

∂out(l)u

∂net(l)u
= ∂act(l)u

∂net(l)u
= f ′

act

(
net(l)u

)
,

where the prime (′) means taking the derivative w.r.t. the argument net(l)u . For the
logistic activation function in particular, that is, for

fact(x) = 1

1 + e−x
,

the relation

f ′
act(x) = d

dx

(
1 + e−x)−1 = − (

1 + e−x)−2 (−e−x)

= 1 + e−x − 1

(1 + e−x )2
= 1

1 + e−x

(
1 − 1

1 + e−x

)

= fact(x) · (1 − fact(x))

holds and therefore (as we assume that the output function is the identity)

f ′
act

(
net(l)u

) = fact
(
net(l)u

) ·
(
1 − fact

(
net(l)u

)) = out(l)u
(
1 − out(l)u

)
.

We obtain for the weight adaptation

Δw(l)
u = η

(
o(l)
u − out(l)u

)
out(l)u

(
1 − out(l)u

)
in(l)

u ,

which makes the computations particularly simple.

5.5 Error Backpropagation

In the preceding section we considered the term δ
(l)
u only for output neurons u.

That is, the resulting adaptation rule applies only to the weights of the connections
from the last hidden layer to the output layer (or, alternatively, only to two-layer
perceptrons). In this situation we found ourselves already with the delta rule (see
Definition 3.2 on p. 27) and faced the problem that the procedure cannot be extended

8Note that the bias value θu is already contained in the extended weight vector.

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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to networks, because we did not have desired outputs for the hidden neurons. The
gradient descent approach, however, can be extended tomultilayer perceptrons, since
the differentiable activation functions allow us to differentiate the output also w.r.t.
the weights of the connections from the input layer to the first hidden layer or w.r.t.
the weights of the connections between two consecutive hidden layers.

Let u be a neuron of a hidden layer, that is, let u ∈ Uk , 0 < k < r − 1. In this
case the output out(l)v of an output neuron v for a training pattern l depends on the
network input net(l)u of the neuron u only indirectly via the successors of u, that is,
succ(u) = {s ∈ U | (u, s) ∈ C} = {s1, . . . , sm} ⊆ Uk+1, namely via their network
input net(l)s . By applying the chain rule we obtain

δ(l)
u =

∑
v∈Uout

∑
s∈succ(u)

(o(l)
v − out(l)v

)∂out(l)v

∂net(l)s

∂net(l)s

∂net(l)u
.

Since both sums are finite, we can exchange the summations and thus arrive at

δ(l)
u =

∑
s∈succ(u)

⎛
⎝ ∑

v∈Uout

(o(l)
v − out(l)v

)∂out(l)v

∂net(l)s

⎞
⎠ ∂net(l)s

∂net(l)u
=

∑
s∈succ(u)

δ(l)
s

∂net(l)s

∂net(l)u
.

Finally we have to determine the partial derivative of the network input. It is

net(l)s = ws in(l)
s =

( ∑
p∈pred(s)

wspout
(l)
p

)
− θs,

where one element of the vector in(l)
s is the output out(l)u of the neuron u. Obviously,

net(l)s depends on net(l)u only via this element out(l)u . Therefore

∂net(l)s

∂net(l)u
=

⎛
⎝ ∑

p∈pred(s)
wsp

∂out(l)p

∂net(l)u

⎞
⎠ − ∂θs

∂net(l)u
= wsu

∂out(l)u

∂net(l)u
,

since all terms vanish except the one with p = u. As a consequence we have

δ(l)
u =

( ∑
s∈succ(u)

δ(l)
s wsu

)
∂out(l)u

∂net(l)u
.

Thus we arrived at a layer-wise recursion formula for computing the δ-values of the
neurons of the hidden layers.

If we compare this result to the one obtained in the preceding section for the output
neurons, we see that the sum ∑

s∈succ(u)

δ(l)
s wsu

plays the role of the difference o(l)
u − out(l)u of the desired and the actual output of

the neuron u for the training pattern l. Therefore we may see it as an error value for
a neuron in a hidden layer, like o(l)

u − out(l)u is the error value of an output neuron.
As a consequence, the error values of any (hidden) layer of a multilayer perceptron
can be computed from the error values of is successor layer. We may also say that
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an error signal is transmitted from the output layer backwards through the hidden
layers. Therefore this method is also called error backpropagation.

The weight adaptation is

Δw(l)
u = −η

2
∇wu e

(l) = η δ(l)
u in(l)

u = η

⎛
⎝ ∑

s∈succ(u)

δ(l)
s wsu

⎞
⎠ ∂out(l)u

∂net(l)u
in(l)

u .

Note, however, that this is only the change resulting from a single training pattern l.
For batch training these changes have to be summed over all training patterns.

For the rest of the derivation we again make the simplifying assumption, as in the
preceding section, that the output function is the identity. Furthermore we consider
the special case of a logistic activation function. This yields the particularly simple
weight adaptation rule (cf. the derivations for output neurons on p. 65).

Δw(l)
u = η

⎛
⎝ ∑

s∈succ(u)

δ(l)
s wsu

⎞
⎠ out(l)u

(
1 − out(l)u

)
in(l)

u .

Fig. 5.17 Cookbook recipe for executing (forward propagation) and training (error backpropaga-
tion) a multilayer perceptron with logistic activation functions in the hidden and output neurons
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Figure5.17 combines all formulas that we need to execute and to train a multilayer
perceptron, which employs logistic activation functions in the hidden and the output
neurons. Where the formulas are applied is marked by encircled numbers.

5.6 Gradient Descent Examples

To illustrate the gradient descentmethod,we consider training a two-layer perceptron
for the negation, as we used it already in Sect. 3.5. This perceptron and the corre-
sponding training examples are shown in Fig. 5.18. In analogy to Fig. 3.13 on p. 24,
Fig. 5.19 shows the (sum of) squared errors of computing the negation depending
on the values of the weights and the bias value. We assumed a logistic activation
function, as can clearly be seen from the shape of the error function. Note that the
fact that the activation function is now (meaningful) differentiable, the error function
is as well and does no longer consist of “plateaus” or “terraces.” Thus we can now
execute a gradient descent on the (unmodified) error function.

The course of this gradient descent, starting with the initial values θ = 3 and
w = 7

2 and proceeding with learning rate 1 is shown in Table5.1 (online training on
the left, batch training on the right). The two courses are very similar, which is due
to the low number of training examples and the smoothness of the error function.
Figure5.20 shows a graphical representation of the course of the training, with the
left and the middle diagram displaying, for the sake of comparison, the regions we
used in Sect. 3.5 (cf. Fig. 3.15 on p. 25 and Fig. 3.16 on p. 26). The dots indicate the
state of the network every 20 epochs. In the three-dimensional diagram on the right,
it can be seen particularly well how the error is slowly reduced and how finally a
region is reached in which the error almost vanishes.

Fig. 5.18 A two-layer perceptron with a single input and training examples for the negation

Fig. 5.19 (Sum of) squared errors for computing the negation with a logistic activation function

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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Table 5.1 Training processes
with initial values θ = 3,
w = 7

2 and learning rate 1

Epoch θ w Error

Online training

0 3.00 3.50 1.307

20 3.77 2.19 0.986

40 3.71 1.81 0.970

60 3.50 1.53 0.958

80 3.15 1.24 0.937

100 2.57 0.88 0.890

120 1.48 0.25 0.725

140 −0.06 −0.98 0.331

160 −0.80 −2.07 0.149

180 −1.19 −2.74 0.087

200 −1.44 −3.20 0.059

220 −1.62 −3.54 0.044

Batch training

0 3.00 3.50 1.295

20 3.76 2.20 0.985

40 3.70 1.82 0.970

60 3.48 1.53 0.957

80 3.11 1.25 0.934

100 2.49 0.88 0.880

120 1.27 0.22 0.676

140 −0.21 −1.04 0.292

160 −0.86 −2.08 0.140

180 −1.21 −2.74 0.084

200 −1.45 −3.19 0.058

220 −1.63 −3.53 0.044

As a second example we study how one can use gradient descent to find the
minimum of a function, here specifically

f (x) = 5

6
x4 − 7x3 + 115

6
x2 − 18x + 6.

Although this function has no direct relationship to the error function of a multilayer
perceptron, it is well suited to demonstrate certain problems that gradient descent
can run into. We start be finding the derivative of the function, that is,

f ′(x) = 10

3
x3 − 21x2 + 115

3
x − 18,
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Fig. 5.20 Training processes with initial values θ = 3, w = 7
2 and learning rate 1

which corresponds to the gradient (the sign indicates the direction of the steepest
slope). The computations then proceed according to the scheme

xi+1 = xi + Δxi with Δxi = −η f ′(xi ),
where x0 is a chosen initial value and η is the learning rate.

We first consider the course of the gradient descent for an initial value x0 = 0.2
and a learning rate η = 0.001 as it is shown in Fig. 5.21. Starting at an initial point
on the left branch of the function, small steps are carried out toward the minimum.
Clearly, the (global) minimum will finally be reached in this way. However, this
will happen only after a very large number of steps. Obviously the learning rate was
chosen too small, so that the procedure takes too long to complete.

On the other hand, the learning rate should also not be chosen too large, since
this can cause oscillations or even chaotic jumps back and forth on the function to
minimize. As an illustration consider the gradient descent that is shown in Fig. 5.22
for an initial value x0 = 1.5 and a learning rate η = 0.25. The process again and again
jumps over theminimum and after a few steps values are reached that are even farther
away from the minimum than the initial value. If the computations were continued
for a few steps more, we could even observe a jump over the local minimum in the
middle, thus resulting in values on the right branch of the function. In general, with a

Fig. 5.21 Gradient descent with initial value 0.2 and learning rate 0.001
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Fig. 5.22 Gradient descent with initial value 1.5 and learning rate 0.25

Fig. 5.23 Gradient descent with initial value 2.6 and learning rate 0.05

large learning rate the behavior is often entirely erratic and thus cannot be expected
to ever approach a local, let alone the global minimum.

However, even if a suitable value is chosen for the learning rate, we cannot
guarantee that the procedure will be successful. As can be seen in Fig. 5.23, which
shows the course of the gradient descent for an initial value x0 = 2.6 and a learning
rate η = 0.05, the closest minimum is approached quickly. However, this minimum
is only a local one; the global minimum is missed. This problem is caused mainly
by the initial value and thus cannot be solved by changing the learning rate.

For an illustration of the error backpropagation we recommend trying the visu-
alization programs wmlp (for Microsoft Windowstm) and xmlp (for Unix/Linux),
that are available on the web page

http://www.borgelt.net/mlpd.html

With these programs a three-layer perceptron can be trained in such a way that the
biimplication, the exclusive or, or (an approximation of) one of two different real-
valued functions are computed. After each training step, the computations of the
neural network are visualized by drawing the current position of the separating lines
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or the current output of the neurons over their input space. Although this does not
allow to follow directly the descent on the error function (which is impossible in
principle due to the large number of parameters), one gets a good impression of what
happens in the course of training. An extensive explanation of these programs can
be found on the web page named above.

5.7 Variants of Gradient Descent

One of the problems mentioned above, namely “getting stuck” in a local minimum,
cannot be avoided in principle. It can only be mitigated by training the network
multiple times, each time with different initial values, and choosing the best result.
This increases the chances that the globalminimum(or at least a good localminimum)
is found. However, there is no guarantee that the global minimumwill be discovered.

To cope with the other two problems, which concern the learning rate and thus the
size of the steps in the parameter space, however, several variants of gradient descent
have been developed. Some of thesewe discuss in the following.We describe themby
stating the rules according to which a weight has to be changed based on the gradient
of the error function. Since some of these methods draw on gradients or parameter
values from preceding training steps, we introduce a parameter t that denotes this
training step. For example,∇we(t) denotes the gradient of the error function at time t
w.r.t. the weightw. As a comparison, the weight adaptation rule for standard gradient
descent is written as

w(t + 1) = w(t) + Δw(t) with Δw(t) = −η

2
∇we(t)

(cf. the derivations on pp. 64 and 67). We do not distinguish explicitly between batch
and online training, since the difference only consists in whether the total error e(t)
or the single pattern error e(l)(t) is used.

5.7.1 Manhattan Training

In the preceding section we saw that training can take very long if the learning rate
is too small. However, even if the learning rate is chosen well, training can be slow,
namely if it takes place in a region of the parameter space in which the error function
is “flat”, that is, in which the gradient is fairly small. In order to eliminate this
dependence on the magnitude of the gradient, one may employ so-called Manhattan
training, which considers only the sign of the gradient. Thus the weight adaptation
rule becomes

Δw(t) = −η sgn(∇we(t)).

Note that this adaptation rule is also obtained if one uses the sum of the absolute
deviations of the actual from the desired output as the error function and completes
the derivative at 0 (at which it does not exist/is discontinuous) in a suitable fashion.



5.7 Variants of Gradient Descent 73

The advantage of this approach is that training proceeds with constant speed
(in the sense of a fixed step width), irrespective of the shape of the error function.
A disadvantage is, though, that the weights can only assume certain discrete values
(taken from a grid with the grid width η), which can make it impossible in principle
to get arbitrarily close to the minimum of the error function. In addition, the problem
of how to chose the learning rate appropriately still prevails.

5.7.2 Lifting the Derivative of the Activation Function

Often the error function is fairly flat in some region of the parameter space, because
the activation functions are in their saturation region (that is, are evaluated far away
from the bias value θ , cf. Fig. 5.2 on p. 49), where the gradient is very small or even
vanishes completely. In order to speed up training in such a case, the derivative f ′

act of
the activation function may be lifted artificially by a fixed value α, so that sufficiently
large training steps are carried out even in these saturation regions (Fahlman 1988).
Choosing α = 0.1 often leads to good results. This modification of gradient descent
is also known as flat spot elimination.

Lifting the derivative of the activation function has the additional advantage that it
counteracts a weakening of the error signal in the error backpropagation procedure.
Such a weakening is due to the fact that, for example, the derivative of the logistic
function is bounded by 0.25 (which results for the function value 0.5, that is, for
the location of the bias value). As a consequence the error value has a tendency to
become smaller and smaller with every layer through which it is propagated, so that
training is slower in the front layers of the network.

5.7.3 MomentumTerm

The momentum term procedure (Rumelhart et al. 1986) adds a fraction of the pre-
ceding weight change to a normal gradient descent step. With this additional term
the weight adaptation rule reads

Δw(t) = −η

2
∇we(t) + β Δw(t − 1),

whereβ is a parameter that has to be less than 1 in order to render the procedure stable.
Typically β is chosen between 0.5 and 0.95. Larger values can lead to increasingly
larger weight changes and thus unstable behavior.

The additional term β Δw(t − 1) is called momentum term, since its effect is
similar to the momentum that is gained by a ball rolling down a slope. The longer the
ball rolls into the same direction, the faster it gets. Therefore it tends to continue to
roll in the old direction (momentum term), but nevertheless follows (though delayed)
the shape of the surface (gradient term).

By introducing a momentum term the training can be accelerated in regions of the
parameter space in which the error function is fairly flat, but has a uniform slope in
one direction. In addition, the problem of how to choose the learning rate is mitigated
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somewhat, since themomentum term increases or reduces the stepwidth according to
the shape of the error function. However, a momentum term cannot fully compensate
a learning rate that was chosen much too small, since the step width |Δw| in case
of a constant gradient ∇we is bounded by s = ∣∣ η∇we

2(1−β)

∣∣. Furthermore, a learning rate
that is too large can still lead to oscillations and chaotic jumps.

5.7.4 Self-Adaptive Error Backpropagation

The method of super self-adaptive error backpropagation (SuperSAB) (Jakobs 1988,
Tollenaere 1990) introduces a separate learning rate ηw for each parameter of a neural
network, that is, for each weight and each bias value. In addition, these learning rates
are not constant, but are adapted, prior to their use in a training step, depending on
the current and the previous gradient according to the following rule:

ηw(t) =

⎧⎪⎪⎨
⎪⎪⎩

c− · ηw(t − 1) if ∇we(t) · ∇we(t − 1) < 0,
c+ · ηw(t − 1) if ∇we(t) · ∇we(t − 1) > 0

∧ ∇we(t − 1) · ∇we(t − 2) ≥ 0,
ηw(t − 1) otherwise

c− is a shrinkage factor (0 < c− < 1), with which the learning rate is decreased if
the current and the previous gradient have opposite signs. The intuitive reason is that
in such a case the training step must have leaped over the minimum (as the gradient
now indicates the opposite direction to reach it), and thus smaller steps are necessary
to actually approach it. Typically c− is chosen between 0.5 and 0.7.

c+ is a growth factor (c+ > 1), with which the learning rate is increased if the
current and the previous gradient have the same sign. In this case, two training steps
were made in the same direction and thus it is plausible to assume that a longer
slope of the error function is currently traversed. Hence the learning rate should be
increased in order to traverse it more quickly. (This is similar in spirit to the idea of
the momentum term, see above.) Typically c+ is chosen between 1.05 and 1.2, so
that the learning rate grows only slowly.

The second condition for applying the growth factor c+ is meant to prevent that
the learning rate is increased again immediately after it has been reduced. This is
usually implemented in such a way that the old gradient is set to zero after the
learning rate has been reduced, in order to signal the executed reduction. Although
this also suppresses a repeated reduction, this procedure eliminates the need to store
the gradient ∇we(t − 2) or to create a corresponding marker.

In order to avoid large jumps as well as slow training, it is common to bound the
learning rate from above and from below. Furthermore, (super) self-adaptive error
backpropagation should only be applied with batch training, since online training is
often unstable with it.
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5.7.5 Resilient Error Backpropagation

Resilient backpropagation (Rprop) can be seen as combining the ideas of Manhattan
training and self-adaptive error backpropagation (Riedmiller and Braun 1992, 1993).
It introduces a step width Δw for each parameter of the neural network, that is, for
each weight and each bias value, which is adapted according to the following rule,
depending on the current and the previous gradient:

Δw(t) =

⎧⎪⎪⎨
⎪⎪⎩

c− · Δw(t − 1) if ∇we(t) · ∇we(t − 1) < 0,
c+ · Δw(t − 1) if ∇we(t) · ∇we(t − 1) > 0

∧ ∇we(t − 1) · ∇we(t − 2) ≥ 0,
Δw(t − 1) otherwise.

Like for self-adaptive error backpropagation c− is a shrinkage factor (0 < c− < 1)
and c+ a growth factor (c+ > 1), with which the step width is reduced or increased,
respectively. Applying these factors is justified in essentially the sameway as for self-
adaptive error backpropagation. The ranges of typical values for these parameters
coincide as well, namely c− ∈ [0.5, 0.7] and c+ ∈ [1.05, 1.2].

Like the value of the learning rate in self-adaptive error backpropagation, the
value of the step width is bounded from above and from below in order to avoid large
jumps as well as slow training. Furthermore, resilient error backpropagation should
only be applied with batch training, since online training is even less stable as for
self-adaptive error backpropagation.

Resilient error backpropagation has proven to be significantly better and faster
than other methods (momentum term, self-adaptive error backpropagation, but also
the quick-propagation method discussed below) in many applications. It belongs to
the most highly recommended training methods for multilayer perceptrons.

5.7.6 Quick-Propagation

The quick-propagation method (Fahlman 1988) approximates the error function at
the location of the current weights by a parabola (see Fig. 5.24) and computes from
the current and the previous gradient the location of the apex of this parabola. Training
then “jumps” directly to this apex, that is, the weight is set to the computed location
of the apex. If the error function is “benevolent”, training may thus get very close to
the actual minimum in a single training step.

The weight adaptation rule can be obtained, for example, from two slope triangles
of the derivative of the parabola (see the gray triangles in Fig. 5.25). We have

∇we(t − 1) − ∇we(t)

w(t − 1) − w(t)
= ∇we(t)

w(t) − w(t + 1)
.

By solving for Δw(t) = w(t + 1) − w(t) and exploiting Δw(t − 1) = w(t) −
w(t − 1) we arrive at

Δw(t) = ∇we(t)

∇we(t − 1) − ∇we(t)
· Δw(t − 1).
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Fig. 5.24 Quick-
propagation relies on a local
approximation of the error
function by a parabola. m is
the true minimum

Fig. 5.25 The weight
adaptation formula can be
computed from the slope
triangles of the derivative of
the approximation parabola

Note, however, that the above equation does not distinguish between a parabola that
opens upwards and one that opens downwards, so that it may happen that a (local)
maximum of the error function is approached. Although this may be avoided by a
test whether ∇we(t − 1) − ∇we(t)

Δw(t − 1)
< 0

(this indicates a parabola that opens upwards), implementations often skip this test.
Instead a parameter is introduced that limits the increase of theweight change relative
to the preceding step. That is, it is made sure that

|Δw(t)| ≤ c · |Δw(t − 1)|
holds, where c is a parameter typically chosen between 1.75 and 2.25. This improves
the behavior, but does not ensure that the weight is adapted in the correct direction.

Furthermore, implementations often add a standard gradient step to the weight
adaptation rule stated above, provided the gradients ∇we(t) and ∇we(t − 1) have the
same sign, that is, provided the minimum does not lie between the current and the
preceding weight value. In addition, it is advisable to bound the weight change from
above in order to avoid large jumps and unstable behavior.

If the assumptions of the quick-propagation method hold, namely that the error
function can be locally approximated by a parabola that opens upwards and that
the parameters are largely independent, and if batch training is employed, quick-
propagation is one of the fastest training algorithms for multilayer perceptrons, thus
justifying its name. Otherwise it exhibits a tendency toward unstable behavior.
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5.7.7 Weight Decay

It is generally unfavorable if training leads to very large values for the connection
weights of a neural network. The reasons are, in the first place, that with largeweights
one easily reaches the saturation region of a logistic activation function, in which
the gradients almost vanishing and thus can make training very slow or can even
bring it to a halt. Second, large weights increase the risk of overfitting the network
to accidental properties of the training data, so that the performance of the network
on new data falls short of what can be achieved otherwise.

The weight decay method (Werbos 1974) serves the purpose to avoid a heavy
growth of the weights. To prevent an excessive growth, each weight is reduced in
each step by a small factor, for example, with

Δw(t) = −η

2
∇w(t) − ξw(t)

for standard gradient descent. Alternatively, each weight may be multiplied before
its adaptation by the factor (1 − ξ), which is often easier to implement. The value
of ξ should be chosen very small, so that the weights are not kept permanently at
low values. Typical values for ξ are in the range between 0.005 to 0.03.

Note that wemay obtain the weight decay rule by using an extended error function
that penalizes large weights

e∗ = e + ξ

2

∑
u∈Uout∪Uhidden

(
θ2u +

∑
p∈pred(u)

w2
up

)
.

The derivative of this modified error leads to the weight adaption stated above.

5.8 Examples for SomeVariants

To illustrate gradient descent with a momentum term we consider, in analogy to
Sect. 5.6, training a two-layer perceptron for the negation, again starting from the
initial values θ = 3 and w = 7

2 . The courses of training without a momentum term
and with such a term with the factor β = 0.9 are shown in Table5.2 and in Fig. 5.26.
Clearly, the training process advances in almost the same way, only that with a
momentum term merely about half the number of epochs are needed in order to
obtain the same error value. That is, the momentum term about doubled the training
speed. If bigger networks are trained with a larger number of training patterns, the
difference in training speed can be even much larger.

As another example we reconsider the minimization of the function studied in
Sect. 5.6 (see p. 68f). With the help of a momentum term the very slow descent of
Fig. 5.21 can be accelerated considerably, as shown in Fig. 5.27. However, the very
small learning rate cannot be compensated completely. The reason is, as already
mentioned in the preceding section, that even for a constant gradient f ′(x) the step
width is bounded by s = ∣∣ η f ′(x)

1−β

∣∣, as already mentioned.
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Table 5.2 Training with and
without a momentum term
(β = 0.9)

Epoch θ w Error

Without momentum term

0 3.00 3.50 1.295

20 3.76 2.20 0.985

40 3.70 1.82 0.970

60 3.48 1.53 0.957

80 3.11 1.25 0.934

100 2.49 0.88 0.880

120 1.27 0.22 0.676

140 −0.21 −1.04 0.292

160 −0.86 −2.08 0.140

180 −1.21 −2.74 0.084

200 −1.45 −3.19 0.058

220 −1.63 −3.53 0.044

With momentum term

0 3.00 3.50 1.295

10 3.80 2.19 0.984

20 3.75 1.84 0.971

30 3.56 1.58 0.960

40 3.26 1.33 0.943

50 2.79 1.04 0.910

60 1.99 0.60 0.814

70 0.54 −0.25 0.497

80 −0.53 −1.51 0.211

90 −1.02 −2.36 0.113

100 −1.31 −2.92 0.073

110 −1.52 −3.31 0.053

120 −1.67 −3.61 0.041

By using an adaptive learning rate even the chaotic back and forth jumps can be
avoided, which we observed in Fig. 5.22 on p. 71. This is demonstrated by Fig. 5.28,
which shows the training procedure for the even larger learning rate η = 0.3 (com-
pared to η = 0.25 in Fig. 5.22). Although the initial value is too large, it is quickly
corrected by the shrinkage factor, so that the minimum of the function is reached in
astonishingly few steps.

To illustrate error backpropagation with a momentum term we refer again to
the programs wmlp and xmlp, which we already mentioned on p. 71. They allow
to introduce a momentum term, which accelerates the training considerably. It is
instructive to observe howmuch faster a solution for the biimplication or the exclusive
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Fig. 5.26 Training with and without a momentum term (β = 0.9); the points show the values of
the weight w and the bias value θ every 20 or 10 epochs, respectively

Fig. 5.27 Gradient descent with a momentum term (β = 0.9) starting from the initial value 0.2
and with a learning rate 0.001

or is found and how much more swiftly the network output approximates the given
training examples for the two function fitting tasks.

Finally, we remark that with the command line programs that can be found at

http://www.borgelt.net/mlp.html

arbitrary multilayer perceptrons can be trained and then executed on new data. They
contain all of the variants of gradient descent that we discussed here.

5.9 Number of Hidden Neurons

When training multilayer perceptrons in practice, we naturally face the question,
how many hidden neurons (often in only a single layer) it should have. A common
rule of thumb is that (number of inputs + number of outputs)/2 should be chosen in
case of a single hidden layer, but clearly this can only be a rough guideline.
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Fig.5.28 Gradient descentwith adaptive learning rate (with η0 = 0.3, c+ = 1.2, c− = 0.5) starting
from the initial value 1.5

A better way to determine an appropriate number of hidden neurons is the fol-
lowing procedure, even though it can be computationally fairly costly (depending on
the size of the data set): The data set is split into two (roughly) equal size subsets.
Multilayer perceptrons with different numbers of hidden neurons are trained on one
part of the data (the training data) and evaluated on the other part (the validation
data). That is, the error is computed on the second part of the data, which was not
used for training the network. This process is repeated with multiple random splits
of the data, and the results are averaged per number of hidden neurons. The number
of hidden neurons that yields (on average) the best result on the validation data (not
on the training data!) is chosen. With this number of hidden neurons a multilayer
perceptron is trained using the full data set (training and validation data together).

This procedure exploits the following principle: if the number of neurons in the
hidden layer is too small, the multilayer perceptron may not be able to capture the
structure of the relationship between inputs and outputs precisely enough due to a
lack of parameters (see the discussion in Sect. 5.2). Therefore the error will stay
larger than necessary. This is usually called underfitting.

Themore neurons are present in its hidden layer, the better amultilayer perceptron
can capture the dependence between the outputs and the inputs. However, this does
not mean that one should use as many neurons as the computing power and memory
equipment of the employed computer system permit, in order to obtain the highest
expressive power and thus adaptability. In practice, data are always affected by noise,
that is, it contains random errors and deviations from the true values, which may
pertain to the inputs as well as the outputs. Furthermore, the given data are always
merely a finite sample and thus may depict the dependence between outputs and
inputs only in a distorted fashion, even if they were collected with a lot of care.
Unfortunately, with a larger number of hidden neurons a multilayer perceptron may
adapt not only to the regular dependence between outputs and inputswe try to capture,
but also to the accidental specifics (and thus also the errors and deviations) of the
training data set. This is usually called overfitting.
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Overfittingwill usually lead to the effect that the error amultilayer perceptronwith
many hidden neurons yields on the validation data will be (possibly considerably)
greater than the error it yields on the training data. The reason is that the validation
data set is likely distorted in a different fashion, since the errors and deviations are
random. Therefore minimizing the error on the validation data by properly choosing
the number of hidden neurons prevents both under- and overfitting.

The described method of iteratively splitting the data into training and validation
data may be referred to as cross validation, although this term is more often used
for the following specific procedure: the given data set is split into n parts or subsets
(also called folds) of about equal size (so-called n-fold cross validation). If the output
is nominal (also sometimes called symbolic), this split is done in such a way that the
relative frequency of the different values of the output attribute in the subsets/folds
represent as well as possible the relative frequencies of these values in the data set
as a whole. This is also called stratification (derived from the Latin stratum: layer,
level, tier), since it can be achieved by splitting each stratum (that is, each set of
cases with the same value of the output attribute) separately.

Out of these n data subsets (or folds) n pairs of training and test data set are
formed by using one fold as a validation data set while the remaining n − 1 folds are
combined into a training data set. The advantage of this method is that one random
split of the data yields n different pairs of training and validation data set. An obvious
disadvantage is that (except for n = 2) the size of the training and the test data set are
considerably different, which makes the results on the validation data statistically
less reliable. It is therefore only recommended for sufficiently large data sets or
sufficiently small n, so that the validation data sets are of sufficient size.

An alternativeway to prevent overfitting consists in the following approach: during
training the performance of the multilayer perceptron is evaluated after each epoch
(or every few epochs) on a validation data set. While the error on the training data set
should always decrease with each epoch, the error on the validation data set should,
after decreasing initially as well, increase again as soon as overfitting sets in. At this
moment training is terminated and either the current state or (if available) the state
of the multilayer perceptron, for which the error on the validation data reached a
minimum, is reported as the training result. Furthermore there are approaches which
derive a stopping criterion for the training from the shape of the error curve on the
training data over the training epochs, or which train the network only for a fixed,
relatively small number of epochs (also known as early stopping).

All of these approaches share the advantage that they need to train only one
network (with a specific number of hidden neurons), while the method of cross vali-
dation that we described before needs a large number of training runs with different
networks and thus is computationally much more costly, especially for larger data
sets. Nevertheless it is preferable to these simpler methods due to essentially one
reason: while the simpler methods try to avoid overfitting by stopping the training
of a complex network early enough, so that the training could not yet exploit the full
expressive power of the network to adapt to the given data, cross validation actually
tries to adjust the complexity of the network to the “correct” level. That is, it is tried
to find the actually most appropriate model for the data.
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5.10 Deep Learning

In Sect. 5.2 we saw that, in principle, multilayer perceptrons with only one hidden
layer (and thus, together with the output layer, only two layers that execute computa-
tions) can approximate basically any continuous function on a compact part of theRn

with arbitrary accuracy (see p. 58). This theorem is often cited as (allegedly) mean-
ing that we can confine ourselves to multilayer perceptrons with only one hidden
layer, that there is no real need to look at multilayer perceptrons with more hidden
layers. However, such a conclusion would be a bit too rash and would overextend
considerably on what can actually be inferred. The main reason is that the theorem
says nothing about the number of hidden neurons that may be needed to achieve a
desired approximation accuracy. Depending on the function to approximate, a very
large number of neurons (e.g., exponential in the number of inputs) may be nec-
essary, while allowing for more hidden layers may enable us to achieve the same
approximation quality with a significantly lower number of neurons.

A very simple and commonly used example of such a function is the n-bit (even)
parity function, which maps n binary inputs to a single binary output. The output
is 1 if and only if an even number of inputs are 1 and all other inputs are 0. How-
ever, if an odd number of inputs are 1, the output is 0. This function can easily be
represented by a multilayer perceptron with only one hidden layer if we employ
Algorithm 3.1 as stated on p. 22, adapted to multilayer perceptrons. However, this
algorithm leads to 2n−1 hidden neurons, because the disjunctive normal form of the
n-bit parity function is a disjunction of 2n−1 conjunctions, which represent the 2n−1

input combinations with an even number of set bits. That is, the number of hidden
neurons grows exponentially with the number of inputs.

However, if we are allowed to use more than one hidden layer, we can construct a
multilayer perceptron that chains together n − 1 simple networks for computing the
biimplication (like the one shown in Fig. 3.10 on p. 21) and the exclusive or (which
is analogous to the biimplication network of Fig. 3.10, but with the threshold value
and the weights of the output neuron negated). The first of these networks combines
two inputs with a biimplication network. Each of the remaining n − 2 networks,
which compute the exclusive or of their inputs, combines the output of the preceding
network with another input. Since each of the networks (regardless of biimplication
or exclusive or) requires three neurons (see Fig. 3.10), the final network consists of
n + 3(n − 1) = 4n − 3 neurons (n input neurons, 3(n − 1) − 1 hidden neurons, and
1 output neuron). That is, the size of the network grows only linearly with the number
of inputs, although at the price of having 2n − 1 layers (including input and output
layer). By using a (binary) tree structure of biimplication and exclusive or networks
(using a biimplication network to combine two inputs or the outputs of two networks,
and an exclusive or network to combine an input and a network output), the number
of layers can be reduced to O(log n)while the number of needed neurons stays linear
in the number of inputs.

It is worth noting that the situation we face with the number of hidden neurons
needed to represent n-ary Boolean functions is actually fairly similar to the situation
w.r.t. linearly separable n-ary Boolean functions as we discussed it in Sect. 3.3 on

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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p. 19f. Just like most Boolean functions of n inputs are not linearly separable, only
a small fraction of all n-ary Boolean functions can be represented with few hidden
neurons by a multilayer perceptron with only one hidden layer.

To demonstrate this more concretely, suppose that for an arbitrary n-ary Boolean
function, there are k0 input combinations with an output of 0 and k1 input combina-
tions with an output of 1. Clearly, k0 + k1 = 2n . We can guarantee generally that we
need at most 2min(k0,k1) hidden neurons if we choose between a disjunctive normal
form as it is used in Algorithm 3.1 and a conjunctive normal form (for which an
analogous algorithm can easily be constructed) based on whether k1 ≤ k0 (prefer
disjunctive normal form) or k1 > k0 (prefer conjunctive normal form). However,
since there are

(2n
k0

)
possible functions with k0 input combinations mapped to 0 and

k1 mapped to 1, we see that a very large part of all possible functions require a
substantial number of hidden neurons. Although the number of needed neurons may
be reduced with minimization methods like the Quine–McCluskey algorithm (Quine
1952, 1955; McCluskey 1956), the fundamental problem remains. (Note also that
for the n-bit parity function the number of neurons cannot be reduced).

It should be noted, though, that in practice the problem is mitigated considerably
by the simple fact that training data sets are limited in size. For example, while a com-
plete training data set for an n-ary Boolean function requires 2n training examples
(one for each input configuration), practical problems that require learning func-
tions with n inputs usually contain much fewer sample cases. This leads to many
input configurations for which the given data do not prescribe a desired output. As a
consequence, the training has the freedom to assign outputs to these input combina-
tions, which allows for a simpler representation (similar to how so-called don’t care
symbols—that is, non-fixed outputs—are exploited in the above-mentioned Quine–
McCluskey algorithm), that is, a simpler network with (much) fewer neurons.

Nevertheless, using more than one hidden layer promises in many cases, espe-
cially for complex functional dependences and large data sets (like, for example, in
handwriting recognition), to reduce the number of needed neurons. This is the focus
of the area of deep learning, where the “depth” of a neural network means the length
of the longest path in the graph underlying the network (and thus the largest num-
ber of consecutive computation steps that are executed). Specifically for multilayer
perceptrons, where this longest path is the number of hidden layers plus one (for
the output layer), deep learning starts with more than one hidden layer. Once the
number of hidden layers reaches 10, one sometimes speaks of very deep learning.
A general overview of deep learning (which is not restricted to neural networks like
this section) can be found e.g., in Bengio et al. (2013, 2015).

The twomain problems of deep learning multilayer perceptrons are (1) overfitting
and (2) vanishing gradient. The overfitting problem results mainly from the increased
number of adaptable parameters in the additional hidden layers. It can be tackled, for
example, with weight decay (as discussed in Sect. 5.7.7), which prevents overly large
weights and thus an overly precise adaptation to (accidental) properties of the data.
Furthermore, sparsity constraints can be introduced, either in the form of a restricted
number of neurons in the hidden layers or by requiring that only few of the neurons
in the hidden layers should be active (on average). The latter is usually achieved

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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by adding a regularization term to the error function, which compares the observed
number of activated neurons with the desired low number and pushes the adaptations
into a direction that tries to match these numbers. Finally, a training method that has
become to be known as dropout training can be applied (Srivastava et al. 2014).
With this method some units are randomly omitted from the hidden layers during
training (for both forward and backward propagation), which has been shown to be
a simple and effective way to prevent overfitting.

The vanishing gradient problem may, in principle, affect any gradient descent
procedure that is applied to chained functions and thus has to rely on the chain
rule. In neural network training particularly it was discovered when trials of training
multilayer perceptrons with several hidden layers led to a performance that fell short
of expectations. The core reason was formally exposed in Hochreiter (1991) (see
also Hochreiter et al. 2001): the farther away a hidden layer is from the output
layer, the more slowly it is trained with the standard backpropagation procedure (cf.
Sect. 5.5) in the sense that the changes that are applied to the connection weights and
the threshold values are usually (much) smaller than those that occur for the output
layer or hidden layers that are (very) close to it. This is caused by the fact that the
commonly employed logistic activation function

fact(x) = 1

1 + e−x
has the derivative f ′

act(x) = fact(x) · (1 − fact(x)),

which is at most 1
4 , namely for x = 0. As a consequence each backpropagation

step to a preceding layer (cf. Sect. 5.5) adds a factor, the absolute value of which is
usually (considerably) smaller than 1, thus reducing the gradient from layer to layer
(hence the term vanishing gradient). Although, in principle, the small gradient of
the logistic function may be counteracted by a weight (which is also a factor in the
backpropagation formula) with a large absolute value, it is usually the case that such
a large weight, since it also enters the activation function as an argument, drives the
derivative to the saturation regions of the logistic function (that is, far to the left
or far to the right). Thus, (the absolute value of) the derivative factor is usually the
smaller the larger (the absolute value of) the weights. Furthermore, the connection
weights are commonly initialized to a random value in the range from −1 to 1, so
that the initial training steps are particularly affected, as in them both the gradient of
the logistic function as well as the weights provide a factor less than 1. Even though
theoretically there can be exceptions to this intuitive and general description, they
rarely occur in practice and thus one usually observes a vanishing gradient.

An alternativeway to understand the vanishing gradient effect is to observe that the
logistic activation function is a contracting function. That is, for any two arguments x
and y, x �= y, we have | fact(x) − fact(y)| < |x − y|, or in words: two arguments
are always farther apart than their images under the logistic function—the logistic
function contracts its argument range. This is immediately obvious from the fact that
the derivative of the logistic function is always less than 1 (actually always ≤ 1

4 ). If
several logistic functions are chained, these contractions (even though, in principle,
they may be counteracted by sufficiently large weights) combine and yield an even
stronger contraction of the input range. As a consequence, a rather large change of
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the input values will produce only a rather small change in the output values, and
the more so, the more logistic functions are chained together. Therefore the function
that maps the inputs of a multilayer perceptron to its outputs usually becomes the
flatter the more layers the multilayer perceptron has and consequently the gradient
(in the first hidden layer were the inputs are processed) becomes the smaller.

There are various approaches that try to overcome the vanishing gradient problem,
which will be discussed below. However, one also has to admit that advances in
hardware, especially implementations of multilayer perceptrons and their training
with backpropagation that runongraphics processingunits (GPUs,whose specialized
processors are well suited for such computations) have alleviated the problem (see,
e.g., Jang et al. 2008). By using such special hardware, the computations needed for
executing and training a multilayer perceptron can be accelerated by considerable
factors, so that the slow training of the front layers poses much less of a problem, as
one can afford a much larger number of training epochs.

Better approaches (which, of course, may exploit the accelerated hardware as
well) consist in actually tackling the vanishing gradient problem itself. One of these
approaches we already mentioned in Sect. 5.7.2, namely lifting the derivative of
the activation function. Alternatively, one may use different activation functions
altogether, which do not suffer from the vanishing gradient or contraction problem
(so much). In this sense the hyperbolic tangent (see Fig. 5.3 on p. 49), which is
effectively a scaled form of the logistic function, already fares a little better, because
its gradient can be as large as 1 (although only at one point, namely for x = 0).

In order to address the problem in a more principled manner, so-called rectified
linear units (ReLUs) have been suggested. They differ from standard processing
units of multilayer perceptrons only in their activation function, which is either
a rectified maximum or ramp function (see Fig. 5.29 on the left) or its smooth
approximation by the so-called softplus function (see Fig. 5.29 on the right). The
advantage of these functions is that their derivative is much larger for a much larger
range of values. The softplus function in particular possesses the logistic function
as its derivative, showing that for half of its argument values (i.e., for x ≥ 0) the
derivative is at least 1

2 , with most of these argument values producing a derivative
close to 1. This certainlymitigates the vanishing gradient problem, but can sometimes

Fig. 5.29 Activation function of rectified linear units (Note the different scales of the diagrams!)
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Fig. 5.30 An autoencoder/decoder (left), of which only the encoder part (right) is later used. The
xi are the given inputs, the x ′

i the reconstructed inputs, and the yi the constructed features

cause the opposite, that is, an exploding gradient. This, in turn, may be battled by
weight decay, since factors greater than one in the backpropagation procedure (which
cause the gradient to explode) stem from weights that have grown too large.

A completely different approach consists in building the multilayer perceptron
layer by layer, training only the newly added layer in each step. A very popular
specific procedure for this is to build the network as stacked autoencoders.

An autoencoder is a multilayer perceptron that maps its inputs to an approxi-
mation of these inputs, using a hidden layer (see Fig. 5.30). The hidden layer (and
the connections leading to it from the input layer) forms an encoder that transforms
the inputs into some form of internal representation, which is then decoded by the
output layer (and the connections from the hidden layer to the output layer). Such an
autoencoder is trained with standard backpropagation (or one of its variants), which
does no suffer much from a vanishing gradient, as there is only one hidden layer.

The rationale of training an autoencoder is that the hidden layer is expected to
construct features (and detectors for these features) that capture the information
contained in the input data in a compressed form (encoder), so that the input can
be well reconstructed from it (decoder). Of course, if the learning task is fixed (see
Definition 4.4 on p. 44) this implicitly assumes that features that are well suited to
represent the inputs in a compressed way are also useful to predict some desired
output later. Experience shows that this assumption is often justified, since features
constructed by autoencoders often lead to good results on fixed learning tasks.

The main problem of training an autoencoder is howmany units should be chosen
for the hidden layer and how this layer should be treated. Clearly, if we allow as
many (or even more) hidden units as there are inputs, the network may not learn
any useful features. Rather it is likely that it will merely pass through its inputs
to the output layer (only minimally distorted by the fact that the logistic func-
tion is not perfectly linear anywhere; if it were, the input could always be mapped
perfectly with appropriate weights and threshold values and an appropriate output
scaling).

http://dx.doi.org/10.1007/978-1-4471-7296-3_4
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There are mainly three ways in which this problem is commonly handled: The
most straightforward solution is to use (considerably) less neurons in the hidden
layer than there are inputs, so that simply passing through the input values is not a
feasible option and the autoencoder is forced to learn some actually relevant features.
Of course, this leads to the question how many hidden neurons are a good choice.
Although in Sect. 5.9 we discussed cross validation as a possibility to find a good
number of hidden layers, one has to be careful here due to the fact that the number
of hidden neurons that equals the number of inputs (or is very close to it) is likely
to produce the best results in terms of a minimum error (minimum deviation of the
computed outputs from the inputs), but not necessarily the best features.

A second commonly used approach is a sparse activation scheme as we already
mentioned it above as a means to avoid overfitting. The number of active neurons in
the hidden layer (i.e., neurons with a high activation) is restricted to a small number,
which is enforced by either adding a regularization term to the error function that
punishes a larger number of active hidden neurons or by explicitly deactivating all
but a few neurons with the highest activations (i.e., for all other neurons the output
is set to zero). As this also prevents the autoencoder from simply passing through its
inputs to its outputs, useful features are likely constructed in the hidden layer.

A third approach is to add noise (that is, random variations) to the input (but not
to the copy of the input that is used to evaluate the reconstruction error, that is, the
error between the input and the computed output). This leads to so-called denoising
autoencoders (Vincent et al. 2010), because the autoencoder to be trained is expected
to map the input with noise to (a copy of) the input without noise. Sufficient noise
also prevents an autoencoder from simply passing through its inputs to its outputs
and may also have a beneficial effect in terms of reducing the risk of overfitting,
especially if the added noise is changed between training epochs, so that the network
cannot adapt itself to specific random features of this noise.

Toobtainmultilayer perceptronswithmultiple hidden layers, several autoencoders
are combined. In a first step a simple autoencoder for the input tuples of a given data
set is trained. The decoder (output layer) is removed and only the encoder (hidden
layer) is kept.With this encoder a new data set is produced by propagating each input
tuple through the encoder and recording the activations of the neurons in the hidden
layer as a new data tuple.With this new data set (which represents the data in terms of
the constructed features) another autoencoder is trained, which is hoped to produce
higher level features from the low-level features found in the first step. For example,
in handwriting recognition, the low-level features may be (short) edges, both straight
and curved, in specific parts of an input image. The second autoencoder may then
combine these features into loops and stems of digits or letters. The procedure may
then be repeated to obtain a third or even more autoencoders. Finally, the encoder
parts of all trained autoencoders are stacked—that is, chained together in the order
in which they were trained—to obtain the final network.

If a fixed learning task (see Definition 4.4 on p. 44) is to be solved, a final output
layer is added, which refers to the actual outputs of the fixed learning task (while
for training the autoencoders only the inputs are used). The whole network is then
fine-tuned with a final training run that involves all hidden layers (while constructing

http://dx.doi.org/10.1007/978-1-4471-7296-3_4
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each autoencoder involved only one hidden layer). Note that in this final training run
the vanishing gradient problem is less severe, since the hidden layers have already
been trained and thus can be expected to be close to their optimal parameterization.
Only the added output layer needs full training.

Multilayer perceptrons with several hidden layers built in the way we just
described have been applied very successfully for handwritten digit recognition (see,
for example, Vincent et al. 2010). In such an application it is assumed, though, that
the handwriting has already been preprocessed in order to separate the digits (or, in
other cases, the letters) from each other, so that each input tuple represents a digit
(or letter). However, one would like to use similar networks also for more general
applications, like, for example, recognizing whole lines of handwriting or analyz-
ing photos in order to identify their parts as sky, landscape, house, pavement, tree,
human being, etc. For such applications, where it is advantageous that the features
constructed in hidden layers are not localized to a specific part of the image (as it is
appropriate for already preprocessed and centered images), a special form of such a
network, known as a convolutional neural network, has been developed.

This network type is inspired by the structure of the human retina, in which
sensory neurons have a so-called receptive field, that is, a limited region in which
they respond to a (visual) stimulus. This is mimicked in a convolutional neural net-
work by connecting each neuron in the (first) hidden layer to only a small number
of contiguous (in the image) input neurons. This is illustrated in Fig. 5.31 on the
left, which shows two neurons together with their receptive field in an input image.
There are usually multiple neurons with the same receptive field that respond to
different stimuli and thus compute different features. Weights are shared for a sets
of neurons with pairwise different locations of their receptive fields, so that such a

Fig.5.31 In a convolutional neural network each neuron of the (first) hidden layer is connected to a
small number of input neurons that refer to a contiguous region of the input image (left). Connection
weights are shared, so that the same (partial) network is evaluated at different locations in the image.
This computes a convolution of the connection weight matrix with the input image, as shown on
the right. The input field is moved step by step over the whole image (right)
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set of neurons effectively evaluates the same neuron at all different locations in the
image. As a result, a convolution of the weight matrix of the neuron with the input
image is computed. As there are usually multiple neurons with the same receptive
field, multiple such convolutions, for different weight matrices/features, are com-
puted.

In a successor layer, in order to reduce the complexity, a maximum pooling over
small regions is computed (that is, only the maximal activation of the neurons in
this region is passed on). The idea underlying such pooling is that it maintains
knowledge that a feature, as represented by a set of neurons with shared weights, has
been detected and only coarsens the information where exactly it was found. This
is usually justified by the assumption that the rough relative position of features is
more important than their exact location in an image.

In a convolutional neural network multiple stages of convolution, maximum pool-
ing, and rectified linear units can be present, which build a hierarchy of image fea-
tures. The resulting features may then be used, in a final, fully connected layer, to
perform, for instance, image segmentation or classification. A tutorial that discusses
such networks, which we described only very briefly here, in more detail can be
found at http://www.deeplearning.net/tutorial/lenet.html.

5.11 Sensitivity Analysis

(Artificial) neural networks have the serious disadvantage that the knowledge that
they learned from training examples is often difficult to understand, because it is
encoded in the connection weights, that is, stored in a matrix of real-valued numbers.
In the preceding sections, we tried to visualize the operation of neural networks
with the help of geometric interpretations, but such an approach encounters severe
problems for the complex networks that we meet in practice. Especially if the input
space is high-dimensional, human imagination is bound to fail completely.Acomplex
neural network thus easily appears to be a “black box”, which produces its output
from its input in somewhat mysterious ways.

However, we can improve this situation to some degree if we carry out a so-called
sensitivity analysis, which determines what influence the different inputs have on
the output of the network. To execute a sensitivity analysis we sum the derivatives of
the output w.r.t. the external inputs over all output neurons and all training patterns.
This sum is divided by the number of training patterns, tomake the result independent
of the size of the training data set. That is, we compute

∀u ∈ Uin : s(u) = 1

|Lfixed|
∑

l∈Lfixed

∑
v∈Uout

∂out(l)v

∂ext(l)u
.

The resulting value s(u) indicates how “important” the input that is assigned to
the neuron u is for the computations and eventually the output of the multilayer
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perceptron. On this basis we may then, for example, simplify the neural network by
removing the least important inputs, that is, those with the lowest values s(u).

In order to obtain the exact sensitivity computation rule, we start by applying the
chain rule—just as we did to derive the gradient descent rules:

∂outv
∂extu

= ∂outv
∂outu

∂outu
∂extu

= ∂outv
∂netv

∂netv
∂outu

∂outu
∂extu

.

If the output function of the input neurons is the identity, as we assume here, the last
factor can be neglected, because then

∂outu
∂extu

= 1.

For the second factor we obtain in the general case

∂netv
∂outu

= ∂

∂outu

∑
p∈pred(v)

wvpout p =
∑

p∈pred(v)
wvp

∂out p
∂outu

.

On the right-hand side we see a derivative of the output of a neuron p w.r.t. the output
of the input neuron u, so that we arrive at the layer-wise recursion formula

∂outv
∂outu

= ∂outv
∂netv

∂netv
∂outu

= ∂outv
∂netv

∑
p∈pred(v)

wvp
∂out p
∂outu

.

However, in the first hidden layer (or for a two-layer perceptron) we obtain

∂netv
∂outu

= wvu, and thus
∂outv
∂outu

= ∂outv
∂netv

wvu,

since all terms vanish except the one having p = u. This formula defines the starting
point of the recursion. Then we apply the recursion formula to it until we reach the
output layer,wherewe canfinally compute the termof the value s(u) that corresponds
to the training pattern l by summing over the output neurons.

Like when we derived error backpropagation, we also consider here the special
case of a logistic activation function and the identity as the output function. In this
case we obtain a particularly simple recursion formula

∂outv
∂outu

= outv(1 − outv)
∑

p∈pred(v)
wvp

∂out p
∂outu

and the recursion start (v is a neuron in the first hidden layer)

∂outv
∂outu

= outv(1 − outv)wvu .

The command line programs mentioned at the end of the preceding section allow to
carry out a sensitivity analysis of a multilayer perceptron based on these formulas.
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It should be noted, though, that a sensitivity analysis produces reliable and
reproducible results only if training is carried out with weight decay (see Sect. 5.7.7).
Otherwise the initial conditions (initial weights and bias values) can have a strong
effect on the assessment of the relative importance of the different inputs.
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6Radial Basis FunctionNetworks

Like multilayer perceptrons, radial basis function networks are feedforward neural
networks with a strictly layered structure. However, the number of layers is always
three, that is, there is exactly one hidden layer. In addition, radial basis function
networks differ from multilayer perceptrons in the network input and activation
functions, especially in the hidden layer. In this hidden layer radial basis functions
are employed, which are responsible for the name of this type of neural network.
With these functions a kind of “catchment region” is assigned to each neuron, in
which it mainly influences the output of the neural network.

6.1 Definition and Examples

Definition 6.1 A radial basis function network (RBF network) is a neural network
with a graph G = (U,C) that satisfies the following conditions:

1. Uin ∩Uout = ∅,

2. C = (Uin ×Uhidden) ∪ C ′, C ′ ⊆ (Uhidden ×Uout)

The network input function of each hidden neuron is a distance function of the input
vector and the weight vector, that is,

∀u ∈ Uhidden : f (u)
net (wu, inu) = d(wu, inu),

where d : Rn × R
n → R

+
0 is a function that satisfies ∀x, y, z ∈ R

n :
(i) d(x, y) = 0 ⇔ x = y,

(i i) d(x, y) = d(y, x) (symmetry),
(i i i) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality),

and thus fulfills the definition of a distance or a metric.

93
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The network input function of the output neurons is the weighted sum of the inputs
(weighted with the connection weights), that is,

∀u ∈ Uout : f (u)
net (wu, inu) = wu inu =

∑
v∈pred (u)

wuv outv .

The activation function of each hidden neuron is a radial function (as we call it
here), that is, a monotone nonincreasing function

f : R+
0 → [0, 1] with f (0) = 1 and lim

x→∞ f (x) = 0.

The activation function of each output neuron is a linear function, namely

f (u)
act (netu, θu) = netu −θu .

Note that a radial basis function network always has exactly three layers and
that the input layer and the hidden layer are always fully connected because of the
distance computation (that is, all coordinates are used to determine the distance).

The network input function and the activation functions of a hidden neuron
describe a kind of “catchment region” of this neuron. The weights of the connec-
tions from the input layer to a neuron of the hidden layer state the center of this
region, since the distance (network input function) is measured between the weight
vector and the input vector. The type of distance function determines the shape of
the catchment region. To illustrate this fact we consider the well-known family of
distance functions (the so-called Minkowski family) that is defined as

dk(x, y) =
(

n∑
i=1

(xi − yi )
k

) 1
k

.

Well-known special members of this family are:

k = 1 : Manhattan or city block distance,
k = 2 : Euclidean distance,
k → ∞ : Maximum distance, that is, d∞(x, y) = max n

i=1|xi − yi |.

Distance functions like these can easily be illustrated by considering how a circle
looks with them. The reason is that a circle is defined as the set of points that have
the same fixed distance from a given point. This fixed distance is called the radius
of the circle. For the three special cases listed above circles are shown in Fig. 6.1.
All three circles have the same radius. With these examples we have an immediate
impression of the possible shapes of the catchment region of a hidden neuron.

Intuitively, the activation function of a hidden neuron and its parameters deter-
mine the “size” of the catchment region of the neuron by specifying how strong the
influence of an input vector is depending on its distance from the weight vector. We
call this activation function a radial function, because it is defined along a ray (lat.
radius: ray) from a center, which is described by the weight vector and thus assigns
to each radius (that is, to each distance from the center) an activation. Examples of



6.1 Definition and Examples 95

Fig. 6.1 Circles for different distance functions. All circles have the same radius

rectangular function:

fact(net, ) =
{

0 if net > ,
1 otherwise.
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Fig. 6.2 Different radial activation functions

radial activation functions, all of which possess a parameter, namely a (reference)
radius σ , are shown in Fig. 6.2 (cf. also Fig. 5.2 on p. 49).

Note that not all of these radial activation functions limit the catchment region
crisply. That is, not for all of these functions there exists a radius, beyond which
the activation is 0. For instance, the Gaussian function yields a positive activation
regardless of how far an input vector is from the center, even though this activation
may be, due to the exponential decay of the Gaussian function, extremely small.

The output layer of a radial basis function network serves the purpose to combine
the activations of the hidden neurons into the output of the network (weighted sum

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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as the network input function), similar to the operation of a multilayer perceptron.
Note, however, that the activation function of the output neurons in a radial basis
function network is a linear function. The reason for this choice, which is important
for initializing the parameters, is explained in Sect. 6.3.

As a first example we consider, in analogy to Sect. 3.1, how the conjunction of
two Boolean variables x1 and x2 is computed. A radial basis function network that
solves this task is shown in Fig. 6.3 on the left. It possesses only a single hidden
neuron, whose weight vector (center of the radial basis function) is the input vector
for which an output of 1 is desired, that is, the point (1, 1). The (reference) radius
of the activation function is 1

2 . Like the parameter θ (bias value) of a neuron in a
multilayer perceptron it is written into the circle that represents the hidden neuron.
The diagram does not express explicitly that we use a Euclidean distance and a
rectangular activation function. Due to the fact that the connection to the output
neuron has weight 1 and the fact that the output neuron has the bias value 0, the
output of the network coincides with the output of the hidden neuron.

In the same manner as the computations of threshold logic units (cf. Sect. 3.2), the
computations of radial basis function can be interpreted geometrically, especially, if
rectangular activation functions are used, see Fig. 6.3 on the right. The radial function
describes a circle with radius 1

2 around the point (1, 1). Inside this circle the activation
of the hidden neuron (and thus the output of the network) is 1, outside it is 0. In this
way it is easy to see that the network shown in Fig. 6.3 on the left indeed computes
the conjunction of its inputs.

Of course, the network shown in Fig. 6.3 is not the only possible one for computing
the conjunction. For example, we may use a different radius, as long as it is less than 1,
or we may shift the center a little, as long as the point (1, 1) stays inside the circle and
none of the other points enters the circle. We may also change the distance function
or the activation function. However, we may also find a solution that exploits an
entirely different principle, as it is shown, for instance, in Fig. 6.4. By using a bias
value of −1 in the output neuron a base output of 1 is produced, which is reduced to
zero inside a circle with radius 6

5 around the point (0, 0) (note the negative weight
of the connection to the output neuron). Intuitively, we may say that we punched a
circular disk from a “carpet” of thickness 1 in such a way that all points, for which
an output of 0 is desired, lie inside this disk.

x1

x2

1
2 0 y

1

1

1

x1

x2

0 1

0

1

Fig.6.3 A radial basis function network for the conjunction with Euclidean distance and rectangular
activation function

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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Fig. 6.4 Another radial basis function network for the conjunction with Euclidean distance and
rectangular activation functions
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Fig.6.5 A radial basis function network for the biimplication with Euclidean distance and rectan-
gular activation functions

As another example we consider a radial basis function network that computes the
biimplication, as shown in Fig. 6.5 on the left. It contains two hidden neurons, which
are assigned to the two points for which an output of 1 is desired (namely (0, 0) and
(1, 1)). Inside circles of radius 1

2 around these two points the corresponding hidden
neuron is activated (that is, outputs a 1), see Fig. 6.5 on the right. The output neuron
merely combines these outputs: the output of the network is 1 if the input vector lies
inside one of the two circles.

From a logical point of view the top hidden neuron computes the conjunction of
the inputs, the bottom hidden neuron their negated disjunction. The output neuron
combines the outputs of the hidden neurons disjunctively (where at most one of
the two hidden neurons can be active). That is, the biimplication is represented by
exploiting the logical equivalence

x1 ↔ x2 ≡ (x1 ∧ x2) ∨ ¬(x1 ∨ x2).

(Compare the related decomposition used in Sect. 3.4.)
Note that here we may as well draw on the possibility to create a base output

of 1 (by using a bias value of −1 in the output neuron), which is reduced to zero by
circles of radius 1

2 (or some other radius less than 1) around the points (1, 0) and
(0, 1). Note also that, like for threshold logic units, there is no way to compute the
biimplication with only a single (hidden) neuron, unless we employ theMahalanobis
distance as the distance function. However, this extension of the computing power
of radial basis function networks is discussed only later, namely in Sect. 6.5.

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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6.2 Function Approximation

After the examples of the preceding section, in which we examined only simple
logical functions, we consider now, in analogy to Sect. 5.2, how we can approximate
real-valued functions with the help of radial basis function networks. The principle is
the same as in Sect. 5.2: the function to represent is approximated by a step function,
which can easily be computed by a radial basis function network if we model it as a
weighted sum of rectangular functions. We illustrate this principle with the help of
the same example function as in Sect. 5.2, see Fig. 6.6.

For each step a radial basis function is employed, whose center lies in the middle
of the step and whose radius is half the step width. In this way rectangular pulses
are described (see Fig. 6.6 on the bottom right), which are weighted with the cor-
responding step height and then summed. Thus we obtain the step function shown
in Fig. 6.6 on the top right. The corresponding radial basis function network, which
possesses one neuron for each rectangular pulse, is shown in Fig. 6.7.

Note that we actually compute the sum of the step heights at the borders (not
shown in Fig. 6.6), since the rectangular pulses overlap at these points. This does
not affect the approximation quality, though, because the error is measured, as in
Sect. 5.2, as the area between the step function and the function to approximate. The
deviations occur at finitely many points and thus do not contribute to the error.

Since we used the same principle as in Sect. 5.2, we can immediately transfer the
approximation theorem derived there:

Theorem 6.1 Every Riemann integrable function can be approximated with arbi-
trary accuracy by a radial basis function network.
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Fig.6.6 Representing a step function by a weighted sum of rectangular functions (with centers xi ).
Naturally, the step heights yi may also be negative. However, at the step borders incorrect function
values are computed (sum of the step heights)

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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Fig. 6.7 A radial basis
function network that
computes the step function
shown in Fig. 6.6 or the
piecewise linear function
shown in Fig. 6.8 (depending
in the activation functions of
the hidden neurons). It is
σ = 1

2 Δx = 1
2 (xi+1 − xi ) or

σ = Δx = xi+1 − xi ,
respectively

x y0
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y4
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Note here again that, like for the approximation theorem about multilayer percep-
trons, this theorem only requires that the function to represent is Riemann integrable.
It need not be continuous. That is, the function to represent may have “jumps.” How-
ever, it may have only finitely many “jumps” of finite height in the region in which it
is to be approximated by a radial basis function network. In other words, the function
must be continuous “almost everywhere.”

Even though it does not impede the validity of the above theorem, the anomalies,
which occur at the step borders and make it differ from a pure step function, are at
least unattractive. However, they vanish automatically if we replace the rectangu-
lar activation function by a triangular function—in analogy to Sect. 5.2, where we
replaced the (Heaviside or unit) step function by a semi-linear function. With this
modification the step function is turned into a piecewise linear function, which is
computed by a radial basis function network as the weighted sum of overlapping
triangular functions, see Fig. 6.8. Thus the approximation is considerably improved
(or the same approximation quality can be achieved with fewer neurons).

The approximation quality can be improved even further if one increases the
number of support points, especially in regions where the function is strongly curved
(as already mentioned in the analogous discussion in Sect. 5.2). In addition, we
can eliminate the kinks of the piecewise linear function if we employ an activation
function like the Gaussian function, which can produce “smooth” transitions.

To illustrate how a function can be approximated by Gaussian functions we con-
sider how the function shown in Fig. 6.9 on the left can be approximated by a weighted
sum of three Gaussian bell curves (see Fig. 6.9 on the right). The corresponding radial
basis function network is shown in Fig. 6.10.

It should be clear that the principle of approximating a real-valued function,
which we exploited in this section, is not limited to unary functions, but may as
well be transferred to functions with multiple arguments. In contrast to multilayer
perceptrons we see immediately here that three layers are always sufficient, because
the basis functions influence the output of the network only locally.

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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Fig.6.8 Representing a piecewise linear function by a weighted sum of triangular functions (with
centers xi )
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Fig.6.9 Approximating a function by a sum of Gaussian functions with radius σ = 1. It is w1 = 1,
w2 = 3 and w3 = −2

Fig. 6.10 A radial basis
function network that
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of Gaussian functions shown
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6.3 Initializing the Parameters

When we discussed multilayer perceptrons, we treated initializing the parameters
(that is, the connection weights and bias values) only in passing since it is trivial:
simple choose random values, the absolute values of which are not too large (≤0.5).
In principle, we can apply the same method to radial basis function networks, but it
usually leads to fairly poor results. In addition, the hidden layer and the output layer
of a radial basis function network differ considerably, since they possess different
network input and activation functions—in contrast to a multilayer perceptron, in
which the hidden layers and the output layer are homogeneous. As a consequence,
these two layers should be treated separately and thus we devote a separate section
to how to initialize the parameters of a radial basis function network.

In order to simplify the presentation as much as possible, we start with the special
case of a so-called simple radial basis function network, in which each training
example is covered by its own radial basis function. That is, the hidden layer contains
exactly as many neurons as there are training examples. The weights of the connec-
tions from the input neurons to the neurons of the hidden layer are determined by the
training examples: each hidden neuron receives a training example and the weights
of the connections to the hidden neurons are simply initialized with the elements of
the input vector of this training example.

Formally: let Lfixed = {l1, . . . , lm} be a fixed learning task withm training patterns
l = (i (l), o (l)). Since each pattern is used as the center of its own radial function,
there are m neurons in the hidden layer. Let these neurons be v1, . . . , vm . We set

∀k ∈ {1, . . . ,m} : wvk = i (lk ).

If the most commonly employed Gaussian activation function is chosen, the radii σk
are often initialized to equal values according to the heuristics

∀k ∈ {1, . . . ,m} : σk = dmax√
2m

,

where dmax is the maximal distance between the input vectors of two training patterns
(computed with the network input function chosen for the hidden neurons, which is
a distance function d), that is,

dmax = max
l j ,lk∈Lfixed

d
(
i (l j ), i (lk )

)
.

This choice has the advantages that the Gaussian bell curves are not too narrow (that
is, they are not isolated peaks in the input space), but also not too wide (that is, they
are also not overlapping too much, at least if the data set is “benevolent” or “well
behaved,” that is, there are no individual training examples that are located far away
from all other training examples—no (extreme) outliers).

The weights from the hidden layer to the output layer and the bias values of
the output neurons are computed with the following idea: since the parameters of
the hidden layer (centers and radii) are known, we can compute the output of the
hidden neurons for every training example. We now have to determine the connection
weights and the bias values in such a way that from these outputs the desired outputs
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of the network are computed. Since the network input function of the output neurons
is a weighted sum of its inputs and its activation and output functions are both linear,
each training example l yields for each output neuron u one linear equation

m∑
k=1

wuvm out(l)vm − θu = o(l)
u .

(This is the main reason for choosing linear activation and output functions for the
output neurons.) Thus we obtain for each output neuron a linear equation system with
m equations (one equation for each training example) andm+1 unknowns (m weights
and one bias value). That this equation system is underdetermined (more unknowns
than equations), we can easily fix by simply setting the surplus parameter θu = 0. In
matrix and vector notation, the equation system to solve reads

A · wu = ou,

where wu = (wuv1 , . . . ,wuvm )� is the weight vector of the output neuron u and

ou = (
o(l1)
u , . . . , o(lm )

u
)� is the vector of the desired outputs of the output neuron u

for the different training examples. A is an m × m matrix with the outputs of the
neurons of the hidden layer for the different training examples, namely

A =

⎛
⎜⎜⎜⎜⎝

out(l1)v1 out(l1)v2 . . . out(l1)vm

out(l2)v1 out(l2)v2 . . . out(l2)vm
...

...
...

out(lm)
v1 out(lm )

v2 . . . out(lm)
vm

⎞
⎟⎟⎟⎟⎠ .

That is, each matrix row contains the outputs of the different neurons for one training
example, each column contains the outputs of one hidden neuron for the different
training examples. Since the elements of this matrix can be computed from the
training examples and the desired outputs are known as well, the weights can be found
by simply solving this equation system with the usual methods of linear algebra.

For the subsequent considerations it is advantageous to compute the solution of
the linear equation system by inverting the matrix A, that is, by

wu = A−1 · ou,
even though this method requires that the matrix A has full rank. In practice, this
is usually, but not always the case. If A does not have full rank, weights have to be
chosen randomly until the remaining equation system is uniquely solvable.

Note that this initialization method already guarantees that the error of a simple
radial basis function network vanishes on the training data. Since the equation system
we have to solve is at most underdetermined, we can always find connection weights
with which the desired outputs are computed exactly. Hence it is not necessary to
train a simple radial basis function network.

To illustrate the procedure, we consider a radial basis function network for the
biimplication x1 ↔ x2, in which the neurons of the hidden layer possess a Gaussian
activation function. The training examples as well as the radial basis function network
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Fig. 6.11 Training examples for the biimplication and the simple radial basis function network as
it is already partially determined by them

as it is already determined by them is shown in Fig. 6.11. The radii σ were chosen
according to the heuristics mentioned above: clearly, we have dmax = √

2 (diagonal

of the unit square) and m = 4, therefore σ =
√

2√
2 · 4

= 1
2 .

We are left with determining the four weights w1, . . . ,w4. (Note that the bias
value of the output neuron is set to 0, since otherwise the equation system to solve
is underdetermined.) In order to compute these weights, we set up the matrix

A = (a jk) with a jk = e− |i j−ik |2
2σ2 = e−2|i j−ik |2 ,

where i j and ik are the input vectors of the j th and kth training example (numbered
according to the table shown in Fig. 6.11). Therefore it is

A =

⎛
⎜⎜⎝

1 e−2 e−2 e−4

e−2 1 e−4 e−2

e−2 e−4 1 e−2

e−4 e−2 e−2 1

⎞
⎟⎟⎠ .

The inverse of this matrix is the matrix

A−1 =

⎛
⎜⎜⎜⎜⎝

a
D

b
D

b
D

c
D

b
D

a
D

c
D

b
D

b
D

c
D

a
D

b
D

c
D

b
D

b
D

a
D

⎞
⎟⎟⎟⎟⎠ ,

where
D = 1 − 4e−4 + 6e−8 − 4e−12 + e−16 ≈ 0.9287

is the determinant of the matrix A and

a = 1 − 2e−4 + e−8 ≈ 0.9637,

b = −e−2 + 2e−6 − e−10 ≈ −0.1304,

c = e−4 − 2e−8 + e−12 ≈ 0.0177.
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Fig. 6.12 Radial basis functions and output of a radial basis function network with four hidden
neurons for the biimplication

From this matrix and the output vector ou = (1, 0, 0, 1)� we can now easily compute
the connection weights. We obtain

wu = A−1 · ou = 1

D

⎛
⎜⎜⎝
a + c

2b
2b

a + c

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎝

1.0567
−0.2809
−0.2809

1.0567

⎞
⎟⎟⎠ .

The computations of the radial basis function network that is initialized in this
way are shown in Fig. 6.12. The left diagram shows a single basis function, namely
the one with the center (0, 0). The middle diagram shows all four basis functions
(overlain, no sum). The output of the whole network is shown in the right diagram.
It is clearly visible how the radial basis functions of the two centers, for which an
output of 1 is desired, are weighted positively, while the two others are weighted
negatively, so that in total exactly the desired outputs are computed.

Obviously, simple radial basis function networks are very easy to initialize,
because the training examples already fix the parameters of the hidden layer. The
weights from the hidden layer to the output layer can be computed, as we saw, by
solving a simple linear equation system. In practice, however, simple radial basis
function networks are of little use. In the first place the number of training example
is generally too large to create a separate neuron for each of them: the resulting
network would become too large to be feasible. In addition one desires, for obvious
reasons, that several training examples are covered by the same radial basis function.

Therefore radial basis function networks (without the qualifier “simple”) pos-
sess fewer neurons in the hidden layer than there are training examples. To initialize
them one often selects a random (though hopefully representative) subset of the
training examples as the centers of the radial basis functions, namely one training
example for each hidden neuron. (However, this is only one possible method for
choosing the center coordinates; another is discussed below.) The weights from the
input layer to the hidden layer are again fixed by these selected training examples:
the coordinates of the input vectors are simply copied into the weight vectors. Like-
wise, the radii are chosen heuristically, using the same values as above (although we
should rather refer to the selected subset of training examples instead of the whole
set) in order to avoid having to deal with square roots.
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Fig. 6.13 Radial basis
function network with only
two hidden neurons that
correspond to two selected
training examples
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In the step in which the weights of the connections from the hidden layer to the
output neurons are determined, we now face the problem that the equation system
to solve is overdetermined. Since we selected a subset of the training examples,
say k examples, we have m equations for each output neuron (one for each training
example in the full set), but only k + 1 unknowns (k weights and one bias value)
with k < m. Thus we do not choose the bias value to be simply zero, but treat it by
converting it into a weight (cf. Fig. 3.18 on p. 27).

In analogy to simple radial basis function networks we set up a m×(k+1) matrix

A =

⎛
⎜⎜⎜⎜⎝

1 out(l1)v1 out(l1)v2 . . . out(l1)vk

1 out(l2)v1 out(l2)v2 . . . out(l2)vk
...

...
...

...

1 out(lm )
v1 out(lm )

v2 . . . out(lm )
vk

⎞
⎟⎟⎟⎟⎠

of the activations of the hidden neurons. (Note the ones in the first column, which
refer to the fixed input 1 for the bias value.) We now have to determine for each
output neuron u an (extended) weight vector wu = (−θu,wuv1, . . . ,wuvk )

�, so that

A · wu = ou,

where again ou = (
o(l1)
u , . . . , o(lm )

u
)�. However, since the equation system is

overdetermined (at least if the matrix has a rank > k + 1), this equation does not
generally possess a solution. In other words: the matrix A is not square and thus not
invertible. Fortunately, a good approximate solution (so-called minimum norm solu-
tion) can be found with the help of the so-called (Moore–Penrose) pseudo inverse
A+ of the matrix A (Albert 1972). This pseudo inverse is computed as

A+ = (A�A)−1A�.

The weights can finally be determined with the equation

wu = A+ · ou = (A�A)−1A� · ou
(cf. the computations on p. 104).

We illustrate this procedure again with the help of the biimplication. From the
training examples we choose the first, i.e., l1 = (i (l1), o (l1)) = ((0, 0), (1)), and
the last, i.e., l4 = (i (l4), o (l4)) = ((1, 1), (1)). That is, we start from the partially
determined radial basis function network shown in Fig. 6.13 and now have to compute
the weights w1 and w2 and the bias value θ . To do so, we set up the 4 × 3 matrix

A =

⎛
⎜⎜⎝

1 1 e−4

1 e−2 e−2

1 e−2 e−2

1 e−4 1

⎞
⎟⎟⎠ ..

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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The pseudo inverse of this matrix is the matrix

A+ = (A�A)−1A� =
⎛
⎝a b b a
c d d e
e d d c

⎞
⎠ ,

where
a ≈ −0.1810, b ≈ 0.6810,

c ≈ 1.1781, d ≈ −0.6688, e ≈ 0.1594.

From this matrix and the output vector ou = (1, 0, 0, 1)� we can compute the
connection weights easily. We obtain

wu =
⎛
⎝−θ

w1
w2

⎞
⎠ = A+ · ou ≈

⎛
⎝−0.3620

1.3375
1.3375

⎞
⎠ .

The computations of the network that is initialized in this way are shown in Fig. 6.14.
The left and the middle diagram show the two radial basis functions, the right diagram
the output of the network. Note the nonvanishing bias value and that (somewhat
surprisingly) exactly the desired outputs are computed. In practice, this is usually
not the case, because the equation system to solve is overdetermined. Thus, in general,
one has to be satisfied with an approximate solution. However, since the equation
system is not really overdetermined here (due to reasons of symmetry: from the
matrix A and the output vector ou it is easy to see that the second and the third
equation are actually identical), we obtain an exact solution nevertheless.

Up to now we chose the centers of the radial basis functions (randomly) from the
training examples. It would be better, though, if we could determine proper centers
with a different method, because a random selection does not guarantee that the
centers fit the training examples sufficiently well to allow for a good approximation
of the desired outputs. In order to find the centers, basically any prototype-based
clustering method can be applied. Among these is, for instance, learning vector
quantization, which is treated in the next chapter. Here we consider a method of
classical statistics instead, which is known as c-means clustering (also known as
k-means clustering) (Hartigan und Wong 1979). The letter c (or k) in the name of
this method stands for a parameter, namely the number of clusters to be found.
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Fig. 6.14 Radial basis functions and output of a radial basis function network with two hidden
neurons for the biimplication
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This method is very simple and straightforward. At the beginning c cluster centers
are chosen randomly, usually from the training examples. Then the training examples
are divided into c groups (clusters) by assigning to each cluster center all training
examples that are closer to it than to any other cluster center. In a second step new
cluster centers are computed by finding the “centers of gravity” of the formed groups
of data points. That is, one computes the vector sum of the training examples of a
group and divides by the number of these training example. The result is the new
center. Next the first step, that is, forming the groups is executed again and so forth,
until the cluster centers do not change anymore. The cluster centers found in this way
can immediately be used to initialize the centers of a radial basis function network.
Even the radii can be chosen with this method from the data: for example, one chooses
the average distance of the training examples that are assigned to a cluster center
from this cluster center.

6.4 Training the Parameters

Simple radial basis function networks cannot be improved: due to the large number
of neurons in the hidden layer we always obtain exactly the desired output if we
initialize them with the method described in the preceding section. However, if we
chose fewer hidden neurons than there are training examples, the quality of a radial
basis function network can usually be improved by training.

Like the parameters of a multilayer perceptron, the parameters of a radial basis
function network are trained by gradient descent. Therefore, in order to find the
adaptation rules for the weights, we proceed in basically the same manner as in
Sect. 5.4. For the parameters of the output neurons, that is, for the weights of the
connections from the hidden neurons and the bias values of the output neurons, we
even obtain the same result as for a multilayer perceptron: the gradient for a single
output neuron u and a single training pattern l is (see p. 64)

∇wu e
(l)
u = ∂e(l)

u

∂wu
= −2

(
o(l)
u − out(l)u

) ∂ out(l)u

∂ net(l)u
in(l)

u ,

where inu is the vector of outputs of the predecessors of the neuron u, o(l)
u is the

desired output of the neuron u, net(l)u is its network input and out(l)u its actual output
if the input vector i (l) of the training pattern l is fed into the network. Recall that the
actual output out(l)u of the neuron u for the training pattern l is computed from its
network input via its output function fout and its activation function fact, that is,

out(l)u = fout
(
fact

(
net(l)u

))
.

Like in Sect. 5.4 we assume, for reasons of simplicity, that the output function is the
identity. In addition, we insert the linear activation function of the output neuron of
a radial basis function network. Thus we obtain

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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∂ out(l)u

∂ net(l)u
= ∂ net(l)u

∂ net(l)u
= 1.

Note that the bias value θu of the output neuron u is already contained in the network
input net(l)u , since we work with extended input and weight vectors in order to avoid
inconvenient distinctions (just as we did in Sect. 5.4). Therefore we have

∇wu e
(l)
u = ∂e(l)

u

∂wu
= −2

(
o(l)
u − out(l)u

)
in(l)

u ,

from which we derive the online adaptation rule

Δw(l)
u = −η3

2
∇wu e

(l)
u = η3

(
o(l)
u − out(l)u

)
in(l)

u

for the weights (and thus implicitly also the bias value θu). Note that the negative sign
of the gradient vanishes, because we have to “descend in the error landscape” and thus
have to move against the direction of the gradient. The factor 2 is incorporated into
the learning rate η3. (The index 3 of this learning rate already indicates that we will
meet two more learning rates.) As usual, for batch training the weight changes Δwu

have to be summed over all training patterns and are applied to the weights only after
all training patterns have been processed.

The adaptation rules for the weights of the connections from the input neurons
to the hidden neurons and for the radii of the radial basis functions are derived in
a similar way as error backpropagation was derived in Sect. 5.5. We merely have to
take the special network input and activation functions into account. This implies,
though, that we can no longer work with extended weight and input vectors, but
have to treat the weights (the centers of the radial basis functions) and the radius
separately. Hence, for reasons of clarity, we go through the whole derivation here.

We start from the total error of a radial basis function network with output neu-
rons Uout w.r.t. a fixed learning task Lfixed:

e =
∑

l∈Lfixed

e(l) =
∑

u∈Uout

eu =
∑

l∈Lfixed

∑
u∈Uout

e(l)
u .

Let v be a neuron in the hidden layer. Let its predecessors (input neurons) be the
neurons pred(v) = {p ∈ Uin | (p, v) ∈ C} = {p1, . . . , pn}. Furthermore, let
wv = (wvp1 , . . . ,wvpn ) be the corresponding weight vector and σv the corresponding
radius. We start by computing the gradient of the total error w.r.t. the connection
weights (center coordinates):

∇wv e = ∂e

∂wv
=

(
∂e

∂wvp1

, . . . ,
∂e

∂wvpn

)
.

Since the total error is a sum over all training patterns, we have

∂e

∂wv
= ∂

∂wv

∑
l∈Lfixed

e(l) =
∑

l∈Lfixed

∂e(l)

∂wv
.

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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Hence we can confine ourselves, in analogy to Sect. 5.5, to the error e(l) for a single
training pattern l. This error depends on the weights in wv only via the network
input net(l)v = d

(
wv, in(l)

v
)

with the network input vector in(l)
v = (out(l)p1 , . . . , out(l)pn ).

Therefore we can apply the chain rule and obtain in analogy to Sect. 5.5:

∇wv e
(l) = ∂e(l)

∂wv
= ∂e(l)

∂ net(l)v

∂ net(l)v

∂wv

.

To compute the first factor we examine the error e(l) for the pattern l = (
i (l), o (l)

)
:

e(l) =
∑

u∈Uout

e(l)
u =

∑
u∈Uout

(
o(l)
u − out(l)u

)2
,

that is, the error sum over all output neurons. Thus we obtain

∂e(l)

∂ net(l)v
= ∂

∑
u∈Uout

(
o(l)
u − out(l)u

)2

∂ net(l)v
=

∑
u∈Uout

∂
(
o(l)
u − out(l)u

)2

∂ net(l)v
.

Since only the actual output out(l)u of an output neuron u depends on the network
input net(l)v of the neuron v under consideration, it is

∂e(l)

∂ net(l)v
= −2

∑
u∈Uout

(o(l)
u − out(l)u

)∂ out(l)u

∂ net(l)v
.

Let the neurons succ(v) = {s ∈ Uout | (v, s) ∈ C} be the successors (output neurons)
of the neuron v we consider. The output out(l)u of an output neuron u is affected by
the network input net(l)v of the considered neuron v only if there exists a connection
from v to u, that is, if u is among the successors succ(v) of v. Therefore we can
confine the sum over the output neurons to the successors of v. Furthermore, the
output out(l)s of a successor s of neuron v depends on the network input net(l)v of the
considered successor only via the network input net(l)s of the considered neuron v.
Thus we obtain with the chain rule

∂e(l)

∂ net(l)v
= −2

∑
s∈succ(v)

(o(l)
s − out(l)s

)∂ out(l)s

∂ net(l)s

∂ net(l)s

∂ net(l)v
.

Since the successors s ∈ succ(v) are output neurons, we can insert (like when we
consider the output neurons)

∂ out(l)s

∂ net(l)s
= 1.

We are left with computing the partial derivative of the network input. Since the
neurons s are output neurons, it is

net(l)s = ws in
(l)
s − θs =

⎛
⎝ ∑

p∈pred(s)

wsp out(l)p

⎞
⎠ − θs,

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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where one element of in(l)
s is the output out(l)v of the neuron v under consideration.

Clearly, net(l)s depends on net(l)v only via this element out(l)v . Therefore it is

∂ net(l)s

∂ net(l)v
=

⎛
⎝ ∑

p∈pred(s)

wsp
∂ out(l)p

∂ net(l)v

⎞
⎠ − ∂θs

∂ net(l)v
= wsv

∂ out(l)v

∂ net(l)v
,

since all terms vanish except the one having p = v. In total we have for the gradient

∇wv e
(l) = ∂e(l)

∂wv
= −2

∑
s∈succ(v)

(
o(l)
s − out(l)s

)
wsu

∂ out(l)v

∂ net(l)v

∂ net(l)v
∂wv

,

from which we obtain the online adaptation rule

Δw(l)
v = −η1

2
∇wv e

(l) = η1

∑
s∈succ(v)

(
o(l)
s − out(l)s

)
wsv

∂ out(l)v

∂ net(l)v

∂ net(l)v

∂wv

.

Note again that the minus sign vanishes, since we have to move against the direction
of the gradient and that the factor 2 is incorporated into the learning rate η1. Note
also the index 1 of the learning rate, which indicates that it differs from the learning
rate η3 for the connection weights from the hidden to the output layer. For batch
training these weight changes have to be summed over all training patterns and are
applied to the weights only after all training patterns have been processed.

Unfortunately, it is not possible to generally compute the derivative of the output
w.r.t. the network input or the derivative of the network input w.r.t. the weights, which
are still contained in the weight adaptation rule, since radial basis function networks
can employ different distance and different radial functions. We consider here the
special case of a Euclidean distance and a Gaussian activation function, which are
the most common choices. In this case (Euclidean distance), we have

d
(
wv, in(l)

v

) =
√√√√ n∑

i=1

(
wvpi − out(l)pi

)2
.

Therefore the second factor becomes

∂ net(l)v
∂wv

=
( n∑

i=1

(
wvpi − out(l)pi

)2
)− 1

2 (
wv − in(l)

v

)
.

For the first factor (Gaussian function) we obtain (under the simplifying assumption
that the output function is the identity)

∂ out(l)v

∂ net(l)v
= ∂ fact

(
net(l)v , σv

)
∂ net(l)v

= ∂

∂ net(l)v
e
−

(
net(l)v

)2

2σ 2
v = −net(l)v

σ 2
v

e
−

(
net(l)v

)2

2σ 2
v .

Finally we have to compute the gradient for the radius parameter σv of the hidden
neurons. In principle, computing this gradient follows the same paths as computing
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the gradient for the weights. Indeed, it is even somewhat simpler, since we need not
take the network input function into account. Hence we only state the result here:

∂e(l)

∂σv
= −2

∑
s∈succ(v)

(
o(l)
s − out(l)s

)
wsu

∂ out(l)v
∂σv

.

As the online weight adaptation we thus obtain

Δσ(l)
v = −η2

2

∂e(l)

∂σv
= η2

∑
s∈succ(v)

(
o(l)
s − out(l)s

)
wsv

∂ out(l)v
∂σv

.

As usual, the negative sign disappears because we have to move against the gradient
direction and the factor 2 is incorporated into the learning rate. Naturally, for batch
training the radius changes have to summed over all training patterns and are applied
to the radius σv only after all training patterns have been processed.

The derivative of the output of the neuron v w.r.t. the radius σv cannot be deter-
mined in a general form, since the neurons of the hidden layer may employ different
radial functions. Therefore we consider again, as an example, the special case of a
Gaussian activation function (and, for reasons of simplicity, the identity as the output
function). Then it is

∂ out(l)v
∂σv

= ∂

∂σv
e
−

(
net(l)v

)2

2σ 2
v =

(
net(l)v

)2

σ 3
v

e
−

(
net(l)v

)2

2σ 2
v .

Note in the computations carried out above that we do not have a single learning rate
for all neurons as in a multilayer perceptron. Rather we have a total of three: one
learning rate for the weights of the connections to the hidden neurons (η1), one for the
radii σ of the radial basis functions (η2), and one for the weights of the connections
to the output neurons and the bias values of the output neurons (η3). According to
recommendations in (Zell 1994) these learning rates should be chosen considerably
smaller than the (one) learning rate for training a multilayer perceptron. Especially
the third learning rate η3 should be small, because the weights of the connections to
the output neurons and the bias values of the output neurons have a strong influence
on the function that is computed by a radial basis function network. In addition, using
online training is often discouraged, since it is a lot less stable than for multilayer
perceptrons. Batch training should be preferred.

6.5 Generalized Form

Up to now we always used distance functions that are either isotropic (direction
independent), like the Euclidean distance, or with which deviations from isotropy
are fixed by the coordinate axes, like the city block distance or the maximum distance
(see Fig. 6.1 on p. 95). However, if the training examples form point clouds with an
“oblique” orientation in the input space, they cannot be captured well with such
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Fig. 6.15 A radial basis function network for the biimplication with Mahalanobis distance and
rectangular activation function

a distance function. In this case one either needs a larger number of radial basis
functions, which are stringed along the point cloud and increase the complexity of
the network, or one has to accept that larger regions outside of the point clouds are
covered as well, which can harm the performance on new data.

In such a case one desires distance function that can describe ellipses (or gen-
erally hyperellipsoids) with arbitrary orientation. Such a distance function is the
Mahalanobis distance, which is defined as

d(x, y) =
√

(x − y)�Σ−1(x − y).

Here Σ is a matrix which is called covariance matrix (this name is due to certain
connections to statistics, which, however, we do not explain in detail here) and which
describes the (direction dependence) of the distance. Note that the Mahalanobis
distance is identical to the Euclidean distance if Σ is the unit matrix.

To illustrate the possibilities that result from using the Mahalanobis distance we
reconsider representing the biimplication with a radial basis function network: the
Mahalanobis distance enables us to solve this task with only one neuron in the hidden
layer. The corresponding network and the covariance matrix that is now necessary as
an additional parameter of the network input function is shown in Fig. 6.15 on the left.
As the activation function we assume (like in the examples shown in Figs. 6.3 and
6.4 on p. 97) a rectangular function. The computations of this network are illustrated
in Fig. 6.15 on the right. Inside the gray ellipse the output is 1, while outside it is 0.
This computes exactly the biimplication, as desired.

For radial basis function networks that employ the Mahalanobis distance, gradients
can be derived for the shape parameter (i.e., the elements of the covariance matrix)
as well. The computations follow essentially the same paths as those executed in
Sect. 6.4. An explicit treatment is beyond the scope of this book.
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7Self-organizingMaps

Self-organizing maps are closely related to radial basis function networks. They
can be seen as radial basis function networks without an output layer, or, rather, the
hidden layer of a radial basis function network is already the output layer of a self-
organizing map. This output layer also has an internal structure since the neurons
are arranged in a grid. The neighborhood relationships resulting from this grid are
exploited in the training process in order to determine a topology preserving map.

7.1 Definition and Examples

Definition 7.1 A self-organizing map (SOM) orKohonen feature map is a neural
network with a graph G = (U,C) that satisfies the following conditions:

1. Uhidden = ∅, Uin ∩Uout = ∅,
2. C = Uin ×Uout.

The network input function of each output neuron is a distance function of the
input and the weight vector (cf. Definition6.1 on p. 93). The activation function of
each output neuron is a radial function (cf. also Definition6.1 on p. 93), that is, a
monotone nonincreasing function

f : R+
0 → [0, 1] with f (0) = 1 and lim

x→∞ f (x) = 0.

The output function of each output neuron is the identity. The output may be dis-
cretized according to the “winner takes all” principle: the neuron with the highest
activation produces the output 1, all other neurons produce the output 0.

On the neurons of the output layer a neighborhood relationship is defined, which
is described by a distance function
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dneurons : Uout ×Uout → R
+
0 .

This function assigns a nonnegative real number to each pair of output neurons.

As a consequence, a self-organizing map is a two-layered neural network without
hidden neurons. Its structure corresponds essentially to the input and the hidden layer
of the radial basis function networks as they were discussed in the preceding chapter.
Their alternative name Kohonen feature map refers to their inventor (Kohonen 1982,
1995).

In analogy to radial basis function networks, the weights of the connections from
the input to the output neurons state the coordinates of a center, from which the
distance of an input pattern is measured. In connection to self-organizing maps this
center is often called a reference vector. The closer an input pattern is to a reference
vector, the higher the activation of the corresponding neuron. Usually, all output
neurons have the same network input function (distance function) and the same
activation function (radial function) with the same (reference) radius σ .

The neighborhood relationship of the output neurons is usually defined by arrang-
ing these neurons into a (usually two-dimensional) grid. Examples of such grids are
shown in Fig. 7.1. Each dot stands for one output neuron. The lines connecting the
dots are meant to make the neighborhood structure more easily visible by indi-
cating the closest neighbors. The gray lines indicate a possible visualization of a
self-organizing map, which we study in more detail below.

However, the neighborhood relationship may also be missing, which is formally
represented by an extreme distance measure for the neurons: each neuron has the
distance 0 to itself and an infinite distance to all other neurons. By choosing this
distance measure the neurons become effectively independent.

If a neighborhood relationship is missing and the output is discretized (that is,
the output neuron with the highest activation produces output 1, all other neurons
produce output 0) a self-organizing map describes a so-called vector quantization
of the input space: the input space is divided into as many regions as there are output
neurons. This is achieved by assigning to an output neuron all points of the input
space for which the neuron yields the highest activation. If the distance and activation
functions are identical for all output neurons, we may also say: to an output neuron

Fig. 7.1 Examples for
arrangements of the output
neurons of a self-organizing
map. Each dot corresponds
to an output neuron. The
lines are meant to make the
neighborhood structure more
clearly visible
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Fig. 7.2 Voronoi diagram of a vector quantization of a two-dimensional region with ten reference
vectors. It depicts how the input space is divided by the reference vectors

all points of the input space are assigned that are closer to the neuron’s reference
vector than to the reference vector of any other output neuron. This “tessellation” into
regions can be represented by a so-called Voronoi diagram (Aurenhammer 1991),
as it is shown in Fig. 7.2 for two-dimensional inputs. The dots indicate the position
of the reference vectors, the lines the division into regions.

The neighborhood relationship of the output neurons constrains the vector quan-
tization. The objective is that reference vectors that are close to each other in the
input space belong to output neurons that have a small distance from each other.
That is, the neighborhood relationship of the output neurons is meant to reflect the
relative position of the corresponding reference vectors in the input space (at least
approximately). If this is the case, the self-organizing map describes a (quantized)
topology preserving map, that is, a map that (approximately) preserves the position
relationships between points (Greek τoπoς : position, location).

A well-known example of a topology preserving map is shown in Fig. 7.3, namely
the so-called Robinson projection of the surface of a sphere onto a plane, as it is
commonly used for world maps. Each point on the surface of a sphere (shown on the
left) is mapped to a point of an approximately oval shape (shown on the right). With
this map the position relationships between points are approximately preserved, even
though the ratio of the distances between two points in the projection to the distance
of its originals on the sphere is the larger, the farther these two points are from the

Fig. 7.3 Example of a topology preserving map: Robinson projection of the surface of a sphere
onto a plane, as it is commonly used for world maps
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equator of the sphere. Therefore this projection, if it is used for a world map, does
not always accurately reflect the actual distances between points on the surface of the
earth. Nevertheless it conveys a reasonably good impression of the relative location
of cities, countries, and continents.

Transferred to self-organizing maps the intersection points of the grid lines on the
sphere could indicate the position of the reference vectors in the input space, while
the intersection points of the grid lines in the projection indicate the position of the
output neurons and their neighborhood relationship. However, in this case the map
is quantized, since points inside the grid cells are mapped only discretely through
the reference vectors (although one may think about adding some interpolation).

The advantage of topology preserving maps is that they allow us to map high-
dimensional structures onto low-dimensional spaces. In particular, a map to a space
with only two or three dimensions is interesting, since then we can display the image
of the high-dimensional structure graphically. For this one exploits the cell structure
that is indicated in Fig. 7.1 by the gray lines. Obviously, this cell structure corre-
sponds to a Voronoi diagram in the space of the output neurons. To each of these
(two-dimensional) neuron Voronoi cells a (generally higher dimensional) cell of the
input space is mapped by the reference vector belonging to the corresponding output
neuron. Hence we can visualize the relative position of points in the input space by
finding the reference vector Voronoi cells in which they lie and then, for instance, col-
oring the corresponding neuron Voronoi cells. An even better impression is obtained
if one chooses a different color for each represented point and not only colors the
single neuron Voronoi cell, in whose corresponding reference vector Voronoi cell
the point lies, but colors all neuron Voronoi cells in such a way that the color satu-
ration represents the activation of the corresponding neuron. An example of such a
visualization can be found in Sect. 7.3.

7.2 LearningVector Quantization

In order to explain the training of self-organizing maps, we first neglect the neigh-
borhood relationship of the output neurons and thus confine ourselves to so-called
learning vector quantization (Kohonen 1986). The objective of this method is to
organize the data into clusters, similar to what we discussed for initializing radial
basis function networks in Sect. 6.3 on p. 101: with the help of c-means clustering
we tried to find good starting points for the centers of the radial basis functions. We
also mentioned that learning vector quantization is an alternative.

In both c-means clustering and learning vector quantization the individual clusters
are represented by a center (or a reference vector, but that is merely a different name
for center). This center is to be positioned in such a way that it lies roughly in the
middle of the data point cloud that constitutes the cluster. An example is shown in
Fig. 7.4: each group of data points (depicted as ◦) is assigned to a reference vector
(depicted as •). Thus the input space is divided—as indicated by the lines—in such
a way that each point cloud lies in its own Voronoi cell.

http://dx.doi.org/10.1007/978-1-4471-7296-3_6
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Fig.7.4 Clustering of data by learning vector quantization: each group of data points (◦) is assigned
to a reference vector (•)

The two methods mainly differ in how the cluster centers or the reference vectors
are adapted.While in c-means clustering the two steps of assigning the data points to
the clusters and recomputing the cluster centers as the center of gravity of the assigned
data points are alternatingly executed, learning vector quantization processes the data
points one by one and adapts only one reference vector per data point. The procedure
is known as competitive learning: the training patterns (data points) are traversed
one by one. For each training pattern a “competition” is carried out, which is won
by the output neuron that yields the highest activation for this training pattern (if
distance and activation functions are the same for all output neurons, we may say
equivalently: whose reference vector is closest to the training vector). Only this
“winner neuron” is adapted, namely in such a way that its reference vector is moved
closer to the training pattern. Hence the rule for adapting the reference vectors is

r (new) = r (old) + η
(
p − r (old)),

where p is the training pattern, r is the reference vector of the winner neuron for p
and η is a learning rate with 0 < η < 1. This rule is illustrated in Fig. 7.5 on the left:
the learning rate η determines by what fraction of the distance d = |p − r | between
reference vector and training pattern the reference vector is shifted.

Fig. 7.5 Adaptation of reference vectors (•) with a training pattern (◦), η = 0.4. Left attraction
rule, Right repulsion rule
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As for threshold logic units, multilayer perceptrons and radial basis function
networks we distinguish again between online training and batch training. In the
former the reference vector is adapted immediately and thus in the next step, that is,
when processing the next training pattern, the reference vector already has its new
position. In the latter (batch training) the changes are aggregated and the reference
vectors are adapted only at the end of an epoch, that is, after all training patterns
have been processed. Note that the batchmode of learning vector quantization is very
similar to c-means clustering: the assignment of the data points is clearly identical
since in the batch procedure the position of the reference vectors is constant during
an epoch. However, due to the learning the new position of the reference vector is
not necessarily the center of gravity of the assigned data points, but generally a point
between the old position and this center of gravity.

As an illustration, Fig. 7.6 shows the process of learning vector quantization for
the data points shown in Fig. 7.4 with online training on the left and batch training on
the right. Since only few epochs have been computed, the reference vectors have not
yet reached their final positions, which are shown in Fig. 7.4. However, it is already
clear that the desired clustering will finally be reached.

Up to now we used a constant learning rate η and merely required 0 < η < 1.
However, especially if online training is applied, a fixed learning rate can lead to
problems, as shown in Fig. 7.7 on the left. In this diagram a reference vector is
repeatedly adapted with four data points, which causes the reference vector to move
on a cyclic trajectory. The center of the four data points, which would be the desired
result, is never reached. In order to solve this problem, a time-dependent learning
rate is introduced, for instance,

η(t) = η0α
t , 0 < α < 1, or η(t) = η0t

κ , κ < 0.

This continuously decreasing learning rate turns the cyclic movement into a spiral
that leads into the center (as desired), see Fig. 7.7 on the right. As a consequence,
the desired destination of the reference vector is finally reached.

Although a time-dependent learning rate guarantees that the procedure converges,
one should keep in mind that the learning rate must also not decrease too quickly,

Fig. 7.6 Learning vector quantization for the data points shown in Fig. 7.4 with three reference
vectors that start in the upper left corner. Left online training with learning rate η = 0.1, Right batch
training with learning rate η = 0.05
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Fig. 7.7 Adaptation of a reference vector with four training patterns. Left constant learning rate
η(t) = 0.5, Right decreasing learning rate η(t) = 0.6 · 0.85t . In the first step it is t = 0

because otherwise the procedure may end in what is often called “starvation.” That
is, the adaptation steps become very small very quickly, so that the reference vectors
never reach their natural destinations or may not even get close to them. On the other
hand, the learning rate should not decrease too quickly, because then the learning
process may converge only very slowly. As we already sawwith other network types,
choosing a proper learning rate is a difficult problem.

Although their main purpose is to find groups of data points, learning vector
quantization can be applied not only for clustering, that is, to solve a free learning
task. It can be extended in such away that it takes classes into account that are assigned
to the data points. In thiswayfixed learning tasksmay be solved, at least such learning
tasks in which the desired output comes from a finite set of values (classes). To this
end the output neurons—and thus the reference vectors—are endowed with class
labels and the adaptation rule is split into two types. If the class of the data point
and the class of (the reference vector of) the winner neurons coincide, the attraction
rule is applied, which is identical to the rule considered above:

r (new) = r (old) + η
(
p − r (old)).

That is, the reference vector is moved toward the training pattern (in other words: it
is “attracted” by the training pattern). However, if the classes of the data point and
the reference vector differ, the repulsion rule is applied:

r (new) = r (old) − η
(
p − r (old)).

That is, the reference vector is moved away from the training pattern (in other words:
it is “repelled” by the training pattern), see Fig. 7.5 on the right. In this way the
reference vectors move toward groups of data points that carry the same class label
as they do themselves. A trained vector quantization yields for a new input vector
to classify the class that is assigned to the output neuron with the highest activation
(nearest prototype classifier if all distance and radial functions are identical).

Improved versions of learning vector quantization for fixed learning tasks do not
only adapt the one reference vector that is closest to the current data point, but the
two closest reference vectors (Kohonen 1990, 1995). Let r j and rk be these two
closest reference vectors. They are adapted if the classes c j and ck assigned to them
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differ, but one of them coincides with the class z of the data point p. Without loss of
generality we assume that ck = z. Then the adaptation rules read

r (new)
j = r (old)

j + η
(
p − r (old)

j

)
and

r (new)
k = r (old)

k − η
(
p − r (old)

k

)
.

All other reference vectors remain unchanged. However, if the classes c j and ck of
the two closest reference vectors coincide (independent of whether they also coincide
with the class z of the data point or not), no reference vector is adapted. These rules
often yield good nearest prototype classifiers (Kohonen 1990).

Unfortunately, though, it was observed in practical tests that this version of learn-
ing vector quantization tends, in certain situations, to drive the reference vectors
further and further apart instead of leading to a stable convergence. In order to
counteract this clearly undesirable behavior (Kohonen 1990) introduced a so-called
window rule into the adaptation: the reference vectors are adapted only if the data
point p lies close to the classification border, that is, close to the (hyper-)surface,
which separates regions in which different classes are predicted. The somewhat
vague notion “close” is made formally precise by requiring

min

(
d(p, r j )
d(p, rk)

,
d(p, r j )
d(p, rk)

)
> θ, with θ = 1 − ξ

1 + ξ
.

Here ξ is a parameter that has to be chosen by a user. Intuitively, ξ describes the
“width” of the window around the classification border in which a data point p
has to lie in order to cause an adaptation of reference vectors. This rule prevents a
divergence of the reference vectors, because the adaptations caused by a data point
stop as soon as the classification border is far enough away.

One has to concede, though, that this window rule is not particularly intuitive and
thus that it is desirable if one could dowithout it. This is indeed possible if one derives
the adaptation rule for the reference vectors with a gradient descent approach for a
specific objective function (Seo and Obermayer 2003). This approach starts from the
assumption that the probability distribution of the data points for each class can be
described sufficiently well by a mixture of (multidimensional) normal distributions.
That is, each class consists of multiple clusters, each of which is covered by one
normal distribution. Furthermore it is assumed that all of these normal distributions
have fixed and equal standard deviations σ . Intuitively, this means that all clusters
have the same size and a (hyper-)spherical shape. Finally, it is assumed that all clusters
are equally likely, that is, that all clusters comprise (roughly) the same number of
data points. With these restrictions only the distance of a data point from a reference
vector decides how it is classified.

The adaptation procedure is derived from a maximization of an objective function
that describes the probability that a data point is correctly classified. That is, one
tries to maximize the so-called likelihood ratio. As we show below, the attraction
rule considered above thus results from maximizing the posterior probability of
the correct class (that is, the true class that is assigned to a data point), while the
repulsion rule is a consequence of minimizing the posterior probability of a wrong
class (Seo and Obermayer 2003). Formally, we execute a gradient descent on the
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maximum likelihood ratio. Starting from the assumptions made above, we obtain
for the likelihood ratio (or rather its natural logarithm, which simplifies handling the
normal distributions)

ln L ratio =
n∑
j=1

ln
∑

i∈I (z j )
exp

(
− (p j − ri )�(p j − ri )

2σ 2

)

−
n∑
j=1

ln
∑

i /∈I (z j ))
exp

(
− (p j − ri )�(p j − ri )

2σ 2

)
,

where I (z) contains the indices of the reference vectors that are labeled as belonging
to class z. Note that the normalization factors, which appear in the well-known
formula for a normal distribution, cancel, since all clusters have the same standard
variation (or variance, respectively). In the same way the prior probabilities of the
different clusters cancel since we assumed that they are all the same.

From this objective function we obtain almost immediately as the online adapta-
tion rule for a gradient descent

r (new)
i = r (old)

i + η · ∇ri ln L ratio|r (alt)
i

= r (old)
i + η ·

{
u⊕ (old)
i j · (

p j − r (old)
i

)
if z j = ci ,

−u� (old)
i j · (

p j − r (old)
i

)
if z j �= ci ,

where ci is again the class that is assigned to the i th reference vector and z j the
class of the data point p j . The “membership degrees” u⊕

i j and u
�
i j , with which a data

point p j belongs to the cluster of the reference vector ri , are given by

u⊕ (old)
i j =

exp
(
− 1

2σ 2

(
p j − r (old)

i

)� (
p j − r (old)

i

))
∑

k∈I (z j )
exp

(
− 1

2σ 2

(
p j − r (old)

k

)� (
p j − r (old)

k

)) and

u� (old)
i j =

exp
(
− 1

2σ 2

(
p j − r (old)

i

)� (
p j − r (old)

i

))
∑

k /∈I (z j )
exp

(
− 1

2σ 2

(
p j − r (old)

k

)� (
p j − r (old)

k

)) .

The split into the two cases z j = ci (the class of the data point coincides with the
class of the reference vector) and z j �= ci (the reference vector and the data point
belong to different classes) results from the fact that each reference vector ri appears
in only one of the two sums: either its index i is in I (z j ), and then only the first sum
contributes, or its index is not in I (z j ), and then only the second sum contributes.
The denominators of the fractions result from the derivative of the natural logarithm.

Thus we obtained a scheme for a “soft” learning vector quantization, where “soft”
means that all reference vectors are adapted, but with different strength: all reference
vectors with the same class as the data point are “attracted”, while all reference
vectors with a different class are “repelled” (Seo and Obermayer 2003).
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A “hard” learning vector quantization can easily be derived from this scheme by
letting the standard deviations (or variances, respectively) that are assigned to the
reference vectors go to zero. In the limit we obtain a hard assignment

u⊕
i j = δi,k⊕( j), where k

⊕( j) = argmin
l∈I (z j )

d(p j , rl), and

u�
i j = δi,k�( j), where k

�( j) = argmin
l /∈I (z j )

d(p j , rl),

and δi,k is the Kronecker symbol (δi,k = 1, if i = k, and δi,k = 0 otherwise).
Note, however, that this scheme is not identical to the one discussed above, which

was proposed in (Kohonen 1990, 1995). While in Kohonen’s scheme the two closest
reference vectors are determined and adapted only if they are labeled with different
classes, this scheme always adapts two reference vectors, namely the one that is
closest among those that carry the same class label (this vector is attracted) and the
closest among those that carry a different class label (this vector is repelled). Note
that these two need not be the two closest ones among all reference vectors: although
one of them must be the closest overall, the second may be much farther away than
several other reference vectors.

An advantage of this approach is that it explains why sometimes diverging behav-
ior can be observed. (Details are beyond the scope of this book—an interested reader
should consult Seo and Obermayer 2003.) Furthermore, it suggests a method how
the divergence can be avoided without having to introduce a window rule. The idea
consists in a minor modification of the objective function (Seo and Obermayer 2003)
(cf. p. 123):

ln L ratio =
n∑
j=1

ln
∑

i∈I (z j )
exp

(
− (x j − ri )�(x j − ri )

2σ 2

)

−
n∑
j=1

ln
∑
i

exp

(
− (x j − ri )�(x j − ri )

2σ 2

)
.

Obviously, the difference consists only in the fact that the second sum now runs over
all reference vectors (and not only over those with a different class label than the
data point). That is, we no longer compare to the likelihood of seeing a data point
with a different class, but to the likelihood of seeing a data point at all. Again we
obtain an adaptation rule for a “soft” learning vector quantization:

r (new)
i = r (old)

i + ηr · ∇ri ln L ratio

= r (old)
i + ηr ·

⎧⎨
⎩

(
u⊕ (old)
i j − u (old)

i j

)
·
(
p j − r (old)

i

)
if z j = ci ,

− u (old)
i j ·

(
p j − r (old)

i

)
if z j �= ci .

(Note that this time the reference vectors that carry the correct class label occur in
both terms of the likelihood ratio, which explains the sum u⊕

i j − ui j in the first case.)
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The “membership degrees” u⊕
i j and ui j are given as

u⊕ (old)
i j =

exp
(
− 1

2σ 2

(
x j − r (old)

i

)� (
x j − r (old)

i

))
∑

k∈I (z j )
exp

(
− 1

2σ 2

(
x j − r (old)

k

)� (
x j − r (old)

k

)) and

u (old)
i j =

exp
(
− 1

2σ 2

(
x j − r (old)

i

)� (
x j − r (old)

i

))
∑
k

exp
(
− 1

2σ 2

(
x j − r (old)

k

)� (
x j − r (old)

k

)) .

A “hard” variant can again be obtained by letting the standard variations σ go to
zero. This leads to

u⊕
i j = δi,k⊕( j), where k

⊕( j) = argmin
l∈I (z j )

d(x j , rl), and

ui j = δi,k( j), where k( j) = argmin
l

d(x j , rl).

This adaptation rule is very similar to the one of (Kohonen 1990, 1995). Intuitively,
we can interpret it as follows: if the closest reference vector carries the same class
label as the data point, no adaptation is carried out. However, if the class of the closest
reference vector differs from the class of the data point, then this reference vector is
repelled, while the closest reference vector among those with the same class label
is attracted. In other words, the reference vectors are adapted only if a data point
would be classified wrongly by the closest reference vector. Otherwise the current
positions of the reference vectors are maintained.

For learning vector quantization with a time-dependent learning rate for classified
and unclassified training patterns (though only with batch training and without any
window rule or any of the improved adaptation rules) the web page

http://www.borgelt.net/lvqd.html

offers the programs wlvq (for Microsoft Windowstm) and xlvq (for Linux). With
them clusters can be found for two-dimensional data (selectable from a larger number
of dimensions) and the movement of the reference vectors can be followed.

7.3 Neighborhood of the Output Neurons

Up to nowwe neglected the neighborhood relationship of the output neurons: the ref-
erence vectors could move independently of each other. As a consequence, learning
vector quantization does not generally allow us to read anything from the (relative)
position of the output neurons about the (relative) position of the reference vectors.
In order to learn a topology preserving map in which the (relative) position of the
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output neurons reflects the (relative) position of the reference vectors, the neighbor-
hood relationship has to be respected in the training process. Only in this case one
calls the network a self-organizing map (Kohonen 1982, 1995).

Self-organizing maps are trained—like vector quantization—with competitive
learning. That is, the training patterns are visited one after the other and for each
training pattern the neuron is determined that yields the highest activation. In self-
organizing maps it is mandatory that all output neurons have the same distance
function and the same activation function. Thus we can definitely say here equiva-
lently: we find the output neuron, whose reference vector is closest to the training
pattern. This neuron is the “winner” of the competition.

However, in contrast to learning vector quantization not only the reference vector
of the winner neuron is adapted. At the end of training the reference vectors of
its neighbor neurons are supposed to be close to its reference vector. Hence the
neighboring reference vectors are adapted as well, though possibly less severely
than that of the winner neuron. In this way it is achieved that the reference vectors
of neighboring neurons cannot move arbitrarily far apart since they are adapted
analogously. Thus it can be expected that in the learning result neighboring output
neurons possess reference vectors that are close to each other in the input space.

Another important difference to learning vector quantization is that self-organiz-
ing maps are almost exclusively used for free learning tasks. Since prior to training
nothing is known about the relative position of different classes, it is difficult to
assign meaningful classes to the reference vectors. One may assign classes to the
output neurons after training is completed, though, namely by simply assigning the
class that is most frequent among the training patterns for which the output neuron
yields the highest activation. However, in this case the class information does not
influence the training of the map (and thus the position of the reference vectors).
Hence classifying data with the help of a self-organizing map that has been extended
in this way is not necessarily recommended. Such a class assignment may, however,
provide a good impression of the distribution and the relative position of different
classes in the input space and thus may be a useful analysis tool.

Since only free learning tasks can reasonably be handled, there is only one adapta-
tion rule for the reference vectors, which is analogous to the attraction rule discussed
in the preceding section. This rule reads

r (new)
u = r (old)

u + η(t) · fnb
(
dneurons(u, u∗), ρ(t)

) · (
p − r (old)

u

)
,

where p is the considered training pattern, ru is the reference vector of neuron u,
u∗ is the winner neuron, η(t) is a time-dependent learning rate and ρ(t) is a time-
dependent neighborhood radius. The variable dneurons measures the distance of output
neurons (cf. Definition 7.1 on p. 113), here specifically the distance of the neuron
to adapt from the winner neuron. (Since in a self-organizing map the neighbors of
the winner neuron are adapted as well, we can no longer restrict the adaptation rule
to the winner neuron.) How severely the reference vectors of other output neurons
can be adapted depends, according to this rule, via a function fnb (nb for neighbor)
on the distance of the neuron from the winner neuron and the size of the radius ρ(t)
that determines the neighborhood.
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The function fnb is a radial function, that is, it is of the same type as the functions
that we used to compute the activation of a neuron depending on the distance of a
training patterns from a reference vector (cf. Fig. 6.2 on p. 95). It assigns a number
between 0 and 1 to each output neuron, which depends on its distance to the winner
neuron1 and describes the strength of the adaptation of its reference vector relative
to the strength of the adaptation of the reference vector of the winner neuron. If
the function fnb is, for example, a rectangular function, then all output neurons
in a certain radius around the winner neuron are adapted with full strength, while
all other output neurons are left unchanged. Most commonly, however, a Gaussian
neighborhood function is used, so that the strength of the adaptation of the reference
vectors decays exponentially with the distance from the winner neuron.

A time-dependent learning rate is used for the same reasons as discussed for
learning vector quantization, namely to avoid update cycles. Therefore it can be
defined in the same way, for example, as

η(t) = η0α
t
η, 0 < αη < 1, or η(t) = η0t

κη , κη < 0.

Analogously a time-dependent neighborhood radius is defined, for instance, as

ρ(t) = ρ0α
t
ρ, 0 < αρ < 1, or ρ(t) = ρ0t

κρ , κρ < 0.

That the neighborhood radius decreaseswith time is reasonable, because then the self-
organizingmapcanproperly “unfold” in thefirst training steps (larger neighborhood),
while in later training steps (smaller neighborhood) the position of the reference
vectors is fitted more closely to the position of the training patterns.

As an example of a training process with the stated adaptation rule, we con-
sider a self-organizing map with 100 output neurons, which are arranged in a
square 10 × 10 grid. This map is trained with points that are chosen randomly
(uniform distribution) from the square [−1, 1] × [−1, 1]. The training procedure
is depicted in Fig. 7.8. All diagrams show the input space, with the frame indicating
the square [−1, 1] × [−1, 1]. The grid of the output neurons is projected into this
space by connecting, with a straight line, the reference vector of an output neuron
to the reference vectors of its immediate neighbors. The top left diagram shows
the situation directly after the reference vectors have been initialized with random
weights from the interval [−0.5, 0.5]. Due to the randomness of the initialization the
(relative) position of the reference vectors is completely independent of the (relative)
position of the output neurons, so that no grid structure can be discerned.

The following diagrams (first the top row from left to right, then the bottom row
from left to right) show the state of the self-organizing map after 10, 20, 40, 80, and
160 training steps (in each training step one training pattern is processed; learning
rate η(t) = 0.6 · t−0.1, Gaussian neighborhood function fnb, neighborhood radius
ρ(t) = 2.5 · t−0.1). These diagrams show nicely how the self-organizing map slowly
“unfolds” and thus adjusts itself to the input space. That the grid structure becomes

1Note that the distance is computed from the grid, in which the output neurons are arranged, and
not from the position of the reference vectors or the distance measure in the input space.

http://dx.doi.org/10.1007/978-1-4471-7296-3_6
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Fig.7.8 Unfolding of a self-organizingmap trainedwith randompatterns from the square [−1, 1] ×
[−1, 1] (indicated by the frames). The lines connect the reference vectors of neighboring neurons

Fig. 7.9 Coloring of the training steps of the self-organizing map shown in Fig. 7.8 for the input
pattern (−0.5,−0.5) using a Gaussian activation function

visible demonstrates how the arrangement of the output neurons is transferred to the
arrangement of the reference vectors in the input space.

For the same example Fig. 7.9 shows a way to visualize a self-organizing map,
which we mentioned in Sect. 7.1. All diagrams show the grid structure of the output
neurons (not the input space as in Fig. 7.8). Each neuron is represented by a small
square (cf. Fig. 7.1 on p. 114). The shades of gray encode the activation of the out-
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put neurons if the pattern (−0.5,−0.5) is fed into the network (Gaussian activation
function): the darker a square, the higher the activation. With this representation
the training can also be followed well. After the initialization the heavily activated
neurons are still randomly distributed on the map. However, the further training pro-
ceeds, the better they group together. Note the activation structures after 20 training
patterns (3. diagram) and after 40 training patterns (4. diagram) and compare them
to the corresponding diagrams of the self-organizing map in the input space shown
in Fig. 7.8: since in these phases the map is not well unfolded on the left side, many
neurons on the left are strongly activated.

The example we just studied shows an almost ideal training process of a self-
organizing map. After only few training steps the map is already unfolded and very
well adapted to the training patterns. Further training stretches the map somewhat
more, until it covers the region of the training patterns almost uniformly (even though
the projection of the neuron grids, as can easily be worked out, can never reach the
edges of the square [−1, 1] × [−1, 1]).

However, training is not always so successful. If, by accident, themap is initialized
in an unfavorable way, and particularly if the learning rate or the neighborhood radius
are chosen too small or decrease too quickly, “twisted” maps can result. An example
of the result of a training process that failed in this way is shown for the square
example in Fig. 7.10. The map did not properly unfold. The corners of the unit
square have been assigned “wrongly” to the corners of the grid, so that the middle
of the map exhibits a kind of “knot.” In general, such a twist cannot be amended,
regardless of how long training is continued. However, most of the time it can be
avoided by starting with a large learning rate and particularly a large neighborhood
radius (in the order of the grid side length of the self-organizing map).

In order to illustrate the dimension reduction that can be achieved with a (quan-
tized) topology preserving map, as it is implemented by a self-organizing map,
Fig. 7.11 shows the projection of the neuron grid of a self-organizing map with
10 × 10 output neurons into a three-dimensional input space. The map shown on the
left was trained with random points from a rotated parabola, the map in the middle
with random points from a binary cubic function, and the map on the right with
random points from the surface of a sphere. Since in these cases the input space is
actually two-dimensional (all training patterns lie on, though curved, surfaces), a
self-organizing map can adjust very well to the training patterns.

Fig. 7.10 If the initialization
is unfavorable or the learning
rate or the neighborhood is
too small, the result can be a
twisted map
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(c)(b)(a)

Fig. 7.11 Self-organizing maps that were trained with random points on a a rotated parabola, b a
cubic function, c the surface of a sphere

As a further illustration of the training of self-organizing maps the web page

http://www.borgelt.net/somd.html

provides the programs wsom (for Microsoft Windowstm) and xsom (for Linux).
With these programs a self-organizing map with a square grid can be trained with
points that are chosen randomly from certain two-dimensional regions (a square,
a circle, or a triangle) or three-dimensional surfaces (e.g., surface of a sphere or a
rotated parabola). Figures7.8, 7.10, and 7.11 show training processes and training
results that were obtained with these programs.

With these programs it can also be studied what happens if the training patterns
truly have a higher dimensional structure, so that it is not possible to map them onto
a two-dimensional grid with only little loss. As an example, one may train with
one of these programs a self-organizing map with at least 30 × 30 output neurons
for training patterns that are randomly selected from a cube (volume, not surface).
The self-organizing map will be folded in several places in order to fill the space as
uniformly as possible. Although self-organizing maps are still useful in such cases,
one has to pay attention to the fact that due to the folds it may happen that an input
pattern activates output neurons, which are fairly far away from each other in the
grid structure of the map, simply because they lie on the two sides of a fold.
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8HopfieldNetworks

In the preceding Chaps. 5 to 7 we studied so-called feed forward networks. that is,
networks with an acyclic graph (no directed cycles). In this and the next chapter,
however, we turn to so-called recurrent networks, that is, networks, the graph of
which may contain (directed) cycles. We start with one of the simplest forms, the
so-called Hopfield networks (Hopfield 1982, 1984), which originated as physical
models to describe magnetism. Hopfield networks are indeed closely related to the
Ising model of magnetism (Ising 1925) (see below).

8.1 Definition and Examples

Definition 8.1 A Hopfield network is a neural network with a graph G = (U,C)

that satisfies the following conditions:

1. Uhidden = ∅, Uin = Uout = U ,
2. C = U ×U − {(u, u) | u ∈ U }.

The connection weights are symmetric, that is, we have ∀u, v ∈ U, u �= v : wuv =
wvu . The network input function of each neuron u is the weighted sum of the outputs
of all other neurons, that is,

∀u ∈ U : f (u)
net (wu, inu) = wu inu =

∑
v∈U−{u}

wuvoutv.

The activation function of each neuron u is a threshold function

∀u ∈ U : f (u)
act (netu, θu) =

{
1 if netu ≥ θu,

−1 otherwise.

The output function of each neurons is the identity, that is,

∀u ∈ U : f (u)
out (actu) = actu .
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Note that there are no loops in a Hopfield network, that is, no neuron receives
its own output as input. All feedback loops run through other neurons: a neuron u
receives the outputs of all other neurons as its input and all other neurons receive the
output of the neuron u as input.

The neurons of a Hopfield network work exactly like the threshold logic units
that we studied in Chap.3: depending on whether the weighted sum of the inputs
exceeds a threshold θu or not, their activation is set to 1 or −1. Although in Chap.3
the inputs and activations usually had the values 0 and 1, we mentioned in Sect. 3.6
the ADALINE variant that uses the values−1 and 1 instead. Section10.3 shows how
the two versions can be transformed into each other.

Sometimes the activation function of the neurons of a Hopfield network is defined,
drawing on the old activation actu , as follows:

∀u ∈ U : f (u)
act (netu, θu, actu) =

⎧⎨
⎩

1 if netu > θu,

−1 if netu < θu,

actu if netu = θu .

This is certainly advantageous for the physical interpretation of a Hopfield network
(see below) and also simplifies a proof which we present in the next section. Never-
theless we stick to the definition given above because it has other advantages.

To carry out the computations in this section it is beneficial to represent the
connection weights in a weight matrix (cf. also Chaps. 4 and 5). In order to do
so, we set the missing weights wuu = 0 (feedback loops of a neuron to itself), as
this is, due to the special network input function of Hopfield neurons, equivalent
to a missing connection. Because of the symmetric weights the weight matrix is
obviously symmetric (that is, it is equal to its transpose) and because of the missing
feedback loops of neurons to themselves its diagonal is 0. That is, a Hopfield network
with n neurons u1, . . . , un can be described by the n × n matrix

W =

⎛
⎜⎜⎜⎝
0 wu1u2 . . . wu1un
wu1u2 0 . . . wu2un
...

...
...

wu1un wu2un . . . 0

⎞
⎟⎟⎟⎠ .

As a first example for a Hopfield network we consider the network with two
neurons that is shown in Fig. 8.1. The weight matrix of this network is

W =
(
0 1
1 0

)
.

Fig. 8.1 A simple Hopfield
network that can oscillate if
the activations of the two
neurons are updated in
parallel, but reaches a stable
state if the neurons are
updated alternatingly

0

0

u1

u2

1 1

x1

x2

y1

y2

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_3
http://dx.doi.org/10.1007/978-1-4471-7296-3_10
http://dx.doi.org/10.1007/978-1-4471-7296-3_4
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Both neurons have the threshold 0. Like we did for the threshold logic units studied
in Chap.3, we write this threshold into the circle that represents the corresponding
neuron. A second example of a simple Hopfield network is shown in Fig. 8.2. The
weight matrix of this network is

W =
⎛
⎝ 0 1 2
1 0 1
2 1 0

⎞
⎠ .

Again all neurons have threshold 0. This example shows that the large number of
connections can make a graphical representation difficult to read. In order to obtain
a simpler representation, we exploit that every neuron is both input as well as output
neuron. Therefore we need not draw input and output arrows explicitly, since these
only serve the purpose to point out the input and output neurons. Furthermore we
know that the weights must be symmetric. Hence we can combine the connections of
two neurons into a double arrow, which is labeled only once with the corresponding
weight. Thus we reach the representation shown in Fig. 8.3.

Let us now turn to the computations of a Hopfield network. We start with the
Hopfield network with two neurons shown in Fig. 8.1. We assume that this network
is fed with the values x1 = −1 and x2 = 1. This means that in the input phase
the activation of the neuron u1 is set to −1 (i.e., actu1 = −1) and the activation of
the neuron u2 is set to 1 (i.e., actu2 = 1). This is in no way different from how we
always proceeded up to now (according to the general description of the operation

Fig. 8.2 A simple Hopfield
network with three
neurons u1, u2 and u3 (from
top to bottom)

0

0

0

x1 y1

x2 y2

x3 y3

1 1

1 12

2

Fig. 8.3 Simplified
representation of the
Hopfield network shown in
Fig. 8.2 that exploits the
symmetry of the weights
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0

0

u1

u3

u22

1

1

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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Table 8.1 Computations of the Hopfield network shown in Fig. 8.1 for the inputs x1 = −1 and
x2 = 1 if the activations are updated in parallel

Table 8.2 If the activations of the neurons of the Hopfield network shown in Fig. 8.1 are updated
alternatingly, a stable state is reached. The result depends, though, on which neuron is updated first

of a neuron, as it was given in Sect. 4.2). However, due to the cycle in the graph that
underlies this network, we face the question how the activations of the neurons are
to be recomputed in the work phase. Up to now there was no need to consider this
question because in a feed forward network the update order is irrelevant: regardless
of the order in which the neurons recompute their activation and output, we always
obtain the same result. However, as we know from the example discussed in Sect. 4.2
(see p. 40), in a network with cycles the result can depend on the order in which the
activations of the neurons are updated.

We try first to update the activations synchronously (at the same time, in parallel).
That is, we compute the new activations and new outputs of both neurons from their
old outputs. This leads to the computations shown in Table8.1. Obviously, no stable
activation state is reached, but the network oscillates between the states (−1, 1)
and (1,−1). However, if we update the activations asynchronously, that is, if we
update the activation and output only for one neuron at a time and already use the
new output in subsequent updates (of other neurons), the network always reaches a
stable state. As an illustration Table8.2 shows the two possible update sequences, in
which both neurons are updated alternatingly. In both cases a stable state is reached.
However,which state is reached depends onwhich neuron is updated first.Arguments
of symmetry easily show that for any other inputs one of these two stable states is
reached as well.

A similar observation can be made for the Hopfield network with three neurons
that is shown in Fig. 8.2. If the input pattern (−1, 1, 1) is fed into the network, a
synchronous update of the neurons lets the network oscillate between the states

http://dx.doi.org/10.1007/978-1-4471-7296-3_4
http://dx.doi.org/10.1007/978-1-4471-7296-3_4
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Fig. 8.4 State graph of the
Hopfield network shown in
Fig. 8.2. The arrows are
labeled with the neurons, an
update of which causes the
corresponding state
transition. The two stable
states are drawn in gray
(color figure online)
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(−1, 1, 1) and (1, 1,−1), while an asynchronous update leads either to the stable
state (1, 1, 1) or to the stable state (−1, −1, −1).

For any other inputs one of the same two stable states is finally reached as well,
regardless of the order we choose to update the neurons. This is most easily seen
with the help of a state graph as it is shown in Fig. 8.4. Each state (that is, each
combination of activations of the neurons) is represented by an ellipse, into which
the signs of the activations of the three neurons u1, u2, and u3 are written (from left to
right). The arrows between the states are labeled with the neuron, an update of which
causes the corresponding state transition. Since for each state the caused transitions
are stated for an update of each of the three neurons, we can easily read from this
graph which state sequences are traversed for any order in which the activations of
the neurons are updated. It is easy to check that finally one of the two stable states
(+1, +1, +1) or (−1, −1,−1) will be reached.

8.2 Convergence of the Computations

As we saw from the examples of the preceding sections, the network may oscillate
between different activation states if the activations of the different neurons are
updated synchronously. However, if we update them asynchronously, a stable state
is always reached in these examples. Indeed, one can show that an asynchronous
update of the activations cannot lead to oscillations and must lead to a stable state.

Theorem 8.1 (Convergence Theorem for Hopfield Networks)
If the activations of the neurons of a Hopfield network are updated asynchronously,
a stable state is reached in a finite number of steps. If the neurons are traversed in an
arbitrary, but fixed cyclic fashion, at most n ·2n steps (updates of individual neurons)
are needed, where n is the number of neurons of the network.
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Proof This theorem is provenwith amethod that onemay call (in analogy to Fermat’s
method of infinite descent) the method of finite descent. We define a function that
maps every state of aHopfield network to a real-valued number,which is reducedwith
every state transition or at least stays the same. This function is commonly called
the energy function of the Hopfield network. The number this function maps an
activation state to is called the energy of this state. (The reason for these names stems
from the physical interpretation of a Hopfield network, since the energy function
corresponds to the Hamilton operator that describes the energy of the magnetic field;
see below). By drawing on an additional insight in case of a transition that leaves the
state energy unchanged, we can easily show that a state, once it has been left, can
never be reached again. Since a Hopfield network possesses only a finite number of
possible states, we must reach a situation in which further transitions cannot descend
any further and thus a stable state must be reached.

The energy function of a Hopfield network with n neurons u1, . . . , un is

E = −1

2
act�Wact + θ T act,

where the vector act = (actu1, . . . , actun )
� describes the activation state of the

network, W is the weight matrix of the Hopfield network and θ = (θu1 , . . . , θun )
�

collects the thresholds of the neurons in a vector. If it is spelled out with individual
connection weights, this energy function reads

E = −1

2

∑
u,v∈U,u �=v

wuv actu actv +
∑
u∈U

θu actu .

In this form we can easily understand the reason for the factor 1
2 in front of the first

sum. Due to the symmetry of the weights, every term in the first sum occurs twice,
which is compensated by the factor 1

2 .
We now show that the energy cannot increase in a state transition caused by

updating a neuron. Since the neurons are updated asynchronously, a state transition
means updating the activation of only one neuron u.We assume that due to this update
it changes its activation from act(old)u to act(new)

u . The difference of the energy of the
old and the new activation state consists of all terms that contain the activation actu .
All other terms cancel because they are contained in both the old and the new energy.
Hence we have

ΔE = E (new) − E (old) =
(

−
∑

v∈U−{u}
wuv act

(new)
u actv +θu act

(new)
u

)

−
(

−
∑

v∈U−{u}
wuv act

(old)
u actv +θu act

(old)
u

)
.

The factor 1
2 vanishes because of the symmetry of the weights, due to which every

term of the sum occurs twice. From the above sums we can extract the new and the
old activation of the neuron u and thus reach

ΔE =
(
act(old)u − act(new)

u

) ( ∑
v∈U−{u}

wuv actv

︸ ︷︷ ︸
= netu

−θu

)
.
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We now have to distinguish two cases. If netu < θu , then the second factor is less
than 0. In addition, it is act(new)

u = −1, and since we assumed that the activation
changed due to the update, we know act(old)u = +1. Therefore the first factor is
greater than 0 and hence ΔE < 0. However, if netu ≥ θu , then the second factor is
no less than 0. In addition, we have act(new)

u = +1, which implies act(old)u = −1. It
follows that the first factor is less than 0 and hence ΔE ≤ 0.

If a state transition reduced the energy, the original state cannot be reached any-
more, because this would require an (impossible) energy increase. However, the
second case allows for transitions that keep the energy constant. Hence we have to
exclude the possibility of cycles of states having the same energy. Fortunately, such
a transition increases the number of +1 activations (because it can occur only if
the activation of the updated neuron changed from −1 to +1, see above). Therefore
the original state cannot be reached again in this situation either. As a consequence,
every state transition reduces the number of reachable states, and since there are only
finitely many states, we must finally reach a stable state.

It should be noted that the additional criterion (number of +1 activations) is not
needed if the activation function is defined as stated on p. 132 as an alternative,
that is, if the old activation is maintained if the network input coincides with the
threshold. In this case the activation only changes from −1 to +1 if netu > θu . As
a consequence we obtain for the second case ΔE < 0 as well and therefore it is
sufficient to study the behavior of the energy of the Hopfield network.

We remark here also that it is only guaranteed that the computations converge to
a state of (locally) minimal energy if no neurons are excluded from updates of their
activation after a certain point in time. Otherwise we could update, for instance, the
same neuron over and over again, which does not cause the current activation state to
be left. That no neuron is excluded from an activation update is certain if the neurons
are updated in an arbitrary, but fixed cyclic order. In this case we can derive the
following corollary: either a traversal of all neurons did not change any activation.
Then we obviously reached a stable state. Or at least one activation changed. Then
(at least) one of the 2n possible activation states (n neurons, each with two possible
activations) has been excluded, since the old state cannot be reached again as we
proved above. Therefore a stable state must be reached after at most 2n traversals of
the neurons, that is, after at most n · 2n updates of neuron activations.

The energy function we introduced in the proof of the above theorem plays an
important role in the following. Therefore, but also to illustrate the above theorem,
we consider it for the example of the simple Hopfield network shown in Fig. 8.2. The
energy function of this network is

E = − actu1 actu2 −2 actu1 actu3 − actu2 actu3 .

If we arrange the activation states of this network (cf. Fig. 8.4) according to their
energy, discarding the (self-)loops and the edge labels for reasons of clarity, we
obtain Fig. 8.5, in which the two stable states are clearly visible as the two states
with the lowest energy. Note that there are no transitions from a state lower in the
diagram to a state higher up in the diagram, whichwould correspond to an increase of
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Fig. 8.5 (Simplified) state
graph of the Hopfield
network shown in Fig. 8.2, in
which the states are arranged
according to their energy.
The two stable states are
shown in gray (color figure
online)
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Fig. 8.6 A Hopfield network
with three neurons and
nonvanishing thresholds
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energy. Note also that all transitions between states having the same energy increase
the number of +1 activations. This illustrates the arguments of the above proof.

It is, of course, not necessary that the state graph is as highly symmetric as this,
even if the network exhibits a lot of strong symmetries. As an example we consider
the Hopfield network shown in Fig. 8.6. Even though this network has essentially
the same symmetry structure as the one shown in Fig. 8.3, it possesses, due to the
nonvanishing thresholds, a very different state graph. Here we only study the form
in which the states are arranged according to the energy function

E = 2 actu1 actu2 −2 actu1 actu3 +2 actu2 actu3 − actu1 − actu2 − actu3

of this network. This state graph is shown in Fig. 8.7. Note that the asymmetries of
this graph are basically the effect of the nonvanishing thresholds.

To conclude this section we remark that the energy function of a Hopfield network
establishes the connection to physics, which we already mentioned at the beginning
of this chapter. In physics, Hopfield networks are used as (microscopic) models
of magnetism based on the relations between physical and neural notions that are
shown in Table8.3. More specifically, a Hopfield network corresponds to the so-
called Ising model of Magnetism (Ising 1925). This physical analogy also provides
(another) reason why the activation function of the neurons of a Hopfield network is
sometimes defined in such a way that the neuron does not change its activation if its
network input equals its threshold (see p. 132): if the effects of the external magnetic
field and the magnetic coupling of the atoms cancel, the atom should maintain its
magnetic moment.
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Fig. 8.7 (Simplified) state
graph of the Hopfield
network shown in Fig. 8.6, in
which the states are arranged
according to their energy.
The two stable state are
drawn in gray. Note that the
energy scale is broken
between −1 and −7 and thus
the bottom state lies actually
much further down (color
figure online)
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Table 8.3 Physical interpretation of a Hopfield network as a (microscopic) model of magnetism
(Ising model, Ising 1925)

Physical Neural

Atom Neuron

Magnetic moment (spin) Activation state

Strength of the external magnetic field Threshold

Magnetic coupling of the atoms Connection weights

Hamilton operator of the magnetic field Energy function

8.3 Associative Memory

Hopfield networks are very well suited to implement so-called associative memory,
that is, a kind of memory that is addressed by its contents. If a pattern is presented to
an associative memory, the memory returns whether this pattern coincides with one
of the stored patterns. This coincidence need not be exact. An associative memory
may also return a stored pattern that is as similar as possible to the presented pattern.
In this way “noisy” input patterns may be recognized as well.

Hopfield networks are employed as associative memory by exploiting their stable
states, of which one is eventually reached in the work phase. If we determine the
weights and the thresholds of a Hopfield network in such a way that the patterns to
store are exactly the stable states, the normal update procedure of a Hopfield network
finds for any input pattern a similar stored pattern. In this way “noisy” patterns may
be corrected or disturbed patterns may still be recognized.

In order to simplify the following computations, we start by considering how a
single patternp = (actu1 , . . . , actun )

� ∈ {−1, 1}n , n ≥ 2, can be stored in aHopfield
network. To this end we have to determine the weights and the thresholds in such
a way that the pattern becomes a stable state (also: an attractor) of the Hopfield
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network. Therefore we need to ensure

S(Wp − θ) = p,

where W is the weight matrix of the Hopfield network, θ = (θu1 , . . . , θun )
� is the

threshold vector and S is a function

S : Rn → {−1, 1}n,
x 
→ y,

where the vector y is determined by

∀i ∈ {1, . . . , n} : yi =
{

1 if xi ≥ 0,
−1 otherwise.

That is, the function S is a kind of element-wise threshold function.
If we set θ = 0, that is, if we choose all thresholds to be 0, a suitable matrix W

can easily be found, since it obviously suffices if

Wp = cp with c ∈ R
+

holds. Algebraically: we have to find a matrix W that possesses w.r.t. p a positive
eigenvalue c.1 We choose now

W = pp T − E

with the n×n unit matrixE. The term pp T is the so-called outer product (ormatrix
product) of the vector p with itself. It yields a symmetric n × n matrix. The unit
matrix E has to be subtracted from this matrix in order to ensure that the diagonal of
the weight matrix becomes 0, since there are no (self-)loops in a Hopfield network.
With this matrixW we have for the pattern p :

Wp = (pp T )p − Ep︸︷︷︸
=p

(∗)= p (p Tp )︸ ︷︷ ︸
=|p |2=n

−p

= np − p = (n − 1)p.

The equality (∗) holds, because matrix and vector multiplications are associative
and thus we may change the order of the operations (in other words: may place the
parentheses in the expressions differently). In this form we first have to compute the
inner product (or scalar product) of the vector pwith itself. This yields its squared
length. Since we know that p ∈ {−1, 1}n , we derive that p Tp = |p |2 = n. Because
we assumed n ≥ 2, it is c = (n − 1) > 0, as required. Therefore the pattern p is a
stable state of the Hopfield network.

If we write the computations with individual weights, we obtain:

wuv =

⎧⎪⎨
⎪⎩

0 if u = v,

1 if u �= v, act(p)u = act(p)v ,

−1 otherwise.

1In linear algebra one usually studies the inverse problem, that is, given a matrix, one tries to find
the eigenvalues and eigenvectors.
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This rule is also known as the Hebbian learning rule (Hebb 1949). Originally, this
rule was derived from a biological analogy: the connection between two neurons that
are synchronously active is strengthened (“cells that fire together, wire together”).

Note, however, that with this method the pattern −p, which is complementary to
the pattern p, becomes a stable state as well. The reason is that with

Wp = (n − 1)p we also have W(−p ) = (n − 1)(−p ).

Unfortunately, it is impossible to avoid that the complementary pattern is also stored.
Ifmultiple patternsp1, . . . , pm ,m < n, are to be stored, we determine amatrixWi

for each patternpi in theway described above. TheweightmatrixW is then computed
as the sum of these matrices, that is,

W =
m∑
i=1

Wi =
(

m∑
i=1

pip T
i

)
− mE.

If the patterns to be stored are pairwise orthogonal (that is, if the corresponding
vectors are perpendicular to each other), we have with this matrixW for an arbitrary
pattern p j , j ∈ {1, . . . ,m}:

Wp j =
m∑
i=1

Wip j =
(

m∑
i=1

(pip T
i )p j

)
− m Ep j︸︷︷︸

=pj

=
(

m∑
i=1

pi (p T
i p j )

)
− mpj

Since we assumed that the patterns are pairwise orthogonal, it is

p T
i p j =

{
0 if i �= j,
n if i = j,

because the scalar product of orthogonal vectors vanishes, while the scalar product
of a vector with itself yields the squared length of the vector. This length equals n
because p j ∈ {−1, 1}n (see above). Therefore we obtain

Wp j = (n − m)p j ,

and hence p j is a stable state of the Hopfield network ifm < n. Note that in this case
the pattern −p j , which is complementary to the pattern p j is again a stable state as
well, since due to

Wp j = (n − m)p j we also have W(−p j ) = (n − m)(−p j ).

Although we can choose n pairwise orthogonal vectors in an n-dimensional space,
this method allows to store only n− 1 patterns (and their complements), because we
have to satisfy n − m > 0 (see above). Compared to the number of possible states
(2n , since we have n neurons with two possible states each) the storage capacity of
a Hopfield network is fairly small.
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If the patterns are not pairwise orthogonal, as it is often the case in practice, we
have for an arbitrary pattern p j , j ∈ {1, . . . ,m}:

Wp j = (n − m)p j +
m∑
i=1
i �= j

pi (p T
i p j )

︸ ︷︷ ︸
“disturbance term”

.

Now the statep j maybe stable nevertheless, namely ifn−m > 0 and the “disturbance
term” is sufficiently small. This is the case if the patterns pi are “approximately”
orthogonal, because then the scalar products p T

i p j are small. Clearly, the larger the
number of patterns to store, the smaller this disturbance term must be, because a
growing m means a reducing n − m, which makes the state more “susceptible” to
disturbances. Hence in practice the theoretical limit for the storage capacity of a
Hopfield network is never reached.

To illustrate the discussed method, we determine the weight matrix of a Hopfield
network with four neurons that stores the two patterns p1 = (+1, +1, −1, −1)� and
p2 = (−1, +1,−1, +1)�. It is

W = W1 + W2 = p1p T
1 + p2p T

2 − 2E

with the individual matrices

W1 =

⎛
⎜⎜⎝

0 1 −1 −1
1 0 −1 −1

−1 −1 0 1
−1 −1 1 0

⎞
⎟⎟⎠ , W2 =

⎛
⎜⎜⎝

0 −1 1 −1
−1 0 −1 1
1 −1 0 −1

−1 1 −1 0

⎞
⎟⎟⎠ .

The weight matrix of the Hopfield network thus reads

W =

⎛
⎜⎜⎝

0 0 0 −2
0 0 −2 0
0 −2 0 0

−2 0 0 0

⎞
⎟⎟⎠ .

It is easy to check that with this matrix we have

Wp1 = (+2, +2,−2,−2)� and Wp1 = (−2,+2, −2,+2)�.

Therefore both patterns are indeed stable states. However, their complements—that
is, the patterns−p1 = (−1, −1, +1, +1) and−p2 = (+1, −1, +1, −1)—are stable
states as well, as an analogous computation shows.

Another possibility to determine the parameters of a Hopfield network consists of
mapping the network to a threshold logic unit, which is then trainedwith the delta rule
(Rojas 1996). This approach works as follows: if a pattern p = (act(p)u1 , . . . , act(p)un ) ∈
{−1, 1}n is to be a stable state of a Hopfield network, the following n equations must
hold

s(0 + wu1u2 act
(p)
u2 + . . . + wu1un act

(p)
un − θu1) = act(p)u1 ,

s(wu2u1 act
(p)
u1 + 0 + . . . + wu2un act

(p)
un − θu2) = act(p)u2 ,

...
...

...
...

...

s(wunu1 act
(p)
u1 + wunu2 act

(p)
u2 + . . . + 0 − θun ) = act(p)un .
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Here s is the usual threshold function

s(x) =
{

1 if x ≥ 0,
−1 otherwise.

For trainingwe transform theweightmatrix into aweight vector, namelyby traversing
the rows of the upper triangle of thematrix (excluding the diagonal; the lower triangle
is neglected, because theweights are symmetric). This weight vector is then extended
by appending the thresholds:

w = ( wu1u2 , wu1u3 , . . . , wu1un ,

wu2u3, . . . , wu2un ,

. . .
...

wun−1un ,

−θu1 , −θu2 , . . . , −θun ).

For this weight vector we can find input vectors z1, . . . , zn such that the arguments
of the threshold function appearing in the above equations can be written as scalar
products wzi . For example, we may choose

z2 = (act(p)u1 , 0, . . . , 0,︸ ︷︷ ︸
n-2 zeros

act(p)u3 , . . . , act(p)un , . . . 0, 1, 0, . . . , 0︸ ︷︷ ︸
n-2 zeros

).

In this way we can map training a Hopfield network to training a threshold logic unit
with the threshold 0 and theweight vectorw for the training patterns li = (zi , act

(p)
ui ).

This threshold logic unit may now be trained, for instance, with the delta rule (cf.
Sect. 3.5). If multiple patterns are to be stored, we obtain more input patterns zi .
Note, though, that this option is more of theoretical interest than of practical value.

To illustrate howaHopfield network canbeused to recognize patterns,we consider
a simple number recognition example (derived from Haykin 2008). The patterns
(two-dimensional black andwhite pictures) shown in Fig. 8.8 are stored in a Hopfield
network with 10 × 12 = 120 neurons, encoding a dark field as +1 and a white one
as −1. The resulting patterns are not exactly, but sufficiently orthogonal, so that they
can be turned into stable states of a Hopfield network with the method described
above. If a pattern is presented to the Hopfield network determined in this way, the
computations of the network reconstruct one of these stored patterns, as shown in

Fig. 8.8 Example patterns that are stored in a Hopfield network (left) and the reconstruction of a
pattern from disturbed input (right)

http://dx.doi.org/10.1007/978-1-4471-7296-3_3
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Fig. 8.8 on the right. Note, however, that there are multiple update steps between two
consecutive diagrams in this figure.

In order to better understand this example, the web page

http://www.borgelt.net/hfnd.html

provides the programs whopf (for Microsoft Windowstm) and xhopf (for Linux).
With them one can store two-dimensional patterns in a Hopfield network and then
retrieve them again. The patterns shown in Fig. 8.8 are available in a file.

However, with these programs some of the problems of the discussed method
become obvious as well. We already know that this method also stores the com-
plementary patterns. As a consequence, they may be produced as the result of the
computations. Besides these patterns there are additional stable states, which differ
only marginally from those stored. Among other things, these problems result from
the fact that the patterns are not exactly orthogonal.

8.4 Solving Optimization Problems

By exploiting their energy function, Hopfield networks can be used to solve opti-
mization problems. The core idea is as follows: by updating a Hopfield network a
(local) minimum of its energy function is reached. If we can rewrite a given func-
tion to optimize in such a way that it can be interpreted as an energy function (to
minimize) of a Hopfield network, we can construct a Hopfield network by reading
the weights and thresholds from its terms. Then this Hopfield network is initialized
randomly—that is, it is placed into a random activation state—and the update com-
putations are carried out as usual. The network eventually reaches a stable state,
which corresponds to a minimum of the energy function and thus an optimum of the
function to optimize. Note, however, that this optimum may only be a local one.

This principle is obviously very simple. The only difficulty we face is that, if we
try to solve an optimization problem, we often have to respect certain additional
constraints. For example, it may be that the arguments of the function to optimize
must not leave certain ranges of values. In such a case it is not sufficient to simply
turn the function to optimize into an energy function of a Hopfield network, but we
also have to take precautions that the additional constraints are respected, so that the
solution found with the help of a Hopfield network is actually valid.

In order to incorporate the additional constraints, we proceed in essentially the
same way as for optimizing the objective function. For each additional constraint
we construct a function, which is minimized if the constraint is respected and then
transform this function into an energy function of a Hopfield network. Finally, we
combine the energy function that describes the objective function and the energy
functions that result from the additional constraints, exploiting the following lemma:
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Lemma 8.1 Suppose we have two Hopfield networks defined on the same set U of
neurons with weights w(i)

uv , thresholds θ
(i)
u and energy functions

Ei = −1

2

∑
u∈U

∑
v∈U−{u}

w(i)
uv actu actv +

∑
u∈U

θ(i)
u actu

for i = 1, 2. (The index i states which of the two networks the quantities refer to.)
Furthermore, let a, b ∈ R. Then E = aE1 + bE2 is the energy function of the
Hopfield network with neurons in U that has the weights wuv = aw(1)

uv + bw(2)
uv and

the thresholds θu = aθ
(1)
u + bθ(2)

u .

This lemma allows us to construct the energy function that is to be optimized by a
Hopfield network as a linear combination of several energy function. Proving this
lemma is trivial (simply calculate the expression E = aE1+bE2) and thus the proof
is not demonstrated in detail here.

As an example for the described procedure we consider how the well-known
traveling salesman problem (TSP) can be solved (approximately) with the help of a
Hopfield network. This problem consists in the task to find for a traveling salesman
the best tour through a given set of n cities, so that each city is visited exactly
once. In order to solve this problem with the help of a Hopfield network, we use
the activations 0 and 1 for the neurons, because this simplifies setting up the energy
functions. That we may deviate from the original definition in this way, because we
can always transform the weights and thresholds into those needed for a Hopfield
network with activations 1 and −1, is shown in Sect. 10.3, in which the needed
transformation formulas are derived.

A tour through n given cities is encoded as follows: we set up a binary n ×
n matrix M = (mi j ), the columns of which correspond to the cities and the rows of
which correspond to the steps of the tour. We write a 1 into row i and column j of
this matrix (mi j = 1) if the city j is visited in the i th step of the tour. Otherwise we
write a 0 into this element (mi j = 0). For example, the matrix shown in Fig. 8.9 on
the right describes the tour through the cities 1 to 4 shown in the same figure on the
left. Note that cyclic permutation of the steps (rows) describes the same tour, since
we did not define any city as the one to start from.

TheHopfield networkwe have to construct possesses one neuron for each element
of this n × n matrix, which we denote by the coordinates (i, j) of the corresponding
matrix element and whose activation corresponds to the value of this matrix element.

Fig. 8.9 A tour through four
cities and a 4 × 4 matrix
representing it
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After the update process has reached a stable state we can thus read the found tour
from the activations of the neurons. Note that in the following we always use index i
to refer to steps and index j to refer to cities.

With the help of the matrix M we can describe the objective function that has to
be minimized in order to solve the traveling salesman problem as

E1 =
n∑

j1=1

n∑
j2=1

n∑
i=1

d j1 j2 · mi j1 · m(i mod n)+1, j2 .

Here d j1 j2 is the distance between city j1 and city j2. With the two factors that refer
to the matrix M we ensure that only distances between cities are summed that are
visited consecutively on the tour, that is, if the city j1 is visited in the i th step and
the city j2 is visited in the ((i mod n) + 1)th step of the tour. Only in this case both
matrix elements are 1. On the other hand, if the cities are not visited consecutively
in the tour, at least one of the matrix elements and thus the term is 0.

Following the plan laid down above, we now have to transform the function E1 in
such a way that it takes the form of the energy function of a Hopfield network with
the neurons (i, j), where the matrix elements mi j play the role of the activations of
the neurons. In order to do so, we have to introduce a second sum over the steps of
the tour (index i). We achieve this by using two indices i1 and i2 for the steps in
which the cities j1 and j2 are visited. In addition, we ensure by an additional factor
that only such terms are formed in which these two indices are related in the desired
way (that is, i2 follows i1). Thus we obtain

E1 =
∑

(i1, j1)∈{1,...,n}2

∑
(i2, j2)∈{1,...,n}2

d j1 j2 · δ(i1 mod n)+1,i2 · mi1 j1 · mi2 j2 ,

where δab is the so-called Kronecker symbol (δab = 1 if a = b and δab = 0
otherwise).

All that is still missing now to reach the form of an energy function is the factor
− 1

2 in front of the sums. This factor can easily be introduced, for example, by
moving a factor−2 into the sums. However, it seems to be more appropriate to move
only a factor of −1 into the sums and to obtain the factor 2 by making the factor
with the Kronecker symbol symmetric. Clearly, it is irrelevant whether i2 follows
i1 or vice versa: both cases describe the same relation between the cities (only the
tour is reversed). If we allow for both orders, every distance between two cities is
automatically considered twice. Thus we finally arrive at

E1 = −1

2

∑
(i1, j1)∈{1,...,n}2
(i2, j2)∈{1,...,n}2

−d j1 j2 · (δ(i1 mod n)+1,i2 + δi1,(i2 mod n)+1) · mi1 j1 · mi2 j2.

This function has the form of the energy function of a Hopfield network. How-
ever, we cannot use it directly, because it is obviously minimized if and only if all
mi j = 0, regardless of the distances between the cities. Indeed, we have to respect
two constraints when minimizing the above function, namely:
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• Each city is visited in exactly one step of the tour:

∀ j ∈ {1, . . . , n} :
n∑

i=1

mi j = 1,

that is, every column of the matrix contains exactly one 1.
• In each step of the tour exactly one city is visited:

∀i ∈ {1, . . . , n} :
n∑
j=1

mi j = 1,

that is, every row of the matrix contains exactly one 1.

These two constraints exclude the trivial solution (all mi j = 0). Since these con-
straints have the same structure, we demonstrate in detail only how the first is turned
into an energy function. Clearly, the first constraint is satisfied if and only if

E∗
2 =

n∑
j=1

(
n∑

i=1

mi j − 1

)2

= 0.

Since E∗
2 cannot be negative (due to the squared terms), the first constraint is satisfied

if and only if E∗
2 is minimized. Simply computing the square yields

E∗
2 =

n∑
j=1

⎛
⎝

(
n∑

i=1

mi j

)2

− 2
n∑

i=1

mi j + 1

⎞
⎠

=
n∑
j=1

⎛
⎝

⎛
⎝ n∑

i1=1

mi1 j

⎞
⎠

⎛
⎝ n∑

i2=1

mi2 j

⎞
⎠ − 2

n∑
i=1

mi j + 1

⎞
⎠

=
n∑
j=1

n∑
i1=1

n∑
i2=1

mi1 jmi2 j − 2
n∑
j=1

n∑
i=1

mi j + n.

The constant term n can be neglected, because it does not change the location of
the minimum. In order to obtain the form of an energy function, we merely have to
duplicate the sum over the cities (index j), using the same principle that we already
applied to derive the objective function E1. This leads to

E2 =
∑

(i1, j1)∈{1,...,n}2

∑
(i2, j2)∈{1,...,n}2

δ j1 j2 · mi1 j1 · mi2 j2 − 2
∑

(i, j)∈{1,...,n}2
mi j .

By moving the factors −2 into both sums we finally arrive at

E2 = −1

2

∑
(i1, j1)∈{1,...,n}2
(i2, j2)∈{1,...,n}2

−2δ j1 j2 · mi1 j1 · mi2 j2 +
∑

(i, j)∈{1,...,n}2
−2mi j



148 8 Hopfield Networks

and thus the form of the energy function of a Hopfield network. In a completely
analogous fashion we obtain from the second constraint

E3 = −1

2

∑
(i1, j1)∈{1,...,n}2
(i2, j2)∈{1,...,n}2

−2δi1i2 · mi1 j1 · mi2 j2 +
∑

(i, j)∈{1,...,n}2
−2mi j .

Finally we combine the three energy functions E1 (objective function), E2 (first
constraint) and E3 (second constraint) to obtain the total energy function

E = aE1 + bE2 + cE3.

The factors a, b, c ∈ R
+ have to be chosen in such a way that it is not possible to

reduce the value of the energy function by violating the constraints. This is certainly
the case if

b

a
= c

a
> 2 max

( j1, j2)∈{1,...,n}2
d j1 j2 ,

that is, if the maximum improvement achievable by a (local) modification of the tour
is less than the minimum degradation that results from a violation of a constraint.

Since the matrix elements mi j correspond to the activations act(i, j) of the neu-
rons (i, j) of the Hopfield network, we read from the total energy function E the
following weights and thresholds:

w(i1, j1)(i2, j2) = −ad j1 j2 · (δ(i1 mod n)+1,i2 + δi1,(i2 mod n)+1)︸ ︷︷ ︸
from E1

−2bδ j1 j2︸ ︷︷ ︸
from E2

−2cδi1i2︸ ︷︷ ︸
from E3

,

θ(i, j) = 0a︸︷︷︸
from E1

−2b︸︷︷︸
from E2

−2c︸︷︷︸
from E3

= −2(b + c).

The resulting Hopfield network is now initialized randomly (that is, the activations of
the neurons are set to randomly chosen values from {0, 1}) and then these activations
are repeatedly updated until a stable state is reached. The solution—that is, the found
tour—can then be read from this state.

Note, however, that the presented approach to solve the traveling salesman prob-
lem is, despite its plausibility, of very limited use for practical purposes. One of the
main problems is that the Hopfield network is unable to switch from a found tour to
another with a lower total length. The reason is that transforming a matrix that rep-
resents a tour into another matrix that represents a different tour requires that at least
four neurons (matrix elements) change their activations. (For example, if the steps, in
which two cities are visited, are exchanged, two neurons must change their activation
from 1 to 0 and two others must change their activations from 0 to 1.) However, each
of these changes, executed individually, violates at least one of the two constraints
and thus leads to an increase of energy. Only all four changes together can result in
a smaller energy, but cannot be executed together due to the asynchronous update.
Therefore the normal activation updates can never change an already found tour into
another, even if this requires only a marginal change of the tour. As a consequence,
it is highly likely that the Hopfield network gets stuck in a local minimum of the
energy function. Although it can never be made absolutely sure that the process does
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not get stuck in a local minimum, this problem is particularly annoying here, since it
occurs even in situations in which the modifications, which are necessary to improve
the tour, are, so to say, “obvious” (for example, exchanging one city with another or
reversing a sub-tour).

Unfortunately, the situation is actually even worse. Although we introduced the
energy functions E1 and E2 to represent the constraints that describe a valid tour, it
is not guaranteed that the resulting stable state actually represents a valid tour. The
reason is that there are also situations, in which a matrix that does not describe a
valid tour can be changed into a matrix that does describe a valid tour only through
intermediate states that possess a higher energy. For example, if a column of the
matrix contains two ones (and thus the first constraint is violated), but these two
ones are the only ones in their respective columns, the violation of the first constraint
can only be resolved by, at least temporarily, violating the second constraint. Since
both constraints are equivalent, the activations remain unchanged.

The above considerations can be checked with the program tsp.c, which is
available on the web page for this book. This program tries to solve the very simple
traveling salesman problem with 5 cities that is shown in Fig. 8.10 with the help of
a Hopfield network. The found solution is not always a valid tour and even if it is
valid, it appears to be chosen entirely at random.

Therefore it cannot really be recommended to use a Hopfield network to solve
the traveling salesman problem.We considered this problem nevertheless, because it
allowed us to explain the procedure of setting up the energy functions in a very clear
and straightforward way. Note, however, that the problems encountered here have
to be taken into account also if Hopfield networks are applied to other optimization
problems, which may render Hopfield networks a suboptimal choice.

A certain improvement is possible if one does not use discreteHopfield networks
with only two possible activations per neuron aswe studied themup to now, but rather
continuous Hopfield networks, in which the activation of a neuron can be any num-
ber from [−1, 1] (or [0, 1], respectively). This transition corresponds roughly to the
generalization of the activation function that led us from threshold logic units to
multilayer perceptrons (see Fig. 5.2 on p. 49). With continuous Hopfield networks,
which also have the advantage they are better suited for being implemented in hard-
ware with the help of an (analog) electrical circuit, solving the traveling salesman
problem is more successful (Hopfield and Tank 1985).

Fig. 8.10 A very simple
traveling sales man problem
with 5 cities and its solution
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8.5 Simulated Annealing

The problems discussed in the preceding section, which are encountered if we try
to use Hopfield networks to solve optimization problems, are mainly caused by the
possibility that the process gets stuck in a localminimumof the energy function. Since
the same problem is—not surprisingly—also encountered with other optimization
methods, the idea suggests itself to transfer approaches to handle this problem, which
have been developed for other optimizationmethods, toHopfield networks. One such
approach is so-called simulated annealing.

The idea of simulated annealing (Metropolis et al. 1953; Kirkpatrick et al. 1983)
is to start with a randomly generated candidate solution of the optimization problem
and to evaluate it. In every later step, the current candidate solution is modified and
re-evaluated. If the new solution is better than the old, it is accepted and replaces the
old solution. However, if it is worse, it is accepted only with a certain probability
that depends on how much worse the new solution is. In addition, this probability is
reduced over time, so that in the limit new candidate solutions are only accepted if
they are actually better than the old solution. Furthermore, the best solution found
so far is usually recorded in parallel.

The reason why a worse candidate solution is sometimes accepted is that the
method would otherwise be very similar to a gradient descent. The only difference
would be that the descent direction is not determined by computing a gradient, but
is found by trial and error. However, we saw in Chap.5 that a gradient descent can
easily get stuck in a local minimum (see Fig. 5.23 on p. 71). However, if solutions
that are actually worse than the current candidate are accepted at least sometimes,
this undesired behavior can be counteracted to some degree. Intuitively, it allows to
overcome “barriers” (regions of the search space in which candidate solutions have
low quality) that separate local minima from the global minimum. Only later, when
the probability for accepting candidate solutions that are worse has been decreased,
the objective function is locally optimized.

The name “simulated annealing” for this approach originates from the fact that
it is very similar to the physical minimization of the lattice energy of the atoms if a
heated piece of metal is cooled slowly. This process is usually called “annealing” and
serves the purpose to make a metal easier to work or to machine by relieving tensions
and correcting lattice malformations. Seen from a physical perspective, the thermal
energy of the atoms prevents them from settling in a configuration that is only a local
minimumof the lattice energy.They rather “jumpout” of this configuration.However,
the “deeper” the (local) energy minimum is, the harder it is for the atoms to abandon
the configuration.Therefore it is likely that theyfinally settle in a configurationof very
low lattice energy, the optimum of which, in the case of a metal, is a monocrystalline
structure.

It should be clear, though, that it cannot be guaranteed that the global minimum of
the lattice energy is reached. Especially, if the metal is not heated long enough or is
cooled down too quickly, it is likely that the atoms settle in a configuration that is only
a local minimum of the energy (which in the case of the metal is a polycrystalline

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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structure). Hence it is important that the temperature is reduced slowly, so that the
probability that local minima are abandoned again, is sufficiently large.

This energy minimization can also be illustrated by a ball that rolls around on
a curved surface. In this case the function to minimize is the potential energy of
the ball. In the beginning the ball is endowed with a certain kinetic energy, which
enables it to roll up some slopes of the surface. In the course of time, however, friction
reduces the kinetic energy of the ball more and more, so that it finally comes to a rest
in a valley of the surface (a minimum of the potential energy). Since a larger kinetic
energy is needed to escape from a deep valley than to escape from a shallow one, it
is likely that the point at which the ball finally stops is located in a fairly deep valley,
possibly even in the deepest one available (the global minimum).

The reduction of the thermal energy of the atoms in the simulated annealing
process or the reduction of the kinetic energy of the ball in the illustration is modeled
by the reducing probability for accepting a worse solution. Often an explicit temper-
ature parameter is introduced, with the help of which the probability is computed.
Since the probability distribution over the velocities of atoms is often an exponential
distribution (for example, the Maxwell–Boltzmann distribution, which describes the
velocity distribution for an ideal gas Greiner et al. 1987), a function like

P(accept the solution) = 1

c
e− ΔQ

kT

is a common choice to compute the probability of accepting a solution that is worse
than the current one. ΔQ is the quality difference between the current and the new
candidate solution, T the temperature parameter that is reduced in the course of time,
c is a normalization constant and k Boltzmann’s constant (see also the next section).

Applying simulated annealing to Hopfield networks is very simple: after the acti-
vations have been initialized randomly, the neurons of the Hopfield network are
traversed (for example, in some random order) and it is determined whether an acti-
vation change leads to a reduction of the network energy or not. An activation change
that reduces the network energy is always accepted (in the normal update process,
only such changes occur, see above). However, if an activation change increases the
network energy, it is accepted with a probability that is computed with the formula
stated above. Note that in this case we have simply

ΔQ = ΔE = | netu −θu |
(cf. the proof of Theorem8.1 on p. 135).

8.6 BoltzmannMachines

A network model that is closely related to Hopfield networks is the so-called Boltz-
mann machine (Ackley et al. 1985; Hinton and Sejnowski 1986). Special variants
of this model, which we will consider below, gained considerable interest in recent
years, especially in the field of deep learning (cf. Sect. 5.10), for learning probabil-
ity distributions. A standard Boltzmann machine differs from a Hopfield network

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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mainly in how the states of the neurons are updated (details are discussed below).
Like Hopfield networks for solving optimization problems (cf. Sect. 8.4) it relies on
the fact that one can define an energy function that assigns a numeric value (an
energy) to each state of the network. With the help of this energy function a proba-
bility distribution over the states of the network is defined based on the Boltzmann
distribution (also known as Gibbs distribution) of statistical mechanics, namely

P(s) = 1

c
e− E(s)

kT ,

where the vector s describes the (discrete) state of the system, c is a normalization
constant (ensuring that the sumof the probabilities of all possible states equals 1), E is
the function that yields the energy of a state s, T is the thermodynamic temperature
of the system and k is Boltzmann’s constant (k ≈ 1.38 · 10−23 J/K , that is, the unit
is Joule (energy) divided by Kelvin (temperature)).

For Boltzmann machines (which only employ a physical analogy, but usually
do not have an actual physical interpretation) the product kT is often replaced by
merely T , thus combining the temperature and Boltzmann’s constant into a single
formal parameter. Furthermore, the state s consists of the vector act of the activations
of the neurons and the energy function is (cf. p. 136)

E(act) = −1

2
act�Wact + θ T act,

where W is the matrix of connection weights and θ the vector of threshold values.
In analogy to the discussion on p. 136f, we now look at a single neuron u and work

out the change in energy that is brought about by this neuron changing its state. That
is, we consider the (absolute) difference in energy between actu = 0 and actu = 1,
while all other neurons keep their activations. This difference is

ΔEu = Eactu=1 − Eactu=0 =
∑

v∈U−{u}
wuv actv −θu

(cf. p. 136). Writing the energies in terms of the Boltzmann distribution yields

ΔEu = −kT ln(P(actu = 1) − (−kT ln(P(actu = 0)),

which can easily be rewritten as

ΔEu

kT
= ln(P(actu = 1) − ln(P(actu = 0)

= ln(P(actu = 1) − ln(1 − P(actu = 1),

since the probability of the unit u having activation 0 and the probability of it having
activation 1 must sum to 1 (as there are only these two possible states). Solving this
equation for P(actu = 1) finally yields

P(actu = 1) = 1

1 + e− ΔEu
kT

,

that is, the probability of a neuron being active is a logistic function (cf. Fig. 5.2 on
p. 49) of the (scaled) energy difference between its active and inactive state. Since

http://dx.doi.org/10.1007/978-1-4471-7296-3_5


8.6 Boltzmann Machines 153

the energy difference is closely related to the network input of the neuron, namely
as (see also above)

ΔEu =
∑

v∈U−{u}
wuv actv −θu = netu −θu,

this formula suggests a stochastic update procedure for the network, which derives
additional plausibility from the fact that for multilayer perceptrons we used the
logistic function as a generalization of the step function used in threshold logic units.

The update proceeds as follows: a neuron u of a given Boltzmann machine is
chosen, its network input, from it the energy difference ΔEu and finally (via the
logistic function) the probability of it having activation 1 is computed. The neuron
is set to activation 1 with this probability and to activation 0 with the complement
probability. Technically, this can easily be achieved by sampling a random num-
ber x from a uniform distribution on the unit interval [0, 1] (for which a function
is available in practically all programming languages) and comparing it to the com-
puted probability P(actu = 1). If x ≤ P(actu = 1), then act(new)

u = 1, otherwise
act(new)

u = 0.
This update is repeated many times for randomly chosen neurons. In addition,

simulated annealing (cf. the preceding section) is carried out by slowly lowering
the temperature T over time. After this update process, which can also be described
as a Markov Chain Monte Carlo (MCMC) procedure (see, for example, Andrieu
et al. 2003 for an introduction), has been carried out for sufficiently many steps,
the probability that the network is in a specific activation state depends only on the
energy of that state and has become independent of the specific initial activation state
the update process was started with. This final state is also referred to as thermal
equilibrium. As a consequence, the Boltzmann machine can be seen as a represen-
tation of and be used as a sampling mechanism for the Boltzmann distribution that
is defined by its connection weights and threshold values.

Based on these considerations the idea suggests itself to develop a training proce-
dure with which the probability distribution that a Boltzmannmachine represents via
its energy function can be adapted to a given sample of data points, in order to obtain
a probabilistic model of the data. Of course, this can only work reasonably well if
the data points are actually a sample from a Boltzmann distribution. Otherwise the
model cannot, in principle, be made to fit the sample data well.

In order to mitigate this restriction, a deviation from the structure of Hopfield
networks, as we studied them at the beginning of this chapter, is introduced. While
in Hopfield networks all neurons are input as well as output neurons (and thus
visible neurons, as their activations are all visible to the environment), the neurons of
a Boltzmann machine are divided into visible neurons, which receive the data points
as input, and hidden neurons, the activations of which are not fixed by the data points
and thus allow for a more flexible adaptation to the sample data.

The objective of training a Boltzmann machine is to adapt the connection weights
and threshold values in such a way that the true distribution underlying a given data
sample is approximated, as well as possible, by the probability distribution repre-
sented by the Boltzmann machine. A natural approach to achieve this objective is to
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start from a measure that describes the difference between two probability distrib-
utions and then to carry out a gradient descent in order to minimize this difference
measure. Among the best known such measures is the so-called Kullback–Leibler
information divergence (Kullback and Leibler 1951), which for two probability
distributions p1 and p2 that are defined over the same sample space Ω reads

K L(p1, p2) =
∑
ω∈Ω

p1(ω) ln
p1(ω)

p2(ω)
.

Applied to Boltzmannmachines, the probability distributions refer to the data sample
(p1) and to the visible neurons of the Boltzmann machine (p2). On the resulting
function a gradient descent is then carried out in order to minimize it.

Without formal derivation, we only state here the final training procedure: In each
training step the Boltzmann machine is ran twice. In the first run, which is also
referred to as the “positive” phase, the visible neurons are fixed to a data point that is
randomly chosen from the data sample to fit and only the hidden neurons are updated
according to the procedure described above. The update is carried out until thermal
equilibrium is reached. In the second run, which is also referred to as the “negative
phase,” all units, both visible and hidden, are updated until thermal equilibrium. In
the two phases statistics about individual neurons and pairs of neurons (both visible
and hidden) being activated (simultaneously) are collected: let p+

u be the probability
that neuron u is active in the positive phase, p−

u the probability that neuron u is active
in the negative phase, p+

uv the probability that the neurons u and v are both active
simultaneously in the positive phase, and p−

uv be the probability that the neurons u
and v are both active simultaneously in the negative phase. (All of these probabilities
are estimated from the relative frequency with which the corresponding situation
was observed in the respective phase.) Then the update can be performed according
to the following two equations (Ackley et al. 1985):

Δwuv = 1

η
(p+

uv − p−
uv) and Δθu = −1

η
(p+

u − p−
u ).

Intuitively: if a neuron is more often active when a training example is presented
(i.e., visible units are fixed) than when the network is allowed to run freely (i.e.,
visible units are updated), the probability of the neuron being active is too low, so
the threshold should be reduced. Similarly, if two neurons are more often active
together when a training example is presented than when the network is allowed to
run freely, the connection weight between them should be increased, so that they
become more likely to be active together. Note that this training method is very
similar to the Hebbian learning rule (Hebb 1949) as we mentioned it in Sect. 8.3.
Derived from a biological analogy it says: the connection between two neurons that
are synchronously active is strengthened (“cells that fire together, wire together”).

Unfortunately, training general Boltzmannmachines like we described them up to
now is impractical unless the networks are very small. The main reason for this is
the fact that the larger the network, the more update steps need to be carried out in
order to obtain sufficiently reliable statistics for the neuron activation (pairs) needed
in the update formulas, which is due to the larger number of parameters and the
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visible

hidden

Fig.8.11 A restricted Boltzmann machine has a bipartite graph structure, in which the two groups
of visible and hidden units are fully connected to each other, but there are no connections within
each group

resulting slower convergence of the network. As a consequence, general Boltzmann
machines, though theoretically very powerful devices, are rarely used in practice.

However, a special variant of the Boltzmann machine, which was originally intro-
duced under the name Harmonium (Smolensky 1986), but nowadays is generally
referred to as restricted Boltzmann machine (Freund and Haussler 1992; Hinton
2002), has achieved considerable attention in recent years, after efficient learning
procedures based on contrastive divergence had been developed (Hinton 2002,
2010; Hinton et al. 2006; Tieleman 2008). The restriction referred to in the name of
this network model consists in revoking the condition that the graph underlying the
network must be a fully connected graph (as we introduced it originally for Hopfield
networks, cf. Definition8.1 on p. 131). Rather, one uses a bipartite graph, in which
the vertices are split into two groups, namely the visible and the hidden neurons. Con-
nections only exist between neurons from different groups, but not between neurons
from the same group (see Fig. 8.11).

The advantage of a restricted Boltzmann machine is that, due to the lack of con-
nections within the visible units and within the hidden units, training can proceed
by repeating the following three steps (a detailed discussion can be found in Hinton
2002 and particularly in the practical guide Hinton 2010): in the first step the visible
units are fixed to a randomly chosen training example from the given data set and the
hidden units are updated once and in parallel according to the sampling procedure
described above (that is, activate a unit according to the value of the logistic function
of the energy difference). Let x be the training sample to which the visible neurons
are fixed and let y be the vector of activations of the hidden neurons that have been
sampled with the visible neurons fixed to x. The outer product xy T is called the
positive gradient for the weight matrix.

In the second step, fix the hidden neurons to the computed vector y and update
the visible units once and in parallel according to the sampling procedure described
above (that is, activate a unit according to the value of the logistic function of the
energy difference). This produces a “reconstruction” x∗ of the training example x.
Fix the visible neurons to this “reconstruction” and update the hidden neurons once
more, which produces a second activation vector y∗ for the hidden neurons. The
outer product x∗y∗ T is called the negative gradient for the weight matrix.
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In the third step, update the connection weights with the difference of the positive
and the negative gradient, that is, according to (η is a learning rate)

Δwuv = η(xuyv − x∗
uy

∗
v),

where the indices u and v indicate the elements of the activation vectors to be used by
the neurons they refer to. The threshold values are updatedwith the simple differences
of the original and the “reconstructed” activation vectors.

While this is the basic training procedure, many improvements have been sug-
gested, including techniques like a momentum term (cf. Sect. 5.7) and using, for the
reconstruction of the training example, actual probabilities instead of binary samples.
Furthermore, online-like training based on small batches of the given data is advan-
tageous. These and many other recommendations for training restricted Boltzmann
machines in practice can be found in (Hinton 2010).

Finally, it is worth mentioning that restricted Boltzmann machines have been
used to build deep networks in a fashion similar to stacked autoencoders as we
discussed them inSect. 5.10 formultilayer perceptrons. The idea is to train a restricted
Boltzmannmachine, then to create a data set of hiddenneuron activations by sampling
from the trained Boltzmann machine, and to build another restricted Boltzmann
machine from the obtained data set. This procedure can be repeated several times
and the resulting Boltzmannmachines can then easily be stacked (like we stacked the
encoder parts of the autoencoders trained in Sect. 5.10). Details about this approach
and how the final stack can be fine-tunedwith a procedure similar to backpropagation
can be found in (Hinton et al. 2006).
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9RecurrentNetworks

The Hopfield networks that we discussed in the preceding chapter are special recur-
rent networks, which have a very constrained structure. In this chapter, however, we
lift all restrictions and consider recurrent networks without any constraints. Such
general recurrent networks are well suited to represent differential equations and to
solve them (approximately) in a numerical fashion. If the type of differential equation
is known that describes a given system, but the values of the parameters appearing in
it are unknown, one may also try to train a suitable recurrent network with the help
of example patterns in order to determine the system parameters.

9.1 Simple Examples

In contrast to all preceding chapters we do not start with a definition. The reason is
that all special types of neural networks we studied were obtained from the general
definition in Chap.4 by introducing specific restrictions. In this chapter, however, all
constraints are lifted. Hence we turn immediately to examples.

As a first examplewe consider the cooling (orwarming) of a bodywith the temper-
ature ϑ0 that is placed into a mediumwith the temperature ϑa (ambient temperature),
which is held constant. Depending on whether the initial temperature of the body
is higher or lower than the ambient temperature, the body will dissipate heat to the
medium or absorb heat from it until its temperature reaches the ambient tempera-
ture ϑa . It is plausible that the amount of heat dissipated or absorbed per unit of
time—and thus the temperature change—is proportional to the difference between
the current temperature ϑ(t) of the body and the ambient temperature ϑa . That is,
we assume that

dϑ

dt
= ϑ̇ = −k(ϑ − ϑa).

159
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This equation is called Newton’s Cooling Law (Heuser 1989). The minus sign in
front of the (positive) cooling constant k, which depends on the considered body,
indicates that the temperature change reduces the temperature difference.

Of course, a differential equation as simple as this can be solved analytically.With
standard methods we obtain (see, for example, Heuser 1989)

ϑ(t) = ϑa + (ϑ0 − ϑa)e
−k(t−t0)

with the initial temperature ϑ0 = ϑ(t0) of the body. Here, however, we consider
a numerical approximation of the solution, namely with the help of the so-called
Euler–Cauchy polygonal course (Heuser 1989). The idea of this method consists
in the insight that with the differential equation we can compute the derivative ϑ̇(t)
of the function ϑ(t) for arbitrary points in time t , that is, we know the course of the
function ϑ(t) locally. With a given initial value ϑ0 = ϑ(t0) we can thus compute
any value ϑ(t) approximately as follows: we divide the interval [t0, t] into n parts of
equal length Δt = t−t0

n . The split points are given as

∀i ∈ {0, 1, . . . , n} : ti = t0 + iΔt.

We proceed from the starting point P0 = (t0, ϑ0) along a straight line with the
slope ϑ̇(t0) given by the differential equation until we reach the time t1 and thus the
point P1 = (t1, ϑ1). It is

ϑ1 = ϑ(t1) = ϑ(t0) + ϑ̇(t0)Δt = ϑ0 − k(ϑ0 − ϑa)Δt.

In this point P1 the slope of the function is described by the differential equation
as ϑ̇(t1). Again we proceed on a straight line with this slope until we reach the
point P2 = (t2, ϑ2) for the time t2. Then we have

ϑ2 = ϑ(t2) = ϑ(t1) + ϑ̇(t1)Δt = ϑ1 − k(ϑ1 − ϑa)Δt.

By repeating this procedure, we compute step by step the points Pk = (tk, ϑk), k =
1, . . . , n, the second coordinate ϑk of which can always be found with the recursion

ϑi = ϑ(ti ) = ϑ(ti−1) + ϑ̇(ti−1)Δt = ϑi−1 − k(ϑi−1 − ϑa)Δt.

Finally, we reach the point Pn = (tn, ϑn) and the desired approximation ϑn = ϑ(tn).
Intuitively, the described method approximates the function ϑ(t) by a polygonal

course, since we always proceed on a straight line from one point to the next (hence
the name Euler–Cauchy polygonal course). More formally, we can derive the above
recursion formula for the values ϑi by approximating the differential quotient by a
difference quotient, that is, by using

dϑ(t)

dt
≈ Δϑ(t)

Δt
= ϑ(t + Δt) − ϑ(t)

Δt
with a sufficiently small Δt . In this case we clearly have

ϑ(t + Δt) − ϑ(t) = Δϑ(t) ≈ −k(ϑ(t) − ϑa)Δt,

from which the recursion formula follows directly.
It should be clear that the accuracy of the computed approximation is the better, the

smaller the step width Δt is chosen, because then the computed polygonal course
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Fig. 9.1 Euler–Cauchy polygonal courses as approximate solutions of Newton’s cooling law for
different step widths Δt . The thin curve is the exact solution

will differ less from the actual course of the function ϑ(t) under consideration.
To illustrate this, Fig. 9.1 shows, for an ambient temperature ϑa = 20, a cooling
constant k = 0.2 and the initial values t0 = 0 andϑ0 = 100 the exact solutionϑ(t) =
ϑa + (ϑ0 − ϑa)e−k(t−t0) (thin line) as well as its approximation by Euler–Cauchy
polygonal courses with step widths Δt = 4, 2, 1 in the interval [0, 20]. Compare the
deviation from the exact solution, for example, for t = 8 or t = 12.

To represent the recursion formula derived above by a recurrent neural network,
we merely have to expand the right-hand side. Thus we obtain

ϑ(t + Δt) − ϑ(t) = Δϑ(t) ≈ −kΔtϑ(t) + kϑaΔt

and therefore
ϑi ≈ ϑi−1 − kΔtϑi−1 + kϑaΔt.

The form of this equation corresponds exactly to the computations of a single neuron
with a feedback loop. As a consequence, we can approximate the function ϑ(t) with
the help of a neural network with a single neuron u with the network input function

f (u)
net (w, x) = −kΔt x

and the activation function

f (u)
act (netu, actu, θu) = actu + netu −θu

with θu = −kϑaΔt . This network is shown in Fig. 9.2, where—as usual—the bias
value θu is written into the neuron.

Note that this network actually contains two feedback loops, namely (1) the feed-
back that is shown explicitly, which describes the temperature change as a function
of the current temperature, and (2) the implicit feedback which results from the fact
that the current activation of the neuron u is a parameter of its activation function.
Because of this second feedback loop the network input is not used to recompute
the activation of the neuron u from scratch, but only to compute the change of its

Fig. 9.2 A neural network
for Newton’s cooling law
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activation (cf. Fig. 4.2 on p. 40 and the accompanying explanations about the general
structure of a generalized neuron).
Alternatively, we could have used the network input function

f (u)
net (x,w) = (1 − kΔt)x

(that is, the connection weight w = 1 − kΔt) and the activation function

f (u)
act (netu, θu) = netu −θu

(again with θu = −kϑaΔt). In this waywe could have avoided the implicit feedback.
However, the first form corresponds better to the structure of the differential equation
and thus we prefer it here.

As a second example we consider a mass on a spring as it is shown in Fig. 9.3. The
height x = 0 denotes the equilibrium position of the mass m. We assume now that
the mass m is lifted by a certain distance x(t0) = x0 and then dropped (that is, it has
the initial velocity v(t0) = 0). Since the gravitational force acting on the mass m is
the same on all heights x , we can ignore its influence. The spring force is governed by
Hooke’s Law (Feynman et al. 1963; Heuser 1989), according to which the exerted
force F is proportional to the length change Δl of the spring and directed opposite
to the direction of this change. That is, we have

F = cΔl = −cx,

where c is a constant that depends on the spring.According toNewton’s SecondLaw
F = ma = mẍ this force causes an acceleration a = ẍ of the mass m. Therefore we
arrive at the differential equation

mẍ = −cx, or ẍ = − c

m
x .

Of course, this differential equation can easily be solved analytically. The general
solution, which can be obtained with standard methods, is

x(t) = a sin(ωt) + b cos(ωt)

with the parameters

ω =
√

c

m
,

a = x(t0) sin(ωt0) + v(t0) cos(ωt0),
b = x(t0) cos(ωt0) − v(t0) sin(ωt0).

With the given initial values x(t0) = x0 and v(t0) = 0 and the additional defini-
tion t0 = 0 we obtain the simple expression

x(t) = x0 cos

(√
c

m
t

)
.

Fig. 9.3 A mass on a spring.
Its movement can be
described by a simple
differential equation

http://dx.doi.org/10.1007/978-1-4471-7296-3_4
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In order to construct a recurrent neural network that approximates this solution
numerically,we rewrite the differential equation,which is of secondorder, as a system
of two coupled differential equations of first order. We achieve this by introducing
the velocity v of the mass as an intermediary quantity and obtain

ẋ = v and v̇ = − c

m
x .

Next we approximate, as for Newton’s cooling law, the differential quotient by a
difference quotient, which leads to

Δx

Δt
= x(t + Δt) − x(t)

Δt
= v and

Δv

Δt
= v(t + Δt) − v(t)

Δt
= − c

m
x .

From these equations we obtain the recursion formulas

x(ti ) = x(ti−1) + Δx(ti−1) = x(ti−1) + Δt · v(ti−1) and

v(ti ) = v(ti−1) + Δv(ti−1) = v(ti−1) − c

m
Δt · x(ti−1).

Now we only have to create a neuron for each of these formulas and to read the
connection weights from the formulas. This yields the neural network that is shown
inFig. 9.4. The network input function and the activation function of the top neuronu1
are

f (u1)
net (v,wu1u2) = wu1u2v = Δt v and

f (u1)
act (actu1, netu1 , θu1) = actu1 + netu1 −θu1 .

The corresponding functions of the bottom neuron u2 are

f (u2)
net (x,wu2u1) = wu2u1x = − c

m
Δt x and

f (u2)
act (actu2 , netu2 , θu2) = actu2 + netu2 −θu2 .

The output function of both neurons is the identity. Obviously, these choices imple-
ment exactly the recursion formulas stated above.

Note that this network not only produces approximations for the location x(t)
(output of the neuron u1), but also for the velocity v(t) (output of the neuron u2).
Note also that we may draw on the following consideration (Feynman et al. 1963):
the approximation becomes more accurate if we do not compute the velocity v(t)
for the times ti = t0 + iΔt , but for the midpoints of the intervals, that is for the
times t ′i = t0 + iΔt + Δt

2 . In this case the bottom neuron does not receive v(t0), but
v(t0 + Δt

2 ) ≈ v0 − c
m

Δt
2 x0 as input.

Fig. 9.4 Recurrent neural
network that computes the
movement of a mass on a
spring (governed by Hooke’s
law)
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Fig. 9.5 The first computation steps of the neural network shown in Fig. 9.4 and the computed
movement of a mass on a spring

Example computations of the neural network shown in Fig. 9.4 for the parameters
c
m = 5 and Δt = 0.1 are shown in the table and the diagram in Fig. 9.5. The table
contains in the columns labeled t and x the coordinates of the first seven points of
the diagram. The update starts with the neuron u2, which receives v(t0) as input.

9.2 Representing Differential Equations

From the exampleswe discussed in the preceding sectionwe can derive a simple prin-
ciple how arbitrary explicit differential equations1 can be represented by recurrent
neural networks: A given explicit differential equation of nth order

x (n) = f (t, x, ẋ, ẍ, . . . , x (n−1))

(ẋ denotes the first, ẍ the second and x (i) the i th derivative of x w.r.t. t) is transformed
into a system of n coupled differential equation of first order by introducing n − 1
intermediary quantities

y1 = ẋ, y2 = ẍ, . . . yn−1 = x (n−1).

This yields the system of differential equations

ẋ = y1,

ẏ1 = y2,
...

ẏn−2 = yn−1,

ẏn−1 = f (t, x, y1, y2, . . . , yn−1).

1Due to the special operation scheme of neural networks it is not possible to solve arbitrary differen-
tial equations numerically with the help of recurrent networks. It suffices, however, if the differential
equation can be solved for the independent variable or for one of the occurring derivatives of the
dependent variable. Here we consider, as an example, the special case in which the differential
equation can be written with the highest occurring derivative isolated on one side.
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In analogy to the examples studied in the preceding section, each differential quotient
that occurs in these equations is replaced by a difference quotient. This yields the
n recursion formulas

x(ti ) = x(ti−1) + Δt · y1(ti−1),

y1(ti ) = y1(ti−1) + Δt · y2(ti−1),
...

yn−2(ti ) = yn−2(ti−1) + Δt · yn−3(ti−1),

yn−1(ti ) = yn−1(ti−1) + f (ti−1, x(ti−1), y1(ti−1), . . . , yn−1(ti−1)).

For each of these equations we create a neuron, which extrapolates the quantity on
the left-hand side with the help of the right-hand side. If the differential equation
depends explicitly on t (and not only indirectly through the quantities x , ẋ , etc.,
which depend on t), an additional neuron is necessary, which updates the value of t
with the help of the simple formula

ti = ti−1 + Δt.

This produces the recurrent neural network that is shown in Fig. 9.6. The bottom
neuron advances only the time t by subtracting in each step the bias value −Δt from
the current activation. The top n − 1 neurons have the network input function

f (u)
net (z,w) = wz = Δt z,

the activation function

f (u)
act (actu, netu, θu) = actu + netu −θu

and the identity as their output function. Theweights of the connections to the second
neuron from the bottom, its bias value as well as its network input, activation and
output function depend on the form of the differential equation. For example, if the
differential equation is linear and has constant coefficients, then the network input
function is the weighted sum (as for the neurons of a multilayer perceptron), the
activation function is a linear function and the output function is the identity.

Fig. 9.6 General structure of
a recurrent neural network
representing an explicit
differential equation of nth
order. The weights of the
feedback loops and the input
function of the second
neuron from the bottom
depend on the form of the
differential equation. Of
course, this network not only
produces approximations for
x(t), but also for ẋ(t), ẍ(t)
etc
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9.3 Vectorial Neural Networks

Up to now we considered only differential equations of a function x(t). However, in
practice one often meets systems of differential equations with more than one func-
tion. A simple example are the differential equations of a two-dimensional move-
ment, for example, of an oblique throw: a (punctiform) body is thrown at time t0
from the point (x0, y0) of a coordinate system with horizontal x-axis and vertical
y-axis, namely with the initial velocity v0 = v(t0) and with the (upward) angle ϕ,
0 ≤ ϕ ≤ π

2 , w.r.t. the x-axis (see Fig. 9.7). In this case we have to compute the func-
tions x(t) and y(t), which describe the position of the body at time t . If we ignore
air friction, we have the two equations

ẍ = 0 and ÿ = −g,

where g = 9.81ms−2 is the gravitational acceleration on the surface of the earth.
That is, the body moves uniformly in horizontal direction (no acceleration) and in
vertical direction accelerated by the gravitational attraction of the earth. In addi-
tion, we have the initial conditions x(t0) = x0, y(t0) = y0, ẋ(t0) = v0 cosϕ and
ẏ(t0) = v0 sin ϕ. By introducing—according to the general principle described in
the preceding section—the intermediary quantities vx = ẋ and vy = ẏ, we arrive at
the system of differential equations

ẋ = vx , v̇x = 0,
ẏ = vy, v̇y = −g,

from which we can derive the recursion formulas
x(ti ) = x(ti−1) + Δt vx (ti−1), vx (ti ) = vx (ti−1),

y(ti ) = y(ti−1) + Δt vy(ti−1), vy(ti ) = vy(ti−1) − Δt g.

The result is a recurrent neural networkwith two independent subnetworks consisting
of two neurons each, one of which updates the position coordinate, while the other
updates the corresponding velocity.

However, it appears to bemore natural to combine the two coordinates x and y into
a position vector r of the body. Since the differentiation rules transfer directly from
scalar functions to vector functions (see, for instance, Greiner 1989), we may treat
the derivatives of this position vector in the same way as those of a scalar quantity.
The differential equation, from which we start in this case, is

r̈ = −gey .

Here ey = (0, 1) is the unit vector in y-direction, with which we describe the direc-
tion of the gravitational force. The initial conditions are r(t0) = r0 = (x0, y0) and

Fig. 9.7 Oblique throw of a
body
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ṙ(t0) = v0 = (v0 cosϕ, v0 sin ϕ). As before we introduce a (now vectorial) interme-
diary quantity v = ṙ to obtain the system

ṙ = v, v̇ = −gey

of coupled differential equations. From this system we read the recursion formulas

r(ti ) = r(ti−1) + Δt v(ti−1),

v(ti ) = v(ti−1) − Δt gey,

which can be represented by two vectorial neurons.
The advantages of such a vectorial representation, which may appear fairly small

at this point, become obvious if we refine our model by taking air friction into
account. If a body moves in a medium (for example, in air), one distinguishes two
types of friction: Stokesian friction, which is proportional to the velocity of the
body, and Newtonian friction, which is proportional to the squared velocity of the
body (Greiner 1989). If the occurring velocities are low, one usually neglects the
Newtonian, if they are high, one neglects the Stokesian friction. As an example, we
consider here only Stokesian friction. In this case the equation

a = −βv = −β ṙ

describes the deceleration of the body that is caused by air friction, where β is a
constant that depends on the shape and the volume of the body. In total we thus have
the differential equation

r̈ = −β ṙ − gey .

With the help of the intermediary quantity v = ṙ we obtain

ṙ = v, v̇ = −βv − gey,

from which we derive the recursion formulas

r(ti ) = r(ti−1) + Δt v(ti−1) and

v(ti ) = v(ti−1) − Δt β v(ti−1) − Δt gey .

The corresponding network is shown in Fig. 9.8. Stokesian friction is taken into
account by the feedback loop of the bottom neuron.

An example computation with v0 = 8, ϕ = 45o, β = 1.8 andΔt = 0.05 is shown
in Fig. 9.9. Note the steeper right branch of the trajectory, which demonstrates the
decelerating effect of Stokesian friction. Without this friction, the trajectory would
be a parabola (equal slopes on the left and right branch at the same height).

Fig. 9.8 A vectorial
recurrent neural network to
compute an oblique throw,
taking Stokesian friction into
account
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Fig. 9.9 Trajectory of an
oblique throw of a body that
is computed by the recurrent
neural network shown in
Fig. 9.8

As a second example we consider the orbit of a planet (Feynman et al. 1963).
The movement of a planet around a central body (sun) of mass m at the origin of the
coordinate system can be described by the vectorial differential equation

r̈ = −γmr|r |−3,

where γ = 6.672 · 10−11 m3kg−1s−2 is the gravitational constant. This equation
describes the acceleration of the planet that is caused by the mass attraction between
the sun and the planet. As before, we introduce the vectorial velocity v = ṙ as an
intermediary quantity and thus arrive at the system of differential equations

ṙ = v, v̇ = −γmr|r|−3.

From this system we derive the vectorial recursion formulas

r(ti ) = r(ti−1) + Δt v(ti−1) and

v(ti ) = v(ti−1) − Δt γmr(ti−1)|r(ti−1)|−3,

which can be represented by two vectorial neurons as shown in Fig. 9.10. Note,
however, that in this case the bottom neurons needs a somewhat unusual network
input function (compared to the previous examples): simply multiplying the output
of the top neuron with the connection weight is no longer enough.

An example computation with γm = 1, r0 = (0.5, 0) and v0 = (0, 1.63) (follow-
ing an example of Feynman et al. 1963) is shown in Fig. 9.11. The diagram nicely
shows the elliptical course on which the planet moves faster if it close to the sun

Fig. 9.10 A vectorial
recurrent neural network to
compute the orbit of a planet

Fig. 9.11 Orbit of a planet
that is computed by the
recurrent neural network that
is shown in Fig. 9.10. The
sun is located at the origin of
the coordinate system
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(perihelion) than farther away from the sun (aphelion). This illustrates the content of
the first two of Kepler’s Laws, according to which the orbit of a planet is an ellipse
(first law) and a radius from the sun to the planet sweeps out equal areas in equal
intervals of time (second law).

9.4 Error Backpropagation in Time

Computations like those executed in the preceding sections are, of course, only
possible if one knows both the differential equation that describes the considered
(physical) system as well as the values of the parameters appearing in it. However, in
practice we often face the problem that we know the form of the differential equation,
but not the values of the parameters appearing in it. If measurement data about the
considered system are available, one may try in such a case to find the system
parameters by training a recurrent neural network, which represents the differential
equation. Since the weights and bias values of the neural network are functions of
the system parameters, the actual parameter values can be read from them.

In principle, recurrent neural networks are trained in the same way as multilayer
perceptrons, namely by error backpropagation (see Figs. 5.4 and 5.5). However, due
to the feedback loops, this method cannot be applied directly, since these loops
would propagate the error signals in a cyclic fashion. This problem is solved by
unfolding the network in time between two training patterns. This special form of
error backpropagation is called error backpropagation through time.

We illustrate here only the basic principle with the help of Newton’s cooling law,
which we studied in Sect. 9.1 (see p. 159). We assume that we have measurement
values from the cooling (or warming) of a body at our disposal, which state the
temperature of the body at different points in time. In addition, we assume that the
temperature ϑa of the medium is known, into which the body is placed (ambient
temperature). From these measurement values we desire to determine the value of
the (unknown) cooling constant k of the body.

Like for the training of multilayer perceptrons, the weight and the bias value
are initialized randomly. The time between two consecutive measurement values is
divided—in analogy to Sect. 9.1—into a certain number of intervals. According to
the chosen number of intervals the feedback loop of the network is then “unfolded.”
For example, if there are four intervals between one measurement value and the
next, that is, if t j+1 = t j + 4Δt , we obtain the network shown in Fig. 9.12, which
possesses five neurons. Note that the neurons of this network do not possess feedback
loops, neither explicit nor implicit ones. As a consequence, the connection weights

Fig. 9.12 Unfolding in time of the recurrent neural network shown in Fig. 9.2 (four steps)

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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are 1 − kΔt : the 1 represents the implicit feedback loop of the network in Fig. 9.2
(cf. the explanations given on p. 161).

If a measurement value ϑ j (temperature of the body at time t j ) is fed into this
network, it computes—with the current values of the weight and the bias values—an
approximation for the next measurement value ϑ j+1 (temperature of the body at time
t j+1 = t j + 4Δt). By comparing this value with the actual value ϑ j+1 we obtain an
error signal, which is propagated with the known formulas of error backpropagation
and thus causes adaptations of the weights and the bias values.

However, we have to pay attention to the fact that the network shown in Fig. 9.12
actually possesses only one weight and one bias value, since all weights refer to the
same feedback loop and all bias values refer to the same neuron. Hence the derived
adaptations have to aggregated and must only be applied at the end of the procedure
to change the one connection weight and the one bias value that actually exit. Fur-
thermore, note that both the weight as well as the bias value contain the unknown
parameter k, but only known constants apart from it. Therefore it is advisable to trans-
form the weight and bias changes computed by error backpropagation into changes
of this single free parameter k. Thus only one quantity needs to be adapted, from
which both weight and bias value are then computed.

It should be clear that in practice one does not proceed in the described manner
for such a simple differential equation as Newton’s cooling law. Since this equation
can be solved analytically, better and more direct methods are available to determine
the value of the unknown parameter k. Starting from the analytical solution of the
differential equation, the problem may be solved, for instance, with the regression
methods studied in Sect. 5.3: with a suitable transformation of the measurement data
the problem is reduced to the task of finding a best fit line (regression line) through
the origin, the only parameter of which is the cooling constant k.

However, there are many practical problems for which it makes sense to find
unknown system parameters by training a recurrent neural network. In general, this is
always the case if the differential equations describing the systemunder consideration
cannot be solved analytically. As an example wemention here the problem of finding
tissue parameters for virtual surgery, especially virtual laparoscopy2 (Radetzky and
Nürnberger 2002). The systems of coupled differential equations occurring in this
application are too complex (mainly due to the high number of equations), so that
they cannot be solved analytically. By training recurrent neural networks, however,
remarkable results could be achieved.

2A laparoscope is a medical instrument with which a physician can examine the abdominal cavity
through small incisions. In virtual laparoscopy an examination of the abdominal cavity is simulated
with a computer and a force-feedback device in the shape of a laparoscope in order to teach medical
students how to use this instrument properly.

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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The following sections treat mathematical topics that were presupposed in the text
(Sect. 10.1 on straight line equations and Sect. 10.2 on regression), or side remarks,
which would have disturbed the flow of the exposition (Sect. 10.3 on activation
transformation in a Hopfield network).

10.1 Equations for Straight Lines

In this section a few important facts about straight lines and their equations have
been collected, which are used in Chap.3 on threshold logic units. More extensive
explanations can be found in any textbook on linear algebra.

Straight lines are commonly described in one of the following forms:

explicit form: g ≡ x2 = bx1 + c
implicit form: g ≡ a1x1 + a2x2 + d = 0
point-direction form: g ≡ x = p + kr
normal form: g ≡ (x − p)n = 0

with the parameters

b : slope of the line
c : intercept
p : position vector of a point of the line (support vector)
r : direction vector of the line
n : normal vector of the line.

It is a disadvantage of the explicit form that straight lines that are parallel to the
x2-axis cannot be represented. All other forms can represent arbitrary lines.

The implicit form and the normal form are closely related to each other, because
the coefficients a1 and a2 of the variables x1 and x2, respectively, are the coordinates
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Fig. 10.1 A straight line and
the parameters describing it

of a normal vector of the line. That is, we may use n = (a1, a2) in the normal form.
Expanding the normal form also shows that d = −pn.

The relations between the parameters of the different forms of stating a straight
line are shown in Fig. 10.1. Particularly important is the vector q, which provides an
interpretation for the parameter d of the implicit form. The vector q is obtained by
projecting the support vector p onto the direction normal to the straight line. This is
achieved with the scalar product. It is

pn = |p ||n| cosϕ.

From the diagram we see that |q | = |p | cosϕ. There fore we have

|q | = |pn|
|n| = |d|

|n| .
Hence |d| measures the distance of the straight line from the origin of the coordinate

system relative to the length of the normal vector. If
√
a21 + a22 = 1, that is, if the

normal vector has unit length, then |d| measures this distance directly. In this case
the normal form is called the Hessian normal form of the line equation.

If one takes into account that pn becomes negative if n does not point away from
the origin (as in the diagram), but toward it, one finally obtains:

q = pn
|n|

n
|n| = −d

|n|
n
|n| .

Note that q always points from the origin to the straight line, regardless of whether
n points toward the origin or away from it. Therefore we can read the location of the
origin from the sign of d:

d = 0 : The straight line contains the origin,
d < 0 : n = (a1, a2) points away from the origin,
d > 0 : n = (a1, a2) points toward the origin.

Of course, we can carry out these computations not only for a support vector p
of the straight line, but for an arbitrary vector x (see Fig. 10.2). Thus we obtain a
vector z that is the projection of the vector x onto the direction normal to the line.
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Fig. 10.2 Determining the
side of straight line on which
a point x lies

By comparing this vector to the vector q considered above, we can determine on
which side of the straight line the point lies that has the position vector x:

A point with position vector x lies on the side of the straight line to which the
normal vector n points, if xn > −d, and on the other side, if xn < −d. If xn = −d,
the point lies on the straight line.

It should be clear that these considerations are not restricted to straight lines,
but can be transferred immediately to planes and hyperplanes. Thus we can easily
determine for them as well on which side a point with given position vector lies.

10.2 Regression

This section recalls the method of least squares, also known as regression, which
is well known in calculus and statistics. It is used to determine best fit straight lines
(regression lines) and generally best fit polynomials (regression polynomials). The
following exposition follows mainly (Heuser 1988).

(Physical) measurement data rarely show the exact relationship of the measured
quantities as it is described by physical laws, since they are inevitably afflicted by
errors. If one wants to determine the relationship of the quantities nevertheless (at
least approximately), one faces the task to find a function that fits the measurement
points as well as possible, so that the measurement errors are somehow “balanced.”
Naturally, in order to achieve this, we should have a hypothesis about the type of
relationship, so that we can choose a function class and thus reduce the problem to
the selection of the parameters of a function of a specific type.

For example, if we expect two quantities x and y to exhibit a linear depen-
dence (for instance, because a scatter plot of the measurement points suggests such
a relationship), we have to determine the parameters a and b of the straight line
y = g(x) = a + bx . However, due to the inevitable measurement errors it will gen-
erally not be possible to find a straight line in such away that all n givenmeasurement
points (xi , yi ), 1 ≤ i ≤ n, lie exactly on this straight line. Rather we have to try to
find a straight line that deviates from the measurement points as little as possible.
Therefore it is plausible to determine the parameters a and b in such a way that the
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sum of the squared differences

F(a, b) =
n∑

i=1

(g(xi ) − yi )
2 =

n∑
i=1

(a + bxi − yi )
2

is minimized. That is, the y-values that can be computed from the line equation
should deviate (in total) as little as possible from the measured values. The reasons
for choosing the squared deviations are basically the same as those given in Sect. 4.3:
in the first place using squares makes the error functions continuously differentiable
everywhere. In contrast to this, the derivative of the absolute value, which would be
an obvious alternative, does not exist/is not continuous at 0. Secondly, squaring the
deviations weights large deviations more heavily than small ones, so that there is a
tendency to avoid individual large deviations from the measured data.1

A necessary condition for a minimum of the error function F(a, b) defined above
is that the partial derivatives of this function w.r.t. the parameters a and b vanish:

∂F

∂a
=

n∑
i=1

2(a + bxi − yi ) = 0 and

∂F

∂b
=

n∑
i=1

2(a + bxi − yi )xi = 0.

From these equations we obtain, after a few simple transformations, the so-called
normal equations

na +
(

n∑
i=1

xi

)
b =

n∑
i=1

yi
(

n∑
i=1

xi

)
a +

(
n∑

i=1

x2i

)
b =

n∑
i=1

xi yi ,

that is, a linear equation systemwith two equations and two unknowns a and b. It can
be shown that this equation system has a unique solution unless the x-values of all
measurement points are identical (that is, unless x1 = x2 = . . . = xn), and that this
solution indeed describes a minimum of the function F (Heuser 1988). The straight
line y = g(x) = a + bx determined in this way is called the best fit (straight) line
or the regression line for the data set (x1, y1), . . . , (xn, yn).

To illustrate the procedure, we consider a simple example. Let the data set consist-
ing of eight data points (x1, y1), . . . , (x8, y8) be given that is shown in the following
table (Heuser 1988) (see also Fig. 10.3):

1Note, however, that this can also be a disadvantage. If the data set contains “outliers” (that is,
measurement values that due to random, disproportionally largemeasurement errors deviate strongly
from the true value), the position of the regression line may be influenced heavily by very few
measurement points (precisely the outliers), which can lead to an unusable result.

http://dx.doi.org/10.1007/978-1-4471-7296-3_4
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Fig. 10.3 An example data
set and a regression line that
was computed with the
method of least squares

x 1 2 3 4 5 6 7 8
y 1 3 2 3 4 3 5 6

In order to set up the system of normal equations, we compute

8∑
i=1

xi = 36,
8∑

i=1

x2i = 204,
8∑

i=1

yi = 27,
8∑

i=1

xi yi = 146.

Thus we obtain the equation system (normal equations)

8a + 36b = 27,

36a + 204b = 146,

which possesses the solution a = 3
4 and b = 7

12 . Therefore the regression line is

y = 3

4
+ 7

12
x .

This line is shown, together with the data points we started from, in Fig. 10.3.
The method we just considered is, of course, not limited to straight lines, but can

be extended at least to polynomials. In this case one tries to find a polynomial

y = p(x) = a0 + a1x + . . . + amx
m

with a given, fixed degreem that approximates the n data points (x1, y1), . . . , (xn, yn)
as well as possible. In this case we have to minimize

F(a0, a1, . . . , am) =
n∑

i=1

(p(xi ) − yi )
2 =

n∑
i=1

(a0 + a1xi + . . . + amx
m
i − yi )

2.

Necessary conditions for a minimum are again that the partial derivatives w.r.t. the
parameters a0 to am vanish, that is,

∂F

∂a0
= 0,

∂F

∂a1
= 0, . . . ,

∂F

∂am
= 0.
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In this way we obtain the system of normal equations (Heuser 1988)

na0 +
(

n∑
i=1

xi

)
a1 + . . . +

(
n∑

i=1

xmi

)
am =

n∑
i=1

yi
(

n∑
i=1

xi

)
a0 +

(
n∑

i=1

x2i

)
a1 + . . . +

(
n∑

i=1

xm+1
i

)
am =

n∑
i=1

xi yi

...
...

...
...(

n∑
i=1

xmi

)
a0 +

(
n∑

i=1

xm+1
i

)
a1 + . . . +

(
n∑

i=1

x2mi

)
am =

n∑
i=1

xmi yi ,

from which the parameters a0 to am can be derived with the usual methods
of linear algebra (Gaussian elimination, Cramer’s rule, inverting the coefficient
matrix, etc.). The resulting polynomial p(x) = a0 + a1x + a2x2 + . . . + amxm is
called best fit polynomial or regression polynomial of degree m for the data
set (x1, y1), . . . , (xn, yn).

Furthermore the method of least squares cannot only be used, as considered up to
now, to compute regression polynomials, butmay aswell be employed to fit functions
with more than one argument. This case is called multiple or multivariate regres-
sion. We consider, as an example, only the special case of multilinear regression
and confine ourselves to a function with two arguments. That is, we consider, how
one can find a best fitting function of the form

z = f (x, y) = a + bx + cy

for a given data set (x1, y1, z1), . . . , (xn, yn, zn) in such away that the sumof squared
errors is minimized. In this case the normal equations are derived in a perfectly
analogous way. We have to minimize

F(a, b, c) =
n∑

i=1

( f (xi , yi ) − zi )
2 =

n∑
i=1

(a + bxi + cyi − zi )
2.

Necessary conditions for a minimum are

∂F

∂a
=

n∑
i=1

2(a + bxi + cyi − zi ) = 0,

∂F

∂b
=

n∑
i=1

2(a + bxi + cyi − zi )xi = 0,

∂F

∂c
=

n∑
i=1

2(a + bxi + cyi − zi )yi = 0.
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Therefore we obtain the system of normal equations

na +
(

n∑
i=1

xi

)
b +

(
n∑

i=1

yi

)
c =

n∑
i=1

zi
(

n∑
i=1

xi

)
a +

(
n∑

i=1

x2i

)
b +

(
n∑

i=1

xi yi

)
c =

n∑
i=1

zi xi
(

n∑
i=1

yi

)
a +

(
n∑

i=1

xi yi

)
b +

(
n∑

i=1

y2i

)
c =

n∑
i=1

zi yi

from which a, b and c can easily be computed.
It should be immediately clear that themethodof least squares can also be extended

to polynomials in multiple variables. How it may also be extended, under certain
conditions, to other function classes is demonstrated in Sect. 5.3 with the help of the
example of logistic regression.

A program for multivariate polynomial regression that uses ideas from dynamic
programming to quickly compute the needed power products can be found at

http://www.borgelt.net/regress.html

10.3 Activation Transformation

In this section we demonstrate how the weights and thresholds of a Hopfield net-
work that works with activations 0 and 1 can be transformed into the corresponding
parameters of a Hopfield network that works with the activations −1 and +1 (and
vice versa). This shows that the two network types are essentially equivalent, and
thus that it was justified to choose in Chap.8 whichever form was more suitable for
the specific task under consideration.

In the following we indicate by an upper index of the considered quantities what
the range of activation values of the neural network is, to which they refer:

0 : quantity of a network with actu ∈ { 0, 1},
− : quantity of a network with actu ∈ {−1, 1}.

Clearly we must always have

act0u = 1

2
(act−u + 1) and act−u = 2act0u − 1.

That is, the neuron u either has activation 1 in both networks or it has activation 0
in one network and activation −1 in the other. In order to achieve that both network
types exhibit the same behavior, it must also hold that:

s(net−u − θ−
u ) = s(net0u − θ0u ),

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
http://dx.doi.org/10.1007/978-1-4471-7296-3_8
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where

s(x) =
{

1, if x ≥ 0,
−1, otherwise.

Only if this is the case the activation changes are the same in both networks. The
above equation clearly holds if

net−u − θ−
u = net0u − θ0u .

(Note that this is a sufficient, but not a necessary condition.) Using the relations
between the activations stated above, we obtain from this equation

net−u − θ−
u =

∑
v∈U−{u}

w−
uvact

−
u − θ−

u

=
∑

v∈U−{u}
w−
uv(2act

0
u − 1) − θ−

u

=
∑

v∈U−{u}
2w−

uvact
0
u −

∑
v∈U−{u}

w−
uv − θ−

u

!= net0u − θ0u

=
∑

v∈U−{u}
w0
uvact

0
u − θ0u

This equation holds if we choose

w0
uv = 2w−

uv and

θ0u = θ−
u +

∑
v∈U−{u}

w−
uv.

For the opposite direction we obtain

w−
uv = 1

2
w0
uv and

θ−
u = θ0u −

∑
v∈U−{u}

w−
uv = θ0u − 1

2

∑
v∈U−{u}

w0
uv.
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11Introduction to Evolutionary
Algorithms

Evolutionary algorithms comprise a class of optimization techniques that imitate
principles of biological evolution. They belong to the family of metaheuristics,
which also includes, for example, particle swarm (Kennedy and Eberhart 1995) and
ant colony optimization (Dorigo and Stützle 2004), which are inspired by other bio-
logical structures and processes, aswell as classicalmethods like simulated annealing
(Kirkpatrick et al. 1993; Metropolis et al. 1953), which is inspired by a thermody-
namical process. The core principle of evolutionary algorithms is to apply evolution
principles like mutation and selection to populations of candidate solutions in order
to find a (sufficiently good) solution for a given optimization problem.

11.1 Metaheuristics

Metaheuristics are fairly general computational techniques that are typically used to
solve numerical and combinatorial optimization problems approximately in several
iterations (as opposed to analytically and exactly in a single step). Metaheuristics
are generally defined as an abstract sequence of operations on certain objects and
are applicable to essentially arbitrary problems. However, the objects operated on
and the steps to be carried out must be adapted to the specific problem at hand. Thus
the core task is usually to find a proper mapping of a given problem to the abstract
structures and operations that constitute the metaheuristic.

Metaheuristics are usually applied to problems for which no efficient solution
algorithm is known, that is, problems, for which all known algorithms have an
(asymptotic) time complexity that is exponential in the problem size. In practice,
such problems can rarely be solved exactly, due to the prohibitively high demands
on computing time and/or computing power. As a consequence, approximate solu-
tions have to be accepted, and this is what metaheuristics can provide. Although
there is no guarantee that they will find the optimal solution or even a solution of
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a given minimum quality (although this is not impossible either), they usually offer
good chances of finding a “sufficiently good” solution.

The success and the execution time of metaheuristics depend critically on a proper
mapping of the problem to the steps of the metaheuristic and the efficient implemen-
tation of every single step. Many metaheuristics work by iteratively improving a set
of so-called candidate solutions. They differ in themethods they employ to vary solu-
tions in order to possibly improve them, in the principles by which partial solutions
are combined or elements of found solutions are exploited to find new solutions, as
well as in the principles by which a new set of candidate solutions is selected from
the previously created ones. However, they share that they usually carry out a guided
random search in the space of solution candidates. That is, these algorithms carry
out a search that contains certain random elements to explore the search space, but
they are also guided by some measure of the solution quality, which governs which
(parts of) solution candidates are focused on or at least kept for further exploration
and which are discarded, because they are not promising.

An important advantage of metaheuristics is the fact that they can usually be
terminated after any iteration step (so-called anytime algorithms), because they
have, at any point in time, at least some solution candidates available. From these
the best solution candidate found so far is then retrieved and returned, regardless of
whether some other termination criterion is met or not. However, it should be clear
that the solution quality is usually the better, the longer the search can run.

A wide range of metaheuristics based on various principles has been proposed,
many of which are nature-inspired. While evolutionary algorithms rely on principles
of biological evolution in various forms, (particle) swarm optimization (Kennedy
and Eberhart 1995) mimics the behavior of swarms of animals (like fish or birds)
that search for food in schools or flocks. Ant colony optimization (Dorigo 1992;
Dorigo and Stützle 2004) mimics the path finding behavior of ants and termites.
Other biological entities that inspired metaheuristics include, among others, honey
bees (Nakrani and Tovey 2004) or the immune system of vertebrates (Farmer et.
al 1986). Alternatives are algorithms that draw on physical rather than biological
analogies, like simulated annealing (Kirkpatrick et al. 1993; Metropolis et al. 1953),
which mimics annealing processes, threshold accepting (Dueck and Scheuer 1990)
or the deluge algorithm (Dueck 1993).

11.2 Biological Evolution

Evolutionary algorithms are among the oldest andmost popularmetaheuristics. They
are essentially based on Charles Darwin’s theory of biological evolution, which he
proposed in his seminal book “The Origin of Species” (Darwin 1859).1 This theory

1The full title “TheOrigin of Species byMeans ofNatural Selection, or the Preservation of Favoured
Races in the Struggle for Life” is usually shortened to merely “The Origin of Species.”
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explains the diversity and complexity of all forms of living organisms and allows us
to unify all biological disciplines. Nontechnical modern introductions to the theory
of biological evolution can be found in the popular and very readable books (Dawkins
1976, 1986, 2009).
The core principle of biological evolution can be formulated as:

• Beneficial traits resulting from random variation
are favored by natural selection.

That is, individuals with beneficial traits have better chances to procreate and mul-
tiply, which may also be captured by the expression differential reproduction.

New or at least modified traitsmay be created by various processes. There is, in the
first place, the both blind and purely randommodification of genes, that is,mutation,
which affects both sexually and asexually reproducing life forms. Mutations may
occur due to exposure to radioactivity (e.g., caused by earth or cosmic radiation or
nuclear reactor disasters) or to so-called mutagens (i.e., chemical compounds that
disturb the copying process of the genetic information), but may also happen simply
naturally, due to anunavoidable susceptibility of the complexgenetic copyingprocess
to errors. In sexual reproduction equally blindly and purely randomly selected halves
of the (diploid) chromosome sets of the parents are (re-) combined, thus creating
new combinations of traits and physical characteristics. In addition, during meiosis
(i.e., the cell division process that produces the germ cells or gametes), parts of
(homologous) chromosomes, in a process called crossover (or crossing over) , may
cross each other, break, and rejoin in a modified fashion, thus exchanging genetic
material between (homologous) chromosomes. As a result offspring with new or at
least modified genetic plans and thus physical traits is created.

The vastmajority of these (genetic)modifications are unfavorable or even harmful,
in the worst case rendering the resulting individual unable to live. However, there
is a (small) chance that some of these modifications result in (small) improvements,
endowing the individual with traits that help it to survive. For example, they may
make it better to find food, to defend itself against predators, or at least to hide or run
from them, to attract mates for reproduction, etc. Generally speaking, each individual
is put to the test in its natural environment where it either proves to have a high fitness
, making it more likely to procreate and multiply, or where it fails to survive or mate,
thus causing it or its traits to disappear.

Note that the natural selection process is driven by both the natural environment
and the individual traits, leading to different reproduction rates or probabilities.
Life forms with traits that are better fitted to their environment usually have more
offspring on average. Consequently their traits become more frequent with each
generation of individuals. On the other hand, life forms with traits less favorable in
their environment usually have less offspring on average and thusmight even become
extinct after some generations (at least in this environment).

It is important to understand that a trait is not beneficial or harmful in itself, but
only w.r.t. the environment. For example, while the dark skin color of many Africans
protects their skin against the intense sun in regions close to the equator, their skin
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pigmentation can turn out to be a disadvantage in regions where sunlight is scarce,
because it increases the risk of vitamin D deficiency (Harris 2006), as vitamin D
is produced in the skin under the influence of ultraviolet light. On the other hand,
humans with little skin pigmentation may be less likely to suffer from vitamin D
deficiency, but may have to take more care to protect their skin against sunlight to
reduce the risk of premature skin aging and skin cancer (Brenner and Hearing 2008).
Another example is sickle cell anemia, which is a usually harmful misshaping of
hemoglobin (red blood cells), because it reduces the capability of hemoglobin to
transport oxygen. However, it has certain protective effects against malaria and thus
can be an advantage in regions in which malaria is common (Aidoo et al. 2002).

Note also that it is the interaction of random variation and natural selection that
explains why there are so many complex life forms, even though these life forms
are extremely unlikely to come into existence as the result of pure chance. However,
evolution is not just pure chance. Although the variations are blind and random, their
selection is not, but strictly driven by their benefit for the survival and procreation
of the individuals endowed with them. As a consequence, small improvements can
accumulate over many generations and finally lead to surprising complexity and
strikingly fitting adaptations to an environment.

One of the reasons why we tend to make wrong estimates of the probability of
complex and adapted life forms, seeing them as (much) less likely than they actually
are, is that we tend to use the following model: consider a box full of scrap metal
parts collected from a junkyard, all of which are car parts. If we shake this box long
enough there is a certain (though extremely small) probability that after some time
a drivable car is assembled in the box. This model represents creating something
complex by mere chance. It clearly makes it effectively impossible that anything
even remotely complex, let alone a living organisms, comes into existence.

In evolution, however, each small variation is immediately put to the test w.r.t.
an environment and only the beneficial variations are kept and extended. There-
fore a better model is the following thought experiment, suggested by B.F. Skinner
(Dawkins 1986): Suppose we want to convince people that we can predict the out-
come of horse races. We send a letter (or nowadays maybe rather an email) to 10,000
people, predicting the winning horse in the next race. There are ten horses and since
we actually have no clue which one will win, we predict to the first 1000 people that
horse number 1 will win, to the next 1000 people that horse number 2 will win, etc.
Thus, after the race has taken place, we are sure to have 1000 people to whom we
predicted the correct horse, while we forget about the 9000 others. We repeat the
process with another horse race, predicting horse number 1 to the first 100 people
(of the 1000 that remained after the first race), horse number 2 to the second 100 etc.
After the race we have 100 people to whom we predicted the correct horse twice,
while we forget about the 900 others, to whom we predicted the wrong horse. Doing
another round in the same manner, we end up with 10 people to whom we predicted
the winning horse in three consecutive races. In another letter (or email) to these
10 people, we propose to them to predict the winning horse in yet another race,
only that this time we charge a fee. Consider the situation from the point of view of
these 10 people: they know that we correctly predicted the winning horse in three
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consecutive races. The chance of achieving such accuracy by mere guessing is 1 in
1000 and thus highly unlikely. Therefore these 10 people may be inclined to think
that we have some insider knowledge that allows us to predict the winning horse
much better than by pure chance and thus may be willing to pay the fee.

However, from the process in which these 10 people were selected, we know that
it was certain that wewould end upwith 10 people to whichwe predicted thewinning
horse three times in a row.We did not (and need not) know anything about the horses
or the races. All we did was to select the successes, that is, the people to whom we
made the correct prediction, and ignore the failures, that is, the people to whom we
sent a wrong prediction. Evolution works in essentially the same manner: it focuses
on the successes (the life forms that survive and procreate) and forgets about the
failures (the life forms that go extinct). Since we tend to ignore the failures—simply
because we do not see them as they do not exist anymore—we underestimate the
probability of seeing an evolved complex individual.

In addition, we have trouble imagining the time—actually billions of years—that
has passed since the first, extremely simple cells assembled. There was so much time
for variation and selection, for tiny improvements to accumulate, that complex life
forms may not even be unlikely, but may actually be almost unavoidable once the
process started (at least according to some authors like (Dawkins 1986).

Up to now we focused on variation (mutation and recombination) and selection
as the fundamental principles of (biological) evolution. These may indeed be the
most important constituents, and often a description of evolutionary processes is
reduced to these core elements. However, a more detailed analysis reveals many
more principles, of which we list some of the more important in the following.
A more detailed discussion can be found in (Vollmer 1995) or (Hartl and Clark
2007).

• Diversity
All forms of life—even organisms of the same species— differ from each other,
and not just physically, but already in their genetic material (biological diversity
or diversity of species). Nevertheless, the currently actually existing life forms are
only a tiny fraction of the theoretically possible ones.

• Variation
Mutation and genetic recombination (in sexual reproduction) continuously cre-
ate new variants. These new variants may exhibit a new combination of already
existing traits or may introduce a modified and thus new trait.

• Inheritance
As long as variations enter the germ line, they are heritable, that is, they are genet-
ically passed on to the next generation. However, there is generally no inheritance
of acquired traits (so-called Lamarckism (Lamarck 1809)).

• Speciation
Individuals and populations diverge genetically. Thus new species are created once
their members cannot crossbreed any longer. Speciation gives the phylogenetic
“pedigree” its characteristic branching structure.
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• Birth surplus/Overproduction
Nearly all life forms producemore offspring than can ever become mature enough
to procreate themselves.

• Adaptation/Natural Selection/Differential Reproduction
On average, the survivors of a population exhibit such hereditary variations which
increase their adaptation to the local environment. Herbert Spencer’s expression
“survival of the fittest” is rather misleading, though.We prefer to speak of differen-
tial reproduction due to different fitness, because mere survival without offspring
is obviously without effect in the long run, especially since the life span of most
organisms is limited.

• Randomness/Blind Variation
Variations are random. Although triggered, initiated, or caused by something,
they do not favor certain traits or beneficial adaptions. In this sense they are non-
teleological (from the Greek τελoς : goal, purpose, objective).

• Gradualism
Variations happen in comparatively small steps as measured by the complete infor-
mation content (entropy) or the complexity of an organism. Thus phylogenetic
changes are gradual and relatively slow. (In contrast to this saltationism—from
Latin saltare: to jump—means fairly large and sudden changes in development.)

• Evolution/Transmutation/Inheritance with Modification
Due to the adaptation to the environment, species are not immutable. They rather
evolve in the course of time. Hence the theory of evolution opposes creationism,
which claims that species are immutable.

• Discrete Genetic Units
The genetic information is stored, transferred, and changed in discrete (“atomic,”
from the Greek α̌τoμoς : indivisible) units. There is no continuous blend of hered-
itary traits. Otherwise we might see the so-called Jenkins Nightmare, that is, a
complete disappearance of any differences in a population due to averaging.

• Opportunism
The processes of evolution are extremely opportunistic. They work exclusively
with what is present and not with what once was or could be. Better or optimal
solutions are not found if the intermediary stages (that are evolutionarily necessary
to build these solutions) exhibit certain fitness handicaps.

• Evolution-strategic Principles
Not only organisms are optimized, but also the mechanisms of evolution. These
include parameters like reproduction and mortality rates, life spans, vulnerability
to mutations, mutation step sizes, evolutionary speed, etc.

• Ecological Niches
Competitive species can tolerate each other if they occupy different ecological
niches (“biospheres” in a wider sense) or even create them themselves. This is
the only way the observable biological diversity of species is possible in spite of
competition and natural selection.

• Irreversibility
The course of evolution is irreversible and unrepeatable.
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• Unpredictability
The course of evolution is neither determined, nor programmed, nor purposeful
and thus not predictable.

• Increasing Complexity
Biological evolution has led to increasingly more complex systems. However, an
open problem in evolutionary biology is the question howwe can actually measure
the complexity of life forms.

11.3 Simulated Evolution

Given that biological evolution has created complex life forms and solved difficult
adaptation problems, it is reasonable to assume that the same optimization principles
can be used to find good solutions for (complex) optimization problems. Hence we
start by formally defining optimization problems in Sect. 11.3.1 and consider some of
theirmain properties. In Sect. 11.3.2we then transfer some basic notions of biological
evolution to simulated evolution, pointing out what requirements have to be fulfilled
in order to make an evolutionary algorithm approach worthwhile. In Sect. 11.3.3 we
then present the building blocks of an evolutionary algorithm in an abstract fashion,
before we turn in Sect. 11.4 to a concrete illustrative example.

11.3.1 Optimization Problems

Definition 11.1 (Optimization problem) An optimization problem is a pair (Ω, f )
consisting of a (search) space Ω of potential solutions and an evaluation function
f : Ω → R that assigns a quality assessment f (ω) to each candidate solutionω ∈ Ω .
An element ω ∈ Ω is called an (exact) solution of the optimization problem (Ω, f )
if and only if it is a global maximum of f , that is, if ∀ω′ ∈ Ω : f (ω′) ≤ f (ω).

Note that, even though the above definition requires a solution to maximize the value
of the evaluation function f , this is no actual restriction. If we have a function that
yields smaller values for better solutions, we may simply use− f in the definition. In
order to capture this, we will speak of a solution as a global optimum, thus covering
maxima and minima. Note also that a solution need not be unique. There may be
multiple elements of Ω for which f yields the same (optimal) value.

As a simple example of an optimization problem consider the task of finding the
side lengths of a boxwith fixed surface area S such that its volume ismaximized.Here
the search spaceΩ is the set of all triples (x, y, z), that is, the three side lengths, with
x, y, z ∈ R

+ (i.e., the set of all positive real numbers) and 2xy + 2xz + 2yz = S,
while the evaluation function f is simply f (x, y, z) = xyz. In this case the solution
is unique, namely x = y = z = √

S/6, that is, the box is a cube.
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Note that this example already exhibits an important feature thatwill be considered
in more detail later, namely that the search space is constrained: we do not consider
all triples of real numbers, but only those with positive elements that satisfy 2xy +
2xz + 2yz = S. In this example this is evennecessary to have awell-defined solution:
if x , y and z could be arbitrary (positive) real numbers, there would be no (finite)
optimum. The problem thus consists in making sure that in the search for a solution
we never leave the search space, that is, that we never consider as solution candidates
objects that do not satisfy the constraints.

Optimization problems occur in many applications areas of which the following
(certainly incomplete) list gives only a limited impression:

• Parameter Optimization
In many situations a set of (suitable) parameters has to be found such that a given
real-valued function is optimized. Such parameters can be, for example, the angle
and curvature of the air intake and exhaust pipes for automobile motors to maxi-
mize power, the relative quantities of the ingredients of a rubber mixture for tires
to maximize grip under different conditions, and the temperatures in different
components of a thermal power plant to maximize energy efficiency.

• Routing Problems
Themost famous routing problem is clearly the traveling salesman problem, which
occurs in practice, for instance, if holes have to be drilled in printed circuit board
and the distance the drill is to be moved (and thus the movement time) is to be
minimized. Other examples include the optimization of delivery routes from a
central storage to individual shops or the arrangement of printed circuit board
tracks with the objective to minimize length and number of layers.

• Packing and Cutting Problems
Classical examples of packing problems include the knapsack (or backpack or
rucksack) problem, in which a knapsack of a given (maximum) capacity is to be
filled with given goods of known value and size (or weight) such that the total
value is maximized, the bin packing problem, in which given objects of known
size and shape are to be packed into boxes of given size and shape such that the
number of boxes is minimized, and the cutting stock problem in its various forms,
in which geometrical shapes are to be arranged in such a way as to minimize waste
(e.g., the wasted cloth after the parts of a garment have been cut out).

• Arrangement and Location Problems
Awell-known example of this problem type is the so-called facility location prob-
lem, which consists in finding the best placement of multiple facilities (e.g., the
distribution nodes in a telephone network), usually under certain constraints. It is
also known as Steiner’s problem, because certain specific cases are equivalent to
the introduction of so-called Steiner points to minimize the length of a spanning
tree in a geometric planar graph.

• Scheduling Problems
Job shop scheduling in its various forms, in which jobs have to be assigned to
resources at certain times in order to minimize the time to complete all jobs, is a
common optimization problem. A special case is the reordering of instructions by
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a compiler in order to maximize the execution speed of a program. This problem
type also includes setting up timetables for schools (where constraints like the
number of classrooms and the need to avoid skip hours at least for the lower
grades complicate the problem) or trains (in which the number of tracks available
on certain lines and the different speeds of the trains render the problem difficult).

• Strategy Problems
Finding optimal strategies of how to behave in the (iterated) prisoner’s dilemma
and other models of game theory is a common problem in economics. A related
goal is to simulate the behavior of actors in economic life, where not only strategies
are optimized, but also their prevalence in a population. We discuss a specific (and
fairly simple) behavioral simulation in more detail in Sect. 13.5.1.

As a side remark, wemention that (not surprisingly) evolutionary algorithms can also
be used for biological modeling. An example is the “Netspinner” program (Krink
and Vollrath 1997), which describes the web building behavior of certain spiders by
parametrized rules (e.g., number of spokes, angle of the spiral, etc.). With the help
of an evolutionary algorithm, the program optimizes the rule parameters based on
an evaluation function that takes both the metabolic cost of building the web as well
as the chances of catching prey with it into account. The obtained results mimic the
behavior observed in real spiders very well and thus help to understand the forces
that cause spiders to build their webs the way they do.

Optimization problems can be tackled in many different ways, but all possible
approaches can essentially be categorized into four classes

• Analytical Solution
Some optimization problems can be solved analytically. For example, the problem
of finding the side lengths of a box with given surface area S such that its vol-
ume is maximized (see above) can easily be solved with the method of Lagrange
multipliers, setting the partial derivatives of the constructed Lagrange functional
w.r.t. the parameters equal to zero and solving the resulting equation system. If
an analytical approach exists, it is often the method of choice, because it usually
guarantees that the solution is actually optimal and that it can be found in a fixed
number of steps. However, for many practical problems no (efficient) analytical
methods exists, either because the problem is not yet understood well enough or
because it is too difficult in a fundamental way (e.g., because it is NP-hard).

• Complete/Exhaustive Exploration
Since the definition of an optimization problem already contains all candidate
solutions in the formof the (search) spaceΩ , onemay consider simply enumerating
and evaluating all of its elements. Although this approach certainly guarantees
that the optimal solution will be found, it can be extremely inefficient and thus is
usually applicable only to (very) small search spaces Ω . It is clearly infeasible for
parameter optimization problems over real domains, since then Ω is infinite and
thus cannot possibly be explored exhaustively.

• (Blind) Random Search
Instead of enumerating all elements of the search space Ω (which may not be

http://dx.doi.org/10.1007/978-1-4471-7296-3_13
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efficiently possible anyway), we may consider picking and evaluating random
elements, always keeping track of the best solution (candidate) found so far. This
approach is efficient and has the advantage that it can be stopped at any time, but
suffers from the severe drawback that it depends on pure luck whether we obtain
a reasonably good solution. This approach corresponds to the model of a box with
car parts that is shook to obtain a drivable car, as we discussed it above. It usually
offers only very low chances of obtaining a satisfactory solution.

• Guided (Random) Search
Instead of blindly picking random elements from the search space Ω , we may
try to exploit the structure of the search space and how the evaluation function f
assesses similar elements to control the search. The fundamental idea is to exploit
information that has been gained from evaluating certain solution candidates to
guide the choice of the next solution candidates to examine. Of course, for this to
be possible, the evaluation of similar elements of the search space must be similar.
Otherwise there is no basis on which we may transfer gathered information. Note
that the choice of the next solution candidates to examinemay still contain a random
element (nondeterministic choice), though, but that the choice is constrained by
the evaluation of formerly examined solution candidates.

All metaheuristics, including evolutionary algorithms, fall into the last category.
They differ, as already pointed out above, mainly in how the gathered information
is represented and exploited for picking the next solution candidates to evaluate.
Although metaheuristics thus provide fairly good chances of obtaining a satisfactory
solution, it should always be kept in mind that they cannot guarantee that the optimal
solution is found. That is, the solution candidate they return may have a high quality,
and this quality may be high enough for many practical purposes, but theremight still
be room for improvement. If the problem at hand requires to find a truly (guaranteed)
optimal solution, evolutionary algorithms are not suited for the task. In such a case
one has to opt for an analytical solution or an exhaustive exploration.

It is also important to keep in mind that metaheuristics require that the evaluation
function allows for gradual improvement (similar solution candidates have similar
quality). Although in evolutionary algorithms the evaluation function is motivated by
the biological fitness or aptitude in an environment and thus must differentiate better
andworse candidate solutions, it must not possess large jumps at randompoints in the
search space. Consider, for example, an evaluation function that assigns a value of 1
to exactly one solution candidate and 0 to all others. In this case, any evolutionary
algorithm (actually any metaheuristic) cannot perform better than (blind) random
search, because the quality assessment of nonoptimal solution candidates does not
provide any information about the location of the actual optimum.

11.3.2 Basic Notions and Concepts

In this sectionwe introduce the basic notions and concepts of evolutionary algorithms
by transferring them from their biological counterparts, see Table11.1.
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Table 11.1 Basic evolutionary notions in biology and computer science

Notion Biology Computer science

Individual Living organism Solution candidate

Chromosome DNA histone protein
strand

Sequence of
computational objects

describes the “construction plan” and thus (some of the) traits of an
individual in encoded form

usually multiple
chromosomes per
individual

usually only one
chromosome per
individual

Gene Part of a chromosome Computational object
(e.g., a bit, character,
number etc.)

is the fundamental unit of inheritance, which determines a (partial) char-
acteristic of an individual

Allele (allelomorph) Form or “value” of
gene

Value of a
computational object

in each chromosome there is at most one form/value of a gene

Locus Position of a gene Position of a
computational object

at each position in a chromosome there is exactly one gene

Phenotype Physical appearance of
a living organism

Implementation/application
of a solution candidate

Genotype Genetic constitution of
a living organism

Encoding of a solution
candidate

Population Set of living organisms Bag/multiset of
chromosomes

Generation Population at a point in
time

Population at a point in
time

Reproduction Creating offspring of
one or multiple
(usually two) (parent)
organisms

creating (child)
chromosomes from
one or multiple
(parent) chromosomes

Fitness Aptitude/conformity of
a living organism

Aptitude/quality of a
solution candidate

determines chances of survival and reproduction

An individual, which is a living organism in biology, corresponds to a candi-
date solution in computer science. Individuals are the entities to which a fitness is
assigned and which are subject to the (natural) selection process. In both domains,
an individual is described by a chromosome (from the Greek χρωμα: color and
σωμα: body, thus “colored body,” because they are the colorable substance in a cell
nucleus), which is the carrier of the genetic information. In biology, a chromosome
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consists of deoxyribonucleic acid (DNA) and many histone proteins, while in com-
puter science the genetic information is encoded as a sequence of computational
objects like bits, characters, numbers, etc. A chromosome represents the “genetic
blueprint” and encodes (parts of) traits of an individual. Most living organisms have
several chromosomes, for example, humans have 46 chromosomes, which come in
23 so-called homologous pairs. In computer science, however, this complication is
ignored and all genetic information is combined in a single chromosome.

A gene is the fundamental unit of inheritance as it determines (a part of) a trait or
characteristic of an individual. An allele (from the Greek αλληλων: “each other,”
“mutual,” because initially mainly two-valued genes were considered) refers to a
possible form of a gene in biology. For example, a gene may represent the color of
the iris in the eye of a human. This gene has alleles that code for blue, brown, green,
gray, etc., irises. In computer science, an allele is simply the value of a computational
object, which selects one of several possible properties of a solution candidate that
the gene stands for. Note that in a given chromosome there is exactly one allele per
gene. That is, the iris color gene may code for blue or brown or green or gray eyes,
but only one of these possibilities, as specified by the corresponding allele, is present
in a concrete chromosome. The locus is the position of a gene in its chromosome. At
any locus in a chromosome there is exactly one gene. Usually a gene can be identified
by its locus. That is, a specific position (or a specific section) of a chromosome codes
for a specific trait of the individual.

In biology,phenotype refers to the physical appearance of an organism, that is, the
shape, structure and organization of its body.Note that the phenotype iswhat interacts
with the environment and hence that it is the phenotype that actually determines
the fitness of the individual. Likewise, in computer science, the phenotype is the
implementation or application of a candidate solution, from which the fitness of the
corresponding individual can be read. In contrast to this, the genotype is the genetic
configuration of an organism or the encoding of a candidate solution, respectively.
Note that the genotype determines the fitness of an individual only indirectly through
the phenotype it encodes and that, at least in biology, the phenotype also comprises
acquired traits that are not represented in the genotype (for example, learned behavior
and bodily changes like a limb lost due to an accident).

A population is a simple set of organisms, usually of the same species. Due to the
complexity of biological genomes it is usually safe to assume that no two individuals
from a population share exactly the same genetic configuration—homozygous twins
being the only exception. In addition, even genetically identical individuals differ
due to acquired traits, which are never perfectly identical (even for homozygous
twins) and thus lead to different phenotypes. In computer science, however, due
to the usually much more limited variability of a chromosome as they are used
in evolutionary algorithms and the lack of acquired traits, we must allow for the
possibility of identical individuals. As a consequence, a population of an evolutionary
algorithm is a bag or a multiset of individuals. In both biological and simulated
evolution generation refers to the population at a certain point in time.

Anewgeneration is createdby reproduction, that is, by thegenerationof offspring
from one or more (in biology: if more than one, then usually two) organisms, in
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which genetic material of the parent individuals may be recombined. The same
holds for computer science, only that the child creation process works directly on
the chromosomes and that the number of parents may exceed two.

Finally, the fitness of an individual measures how high its chances of survival
and reproduction are due to its adaptation to its environment. Since the quality of a
biological organismw.r.t. its environment is difficult to assess objectively and simply
defining fitness as the ability to survive can lead to a tautological “survival of the
survivor,” a formally more precise notion defines the fitness of an organism as the
number of its offspring organisms that procreate themselves, thus linking (biological)
fitness directly to the concept of differential reproduction. In computer science, the
situation is simpler, because we are given an optimization problem that directly
provides a fitness function with which solution candidates are to be evaluated.

It should be noted that, even though there are many parallels, simulated evolution
is (usually) much simpler than biological evolution. For example, there are princi-
ples of biological evolution, e.g., speciation, that are usually not implemented in an
evolutionary algorithm. On the genetic level, we already pointed out that in most life
forms the genetic information is spread over multiple chromosomes, which often
even come in so-called homologous pairs. These are pairs of chromosomes compris-
ing the same genes, but possibly with different alleles, of which both or only one
determine the corresponding phenotypical trait. Although such complications have
their purpose in biological evolution, they are usually not simulated in a computer.

11.3.3 Building Blocks of an Evolutionary Algorithm

The general idea of an evolutionary algorithm is to employ evolution principles
to generate increasingly better solution candidates for the optimization problem to
solve. Essentially, this is achieved by evolving a population of solution candidates
with the help of random variation and fitness-based selection of the next generation.

An evolutionary algorithm requires the following ingredients:

• an encoding for the solution candidates,
• a method to create an initial population,
• an fitness function to evaluate the individuals,
• a selection method on the basis of the fitness function,
• a set of genetic operators to modify chromosomes,
• a termination criterion for the search, and
• values for various parameters.

Since we want to evolve a population of solution candidates, we need a way of
representing them as chromosomes, that is, we have to encode them, essentially
as sequences of computational objects (like bits, characters, numbers etc.). Such
an encoding may be so direct that the distinction between the genotype, as it is
represented by the chromosome, and the phenotype, which is the actual solution
candidate, becomes blurred. For example, for the problem of finding the side lengths
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of a box with given surface area that has maximum volume (which we considered
above), we may use the triples (x, y, z) of the side lengths, which are the solution
candidates, directly as the chromosomes. In other cases there is a clear distinction
between the solution candidate and its encoding, for example, if we have to turn the
chromosome into some other structure (the phenotype) before we can evaluate its
fitness. We will see several examples of such cases in later chapters.

Generally, the encoding of the solution candidates is highly problem-specific and
there are no general rules. However, in Sect. 12.1 we discuss several aspects that
attention should be paid to when choosing an encoding for a given problem. An
inappropriate choice can severely reduce the effectiveness of the evolutionary algo-
rithm or may even make it impossible to find a sufficiently good solution. Depending
on the problem to solve, it is therefore highly recommended to spent considerable
effort on finding a good encoding of the solution candidates.

Once we have decided on an encoding, we can create an initial population of solu-
tion candidates in the form of chromosomes representing them. Since chromosomes
are simple sequences of computational objects, an initial population is commonly
created by simply generating randomsequences.However, depending on the problem
to solve and the chosen encoding, more complexmethods may be needed, especially,
if the solution candidates have to satisfy certain constraints.

In order to mimic the influence of the environment in biological evolution, we
need a fitness function with which we can evaluate the individuals of the created
population. In many cases this fitness function is simply identical to the function to
optimize, which is given by the optimization problem to solve. However, the fitness
function may also contain additional elements that represent constraints that have
to be satisfied in order for a solution candidate to be acceptable or that introduce a
tendency toward certain additionally desired properties of a solution.

The (natural) selection process of biological evolution is simulated by amethod to
select candidate solutions according to their fitness. Thismethod is used to choose the
parents of offspringwewant to create or to select those individuals that are transferred
to the next generationwithout change. Such a selectionmethodmay simply transform
the fitness values into a selection probability, such that better individuals have higher
chances of getting chosen for the next generation.

The random variation of chromosomes is simulated by so-called genetic operators
that modify and recombine chromosomes, for example,mutation, which randomly
changes individual genes, and crossover, which exchanges parts of the chromosomes
of parent individuals to produce offspring. Depending on the problem and the chosen
encoding, the genetic operators can be very generic or highly problem-specific. The
choice of the genetic operators is another element that effort should be spent on,
especially in connection with the chosen encoding.

The ingredients described up to nowallowus to generate a sequence of populations
of (hopefully) increasingly better quality. However, while biological evolution is
unbounded, we need a criterion when to stop the process in order to retrieve a final
solution. Such a criterion may be, for example, that the algorithm is terminated
(1) after a user-specified number of generations have been created, (2) there has
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been no improvement (of the best solution candidate) for a user-specified number of
generations, or (3) a user-specified minimum solution quality has been obtained.

To complete the specification of an evolutionary algorithm, we have to choose the
values of several parameters, which include, for example, the size of the population
to evolve, the fraction of individuals that is chosen from each population to produce
offspring, the probability of a mutation occurring in an individual etc.

More formally, the procedure of an evolutionary algorithm looks like this:

Algorithm 11.1 (General Scheme of an Evolutionary Algorithm)

procedure evoalg;
begin
t ← 0; (∗ initialize the generation counter ∗)

initialize pop(t); (∗ create the initial population ∗)

evaluate pop(t); (∗ and evaluate it (compute fitness) ∗)

while not termination criterion do (∗ loop until termination ∗)

t ← t + 1; (∗ count the created generation ∗)

select pop(t) from pop(t − 1); (∗ select individuals based on fitness ∗)

alter pop(t); (∗ apply genetic operators ∗)

evaluate pop(t); (∗ evaluate the new population ∗)

end (∗ (compute new fitness) ∗)

end

That is, after having created and evaluated an initial population of solution candidates
(in the form of chromosomes), a sequence of generations of solution candidates is
computed. Each new generation is created by selecting individuals based on their
fitness (with a higher fitness meaning a higher chance of getting selected). Then
genetic operators (likemutation and crossover) are applied to the selected individuals.
Next, the modified population (or at least the new individuals in it, which have been
created by the genetic operators) is evaluated and the cycle starts over. This process
continues until the chosen termination criterion is fulfilled.

11.4 The n-Queens Problem

The n-queens problem consists in the task to place n queens (a piece in the game
of chess) of the same color onto an n × n chessboard in such a way that no rank
(chess term for row), no file (chess term for column) and no diagonal contains more
than one queen. Drawing on the rules of how a queen may move in the game of
chess (namely horizontally, vertically or diagonally by any number of squares, but
not onto a square that is occupied by a piece of the same color or beyond a square
that is occupied by a piece of either color, see Fig. 11.1), we may say that the queens
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Fig. 11.1 Possible moves of a chess queen (left) and a solution of the 8-queens problem (right)

must be placed in such a way that none of them obstructs the possible moves of any
other. As an example, Fig. 11.1 shows a solution of the 8-queens problem.

A well-known approach to solve the n-queens problem is a backtracking algo-
rithm, which can be seen as an essentially exhaustive exploration of the space of
candidate solutions with a depth-first search. Such an algorithm exploits the obvious
fact that each rank (row) of the chessboard must contain exactly one queen. Hence
it proceeds by placing the queens rank by rank. For each rank, it is checked for each
possible square whether a queen placed on it obstructs the moves of any queens
placed earlier (that is, whether there is already a queen on the same file (column) or
the same diagonal). If this is not the case, the algorithm proceeds recursively to the
next rank. However, if the newly placed queen obstructs any of the queens placed ear-
lier or if the recursion to the next rank returns with the result that no solution could
be found because obstructions could not be avoided, the queen is removed again
and the algorithm continues with the next square. More formally, this backtracking
algorithm can be described, for example, by the following function:

Algorithm 11.2 (Backtracking Solution of the n-Queens Problem)

function queens (n: int, k: int, board: array of array of boolean) : boolean;
begin (∗ recursively solve n-queens problem ∗)

if k ≥ n then return true; (∗ if all ranks filled, abort with success ∗)

for i = 0 up to n − 1 do begin (∗ traverse the squares of rank k ∗)

board[i][k] ← true; (∗ place a queen on square (i, k) ∗)

if not board[i][ j] ∀ j : 0 < j < k(∗ if no other queen is obstructed ∗)

and not board[i − j][k − j] ∀ j : 0 < j ≤ min(k, i)
and not board[i + j][k − j] ∀ j : 0 < j ≤ min(k, n − i − 1)
and queens (n, k + 1, board) (∗ and the recursion succeeds, ∗)

then return true; (∗ a solution has been found ∗)

board[i][k] ← false; (∗ remove queen from square (i, k) ∗)

end (∗ for i = 0 …∗)
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return false; (∗ if no queen could be placed, ∗)

end (∗ abort with failure ∗)

This function is called with the number n of queens that defines the problem size,
k = 0 indicating that the board should be filled starting from rank 0, and board being
an n × n Boolean matrix that is initialized to false in all elements. If the function
returns true, the problem can be solved. In this case one possible placement of the
queens is indicated by the true entries in board. If the function returns false, the
problem cannot be solved (the 3-queens problem, for example, has no solution).
In this case the variable board is in its initial state of all false entries.

Note that the above algorithm can easily bemodified to yield all possible solutions
of an n-queens problem. In this case, the first if-statement, which checks whether
all ranks have been filled, must be extended by a procedure that reports the found
solution. In addition, the recursion must not be terminated if the recursion succeeds
(and thus a solution has been found), but the loop over the squares of the current
rank must be continued to find possibly existing other solutions.

Although a backtracking approach is very effective for sufficiently small n (up to,
say, n ≈ 30), it can take a long time to find a solution if n is larger. If we are interested
in only one solution (i.e., one placement of the queens), there exists a better method,
namely an analytical solution (which is slightly lesswell known than the backtracking
approach). We compute the positions of the queens as follows:

Algorithm 11.3 (Analytical Solution of the n-Queens Problem)

• If n = 2 or n = 3, the n-queens problem does not have a solution.
• If n is odd (that is, if n mod 2 = 1),
then we place a queen onto the square (n − 1, n − 1) and decrement n by 1.

• If n mod 6 �= 2, then we place
the queens in the rows y = 0, . . . , n

2 − 1 in the columns x = 2y + 1 and
the queens in the rows y = n

2 , . . . , n − 1 in the columns x = 2y − n.
• If n mod 6 = 2, then we place
the queens in the rows y = 0, . . . , n

2 − 1 in the columns x = (2y + n
2 ) mod n and

the queens in the rows y = n
2 , . . . , n − 1 in the columns x = (2y − n

2 + 2) mod n.

Due to this analytical solution, it is not quite appropriate to approach the n-queens
problem with an evolutionary algorithm. Here we do so nevertheless, because this
problem allows us to illustrate certain aspects of evolutionary algorithms very well.

In order to solve the n-queens problem with an evolutionary algorithm, we first
need an encoding of the solution candidates. For this we draw on the same obvious
fact that was already exploited for the backtracking algorithm, namely that each
rank (row) of the chessboard must contain exactly one queen. Therefore we describe
a candidate solution by a chromosome with n genes, each of which refers to one
rank of the chessboard and has n possible alleles, namely the possible file (column)
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Fig. 11.2 Encoding of candidate solutions in the n-queens problem (here: n = 5)

Fig. 11.3 A solution
candidate for the 5-queen
problem with four
obstructions and thus fitness
value −2

numbers 0 to n − 1. Such a chromosome is interpreted as demonstrated in Fig. 11.2
(for n = 5): the allele of each gene indicates the file in which the queen is placed
in the rank to which the gene refers. Note that with this encoding we can clearly
distinguish between the genotype, which is an array of numbers, and the phenotype,
which is the actual placement of the queens on the chessboard.

Note that this way of encoding the solution candidates has the advantage that
we already exclude candidate solutions with more than one queen per rank. As a
consequence, the search space becomes much smaller and thus can be explored
more quickly and more effectively by an evolutionary algorithm. In order to reduce
the search space even further, we may even consider restricting the chromosomes
to permutations of the file (column) numbers. That is, each file number must occur
for exactly one gene. However, although this clearly shrinks the search space even
further, it introduces complications w.r.t. the genetic operators and thus we refrain
from introducing this requirement here (however, cf. the discussion in Sect. 12.3).

In order to create an initial population we simple generate a random sequence
of n numbers in {0, 1, . . . , n − 1} for each individual, because there are no special
conditions that such a sequence has to satisfy to be an element of the search space.

The fitness function is derived directly from the defining characteristics of a solu-
tion: we compute for each queen the number of obstructions, that is, the number of
other queens that obstruct its moves. Then we sum these numbers over the queens,
divide by 2 and negate the result (see Fig. 11.3 for an example). Clearly, for an actual
solution the fitness computed in this manner is zero, whereas it is negative for all
other candidates. Note that we divide by two, because each obstruction is counted
twice with the above procedure as obstruction is symmetric: if queen 1 obstructs
queen 2, then queen 2 also obstructs queen 1. Note also that we negate the result,
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because we want a fitness function that has to be maximized. For the example shown
in Fig. 11.3 we have four (pairwise symmetric) obstructions (we may also say: two
collisions between queens) and thus the fitness value is −2.

The fitness function immediately fixes the termination criterion: since a solution
has the (maximally possible) fitness value of 0, we stop the algorithm as soon as a
solution candidate with fitness 0 has been generated. However, to be on the safe side,
we should also introduce a limit for the number of generations, so that the algorithm
is guaranteed to terminate. Note, though, that with such an additional criterion the
evolutionary algorithm may stop without having found a solution.

For the selection operationwe choose a simple, but often very effective form of so-
called tournament selection. That is, from the individuals of the current population
a (small) sample of individuals is drawn that carry out a tournament with each other.
This tournament is won by the individual with the highest fitness (ties are broken
randomly). A copy of the winning individual is then added to the next generation
and the participants of the tournament are replaced into the current population. The
process is repeated until the next generation is complete, which usually means that
it has reached the same size as the current population. Alternative selection methods
as well as variants of tournament selection are discussed in Sect. 12.2.

In order to alter the selected individuals, we need genetic operators for recombi-
nation and variation. For the former we use so-called one-point crossover, which
chooses a random cut point on the chromosomes of two parent individuals and
exchanges the part on one side of the cut point between these individuals to create
two children. An example for n = 5 is shown in Fig. 11.4: the genes below the ran-
domly chosen cut point (the second out of the four possible ones) are exchanged.
This example demonstrates what one hopes a genetic recombinationmay achieve: by
combining partial solutions that are present in two deficient individuals (that is, both
parent individuals have a negative fitness) a complete solution is obtained (the left
child has a fitness of 0 and thus is a solution of the 5-queens problem). Alternative
crossover operators are discussed in Sect. 12.3.

As a variation operation we use a random replacement of the alleles of randomly
selected genes (so-called standard mutation). An example is shown in Fig. 11.5,
in which two genes of a chromosome representing a candidate solution for the
5-queens problem receive new values. This example is fairly typical in the respect
that most mutations reduce the fitness of the individual affected by them. However,
mutation is nevertheless important, because alleles that are not present in the initial
population cannot be created by recombination, which only reorganizes existing alle-

Fig. 11.4 One-point
crossover of two
chromosomes
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Fig. 11.5 Mutation of two
genes of a chromosome

les. Generally, mutation can more easily introduce new alleles into chromosomes.
Alternative mutation operators are discussed in Sect. 12.3.

Finally, we have to choose the values of several parameters. These include the
size of the population to evolve (for example, μ = 1000 individuals), the maximum
number of generations to compute (for example, g = 100 generations), the size
of the tournaments to carry out (for example, μt = 5 individuals), the fraction of
individuals that are subject to crossover (for example, pc = 0.5), and the probability
that a gene is subject to a mutation (for example, pm = 0.01). Once all parameters
have been chosen, the evolutionary algorithm is fully specified and can be executed
according to the general scheme presented in Algorithm 11.1 on p. 197.

An implementation of this evolutionary algorithm, which can be found (as a
command line program) on the web site for this book, shows that one can find
solutions to the n-queens problem even for somewhat larger n than backtracking
allows (also available as a command line program on the web site for this book), at
least if a sufficiently large population is used and a sufficient number of generations is
computed. However, as it is not guaranteed that a solution can be found, the program
sometimes ends with a candidate solution that has a high fitness (like −1 or −2), but
does not really solve the problem since obstructions remain.

By experimenting with the parameters, especially the fraction of individuals that
are subject to crossover or the probability that a gene gets mutated, one can discover
some interesting properties. For example, it turns out that mutations seem to be more
important than crossover, since the speedwithwhich a solution is found or the quality
of solutions that are found in a given number of generations is not reduced if the frac-
tion of individuals that are subject to crossover is reduced to zero. On the other hand,
disallowing mutations causes the (average) solution quality to degrade significantly.
Note, however, that these are not general characteristics of evolutionary algorithms,
but are exhibited only for this particular problem and chosen encoding, selection and
genetic operators etc. It cannot be transferred directly to other applications, where
the crossover operation may contribute more to a solution being found and mutation,
if its probability is chosen too large, rather degrades performance.

11.5 Related Optimization Techniques

In classical optimization (for example, in operations research) many techniques
and algorithms have been developed that are fairly closely related to evolution-
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ary algorithms. Among these are some of the best-known optimization techniques,
for instance, gradient ascent or descent (Sect. 11.5.1), hill climbing (random ascent
or descent, Sect. 11.5.2), simulated annealing (Sect. 11.5.3), threshold accepting
(Sect. 11.5.4) and the great deluge algorithm (Sect. 11.5.5). All of these methods
are sometimes called local search methods, because they make only small steps in
the search space and thus carry out a local search for better solutions.

Like evolutionary algorithms, these techniques are based on the assumption that
for similar solution candidates s1 and s2 the values of the function to optimize—that
is, the values f (s1) and f (s2)—are also similar. The main difference to evolutionary
algorithms consists in the fact that the mentioned approaches focus on a single
solution candidate rather than a whole population of solution candidates. These
methods are relevant in the context of evolutionary algorithms, because one may
see them, to some degree, as evolutionary algorithms with a population of size 1. In
addition, they are often employed to improve solutions candidates locally or as a final
optimization step for the output of an evolutionary algorithm. Finally, they illustrate
some of the fundamental ideas underlying evolutionary algorithm techniques.

11.5.1 Gradient Ascent or Descent

While all methods discussed in the following sections only assume similarity of
the quality of similar solution candidates, gradient ascent (or descent), requires in
addition that the following two conditions hold:

• The search space is a subset of the n-dimensional space of real numbers:Ω ⊆ R
n .

• The function f : Ω → R to optimize is differentiable (everywhere).

Technically, the gradient is a differential operation that creates a vector field. That
is, the gradient assigns to each point in the domain of the function of which the
gradient is computed a vector that points into the direction of the steepest ascent
of the function in that point. An illustration of the gradient of a two-dimensional
function z = f (x, y) at a point p = (x0, y0) is shown in Fig. 11.6 (see also Sect. 5.4

Fig. 11.6 Intuitive
interpretation of the gradient
of a real-valued function
z = f (x, y) at a
point p = (x0, y0). It is
∇z|(x0,y0) =(

∂z
∂x |(x0,y0), ∂z

∂y |(x0,y0)
)
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in Part I). Formally, the gradient at a point (x0, y0) is defined as

∇z|(x0,y0) =
(

∂z

∂x

∣∣∣
(x0,y0)

,
∂z

∂y

∣∣∣
(x0,y0)

)
.

The basic idea of gradient ascent (or descent) is to start at a randomly chosen point
and then to make small steps in the search spaceΩ in (or against) the direction of the
steepest slope of the function f until a (local) optimum is reached. More formally,
gradient ascent or descent works according to the following general scheme:

Algorithm 11.4 (Gradient Ascent or Descent)

1. Choose a (random) starting point x(0) = (
x (0)
1 , . . . , x (0)

n
)
.

2. Compute the gradient at the current point x(t)

∇x f
(
x(t)) =

(
∂

∂x1
f
(
x(t)

)
, . . . , ∂

∂xn
f
(
x(t)

))
.

3. Make a small step in the direction of the gradient (for gradient ascent, positive
sign) or against the direction of the gradient (for gradient descent, negative sign):

x(t+1) = x(t) ± η ∇x f
(
x(t))

where η is a parameter that controls the step width (also called “learning rate” in
the training of (artificial) neural networks, see Sect. 5.4).

4. Repeat steps 2 and 3 until some termination criterion is fulfilled (for example,
until a user-specified number of steps has been executed or until the gradient is
smaller than a user-specified threshold).

Although simple and often very effective, this optimization technique is not without
drawbacks. As discussed in more detail in Sect. 5.6 in Part I, the choice of the step
width η is critical. If its value is too small, it may take very long until a (local)
optimum is reached, because only tiny steps are executed, especially if the gradient
is small. On the other hand, if the step width is too large, the optimization process
may oscillate (jump back and forth in the search space), never converging to a (local)
optimum. Some approaches to mitigate this problem (like a using a momentum term
or an adaptive step width parameter) are discussed in Sect. 5.7 in Part I.

A fundamental problem of gradient ascent or descent is the choice of the starting
point, since a bad choice can make it essentially impossible to find the global or
even just a good local optimum. Unfortunately, there is little that can be done to
improve this situation. Thus the best option is to execute the procedure multiple
times with different starting points and finally to choose the best result obtained.
This provides an argument for looking at populations of solution candidates (as
in evolutionary algorithms). Such an approach offers, in addition, the possibility
to exchange information between solution candidates to improve the optimization
process. In evolutionary algorithm this is achieved by recombination operators.

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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11.5.2 Hill Climbing

If the function f is not differentiable, gradient ascent or descent is not an option.
However, we may try to determine a direction in which f increases by evaluating
randompoints in the vicinity of the current point. The result is known as hill climbing,
which is probably the simplest local search method. It works as follows:

Algorithm 11.5 (Hill Climbing)

1. Choose a (random) starting point s0 ∈ Ω .
2. Choose a point s ∈ Ω “in the vicinity” of st

(for example, by a small random variation of st ).
3. Set

st+1 =
{
s if f (s) > f (st ),
st otherwise.

4. Repeat steps 2 and 3 until a termination criterion is fulfilled.

As for gradient ascent or descent, the biggest problem of this fairly naïve approach
is that it has a strong tendency to get stuck in local optima. This is illustrated in
Fig. 11.7, where a solution candidate (indicated by the gray ball) cannot rise any
further by merely local modifications and thus gets stuck in a local maximum. All
subsequent methods try to mitigate this fundamental problem by accepting, under
certain conditions, solution candidates s that are worse than the current solution st .
The idea is to enable solutions candidates to cross regions of lower solution quality
between the local maximum and a global one (or at least a better local one), see
Fig. 11.7. The different methods we study below differ mainly in the exact conditions
under which they accept solution candidates that are worse.

Fig. 11.7 Getting stuck in local maxima is a core problem of gradient ascent as well as of hill
climbing. In order to reach the global maximum (or at least a better local optimum) a temporary
worsening of the solution quality has to be accepted
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11.5.3 Simulated Annealing

Simulated annealing (Metropolis et al. 1953; Kirkpatrick et al. 1993) can be seen as
extension of both hill climbing and gradient descent. The fundamental idea of this
method, which is also discussed in another context in Sect. 8.5 in Part I, is that transi-
tions from lower to higher (local) maxima should be more probable than transitions
in the opposite direction. This is achieved as follows: we randomly create variants
of the current solution—in exactly the same way as for hill climbing. Better solu-
tion candidates are always accepted. Solution candidates that are worse are accepted
with a certain probability which depends on both the quality difference between the
current and the new solution candidate and a temperature parameter that decreases
over time. The guiding principles are that small reductions of the solution quality
are more readily accepted than large ones, and that reductions of the solution quality
are more easily accepted in early steps of the algorithm than in later ones.

Algorithm 11.6 (Simulated Annealing)

1. Choose a (random) starting point s0 ∈ Ω .
2. Choose a point s ∈ Ω “in the vicinity” of st

(for example, by a small random variation of st ).
3. Set

st+1 =
⎧⎨
⎩
s if f (s) ≥ f (st ),
s with probability p = e− Δ f

kT and
st with probability 1 − p otherwise.

where Δ f = f (st ) − f (s) is the quality reduction of the solution, k = Δ fmax an
estimate of the range of quality values and T is a temperature parameter that is
(slowly) decreased over time.

4. Repeat steps 2 and 3 until a termination criterion is fulfilled.

For (very) small T this method is almost identical to hill climbing, because the
probability of accepting a worse solution candidate is (very) small. For larger T ,
quality reductions are accepted with a non-negligible probability, thus allowing the
solution candidates to cross regions of reduced quality. Nevertheless the algorithm
cannot guarantee, of course, that the global optimum is reached. However, the risk
of getting stuck in a local optimum is reduced and thus one obtains better chances
of reaching the global optimum or at least a good local one.

11.5.4 Threshold Accepting

The idea of threshold accepting (Dueck and Scheuer 1990) is very similar to that of
simulated annealing. Again worse solutions are sometimes accepted, however, with
an upper bound for the quality degradation. Threshold accepting works as follows:

http://dx.doi.org/10.1007/978-1-4471-7296-3_8
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Algorithm 11.7 (Threshold Accepting)

1. Choose a (random) starting point s0 ∈ Ω .
2. Choose a point s ∈ Ω “in the vicinity” of st

(for example, by a small random variation of st ).
3. Set

st+1 =
{
s if f (s) > f (st ) − θ,

st otherwise.

where θ > 0 is a threshold for acceptingworse solution candidates that is (slowly)
decreased over time. (θ = 0 is equivalent to standard hill climbing.)

4. Repeat steps 2 and 3 until a termination criterion is fulfilled.

11.5.5 Great Deluge Algorithm

Similar to simulated annealing and threshold accepting, the great deluge algorithm
(Dueck 1993) also accepts worse solutions. The difference is that an absolute lower
bound is used, which is slowly increased over time. One may imagine the procedure
as if the “landscape” formed by the quality function to optimize is slowly “flooded”
(in a great deluge, hence the name of the algorithm) and only solution candidates that
“sit on dry land” are acceptable. The higher the water level rises, the more strongly
the tendency becomes to accept only better solution candidates.

Algorithm 11.8 (Great Deluge Algorithm)

1. Choose a (random) starting point s0 ∈ Ω .
2. Choose a point s ∈ Ω “in the vicinity” of st

(e.g., by a small random variation of st ).
3. Set

st+1 =
{
s if f (s) ≥ θ0 + t · η,

st otherwise,

where θ0 is a lower bound for the quality of the candidate solutions at t = 0 (that
is, an initial “water level”) and η is a step width parameter that can be seen as
corresponding to the “speed of the rain” causing the flood.

4. Repeat steps 2 and 3 until a termination criterion is fulfilled.

11.5.6 Record-to-Record Travel

Similar to the great deluge algorithm, record-to-record travel uses a rising water
level (Dueck 1993). However, it is linked to the fitness of the best individual that
has been found so far. Thus a possible degradation is always seen in relation to the
best found individual. Only if there is an improvement, then the current individual
is important. Similar to threshold accepting, a monotonously increasing sequence θ

of real numbers controls the selection of poor individuals. More formally
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Algorithm 11.9 (Record-to-Record Travel)

1. Choose a (random) starting point s0 ∈ Ω and set sbest = s0.
2. Choose a point s ∈ Ω “in the vicinity” of st

(for example, by a small random variation of st ).
3. Set

st+1 =
{
s if f (s) ≥ f (sbest) − θ,

st otherwise,
and

sbest =
{
s if f (s) > f (sbest),
sbest otherwise,

where θ > 0 is a threshold for accepting solution candidates worse than the cur-
rently best solution that is (slowly) decreased over time.

4. Repeat steps 2 and 3 until a termination criterion is fulfilled.

11.6 TheTraveling Salesman Problem

To illustrate the application of the local search methods discussed above to an opti-
mization problem, we take a look at the famous traveling salesman problem (TSP):
we are given both a set of n cities (idealized as points on a plane) and the distances or
costs of the routes between the cities. A traveling salesman has business to conduct in
each of the cities, but, of course, wants to travel as cheaply (or as shortly) as possible.
Hence we desire to find a minimum cost (or minimum distance) round trip through
the cities, so that each city is visited exactly once.

Mathematically, the traveling salesman problem is defined as follows: we are
given a graph with weighted edges and we desire to find a so-called Hamiltonian
cycle in this weighted graph, that is, an ordering of the vertices of the graph in which
neighbors as well as the last and the first vertex are connected by an edge and which
minimizes the total weight of the connecting edges. In the form of our definition
of an optimization problem (as we gave it in Definition 11.1 on p. 189) a traveling
salesman problem can be stated as follows:

Definition 11.2 (Traveling Salesman Problem) Let G = (V, E,w) be a weighted
graph with the vertex set V = {v1, . . . , vn} (each vi represents a city), the edge
set E ⊆ V × V − {(v, v) | v ∈ V } (each edge represents a connection between two
cities) and the edge weight function w : E → R+ (which represents the distances or
costs of the connections). The traveling salesman problem is the optimization prob-
lem (ΩTSP, fTSP)whereΩTSP contains all permutationsπ of the numbers {1, . . . , n}
that satisfy ∀k; 1 ≤ k ≤ n : (vπ(k), v(π(k) mod n)+1) ∈ E and the function fTSP is
defined as

fTSP(π) = −
n∑

k=1

w((vπ(k), vπ((k mod n)+1))).
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A traveling salesman problem is called symmetric if

∀i, j ∈ {1, . . . , n}, i �= j : (vi , v j ) ∈ E ⇒ (v j , vi ) ∈ E ∧ w((vi , v j )) = w((v j , vi )),

that is, if all connections can be traversed in both directions and the directions have
the same costs. Otherwise the traveling salesman problem is called asymmetric.

No algorithm is known that solves this problem in polynomial time unless a non-
deterministic formalism (like a nondeterministic Turing machine) is used (which
is essentially irrelevant for practical purposes). More technically, one says that this
problem is nondeterministic polynomial-time-complete (or NP-complete for short).
Intuitively, this means that in order to guarantee that one obtains the optimal solution
one cannot do fundamentally better than trying all possibilities (exhaustive explo-
ration of the search space). As a consequence, for large n only approximate solutions
can be computed in reasonable time, because an exhaustive exploration is exponen-
tial in n. Of course, we may actually find the best solution with a guided (random)
search like evolutionary algorithms, but this is not guaranteed. Here we consider, as
an illustration of the methods discussed above, how the traveling salesman problem
can be tackled with hill climbing and simulated annealing.
We work with the following algorithm, which captures hill climbing for T ≡ 0:

Algorithm 11.10 (Simulated Annealing for the Traveling Salesman Problem)

1. Order the cities randomly (that is, create a random round trip).
2. Randomly choose two pairs of cities such that each pair consists of cities that are

neighbors in the current round trip and such that all four cities are distinct. Split
the round trip between the cities of each pair and reverse the interjacent part.

3. If this new round trip is better (that is, shorter or cheaper) than the old, then
replace the old round trip with the new one. Otherwise replace the old round trip
with probability p = exp

( − ΔQ
kT

)
where ΔQ is the quality difference between

the old and the new round trip, k is an estimate of the range of round trip qualities
and T is a temperature parameter that is reduced over time, e.g., T = 1

t .
4. Repeat steps 2 and 3 until a termination criterion is met.

Since we cannot know the range k of quality values, we estimate it, for example,
by kt = t+1

t (maxti=1 Qi − minti=1 Qi ) where Qi is the quality of the i th solution
candidate and t is the current time step. The employed variation operator is introduced
more generally as a mutation operator in Sect. 12.3.1 under the name inversion.

As an illustration, we consider the simple traveling salesman problem with only
five cities that is shown in Fig. 11.8 on the left. We simply use the Euclidean distance
of the points as the cost function, that is, we search for a round trip of minimum
length. A possible starting point (chosen in step 1) is the round trip that is shown in
Fig. 11.8 on the right, which has a length of 2

√
2 + 2

√
5 + 4 ≈ 11.30.

All five possible splits of this round trip that could be chosen in step 2 of the above
algorithm are shown in Fig. 11.9: the two edges that are cut by a dashed line identify
the cities of each pair. The new round trips that result from inverting the interjacent

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
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part (that is, traversing it in the opposite direction) are shown in Fig. 11.10 on the
left. The new edges of the round trip are shown in gray.

Fig. 11.8 Example of a
traveling salesman problem
(left) with initially created
round trip (right)

Fig. 11.9 Possible
separations of the exemplary
round trip

Fig. 11.10 Modifications of the initial round trip and the global optimum with the corresponding
fitness values. Compared to the initial round trip, all its possible variations are worse and therefore
hill climbing cannot reach the global optimum
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Figure11.10 also demonstrates that all five splits lead to a round trip that is worse
than the initial tour (see the length computations on the right). As a consequence, a
hill climbing approach (which accepts only bettermodifications) is unable to improve
the initial round trip and thus returns it as the solution. However, this round trip is
only a local optimum, as can be seen from the tour that is shown at the bottom of
Fig. 11.10, which is the global optimum (round trip of minimum length).

While hill climbing cannot find this optimum (from the chosen starting point—it
can find it from a different starting point), simulated annealing offers at least certain
chances to find it (although no guarantee). For instance, since the modifications 1,
2, 4 and 5 are only slightly worse than the initial tour, they may be accepted in the
simulated annealing algorithm in the random choice in step 3. At least from the
modifications 1 and 2 the optimal solution can be obtained with a single additional
modification that reverses the right or the left edge, respectively.

It should be noted that it may depend on the operations with which a solution
candidate “in the vicinity” of the current solution is created whether hill climbing can
get stuck in a local optimum. If we permit other operations, the problem disappears
for the example studied in Figs. 11.8, 11.9 and 11.10: by removing the city in the
center and inserting it between the two cities at the bottom, the initial tour can be
transformed directly into the optimal round trip and thus hill climbing is enabled to
find the optimal solution. However, for this modified operation set another example
can be found, in which hill climbing can get stuck in a local optimum.
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12Elements of EvolutionaryAlgorithms

Evolutionary algorithms are not fixed procedures, but contain several elements that
must be adapted to the optimization problem to be solved. In particular, the encod-
ing of the candidate solution needs to be chosen with care. Although there is no
generally valid rule or recipe, we discuss in Sect. 12.1 some important properties a
good encoding should have. In Sect. 12.2 we turn to the fitness function and review
the most common selection techniques as well as how certain undesired effects can
be avoided by adapting the fitness function or the selection method. Section12.3 is
devoted to genetic operators, which serve as tools to explore the search space, and
covers sexual and asexual recombination and other variation techniques.

12.1 Encoding of Solution Candidates

The way in which candidate solutions to the given optimization problem are encoded
canhave a considerable impact onhoweasily an evolutionary algorithmfinds a (good)
solution. With a bad or unfavorable encoding it may not even find a useful solution
at all. As a consequence, one should spend a lot of effort and care on designing a
good encoding and the corresponding genetic operators.

For example, in the n-queens problem we discussed in Sect. 11.4, the encoding
we chose, namely using an array of n integer numbers with values in {0, . . . , n− 1},
is much better than representing the placement of the queens by a binary array with
n2 elements, in which each element refers to a square of the n × n chessboard and
encodes whether this square is occupied by a queen (bit is 1) or not (bit is 0). The
reason is that our encoding already rules out candidate solutions with more than
one queen in the same rank (row) and thus considerably reduces the search space.
In addition, it ensures that there are always exactly n queens on the board, while
with a binary encoding the genetic operators we employed (standard mutation and
one-point crossover) may produce a candidate solution with more or less queens.

An even better encoding than the onewe chose is to restrict the candidate solutions
to permutations of the numbers {0, . . . , n−1}. Such an encoding not only guarantees
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that each rank contains exactly one queen, but at the same time that each file (column)
contains exactly one queen. Hence it reduces the search space even further, making
the task much easier for the evolutionary algorithm. We merely refrained from using
this encoding in Sect. 11.4, because it would have caused problems with the genetic
operators, since standard mutation and one-point crossover do not maintain that a
candidate solution is a permutation. However, these problems can be solved with
specialized operators as we demonstrate in Sect. 12.3.

Generally, it is important to pay attention to the interplay between the chosen
encoding and the genetic operators. If the encoding reduces the search space, but
it turns out to be difficult to find genetic operators that guarantee that the result of
their application is in this reduced search space, additional efforts may be needed to
handle such cases. These efforts may very well be so costly that it can turn out to
be better to use an encoding that defines a larger search space (incorporating fewer
constraints), but allows for simpler choices of genetic operators.

This brief discussion already shows that there are no general “cookbook recipes”
with which one can find a (good) encoding. Nevertheless we can identify the follow-
ing desirable properties that an encoding should have:

• Similar phenotypes should be represented by similar genotypes.
• Similarly encoded candidate solutions should have a similar fitness.
• If possible, the search space Ω (i.e., the set of all possible candidate solutions)
should be closed under the used genetic operators.

Of course, these are not absolute rules, but rather guidelines. Depending on the
problem at hand one may consider breaking them in order to gain other advantages.
However, it is usually a good idea to refrain from using an encoding that does not
have these properties unless there are very good reasons for doing so.

12.1.1 Hamming Cliffs

Similar phenotypes should be represented by similar genotypes.

Two genotypes are clearly similar if they differ in few genes, because then few
mutations, for example, are necessary to transform the one genotype into the other.
That is, the similarity of genotypes is defined as how easy it is to transform one into
the other with the available genetic operators. It may be measured, for example, as
the needed minimum number of applications of genetic operators (like mutation).

However, what is subject to the fitness evaluation is the phenotype, that is, the
actual solution candidate, and we only presuppose that similar solution candidates
have similar fitness (so that fitness information can be exploited to guide the search
for better solution candidates). As we only modify the chromosomes (and thus the
genotype), this can clearly lead to problems if similar phenotypes and thus similar
solution candidates are described by (very) dissimilar genotypes, because then it may
be impossible to obtain a similar phenotype by (small) genetic modifications.

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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As an example, we consider a parameter optimization problem: we are given an n-
ary real-valued function y = f (x1, . . . , xn) and we desire to find an argument vector
(x1, . . . , xn) that optimizes the value of y. We represent the real-valued arguments
by encoding them as binary numbers, which are then concatenated to obtain a binary
chromosome. Unfortunately, such an encoding can create a serious problem in an
evolutionary algorithm, because it may introduce so-called Hamming cliffs.

To make the example precise, we briefly consider how such a binary encoding of
real numbers is computed. Let a real interval [a, b] and an encoding precision ε be
given. We look for an encoding rule for any number x ∈ [a, b] as a binary number z
such that the encoded number z differs by less than ε from its actual value x . The
basic idea is to divide the interval [a, b] into equally sized segments of a length
smaller than or equal to ε. That is, we create 2k segments with k = ⌈

log2
b−a

ε

⌉
which are mapped to the numbers 0, . . . , 2k − 1. Thus we obtain the encoding

z =
⌊
x − a

b − a
(2k − 1)

⌋
.

Alternatively, we may use the encoding

z =
⌊
x − a

b − a
(2k − 1) + 1

2

⌋
,

which allows us to reduce the number of intervals to half, that is, we only need
k = ⌈

log2
b−a
2ε

⌉
segments. Decoding is performed by

x ′ = a + z · b − a

2k − 1
.

Note that the decoded x ′ and the original x may differ, although by at most ε.
As an example, suppose that we want to encode the number x = 0.637197 in the

interval [−1, 2] with precision ε = 10−6. Then k and z are computed as follows:

k =
⌈
log2

2 − (−1)

10−6

⌉
= ⌈

log2 3 · 106⌉ = 22 and

z =
⌊
0.637197 − (−1)

2 − (−1)
(222 − 1)

⌋
= 228896610

= 10001011101101010001102.

Studying such an encoding in more detail reveals that it may encode numbers from
adjacent segments very differently. That is, although the numbers are close (they
differ by no more than 2ε if they come from adjacent segments), their encodings
may have a large Hamming distance, where the Hamming distance of two bit strings
is simply the number of different bits. Large Hamming distances can be overcome
by mutation and crossover only with great difficulties, simply because they require
many bits to be modified. As a consequence, they have been called “Hamming cliffs”
to express that they are difficult to “climb” in a solution improvement process.

In order tomake the problem perfectly clear, we consider the number range from 0
to 1 encoded by 4 bits. That is,wemap the real numbers k

15 onto the integer numbers k,
thus ensuring an ε of 1

30 . In this case, the encoding of
7
15 is 0111 the encoding of 8

15



216 12 Elements of Evolutionary Algorithms

Table 12.1 Gray code of 4-bit numbers

binary Gray

0000 0000
0001 0001
0010 0011
0011 0010

binary Gray

0100 0110
0101 0111
0110 0101
0111 0100

binary Gray

1000 1100
1001 1101
1010 1111
1011 1110

binary Gray

1100 1010
1101 1011
1110 1001
1111 1000

is 1000. Therefore they have a Hamming distance of 4 because every bit is different.
Although the phenotypical distance between the two numbers is comparatively small
(only 2ε = 1

15 ), the genotypic distance is maximal. As a consequence, if the actual
optimumof a parameter optimization problem is at 8

15 , it is of no help to the algorithm
to discover that 7

15 has a high fitness, because it cannot generate the encoding for 8
15

from the encoding of 7
15 with few genetic operations.

This problem can be solved by introducing so-called Gray codes, which are
defined as any binary representation of integer numbers in which adjacent numbers
differ in only one bit. For 4-bit numbers, a possible Gray code is shown in Table12.1.
Note that a Gray code is not unique as can already be seen from the simple fact that
any cyclic permutation of the codes in Table12.1 is again a Gray code.

The most common form of Gray encoding and decoding, respectively, is

g = z ⊕
⌊ z

2

⌋
and z =

k−1⊕
i=0

⌊ g

2i

⌋
,

where ⊕ is the exclusive or (XOR gate) of the binary representation.
As an illustration, we reconsider the example we discussed above, namely

representing the real number x = 0.637197 in the interval [−1, 2] with preci-
sion ε = 10−6. Drawing on the binary number encoding derived above we obtain
the Gray code

g = 10001011101101010001102
⊕ 01000101110110101000112
= 11001110011011111001012.

12.1.2 Epistasis

Similarly encoded candidate solutions should have a similar fitness.

In biology epistasis means the phenomenon that one allele of a gene (the so-called
epistatic gene) suppresses the effect of all possible alleles of another gene. It might
even be that several other genes are suppressed by one epistatic gene. In evolutionary
algorithms, epistasis describes the interaction between the genes of a chromosome.
That is, howmuch the fitness of a solution candidate changes if a gene is modified, in
extreme cases even which trait of a solution candidate is represented by some genes,
strongly depends on the value(s) of (an)other gene(s). This is undesirable.



12.1 Encoding of Solution Candidates 217

As a side remark, we mention that in biology epistasis explains certain deviations
from the Mendelian laws. For instance, if homozygous black and white seed beans
are crossed, then black, white, and brown seed beans are obtained in the second
offspring generation in a ratio of 12:1:3, which contradicts the Mendelian laws.

In order to illustrate the occurrence and effects of possible epistasis in evolution-
ary algorithms, we draw on the traveling salesman problem as an example (see
Sect. 11.6). We consider two possible encodings of round trips through the cities
(Hamiltonian cycles) in order to illustrate the epistasis problem

1. A round trip is represented by a permutation of the cities (as in Definition11.2
on p. 208). This means that the city at the kth position is visited in the kth step.
Such an encoding exhibits low epistasis. For instance, swapping two cities alters
the fitness (that is, the cost of the round trip) by comparable amounts, regardless
of which two cities are swapped. Such a swap also changes the tour only locally,
because the part of the tour through the other cities is not affected.

2. A round trip is specified by a list of numbers that state the position of the next
city to be visited in a (sorted) list from which all already visited cities have
been deleted. An example of how a chromosome is interpreted in this encoding
is shown in the top part of Table12.2. In contrast, this encoding exhibits high
epistasis. Modifying a single gene may alter a large part of the trip, and the more
so, the closer to the front (top) the gene is located. The bottom part of Table12.2
shows an extreme case in which the trip is changed entirely, even though the
genetic modification is minimal: only a single gene is mutated.

Of course, the reason for the difference in the two encodings is that in the latter the
interpretation of the values of any gene depends on the values of the preceding genes,
thus introducing a strong dependence between genes, that is, high epistasis.

Table 12.2 Impact of a mutation in the traveling salesman problem (second encoding option)

before the
mutation

chromosome

5
3
3
2
2
1

remaining cities

1, 2, 3, 4, 5, 6
1, 2, 3, 4, 6
1, 2, 4, 6
1, 2, 6
1, 6
1

trip

5
3
4
2
6
1

after the
mutation

chromosome

1
3
3
2
2
1

remaining cities

1, 2, 3, 4, 5, 6
2, 3, 4, 5, 6
2, 3, 5, 6
2, 3, 6
2, 6
2

trip

1
4
5
3
6
2

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
http://dx.doi.org/10.1007/978-1-4471-7296-3_11


218 12 Elements of Evolutionary Algorithms

If the chosen encoding exhibits high epistasis, the optimization problem is often
difficult to solve for an evolutionary algorithm. One reason is that epistasis in the
extreme form we studied in the above example destroys the assumption that small
changes to the chromosomes (which produce similar genotypes) also effect only
small changes in the represented candidate solutions (the phenotypes). More gen-
erally, if small changes of the genotype can lead to large changes of the fitness, a
fundamental assumption underlying evolutionary algorithms, namely that gradual
improvement is possible (see Sect. 11.3.1), is no longer valid.

It has been tried to classify optimization problems as “easy or hard to solve by an
evolutionary algorithm” based on the notion of epistasis (Davidor 1990). However,
this does not work, because epistasis is a property of the encoding and not of the
problem itself. This can already be seen from the example of the traveling salesman
problem, for which we presented an encoding with high and an encoding with low
epistasis. In addition, there are problems that can be encoded with low epistasis and
that are nevertheless difficult to solve with the help of an evolutionary algorithm.

12.1.3 Closedness of the Search Space

If possible, the search space Ω should be closed under the used genetic operators.
In particular, if the solution candidates have to satisfy certain constraints, it is not
necessarily the case that the genetic operators, if applied to elements of the search
space Ω , always yield other (valid) elements of this search space. Generally, we say
that an (operator created) individual lies outside of the search space if

• its chromosome cannot be meaningfully interpreted or decoded,
• the represented candidate solution does not fulfill certain basic requirements,
• the represented candidate solution is evaluated incorrectly by the fitness function.

Clearly, such individuals are undesirable and require some action to treat them,
so they should be avoided if possible at all. If one faces a situation nevertheless in
which the chosen encoding of candidate solutions together with the preferred genetic
operators can produce individuals outside of the search space, one has essentially
the following options to tackle the problem

• Choose or design a different encoding, which does not suffer from this problem.
Note that this may require enlarging the search space.

• Choose or design encoding-specific genetic operators under which the search
space is closed. That is, find genetic operators which ensure that only elements of
the search space can be produced.

• Use repair mechanisms, with which an individual outside the search space is
modified in such a way that it is brought back into the search space.

• Accept individuals outside the search space in the evolutionary algorithm, but
introduce a penalty term that reduces the fitness of such individuals, so that the
selection process is endowed with a clear tendency to eliminate them.

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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3 5 2 8 1 7 6 4

1 2 3 4 5 6 7 8

3 5 2 4 5 6 7 8

1 2 3 8 1 7 6 4

Fig. 12.1 One-point crossover of a permutation

In order to illustrate the problem and its solutions, recall the n-queens problem as we
discussed it in Sect. 11.4. We already mentioned at the beginning of Sect. 12.1 that a
better encoding for this problem (than the one used in Sect. 11.4) are chromosomes
that are permutations of the numbers {1, . . . , n− 1}, because this reduces the search
space and thusmakes it potentially easier for an evolutionary algorithm to find a solu-
tion. However, if we apply the same genetic operators, namely one-point crossover
and standard mutation (see Figs. 11.4 and 11.5 on p. 201, 202) with this encoding,
we may produce chromosomes that are not permutations. This is immediately clear
for mutation if it is applied to a single gene, because changing a single number in a
permutation cannot possibly yield a permutation: for this at least two numbers have
to be changed. A crossover example is shown in Fig. 12.1, in which two permutations
are processed with one-point crossover, yielding two children, both of which are not
permutations: the top one contains number 5 twice and lacks number 1 while it is the
other way round for the bottom child. A closer inspection quickly reveals that it is
actually fairly unlikely that a random choice of the parents and the cut point creates
a situation in which both children are permutations.

According to the above list of options, we can solve this problem as follows:

• Different encoding: The problem vanishes if we allow any sequence of numbers
in {1, . . . , n−1}, not just permutations.We chose this solution in Sect. 11.4 in order
to be able to employ the one-point crossover and standard mutation. However, this
has the disadvantage that the search space is enlarged, thus making it possibly
more difficult for an evolutionary algorithm to find a solution.

• Encoding-specific genetic operators: Instead of standard mutation, one may use
gene pair swaps as a mutation operation (cf. Sect. 12.3.1). Likewise, a permutation
preserving crossover operation can be designed (see Sect. 12.3.2). These choices
ensure that the search space (i.e., the set of permutations of {1, . . . , n−1}) becomes
closed under the genetic operators.

• Repair mechanisms: If a genetic operator produced a chromosome that is not a
permutation, repair it, that is, modify it in such away that it becomes a permutation.
For example, find and remove duplicate occurrences of the same file (i.e., column)
numbers and append the missing numbers (see Fig. 12.2).

• Penalty term: Allow the population to contain chromosomes that are not permu-
tations, but add a penalty term to the fitness function, which reduces the fitness of

Fig. 12.2 Repair mechanism
for permutations

3 5 2 4 5 6 7 8 1

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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“forbidden” region
optimum

(solution of
optimization

problem)
individuals of the
initial population

Fig.12.3 Disconnected areas of a search space complicate the search for an evolutionary algorithm,
especially when repair mechanisms are used

such non-permutations. For example, the fitness could be reduced by the number
of missing file (i.e., column) numbers, possibly multiplied by a weighting factor.

For the n-queens problem the best solution is clearly to employ permutation preserv-
ing genetic operators, since they are not much more costly than simple one-point
crossover or standard mutation and the evolutionary algorithm certainly benefits
from the reduced search space. This is also the solution one would choose for the
traveling salesman problem, where essentially the same situation occurs: a solution
candidate is best described by a permutation of the cities to visit.

Repair mechanisms are actually closely related to encoding-specific genetic oper-
ators, because the application of a genetic operator that may produce an individual
outside of the search space followed by the application of a repair mechanism may
be seen as one operation w.r.t. which the search space is closed.

However, in certain cases, encoding-specific genetic operators or repair mech-
anism may complicate the search. If the search space is disconnected, encoding-
specific genetic operators never produce individuals in the “forbidden” regions and
repair mechanisms immediately restore such individuals to a permissible area. The
possibly resulting problem is illustrated in the sketch in Fig. 12.3: if the optimum is
in a region of the search space in which no individuals of the initial population are
located, it may be very difficult for an evolutionary algorithm to find the optimum,
because the “forbidden” regions are difficult to cross. In such cases a penalty term
may be preferable, which reduces the fitness of candidate solutions in “forbidden”
regions, but it does not eliminate them altogether. As a consequence, the individuals
are left with at least some chance to transgress “forbidden” regions.

12.2 Fitness and Selection

The basic principle of selection is that better individuals (that is, individuals with a
higher fitness) have better chances to procreate. We referred to this principle before
as differential reproduction (see Sect. 11.2), because it states that individuals differ

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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in their (expected) reproduction depending on their fitness. How strongly individuals
with higher fitness are preferred for producing offspring is called selective pressure.
High selective pressure means that even small fitness differences can cause consid-
erably differing chances of procreation, while a low selective pressure means that
reproduction chances depend only a little on fitness differences.

It should be clear that we need at least some selective pressure for evolutionary
algorithms to work, because without any selective pressure the search for a solution
is essentially random and thus unlikely to be successful (cf. Sect. 11.2, especially
the car parts example). On the other hand, if the selective pressure is very high,
the search may focus too quickly on individuals that happened to be the best in the
initial population, trying to optimize them further. In such a case, other regions of
the search space, which were underrepresented in the initial population, may never
be explored and thus good solutions contained in them may never be found. This
effect is related to the principle of opportunismmentioned in Sect. 11.2, namely that
better and optimal solutions are not found if the intermediary stages exhibit certain
fitness handicaps. (We consider this problem in more detail below.)

Moregenerally,when trying to adjust the selective pressure by choosing a selection
mechanism or its parameters, we face the problem that there is a trade-off between
exploration of the search space and exploitation of good individuals. With a low
selective pressure we favor search space exploration, because the fitness has only
little influence on the reproductive chances. Thus even individuals in regions of the
search space with a generally lower fitness have good chances to multiply and hence
(due to random modifications and recombinations) to spread over the corresponding
region of the search space. On the other hand, with a high selective pressure we favor
the exploitation of good individuals, because in this case only highly fit individuals
have good reproduction chances and thus their vicinity in the search space will be
focused on to find even better modifications of them.

The best strategy is usually a time-dependent selective pressure: in early genera-
tions the selective pressure is kept fairly low, so that the search space is well explored,
with the hope that we obtain subpopulations in all promising regions of the search
space. In later generations, the selective pressure is then increased in order to find
the best (local) modifications in the promising regions and thus the best solution
candidates. The selective pressure can be controlled by either adapting (in particular,
scaling) the fitness function (see Sect. 12.2.4) or by choosing a selection method
and/or adapting its parameters (see Sects. 12.2.6 and 12.2.7).

12.2.1 Fitness Proportionate Selection

Roulette-wheel selection is certainly among the best-known selection methods. It
takes the (absolute) fitness of each individual and computes their relative fitness as

frel(s) = fabs(s)∑
s′∈pop(t) fabs(s′)

.

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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This value is then interpreted as the probability with which the corresponding indi-
vidual may be selected (to become a member of the next generation). Since with
this method the selection probability of an individual is directly proportional to its
fitness, this method is also called fitness proportionate selection.

Note that the absolute fitness fabs(s)must not be negative in order for this method
to be applicable. This is no real constraint, though. If necessary,wemay add a suitable
(positive) number to all fitness values and/or we may set all (remaining) negative
fitness values equal to zero (provided there are only few). Furthermore, the fitness
function must be such that it is to be maximized. Otherwise this methods clearly
selects bad individuals with high probability rather than good ones.

The name “roulette-wheel selection” for this method stems from the fact that a
roulette wheel is a good illustration of how this method works. Each individual is
represented by a sector of a roulette wheel (see Fig. 12.4 on the left, which shows a
roulette wheel for six individuals s1 to s6). The angle (or equivalently, the area) of the
sector for an individual s represents its relative fitness value frel(s). In addition, there
is a marker at the top of the roulette wheel. An individual is selected by setting the
roulette wheel into motion and waiting until it stops. Then the individual is chosen
that corresponds to the sector the marker points to. For example, in Fig. 12.4 on the
left, individual s3 is selected. It should be clear that with this procedure, assuming
that all angles are equally likely as stopping positions, the probability that a certain
individual gets selected equals its relative fitness.

12.2.2 The Dominance Problem

A drawback of fitness proportionate selection is that an individual with a very high
fitness may dominate the selection, (almost) suppressing all other individuals. This
is illustrated in Fig. 12.4 on the right: the individual s1 has a much higher fitness than
all other individuals (even than all other individuals together). Thus it is extremely
likely to get selected, while any other individual has only very low chances of getting
into the next generation. In subsequent generations, this dominancemaybecome even
stronger, since many copies of the dominating individual and many individuals very
similar to it will be present. As a consequence, we may observe what is often called

Fig. 12.4 Fitness
proportionate selection and
the dominance problem

marker
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Fig. 12.5 The problem of
premature convergence:
individuals close to the
transition area between Ω ′
and Ω ′′ have very low
reproduction chances

crowding, that is, the population becomes very dense in one or only few regions
of the search space (that is, these regions become “crowded”), while the rest of the
search space becomes (almost) void of individuals.

Crowding usually results in very fast convergence to a (local) optimum in the
crowded region(s). That is, only one or very few good individuals are exploited
(i.e., optimized locally), while a wider exploration of the search space may (almost)
cease. As already mentioned, this may be desirable in later generations to actually
find the best solutions. In early generations, however, it should be avoided in favor
of a thorough exploration of the search space in order to increase the chances that
all promising regions are sufficiently covered. Otherwise, premature convergence
may occur, that is, the search focuses too quickly on those regions of the search space
in which the best individuals of the initial population happened to be located.

Figure12.5 illustrates the drawbacks of such a behavior. Since the region Ω ′
is much larger than the region Ω ′′, it may easily happen that the (randomly cre-
ated) initial population contains only individuals from Ω ′. With crowding, the best
individuals in this region may be found, but it is highly unlikely that, by random
modification and recombination, individuals can reach the region Ω ′′. The reason is
the opportunism of evolution processes: since the transition region between Ω ′ and
Ω ′′ exhibits severe fitness handicaps, individuals in this region have low chances of
surviving the selection process, let alone multiplying themselves. As a consequence,
the better solutions in region Ω ′′ may never be found.

12.2.3 Vanishing Selective Pressure

While the dominance problem demonstrates the disadvantages of large fitness dif-
ferences between individuals, (very) small differences are also undesirable as they
can lead to vanishing selective pressure. That is, if the (relative) fitness differences
between individuals are too small, fitness proportionate selection does not prefer
good individuals enough to push solution candidates towards better and better fit-
ness values. As an illustration, consider the fitness function g in Fig. 12.6. Since the
(relative) differences between the fitness values are fairly small, the reproductive
chances of all individuals are roughly the same, regardless of where they are located,
thus rendering the search almost equivalent to a random search.
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Fig. 12.6 Vanishing selective pressure: although the maxima are located at the same points, they
are differently easy to find with an evolutionary algorithm. With the function g there are only (too)
small differences in the relative fitness of individuals

Fig. 12.7 Example of vanishing selective pressure. The dots represent individuals in a very early
stage of evolution (left) and in a later generation (right). The average fitness is shown as a line

More generally, we have to consider how the absolute fitness values relate to their
range over the population or even the whole search space. For example, compare the
functions f and g depicted in Fig. 12.6. Both have the same shape and thus the same
maxima. More precisely, it is g ≡ f + c for some constant c ∈ R. An evolutionary
algorithm may work well for f , because the relative difference of the fitness values
provided by f allows for sufficient selective pressure to find the maxima of f .
However, since c � sups∈Ω f (s), we have ∀s ∈ pop(t) : grel(s) ≈ 1

μ
where μ is

the population size and thus almost no selective pressure to find the maxima of g.
Since an evolutionary algorithm has a tendency to increase the (average) fitness

of individuals from one generation to the next (as better individuals are selected with
higher probability), it may even create the problem of vanishing selective pressure
itself. Due to a rather random distribution of the initial fitness values, there may be
a comparatively high selective pressure in early generations. In later generations,
however, the selection of better individuals may have increased the average fitness.
As a consequence, the range of fitness values and thus the selective pressure as it
results from fitness proportionate selection may be reduced. This is illustrated in
Fig. 12.7, which shows a possible situation in an early (or the initial) generation on
the left and a possible situation in a later generation on the right. The gray curve is
the fitness function, the black dots represent individuals (candidate solutions).

Note that the desirable behavior is exactly opposite: low selective pressure in early
generations (to favor exploration) and higher selective pressure in later generations
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(to favor exploitation)—see the beginning of this section. As a consequence, this is
a particularly unfortunate behavior, which should be counteracted with one of the
methods that are presented in the following sections.

12.2.4 Adapting the Fitness Function

A popular possibility to overcome both the dominance problem and the problem of
vanishing selective pressure is to scale the fitness function. A very simple approach
is linear dynamic scaling, which scales the fitness values according to

flds(s) = α · f (s) − min
{
f (s′) | s′ ∈ pop(t)

}
, α > 0.

The factorα determines the strength of the scaling. Instead of theminimumof pop(t),
one may also use the minimum of the last k generations.

An alternative to linear dynamic scaling is the popular σ -scaling, which trans-
forms the fitness of all individuals according to

fσ (s) = f (s) − (μ f (t) − β · σ f (t)), β > 0,

where μ f (t) = 1
μ

∑
s∈pop(t) f (s) and σ f (t) =

√
1

(μ−1)

∑
s∈pop(t)( f (s) − μ f (t))2

are the mean value and the standard deviation, respectively, of the fitness values of
the individuals in the current population and β is a parameter.

Obviously, a problem of both approaches is how to choose the parameters α and β.
To solve this problem one considers the so-called coefficient of variation v of the
fitness function (in the current population), which is defined as

v = σ f

μ f
=

√
1

|Ω|−1

∑
s′∈Ω

(
f (s′) − 1

|Ω|
∑

s∈Ω f (s)
)2

1
|Ω|

∑
s∈Ω f (s)

, or v(t) = σ f (t)

μ f (t)
.

Note that v is defined on the whole search space Ω (left formula). However, in
practice (where we certainly cannot compute it for the complete search space Ω , as
then we could also carry out a complete enumeration search), it is estimated from its
value for the current population pop(t) (right formula, pop(t) instead of Ω).

In order to illustrate the coefficient of variation, Fig. 12.8 shows the fitness function
of Fig. 12.6 lifted to different levels, so that the coefficient of variation becomes
roughly 0.2 (top left), 0.1 (top right), and 0.05 (bottom left).

Empirically it was found that a value of v ≈ 0.1 yields a good rapport of explo-
ration and exploitation. As a consequence, if v deviates (significantly) from this
(optimal) value, one should try to adapt the fitness function f , for example, by scal-
ing or exponentiation, so that v ≈ 0.1 is obtained. That is, one computes v(t) for the
current populations and then adapts the fitness values in such away that v(t) becomes
0.1. This is particularly easy for σ -scaling, since β and v are directly related. To be
precise, one should choose β = 1

v∗ with v∗ = 0.1.
Another advisable adaptation of the fitness function is to introduce a dependence

on time. That is, we do not compute the relative fitness values directly from the
function f (s) to be optimized, but from g(s) ≡ ( f (s))k(t). The time-dependent
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Fig. 12.8 Illustrations of the coefficient of variation. High coefficients of variation can cause
premature convergence, low values cause vanishing selective pressure. Empirically it was found
that v ≈ 0.1 yields a good compromise

exponent k(t) controls the selective pressure and should be chosen in such a way that
the coefficient of variation v stays close to v∗ ≈ 0.1. Michalewicz (1996) proposes

k(t) =
(
v∗

v

)β1
(
tan

(
t

T + 1
· π

2

))β2

(
v
v∗

)α

,

where v∗, β1, β2, α are parameters, v is the coefficient of variation (estimated, for
instance, from the initial population), T is the maximum number of generations to
be computed and t is the current point in time (that is, the generation index). For this
function (Michalewicz 1996) recommends v∗ = 0.1, β1 = 0.05, β2 = 0.1, α = 0.1.

An alternative time-dependent fitness function is Boltzmann selection. It deter-
mines the relative fitness from g(s) ≡ exp

( f (s)
kT

)
. The time-dependent temperature

parameter T controls the selective pressure and k is a normalization constant that
is analogous to the Boltzmann constant. The temperature may decrease (usually
linearly) until a predefined maximum number of generations is reached. The idea
of this selection method resembles the idea underlying simulated annealing (see
Sect. 11.5.3): in early generations, the temperature parameter is high and the relative
differences between the fitness values are therefore small. In later generations, the
temperature parameter is decreased, which causes increasing fitness differences. As
a consequence, the selective pressure increases in the course of the generations.

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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12.2.5 TheVariance Problem

Although roulette-wheel selection strives to select individuals in proportion to their
fitness, deviations from an exactly proportional behavior have to be expected, since
the selection process is random. As a consequence, there is no guarantee that good
individuals (say, individuals that are better than average) enter the next generation.
Even the best individual of the population, although it certainly has the best chances
to be selected and thus to procreate, may not get selected.More generally, the number
of offspring individuals that are produced per individual of the current generation
may differ considerably from the expected value. This phenomenon is also known
as the variance problem of roulette-wheel or fitness proportionate selection.

A very simple, though not really advisable solution to this problem is to discretize
the range of fitness values. Based on themeanμ f (t) and the standard deviation σ f (t)
of the fitness values in the population, offspring is created according to the following
rule: If f (s) < μ f (t) − σ f (t), then s is discarded and does not create a descendant.
Ifμ f (t)−σ f (t) ≤ f (s) ≤ μ f (t)+σ f (t), then s is allowed to have one descendant.
If f (s) > μ f (t) + σ f (t), then two descendants of s are created.

An alternative way to solve the variance problem is to employ the expected value
model, with which one strives to give each individual a number of children that is
close to the expected value. More precisely, in this model � frel(s) · | pop(t)|� off-
spring individuals are created for every individual of the current population (where
| pop(t)| is the size of the population). However, this usually produces too few indi-
viduals, since generally

∑
s∈pop(t) � frel(s) · | pop(t)|� < | pop(t)|. In order to fill the

remaining spots in the next generation, different methods may be drawn on, with
roulette-wheel selection being among the most straightforward choices. Alternatives
include techniques that are known from voting evaluation for the apportionment of
political mandates or seats in a parliament. Among these are the largest remainder
method, the Haré-Niemeyer method, the D’Hondt method, etc.

A very elegant way of implementing the expected value model is so-called sto-
chastic universal sampling, which can be seen as a variant of roulette-wheel selec-
tion. As shown in Fig. 12.9, it uses a roulette wheel with as manymarkers as there are
individuals in the population. These markers are located at equal distances around
the roulette wheel. Instead of turning the roulette wheel once for each individual to
be selected (as in standard roulette-wheel selection), the roulette wheel is turned only

Fig. 12.9 Stochastic
universal sampling. This
method implements the
expected value model,
according to which each
individual is selected at least
as often as the expected
number of times rounded to
the next lower integer
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once and each marker gives rise to one selected individual. For example, in Fig. 12.9,
s1 and s2 get one child each, s3 and s5 get two children, whereas s4 and s6 do not
get any children at all. It should be clear that this selection method guarantees that
individuals with better than average fitness (and thus an expected value of children
greater than 1) get at least one child and they may receive more than one. Individuals
with a lower than average fitness (and thus an expected value of children less than 1)
may not procreate at all or may get at most one child.

An alternative approach (which, however, does not guarantee each individual as
many children as the integer part of the expected value indicates) is the following
procedure: individuals are chosen by roulette-wheel selection. After each selection
of an individual, its fitness is reduced by a certain amountΔ f (and the relative fitness
of all individuals is recomputed). If an individual’s fitness becomes negative, it is
discarded and cannot produce offspring anymore. Methods for choosing Δ f include

Δ f =
∑

s∈pop(t) f (s)

| pop(t)| ,

which renders this model very similar to the expected value model, and

Δ f = 1

k
max{ f (s) | s ∈ pop(t)},

which restricts the best individual to at most k children. The latter specifically targets
the dominance problem, which can be limited with this choice.

12.2.6 Rank-Based Selection

In rank-based selection the individuals are sortedw.r.t. their fitness and thus a rank is
assigned to each individual of the population. The idea underlying this method stems
from statistics, especially from distribution-free techniques like rank correlation.
Each rank is assigned a probability, with higher ranks (and thus better individuals)
receiving higher probabilities. The actual selection is then carried out with roulette-
wheel selection or any of its variants (like the expected value model), with the rank
probability taking the place of the relative fitness.

The advantage of rank-based selection is that it decouples the fitness value and the
selection probability (which are proportional in standard roulette-wheel selection).
Only the order of the fitness values, but not their absolute value determines the
selection probability.As a consequence, one can easily avoid the dominance problem,
namely by choosing the rank probabilities in such a way that the higher ranks,
although endowed with higher probabilities, do not completely dominate the lower
ones. In addition, the progress of an evolutionary algorithm no longer produces
a vanishing selection pressure (cf. Sect. 12.2.3), since the distribution of the rank
probabilities does not depend on the distribution of the fitness values. By adapting
the rank probabilities over time, one even has a convenient way of controlling how
the selective pressure develops. By moving probability mass from the lower to the
higher ranks, one can easily install a drift from exploration to exploitation.
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The only disadvantage of rank-based selection is the fact that the individuals
need to be sorted which causes an computational effort of O(| pop | · log2 | pop |). In
contrast, fitness proportionate selection, at least in the form of stochastic universal
sampling, is linear in the number of individuals, because it only has to sum the fitness
values and then to select | pop | individuals.

12.2.7 Tournament Selection

In tournament selection a certain number k of individuals are drawn at random
from the current population. These individuals carry out a tournament, which is
won by the individual with the highest fitness (ties are broken arbitrarily). As a
prize, the winning individual receives a descendant in the next generation. After
the tournament, all participants are returned to the current population (including the
winner). Since each tournament selects one individual, | pop | tournaments have to
be carried out to select all individuals of the next generation.

Note that all individuals have the same probability to be chosen to participate in
a tournament. Their fitness does not influence how likely it is that they participate
in a tournament, but only how likely it is that they win a tournament in which
they participate. Clearly, individuals with a high fitness are more likely to win the
tournaments in which they participate. However, individuals with a low fitness may
still produce offspring, namely if they happen to participate in a tournament in which
all other participants have an even lower fitness.

The individuals that are to participate in a tournament may be drawn with or
without replacement, which usually does not make much of a difference given the
fact that typical population sizes in an evolutionary algorithm are in the thousands.

The number k, the tournament size, is a parameter of this selection method
that has to be chosen by a user, k ∈ {2, 3, . . . , | pop |}. With this parameter, the
selective pressure can be controlled: the larger the tournament, the higher the selective
pressure. If tournaments are small, individualswith a lowfitness have a higher chance
of finding themselves in a tournament in which all of their opponents have even lower
fitness. Only the k − 1 worst individuals do not have any chance of reproducing at
all (assuming that all fitness values are different). On the other hand, the larger the
tournaments, the higher the chance that at least one participant has a high fitness,
wins the tournament, and thus deprives less fit participants of potential offspring.

Tournament selection is an excellent method to tackle the dominance problem,
since the fitness value does not directly influence the selection probability. For exam-
ple, even for the best individual the expected number of offspring is only the expected
number of tournaments in which this individual participates. This number is con-
trolled by the tournament size k, but not by the individual’s fitness.

Amodification of tournament selection is to replace the deterministic rule that the
best participating individual wins the tournament by a fitness proportionate selection.
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That is, for each individual the tournament-specific relative fitness is computed and
thewinner is determined by roulette-wheel selection. Thismodification allowsworse
individuals to produce offspring even if they participate only in tournaments in which
at least one other participant has a better fitness.

An important advantage of tournament selection is that it lends itself perfectly
to parallelization. While fitness-proportionate selection requires a central agent that
collects and normalizes the fitness values (computes the relative fitness values),
arbitrarily many tournaments can be carried out in parallel without any need for
centralized computations or communication between the tournament hosts. As a
consequence, parallelized implementations often use tournament selection.

12.2.8 Elitism

Due to the randomness of the selection procedures we discussed up to now, only
the expected value model (and some of its variants) ensures that the best individual
enters the next generation. However, even if this is the case, the best individual is
not protected from modifications by genetic operators (mutation or recombination
with another individual). As a consequence, it is not guaranteed that the quality of
the best solution candidate never worsens from one generation to the next.

As this possibility is clearly undesirable, evolutionary algorithms often employ a
technique known as elitism. That is, the best individual (or, alternatively, the k best
individuals with k to be chosen by a user) are transferred without modification to
the next generation. This ensures that the best solution(s) that have been found up to
now—that is, the elite of the population—never gets lost or destroyed. Note, though,
that (other copies of) these elite individuals still enter the normal selection and
modification process in the hope that they may be improved by genetic operators.

A closely related technique is local elitism, which refers to the treatment of
individuals that undergomodification by genetic operators. In a standard evolutionary
algorithm, the products of an application of a genetic operator (mutation or crossover)
enter the new generation, while the originals are discarded. We may also say that the
products (children) replace the originals (parents). With local elitism, however, the
fitness of the involved individuals decides which actually enter the next generation.
For example, a mutated individual replaces its original only if it has a better fitness.
Of the four individuals involved in a crossover (two parents, two children), the best
two are determined and passed on to the next generation (which may mean that the
two parents are maintained and the children are discarded).

Evolutionary algorithms employing (global or local) elitism usually exhibit better
convergence characteristics, since local optima are approached more consistently.
However, especially local elitism bears a certain danger of converging prematurely
and getting stuck in local optima, because no (local) degradations are possible.



12.2 Fitness and Selection 231

12.2.9 Niche Techniques

The objective of niche techniques is to prevent crowding as it was discussed in
Sect. 12.2.1, that is, a lack of diversity many similar individuals being formed or
selected. Here we consider deterministic crowding and sharing.

The idea of deterministic crowding is that generated offspring should always
replace those individuals in the population that are most similar. As a consequence,
the local density of individuals in the search space cannot grow so easily. Of course,
in order to be able to apply this idea, we need a similarity or distance measure for
the individuals. If chromosomes are binary coded, the Hamming distance may be
a viable choice. In other cases specialized similarity or distance measures may be
needed that take the concrete encoding of solutions candidates into account. As a
consequence, it is not possible to provide generally applicable measures.

A variant of deterministic crowding, which includes ideas of elitism (see the
preceding section) is the following approach: in a crossover, the two parents and two
children are grouped into two pairs, each consisting of one parent and one child.
The guiding principle is that a child is assigned to the parent to which it is more
similar. If both children happen to be assigned to the same parent, the child that is
less similar is reassigned to the other parent. Ties are broken arbitrarily. From each
pair the better individual is selected and passed on into the next generation. The
advantage of this variant is that much fewer similarity computations are needed than
in a global approach that finds the most similar individuals in the population as a
whole.

The idea of sharing is to reduce the fitness of an individual if there are other
individuals in its neighborhood in the search space (and hence we we need again a
similarity or distance measure for individuals). Intuitively, the individuals share the
resources of a niche, that is, a region in the search space, which has a negative effect
on their fitness. A possible choice for the fitness reduction is

fshare(s) = f (s)∑
s′∈pop(t) g(d(s, s′))

,

where d is a distance measure for individuals and g defines both shape and size of
the niche. A concrete example is so-called power law sharing, which employs

g(x) =
{
1 − ( x

ρ

)α if x < ρ,

0, otherwise,

where ρ is the radius of the niche and α controls the strength of the influence that
individuals in the niche have on each other.

12.2.10 Characterization of SelectionMethods

Selection methods are often characterized by certain terms, which describe their
properties. Some of the most important ones are collected in Table12.3.
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Table 12.3 Characterization of selection methods

Term Meaning

Static
Dynamic

The probability of selection remains constant
The probability of selection changes

Extinguishing
Preservative

Probabilities of selection may be 0
All probabilities of selection must be greater than 0

Pure-bred
Under-bred

Individuals can only have offspring in one generation
Individuals are allowed to have offspring in more than one generation

Right
Left

All individuals of a population may reproduce
The best individuals of a population may not reproduce

Generational
On the fly

The set of parents is fixed until all offspring are created
Created offspring directly replace their parents

The distinction of “static” and “dynamic” mainly refers to whether the selective
pressure changes over time (preferably fromexploration—low selective pressure—to
exploitation—high selective pressure), which is governed by the (relative) selection
probabilities for individuals with different fitness. Characterizing selection methods
as “extinguishing” versus “preservative” based on whether selection probabilities
may be zero or not may be somewhat misleading, since even preservative methods
allow for solution candidates to go extinct. The reason is simply that due to the
randomness of the selection procedures a positive probability does not guarantee
survival. The purpose of allowing individuals to have offspring in only one generation
(“pure-bred”) rather than in multiple generations (“under-bred”) is to reduce the
danger of crowding, since offspring tends to be similar to its parents. “Left” selection
methods, in which the best individuals are not allowed to reproduce, are meant to
prevent premature convergence by forcing offspring to result fromworse individuals,
thus explicitly favoring exploration. In contrast to this, “right” selection methods do
not introduce such a guidance. Finally, “on the fly”methods are constantlymodifying
the population, as it is also the case in nature, which “generational” methods employ
a strict discretization of time.

12.3 Genetic Operators

Genetic operators are applied to a certain part of the individuals in a generation to
create modifications and recombinations of existing solution candidates. Although
themajority of these modifications can be expected to be harmful, there is reasonable
hope that a few of these modifications result in (slightly) better individuals.

Genetic operators are commonly categorized according to the number of parents
into mutation or variation operators (only one parent, see Sect. 12.3.1), crossover
operators (two parents, see Sect. 12.3.2) and multiparent operators (see Sect. 12.3.3).
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The latter two categories (that is,withmore than one parents) are sometimes generally
called recombination operators.

An important aspect of genetic operators is whether the search space is closed
under their application (see Sect. 12.1.3). For example, if candidate solutions are
encoded as permutations (see, for instance, the traveling salesman problem,
Sect. 11.6), then the genetic operators should preserve this property. That is, if they
are applied to permutations, the results should also be permutations.

12.3.1 Mutation Operators

Genetic one-parent operators are generally referred to as mutation or variation
operators. Such operators mainly serve the purpose to introduce an element of local
search, that is, to produce a solution candidate that is (very) similar to its parent.

If solution candidates are encoded as bit strings (that is, the chromosomes are
composed of zeroes and ones), then bit mutation (also called bit flipping) is com-
monly chosen. It consists in flipping randomly chosen alleles, that is, turning a 1 into
a 0 and vice versa. The following algorithm formalizes this operation:

Algorithm 12.1 (Bit Mutation)

procedure mutate_bits (var s: array of bit, pm : real);
begin (∗ mutation rate pm ∗)

for i ∈ {1, . . . , length(s)} do begin
u ← randomly choose according to U ([0, 1));
if u ≤ pm then si ← 1 − si ; end

end
end

Empirically it was found that choosing pm = 1/length(s) is often close to optimal.
While the number of bits that are flipped in standard bit mutation may vary (to

be precise: it follows a binomial distribution with the parameter pm), a variant fixes
the number of randomly chosen bits to be flipped. In this case the mutation rate pm
is replaced by a number n, 1 ≤ n < length(s), of bits to be flipped, or a fraction pb,
1 < pb < 1, of bits, which translates into the number of bits by n = �pb · length(s)�.
We refer to this variant as n-bitmutation. The special case n = 1, which flips exactly
one randomly chosen bit of the chromosome, is called one-bit mutation.

For chromosomes that are arrays of real-valued numbers so-called Gaussian
mutation is most commonly used. It adds a random number that is sampled from a
normal or Gaussian distribution to every gene, as shown in the following algorithm:

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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Algorithm 12.2 (Gaussian Mutation)

procedure mutate_gauss (var x: array of real, σ : real);
begin (∗ standard deviation σ ∗)

for i ∈ {1, . . . , length(x)} do begin
u ← sample randomly from N (0, σ );
xi ← xi + u;
xi ← max{xi , li }; (∗ lower limit li of range of xi ∗)

xi ← min{xi , ui }; (∗ upper limit ui of range of xi ∗)

end
end

The parameter σ controls the spread of the random numbers and corresponds to the
standard deviation of the normal or Gaussian distribution. It may be used to control
to some degree whether exploration of the search space should be favored (large σ )
or whether a local optimization should be performed (exploitation, small σ ).

An extension of Gaussian mutation is so-called self-adaptive Gaussian muta-
tion. Instead of a single standard deviation σ , which is the same for all chromosomes,
self-adaptive Gaussian mutation endows each chromosome x with its own standard
deviation σx , which is used to mutate its genes. In addition, not only the genes of the
chromosome x , but also its standard deviation σx is adapted in a mutation operation.
The following algorithm formalizes the operation:

Algorithm 12.3 (Self-adaptive Gaussian Mutation)

procedure mutate_gsa (var x: array of real, var σx : real);
begin (∗ chromosome-specific standard deviation σx ∗)

u ← sample randomly from N (0, 1);
σx ← σx · exp(u/

√
length(x));

for i ∈ {1, . . . , length(x)} do begin
u ← randomly choose according to N (0, σx );
xi ← xi + u;
xi ← max{xi , li }; (∗ lower limit l[i] of range of xi ∗)

xi ← min{xi , ui }; (∗ upper limit u[i] of range of xi ∗)

end
end

The idea of self-adaptive Gaussian mutation is to exploit the process of evolutionary
adaptations not only to find good solution candidates, but at the same time to optimize
themutation stepwidths (evolution-strategic principle, see Sect. 11.2). Intuitively, we
may say that chromosomes with a “suitable” standard deviation—that is, a standard
deviation that causes steps of “suitable width” in the region of the search space in
which the chromosome is located—are more likely to produce good offspring. As
a consequence, this standard deviation will spread in the population, at least among
individuals located in the same region of the search space.

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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3 1 4 2 5 4 6 3 1 6 2 5 4 6

Fig. 12.10 Example of standard mutation: an allele of a gene is replaced by another allele

Ageneralizationof (one-)bitmutation to chromosomes consisting of (more or less)
arbitrary computational objects is so-called standard mutation. It simply replaces
the current allele of a randomly chosen genewith another randomly chosen allele. An
example for a chromosome consisting of integer numbers (as we used it, for example,
in Sect. 11.4) is shown in Fig. 12.10: in the third gene the allele 4 is replaced with
the allele 6. If desired, multiple genes may be mutated (cf. the n-queens problem in
Sect. 11.4, especially Fig. 11.5 on p. 202).

Like bit mutation, standard mutation receives as a parameter either a mutation
rate pm , which indicates the probability that a gene gets mutated, or a number n of
genes that are to be mutated. The new allele is simply chosen from the other possible
alleles using a uniform distribution (equal probabilities).

The mutation operator transposition or pair swap exchanges the alleles of two
randomly chosen genes in a chromosomewith each other (see Fig. 12.11). Of course,
this operator can only be applied as the two affected genes have the same set of pos-
sible alleles. Otherwise a chromosome describing an individual outside of the search
space may result, which needs special treatment (cf. Sect. 12.1.3). Transposition is
an excellent mutation operator in case the chromosomes are permutations of a set
of integer numbers (like for traveling salesman problem, see Sect. 11.6), because the
set of permutations is obviously closed under it.

Generalizations of transposition are different forms of (constrained) permutations
of the alleles of a group of genes, usually forming a subsequence of 3, 4, . . . , k genes
in the chromosome. Among these are the shift of a subsequence to a new location
(which may also be seen as a cyclic permutation), the inversion of a subsequence

3 1 4 2 5 4 6 3 5 4 2 1 4 6

Fig. 12.11 Example of transposition: two genes exchange their alleles in a chromosome

3 1 4 2 5 4 6 3 2 5 1 4 4 6

3 1 4 2 5 4 6 3 5 2 4 1 4 6

3 1 4 2 5 4 6 3 2 1 5 4 4 6

Fig. 12.12 Mutation operators on subsequences: shift, inversion, and arbitrary permutation

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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(that is, reversing the order of the alleles) and finally applying an arbitrary permu-
tation to the alleles in a subsequence. Figure12.12 illustrates these operators for
chromosomes consisting of integer arrays. Clearly, all of these operators require that
the sets of alleles of the genes in the affected subsequence are equal. They may be
parametrized with the length of the subsequence or with a probability distribution
over such lengths. Since all of these operators merely permute the alleles in a subse-
quence, they clearly preserve the property that a chromosome is a permutation of a
set of numbers and thus are nicely applicable to cases where this is required to make
the search space closed under the mutation operators (like the traveling salesman
problem, see Sects. 11.6 and 12.1.3).

12.3.2 Crossover Operators

Genetic operators that involve two parent individuals are generally referred to
as crossover operators. The best-known crossover operator is so-called one-point
crossover (see Fig. 12.13): a cut point is chosen at random and the gene sequences
on one side of the cut point are exchanged between the two (parent) chromosomes.

A straightforward extension of one-point crossover is two-point crossover (see
Fig. 12.14). In this case, two cut points are chosen at random and the section between
the two cut points is exchanged between the (parent) chromosomes.

A natural generalization of these forms is n-point crossover, for which n cut
points are chosen. Offspring is created by alternately exchanging and maintaining
the parental gene sequences between two consecutive cut points.

As an example and because we draw on it in later algorithms (cf. Sect. 13.1),
we formulate one-point crossover as an algorithm (note that the value of “allele”
depends on the encoding; it may be a bit, an integer, a real-valued number etc.):

5 2 1 4 3 6 1

3 1 4 2 5 4 6

3 1 4 4 3 6 1

5 2 1 2 5 4 6
1 12 24 45 56 63 3

Fig. 12.13 Example of one-point crossover

5 2 1 4 3 6 1

3 1 4 2 5 4 6

5 1 4 2 5 4 6

3 2 1 4 3 4 6
2 23 34 46 61 15 5

Fig. 12.14 Example of two-point crossover

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
http://dx.doi.org/10.1007/978-1-4471-7296-3_13
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Algorithm 12.4 (One-point Crossover)

procedure crossover_1point (var r, s: array of allele);
begin (∗ exchange part of two chromosomes ∗)

c ← random element of {1, . . . , length(s) − 1}; (∗ choose cut point ∗)

for i ∈ {0, . . . , c − 1} do begin (∗ traverse the section to exchange ∗)

t ← ri ; ri ← si ; si ← t ; end (∗ swap genes up to the cut point ∗)

end

Instead of choosing a certain number of cut points, uniform crossover determines
for each gene independently whether it is exchanged or not based on an exchange
probability px (see Fig. 12.15; a “+” means that the genes are exchanged, a “−” that
they are kept).Note that uniformcrossover isnot equivalent to (L−1)-point crossover
(where L = length(s)), as (L − 1)-point crossover alternately exchanges and keeps
genes. Uniform crossover rather chooses the number of cut points randomly. (Note,
however, that the different numbers are not equally likely: numbers close to L/2 are
more likely than small or large numbers of cut points).

Shuffle crossover shuffles the genes randomly before applying an arbitrary
two-parent operator and then de-shuffles the genes again. Most commonly, shuf-
fle crossover is implemented with one-point crossover, as shown in Fig. 12.16. It
should be noted that shuffle crossover is not equivalent to uniform crossover. With
uniform crossover the number of exchanged genes is binomially distributed with the
parameter px . With shuffle crossover in combination with one-point crossover, how-
ever, every number of gene exchanges between the chromosomes is equally likely.
This makes shuffle crossover one of the most recommendable crossover operators.

If the chromosomes are permutations, none of the crossover operators we studied
up to now is suitable, because none guarantees that the children are permutations. For
permutations, special so-called permutation preserving crossover operators should
be used, of which we discuss two variants here.

Uniform order-based crossover resembles uniform crossover, since it also
decides for each gene independently whether it should be kept or not (based on
an keep probability pk). It differs from uniform crossover in how the genes are han-
dled that are not to be kept, that is, in how the gaps between the genes to keep are
filled. These gaps cannot be filled by simply taking the corresponding genes from
the other parent (as in uniform crossover), as this could create a chromosome that is
not a permutation. Rather the missing numbers are found and inserted into the gaps
in the order (hence “order-based”) in which they occur in the other parent.

5 2 1 4 3 6 1

3 1 4 2 5 4 6

3 2 4 4 3 4 1

5 1 1 2 5 6 6

+ +− −+ +− −− −+ ++ +

Fig. 12.15 Example of uniform crossover. For every gene it is determined independently whether
it is exchanged (+) or not (−)
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5 2 1 4 3 6

3 1 4 2 5 4

4 2 6 3 5 1

2 1 4 5 3 4

4 2 6 5 3 4

2 1 4 3 5 1

3 2 4 4 5 6

5 1 1 2 3 4

1 42 23 64 55 16 3 4 12 26 35 41 53 6

shuffle crossover de-shuffle

Fig. 12.16 Example of shuffle crossover (which is a modified one-point crossover)

5 7 2 4 6 3 1

4 2 3 1 5 7 6

5 2 4 1

4 3 1 6

5 3 2 4 7 6 1

4 5 3 1 7 2 6

+ − + + − − + + − + + − − + + − + + − − +

Fig. 12.17 Example of uniform order-based crossover

An example is shown in Fig. 12.17: the plus signs mark the genes that are to be
kept. This leaves three gaps to be filled. In the top chromosomes the numbers 3, 6,
and 7 are missing, which occur in the bottom parent in the order 3, 7, 6. In this order,
they are entered into the gaps of the top chromosome. In the bottom chromosome the
numbers 2, 5, and 7 are missing, which occur in the top parent in the order 5, 7, 2.
In this order, they are entered into the gaps of the bottom chromosome.

Note that not only the space of permutations is closed under this operator, but
that this operator also preserves order information. Clearly, the kept genes are in the
same order, while the genes with which the gaps are filled are in the order in which
they occur in the other parent. This property can be useful for certain problems and
corresponding encodings of the solution candidates.

Analternative permutation-preserving crossover operator is so-called edge recom-
bination. It has been developed specifically for the traveling salesman problem (see
Sect. 11.6), in which the round trips are encoded as permutations of the cities. In this
method, the chromosome is seen as a graph or, more precisely, as a chain or ring
of edges: each allele is connected by edges to its neighbors in the chromosome. In
addition, the first and the last allele are connected by an edge. The crossover oper-
ation consists in recombining the edges of two parent rings (hence the name of the
method). It preserves neighborhood information rather than order information.

Edge recombination is a rather complex method and proceeds in two steps. In
the first step, an edge table is constructed as follows: for every allele its neighbors
(in both parents) are listed (including the last allele as a neighbor of the first and
vice versa). If an allele has the same neighbor in both parents (where the side is
irrelevant), this neighbor is listed only once, but it is marked to indicate that it has
to be treated specially. As an example, Table12.4 shows on the left an edge table
for the two parent chromosomes depicted in Fig. 12.18. In the column “aggregated”
duplicate neighbors are listed only once and marked with a star.

In the second step, a child is constructed, as demonstrated in Table12.4 on the
right. For the first allele of the child the first allele of a randomly chosen parent is
taken. That is, with the example parents shown in Fig. 12.18, we may start either
with 6 (first allele of A) or with 3 (first allele of B). For this example we choose 6.

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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Table 12.4 Example of an edge table for edge recombination (left, cf. Fig. 12.18) and constructing
offspring from such an edge table by edge recombination (right, cf. Fig. 12.19)

neighbor
allele in A in B aggregated

1 3, 5 6, 4 3, 4, 5, 6

2 5, 7 7, 5 5∗, 7∗

3 6, 1 4, 7 1, 4, 6, 7

4 7, 6 1, 3 1, 3, 6, 7

5 1, 2 2, 6 1, 2∗, 6
6 4, 3 5, 1 1, 3, 4, 5

7 2, 4 3, 2 2∗, 3, 4

allele neighbors choice: 6 5 2 7 4 3 1

1 3, 4, 5, 6 3, 4, 5 3, 4 3, 4 3, 4 3

2 5∗, 7∗ 5∗, 7∗ 7∗ 7∗ — — — —

3 1, 4, 6, 7 1, 4, 7 1, 4, 7 1, 4, 7 1, 4 1 1 —

4 1, 3, 6, 7 1, 3, 7 1, 3, 7 1, 3, 7 1, 3 1, 3 — —

5 1, 2∗, 6 1, 2∗ 1, 2∗ — — — — —

6 1, 3, 4, 5 1, 3, 4, 5 — — — — — —

7 2∗, 3, 4 2∗, 3, 4 2∗, 3, 4 3, 4 3, 4 — — —

6 3 1 5 2 7 4 3 7 2 5 6 1 4A: B:

Fig. 12.18 Example parent chromosomes for edge recombination

The chosen allele is deleted from all neighbor lists in the edge table and its own list of
neighbors is retrieved (see the third column of the table on the right of Table12.4; the
list of neighbors is shown in bold print). From this neighbor list an allele is chosen
respecting the following precedences:

1. marked neighbors (i.e., neighbors that occur in both parents),
2. neighbors with the shortest neighborhood list (marked neighbors count once),
3. any neighbor,
4. any allele not yet in the child.

If there are multiple choices in the highest applicable precedence class, a random
allele from this class is chosen (i.e., ties are broken arbitrarily). In Table12.4 allele 6
has the neighbors 1, 3, 4, and 5. None of these is marked, so wemove on to the second
precedence class. Here the neighbor lists of 1, 3, and 4 all contain four elements,
while the neighbor list of 5 contains only three (due to the fact that allele 2 is marked
in this list). Therefore we have to choose allele 5, which thus becomes the second
allele of the child. The process is then repeated with this allele: it is deleted from all
entries in the edge table and a neighbor from its list of neighbors is chosen according
to the above precedences (see the fourth column of the table on the right of Table12.4;
the list of neighbors is again shown in bold print). Since allele 2 is marked in the
neighbor list, it becomes the third allele of the child. The neighbor selection process
is then iterated until the child is complete, as shown in the remaining columns of the
table on the right of Table12.4. It finally yields the child chromosome depicted in
Fig. 12.19.

In analogy to this process, a second child may be constructed from the first allele
of the other parent (here: 3, since we started with 6). However, this is rarely done;
rather only a single child is constructed from every pair of parent chromosomes.
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6 5 2 7 4 3 1

Fig. 12.19 Example child constructed from the parents in Fig. 12.18 by edge recombination

Note that the precedence rules prefer marked alleles to non-marked in order to
increase the chances that edges that are present in both parents are also present in the
child. Alleles with short neighbor lists are preferred in order to reduce the chances
that in a later step the fallback class (any allele not yet in the child) has to be invoked,
because this introduces a new edge that is not present in either parent. The rationale
is very simple: short neighbor lists run a higher risk of becoming empty due to allele
selections, so one should choose from them earlier than from longer lists.

Note also that edge recombination may be employed just as well if the first and
the last allele of a chromosome are not to be regarded as neighbors. In this case the
corresponding edges (that close the ring or cycle) are simply excluded from the edge
table. On the other hand, if we regard the first and last allele as neighbors, then we
may, in principle, select an arbitrary starting allele, and not just one of the first alleles
of the parents. This constraint (or its equivalent, namely having to choose the last
allele of one of the parents as a starting point) is needed only if the first and the last
allele are not regarded as neighbors, so that the child is constructed from one of the
end points of the chains that are represented by the parents.

12.3.3 Multi-parent Operators

Diagonal crossover is a recombination operator that can be applied to three or more
parents and that can be seen as a generalization of one-point crossover. For k parent
chromosomes, one randomly chooses k−1 distinct cut points in {1, . . . , L−1}, where
L is the length of the chromosomes. For i = 2, . . . , k the i th section (between the
(i−1)th and the i th cut point, where the kth cut point is the end of the chromosomes)
is then shifted cyclically (i − 1) steps across the k chromosomes. As an example,
Fig. 12.20 shows diagonal crossover for three-parent chromosomes and hence two
cut points. Diagonal crossover is said to lead to a very good exploration of the search
space, especially for a large number of parents (around 10–15).

1 5 2 3 6 2 4

5 2 1 4 3 6 1

3 1 4 2 5 4 6

1 5 1 4 3 4 6

5 2 4 2 5 2 4

3 1 2 3 6 6 1

Fig. 12.20 Example of diagonal crossover
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12.3.4 Characteristics of Recombination Operators

Recombination operators are often categorized based on whether they have certain
properties,which can aid in selecting the best operators for a given problem.Common
properties that are used to characterize recombination operators with this purpose
include whether they exhibit positional bias and/or distributional bias.

A recombination operator exhibits positional bias if the probability that two
genes are jointly inherited from the same parent depends on the (relative) position of
these genes in the chromosome. Positional bias is generally an undesirable property,
because it can make the exact arrangement of the different genes in a chromosome
crucial for the success or failure of an evolutionary algorithm. If genes for certain
traits are located in an unfortunate way w.r.t. the positional bias of a crossover oper-
ator, it may be very difficult to optimize the allele combination of these genes.

A simple example of a recombination operator that exhibits positional bias is
one-point crossover: the probability that two genes are jointly inherited is the higher,
the closer the genes are together in the chromosome. The reason is that genes that
are close together have only few possible cut points between them. Only if one of
these cut points are chosen, they are separated from each other. Since all cut points
are equally likely, the probability that two genes are jointly inherited is inversely
proportional to the number of cut points between the genes and thus to their distance
in the chromosome. As an extreme case consider the first and the last gene of a
chromosome. They can never be jointly inherited under one-point crossover, because
any choice of a cut point separates them from each other. On the other hand, two
genes that are neighbors in a chromosome are separated by one-point crossover only
with a probability of 1/(L − 1), where L is the length of the chromosome.

A recombination operator exhibits distributional bias if the probability that a
certain number of genes is exchanged between the parent chromosomes is not the
same for all possible numbers of genes. Distributional bias is often undesirable,
because it causes partial solutions of different lengths to have different chances of
progressing to the next generation. However, distributional bias is usually less critical
(that is, more easily tolerable) than positional bias.

A simple example of a recombination operator that exhibits distributional bias
is uniform crossover. Since for every gene it is decided with probability px and
independently of all other genes whether it is exchanged or not, the number K of
exchanged genes is binomially distributed with the parameter px . That is, we have

P(K = k) =
(
L

k

)
pkx (1 − px )

L−k,

where L is the total number of genes. Consequently, very small and very large
numbers are less likely than numbers close to Lpx . In contrast to this, one-point
crossover exhibits no distributional bias: all cut points are equally likely and since
the genes on one side of the cut point are exchanged, all numbers of exchanged genes
are obviously equally likely. An example of a crossover operator that exhibits neither
positional nor distributional bias is shuffle crossover based on one-point crossover.
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12.3.5 Interpolating and Extrapolating Recombination

All recombination operators that we discussed up to now merely recombine alleles
that already exist in the parent chromosomes, but do not create any new alleles. As a
consequence, their effectiveness depends crucially on the diversity of the population.
If there is only little variation in the population, recombinationoperators cannot create
sufficiently different offspring and thus the search may be confined to certain limited
regions of the search space that can be reached with the individuals of the (initial)
population. On the other hand, if a population is very diverse, such recombination
operators can explore the search space well.

Especially in the realm of numeric parameter optimization, however, a different
kind of recombination operator becomes possible, which can blend the traits of the
parents in such a way that offspring with new traits is created, encoded by alleles
that are not present (at least in exactly this form) in the parents. An example of such
an operator is interpolating recombination, which blends alleles of the parents with a
randomly chosenmixing parameter. Amore concrete example for chromosomes that
are real-valued arrays is arithmetic crossover, which can be seen as interpolating
between the points that are represented by the parent chromosomes

Algorithm 12.5 (Arithmetic Crossover)

function crossover_arith (r, s: array of real) : array of real;
begin
s′ ← new array of real with length(r) elements;
u ← choose randomly from U ([0, 1]);
for i ∈ {1, . . . , length(r)} do
s′
i ← u · ri + (1 − u) · si ;

return s′;
end

It should be noted, though, that an exclusive application of such a blending operator
can cause the so-called Jenkins nightmare, that is, the complete disappearance of
all variation in a population, because the blending operation introduces a strong ten-
dency to average all parameters (that is, all genes) that are present in the population.
Therefore arithmetic crossover should be combined—at least in the early genera-
tions of an evolutionary algorithm, in which exploration is vital—with a strongly
random-based, diversity-preserving mutation operator.

An alternative are extrapolating recombination operators, which try to infer infor-
mation from several individuals. Intuitively, they create a prognosis in what direction
from the examined parent individuals one can expect fitness improvements. Hence
extrapolating recombination may leave the region of the search space in which the
individuals are located, from which the prognosis is derived. Extrapolating recom-
bination is one of only few recombination methods that may take fitness values
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into account. A simple example of an extrapolating operator is arithmetic crossover
with u ∈ U ([−1, 2]). It should be noted, though, that an extrapolating recombination
operator usually cannot compensate a lack of diversity in a population.
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13Fundamental EvolutionaryAlgorithms

The preceding chapter presented all relevant elements of evolutionary algorithms,
namely guidelines of how to choose an encoding for the solution candidates, pro-
cedures how to select individuals based on their fitness, and genetic operators with
whichmodified solution candidates canbeobtained.Equippedwith these ingredients,
we proceed in this chapter to introducing basic forms of evolutionary algorithms,
including classical genetic algorithms (in which solution candidates are encoded
as bit strings, see Sect. 13.1), evolution strategies (which focus on numerical opti-
mization, see Sect. 13.2) and genetic programming (which tries to derive function
expressions or even (simple) program structures with evolutionary principles, see
Sect. 13.3). Finally, we take a look at related population-based approaches (like ant
colony and particle swarm optimization, see Chap.14).

13.1 Genetic Algorithms

In nature, all genetic information is described in an essentially quaternary code, based
on the four nucleotides adenine, cytosine, guanine and thymine, which are stringed
together in a DNA sequence on a backbone of phosphate-deoxyribose (so-called
primary structure of a nucleic acid). Although there are also higher level structures
(like the fact that the nucleotides are organized in so-called codons, which are triplets
of nucleotides), this is the basis of the genetic code. Transferring this structure to
computer science, it seems natural to base all encoding on the ultimately binary
structure of information in a computer. That is, we use chromosomes that are bit
strings. This is the distinctive feature of so-called genetic algorithms (GA).

In principle, of course, all evolutionary algorithms running on a computer can
be seen as genetic algorithms in this sense, simply because a computer ultimately
encodes all information in bits, that is, in zeros and ones. For example, the chro-
mosomes we considered for the n-queens problem, which are arrays of integers,

245

http://dx.doi.org/10.1007/978-1-4471-7296-3_14


246 13 Fundamental Evolutionary Algorithms

are stored using a binary representation of these numbers. To be concrete, the chro-
mosome (4, 2, 0, 6, 1, 7, 5, 3), which describes a solution of the 8-queens problem,
could be stored (using 3 bits for each number) as 100 010 000 110 001 111 101 011.
The difference between a genetic algorithm and the evolutionary algorithm we con-
sidered for the n-queens problem consists in the fact that in a genetic algorithm
we consider merely the bit string that a chromosome is and ignore any higher level
structure. (In the above concrete example: the fact that bit triplets are interpreted
together, each indicating a file (column) in which a queen is placed.) That is, we
completely separate the encoding from the genetic mechanisms, while in an evo-
lutionary algorithm certain aspects of the encoding are considered, for instance, to
restrict the genetic operators. (In the above example: in the evolutionary algorithm
for the 8-queens problem, we allow as cut points for a crossover operator only the
points between bit triplets, because these are the interpretable information units,
while in a genetic algorithm we allow cuts between arbitrary bits.)

A typical genetic algorithm works like this:

Algorithm 13.1 (Genetic Algorithm)

function genalg ( f : function, μ: int, px : real, pm : real) : array of bit;
begin

t ← 0; (∗ initialize the generation counter ∗)

pop(t) ← create a population of μ random bit strings; (∗ μ must be even ∗)

evaluate pop(t) with the fitness function f ; (∗ compute initial fitness ∗)

while termination criterion is not fulfilled do begin
t ← t + 1; (∗ count the created generation ∗)

pop(t) ← ∅; (∗ build the next generation ∗)

pop′ ← select μ individuals s1, . . . , sμ from pop(t)
with roulette wheel selection;

for i ← 1, . . . , μ/2 do begin (∗ process individuals in pairs ∗)

u ← choose random number from U ([0, 1));
if u ≤ px then crossover_1point(s2i−1, s2i ); end
mutate_bits(s2i−1, pm); (∗ crossover rate px and ∗)

mutate_bits(s2i , pm); (∗ mutation rate pm ∗)

pop(t) ← pop(t) ∪ {s2i−1, s2i }; (∗ add (modified) individuals ∗)

end (∗ to the next generation ∗)

evaluate pop(t) with the fitness function f ;
end (∗ compute new fitness ∗)

return best individual from pop(t); (∗ return the solution ∗)

end

That is, a genetic algorithm follows essentially the scheme of a general evolutionary
algorithm (see Algorithm 11.1 on p. 197), only that it uses bit strings as its chromo-
somes and applies genetic operators to these chromosomes that ignore any higher
level structure of the encoding. A genetic algorithm requires mainly three parame-
ters: the population size μ, for which an even number is chosen in order to simplify

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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the implementation of a random application of the crossover operator, the crossover
probability px , with which it is decided for a pair of chromosomes whether they
undergo crossover or not, and the mutation probability pm , with which it is decided
for each bit of a chromosome whether it is flipped or not.

13.1.1 The SchemaTheorem

So far, we answered the question why evolutionary algorithms work only by provid-
ing plausibility and intuition-based arguments. Due to their restriction to bit strings,
genetic algorithms, however, allow for a more formal investigation, which was first
proposed in Holland (1975). This leads to the famous schema theorem.

Since genetic algorithms work on bit strings only, they allow us to confine our
considerations to binary chromosomes. More precisely, we consider schemata, that
is, partly specified binary chromosomes. We then investigate how the number of
chromosomes matching a schema evolve over several generations of a genetic algo-
rithm. The objective of this investigation is to derive a rough stochastic statement
that describes how a genetic algorithm explores the search space.

In order to keep things simple, we confine ourselves (following Holland 1975) to
bit strings of a fixed length L . In addition, we generally assume the specific form
of a genetic algorithm as it was presented in pseudocode in the preceding section.
That is, we assume that chromosomes enter the intermediate population pop′ by
fitness-proportionate selection (to be precise, by roulette-wheel selection as it was
introduced in Sect. 12.2.1) and that one-point crossover (see Sect. 12.3.2), applied
with probability px to chromosome pairs, and bit mutation (see Sect. 12.3.1), using
the mutation probability pm , are employed as the genetic operators.

We start with the necessary technical definitions of schema and matching.

Definition 13.1 (Schema) A schema h is a character string of length L over the
alphabet {0, 1, ∗}, that is, h ∈ {0, 1, ∗}L . The character ∗ is calledwildcard character
or don’t-care symbol.

Definition 13.2 (Matching) A (binary) chromosome c ∈ {0, 1}L matches a schema
h ∈ {0, 1, ∗}L , written as c 	 h, if and only if it coincides with h at all positions where
h is 0 or 1. Positions at which h is ∗ are not taken into account (which explains the
names “don’t care symbol” or “wildcard character” for the character ∗).

As an illustration consider the following simple example: let h be a schema of length
L = 10 and c1, c2 two different chromosomes of this length, which look like this:

h = **0*11*10*

c1 = 1100111100

c2 = 1111111111

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
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Clearly, chromosome c1 matches schema h, i.e., c1 	 h, because c1 differs from h
only at positions where h is ∗. On the other hand, chromosome c2 does not match h,
i.e., c2 
 	 h, because c2 contains 1 s at positions where h is 0 (positions 3 and 9).

Generally, there are 2L possible chromosomes and 3L different schemata. Every
chromosome matches

∑L
i=0

(L
i

) = 2L schemata (because any choice of i positions,
at which the bit in the chromosome is replaced with a ∗, yields a schema that the
chromosome matches). Based on this fact, Holland (1975) started from the idea that
the observation of one chromosome corresponds to the observation ofmany schemata
at the same time. This is what Holland called implicit parallelism.

Note that a population of size μ can, in principle, match close to μ2L different
schemata.However, the number of actuallymatched schemata is usually a lot smaller,
especially in later generations of a genetic algorithm, because the selective pressure
produces similar chromosomes. (Assuming that similar chromosomes have similar
fitness, selecting individuals with a high fitness has a tendency to select similar
chromosomes, cf. Fig. 12.7 on p. 224 as an illustration.)

In order to understand schemata better, let us take a look at two interpretations.
Geometrically, a schema can be seen as describing a hyperplane in a unit hypercube.
Not general hyperplanes, though, but only hyperplanes that are parallel or orthogonal
to the sides of the hypercube. This is illustrated in Fig. 13.1 for three dimensions:
the schema *00 describes the edge connecting the corners 000 and 100 (bottom
front). The left face of the cube is captured by the schema 0**. The schema ***,
which consists of wildcard characters only, describes the whole cube.

An alternative interpretation considers the domain of the fitness function. Suppose
we are given a unary fitness function f : [0, 1] → R and that the argument of this
function is encoded as a binary number (in the usual way—for reasons of simplicity,
we disregard here that such a code introduces Hamming cliffs (see Sect. 12.1.1),
which can be avoided by using a Gray code). In this case a schema corresponds to a
“strip pattern” in the domain of the function f . This is illustrated in Fig. 13.2 for the
two schemata 0**...* (left diagram) and **1*...* (right diagram).

In order to carry out our plan of tracking the evolution of chromosomes that match
a schema, we have to examine how selection and applying genetic operators (that
is, one-point crossover and bit mutation) influence these chromosomes. We do so in
three steps. In the first step, we consider the effect of selection, in the second step the
effect of one-point crossover, and in the third step the effect of bit mutation. We dis-
tinguish the populations in these steps (and quantities referring to them) by splitting

Fig. 13.1 Geometric
representation of schemata
as hyperplanes in a unit
hypercube

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
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Fig. 13.2 Representation of schemata as domain of a function. On the left the schema 0**...*
is shown, on the right the schema **1*...*

the transition from time t to time t + 1 into the steps t (original population), t + Δts
(population after selection, that is, intermediate population pop′), t + Δts + Δtx
(population after selection and crossover), t + Δts + Δtx + Δtm = t + 1 (popula-
tion after selection, crossover and mutation, which is identical to the new population
at time t + 1). In these steps, we are mainly interested in the (expected) number of
chromosomes that match a schema h. We denote these numbers by N (h, t ′), where
t ′ ∈ {t, t + Δts, t + Δts + Δtx , t + 1}. Our objective is to derive a (stochastic) rela-
tionship between N (h, t) and N (h, t + 1).

In order to capture the effect of selection, we have to consider what fitness the
chromosomes have that match a schema h. With fitness proportionate selection, the
expected number of offspring of a chromosome s is μ · frel(s). Hence the expected
number of chromosomes that match schema h after selection is

N (h, t + Δts) =
∑

s∈pop(t),s	h

μ · f (t)
rel (s).

In order to express this number without referring to individual chromosomes s, it is
convenient to define the mean relative fitness of chromosomes that match a schema.

Definition 13.3 (Mean Relative Fitness) The mean relative fitness of chromosomes
that match schema h in the population pop(t) is

f (t)
rel (h) =

∑
s∈pop(t),s	h

f (t)
rel (s)

N (h, t)
.

With this definition, we can write N (h, t + Δts) as

N (h, t + Δts) = N (h, t) · μ · f (t)
rel (h).

By inserting the definition of relative fitness (see p. 221), we can transform the
expression μ · frel(h) on the right hand side according to

μ · frel(h) =

∑
s∈pop(t),s	h

frel(s)

N (h, t)
· μ =

∑
s∈pop(t),s	h f (s)∑

s∈pop(t) f (s)

N (h, t)
· μ =

∑
s∈pop(t),s	h f (s)

N (h,t)∑
s∈pop(t) f (s)

μ

= ft (h)

ft
.
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where ft (h) is the mean fitness of the chromosomes that match schema h in genera-
tion t and ft is themean fitness of all chromosomes in generation t . Therefore, we can
write the expected number of chromosomes that match schema h after selection as

N (h, t + Δts) = N (h, t) · ft (h)

ft
.

In order to incorporate the effect of the genetic operators, we need measures with
which we can compute probabilities that the match to a schema is preserved (or
destroyed). For one-point crossover, we have to consider how likely it is that the
involved parent chromosomes are cut in such a way that all fixed elements of a
schema under consideration are inherited from the same parent. In this case, the
created offspring matches the schema if the corresponding parent does. Otherwise,
the match to the schema can get lost as the following example demonstrates:

h = ***0*|1*1** ***0*1*1** = h
h � c1 = 00000|11111 → 1111111111 = c′

1 
 	 h
h
 � c2 = 11111|00000 → 0000000000 = c′

2 
 	 h

Chromosome c1 matches the schema h, but c2 does not. A one-point crossover at the
point marked by | creates two offspring chromosomes, both of which do not match
the schema. With a different cut point, however, offspring c′

1 matches the schema

h = ***|0*1*1** ***0*1*1** = h
h � c1 = 000|0011111 → 1110011111 = c′

1 	 h
h
 � c2 = 111|1100000 → 0001100000 = c′

2 
 	 h

Obviously, whether an offspring chromosome matches the schema can depend cru-
cially on the location of the cut point relative to the fixed characters of the schema.
This gives rise to the notion of the defining length of a schema

Definition 13.4 (Defining Length of a Schema) The defining length deflen(h) of a
schema h is the difference between the position of the last and the first non-∗ in h.

For instance, deflen(**0*11*10*) = 9 − 3 = 6, because the first character that is
not a wildcard, here a 0, is at position 3 and the last character that is not a wildcard,
here also a 0, is at position 9. The defining length is the difference of these numbers.

In one-point crossover, all possible cut points are equally likely. Therefore the
probability that the cut point splits a chromosome in such a way that some of the
fixed characters of a schema lie on one side of the cut and some on the other (and
therefore are not all inherited from the same parent chromosome) is deflen(h)

L−1 , because
there are deflen(h) cut points between the first and the last fixed character and L − 1
possible cut points in total (as L is the length of the chromosomes). In contrast, the
probability that all fixed characters of the schema lie on the same side of the cut (and
therefore are all inherited from the same parent, thus ensuring that the corresponding
child matches the schema if the parent does) is 1 − deflen(h)

L−1 .
In order to derive an expression for N (h, t + Δts + Δtx ), we have to consider

whether a chromosome is subject to crossover (otherwise its matching status w.r.t.
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the schema obviously remains unchanged) and if it is, whether the cut point lies
in such a way that the fixed characters of the schema are inherited from the same
parent (then the matching status of this parent is transferred to the child). W.r.t.
the latter alternative, we also have to take into account that a cut point that lets a
child inherit the fixed characters of a schema partially from a parent matching the
schema and partially from the other may still match the schema, since it may happen
that the characters inherited from the other parent match the schema. In particular,
this situation occurs if both parents happen to match the schema. Finally, offspring
chromosomes that match a schema can be created from parents, both of which do
not match the schema, as can be seen from the following example:

h = ***0*|1*1** ***0*1*1** = h
h
 � c1 = 00010|11111 → 1110111111 = c′

1 	 h
h
 � c2 = 11101|00100 → 0001000100 = c′

2 
 	 h

Clearly, the reason why a match to the schema is created is that both of the parent
chromosomes match the schema partially and that these partial matches are com-
bined. Note, however, that at most one child can match the schema in such a case.

As a result of the above considerations we write

N (h, t + Δts + Δtx ) = (1 − px ) · N (h, t + Δts)︸ ︷︷ ︸
A

+ px · N (h, t + Δts) · (1 − ploss)︸ ︷︷ ︸
B

+C,

where px is the probability that a chromosome is subject to crossover and ploss is
the probability that after applying one-point crossover the offspring does not match
schema h anymore. A is the expected number of chromosomes that match schema h
and are not subject to one-point crossover (and therefore still match the schema h).
B is the expected number of chromosomes that are subject to one-point crossover and
stillmatch the schemah afterward. Finally,C is the expectednumber of chromosomes
matching schema h that are gained by favorable recombinations of chromosomes that
do not match schema h themselves.

Since the term C is almost impossible to estimate properly, we simply neglect it.
As a consequence, we obtain only a lower bound for N (h, t + Δts + Δtx ), which,
however, is sufficient for our purposes. In order to derive an expression for ploss,
we draw on the fact that a loss of match is possible only if the randomly chosen cut
point falls in such a way that the fixed characters of the schema are not all inherited
from the same parent. As argued above, this probability is deflen(h)

L−1 . Even in these
cases, however, the result may still match the schema (see above). As it is difficult to
obtain an expression for all possible cases in which a match is preserved, we confine
ourselves to those cases in which both parents match the schema and therefore the
location of the cut point is irrelevant. This provides us with the expression

ploss ≤ deflen(h)

L − 1
·
(
1 − N (h, t + Δts)

μ

)
.

The first factor captures the probability that the choice of the cut point is potentially
harmful and the second factor captures the probability that the other parent does
not match the schema and hence there is a certain chance that the result does not
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match the schema. Clearly, however, this product yields only an upper bound for
ploss, because it assumes that any one-point crossover with a potentially harmful cut
point and another parent that does not match the schema destroys the match to the
schema. This is certainly not the case, as the following example demonstrates:

h = ***0*|1*1** ***0*1*1** = h
h � c1 = 00000|11111 → 1110111111 = c′

1 	 h
h
 � c2 = 11101|00100 → 0000000100 = c′

2 
 	 h

Even though chromosome c2 does not match the schema h and the cut point of one-
point crossover falls in such a way that some of the fixed characters of the schema h
are inherited from c1 and some from c2, the offspring chromosome c′

1 matches the
schema h. The reason is, of course, that c2 matches the schema h partially. However,
capturing partial matches in this analysis is extremely difficult and therefore we
confine ourselves to the upper bound for ploss stated above.

Plugging the upper bound for ploss into the formula for N (h, t + Δts + Δtx )
yields

N (h, t + Δts + Δtx )

≥ (1 − px ) · N (h, t + Δts)

+ px · N (h, t + Δts) ·
(
1 − deflen(h)

L − 1
·
(
1 − N (h, t + Δts)

μ

))

= N (h, t + Δts)

(
1 − px + px ·

(
1 − deflen(h)

L − 1
·
(
1 − N (h, t + Δts)

μ

)))

= N (h, t + Δts) ·
(
1 − px

deflen(h)

L − 1
·
(
1 − N (h, t + Δts)

μ

))

= N (h, t) · ft (h)

ft
·
(
1 − px

deflen(h)

L − 1
· (1 − N (h, t) · frel(h))

)
,

where we exploited in the last step the relationship N (h, t + Δts) = N (h, t) · μ ·
frel(h). Note that we obtain only an inequality, because we used an upper bound for
ploss and becausewe neglected potential gains from recombinations of chromosomes
that do not match the schema h (captured above by the term C , which is missing
here).

Having incorporated the effect of crossover, we now turn to mutation. The effect
of bit mutation can easily be captured by the order of a schema:

Definition 13.5 (Order of a Schema) The order ord(h) of a schema h is the number
of zeroes and ones in h, that is, ord(h) = #(h, 0) + #(h, 1) = L − #(h, ∗)where the
operator # counts the number of occurrences of its second argument in its first.

For instance, ord(**0*11*10*) = 5, because the chromosome contains 2 zeros
and 3 ones and thus a total of 5 fixed (that is, not don’t care) characters.

With the notion of the order of a schema, we can express the probability that
a match to a schema does not get lost due to a bit mutation of a chromosome as
(1 − pm)ord(h). The reason is that a single bit gets flipped with the probability pm



13.1 Genetic Algorithms 253

and thus remains unchangedwith probability 1 − pm (see Algorithm 12.1 on p. 233).
If any of the fixed characters in the schema h, of which there are ord(h), is flipped
in the chromosome, the chromosome does not match the schema anymore. We do
not care about the L − ord(h) remaining bits, because the chromosome matches the
schema regardless of their value. Since the bit flips are decided independently, the
probability that none of the fixed bits in the schema is flipped is (1 − pm)ord(h).

As a consequence, we can express the effect of bit mutation as

N (h, t + 1) = N (h, t + Δts + Δtx + Δtm)

= N (h, t + Δts + Δtx ) · (1 − pm)ord(h).

Note that alternative mutation models are easy to handle as well. For example, if at
most one bit is flipped in a chromosome (so-called one-bitmutation, see Sect. 12.3.1),
then the effect can be described by

N (h, t + 1) = N (h, t + Δts + Δtx + Δtm)

= N (h, t + Δts + Δtx ) ·
(
1 − ord(h)

L

)
,

where ord(h)/L is the probability that a fixed character in the schema h is flipped in
the chromosome (assuming that all bits are equally likely).

Plugging in the result for N (h, t + Δts + Δtx ) that we derived above, we finally
obtain schema theorem (for bit mutation):

N (h, t + 1) ≥ N (h, t) · ft (h)

ft

(
1 − px

deflen(h)

L − 1

(
1 − N (h, t)

μ
· ft (h)

ft

))
(1 − pm)ord(h).

The general form of this relationship between N (h, t + 1) and N (h, t) is clearly

N (h, t + 1) ≥ N (h, t) · g(h, t).

Simplifying, we may therefore say that the number of chromosomes that match a
schema h is multiplied in each generation by some factor and thus develops expo-
nentially in the course of several generations. If g(h, t) > 1, the number of matching
chromosomes grows exponentially, if g(h, t) < 1, it decreases exponentially. Since
the number of matching chromosomes cannot decrease for all schemata (simply
because the population size is constant and the contained chromosomes must match
some schemata), there must be schemata for which the number of matching chro-
mosomes grows (unless the number of matching chromosomes stays the same for
all schemata, which, however, implies that the population is essentially constant).

By considering the factors of g(h, t), we can therefore try to derive properties
of schemata for which the number of matching chromosomes grows particularly
quickly (that is, for which g(h, t) is large). Since g(h, t) is a product, every factor
should be as large as possible. Therefore, such schemata should have

• high mean fitness (due to the factor ft (h)/ ft ),
• small defining length (due to the factor 1 − px deflen(h)/(L − 1) . . . ), and
• low order (due to the factor (1 − pm)ord(h)).

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
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Such schemata are also called building blocks, due to which the schema theorem
is sometimes also referred to as the building block hypothesis: the evolutionary
search focuses on promising building blocks of solution candidates.

It should be kept in mind, though, that the schema theorem or the building block
hypothesis applies in the derived form only to bit strings, fitness proportionate selec-
tion, one-point crossover and bit mutation. If we use different genetic operators,
building blocks may be characterized by other properties than order or defining
length. However, a high mean fitness is always among the characteristic features,
since all selection methods favor such chromosomes, although differently strongly
and not always in direct proportion to the fitness values.

It should also be noted that the schema theorem is open to many different lines
of criticism. It widely neglects the interplay of different schemata, as well as the
possibility of epistasis (thewhole derivation implicitly assumes (very) low epistasis).
It works with expected values that are strictly valid only for an infinite population
size (which obviously cannot be achieved in practice, where effects of stochastic
drift need to be taken into account). The factor g(h, t) is clearly not constant, but
changes over time due to its dependence on the population at time t , so that the claim
of an exponential behavior over several generations is slightly dubious (especially,
since saturation effects can be expected) etc.

13.1.2 TheTwo-Armed Bandit Argument

The schema theorem implies that a genetic algorithm achieves a near-optimal balance
between exploration of the search space and exploitation of good solution candidates.
As an argument for this claim,Holland used the two-armed banditmodel as an anal-
ogy, that is, a slot machinewith two independent arms (Holland 1975;Michell 1998).
The two arms have different expected (per trial) payoffsμ1 andμ2 with variances σ 2

1
and σ 2

2 , respectively, all of which are unknown. Without loss of generality we may
assume μ1 > μ2, though. It is also unknown, however, which of the two arms of the
slot machine has the higher payoff (that is, it is unknown whether μ1 is assigned to
the left or to the right arm). Suppose we may play N games with such a slot machine.
What is the best strategy to maximize our winnings?

If we knew which arm has the greater payoff, we would simply use that arm for
all N games, thus clearly maximizing our expected winnings. However, since we do
not know which arm is better, we must invest some trials into gathering information
about which arm might be the one with the higher payoff. For example, we may
choose to use 2n trials, 2n < N , for this task, in which we play both arms equally
often (that is, we use each arm n times). Afterward, we evaluate which arm has given
us the higher average payoff per trial (exploration). In the remaining N − 2n trials
we then exclusively play the arm that has the higher observed payoff (exploitation).
Our original question can thus be reformulated as: how should we choose n relative
to N in order to maximize our (expected) winnings or, equivalently, to minimize our
(expected) loss relative to always having chosen the better arm? In other words, how
shouldwebalance exploration (initial 2n trials) and exploitation (final N − 2n trials)?
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Clearly, there are two types of losses involved here: (1) inevitable loss in the
information gathering phase, in which we play the worse arm n times (regardless of
which arm is the worse one, since we play both arms equally often), and (2) loss
due to the fact that we determine the better arm only based on an empirical payoff
estimate, which may point us to the wrong arm as the better one. The former refers
to the fact that in the 2n trials we devote to exploration we necessarily lose

L1(N , n) = n(μ1 − μ2),

because we do n trials with the arm with lower payoff μ2 instead of using the arm
with the higher payoff μ1. The loss from the remaining N − 2n trials can only be
given in stochastic terms. Let pn be the probability that the average payoffs per trial,
as determined empirically in the first 2n trials, actually identify the correct arm. (The
index n of this probability is due to the fact that it obviously depends on the choice
of 2n: the larger 2n, the higher the probability that the empirical payoff estimate
from the 2n exploration trials identifies the correct arm.) That is, with probability pn

we use the arm actually having the higher payoffμ1 for the remaining N − 2n trials,
while with probability 1 − pn we use the arm actually having the lower payoff μ2 in
these trials. In the former case, there is no additional loss (beyond what is incurred
in the exploration phase), while in the latter case we lose

L2(N , n) = (N − 2n)(μ1 − μ2)

in the exploitation phase, because we choose the wrong arm (that is, the one actually
having the lower payoff μ2). Therefore the expected total loss is

L(N , n) = L1(N , n)︸ ︷︷ ︸
exploration loss

+(1 − pn) L2(N , n)︸ ︷︷ ︸
incorrect exploitation loss

= n(μ1 − μ2) + (1 − pn)(N − 2n)(μ1 − μ2)

= (μ1 − μ2)(npn + (1 − pn)(N − n)).

The final form nicely captures that in case the better arm is correctly identified (prob-
ability pn), we lose winnings from n times using the worse arm in the exploration
phase, while in case the better arm is incorrectly identified (probability 1 − pn),
we lose winnings from N − n trials with the worse arm (n of which happen in the
exploration phase and N − 2n happen in the exploitation phase).

We now have to minimize the loss function L(N , n) w.r.t. n. The main problem
here is to express the probability pn in terms of n (since pn clearly depends on n: the
longer the exploration phase, the higher the chance that it yields a correct decision).
Going into details is beyond the scope of this book, so we only present the final result
(Holland 1975; Michell 1998): n should be chosen according to

n ≈ c1 ln

(
c2N 2

ln(c3N 2)

)
,

where c1, c2 and c3 are certain positive constants. By rewriting this expression, we
can turn it into (Holland 1975; Michell 1998)

N − n ≈ en/2c1

√
ln(c3N 2)

c2
− n.
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Since with growing n the term en/2c1 dominates the expression on the right hand
side, this equation can be simplified (accepting further approximation) by

N − n ≈ ecn .

In other words, the total number of trials N − n that are executed with the arm that
is observed to be better should increase exponentially compared to the number of
trials n that are executed with the arm that is observed to be worse.

This result, though obtained for a two-armed bandit, can be transferred to multi-
armed bandits. In this more general form it is then applied to the schemata that are
considered in the schema theorem: the arms of the bandit correspond to different
schemata, their payoff to the (average) fitness of chromosomes matching them. A
chromosome in a population that matches a schema is seen as a trial of the corre-
sponding bandit arm. Recall, however, that a chromosome matches many schemata,
thus exhibiting an inherently parallel exploration of the space of schemata.

As we saw in the preceding section, the schema theorem states that the number of
chromosomes matching schemata with better than average fitness grows essentially
exponentially over several generations. The two- or multi-armed bandit argument
now says that this is an optimal strategy to balance exploration of schemata (playing
all arms of the bandit) and their exploitation (playing the arm or arms that have been
observed to be better than the others).

13.1.3 The Principle of Minimal Alphabets

The principle of minimal alphabets is sometimes invoked to claim that binary
encodings, as used by genetic algorithms, are “optimal” in a certain sense. The core
idea is that the number of possible schemata should be maximized relative to the
size of the search space (or the population size), so that the parallelism inherent in
the search for schemata is maximally effective. That is, with the chromosomes of
the population a number of schemata should be covered that is as large as possible.

If chromosomes are defined as strings of length L over an alphabet A , then the
ratio of the number of schemata to the size of the search space is (|A | + 1)L/|A |L .
Clearly, this ratio is maximized if the size |A | of the alphabet is minimized. Since
the smallest usable alphabet has |A | = 2, binary codings optimize this ratio.

A more intuitive form of this argument was put forward by Goldberg (1989): the
larger the size of the alphabet, the more difficult it is to find meaningful schemata,
because a schema is matched by a larger number of chromosomes. Since a schema
averages over the fitness of the matching chromosomes, the quality of a schema may
be tainted by some bad chromosomes (low fitness) that happen to match the same
schema. Therefore one should strive to minimize the number of chromosomes that
are matched by a schema. Since a schema h matches (L − ord(h))|A | chromosomes,
we should use an alphabet of minimal size. Again, since the smallest usable alphabet
has |A | = 2, binary codings can be expected to be optimal.

Whether these arguments are convincing is debatable. At least one has to admit
that there is a tradeoff between maximizing the number of schemata relative to the
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search space and expressing the problem in a more natural manner with the help of
larger alphabets (Goldberg 1991). Furthermore, a strong argument in favor of larger
alphabets has been put forward by Antonisse (1989).

13.2 Evolution Strategies

Evolution strategies (ES) (Rechenberg 1973) are the oldest form of an evolution-
ary algorithm. They focus on numerical optimization problems and therefore work
exclusively with chromosomes that are arrays of real-valued numbers. Their name
points to the evolution-strategic principles we mentioned in Sect. 11.2: in (natural)
evolution not only the organisms are optimized, but also the mechanisms of evo-
lution. These include parameters like reproduction and mortality rates, life spans,
vulnerability tomutations, mutation step sizes etc. Apart from the focus on numerical
optimization problems, it is a distinctive feature of evolution strategies that in many
forms they adapt mutation step sizes as well as their direction.

To bemore precise,we are given a function f : Rn → R, forwhichwewant to find
an optimal argument vector x = (x1, . . . , xn), that is, an argument vector that yields
a maximum or minimum of the function f . Chromosomes are therefore such vectors
of real-valued numbers. Evolution strategies often (though not always) abandon
crossover, that is, there may be no recombination of chromosomes. Rather they
focus on mutation as the core variation operator. Mutation in evolution strategies
consists generally in adding a random vector r, each element ri , i = 1, . . . , n, of
which is the realization of a normally distributed random variable with mean zero
(independent of the element index i) and variances σ 2

i or standard deviations σi . The
variances σ 2

i may or may not depend on the element index i (one variance for the
whole vector or a specific variance for each element) and may or may not depend on
the generation counter t (time dependent or independent variance).

As we study in more detail below, the variances may also be coupled to the
chromosome and may be subject to mutation themselves. In this way, an adaptation
of the mutation step sizes and step directions can be realized. Intuitively, we may say
that chromosomeswith a “suitable”mutation variance—that is, a variance that causes
steps of “suitablewidth” in the region of the search space inwhich the chromosome is
located—are more likely to produce good offspring. As a consequence, this variance
can be expected to spread in the population, at least among individuals located in
the same region of the search space. It should be noted, though, that the adaptation
of the mutation parameters is thus indirect and therefore cannot be expected to
be as effective and efficient as the optimization of the function arguments itself.
Nevertheless it can help the search process considerably.

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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13.2.1 Selection

Selection in evolution strategies follow a strict elite principle: only the best indi-
viduals enter the next generation. There is no random element involved, like, for
instance, in the various forms of fitness proportionate selection (see Sect. 12.2.1),
which gives better individuals only better chances to enter the next generation, but
does not rule out entirely that individuals with a low fitness have offspring.

Even though the elite principle is fixed, there are two different forms of selection,
which are distinguished by whether only offspring or parents and offspring together
are considered in the selection process. Let μ be the number of individuals in the
parent generation and λ the number of offspring individuals that were created by
mutation. In the so-called plus strategy the parents and children are pooled for
the selection process, that is, the selection works on μ + λ individuals (hence an
evolution strategy working with this scheme is also called (μ + λ)-ES). In contrast
to this, in the so-called comma strategy (also called (μ, λ)-ES) selection considers
only the offspring individuals. In both cases, the μ best individuals (either from the
μ + λ pooled individuals for the plus strategy or only from the λ > μ offspring
individuals in the comma strategy) are selected for the next generation.

In both the plus and the comma strategy, the number λ of offspring individuals
(usually) exceeds the number μ of parent individuals (considerably). This approach
implements the principle of birth surplus or overproduction, see Sect. 11.2. It is
motivated by the fact that usually the majority of mutations are harmful.

Note that the comma strategy actually requires λ � μ or at least λ > μ, so that
there are enough individuals to choose from. (Clearly, λ < μ leads to shrinking
populations and λ = μ ignores the fitness of the individuals, since all offspring
individuals have to be chosen regardless of their fitness.) However, for the plus
strategy it is usually also advisable to create many more individuals than there are
parents, in order to reduce the risk of getting stuck in a local optimum,which is caused
by the strict elite principle. A typical choice (for both strategies) is μ : λ = 1 : 7.

In order to counteract that the plus strategy gets stuck in a local optimum, it is
sometimes replaced for some generations with the comma strategy, which increases
the diversity of the population again. On the other hand, since in the comma strategy
all parent individuals are definitely lost, it is advisable to keep track of the best
individual encountered so far in this strategy, while in the plus strategy the best
individual is automatically preserved by the strict elite principle.

As a simple example we consider the special case of the (1 + 1)-ES. The initial
“population” x0 ∈ R

n consists of a single randomvector of real numbers. The created
offspring individual is x∗

t = xt + rt , where rt ∈ R
n is random vector of real numbers

sampled from a normal distribution. Selection consists in setting

xt+1 =
{
x∗

t if f (x∗
t ) ≥ f (x),

xt otherwise.

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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Further generations are created until a termination criterion is met. Clearly, this
procedure is identical to hill climbing, as we discussed it in Sect. 11.5.2.

As a consequence, we may interpret a more general plus strategy (withμ > 1, but
still with λ = μ) as a kind of parallel hill climbing. Instead of considering only one
current point, the search is performed simultaneously at several places in the search
space, always pursuing the μ most promising paths. Note, however, the difference
to executing μ hill climbing processes in parallel: in an evolution strategy, both
parent and child of a hill climbing pair may enter the next generation (thus creating
a fork in the search), for which another pair is extinguished completely (neither
parent nor child enter the next generation). As a consequence, there is an exchange of
information (about fitness values) between the hill climbing processes, which focuses
the search more strongly on promising regions. With λ > μ the search is even more
efficient, because several paths are explored from the same parent. However, this
may also have the effect of increasing the risk to get stuck in a local optimum.

13.2.2 Global Variance Adaptation

As we mentioned at the beginning of this section, a distinctive feature of evolution
strategies is that they try to adapt mutation step sizes. In the simplest form, there is
only one global variance σ 2 (or standard deviation σ ) that controls the mutations of
all chromosomes. This variance is adapted in the course of the generations, so that
the mean convergence rate is (approximately) optimized.

In order to obtain a rule how to adapt a global variance, (Rechenberg 1973)
determined the optimal variance σ 2 for the two functions f1(x1, . . . , xn) = a + bx1
and f2(x1, . . . , xn) = ∑n

i=1 x2i by determining the probabilities for a successful
(that is, improving) mutation. These probabilities are p1 ≈ 0.184 for f1 and p2 ≈
0.270 for f2. From this result (Rechenberg 1973) heuristically inferred the so-called
1
5 success rule: under the plus strategy the mutation step size (as expressed in σ or
σ 2) is appropriate if approximately 1

5 of the offspring are better than the parents.
With the 1

5 success rule, the standard deviation σ is adapted as follows: if more
than 1

5 of the children are better than the parents, the variance should be increased.
On the other hand, if less than 1

5 of the children are better than the parents, the
variance should be reduced. The rationale is that under the assumption that similar
individuals have similar fitness, smaller modifications are more likely to create better
individuals than larger modifications. In order to obtain a simple rule, the standard
deviation σ is increased by multiplying it with a user-specified factor α > 1, and
reduced by dividing it by the same factor. We thus obtain the following procedure:

Algorithm 13.2 (Global-Variance-Adaption)

function varadapt_global (σ, ps, θ, α: real) : real;
begin (∗ standard deviation σ , success rate ps ∗)

if ps > θ then return σ · α; (∗ threshold θ = 1
5 , modification factor α > 1 ∗)

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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if ps < θ then return σ/α;
return σ ;

end

Here, ps stands for the fraction of the children that are better than the parents,
that is, the success rate of the mutations. Note that this rate may also be seen as
a measure for the balance of exploration and exploitation. If the success rate is
too large, exploitation of good individuals dominates, which can lead to effects of
premature convergence (cf. Sect. 12.2.2). On the other hand, if the success rate is too
low, exploration dominates, which can lead to slow convergence (though never to
vanishing selection pressure, due to the strict elite principle employed in evolution
strategies).

Note that for larger populations, the 1
5 success rule is sometimes too optimistic.

In addition, in analogy to simulated annealing (see Sect. 11.5.3), one may define
a function that increases the threshold over time (and thus introduces a tendency
to reduce the variance). This is the reason for making θ a parameter of the above
function instead of fixing it at the value 1

5 (even though this is frequently chosen).
The complete algorithm for a comma strategy that works with global variance

adaption every k generations is shown below. For a plus strategy one merely has to
replace the statement “pop′ ← ∅” with “pop′ ← pop(t − 1).”

Algorithm 13.3 (Adaptive-ES)

function evostrat_global ( f : function, μ, λ, k: int, θ, α: real) : object;
begin (∗ objective function f , population size μ ∗)

t ← 0; (∗ number of offspring λ, modification frequency k ∗)

s ← 0; (∗ threshold θ = 1
5 , modification factor α > 1 ∗)

σ ← value for the initial step size;
pop(t) ← create a population with μ individuals;
evaluate pop(t) with the function f ;
while termination criterion is not fulfilled do begin

t ← t + 1; (∗ count the created generation ∗)

pop′ ← ∅; (∗ for plus strategy pop′ ← pop(t − 1) ∗)

for i = 1, . . . , λ do begin
x ← select random parent uniformly from pop(t);
y ← copy of x; (∗ create a mutated child ∗)

mutate_gauss(y, σ );
if f (y) > f (x) then s ← s + 1; end
pop′ ← pop′ ∪{y}; (∗ count the successful mutations ∗)

end
pop(t) ← select best μ individuals from pop′;
if t mod k = 0 then (∗ every k generations ∗)

σ ← varadapt_global(σ, s/kλ, θ, α);
s ← 0; (∗ adapt the variance and ∗)

end (∗ reinitialize the success counter ∗)

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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end
return best individual in pop(t);

end

Note that for a comma strategy it may be advisable to keep track of the best solution
found in the process (since parents are discarded), while a plus strategy automatically
does so due to the strict elite principle employed for selection.

13.2.3 Local Variance Adaptation

In contrast to its global counterpart (see above), local variance adaptation employs
chromosome-specific variances. That is, a chromosome not only consists of an array
of real-valued numbers that are the arguments of the function f to optimize, but
includes a standard deviation or even an array of standard deviations (one for each
function argument), which prescribe chromosome-specific (and gene-specific)muta-
tion step sizes. In the evolution process, not only the function arguments aremodified,
but the standard deviations are adapted as well. It is plausible that chromosomes with
“bad” standard deviation(s) create a lot of “bad” offspring, which is filtered out in the
selection process. Chromosomes with “good” standard deviations(s), on the other
hand, can be expected to create a larger number of “good” offspring. As a conse-
quence, “good” standard deviation(s) should spread in the population, even though
they do not influence the fitness of an individual directly.

A complete self-adaptive algorithm with chromosome-specific mutation step
widths, which employs the self-adaptive Gaussian mutation (as it was introduced
in Algorithm 12.3 on p. 234), is shown below. For a plus strategy, one merely has to
replace the statement “pop′ ← ∅” with “pop′ ← pop(t − 1).”

Algorithm 13.4 (Self-Adaptive-ES)

function adaptive_evostr ( f : function, μ, λ: int) : object;
begin (∗ objective function f , population size μ ∗)

t ← 0; (∗ number of offspring λ ∗)

pop(t) ← create population with μ individuals;
evaluate pop(t) with the function f ;
while termination criterion not fulfilled do begin

t ← t + 1; (∗ count the created generation ∗)

pop′ ← ∅; (∗ for plus selection: pop′ ← pop(t) ∗)

for i = 1, . . . , λ do begin
(x, σx ) ← randomly select parent uniformly from pop(t);
(y, σy) ← copy of (x, σx );
mutate_gsa(y, σy); (∗ mutate individual and variance ∗)

pop′ ← pop′ ∪{(y, σy)};
end
evaluate pop′ with the function f ;

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
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pop(t) ← select best μ individuals from pop′;
end
return best individual in pop(t);

end

Note that for element-specific mutation step sizes (that is, a vector of standard devi-
ations per chromosome instead of merely a single standard deviation per chromo-
some), a somewhat more complex mutation operator is needed.

A commonly used rule for adapting element-specific mutation step sizes (that is,
there is one standard deviation σi for each function argument) is:

σ ′
i = σi · exp(r1 · u0 + r2 · ui ).

Here, u = (u0, u1, . . . , un) is a vector, each element of which is sampled from a
standard normal distribution with mean 0 and variance 1 (that is, from N (0, 1)) and
n is the number of arguments of the function f to optimize (and thus the length of
the chromosome x). Bäck and Schwefel (1993) recommend to choose r1 = 1/

√
2n

and r2 = 1/
√
2
√

n, while (Nissen 1997) proposes to use r1 = 0.1 and r2 = 0.2. In
addition, a lower bound (greater than the mandatory lower bound 0 as variances
cannot be negative) is specified for the mutation step widths.

13.2.4 Covariances

In the standard form of variance adaption, the variances of different vector elements
are independent of eachother. That is, the covariancematrix of themutationoperator
is a diagonal matrix. As a consequence, the mutation operator is only able to prefer
directions in the search space that are parallel to the coordinate axes of the search
space. An oblique direction cannot be represented, even though it may be better than
an axes-parallel direction. As a simple example, consider a two-dimensional search
space. If the best mutations change the two arguments about equally strongly and in
the same direction, this cannot be represented bymerely using independent variances
for the arguments. The best approximation are equal variances for both arguments,
which, however, allow with the same probability that both arguments are changed
by about the same amount, but in opposite directions.

This problem can be solved by introducing not only element-specific variances,
but covariances for them as well. For instance, in the simple two-dimensional search
space example, we may use a covariance matrix like

Σ =
(

1 0.9
0.9 1

)
.

With this covariance matrix changes of the two arguments in the same direction
(either both are increased or both diminished) are much more likely than changes in
opposite directions (increasing one and reducing the other).

As an illustration of the effect of a covariance matrix, which introduces correla-
tions between the changes of the arguments, Fig. 13.3 shows uncorrelated, weakly
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Fig. 13.3 Illustration of covariance and correlation

positively, strongly positively and strongly negatively correlated mutations in a two-
dimensional space. Note that in these diagrams the variances in the coordinate direc-
tions are the same (which may be a result of normalizing the dimensions by their
variance, which is exactly what distinguishes correlation from covariance). If one
allows for different variances in the directions of the axes, it becomes clear that cor-
related mutations allow us to prefer mutation directions in the search space that are
(arbitrarily) oblique to the coordinate axes.

In order to understand the meaning of a covariance matrix better, recall the one
dimensional case. A variance is often a bit difficult to interpret: due to its quadratic
nature, it is not so easily related to the underlying quantity. This problem is usually
handled by computing the standard deviation, which is the square root of the variance
and which has the same unit as the underlying quantity. Assuming that the described
random process is governed by a normal (or Gaussian) distribution, the standard
deviation is easily interpreted, as demonstrated in Fig. 13.4.

Fig. 13.4 Interpretation of the standard deviation σ for a one-dimensional normal distribution
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This convenient interpretation in the one-dimensional case naturally raises the
question whether it can be transferred to two or more dimensions in order to obtain
an intuitive interpretation of a covariance matrix. The problem is essentially the
same: due to its quadratic nature, a covariance matrix is difficult to interpret. If we
could form a “square root” of it, we may obtain an analog of standard deviation,
which may be easier to interpret. Thus, we face the problem to compute the “square
root” of a matrix. Not a general one, though, but a covariance matrix, which has the
convenient properties of being symmetric and positive definite.

More technically, let S be an n × n matrix, that is, S = (si j )1≤i≤m,1≤ j≤n . S is
called symmetric if and only if∀1 ≤ i, j ≤ n : si j = s ji (or, equivalently, ifS� = S,
where S� is the transpose of the matrix S). S is called positive-definite if and only
if for all n-dimensional vectors v 
= 0 it is v�Sv > 0. Intuitively, mapping a vector
with a positive-definite matrix may stretch or shrink it and may rotate it (by less
than π/2), but does not reflect it about the origin. For symmetric positive-definite
matrices, an analog of a square root may be computed, for instance, with so-called
Cholesky decomposition (Golub and Van Loan 1996). With this method we find
a lower (or left) triangular matrix L (that is, L has non-zero elements only on and
below (or left) of the diagonal, while all other elements are zero) such thatLL� = S.
By simply spelling out this equation, we easily obtain the elements of L as

li i =
(

sii −
i−1∑
k=1

l2ik

)1
2

,

l j i = 1

li i

(
si j −

i−1∑
k=1

likl jk

)
, j = i + 1, i + 2, . . . , n.

As an example, we consider the special case with only two dimensions. In this case,
an analog of a square root can be computed for a covariance matrix

Σ =
(

σ 2
x σxy

σxy σ 2
y

)
as L =

(
σx 0
σxy
σx

1
σx

√
σ 2

x σ 2
y − σ 2

xy

)
.

The matrix L is much easier to interpret than the original covariance matrix Σ : it is
a (linear) mapping that describes the deviation from an isotropic behavior (that is,
direction independent, from the Greek ’íσoς : equal and τρóπoς : direction, rotation)
that is described by the covariance matrix (as compared to a unit matrix). As an
illustration, Fig. 13.5 shows how a unit circle is mapped with the lower triangular
matrix resulting for the covariance matrix

Σ =
(
1.5 0.8
0.8 0.9

)
and thus L ≈

(
1.2248 0
0.6532 0.6880

)
.

ThemappingwithL has ameaning for an n-dimensional normal (or Gaussian) distri-
bution that is analogous to the meaning of standard deviation for a one-dimensional
normal (or Gaussian) distribution. To understand this, let us consider the probability
density of an n-dimensional normal distribution, that is,

fX(x;µ,Σ) = 1√
(2π)m |Σ | · exp

(
− 1

2
(x − µ)�Σ−1(x − µ)

)
,
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Fig. 13.5 Mapping of the unit circle with the help of Cholesky decomposition

Fig. 13.6 Lines of equal probability density for a standard normal (or Gaussian) distribution (left,
variance 1 for both axes, no covariance) and a general normal distribution with covariances (right)

where μ is an n-dimensional expected value vector and Σ is an n × n covariance
matrix. This probability density is illustrated for n = 2 in Fig. 13.6: the left diagram
showsa standardnormal distribution (unit covariancematrix),while the right diagram
shows a general normal distribution (with the above covariance matrix).

For a one-dimensional normal distribution, the standard deviation measures
the spread (or dispersion) of the probability density by stating the distance between
the mean and the points having specific probability densities relative to the height of
the mode of the density (see Fig. 13.4). If, in an analogous manner, we mark points
with the same probability density for a two-dimensional distribution, we obtain
closed curves, which are indicated by gray lines in Fig. 13.6: the darker gray corre-
sponds to σ , the lighter gray to 2σ (in analogy to Fig. 13.4).

As shown in Fig. 13.6, these curves are circles for a standard normal distribution
(left), while they are ellipses for a normal distribution with covariances (right). These
ellipses are obtained by mapping the circles of the standard normal distribution with
the matrix L that results from a Cholesky decomposition of the covariance matrix
of the general normal distribution. Since the diagrams in Figs. 13.5 and 13.6 are
computed with the same covariance matrix, this is particularly obvious.

If we do not require the “square root” of a covariance matrix to be a lower (or
left) triangular matrix (as in Cholesky decomposition), the “square root” is, in gen-
eral, not unique. That is, there may be multiple matrices which, if multiplied with
their own transpose, produce the given covariance matrix. Thus, it is not surprising
that Cholesky decomposition is not the only method with which an analog of stan-
dard deviation can be computed. A particularly nice alternative is eigen decompo-
sition (Golub and Van Loan 1996), because it yields a decomposition that consist of
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elements that make it even better interpretable. Its disadvantage is, however, that it
is more costly to compute than Cholesky decomposition (Press et al. 1992). Fortu-
nately, though, this is irrelevant for our purposes, because we are mainly interested
in interpreting a covariance matrix with the help of finding an analog of a square root
of it, and not necessarily in actually computing it in an evolution strategy.

Eigen decomposition is based on the fact that any symmetric and positive definite
matrix S can be written as Golub and Van Loan (1996)

S = R diag(λ1, . . . , λn) R−1,

where the λ j ≥ 0, j = 1, . . . , n, are the so-called eigenvalues of S and the columns
of R are the (normalized, that is, length 1) eigenvectors of S. The eigenvectors are
pairwise orthogonal to each other. As a consequence,R−1 = R�, or, in other words,
R is a rotation matrix. With such a decomposition, we can write S = TT� with

T = R diag
(√

λ1, . . . ,
√

λm

)
.

Eigen decomposition has the clear advantage that the resulting mapping can be
interpreted as a scaling of the axes (namely by the roots of the eigenvalues, denoted
by

√
λi , i = 1, . . . , n) and a rotation (encoded in the rotation matrix R). For the

special case with only two dimensions (n = 2), eigen decomposition leads to

T =
(

c −s

s c

)(
σ1 0

0 σ2

)
,

σ1 =
√

c2σ 2
x + s2σ 2

y + 2scσxy,

σ2 =
√

s2σ 2
x + c2σ 2

y − 2scσxy .

where s = sin φ, c = cosφ and φ = 1
2 arctan

2σxy

σ 2
x −σ 2

y
. How a unit circle is mapped

with T is shown (in complete analogy to Fig. 13.5) in Fig. 13.7 for

Σ =
(
1.5 0.8
0.8 0.9

)
and thus T ≈

(
1.1781 −0.3348
0.8164 0.4832

)
,

computed from φ ≈ 0.606 ≈ 34.7◦, σ1 = √
λ1 ≈ 1.4333 and σ2 = √

λ2 ≈ 0.5879.
Note that the mapping differs from the one shown in Fig. 13.5—even though the
ellipse as awhole is the same—as can be seen from the images of the points labeled 1,
2, 3 and 4, which are in different positions.

A mutation operator employing a covariance matrix is used, for example, in
the covariance matrix adaptation evolution strategy (CMA-ES) (Hansen 2006),

Fig. 13.7 Mapping of the unit circle with the help of eigen decomposition
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which is among the most highly recommended variants of evolution strategies.With-
out going into mathematical details and neglecting many subtleties, this algorithm
works roughly as follows: an initial population is created by sampling from a standard
normal distribution with a chosen mean and variance. In the course of the algorithm,
the mean vector, a covariance matrix (initially a unit matrix), and two scaling factors
for the mutation are updated. Essentially, the latter three quantities describe a prob-
ability distribution from which the mutation vectors are sampled, while the mean
vector is mainly used in their update. As a consequence, this approach can be seen
as closely related to so-called estimation of distribution algorithms (Larrañaga
and Lozano 2002; Lozano et al. 2006), which are genetic algorithms that build and
sample probabilistic models of promising solution candidates.

Subsequent populations are generated by applying a mutation operator that com-
bines an isotropic and an anisotropic component (where the Greek prefix άν-
expresses negation, that is, “anisotropic” means not direction independent and thus
direction dependent), which are governed by the two scaling factors. The mean vec-
tor, the covariance matrix and the two scaling factors are updated in each iteration in
such a way that the likelihood that the mutation operator repeats beneficial mutations
is increased. Essentially, this is achieved by updating the current covariance matrix
with a (properly normalized) covariance matrix that is computed from the current
mean vector and the individuals of the new population. Note that the covariance
matrix only captures the direction dependence of the mutations, while the actual
mutation step width is controlled by the two scaling factors. Technical details as well
as a comparison to other methods can be found in Hansen (2006).

Note that the approach can be seen as related to estimating the inverse Hessian
matrix of the function to optimize, as it is used, for instance, in the Quasi-Newton
method in classical optimization (Press et al. 1992). As such, the covariance matrix
adaptation evolution strategy uses the population mainly to explore the neighbor-
hood of the mean vector it maintains (and which can be seen as a representative of
the currently preferred solution candidate) in order to optimize the mutation direc-
tion and step width. Therefore it is more closely related to local search methods as
we discussed them in Sect. 11.5 than to approaches that use a population rather to
achieve a broader exploration of the search space, looking for optima (and not just
improvement directions) in many places at the same time.

Although such an approach may also be considered, covariance matrices do not
lend themselves well to a local variance adaptation scheme, because this requires to
incorporate n(n+1)

2 mutation parameters into the chromosomes, thus increasing the
size of the chromosomes inordinately. In addition, it is debatable whether the indirect
adaptation of so many parameters works effectively and efficiently.

13.2.5 Recombination Operators

Evolution strategies are often executed without a crossover operator. If a crossover
operator is employed, it is commonly defined as a random selection of components

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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from two parents, that is, analogous to uniform crossover (see Sect. 12.3.2):

(x1, x2, x3, . . . , xn−1, xn)

(y1, y2, y3, . . . , yn−1, yn)
⇒ (x1, y2, y3, . . . , xn−1, yn).

In principle, any other crossover operator discussed in Sect. 12.3.2, like 1-, 2- or n-
point crossover etc. is applicable as well. An alternative is blending, as implemented,
for example, by arithmetic crossover (see Sect. 12.3.5):

(x1, . . . , xn)

(y1, . . . , yn)
⇒ 1

2 (x1 + y1, . . . , xn + yn).

In case this crossover operator is used, one should bear in mind, though, that it carries
the danger of Jenkins Nightmare, i.e., a total disappearance of any diversity in a
population due to the averaging effect of blending.

13.3 Genetic Programming

With genetic programming (GP) it is tried to evolve symbolic expression or even
computer programs with certain properties. The purpose of these expressions or
programs is usually to associate certain inputs with certain outputs in order to solve
a given problem. Genetic programming can be seen as a very general way to learn
or to create computer programs, even as complex as programs playing checkers
(Fogel 2001). Its application areas are huge, because many problems can be seen as
a search for a program, for example, controller development, scheduling, knowledge
representation, symbolic regression, decision tree induction, etc. (Nilsson 1998).

Up to now, we considered only chromosomes that were arrays of a fixed length,
for example, arrays of bits for genetic algorithms or arrays of real-valued numbers
for evolution strategies. For genetic programming we abandon the restriction to a
fixed length and allow chromosomes that differ in their length. To be more precise,
the chromosomes of genetic programming are functional terms and programs, which
are commonly called genetic programs (also often abbreviated by “GP”).

The formal basis of genetic programming is a grammar that describe the language
of the genetic programs. Following the standard approach in formal languages, we
define two sets, namely the setF of function symbols and operators and the setT
of terminal symbols (constants and variables). These sets are problem-specific and
thus comparable to the encoding thatwe consideredw.r.t. other types of chromosomes
(see Sect. 12.1). F and T should be limited in size in order to restrict the search
space to a feasible size, but “rich” enough to enable a problem solution.

As an illustration, we take a look at two examples of symbol sets. Suppose we
want to learn a Boolean function that maps n binary inputs to associated binary
outputs. In this case, the following symbol sets are a natural choice:

F = {and, or, not, if . . . then . . . else . . . , . . .},
T = {x1, . . . , xn, 1, 0} or T = {x1, . . . , xn, true, false}.

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
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If the task is symbolic regression,1 the following sets appear to be appropriate:
F = {+,−, ∗, /,

√
, sin, cos, log, exp, . . .},

T = {x1, . . . , xm} ∪ R.

A desirable property of F is that all functions in it are domain complete, that is,
the functions in F should accept any possible input value. If this is not the case,
the genetic program may cause an error and thus may not be able to complete its
execution, which causes problems in the evolution program. Simply, examples of
functions that are not domain complete are division, which causes an error if the
divisor is zero, or a logarithm, which usually accepts only positive arguments.

If the function setF contains functions that are not domain complete, we have to
solve an optimization problem with constraints: we must ensure that the expressions
and programs are structured in such a way that a function is never applied to an
unacceptable input. For this we could employ repair mechanisms or may introduce
a penalty term for the fitness function (cf. Sect. 12.1.3).

As an alternative, we may render all functions in F domain complete by imple-
menting protected versions of error-prone functions. For example, we may define
a protected division that returns zero or the (appropriately signed) maximally rep-
resentable value if the divisor is zero, or a protected nth root that operates on the
absolute value of its argument, or a protected logarithm that yields log(x) = 0 for
all x ≤ 0. Along the same lines, we may also reinterpret data types and thus render
functions that are defined for one data type applicable to the other. For example, if
the chosen function set F contains Boolean as well as numeric functions, we may
define 0 as “false” and any value not equal to 0 as “true” (this is the convention,
for example, in the programming languages C and C++), thus making it possible to
apply Boolean functions to numeric arguments. By fixing a value for a “true” result
of a Boolean function, for example 1 or −1, numeric functions become applicable
to Boolean arguments. If necessary, we may also define a conditional operator (if
…then…else…) that executes the else-part unless the condition is a proper Boolean
“true,” in which case only the then-part is executed.

Another important property is the completeness of the function setsF andT w.r.t.
the functions (mapping inputs to outputs) they can represent. Genetic programming
can only effectively solve a given problem if F and T are sufficient to find an
appropriate program. For example, in Boolean propositional logicF = {∧,¬} and
F = {→,¬} are complete sets of operators, because any Boolean function with
any number of arguments can be represented by appropriate combinations of the
operators in these sets. However, F = {∧} is not a complete set, because even
the simple negation of an argument cannot be represented. Finding the smallest
complete set of operators for a given set of functions to represent is (usually)NP-hard.
As a consequence, F usually contains more functions than are actually necessary.
However, this is not necessarily a disadvantage, since richer function sets may allow
for simpler and thus more easily interpretable solutions.

1Regression finds a function from a given class to given data by minimizing the sum of squared
deviations and is also called the method of least squares, see Sect. 10.2.

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_10
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Given the setsF and T genetic programs—that is, the chromosomes of genetic
programming—can be created. They consist of elements from C = F ∪ T and
possibly opening and closing parenthesis in order to clarify precedence of operators
(if necessary) or to group a function symbol and its arguments. However, the genetic
programs are not arbitrary sequences of these symbols. Rather we confine ourselves
to so-called “well-defined” expressions, that is, expressions that can be created by
following certain rules, so that the expressions are interpretable. These rules specify
a grammar, which thus defines the language of genetic programs.

Most commonly, this grammar uses a recursive definition based on a prefix
notation of the functions and operators, similar to the style of functional programming
languages like Lisp or Scheme. In these languages, all expressions are either atoms or
nested lists. The first list element corresponds to the function symbol or the operator
and the subsequent elements are the function arguments or the operands.

More formally, valid symbolic expressions are defined as follows:

• Constants and variables (i.e., the elements of T ) are symbolic expressions.
• If t1, . . . , tn are symbolic expressions and f ∈ F is an n-ary function symbol,
then ( f t1 . . . tn) is a symbolic expression.

• Any other character sequence is not a symbolic expression.

For example, the character sequence “(+ (∗ 3 x) (/ 8 2))” is a valid symbolic expres-
sion, which, in more conventional terms, means 3 · x + 8

2 . In contrast to this, the
character sequence “2 7 ∗ (3 /” is not a valid or “well-defined” symbolic expression.

For the following discussion, it is convenient to represent a symbolic expression
by its so-calledparse tree. Parse trees are commonly used, for example, in compilers,
especially for arithmetic expressions. Such a parse tree for the symbolic regression
which we used as an example above is shown in Fig. 13.8.

To find good symbolic expressions for a given problem, genetic programming
follows the same general procedure of an evolutionary algorithm as we presented it
in Algorithm 11.1 on p. 197. That is, first we create an initial population of random
symbolic expressions, which are evaluated by computing their fitness values. Here,
the fitness is a measure how well a genetic program maps certain vectors of input
values to their corresponding output values. For example, suppose we want to find
a symbolic expression that computes a Boolean function, which is given as a set
of pairs of input and output vectors, all elements of which are either true or false.
In this case the fitness function could simply be the number of correctly computed
outputs summed over the input–output pairs. If the task is symbolic regression,

Fig. 13.8 Parse tree of the
symbolic expression
(+ (∗ 3 x) (/ 8 2))

http://dx.doi.org/10.1007/978-1-4471-7296-3_11


13.3 Genetic Programming 271

the fitness function may simply be the sum of squared deviations from the desired
output values. For example, if we are given a data set consisting of pairs (xi , yi ),
i = 1, . . . , n, where x is the input and y the output variable, the fitness may be
computed a f (c) = ∑n

i=1(g(xi ) − yi )
2, where g stands for the genetic program that

maps a input x to an output value.Selection is implemented by anyof themethods that
have been studied in Sect. 12.2. Finally genetic operators, usually only crossover, are
applied to the selected individuals and the resulting individuals are evaluated again.
The procedure of selecting individuals, applying genetic operators and evaluating
the (new) individuals is repeated until a termination criterion is met, for example,
that the an expression exceeding a user-specified fitness threshold has been found.
In the following we discuss the individual steps in more detail.

13.3.1 Initialization

Creating an initial population is somewhat more complex in genetic programming
that in the algorithms we studied up to now, because we cannot simple create random
sequences of function symbols, constants, variables and parentheses. We have to
respect the recursive definition of a valid or “well-defined” expression. The most
natural approach to create a random genetic program for the initial population is a
recursive procedure that simply follows the recursive definition. In addition, since
it is also convenient for the later evaluation of genetic programs, we actually do not
create sequences of symbols, but directly their corresponding parse trees.

In order to limit the size of the parse trees (and to ensure that the recursive pro-
cedure terminates), we may specify a maximum tree height or a maximum number
of nodes. If this maximum tree height or maximum number of nodes is reached,
all unfilled function arguments are chosen only from the terminal symbols to avoid
further recursion. A simple form of this procedure looks like this Koza (1992):

Algorithm 13.5 (Initialize-Grow)

function init_grow (d, dmax: int) : node;
begin (∗ current depth d, maximal depth dmax ∗)

if d = 0 (∗ avoid mere constants or variables ∗)

then n ← draw from F using a uniform distribution;
elseif d ≥ dmax (∗ stop at the maximal tree height ∗)

then n ← draw from T using a uniform distribution;
else n ← draw from F ∪ T using a uniform distribution; end
forall c ∈ arguments of n do (∗ if arguments/operands are needed, ∗)

c ← init_grow(d + 1, dmax); (∗ create sub-expressions recursively ∗)

return n; (∗ if n ∈ T , n has no arguments ∗)

end (∗ finally return the created node ∗)

Instead of simply pooling F and T if d < dmax, we may explicitly specify the
probabilities with which a function symbol or a terminal symbol is chosen. With

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
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such a parameter the size and complexity of the trees can be controlled to some
degree: it is the higher, the more likely it is that a function symbol is chosen.

An common alternative to the above procedure is a “full” initialization, which
always grows the parse trees to the specified maximum tree height (Koza 1992)

Algorithm 13.6 (Initialize-Full)

function init_full (d, dmax: int) : node;
begin (∗ current depth d, maximal depth dmax ∗)

if d ≥ dmax then (∗ stop at the maximal tree height ∗)

n ← draw from T using a uniform distribution;
else (∗ below the maximal tree height ∗)

n ← draw fromF using a uniform distribution;
for c ∈ arguments of n do (∗ always choose a function symbol ∗)

c ← init_full(d + 1, dmax); (∗ and create its arguments recursively ∗)

end
return n; (∗ finally return the created node ∗)

end

Each of the two methods grow and full presented above may be used as the only
parse tree generation method, or they may be combined, creating half of the initial
populationwith themethodgrow and the other halfwith themethod full. Furthermore,
it is advisable to vary the maximum tree depth between 1 and some user-specified
maximum, so that trees of different height are created. This approach commonly
called ramped half-and-half initialization (Koza 1992), where the term “ramped”
refers to the varying maximum tree height, which is implemented by increasing this
parameter by one with each created tree (pair).

Algorithm 13.7 (Initialize-Ramped-Half-and-Half)

function init_halfhalf (μ, dmax: int) : set of node;
begin (∗ maximal depth dmax ∗)

P ← ∅; (∗ population size μ (even multiple of dmax) ∗)

for i ← 1 . . . dmax do begin
for j ← 1 . . . μ/(2 · dmax) do begin

P ← P ∪ init_grow(0, i);
P ← P ∪ init_full(0, i);

end (∗ initialize half the trees with grow ∗)

end (∗ and the other half with full ∗)

return P; (∗ return the created population ∗)

end

This ramped half-and-half method has the advantage that it ensures a good diversity
of the population, with trees of different height and complexity.
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13.3.2 Genetic Operators

The initial population of genetic programming (as of any evolutionary algorithm)
usually has a very low fitness, because it is highly unlikely that a random generation
of parse trees yields even a remotely adequate solution of any non-trivial problem.
In order to obtain better solution candidates, genetic operators are applied. For con-
venience, we describe these genetic operators (crossover and mutation) by showing
how they modify the parse trees underlying the genetic programs.

In genetic programming, crossover consists in an exchangeof two sub-expressions
(and thus sub-trees of the parse trees). A simple example for a Boolean function prob-
lem is shown in Fig. 13.9, with the parents at the top and the produced offspring at
the bottom. The exchanged sub-trees are encircled.

The mutation operator replaces a sub-expression (that is, a sub-tree of the parse
tree) by a randomly created sub-expression. To create a new sub-expression, we may
simply draw on the initialization method init_grow presented above, for which we
may choose the maximum tree height, for example, as a (small) modification of the
old sub-tree height. A simple example, again for a Boolean function problem, is
shown in Fig. 13.10. It is common to restrict mutation to replacing small sub-trees
(with a height no larger than three or four), so that an actually similar individual is
created. An unrestricted mutation could, in principle, replace the whole parse tree,
which is equivalent to introducing an entirely new individual.

However, if the population is sufficiently large, so that the “genetic material”
present in it guarantees adequate diversity (mainly of function and terminal symbols),
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Fig. 13.9 Crossover of two sub-expressions or sub-trees
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Fig. 13.10 Mutation of a sub-expression or sub-tree
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Fig.13.11 Advantage of genetic programming crossover compared to array-based crossover oper-
ators: applied to two identical chromosomes, two different children can be created

mutation is often abandoned and crossover becomes the only genetic operator.2 The
reason is that crossover is—compared to other evolutionary algorithms that work
with arrays of fixed length—a much more powerful operator. For example, if we
apply it to two identical individuals, the simple fact that different sub-trees may
be chosen creates the possibility that two different individuals result. An example
demonstrating this is shown in Fig. 13.11: even though the two (identical) parents
are fairly simple parse trees, a crossover can create considerable modifications. In
contrast to this, any of the operators discussed in Sect. 12.3.2 cannot create any
variation if they are applied to two identical chromosomes.

2Note that this is exactly opposite to evolution strategies (see Sect. 13.2), in which crossover is often
abandoned and mutation is the only genetic operator.

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
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13.3.3 Application Examples

As an illustration of genetic programming, we briefly discuss two applications: learn-
ing the Boolean function of a multiplexer and symbolic regression.

The 11-Multiplexer Problem

A classical example of genetic programming is to learn a Boolean 11-bit multi-
plexer (Koza 1992), that is, a multiplexer with 8 data and 3 address lines. A sketch of
such a multiplexer, together with one valid input vector and corresponding output, is
shown in Fig. 13.12. The purpose of a multiplexer is to pass the value of the data line
to the output that is indicated by the address lines. In the example of Fig. 13.12, the
values of the address lines represent the number 6 (in a binary encoding) and thus the
value of data line d6 is passed through to the output. In total, there are 211 = 2048
possible input configurations of an 11-bit multiplexer. Each of these configurations
is associated with a single bit output.

In order to learn a symbolic expression that describes the function of an 11-bit
multiplexer with genetic programming, we choose the following symbol sets:

T = {a0, a1, a2, d0, . . . , d7} and F = {not/1, and/2, or/2, if/3}.
That is, the setT of terminal symbols contains the 11 input variables and the function
set F contains four simple Boolean operators, with which these variables can be
combined to compute the output. The numbers after the “/” indicate the arity of these
operators. That is, the negation takes a single argument, “and” and “or” take two
arguments, and “if” takes three arguments, which correspond to the condition, the
then-part, and the else-part. Obviously, since we are dealing merely with Boolean
values, all functions are domain complete. In addition, the function set is complete
in the sense that one can represent any Boolean function with it.

Fig. 13.12 Configuration of
a Boolean 11-bit multiplexer.
Since the address lines a0 to
a2, interpreted as a binary
number, have value 6, the
data line d6 is passed through
to the output

a2 1

a1 1

a0 0

d7
0
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1
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0

d4
0
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As thefitness functionwechoose f (s) = 2048 − ∑2048
i=1 ei where ei is the error for

the i th input configuration. That is, ei = 0 if the computed output for configuration i
coincides with the desired output for this configuration and ei = 1 otherwise. As the
termination criterion we may choose that we obtain an individual with fitness 2048.
Since such an individual produces the correct output for all 2048 configurations (that
is, it makes no mistakes), it is clearly a solution of the problem.

In order to solve the 11-bit multiplexer problem, Koza (1992) used a population
size of μ = 4,000. This number of individuals is needed as with a lower number
it becomes unlikely that a good program can be found in a search space as large
as the one encountered here. (Note that the expressions may, in principle, become
arbitrarily complex unless measures are taken to limit their size.) The initial tree
depth (maximum depth in the initial population) was set to 6 and the maximum tree
depth to 17 (no parse trees with a depth larger than 17 can be generated).

In the experiment reported by Koza (1992), the fitness values of the initial popu-
lation ranged between 768 and 1280, with an average fitness of 1063. Note that the
expected value is 1024 since a random output is correct for about 50% of all configu-
rations. Hence this is a plausible result for an initial population of genetic programs,
which produces essentially random output as it has not yet been geared towards the
task at hand. 23 expressions of the initial population had a fitness of 1280, with one
of them corresponding to a 3-multiplexer, namely (if a0 d1 d2). This is important,
because such individuals provide building blocks for the whole 11-bit multiplexer.

In his experiment, Koza (1992) used fitness-proportionate selection method.
90% of the individuals (that is, 3,600) were modified by crossover and the remain-
ing 10% (that is, 400) were left unchanged. According to Koza (1992), after only
9 generations the solution depicted in Fig. 13.13 was found, which actually has the
(maximally possible) fitness of 2048. However, due to its complexity, this solution is
somewhat difficult to interpret for human beings (although a little effort shows that
it actually computes the Boolean function of an 11-bit multiplexer).

if

a0 if if

a2 if if a2 if if

a1 d7 if a0 if d0 a1 d6 d4 a2 d4 if

a0 d5 d0 a1 if d1 a1 d2 if

a2 d7 d3 a2 d7 d0

Fig. 13.13 Solution of the 11-multiplexer after nine generations
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In order to obtain a better solution, the expression is edited. Editing can be seen
as an asexual (genetic) operation that is applied to single individuals. It serves the
purpose to simplify an expression and is divided into general and special editing.

General editing evaluates a sub-tree and replaces it with its result if the sub-tree
yields a constant result, for example, because its leaves contain only constants or
because its structure makes it independent of its variable arguments. An example of
the latter is the expression “(or x5 (not x5))” which is a tautology and thus may be
replaced by the constant true, despite the fact that x5 is a variable.

Special editing exploits certain equivalences that do not change the value of an
expression, but may make it possible to express the same function in a simpler way.
Simple examples of such identities in Boolean logic are A ∧ A ≡ A, B ∨ B ≡ B,
where A and B are arbitrary Boolean expressions, or De Morgan’s laws, that is,
¬(A ∨ B) ≡ (¬A ∨ ¬B) and its dual. An example for a numerical expression is√

x4 ≡ x2.
In principle, editing may already be performed during the evolutionary search,

namely by using it as a genetic operator (alongside crossover and mutation). In this
case it reduces the number of unnecessarily inflated individuals at the expense of
diversity in the population. However, more commonly editing is used to simplify the
solutions found by genetic programming in order to obtain a result that is easier to
interpret. For the 11-bit multiplexer example, an edited solution (derived from the
one shown in Fig. 13.13 after several editing steps) is shown in Fig. 13.14.

Note that this (edited) solution has a hierarchical structure. That is, it divides the
11-multiplexer problem into two smaller problems, namely two 6-multiplexers with
two address bits and 4 data bits, which in turn are divided into two 3-multiplexers
with one address bit and 2 data bits. At the top level, the address variable a0 is used
to distinguish between the odd data lines d7, d5, d3, and d1 (the-part of the top-level
if) and the even data lines d6, d4, d2, and d0 (else-part of the top-level if). On the next
level the address variable a2 distinguishes (in both branches) between the higher pair
in each quadruple and the lower pair. At the bottom level, the address variable a1
makes the final decision between the remaining two data lines.

Although the population size was large enough with 4,000 generations, we do not
want to conceal our doubts that finding a solution to the 11-bit multiplexer problem
in only 9 generations is a typical result. Judging from own experiments with genetic
programming (for a related problem), we feel that it usually takes longer to find a

if

a0 if if

a2 if if a2 if if

a1 d7 d5 a1 d3 d1 a1 d6 d4 a1 d2 d0

Fig. 13.14 The 11-bit multiplexer solution of Fig. 13.13 after special editing
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solution and that solutions are much more complex than the one shown in Fig. 13.13.
Possibly this is due to the fact that we did not use editing, neither in the search
nor to simplify our solutions, or that our methods of restricting the complexity of
the parse trees were not effective enough. However, we certainly feel that genetic
programming is not quite as straightforward as we may have presented it here, but
may involve a lot of tweaking to obtain satisfactory results.

Symbolic Regression with Constants

Finding expressions that compute Boolean functions with genetic programming is
comparatively simple (though certainly not a trivial task), because there are at most
(if one chooses to use them) two constants: true and false. For symbolic regression—
that is, fitting a real-valued function to given data points—the situation is much more
complex. Suppose, for example, the geometric problem that we are given the radius r
and the area A of several circles and that we desire to find the relationship between
the radius and the area. (That is, we want to learn the function A = πr2 from the
sample data we are given—of course, without presupposing this function or any
specific functional form of the relationship.)

Clearly, the choice of the function set F is not a problem. Choosing merely the
basic mathematical operators (that is, +,−, ∗, /) may already be sufficient and we
may easily add functions like square root, logarithm, some trigonometric functions
without creating any serious problems: F can always be kept finite. However, the
set of terminal symbols is less easy to choose. For this particular problem (finding
an expression for the relationship of the area of a circle on its radius), we do not
lose the possibility of finding the solution by using a finite set T , because basic
mathematical constants like π and e can (and should) be made elements of T .
However, more general cases, already starting with finding a mere regression line
y = ax + b for given pairs (xi , yi ) causes problems: clearly we cannot make all
numbers in R elements of T , so that we have any values we may need for a and b
available, simplybecause genetic programming, aswedescribed it up to now, requires
T to be finite. Because T needs to be finite, even N or Q already cannot be added
to T . However, how can we then be sure that we have the constants necessary to
properly describe the relationship in question? That is, how can we make sure that
F and T together are rich enough to cover all functions we may want to explore in
the search?

The solution to this problem is to introduce so-called ephemeral random con-
stants (Koza 1992). That is, instead of adding all elements ofR toT , we add only an
special terminal symbol, for instance, the symbol “R” (not the set of real numbers).
If in the process of initializing a genetic program, we choose this special symbol
as a constant, it is not used literally, but we rather sample a random value from a
meaningful interval, thus creating a constant from a potentially infinite set without
having these constants all literally contained in T .

If ephemeral random constants are employed, it may be advisable to extend the
mutation operator, so that it can also add a random value (sampled, for instance, from
a normal distribution with a certain standard deviation) to a constant in a genetic
program. The reason is that the standard mutation can only replace a constant with
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constant that is newly created from scratch (new sub-tree of height 1) and thus may
differ completely from the constant that was present before. However, in order to
achieve a gradual improvement of solution candidates in symbolic regression, it is
more appropriate to modify already existing constants only slightly.

13.3.4 The Problem of Introns

Unless explicit countermeasures are taken, genetic programming exhibits a tendency
to produce larger and more complex individuals with every generation. The main
reason for this phenomenon are so-called introns. In biology, introns are parts of the
DNA sequence that do not carry any information in the sense that they do not code for
any phenotypical trait. Introns may be either inactive (they lack a reading trigger and
thus are possibly obsolete) or actually functionless nucleotide sequences beyond
a gene or in-between genes (also known as junk DNA). In genetic programming,
introns can occur, for example, if sub-expressions like “(if 2 > 1 then …else …)”
are created. Here the else-part of the conditional statement is an intron, because it
can never be executed (unless the tested condition is changed).

Note that a mutation or a crossover operation that only affects an intron is fitness-
neutral, because the intron is never executed and the fitness only depends on the
active program code (that is, the sub-expressions that are actually evaluated for some
input data). As a consequence, introns can grow arbitrarily in size and complexity,
since this complexity does not carry any fitness penalty. In nature, the situation
is somewhat different, because a larger genome usually means a larger metabolic
overhead for copying it, etc. As a consequence, some organisms, for which the
metabolic overhead is a serious fitness aspect (especially certain forms of bacteria),
have very “streamlined” genomes that contain no or almost no introns.

It is generally advisable to prevent the creation of introns as much as possible,
because they inflate the chromosomes unnecessarily, increase the processing time
and make it more difficult to interpret found solutions. These disadvantages can
be seen as analogies to the metabolic overhead that introns carry in nature. This
analogy also suggests the idea to introduce a fitness penalty for large and complex
chromosomes, which may, for example, be a function of the height or the number of
nodes of the parse tree. An alternative countermeasure is editing, which we already
discussed above in the example of the 11-bit multiplexer. If it is used as a genetic
operator, it serves the purpose to keep the chromosomes simple, although at the price
of reducing the variety of “genetic material” in a population.

Other methods that have been suggested to reduce the creation of introns are
modified genetic operators like, for instance, brood recombination. This operator
creates many children from the same two parents by applying a crossover operator
with different parameters. Only the best child of the brood enters the next generation.
This method is particularly useful if combined with a fitness penalty, because then
it favors children that achieve the same result with simpler means (that is, with a
less complex chromosome). Intelligent recombination chooses crossover points
purposefully, which can help to prevent the creation of introns.
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13.3.5 Extensions

In the course of the further development of genetic programming, many extensions
and improvements have been suggested. For example, in order to automatically define
new functions, for instance, one may introduce encapsulation: potentially good
sub-expressions are protected from getting destroyed by crossover and mutation.
One way to achieve this is to define new functions for certain sub-expressions (of a
chromosomewith high fitness) and to add corresponding new symbols to the function
set F . The arity of the new function is the number of (different) variables in the
leaves of its sub-tree or the number of all different symbols in the leaves (including
constants), so that occurring constants can be replaced by different values in an
instantiation. Other extensions include iterations and recursion, which introduce
more powerful programming constructs. However, a detailed discussion of these
forms and other extensions is beyond the scope of this book. An interested reader
can find more information, for example, in Banzhaf et al. (1998).

13.4 Multi-criteria Optimization

In everyday life, we frequently encounter situations that cannot be described in the
simple form of the optimization problems as we defined them in Definition 11.1
on p. 189. In particular, we often face the task to select from a set of options that
satisfy several criteria to different degrees. Often enough, these criteria are even
conflicting, that is, trying to improve one causes another criterion to be less well
satisfied. Consider, for example, the task of finding an apartment. You may desire:

• large floorspace,
• a certain number of bedrooms, bathrooms etc., a garage, a balcony,
• low rent (excluding service charges),
• low service charges,
• short distance to work,
• short distance to shopping centers and public facilities,
• good environment (low noise, air pollution etc.),
• good neighborhood etc.

Clearly, several of these criteria are conflicting. Usually, the larger the floorspace and
the quality of the facilities, the higher the rent and the service charges. In addition,
the rent usually also reflects the quality of the location. A short distance to work or
to shopping centers may conflict with the objective of living in a quiet place etc.

Similar situations occur when you are considering to buy almost any consumer
good. Generally, quality and price are conflicting criteria (getting high quality at a
low price is rarely possible). Design and usability are also often conflicting (what
looks better is often less convenient to use).

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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13.4.1 Weighted Combination of Criteria

Formally, multi-criteria optimization can be described by k objective functions

fi : Ω → R, i = 1, . . . , k.

Our objective is to find an element of the search space for which all functions yield a
value that is as high as possible. The simplest approach to this problem is to combine
all k objective functions into a single function and thus to reduce it to a standard
optimization problem. For example, we may compute a weighted sum

f (s) =
k∑

i=1

wi · fi (s),

where the absolute values of the weights specify the relative importance we attach to
the different criteria (taking their range of values into account), and their signs may
be used to account for both criteria to maximize and to minimize.

Unfortunately, an approach based on combining several criteria in this way has
severe drawbacks: apart from the fact that it may not be easy to choose proper
weights, we thus lose the possibility to adapt our relative preferences based on the
properties of potential solutions we obtain (which is something we definitely do
in decision making processes like the search for an apartment as we considered it
above). However, the problem is even more fundamental: in general, we face here
the problem of having to aggregate preferences: each criterion defines a preference
order of the solution candidates and we have to aggregate these preference orders
over the different criteria to obtain an ordering of the solution candidates.

Note that the same problem generally occurs in elections: each voter has a prefer-
ence order for the candidates, and these preference ordersmust be aggregated in order
to determine the result of an election. Unfortunately, as shown byArrow (1951), there
is no aggregation function that has all desirable properties. This result is also known
as Arrow’s paradox. Although the consequences of Arrow’s impossibility theorem
(Arrow 1951) can, in principle, be avoided by using scaled preference assignments,
the needed scaling functions introduce an additional degree of freedom that makes
the aggregation specification even more difficult.

13.4.2 Pareto-Optimal Solutions

An alternative approach to combining multiple criteria in optimization is to try to
find all or at least many Pareto-optimal solutions.

Definition 13.6 (Pareto optimality)An element s ∈ Ω is calledPareto-optimalw.r.t.
the objective functions fi , i = 1, . . . , k if there does not exist any element s′ ∈ Ω

for which the following two properties hold:

fi (s
′) ≥ fi (s)

for all 1 ≤ i ≤ k and there is an i with 1 ≤ i ≤ k such that

fi (s
′) > fi (s).
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Intuitively, Pareto optimality (named after the Italian economist V. Pareto) means
that the satisfaction of any criterion cannot be improved without harming another.

The notion of Pareto optimality may also be defined in two steps as follows:

Definition 13.7 An element s1 ∈ Ω dominates an element s2 ∈ Ω if and only if for
all 1 ≤ i ≤ k

fi (s1) ≥ fi (s2).

Definition 13.8 An element s1 ∈ Ω strictly dominates an element s2 ∈ Ω if s1
dominates s2 and there is an i with 1 ≤ i ≤ k such that

fi (s1) > fi (s2).

Definition 13.9 An element s1 ∈ S is calledPareto-optimal if it is not strictly dom-
inated by any element s2 ∈ Ω .

The notions of “dominates” and “strictly dominates” introduced here will be very
useful below to describe the procedure of some algorithms.

Clearly, an advantage of searching for Pareto-optimal solutions is that the objective
functions need not be combined (and thus there is no need to specify any weights
or any aggregation function). In addition, we preserve the possibility to adapt our
view of how important a criterion is relative to the others based on the solutions we
obtain. However, the disadvantage is that there is rarely only just one Pareto-optimal
solution and thus that there is no unique solution of the optimization problem. This
is demonstrated in Fig. 13.15, which shows three different forms of the so-called
Pareto frontier, which is the set of Pareto-optimal solutions, for two criteria. The
gray areas contain all solution candidates, which are located according to the values
that the functions f1 and f2 assign to them (that is, the gray area is the search space).
The dark gray lines in the two diagrams on the left and the dark gray dot in the
diagram on the right are the Pareto frontiers. Clearly, the points marked in dark
gray are exactly the solution candidates that are not strictly dominated by any other

f1

f2

f1

f2

f1

f2

Fig. 13.15 Illustration of Pareto-optimal solutions, i.e. the so-called Pareto frontier. All points of
the search space are situated in the gray area (with the functions f1 and f2 providing the coordinates).
Pareto-optimal solutions are located on the part of the border that is drawn in dark gray. With the
exception of the right diagram, there are multiple Pareto-optimal solutions
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solution candidate. Only in the diagram on the right we have a unique solution. In
the other two diagrams several candidate solutions are Pareto-optimal.

13.4.3 Finding Pareto-Frontiers with Evolutionary Algorithms

Although we always assumed up to now that we are given a single function to opti-
mize, evolutionary algorithms may be applied to multi-criteria optimization prob-
lems. In this case, the goal is to find a selection of solution candidates on or at least
close to the Pareto frontier, which covers this frontier sufficiently well. That is, we
desire that not all solutions candidates are located in the same part of the Pareto
frontier, while other parts are not covered by any solutions candidates.

The goal to cover the Pareto frontier sufficiently well rules out an approach that
combines the objective functions by weights, so that we may simply apply one of the
methods we already discussed. Although this approach will certainly yield a solution
that is on or at least close to the Pareto frontier, it covers only a a single point. Even
if we return not just one, but, say, the best r individuals of the final population, it is
unlikely that they are distributed over the Pareto frontier, because the weights prefer
a specific point on the Pareto frontier to any other. As an illustration consider the
diagrams in Fig. 13.15 again: assigned weights can be visualized as a straight line
through the origin with a slope that is given by the ratio of the weights. The solutions
found with a weighted combination of the objective functions are located close to
the intersection of this straight line with the Pareto frontier. Provided, of course, that
there is an intersection, which may not be the case in the two diagrams on the right.

An obvious alternative is the so-called Vector Evaluated Genetic Algorithm
(VEGA) (Schaffer 1985),whichworks as follows: for every i ∈ {1, . . . , k},where k is
the number of criteria, | pop |

k individuals are chosen based on the fitness function fi .
Intuitively, this can be seen as pooling sub-populations, each of which evolves w.r.t.
a different objective function. The clear benefit of this approach is its simplicity and
low computational costs. Its major drawback is that solutions that meet all criteria
moderately well, but none of them particularly well have a significant selection
disadvantage. As a consequence, with a Pareto frontier that is shaped a shown in
Fig. 13.16, the search focuses on the “corners.” Taking genetic drift into account, it
may even happen that eventually the evolutionary algorithm converges to a randomly
chosen corner, which is clearly undesirable.

Fig. 13.16 Problem of the
VEGA approach: the search
focuses on the “corners,”
while solution candidates
that satisfy all criteria
moderately well are
neglected

f1

f2
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A better approach consists in exploiting the notion that some solution candidates
dominate others as we introduced it above. The basic idea is to divide the individuals
in the population into ranked sets by iteratively removing non-dominated individuals.
To be more specific, the division process works as follows:

1. Find all non-dominated candidate solutions of the population.
2. Assign the highest rank to these candidate solutions

and remove them from the population.
3. Repeatedly determine and remove non-dominant candidate solutions,

assigning them progressively lower ranks, until the population is empty.

Based on the assigned ranks, we may then perform rank-based selection to choose
the individuals for the next generation (cf. Sect. 12.2.6). This approach is usually
combined with niche techniques (cf. Sect. 12.2.9) to distinguish individuals having
the same rank. Their purpose is, of course, to ensure a proper distribution of the
individuals over the area close to the Pareto frontier. For example, we may employ
power law sharing: the fitness assigned to an individual is the lower, the more
individuals in the population have similar function values. Note that in contrast to
Sect. 12.2.9 the similarity measure for the individuals is based here on the objective
function values and not on the structure of the chromosome.

An alternative is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
(Deb et al. 2002). Instead of rank-based selection, this algorithm relies on a scheme
that is closely related to tournament selection (cf. Sect. 12.2.7), where the winner
of the tournament is determined by the dominance term. In addition, a crowding
distance mechanism is drawn on to ensure a good spread of solutions along the
obtained approximated front. This approach works as follows: An offspring popula-
tion Q(t) is generated from the parent population P(t) using genetic operators. Then
the non-dominated sorting mechanism is applied to both of these populations: We
first identify the non-dominated solutions from (P(t) ∪ Q(t)), remove them from
the populations and store them in a set calledF1. Then the non-dominated solutions
from the remaining (P(t) ∪ Q(t) \ F1) are identified and removed to an extra setF2.
This procedure is repeated until there is no solution left i.e. P(t) ∪ Q(t) = ∅. In this
way, the setsF1,F2, . . . sort the parent and offspring populations into several fronts.
After the non-dominated sorting mechanism, the new population P(t + 1) is filled
by the different fronts starting from F1. As the new population has a limited size,
the solutions of theFi which cannot totally fit into the new population, go through a
selection mechanism called crowding distance mechanism. As the solutions in one
front are all indifferent to each other, one can differentiate between them by using the
so called crowding distance values (cd). The solutions in the crowded areas (in the
objective space) get a low chance (small crowding distance) to survive the selection.
The NSGA-II Algorithm works as follows. In the first iteration (t = 0), the initial
population (P(0)) is sorted into different non-dominated fronts using the function
NonDomSorting. Afterwards each individual is assigned a fitness value which is
equal to its front number. Then, we apply genetic operators to the population and
produce the offspring population Q(0) (Produce Offspring(P(t),F )).

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
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Algorithm 13.8 (NSGA-II)

function NSGA-II (F1, . . . , Fk : function, μ: int) : set of object;
begin (∗ objective functions F1, . . . , Fk ∗)

t ← 0; (∗ population size μ ∗)

P(t) ← create population with μ individuals;
Q(t) ← ∅;
while termination criterion not fulfilled do begin
evaluate P(t) with the functions F1, . . . , Fk ;
F ←NonDomSorting(P(t));(∗ F = (F1,F2, . . .) all non-dominated fronts ∗)

Q(t) ← Produce Offspring(P(t),F );
R(t) ←P(t) ∪ Q(t);
F ←NonDomSorting(R(t));
P(t + 1) ← ∅ and i = 1;
until | P(t + 1) | + | Fi |≤ μ

P(t + 1) = P(t + 1) + Fi ;
i ← i + 1;

end
Sort (Fi , cd); (∗ Sort Fi according to the descending cd values ∗)

P(t + 1) ← P(t + 1) ∪ Fi [1 : (μ− | P(t + 1) |)] ;
t ← t + 1;
end ;

return non-dominated individuals from P(t);
end

The other approach called strength Pareto evolutionary algorithm 2 (SPEA2)
(Zitzler et al. 2001), stores the non-dominated individuals separately in an archive.
This archive usually has a finite size, so that new individuals can only be added if
(dominated) individuals are deleted from it. If it cannot be filled completely, because
not enough non-dominated individuals are known, it is filled with dominated indi-
viduals:

Algorithm 13.9 (SPEA2)

function spea2 (F1, . . . , Fk : function, μ, μ̃: int) : set of object;
begin (∗ objective functions F1, . . . , Fk ∗)

t ← 0; (∗ population size μ, archive size μ̃ ∗)

P(t) ← create population with μ individuals;
R(t) ← ∅;
while termination criterion not fulfilled do begin
evaluate P(t) with the functions F1, . . . , Fk ;
for A ∈ P(t) ∪ R(t) do
noDom(A) ← |{B ∈ P(t) ∪ R(t) | A >dom B}|;

for A ∈ P(t) ∪ R(t) do begin
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d ← distance of A and its
√

μ + μ̃ nearest individuals in P(t) ∪ R(t);
A.F ← 1

d+2 + ∑
B∈P(t)∪R(t),B>dom A noDom(B);

end
R(t + 1) ← {A ∈ P(t) ∪ R(t) | A is non-dominated};
while |R(t + 1)| > μ̃ do
remove from R(t + 1) the individual A that has the smallest value A.F ;

if |R(t + 1)| < μ̃ then
fill R(t + 1) with the best dominated individuals from P(t) ∪ R(t); end

t ← t + 1;
if termination criterion not fulfilled then

P(t) ← select from P(t − 1) with tournament selection;
apply recombination and mutation to P(t);

end
end
return non-dominated individuals from R(t + 1);

end

SPEA2 is a fairly ordinary evolutionary algorithm with a combined evaluation func-
tion. The archive, which is always kept at a user-specified size, may contain non-
dominated individuals and is also used to compute the fitness. A niche technique is
employed that evaluates at a certain number of nearest neighbors.

As a final example of evolutionary algorithms for multi-criteria optimization we
mention here the Pareto-archived evolutionary strategy (PAES) (Knowles and
Corne 1999). This approach is based on a (1 + 1)-ES (cf. Sect. 13.2), also employs
an archive of non-dominated solution candidates, and works as follows:

Algorithm 13.10 (PAES)

function paes (F1, . . . , Fk : function, μ̃: int) : set of object;
begin (∗ objective functions F1, . . . , Fk ∗)

t ← 0; (∗ archive size μ̃ ∗)

A ← create random individual;
R(t) ← {A} organized as a multidimensional hash table;
while termination criterion not fulfilled do begin

B ← mutation of A;
evaluate B with the functions F1, . . . , Fk ;
if ∀C ∈ R(t) ∪ {A} : not C >dom B then
if ∃C ∈ R(t) : B >dom C then
remove all individuals from R(t) that are dominated by B;
R(t) ← R(t) ∪ {B};
A ← B;

elseif |R(t)| = μ̃ then
g∗ ← hash entry with the most entries;
g ← hash entry for B;
if entries in g < entries in g∗ then
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remove one entry from g∗;
R(t) ← add B to R(t);

end
else

R(t) ← add B to R(t);
gA ← hash entry for A;
gB ← hash entry for B;
if entries in gB < entries in gA then A ← B; end

end
end
t ← t + 1;

end
return non-dominated individuals from R(t + 1);

end

Unless the archive is full, new solution candidates are added to it. If it is full, all
dominated solution candidates are removed from it. If there are no dominated solution
candidates, one of the individuals in the hash entrywith themostmembers is removed
(that is, the hash code represents a niche).

Although awide variety of evolutionary algorithms for multi-criteria optimization
exist, most of them start to have trouble to approximate the Pareto frontier well if
more than three criteria are given. One of the reasons is, naturally, that the size of the
Pareto frontier grows with the number of criteria, thus making it more difficult for
algorithms to cover it sufficiently well or even to find solution candidates sufficiently
close to it. This problem may be mitigated by presenting solutions to a user during
the search and letting the user choose the direction the search space in which the
search should continue (semi-automatic search).

13.5 Special Applications andTechniques

With this chapter, we close our discussion of evolutionary algorithms by giving an
overview of an application of and two special techniques for this kind of meta-
heuristics. In Sect. 13.5.1, we consider behavioral simulation for the iterated pris-
oners dilemma with an evolutionary algorithm. In Sect. 13.4, we study evolutionary
algorithms for multi-criteria optimization, especially in the presence of conflicting
criteria, which instead of returning a single solution try to map out the so-called
Pareto-frontier with several solution candidates. Finally, we take a look at paral-
lelized versions of evolutionary algorithms in Sect. 13.5.2.
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13.5.1 Behavioral Simulation

Up to now, we applied evolutionary algorithms only to numerical or discrete opti-
mization problems. In this section, however, we employ them for behavioral simula-
tion, in order to study strategies for social interaction as well as so-called population
dynamics. The basis for the presented approach is game theory, which has proven
to be highly useful to analyze social and economic situations and is one of the most
important theoretical foundation of economics. The rationale of game theory is to
model agents and their actions as game moves in a formally specified framework.
Here we consider how the behavioral strategy underlying the moves of an agent in a
specific situation can be encoded in a chromosome, so that an evolutionary algorithm
can be used to study the properties of successful strategies as well as the influence
of the distribution of strategies in a population.

13.5.1.1 The Prisoner’s Dilemma
The best-known and most thoroughly studied problem of the game theory is the so-
calledprisoner’s dilemma. This delicate problem is commonly described as follows:
suppose two people robbed a bank and were arrested. Unfortunately, the available
circumstantial evidence is not sufficient for a conviction because of the bank robbery.
There is, however, sufficient evidence for a conviction because of a lesser criminal
offense (say, illegal possession of firearms). Suppose this lesser criminal offense
carries a sentence of one year in prison. In order to attain a sentence for the bank
robbery, the prosecutor offers both prisoners to become a key witness: if one of them
confesses to the bank robbery (and thus incriminates the other), he/she is exempted
from punishment, while the other prisoner will be punished with the full force of
the law, which means 10 years imprisonment. The problem resides in the fact that
both prisoners are offered this possibility and thus both may be tempted to confess.
However, if both confess, the key witness rule is inapplicable and thus both will be
punished. Since they both pleaded guilty, though, they receive a mitigated sentence,
meaning that both of them have to spend 5 years in prison.

A popular tool to analyze situations like the prisoner’s dilemma formally is a
payoff matrix. Such a matrix states for all possible pairs of action choices the
payoff each of the agents receives. For the constellation of the prisoner’s dilemma,
we may use the payoff matrix shown in Table13.1, in which the number of years in
prison is used as the payoff—stated as a negative number to indicate that the larger
the (absolute) value, the worse the outcome for the two agents.

Table 13.1 Special payoff
matrix of the prisoner’s
dilemma
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Seen from a global point of view, it is best if both prisoners keep silent, because
this minimizes the total number of years they have to spend in prison. However,
there is a temptation to confess, because a confession, provided the other prisoner
keeps silent, leads to a better outcome for the confessing prisoner. Unfortunately,
this carries the risk to end up in a situation in which both have to spend 5 years in
prison. As a consequence, there is a tendency that only a suboptimal payoff result is
achieved. More technically, a double confession is the so-called Nash equilibrium
(Nash 1951) of this payoff matrix: neither agent can improve its payoff by changing
its action, while the other agent maintains the same action. An improvement is only
possible if both agents change their action choice. Nash (1951) showed that every
payoff matrix has at least one Nash equilibrium under the condition that mixed
strategies are allowed. A mixed strategy is one in which probabilities other than
1 and 0 may be assigned to the different options. That is, a mixed strategy is an
unrestricted probability distribution over the different options a player can choose
from.

Generalizing from the special situation stated above, the prisoner’s dilemma can
be defined with a general payoff matrix as it is shown in Table13.2. The letters mean:
R reward for mutual cooperation, P punishment for mutual defection, T temptation
to defect, S sucker’s payoff. Note that the exact values of R, P, T and S are not
important as long as the following two inequalities hold

T > R > P > S and 2 · R > T + S. (13.1)

The first condition states that the payoff for a defect in case the other agent cooperates
must be better than the reward for cooperation, so that there is actually a temptation
to defect. In addition, cooperation must lead to a better outcome than defection.
Finally, mutual defection should still be preferable to being exploited (sucker’s pay-
off), so that there is an incentive to avoid getting exploited. The second condition
is needed to make ongoing cooperation preferable to alternating exploitation. With
these conditions, mutual defection is a Nash equilibrium of the payoff matrix.

Many situations in everyday life are analogous to the prisoner’s dilemma: we
often face the choice to exploit an interaction partner and thus to improve our pay-
off or to cooperate with the chance to achieve an globally better result, but at the
risk of getting exploited ourselves. It is often argued that the rational choice in the
prisoner’s dilemma is to defect in order to ensure that one is not exploited. How-
ever, we observe cooperating behavior on a large scale, not only among humans, but
among animals as well. Therefore (Axelrod 1980) raised the question under what
conditions cooperation emerges in a world of egoists without any central authority.
Several centuries earlier, in the book Leviathan (Hobbes 1651), a famous classic of

Table 13.2 General payoff
matrix of the prisoner’s
dilemma



290 13 Fundamental Evolutionary Algorithms

political philosophy, it had already been claimed: under no conditions whatsoever!
Before governmental order and thus a directing central authority existed, the state
of nature was dominated by egoistic individuals that competed against each other in
such a reckless way that life was “solitary, poor, nasty, brutish, and short” (Hobbes
1651). However, on an international level we observe that countries cooperate (eco-
nomically as well as politically), even though there is de facto no central authority
(unless one sees the United Nations as such, despite their lack of directive power).
In addition, animals show cooperative behavior without any form of government.

13.5.1.2 The Iterated Prisoner’s Dilemma
Axelrod (1980; 1984) proposed to find an explanation why we observe cooperation
despite the unfavorable Nash equilibrium of the prisoner’s dilemma by looking at the
iterated version of this game. The reason is that in real life, interactions are rarely
isolated, but take place in a social context that makes it likely that we will interact
with the same agent again in the future. The idea is that the expectation of future
iterations of the game may reduce the temptation to defect, since this opens up the
possibility of retaliation. This could introduce an incentive to cooperate.

These considerations lead to the following two questions:

• Is cooperation created in the iterated prisoner’s dilemma?
• What is the best strategy in the iterated prisoner’s dilemma?

In order to obtain a concrete framework (Axelrod 1980; 1984) specified the payoff
matrix shown in Table13.3. The chosen values for the quantities R, P, T and S are
the smallest non-negative integer numbers that satisfy the two conditions stated in
Eq.13.1. R. Axelrod then invited scientists from diverse disciplines (psychology,
social and political sciences, economics, mathematics) to encode what they believed
to be an optimal strategy for the iterated prisoner’s dilemma with this payoff matrix.
The programswere to have access to all games already played against the same agent,
that is, they could try to exploit information gained about the behavioral strategy of
their opponents from the result of earlier games. Each program was to be evaluated
by the total payoff it achieved in a round robin tournament (that is, every participant
plays against every other participant).

Table 13.3 Axelrod’s payoff
matrix for the iterated
prisoner’s dilemma
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With this framework, R. Axelrod conducted two tournaments. In the first tour-
nament, 14 programs and one random player3 competed against each other in a
round-robin tournament with 200 matches per pairing. The winner was a surprising
simple program submitted by the mathematician A. Rapoport, which implemented
the common sense strategy of tit for tat: cooperate in the first move; in subsequent
moves simply copy the move of the opponent from the preceding match. The name
“tit for tat” for this strategy derives from the simple fact that it retaliates in case its
opponent does not cooperate by defecting itself in the next match.

In order to substantiate the result, R. Axelrod published the program code of all
participants of this tournament together with the payoff results and invited a second
tournament. The ideawas that by analyzing the results of the first tournament, insights
about what constitutes a good strategy may be gained, so that better programs could
be designed. R. Axelrod then conducted a second tournament in which 62 programs
and one random player participated.4 The tournament conditions were identical, that
is, a round-robin tournament with 200 matches per pairing. Surprisingly, the winner
was also the same, namely tit for tat.

The result may be surprising, because tit for tat does not win generally against
any other strategy. For example, against a strategy that defects in all moves (and
thus behaves “rationally” as seen from the point of view of the uniterated prisoner’s
dilemma) it loses due to the exploitation it suffers in the first match. However, if
there are agents in the population with whom it can cooperate, it can gain an overall
advantage. Another problem of tit for tat is that it may react inadequately tomistakes.
Suppose two instances of tit for tat play against each other, cooperating nicely at
first, but in some move one instance accidentally plays defect. Clearly, the tit for tat
strategy is unable to recover from the ensuing train of mutual retaliations.

As a consequence, it may beworthwhile to consider tit for two tat as an alternative:
this strategy starts retaliating only after having been exploited twice. This behavior
maintains cooperation even after an accidental defect. On the other hand, if the tit for
two tat strategy is fixed and known to the opponent, it can be exploited: an opponent
that defects in every other move gains a very clear advantage.

13.5.1.3 A Genetic Algorithm Approach
Although the two tournaments saw participants written by capable and renowned
researchers, one may still harbor doubts whether the space of possible strategies
was sufficiently well explored. In addition, the winner may depend on the selection
of participants. In order to obtain better even substantiated results, Axelrod (1987)
approached the problem by simulating and evolving populations of strategies for the
prisoner’s dilemma with a genetic algorithm.

3All programs were written in the programming language Fortran.
4All programs were written in the programming languages Fortran and Basic.
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Table 13.4 Encoding of strategies for the prisoner’s dilemma. The first element of every pair
corresponds to the own move, the second one to the opposing move

In this approach a strategy is encoded by considering all possible sequences of
three consecutive games. Since three games mean six moves (three moves by either
opponent), each ofwhich can either be cooperate or defect, there are 26 = 64 possible
sequences. Thus the chromosome consists of 64 bits, which simply state what move
should be played in the next game if the corresponding sequence of three matches
was observed (see Table13.4). In addition, each chromosome is endowed with 6 bits
that encode the course of the game “before” the first move. This is necessary, so
that a uniform strategy is specified that also covers the first three moves, in which
the history is shorter than three matches. In total, every chromosome consists of
70 binary genes that are either C (cooperate) or D (defect).

The genetic algorithm works as follows: the initial population is created by ran-
domly sampling bit sequences of length 70. The individuals of a population are eval-
uated by pairing each individual with sufficiently many opponents that are randomly
selected from the population. (Depending on the size of the population a full round
robin tournamentmay be prohibitively costly, since its cost is quadratic in the popula-
tion size. Note also that the experiment was conducted in 1987 and thus at a timewere
computing power was much more limited than today.) In each pairing, 200 matches
were played (like in the tournaments reported about above). The fitness of an individ-
ual is the averagepayoff it gainedper pairing. Individuals are selected for the next gen-
eration according to the simplified expectationvaluemodelmentioned inSect. 12.2.5:
letμ f (t) be the average fitness of the individuals in the population at time t and σ f (t)
its standard deviation. Individuals s with f (s, t) < μ f (t) − σ f (t) do not receive off-
spring; individuals s with μ f (t) − σ f (t) ≤ f (s, t) ≤ μ f (t) + σ f (t) have one child
and individuals s f (s, t) > μ f (t) + σ f (t) have two children. As genetic operators,
standard mutation and one-point crossover were applied. The algorithmwas than run
for a certain number of generations and the best individuals of the final population
were examined.

From the result, Axelrod (1987) identified the following general patterns:

• Don’t rock the boat. Cooperate after three times cooperate.
(C,C), (C,C), (C,C) → C

• Be provocable. Play defect after a sudden defect of the opponent.
(C,C), (C,C), (C,D) → D

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
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• Accept an apology. Cooperate after mutual exploitation.
(C,C), (C,D), (D,C) → C

• Forget. (Do not be resentful.) Cooperate after cooperation has been restored after
one defect (also without retaliation).
(C,C), (C,D), (C,C) → C

• Accept a rut. Play defect after three times defect of the opponent.
(D,D), (D,D), (D,D) → D

Clearly the tit for tat strategy, which won the two tournaments with human-designed
programs, has all of these properties. The tit for two tat strategy only lacks the “be
provocable” property as it reacts only after two exploitation. As already mentioned
above, this makes it vulnerable if the strategy is fixed and known to the opponent.

Note that this result should still not be taken as an argument that tit for tat is
generally the best strategy. A lone individual playing tit for tat in a population of
individuals that constantly play defect cannot strive. In order to gain the upper hand,
tit for tat needs a (sufficiently large) sub-population of individuals with which it can
cooperate. Its growth may be facilitated, though, if individuals can choose whom
to play with based on their experience, so that they can prefer for future pairings
individuals with whom they cooperated successfully in the past. Clearly, this is an
important aspect that is also decisive in the real world.

13.5.1.4 Extensions
In order to generalize and possibly improve the results obtained by Axelrod (1987)
longermatchhistoriesmaybe considered (exploiting the greater computingpowerwe
have available nowadays). The strategies may also be described by Moore machines
(a specific type of finite state machine) or even general programs that are evolved
with the principles of genetic programming (cf. Sect. 13.3).

The prisoner’s dilemma may also be extended in many different ways to render
its setup more realistic and to capture more and more general situations. We already
mentioned above that individuals usually choose with whom to play again and are
not forced to repeatedly play against opponents that exploited them. In addition,
in the real world, we often find ourselves in situations in which more than two
agents are involved, thus leading to a multiplayer version of the prisoner’s dilemma.
Furthermore, in the real world the consequences of actions are not always perfectly
observable. That is, it may not always be perfectly clear whether the last move
of our opponent was actually a defect, even though it appeared to be (as judged,
for example, by the payoff we received). In order to avoid getting stuck in a train
of mutual retaliations, variations of the tit for tat strategy may be needed. A very
simple method to achieve this is the introduction of a random component, at least
if a pairing is stuck in a rut of mutual defect: after a random number of steps try
to restore cooperation by cooperating even though the last moves of the opponent
were defects. Note that this may require a random component (in order to make the
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moment unpredictable at which cooperation is played), which cannot be encoded
with the scheme we described in the preceding section.

13.5.2 Parallelization

Evolutionary algorithms are fairly expensive optimizationmethods. In order to obtain
sufficiently good solutions, one often has to work with both a large population (a
few thousand up to several tens of thousands of individuals) and a large number of
generations (a couple of hundreds). Although this drawback is often compensated
by a slightly better solution quality compared to other approaches, the execution
time of an evolutionary algorithm can be unpleasantly long. One way to improve
this situation is parallelization, i.e., to distribute the necessary operations on several
processors (exploiting that essentially all modern processors have multiple cores
and multi-processor machines are also becoming more frequent). In this section we
discuss which steps can be parallelized (sufficiently easily) and what additional,
specialized techniques are inspired by a parallel organization of the algorithm.

13.5.2.1 Parallelizable Operations
Creating an initial population is often easy to parallelize, because usually the
chromosomes of the initial population are created randomly and independently of
each other. The attempt to prevent duplicate individualsmay, however, pose obstacles
to a parallel execution. Parallelizing this step of fairly little importance overall,
though, because the initial population is created just once.

The evaluation of chromosomes is also easily parallelizable because usually an
individual is evaluated independently of any other individual. Since for many impor-
tant problems the evaluation of the chromosomes is the most costly task, this is a
decisive advantage. Even in the evolutionary algorithm used to study the prisoner’s
dilemma (cf. Sect. 13.5.1.1), we can process pairings in parallel. In order to com-
pute (relative) fitness values or a ranking of the individuals, however, we need a
central agent that collects and processes evaluations. As a consequence, whether the
selection of the individuals for the next generation is parallelizable, depends heavily
on the chosen selection method: the expected value model and elitism all require
to consider the population as a whole, thus need a central agent, and therefore are
difficult to parallelize. Roulette-wheel and rank-based selection can be parallelized
after the initial step of computing the relative fitness values or sorting the individuals
according to their fitness has been carried out. The initial step, however, needs a
central agent that collects and processes all fitness values. Tournament selection is
usually best suited for a parallel execution, especially for small tournament sizes,
because all tournaments are independent and thus can be held in parallel.

Genetic operators can easily be applied in parallel, since they affect only one
(mutation) or two chromosomes (crossover), and are independent of any other chro-
mosomes. Even if multi-parent operators (like diagonal crossover) are used and thus
more chromosomes are affected at the same time, different crossover procedures
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can be executed in parallel. If combined with tournament selection, a steady-state
evolutionary algorithm can thus be parallelized very well.

Whether a termination criterion can be parallelized depends on the specific form
of the termination criterion. The simple test whether a certain number of generations
is reached does not cause any problems. However, termination criteria like

• the best individual of the population exceeds a user-specified fitness threshold, or
• the best individual has not changed (a lot) over a certain number of generations

need a central agency that collects this information about the individuals.

13.5.2.2 IslandModel andMigration
Even if we require a selection method that causes some troubles for parallelization
(like fitness proportionate selection, which needs a central agency at least to compute
the relative fitness values), wemay achieve a parallel execution by simply processing
several independent populations, each on its own processor. Drawing on an obvious
analogy from nature, each population can be seen as inhabiting an island, which
explains the name island model for such an architecture. A pure island model is
equivalent to executing the same evolutionary algorithm multiple times, which may
just as well be done in a serial fashion. Usually it yields results that are somewhat
worse than those of a single run with a larger population.

However, with a parallel execution, on may consider exchanging individuals
between the island populations at certain fixed points in time (doing so in every
generation creates too much communication overhead). Again drawing on an obvi-
ous analogy from nature, such an approach is commonly called migration. The
idea underlying this method is that transferring genetic material between the islands
improves the exploration properties of the island populations, without needing direct
recombinations of chromosomes from different islands.

For the mechanisms that control the migration between islands, many different
proposals exist. In the random model pairs of islands are chosen randomly,which then
exchange some of their inhabitants. In this model any two island can, in principle,
exchange individuals. This freedom is reduced in the network model, in which the
islands are arranged into a network or graph. Individuals can migrate only between
islands that are connected by an edge in the graph. Typical graph structures include
rectangular and hexagonal grids in two or three dimensions. Along which of the
edges individuals are exchanged is determined randomly.

Instead of merely exchanging individuals and thus genetic material, island pop-
ulations may also be seen as competing with each other (contest model). In this
case the evolutionary algorithms that are applied on the islands differ in approaches
and/or parameters. The effect of the contest is that the population size of an island
is increased or decreased according to the average fitness of its individuals. Usually
a lower bound for the population size is set, so that islands cannot become empty.
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13.5.2.3 Cellular Evolutionary Algorithms
Cellular evolutionary algorithms are a form of parallelization that is also called
“isolation by distance.” They work with a large number of (virtual) processors, each
of which handles a single individual (or only a small number of individuals). The
processors are arranged in an rectangular grid, usually in the shape of a torus in
order to avoid boundary effects. Selection and crossover are restricted to adjacent
processor, that is, to processors that are connected by an edge of the grid. Selection
means that a processor chooses the best chromosomeof the (four) processors adjacent
to it (or one of these chromosomes randomly based on their fitness). The processor
then performs crossover of the selected chromosome with its own. The better child
resulting from such a crossover replaces the chromosome of the processor (local
elite principle). A processor may also mutate its chromosome, the result of which,
however, replaces the old chromosome only if it is better (local elite principle again).
In such an architecture, groups of adjacent processors are created that maintain
similar chromosomes. This mitigates the usually destructive effect of the crossover.

13.5.2.4 Combination with Local SearchMethods
The approach of Mühlenbein (1989) is a combination of an evolutionary algorithm
and hill climbing. After an individual has been created by a mutation or a crossover
operation, it is optimizedwith hill climbing: randommutations are applied and kept if
they are advantageous. Otherwise they are retracted and a different mutation is tried.
Obviously, the local hill climbing optimization can easily be parallelized, because it
is executed independently by the individuals.

Furthermore, individuals search for a crossover partner not in the whole popula-
tion, but only in their (local) neighborhood, thus easing a parallel execution. Note that
this requires a distance measure for the individuals and relates the approach to niche
techniques (cf. Sect. 12.2.9). The offspring (the crossover products) perform local
hill climbing. The individuals of the next generation are selected with a local elite
principle (cf. Sect. 12.2.8), that is, the best two individuals among the four involved
individuals (two parents and two children) replace the parents.
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14Computational Swarm Intelligence

Swarm Intelligence (SI) is about a collective behavior of a population of individuals.
The main properties of such populations is that all of the individuals have the same
simple rule from which the global collective behavior cannot be predicted. More-
over, the individuals can only communicate within their local neighborhoods. The
outcome of this local interaction defines the collective behavior which is unknown to
single individuals. The world of Computational Swarm Intelligence contains several
approaches for dealing with optimization problems. Particle Swarm Optimization
(PSO) (Kennedy and Eberhart 1995) and Ant Colony Optimization (ACO) (Dorigo
and Stützle 2004) will be addressed in the chapter. After the introduction, we explain
the basic principles of computational swarm intelligence for PSO in Sect. 14.2 upon
which the following Sects. 14.3 to 14.5 are built. The second part of the chapter,
Sect. 14.6, is about the Ant Colony Optimization method.

14.1 Introduction

Swarm Intelligence is a known phenomenon from nature: a group of animals or
swarms of insects like ants and flies, flocks of birds, and schools of fish. These
examples have the common features for a collective behavior: simple individuals,
simple rules for all and local interactions. In nature we can even find heterogeneous
swarms which contain individuals of various abilities like ant workers and ant queen.
Nevertheless, the major common feature is that the global and collective behavior
cannot be concluded based on the rules of single individuals. This phenomenon is
known as emergence. In the literature emergence is explained by “The whole is
greater than the sum of its parts.” Very often swarm intelligence is an example for
self-organization in nature (Camazine et al. 2001). Self-organized biological systems
generate some patterns or structures over time. A prominent example here is an ant
road which is built by foraging ants while finding the shortest path to food. Another
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example is the flight formation of birds or the so-called murmuration of thousands of
starlings in a fantastic acrobatic flight. In physics and chemical systems, dissipative
structures are built in nonlinear systems. Even the molecular structures can be seen
as an emergence phenomenon (Mátyus et al. 2011).

The field computational swarm intelligence is inspired by nature and studies the
above features in two ways of local interactions using direct and indirect commu-
nications. The main approach in swarm intelligence which involves direct commu-
nication is called Particle Swarm Optimization (PSO). Inspired by flocks of birds
and schools of fish, this approach was introduced by Kennedy and Eberhard (1995),
Eberhart and Kennedy(2001) in 1995. PSO and its variants are getting very popu-
lar in solving optimization problems. Apart from the easy implementation and less
amount of parameters than the other nature-inspired approaches, the original PSO
showed promising results in terms of fast convergence. Nevertheless, there had to
be more attempts to avoid stagnation in the local optima. Indirect communication
or “Stigmergy” has been used in Ant Systems. Inspired by colonies of ants, Dorigo
and Stützle (2004) proposed a model which contained a swarm of individuals and
an environment as a carrier for the information. The individuals use the environment
for the indirect communication. In the following sections, we address the two major
topics of PSO and ACO.

14.2 Basic Principles of Computational Swarm Intelligence

In this section, the basic principles for computational swarm intelligence using direct
communication such as Particle Swarm Optimization (PSO) are explained. Let us
assume that we have a population of N individuals, which move in a n-dimensional
real-valued search space defined by Ω ⊆ R

n . In this model, each individual i has
a certain position xi (t) ∈ Ω at time step t . The movement of the individuals in a
swarm can be modeled based on the three behaviors introduced by C. Reynolds
(1987): cohesion, separation, and alignment.

• Cohesion (or aggregation) can be described as a behavior that the individuals tend
to gather together. For this they measure their distances to their neighbors and if
they are farther than a given predefined distance, they move towards the neighbors.

• Separation is the opposite behavior by which the individuals keep a minimum
distant d to their neighbors and get repelled once they get closer than this limit.

• Alignment means that the individuals move in the same direction as the average
direction of the individuals in their neighborhood. It is the only behavior among
the three that does not require the measurement of the distances to the neighbors.

In the following we concentrate on aggregation and separation. The movement in
the swarm can be described by Kinematic equations using discrete time scale

xi (t + 1) = xi (t) + vi (t + 1) (14.1)

vi (t + 1) = wvi (t) + gi
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vi refers to the velocity of the individual i and w indicates the so-called inertia
weight. gi denotes the forces which model the cohesion and separation behaviors for
the individual i in the swarm. As the above equations are vector-based, we consider
every dimension separately in the following.

Before we define gi in details, let us consider the following example with N = 2
and w = 0. The individual i measures its distance to individual j and calculates its
new position xi (t + 1) according to the aggregation and separation behaviors. If it
is very close to j , it computes a so-called repulsion force and if it is far from j , it
needs to compute an attraction force. An example is depicted below:

For simplicity, suppose that we only consider the movement in the horizontal
direction. Since xi (t) < x j (t) in terms this direction, i must add a positive constant
value f i (i, j) to its current position xi (t) to get closer to j and a negative constant
value −f i (i, j) must be added if it wants to get repelled

xi (t + 1) = xi (t) + f i (i, j), if | xi (t) − x j (t) |> d (14.2)

xi (t + 1) = xi (t) − f i (i, j), if | xi (t) − x j (t) |< d (14.3)

where | xi (t) − x j (t) | indicates the Euclidean distance between i and j and d is a
predefined constant. Now, we can change these equations to a generic form.

Table14.1 shows several examples for attraction, repulsion or both attraction and
repulsion functions. For instance, a linear attraction function can be defined as a
function which depends on the distances between the two individuals. The intensity
of attraction is linearly reduced by decreasing values of the distance. Such a function
is illustrated in Table14.1a and can be described as

f i (i, j) = −ka(xi (t) − x j (t))

where ka is a constant value indicating the slope of the linear function. For
0 ≤ ka ≤ 1, the individual i can only reach j , while for larger values than 1,
i can even jump over j . A linear repulsion is the opposite behavior as shown in
(b). Constant attraction and repulsion functions are independent from the distances
between i and j as shown in (c) and (d). The Figures (e) and (f) illustrate two func-
tions which contain both attraction and repulsion. The individual i gets attracted to j
for large distances and it get repelled for smaller distances. The function in (e) has an
almost linear attraction value of a and a nonlinear and unbounded repulsion, where
the function in (f) has a nonlinear but bounded repulsion. These two functions are
symmetrical with respect to the origin. Taking a symmetrical function as in (f), one
can show (Gazi and Passino 2011) that the center of the swarm indicated by x̄c(t) at
time t stays stationary

x̄c(t) = 1

N

N∑
i=1

xi(t) (14.4)

x̄c(t + 1) − x̄c(t) = 0 (14.5)
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Table 14.1 Examples of attraction and repulsion functions

This means that the swarm moves in the search space and individuals change their
positions as shown in Fig. 14.1, but the center does not vary over time.

The selection of an appropriate attraction and repulsion function can help to obtain
a certain stable aggregation behavior in a swarm (Gazi and Passino 2011). In order
to consider the interaction of individual i in the swarm of size N > 2, we need to
calculate the mutual interactions between i and every single other individual in the
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Fig.14.1 Taking the attraction and repulsion function from Table14.1f, the center of swarm stays
stationary

population. In this case, the gi in Eq.14.1 is calculated as follows:

gi =
N∑

j=1, j �=i

f i (i, j) (14.6)

The above concept gives us the ability to move a swarm towards any desired point
in the search space. In other words, swarms can track a certain point, individual or
object in the search space, using an attraction function. This feature is an important
aspect when using swarms for optimization purposes. For instance, we can let the
swarm track an object with the position xtr (t), while enforcing a cohesion behavior,
as follows:

vi (t + 1) = wvi (t) +
N∑

j=1, j �=i

f i (i, j) − ka(xi (t) − xtr (t)) (14.7)

This concept considers local or global interactions among the individuals and
there is no information exchange between them.

14.2.1 Swarms in Known Environments

Based on the Eq.14.1, we can let a swarm to move in a certain environment (search
space). Suppose that we define a profile for the environment as σ(x) in which the
swarm is moving. Obviously, the environment has the same dimensionality as the
individuals. The swarm movement in such an environment can be described as

vi (t + 1) = wvi (t) + gi − ∇xσ (14.8)

As an example we can take a plane environment such as σ(x) = ax + b. Accord-
ing to the above equation, the swarm moves towards the negative of the gradient of
this function (−a) while considering the cohesion part related to gi . The center of the
swarm in an environment is influenced by the profile of the environment and is not
stationary anymore. For instance, the center of the swarm when using a symmetrical
attraction and repulsion function as (f) from Table14.1 is −∇xσ . Usually the profile
of the environment is not known or cannot easily be modeled. Therefore the above
equation can only be used as a theoretical background for the next sections.
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14.2.2 Swarms in Unknown Environments

Moving in unknown environments, i.e., environments without a known profile,
requires direct communication between individuals, which is more than only the
local interactions in the form of attraction and repulsion from the above sections.
Suppose that the goal of the swarm is to find an optimal (minimum or maximum)
point in a given environment with unknown profile σ . For moving towards the opti-
mal solution, the individuals must exchange their local information about the value
of the profile at their own positions. For instance, individual i knows σ(xi (t)) for its
own position xi at time t . This can be realized using sensors on individuals which
can sense the profile of the environment at the spot they move on. Given a swarm
with N individuals and positions xi (t), 1 ≤ i ≤ N at time t , the swarm can move
within the environment using an attraction function

vi (t + 1) = wvi (t) − φka(xi (t) − x(best)(t)) (14.9)

where x(best)(t) refers to the best individual in terms of the profile of the environment
in the neighborhood of individual i . φ is a random value ∈ [0, 1] and ka ≤ 1 is a
constant positive value for a linear attraction towards the best. This is shown in
Algorithm 14.1.

In this algorithm, finding the best individual at the position x(best) requires the
information exchange among the individuals in the neighborhood. The movement in
the swarm considers tracking the best in the neighborhood. Here we do not consider
the cohesion in the swarm. The random value for φ in combination with a linear
attraction with slope of ka helps to get close to a certain area around the x(best)
in the population. In the next iterations, another individual might be the best in
the neighborhood. The search for the minimum stops if one of these termination
conditions has reached: if a maximum amount of iteration has reached or if there is
no improvement of the global best individual over several iterations.

Algorithm 14.1 (Swarm movement in unknown environments)

function SwarmMove (N : int, ka : real constant);
begin (∗ N : number of individuals ∗)

t ← 0;
for i ∈ {1, . . . , N } do begin (∗ initialize the individuals ∗)

vi ← 0; (∗ initialize velocity and position ∗)

xi ← choose a random point of Ω = R
n ;

end
repeat (∗ update the swarm ∗)

t ← t + 1;
for i ∈ {1, . . . , N } do begin
x(best)(t) ← Find the best individual in the neighborhood of i ;
if σ(xi ) ≥ σ

(
x(best)

)
then x(best)← xi ; end

φ ← sample random number uniformly from [0, 1];
vi (t + 1) ← w · vi (t) − φka

(
xi (t) − x(best)(t)

)
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xi (t + 1) ← xi (t) + vi (t);
end

until termination criterion is fulfilled;
return x(best); (∗ return the best point found ∗)

end

14.3 Particle SwarmOptimization

Similar to the above concept, a swarm can be used to move in a search space and
optimize a given function f (x) (the function can be seen as the profile for the envi-
ronment)

optimize f (x) (14.10)

s.t. x ∈ Ω = R
n

This approach is called particle swarm optimization (PSO) (Kennedy and Eberhart
1995) which is inspired by the behavior of animal species that search for food in
swarms, schools, or flocks, for example, bird or fish. This search is characterized
by individuals exploring the environment in the vicinity of the swarm up to some
distance, but always returning to the swarm as well. In this way, information about
discovered food sources is conveyed to the other members of the swarm, namely
when the discovering member returns to the food source and other members follow
it. Eventually the whole swarm may move toward the food source (provided it is
attractive enough).

Particle swarm optimization can be seen as a method that combines gradient-
based search (for example, gradient descent, cf. Sect. 11.5.1, and hill climbing, cf.
Sect. 11.5.2) with population-based search (like evolutionary algorithms). Like gra-
dient descent, it requires that the search space Ω is real-valued, that is, Ω ⊆ R

n .
Hence the function to be optimized must be of the form f : Rn → R.

Algorithm 14.2 (Particle-Swarm-Optimization (Maximization))

function PSO (N : int, w,C1,C2: real);
begin (∗ N : number of particles ∗)

t ← 0;
for i ∈ {1, . . . , N } do begin (∗ initialize the particles ∗)

vi ← 0; (∗ initialize velocity ∗)

xi ← choose a random point of Ω = R
n ; (∗ initialize position ∗)

x(personal)
i ← xi ; (∗ initialize the personal memory ∗)

end
x(global) ← x1 (∗ Find the global best solution ∗)

for i ∈ {2, . . . , N } do begin
if f (xi ) ≥ f

(
x(global)

)
then x(global)← xi ; end

end

http://dx.doi.org/10.1007/978-1-4471-7296-3_11
http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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repeat (∗ update the swarm ∗)

for i ∈ {1, . . . , N } do begin (∗ update the personal and global memory ∗)

if f (xi ) ≥ f
(
x(personal)

)
then x(personal)← xi ; end

if f (xi ) ≥ f
(
x(global)

)
then x(global)← xi ; end

end
for i ∈ {1, . . . , N } do begin (∗ update the particles ∗)

φ1 ← sample random number uniformly from [0, 1];
φ2 ← sample random number uniformly from [0, 1];
vi (t + 1) ← w · vi (t) + φ1C1

(
x(personal)
i (t) − xi (t)

) + φ2C2
(
x(global)(t) − xi (t)

)
;

xi (t + 1) ← xi (t) + vi (t); (∗ update velocity and position ∗)

end
t ← t + 1; (∗ count the update step ∗)

until termination criterion is fulfilled;
return x(global); (∗ return the best solution found ∗)

end

The rationale of the search is to use a “swarm” of N candidate solutions to aggregate
information from the individual solution to guide the search. Every candidate solution
corresponds to a “particle” having a position xi in the search space and a velocity vi ,
i = 1, . . . , N . In each step, the position and the velocity of the i th particle are updated
according to the following equations:

vi (t + 1) = wvi (t) + φ1C1
(
x(personal)
i (t) − xi (t)

) + φ2C2
(
x(global)(t) − xi (t)

)
xi (t + 1) = xi (t) + vi (t) (14.11)

where w indicates the inertia weight, C1 and C2 are two constant values and φ1 and
φ2 are random values in the range [0, 1]. x(personal)

i is the personal memory of each
individual (i.e., particle). It is the best solution in the search space that this particle
has visited up to time step t . That is for maximization problems,

x(personal)
i = xi

(
argmaxtu=1 f (xi (u))

)
.

Similarly, x(global) is the global memory of the swarm as a whole. This term
represents the social aspect in the swarm and requires communication between the
particles. The globalmemory is the position of best particle in the swarm (population)
at step t . That is,

x(global)(t) = x(local)
j (t) with j = argmaxNi=1 f

(
x(local)
i

)
.

Obviously this depends on the way we define the global knowledge in the swarm.
In fact, there are several schemes for finding the globally best solution all of which
depend on the communication topology. The well-known topologies are fully con-
nected network (as presented above) and ring topology (every individual is only
communicating with two others in the swarm). The general procedure of particle
swarm optimization for a maximization problem is shown in Algorithm 14.2.

A demonstration program illustrating particle swarm optimization with the above
algorithm for a two-dimensional function with many local maxima can be found at
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http://www.borgelt.net/psopt.html

Since this program visualizes each particle with a “tail” of previous positions, the
movement of the particles can be observed well.

14.3.1 Influence of the Parameters

The parameters φ1 and φ2, with which the strength of “attraction” towards the per-
sonal and the global memory are controlled, are randomly chosen (in the range [0, 1])
in every step. The so-called learning factors denoted by C1 and C2 are two constants
defining the amount of linear attraction (Clerc andKennedy 2002). The inertiaweight
w can be set to a constant value (<1, e.g., 0.4). The small values of w enforces the
swarm to a very quick convergences towards the local optima, while the large val-
ues has the opposite behavior. Figure14.2 illustrates this behavior. Large values of
w makes the movements steps larger and larger over iterations which leads to an
explosive behavior. In this case, the solution i cannot get close enough to the global
best solution. The small values of w results in a very quick convergence towards the
global best solution in the population. Based on this behavior, we can change w over
time so that it starts with large values (adding some randomness in the beginning of
the optimization) and decreases over time. That is, as time advances, the influence
of the (current) velocity of the particle decreases and thus the (relative) influence of
the attraction of the personal and the global memory increases. Generally, it can be
observed that after starting with fairly high speed (caused by the attraction towards
the globalmemory) the particles become slower and slower and finally come (almost)
to a halt at the best point discovered by the swarm.

C1 = 0, C2 = 1.0 
w = 0 

x(global)(t) 

vi(t)

vi(t-1)

vi(t+1) x(global)(t+1) 
xi(t)

xi(t-1)

xi(t+1)

C1 = 0, C2 = 0.5 
w = 1 

x(global)(t) 

x(global)(t+1) 

xi(t+1)

vi(t)

vi(t-1)
xi(t)

xi(t-1)

vi(t+1)
vi(t+2)

Fig. 14.2 Influence of the inertia weight: w = 0 leads to a quick convergence towards the global
memory (left), whilewithw = 1 it gets very difficult to get close to the globalmemory over iterations
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14.3.2 Turbulence Factor

Turbulence factor is a diversity control mechanism, which is meant to prevent
a premature convergence to suboptimal solutions. A naive turbulence factor is to
change the position of a randomly selected particle to a random position. Another
approach is to select the particles with very small velocities and replace them to
random positions in the search space. In this way, these particles which could not
move due to a very small (or even equal to zero velocity) help explore the search
space and eventually avoid the premature stagnation in the local optima.

14.3.3 Boundary Handling

When designing PSO to solve an optimization problem with a given search space
bounded to a range [xmin, xmax ], boundary handling methods need to be applied to
the particles which have left the boundaries (Helwig et al. 2013). This is particularly
important if, as is often the case, the optimal solutions lie close to the boundary of
the search space. It has been shown that as the dimensionality of the search space
increases, the probability of particlesmoving out of the search space can dramatically
grow (Helwig andWanka 2007). The remedy to this behavior is to define amaximum
velocity value of vmax . Additionally one can use a boundary handling method in the
case that a particle has left the border, replace it

• On the border:
if xi > xmax then xi = xmax ; or if xi < xmin then xi = xmin

• or at a random position in the search space:
if xi > xmax or if xi < xmin then xi =Rand(xmin, xmax )

• or at its reflected position. In this case we measure the distance of the particle to
the border and replace it in the search space with the same distance to the border:
if xi > xmax then d = xi − xmax ; xi = xmax − d or
if xi < xmin then d = xmin − xi ; xi = xmin + d

Table14.2a–c shows these three boundary handlingmethods for only one horizon-
tal dimension. One important aspect in boundary handling is to change the velocity of
the replaced particle. Either the new velocity of the particle will be set to zero or the
velocity value can be inversed proportional to the valued fromabove: vi = −(vi − d)

as shown in Table14.2d.
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Table 14.2 Boundary handling methods (a) to (c). The red line in (d) shows the amount of inversed
velocity

14.4 Multi-objective Particle SwarmOptimization

As already mentioned in Sect. 13.4, in multi-objective optimization there are several
functions to be optimized simultaneously. The solution of such problems is a set of
Pareto-optimal solutions. The main goal of Multi-Objective Particle Swarm Opti-
mization (MO-PSO) methods is to find a diverse set of approximated Pareto-optimal
solutions (Reyes-Sierra and Coello Coello 2006). In order to achieve this, we need
to add two major extensions to PSO such as leader selection mechanism and archiv-
ing. Algorithm 14.3 illustrates a generic framework for MO-PSO. In addition to the
population Pt , there is another population denoted as Archive (At ) which is meant
to keep the non-dominated solutions. The archive gets updated using an archiving
mechanism after each iteration.

Algorithm 14.3 (Generic Framework for MO-PSO)

functionMO-PSO (N : int, w,C1,C2: real);
begin

t ← 0;
At ← empty (∗ initialize empty archive ∗)

Initialize Pt : (∗ Initialization the same as in PSO ∗)

xi (t), vi (t) and x(personal)
i , for i = 1 to N ;

At ← Archiving(At , Pt ); (∗ Archiving ∗)

repeat
for i ∈ {1, . . . , N } do begin
x(best)
i (t) ← Selection(At ); (∗ Leader Selection Mechanism ∗)

φ1 ← sample random number uniformly from [0, 1];
φ2 ← sample random number uniformly from [0, 1];

http://dx.doi.org/10.1007/978-1-4471-7296-3_13
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vi (t + 1) ← w · vi (t) + φ1C1
(
x(personal)
i (t) − xi (t)

) + φ2C2
(
x(global)(t) − xi (t)

)
;

xi (t + 1) ← xi (t) + vi (t); (∗ update velocity and position ∗)

x(personal)
i (t + 1) ← Update (x(personal)

i (t), xi (t + 1));
(∗ update personal best memory ∗)

end
At ← Archiving(At , Pt ); (∗ Archiving ∗)

t ← t + 1;
until termination criterion is fulfilled;
return At ; (∗ return the archive ∗)

end

In the above algorithm, Pt refers to the swarm (population of individuals) and At

indicates the archive which also delivers the output for the algorithm. The functions
“Selection” and “Archiving” refer to the leader selection mechanism and archiving
methods explained in Sects. 14.4.1 and 14.4.2.

The function “Update” is used to update the personal best memory. The simplest
approach for updating the personal best is that it only gets updated if it is dominated
by xi . Therefore, if it is indifferent to xi (i.e., xi and x

(personal)
i do not dominate each

other) nothing will happen and the oldest non-dominated position will be kept in the
memory. Another approach can be to always replace the personal memory with xi
except if it dominates xi . This means if xi is indifferent to x(personal)

i , x(personal)
i is

updated to the value of xi and therefore we keep the newest non-dominated position
in the memory. In this case, the particle will not be dragged back to previously
explored regions, but is not much influenced by x(best)

i as long as it keeps finding
non-dominated solutions (Branke and Mostaghim 2006).

14.4.1 Leader SelectionMechanism

One of the main challenges in using PSO for multi-objective problems is that there
is no single optimal solutions and therefore there is no single x(best)

i (t). In this case,
there is a set of non-dominated solutions fromwhich each individual has to select one
as the leader towards it gets attracted. The way the particles select the leader is called
Leader Selection Mechanism. Usually the non-dominated solutions (often stored in
the archive At ) in each iteration are the good candidates for being selected as a leader.
The simplest leader selection mechanism is a random selection (Coello Coello and
Lechuga 2002). Each particle randomly selects one of the archive members. As
the goal of multi-objective optimization is to find a diverse set of solutions, the
following approaches are shown to bemore effective than the random leader selection
mechanism

14.4.1.1 RankingMethod
In this approach, the solutions in the archive are ranked based on the number of
solutions in the population which are being dominated by them. The archive member
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who dominates a large number of solutions will be selected with a lower probability
than a solution which dominates less solutions. This is due to the fact that around the
solutions which dominate a low number of other solutions must be explored more
than around those who already dominate a large number.

14.4.1.2 SigmaMethod
The main idea behind this approach is that all the solutions must be directed towards
the Pareto-front (Mostaghim and Teich 2003). Taking a minimization problem with
two objective functions f1(x) and f2(x), first a sigma value for the non-dominated
solutions in the archive are computed as follows:

σi = f 21 (xi ) − f 22 (xi )

f 21 (xi ) + f 22 (xi )
, for all i ∈ At (14.12)

Figure14.3 (left) shows an example. A unique property of the sigma values is that
all the solutions lying on one line have the same sigma value. For example, all the
solutions with f1 = 0 have σ = −1 independent from their f2 values. Similarly all
the solutionswith f1 = f2 have σ = 0whichmeans that a solutionwith f1 = f2 = 6
has the same sigma value as a solution with f1 = f2 = 10. After computing the
sigma values for the non-dominated solutions in the archive, the sigma values for the
individuals in the population must be computed. Each individual selects the solution
from the archive with the closest sigma value to its own, as its global solution.
Figure14.3 (right) illustrates an example. This approach forces the individuals to
move towards the origin of the objective space. The population is supposed to stop
at the Pareto-front.
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Fig.14.3 Sigma leader selection method: Computing sigma values for archive members (left). The
individuals from the population select the archive members with the closest sigma value (right)
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i

k

Fig. 14.4 Indicator-based leader selection method: Hypervolume is shown in gray (left). The
individual i selects k as the leader, since k has the largest contribution (shown in black) to the
hypervolume (right)

14.4.1.3 Indicator-BasedMethod
In this method, “Hypervolume” measurement is employed as an indicator for select-
ing the leaders (Padhye et al. 2009). Hypervolume is defined as the area or volume
dominated by the non-dominated solutions and is located between the non-dominated
solutions and a given reference point (Zitzler 1999; Fleischer 2003). Figure14.4 (left)
shows an example. In this leader selection mechanism the individual (who is looking
for a leader) is chosen as a reference point and the hypervolume is computed for the
entire archive with respect to the individual. The archive member whose contribution
to the hypervolume is maximum is chosen as the leader for the individual. In case
the individual is not dominated by the any of the archive members, there is no hyper-
volume and the random leader selection is being used. Figure14.4 (right) shows an
example. The individual i is considered to be the reference point. The contribution of
the archive member k to the hypervolume shown in black is the highest. Individual
i selects k as its leader.

14.4.2 Archiving

The archive At is meant to keep all the non-dominated solutions over the iterations.
Therefore at each iteration the newly found solutions in the population Pt and the
archivemembers At must be compared in terms of the domination criterionwith each
other in order to update the solutions in the archive. Considering a population size of
N and the archive size of N1, the computational effort for updating the archive for a
multi-objective problem with m objectives can easily grow. The following approach
is known to be very efficient (Deb et al. 2002).We combine the solutions from At into
Pt (with the size N + N1 = M) and make At empty. The non-dominated solutions
from Pt must be stored in At . The first element of Pt is inserted in At . The second
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individual in Pt is compared with the only member of At . If one of them dominates
the other one, only the non-dominated one is kept. If both are indifferent to each
other, both are kept. In the next step, the third element from Pt will be compared
with At and so on. This is shown in Algorithm 14.4.

Usually the archive At has a limited size. Limiting the size of the archive is
very useful due to the following reasons. First, from the decision maker’s point of
view, presenting the entire non-dominated set is useless when the size increases
a certain bound. Second, it is computationally very expensive to find the leaders
from an unlimited number of solutions in the archive. Therefore, if the size of the
non-dominated solutions exceeds the size of the archive, the so-called archiving
mechanism is used. Archiving is also known as a Diversity Preserving Method due
to the fact that most of the approaches try to keep a diverse set of solutions in the
archive. There are two goals for the archiving mechanisms: (1) The archive must
be kept domination-free, i.e., only non-dominated solutions are allowed to be kept.
Therefore every time the population gets updated, the archive must also be updated
and the dominated solutions must be deleted. (2) If the number of non-dominated
solutions increases the size limit of the archive, it must be pruned. In the following
three existing approaches are explained:

Algorithm 14.4 (Updating the archive)

function UpdateArchive (P: set , A: set); (∗ population P and the archive A ∗)

begin
M ←| P | + | A |;
P ← P ∪ A; (∗ combine the two sets ∗)

A ← empty; (∗ empty archive ∗)

i = 1; and A ← {pi } ∪ A (∗ insert the first element of P to A ∗)

for j ∈ {2, . . . , M} do begin (∗ j iterates over P ∗)

for k ∈ {1, . . . , | A |} do begin (∗ k iterates over A ∗)

if p j dominates ak (∗ remove ak and insert p j ∗)

then A ← A \ {ak} ∧ A ← A ∪ {p j };
else if ak dominates p j then break;
else A ← A ∪ {p j }; end (∗ keep ak and insert p j ∗)

end
end
return (A) (∗ return the archive ∗)

end

14.4.2.1 Clustering
The main aim of the clustering method is to prune a non-dominated set and generate
a representative subset, which maintains the characteristics of the original set. The
clustering technique (Zitzler 1999) used in SPEA is a hierarchical clusteringmethod,
which works iteratively by joining adjacent clusters until the required size of the set
is obtained. This method is first introduced by Morse (1980) and is named average
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Fig. 14.5 Archiving methods: Clustering (left) and Crowing Distance (right)

linkage method. At the beginning, each solution in the set is a cluster. Then the two
clusters, which are closest to each other, are joined to make a bigger cluster. This is
done iteratively, until the required number of clusters is achieved. The two clusters
are selected according to the nearest neighbor criterion to make a new cluster. At
the end, the solution with minimal average distance to other solutions inside each
cluster is kept and the others are removed. This is shown in Fig. 14.5 (left).

14.4.2.2 Crowding Distance
This approach was originally proposed in NSGA-II (Deb et al. 2002). The main idea
is to find the crowded areas in the objective space by assigning a crowding values to
the archivemembers. The crowding value represents the sumof the distances between
each archive member i and its two neighbors i − 1 and i + 1 in the objective space.
Therefore, small values are assigned to solutions in the crowded areas while those in
isolated areas get larger values. Additionally, in order to keep the extreme solutions,
the highest crowding values (e.g., ∞) are assigned to these solutions independent
from their crowding values. Fig. 14.5 (right) shows an example. The solution i has
a larger crowding values than the solution denoted by k. Algorithm 14.5 shows
the procedure for computing the crowding distances. f max

j and f min
j refer to the

maximum andminimum values of the objective function j and are used to normalize
the values.

Algorithm 14.5 (Crowding Distance)

function CD (A: set;) (∗ the archive A ∗)

begin
N ←| A |;
for i ∈ {1, . . . , N } do begin
di ← 0

end
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for j ∈ {1, . . . ,m} do begin
As ← sort(A, j); (∗ Sort A in terms of j ∗)

d1 = dN ← inf ; (∗ extreme solutions get the highest value ∗)

for i ∈ {2, . . . , N − 1} do begin
di ← di + f j (i+1)− f j (i−1)

f max
j − f min

j
; (∗ Compute distance to both of the neighbors ∗)

end
end

return d; (∗ return the crowding distance values ∗)

end

14.4.2.3 ε-Domination
This approach uses the idea from the ε-domination. Suppose we have a multi-
objective minimization problem. A solution x1 ∈ Ω is said to ε-dominate a solution
x2 ∈ Ω for some ε > 0 (denoted x1 ≺ε x2) if

1. fi (x1)/(1 + ε) ≤ fi (x2) ∀i = 1, . . . ,m.
2. fi (x1)/(1 + ε) < fi (x2) for at least one i = 1, . . . ,m.

Figure14.6 shows the concept of ε-domination. Accordingly, the ε-approximate
Pareto-front can be defined as follows. Let F ⊆ �m be a set of solutions and ε > 0.
The ε-approximate Pareto-front Fε ⊆ F contains all solutions x1 ∈ F which are not
ε-dominated by any other solution x2 ∈ F :

∀x2 ∈ F : ∃ x1 such that x1 ≺ε x2 (14.13)

We have to note that the set Fε is not unique and can contain a certain amount of
solutions depending on the ε-value (Papadimitriou and Yannakakis 2000; Laumanns
et al. 2002). For any finite ε and any set F with objective values 1 ≤ fi ≤ K , ∀i ∈

f1f 1

f 2 f 2

f 1

f2

ε

f f

dominated by f −dominated by f

/(1+ε)

/(1+ε)

Fig. 14.6 Domination and ε-domination in the objective space
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{1, . . . ,m}, there exists a set Fε containing at most |Fε| solutions (ε is considered to
be the same for all objectives)

|Fε| = O

[(
logK

log(1 + ε)

)m−1
]

(14.14)

This implies that there is an upper bound for the solutions in the set Fε, hence
the set has a limited size. Using ε-dominance instead of domination the size of the
approximated Pareto-front can be limited to an upper bound (Mostaghim and Teich
2003). It is obvious that the size of the archive depends on the ε-value. Hence using
this ε-dominance,we can limit the size of the archivewithout investing computational
effort as in clustering or crowding methods. Applying the ε-dominance in MO-PSO
techniques also has influence on the convergence and diversity of the solutions.While
the other archiving approaches can deliver a good spread of the solutions along the
Pareto-front, the spread of the solutions using this approach can be influenced by the
shape (the degree of convexity) of the front.

14.5 Many-Objective Particle SwarmOptimization

Multi-objective optimization problems with more than three objectives are called
many-objective problems and are very difficult to be solved using the definition of
domination, as the majority of the populationmembers (even in the first iteration) are
non-dominated. This is particularly a challenge for MO-PSO as the leader selection
mechanisms cannot guide the population to get closer to thePareto-front. The existing
Many-Objective Particle Swarm Optimization (Ma-PSO) methods either use several
swarms or use ranking methods instead of the domination in the leader selection
mechanism. In the latter case, the leader selection mechanisms use a ranking method
and select the best ranked solutions as the leaders. More precisely, each solutions in
the population selects one of the archivemembers using a selectionmechanism (such
as tournament or fitness proportional) based on the ranks of the archive members. In
the following we study two ranking methods.

14.5.1 Ranking Non-dominated Solutions

Suppose that we have a set of N non-dominated solutions. The so-called weighted
average ranking (Bentley and Wakefield 1997; Corne and Knowles 2007) assigns a
rank to a non-dominated solution by counting the number of objectives in which it
is better than the other non-dominated solutions. Consider the two non-dominated
solutions xi and x j . We compute a vector ai j with m elements as follows:

ai jk =
⎧⎨
⎩

1, if fk(xi ) < fk(x j )
0, if fk(xi ) = fk(x j )

−1, if fk(xi ) > fk(x j )
(14.15)
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where k = 1, · · · ,m and the corresponding rank R1(xi ) for the non-dominated solu-
tion xi is:

R1(xi ) =
m∑

k=1

N∑
j=1, j �=i

{(N + 1) − ai jk} (14.16)

This rankingmechanism considers the differences between the objective values in
terms of being better or not. For each solution, we measure the number of objectives
that are better than the other solutions and the rank is the sum of them. If a solution
is better in most of the objectives, it will obtain a lower (better) rank.

14.5.2 Distance Based Ranking

This ranking method ranks a non-dominated solution in terms of both its number of
objectives which are better than the others and additionally the distances between
its objective values to the others (Mostaghim and Schmeck 2008). In other words,
this ranking mechanism favors diversity among the archive members. First we com-
pute a vector di j = (| f1(xi ) − f1(x j )|, . . . , | fk(xi ) − fk(x j )|) which measures the
absolute values of the differences between the objectives of the two solutions xi and
x j . Then, the rank of each solution can be computed as

R2(xi ) =
m∑

k=1

N∑
j=1, j �=i

di jk (14.17)

Here, in the contrary to R1 ranks from above, the solutions with high (better) ranks
indicate the preferred solutionswhich play a key role in keeping the information about
the uncrowded areas in the objective space.

14.6 Ant Colony Optimization

Ant colony optimization (ACO) (Dorigo 1992; Dorigo and Stützle 2004) is inspired
by the path-finding behavior of certain species of ants. Since food from a discov-
ered source has to be transported to the nest, many species of ants form “transport
trails,” which aremarked by “odor signatures” of secreted chemical substances called
pheromones (from the Greek φέρειν: to bear, to carry and ’oρμή: impetus). Since
most ants are practically blind, pheromones are (besides sound and touch) their main
means of communication. By following pheromone traces left by their fellows, ants
find theirway to a discovered food source. The amount of secreted pheromone signals
both the quality and the amount of the discovered food.

The process of leaving traces in the environment, which trigger actions of other
individuals, is commonly called stigmergy (from the Greek στ íγμα: mark, sign and
’éργ oν: work, action). Stigmergy enables ants to discover and follow shortest paths
without having any global overview of the situation. All they need to adapt their
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behavior to the global requirements is local information. Intuitively, starting from
a random exploration, the shortest path receives more pheromone than other paths,
because it is traversed by more individuals in the same amount of time.

A striking illustration of this phenomenon is the so-called double-bridge exper-
iment (Goss et al. 1989). In this experiment the nest of an ant colony of the species
Iridomyrmex humilis was connected to a food source by a double bridge, the two
branches of which had different length (see Fig. 14.7 for a sketch). Since the ants are
practically blind, they are unable to see which side of the bridge is shorter. Due to
the construction of the bridge they also cannot derive any information from the angle
at which the two branches fork off the initial path (see Fig. 14.7: both branches start
with 45◦; the longer branch changes its direction only later).

In most of the trials (Goss et al. 1989) conducted, almost all ants took the shorter
branch of the bridge after only a few minutes. This phenomenon can be explained
as follows (see Fig. 14.7, in which the amount of deposited pheromone is indicated
by shades of gray): at the beginning, both branches are chosen by the same number
of ants (that is, the branches are chosen with the same probability), because there
is no pheromone on either of them (steps 1 and 2 in Fig. 14.7). However, the ants
following the shorter branch reach the food source earlier (simply because a shorter
pathmeans less travel time, step 3).Ants returning from the food source observemore
pheromone on the shorter branch, because more ants have already reached the food
source on this branch (and more ants mean more secreted pheromone, steps 4 and 5).
This leads to an increasing preference of the shorter branch, so that after some time
the shorter branch is chosen almost exclusively (step 6). The core principle here is
that the shorter path is systematically reinforced, which is also called auto-catalysis:
Themore pheromone is on a path, the more ants choose this path; more ants traveling
a path deposit more pheromone on it and so on.

Note that the shortest path can be found only if the ants deposit pheromone in both
directions, that is, on theway from the nest to the food and on theway from the food to
the nest. Suppose, for instance, that they deposited pheromone only on the way to the
food source. Although the first ants returning from the food source choose the shorter
path (because there is more pheromone on this path, see the discussion above), the
amount of pheromone on this path is not systematically increased, because according
to our assumption the ants do not deposit pheromone on their way back from the food
source. The initial pheromone difference is rather eventually equalized by the ants
that arrive (though somewhat later) on the longer path. The same argument applies
for the opposite direction, at least if we assume that the ants cannot remember which
path they came on and thus choose the return path randomly based on the amount of
pheromone: in this case, the pheromone difference would have to be brought about
by ants returning on the shorter path and thus arriving earlier at the nest. Although
initially ants starting out from the nest after the first ants have returned from the
food source observe a pheromone difference, this difference is eventually equalized
by the ants returning on the longer branch. As a consequence, no preference for the
shorter path can develop.

Of course, due to random fluctuations in selecting a path (the ants choose essen-
tially randomly with probabilities corresponding to the amount of pheromone), the
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search may still converge to one of the branches under such conditions. That is, even-
tually almost all ants may choose the same branch of the bridge. However, whether
this is the shorter or the longer branch is entirely random.

Furthermore, note that (under the original conditions, that is, pheromone is
deposited in both directions) the shortest path is found only if both branches exist
from the beginning and neither contains any pheromone: a preference for an estab-
lished path (markedwith pheromone) ismaintained. This plausible claim is supported
by a second bridge experiment (Goss et al. 1989): in an initial setup the nest and the
food source were connected only by the longer branch of the bridge. The second,
shorter branch was added only after some time. In this setup the majority of the
ants kept using the longer branch, which they had established in the early stage of
the experiment. Only in very rare cases the ants switched to the shorter path (likely
caused by a strong random fluctuation in the path selections).

The described natural principle can be transferred to computer-aided optimization
by considering the problem of finding shortest paths inweighted graphs, for example,
the shortest path between twogiven vertices. Each ant constructs a candidate solution.
It starts at one of the given vertices and then moves from vertex to vertex, choosing
the edge to follow according to a probability distribution that is proportional to the
amount of pheromone it observes on the edges.

Unfortunately, a fundamental problem of such a straightforward approach are
cycles traversed by the ants, because they introduce a tendency to reinforce them-
selves: if an ant traverses a cycle, the pheromone deposited by it makes it likely that
the ant traverses the same cycle again. This drawback is counteracted by depositing
pheromone only after the complete path has been constructed. In addition, before
pheromone is deposited, any cycles that a path may contain are removed.

Another potential problem is that the search may focus on solution candidates
that are constructed early in the process. Since these solution candidates receive
pheromone, there is a tendency to stick to them (or minor variations of them). This
can lead to premature convergence, similar to what we studied in Sect. 12.2.2 for
evolutionary algorithms. In order to handle this problem, it is common to introduce
pheromone evaporation (which plays only a minor role in nature). Other benefi-
cial extensions and improvements include making the amount of pheromone that
is deposited depending on the quality of the constructed candidate solution and the
introduction of heuristics to improve the edge selection, for example, by considering
not only the pheromone, but also the weight of the edge.

With these considerations it should be clear that ant colony optimization is well
suited to tackle the traveling salesman problem (cf. Sect. 11.6). We represent this
problem by an n × nmatrixD = (di j )1≤i, j≤n , where n is the number of cities and the
di j are the distances between the cities i and j . Obviously, ∀i ∈ {1, . . . , n} : dii = 0.
However, D need not be symmetric, that is, it may be di j �= d ji for some i and j .
We desire to find a round trip through all cities that has minimum length. Formally,
we try to find a permutation π of the numbers {1, . . . , n} that minimizes the sum of
the edge weights of a tour that visits the cities in the order given by π .

Corresponding to the distance matrix D, pheromone deposits are represented by
ann × nmatrixΦ = (φi j )1≤i, j≤n . Intuitively, amatrix elementφi j , i �= j , states how

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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desirable it is to visit city j directly after city i , while the φi i are not used (formally,
we may set them to 0 for all i). Like D, the matrix Φ need not be symmetric. The
matrix elements φi j , 1 ≤ i, j ≤ n, i �= j , are initializedwith the same arbitrary small
value ε. That is, at the beginning every edge carries the same amount of pheromone
and thus there is no preference between the edges. As an alternative, the pheromone
deposits may be initialized with values that are inversely proportional to the edge
weights. Following the general description given above, the pheromone values are
used to determine the probability with which the next city to visit is chosen in the tour
construction process. They are updated based on the quality of constructed round
trips by depositing pheromone on the edges of good trips.

More formally, we proceed as follows: each ant constructs a solution by travers-
ing a (random) Hamiltonian cycle. In order to avoid that an already visited city is
revisited, we endow each ant with a “memory”, consisting of the set C of indices of
the cities that have not been visited yet. (Note that this deviates from the biological
prototype!) An ant constructs a round trip (Hamiltonian cycle) as follows:

1. The ant starts in an arbitrary city (randomly chosen).
2. The ant observes the pheromones on the connections from its current city i to any

city j it has not yet visited. Then it chooses to move to city j with the probability

pi j = φi j∑
k∈C φik

,

where C is the set of indices of cities that have not been visited and φi j is the
amount of pheromone on the connection from city i to city j .

3. The ant repeats step 2 until it has visited all cities.

After a round trip has been constructed, represented as a permutation π of the city
indices, the pheromone matrix Φ is updated according to

∀i ∈ {1, . . . , n} : φπ(i)π((i mod n)+1) ← φπ(i)π((i mod n)+1) + Q(π),

where Q is a function that measures the quality of the solution. A natural choice
for Q for the traveling salesman problem is the (scaled) inverse trip length

Q(π) = c ·
( n∑

i=i

dπ(i)π((i mod n)+1)

)−1
,

where c is a user-specified constant that controls the strength of the pheromone
changes. Intuitively, this means that the shorter the trip (and thus the better the
solution), the more pheromone is deposited on its edges.

In addition, after μ ants the pheromone is updated by pheromone evaporation

∀i, j ∈ {1, . . . , n} : φi j ← (1 − η) · φi j ,

where η is an evaporation factor (fraction of pheromone that evaporates).
The complete algorithm for the traveling salesman problem looks like this



322 14 Computational Swarm Intelligence

Algorithm 14.6 (Ant-Colony-Optimization-TSP)

function aco_tsp (D: matrix of real, μ: int, η: real) : list of int;
begin (∗ D = (di j )1≤i, j≤n : distance matrix ∗)

Φ ← (φi j )1≤i, j≤n (∗ μ: number of ants, η: evaporation ∗)

with φi j = ε for all i, j ; (∗ initialize the pheromone matrix ∗)

π best ← random permutation of {1, . . . , n};
repeat (∗ search loop ∗)

for a ∈ {1, . . . , μ} do begin (∗ construct candidate solution ∗)

C ← {1, . . . , n}; (∗ set of cities to visit ∗)

i ← randomly choose start city from C ;
π ← (i); (∗ start tour at the chosen city and ∗)

C ← C \ {i}; (∗ remove it from the unvisited cities ∗)

while C �= ∅ do begin (∗ not all cities have been visited ∗)

j ← choose next city of the trip from C
with probability pi j = φi j/

∑
k∈C φik ;

π .append( j); (∗ add the chosen city to the tour and ∗)

C ← C \ { j}; (∗ remove it from the unvisited cities ∗)

i ← j ; (∗ finally go to the selected city ∗)

end
update pheromone matrix Φ with π and Q(π);
if Q(π) > Q(π best) then π best ← π ; end

end (∗ update the best tour ∗)

update pheromone matrix Φ with evaporation η;
until termination criterion is fulfilled;
return π best; (∗ return the best tour found ∗)

end

This basic algorithmmaybe extended in severalways. For instance,wemay introduce
a preference of cities that are close, in analogy to a nearest neighbor heuristics: choose
to move from city i to city j with probability

pi j = φα
i jτ

β
i j∑

k∈C φα
ikτ

β
ik

,

where C contains the indices of cities that have not been visited yet and τi j = d−1
i j .

A “greedy” approach introduces a stronger tendency to choose the best edge
(than is already present due to the fact that is has the highest probability) with a
user-specified probability pexploit. That is, the ant moves from city i to city jbest with

jbest = argmax j∈C φi j or jbest = argmax j∈C φα
i jτ

β
i j ,

with probability pexploit, while it chooses the next city according to the rule given
above (that is, based on probabilities pi j ) with probability 1 − pexploit.

Furthermore, we may draw on an elite principle by reinforcing the best known
round trip: after every iteration of the search (that is, after every μ ants), additional
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pheromone is deposited on the edges of the best round trip that has been found so
far. The amount of pheromone can conveniently be specified as the number of ants
that traverse this tour (in addition to the tours constructed in the normal process).

Further variants include rank-based updating, in which pheromone is deposited
only on the edges of the bestm solution candidates of the last iteration (consisting of
the runs of μ ants), and maybe also on the best solution candidate found so far. This
approach can be seen as analogous to rank-based selection (cf. Sect. 12.2.6), whereas
the standard approach is analogous tofitness proportionate selection (cf. Sect. 12.2.1).
Strict elite principles are extreme forms of rank-based updating: pheromone is
deposited only on the best solution candidate of the last iteration or even only on
the best solution found so far. However, this approach carries the risk of premature
convergence and thus of getting stuck in a local optimum.

In order to avoid extreme values of the pheromone deposits, it can be advisable to
introduce lower and upper bounds for the amount of pheromone on an edge. They
correspond to lower and upper bounds for the probability of selecting an edge and
thus help to enforce a better exploration of the search space (though at the price of
slower convergence). A similar effect can be achieved by restricted evaporation:
pheromone evaporates only from edges that have been traversed in the last iteration.
This reduces the risk of pheromone deposits becoming very small.

Improvements of the standard approach, which are meant to lead to better solution
candidates, are local improvements of the round trip (like removing edge crossings,
which obviously cannot be optimal). More generally, we may consider simple oper-
ations as they could be used in a hill climbing approach (cf. Sect. 11.5.2) and thus try
(in a limited number of steps) to optimize solution candidates locally. Among such
operations are: exchange of cities that are visited in consecutive steps, permutation
of adjacent triplets, “inverting” a part of a round trip (cf. Sect. 11.6) etc. More costly
local optimization should only be considered to improve the best solution candidate
before it is returned from the search procedure.

A program illustrating ant colony optimization for the traveling salesman problem
(containing several of the mentioned improvements) can be found at

http://www.borgelt.net/acopt.html

In order to apply ant colony optimization to other optimization problems, the
problem has to be formulated as a search in a graph. In particular, it must be possible
to describe a solution candidate as a set of edges. However, these edges need not
form a path. As long as there is an iterative procedure with which the edges of
the set can be chosen (based on pheromone-described probabilities), ant colony
optimization is applicable.Evenmoregenerally, ant colonyoptimization is applicable
if solution candidates are constructed with the help of a series of (random) decisions,
where every decision extends a (partial) solution. The reason is that the sequence of
decisions can be interpreted as a path in a decision graph (also called construction
graph). The ants explore paths in this decision graph and try to find the best (shortest,
cheapest) path, which yields a best set or sequence of decisions.

http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_12
http://dx.doi.org/10.1007/978-1-4471-7296-3_11
http://dx.doi.org/10.1007/978-1-4471-7296-3_11
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As a final remark we consider the convergence properties of ant colony optimiza-
tion. Referring to a “standard procedure,” in which (1) pheromone evaporates with
a constant factor from all edges, (2) new pheromone is deposited only on the edges
of the best found candidate solution (strict elite principle), and (3) the pheromone
values are bounded from below by φmin, the search converges in probability to the
optimal solution (Dorigo and Stützle 2004). That is, if we let the number of com-
putation steps go to infinity, then the probability that the optimal solution is found
approaches 1. If the lower bound φmin goes to 0 “sufficiently slowly” (for instance,
φmin = c

ln(t+1) where t is the iteration step and c is some constant), one can even
show that with the number of iterations going to infinity, every ant in the colony will
construct the optimal solution with a probability approaching 1.
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15Introduction to Fuzzy Sets
andFuzzy Logic

Many propositions about the real world are not either true or false, rendering classical
logic inadequate for reasoning with such propositions. Furthermore, most concepts
used in human communication do not have crisp boundaries, rendering classical sets
inadequate to represent such concept. The main aim of fuzzy logic and fuzzy sets is
to overcome the disadvantages of classical logic and classical sets.

15.1 Natural Languages and Formal Models

Classical logic and mathematics assume that we can assign one of the two values,
true or false, to each logical proposition or statement. If a suitable formal model
for a certain problem or task can be specified, conventional mathematics provides
powerful tools which help us to solve the problem. When we describe such a formal
model, we use a terminology which has much more stringent rules than natural
language. This specification often requires more work and effort, but by using it we
can avoid misinterpretations. Furthermore, based on such models we can prove or
reject hypotheses or derive unknown correlations.

However, in our everyday life formal models do not concern the interhuman
communication. Human beings are able to assimilate easily linguistic information
without thinking in any type of formalization of the specific situation. For example, a
person will have no problems to accelerate slowly while starting a car, if he is asked
to do so. If we want to automate this action, it will not be clear at all, how to translate
this advice into a well-defined control action. It is necessary to determine a concrete
statement based on an unambiguous value, i.e., step on the gas at the velocity of
half a centimeter per second. On the other hand, this kind of information will not be
adequate or very helpful for a person.

Therefore, automated control is usually not based on a linguistic description of
heuristic knowledge or knowledge from one’s own experience, but it is based on a

329
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formal model of the technical or physical system. This method is definitely a suitable
approach, especially if there is a good model to be determined.

However, a completely different technique is to use knowledge formulated in
natural language directly for the design of the control strategy. In this case, a main
problem will be the translation of the verbal description into concrete values, i.e.,
assigning “step on the gas slowly” into “step on the gas at the velocity of a centimeter
per second” as in the above-mentioned example.

When describing an object or an action, we usually use uncertain or vague con-
cepts. In natural language we hardly ever find exactly defined concepts like super-
sonic speed for the velocity of a passing airplane. Supersonic speed characterizes
an unambiguous set of velocities, because the speed of sound is a fixed entity and
therefore it is unambiguously clear whether an airplane flies faster than sound or
not. Frequently used vague concepts, like fast, very big, small and so on, make it
impossible to decide unambiguously whether a given value satisfies such a vague
concept or not. One of the reasons for this is that vague concepts are usually con-
text dependent. Talking about airplanes fast has a different meaning than using this
characteristic while referring to cars. But also if we agree that we are talking about
cars it is not easy to distinguish clearly between fast and non-fast cars. The difficulty
here is not to find a value telling us whether a car (or its top speed) is fast or not, but
we have to presuppose that such a value does exist. It is more likely that we will be
reluctant to fix such a value because there are velocities, we can classify as fast for
a car and there are some we can classify as not fast, and in between there is a wide
range of velocities which are considered as more or less fast.

This kind of imprecision should not be confusedwith the term uncertainty. Uncer-
tainty refers to whether an event occurs or not. It can also refer to the truth value
assigned to a statement. It is – for example – uncertain if a rolled dice will end
up showing a six or definitely any other number. In contrast to that it may take six
hours to create a document. The actual time this process takes may not be exactly six
hours but rather a little more or less. A detailed example for the difference between
imprecision in the sense of a gradual property and uncertainty will be discussed in
the next section.

15.2 Fuzzy Sets

The idea of fuzzy sets is to solve this problem by avoiding the sharp separation of
conventional sets into two values — complete membership or complete nonmem-
bership. Instead, fuzzy sets can handle partial membership. So in fuzzy sets we have
to determine to what degree or extent an element is a member of this fuzzy set.
Therefore, we define
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Definition 15.1 A fuzzy subset or simply a fuzzy set μ of a set X (the universe
of discourse) is a mapping μ : X → [0, 1], which assigns to each element x ∈ X a
degree of membership μ(x) to the fuzzy (sub)set μ. The set of all fuzzy (sub)sets of
X is denotedF (X).

A conventional set M ⊆ X can be viewed as a special fuzzy set by identifying it
with its characteristic function or indicator function.

IM : X → {0, 1}, x �→
{
1 if x ∈ M
0 otherwise

Seen in this way, fuzzy sets can be considered as generalized characteristic functions.

Example 15.1 Figure15.1 shows the characteristic function of the set of velocities
which are higher than 170km/h. This set does not represent an adequate model of
all high velocities. The jump at the value of 170 causes that 169.9km/h would not
be a high velocity but 170.1km/h would be. Therefore, a fuzzy set (Fig. 15.2) seems
to be more adequate to model the concept high velocity. �

Some authors use the term fuzzy set only for an imprecise concept A like high
velocity and call the membership function μA , that models the imprecise concept, a
characterizing or membership function of the fuzzy set or the imprecise conceptA .
When operating with fuzzy sets, there is no advantage to make this distinction. Only
from a philosophical point of view, onemight be interested in distinguishing between
an abstract imprecise concept and its concretemodel in the form of a fuzzy sets. Since
we do not want to initiate a philosophical discussion in this book, we stick to our
restricted definition of a fuzzy set as a (membership) function, yielding values in the
unit interval.

Fig. 15.1 The characteristic
function of the set of
velocities that are higher
than 170km/h

Fig. 15.2 The fuzzy set μhv

of high velocities
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Besides the formal definition of a fuzzy set as a mapping to the unit interval, there
are also other notations which are preferred by some authors, but we will not use
them in this book. In some publications, a fuzzy set is written as a set of pairs of
the elements of the underlying set and the corresponding degrees of membership in
the form of {(x, μ(x)) | x ∈ X} following the fact that in mathematics a function is
usually formally defined as a set of pairs, each consisting of one argument of the
function and the image of this argument. A little bit more misleading is the notation
of a fuzzy set as a formal sum

∑
x∈X x/μ(x) with an at most countable reference

set X or as an “integral”
∫

x∈X x/μ(x) for an uncountable reference set X.

15.3 Interpretation of Fuzzy Sets

Wewant to emphasize here, that fuzzy sets are formalized in the framework of “con-
ventional” mathematics, just as probability theory is formulated in the framework
of “conventional” mathematics. In this sense fuzzy sets do not open the door to a
“new” kind of mathematics, but define merely a new branch of mathematics.

Knowing that a strictly two-valued view is not suitable to model imprecise con-
cepts adequately, which can be handled by human beings easily, we have introduced
the concept of fuzzy sets on a purely intuitive basis. In applicationswe have to specify
precisely, how to interpret degrees of membership. The meanings of 1 as complete
membership and 0 as complete non-membership are obvious, but we also have to
answer the question, how to interpret a degree of membership of 0.7 and why the
degree of 0.7 is better suited than the degree of 0.8 for membership for a certain
element.

15.3.1 Gradual Membership is Different from Probability

Gradual membership is a completely different idea than the concept of probability.
A fuzzy set μ must not be regarded as a probability distribution or density, because,
in general, μ does not satisfy the condition that is required in probability theory for
density functions. Also the degree of membership μ(x) of an element x to the fuzzy
set μ should not be interpreted as the probability that x belongs to μ (namely that
the integral over the whole domain is unity).

To illustrate the difference between a gradual property and probability we take
a look at the example below, taken from (Bezdek 1993). Let U denote the “set”
of nontoxic liquids. A person dying of thirst receives two bottles A and B and the
information that bottle A belongs to U with a probability of 0.9 and bottle B has
a degree of membership of 0.9 to U. From which of the bottles should the person
drink? The probability of 0.9 for A could mean that the bottle was selected from a set
of ten bottles in a room of which nine are filled with water and one with cyanide. But
the degree of membership of 0.9 means that the liquid is “reasonably” drinkable. For
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instance, B could contain a juice which is already past its best-before date. Therefore
the thirsty person should choose bottle B.

The liquid in bottle A has the property of being nontoxic either completely (with
a probability of 0.9) or not at all (with a probability of 0.1). The liquid in bottle B
satisfies the property of being nontoxic in a merely gradual way.

Probability theory and fuzzy sets serve us for modeling completely different phe-
nomena — namely, on the one hand the quantification of the uncertainty whether
an event may happen and on the other hand how much a property or statement is
satisfied or to what degree a property is fulfilled.

Many different interpretations of fuzzymembership degrees have been suggested,
a large part ofwhich are highly applicationdependent. Tomentiononly a few interpre-
tations, membership degrees are used to express the similarity to references values,
to convey preferences, to model degrees of possibility, etc.

15.3.2 Fuzzy Sets for Modeling Similarity

The most popular interpretation of a fuzzy membership degree is the similarity
to reference values: To obtain a numeric value for a gradual membership in this
interpretation it is (most) natural to compare the object under consideration with one
that definitely belongs to the concept under consideration (and possibly also with
one that definitely does not belong to this concept). The membership value can then
be derived from the similarity of the two objects: the more similar an object is to
an object that unambiguously belongs to the considered concept one, the higher the
membership degree. And analogously: the more similar an object is to one that can
definitely be excluded from a concept, the lower the membership degree (Wang et
al. 1995). As in most cases, in which similarity has to be formalized, we revert to
distance measures: the similarity between two objects is higher, the smaller their
distance.

For example, let us consider the fuzzy set μhv of high velocities from Fig. 15.1 on
p. 331. The term high velocity (e.g., in the context of cars on German highways) can-
not be described adequately with a sharp boundary at 170km/h. However, a velocity
of 200km/hmay be described as “high”without any doubt. But in between there exist
many possible velocities for which it is not so clear whether they should be labeled
as “high velocity” or not. To model this situation we could use fuzzy sets similar
to those in Fig. 15.2: Velocities which are clearly “high” receive the membership
degree 1.0, velocities which are clearly not “high” receive the membership degree
0.0. To velocities in between degrees of membership are assigned depending on their
distance to clearly high (and clearly not high) velocities. In the simplest case (and
in this example) we use linear interpolation, i.e., the distance to the most extreme,
unambiguous value is directly converted into a membership degree. Of course, we
have to consider the question how to obtain these unambiguous values (that is the
reference values for similarity or distance calculations) if we use such an approach.
In most cases, however, this is not a critical issue since close to these boundaries
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membership degrees are still (very) high. As such they can hardly be distinguished
from unambiguous values (which receive a membership degree of 1.0).

In its purest formwe find the interpretation of membership degrees as similarity to
reference values in fuzzy clustering (see Sect. 20.2). Besides fuzzy clustering, fuzzy
control (see Chap.19) is the area in which an interpretation of membership degrees
as similarity is most common.

15.3.3 Fuzzy Sets for Modeling Preference

Closely related to this interpretation is the expression of preferences: Here member-
ship degrees convey which values (or objects) should be preferred to others. In this
case,membership degrees are to be interpreted ordinally, i.e., they are ordered andwe
can decide which is higher (and as consequence we prefer the value or object whose
membership degree is higher). Depending on the source of the preference ordering it
may also be possible, for example, to use metric membership degrees, if preferences
are associated with some kind of costs or utilities. In such a case, we prefer the
value or object that yields lower costs or higher utility or which is considered to be
of superior quality based on some other consideration (Fodor and Roubens 1994).
The interpretation of membership degrees as preference is often closely related to
an interpretation as similarity, since a preference ordering can be derived from the
similarity of a given object to an ideal object or an optimal value. The interpretation
of membership degrees as preferences is often found in preference modeling and
fuzzy decision making theory (Kacprzyk 1986; Bellman and Zadeh 1970; Herrera
and Herrera-Viedma 2000) as well as fuzzy optimization (especially in the fuzzy
variants of linear programming).

15.3.4 Fuzzy Sets for Modeling Possibility

The third interpretation of a fuzzy set is used to express possibility. It is used to
quantify the state of knowledge of an agent. The objective is to distinguish between
what is surprising from what is expected, and what is plausible from what is less
plausible. Possibility degrees represent a flexible restriction on what is the actual
state with the following convention:μ(u) = 0 means that u is rejected as impossible,
μ(u) = 1 means that u is totally possible, and the larger μ(u) is, the more plausible
u is. This interpretation is often used in intelligent data analysis, as we will discuss
in more detail in Chap.20.

15.3.5 Consistent Interpretations of Fuzzy Sets in Applications

Unfortunately, a stringent interpretation of fuzzy sets is rarely maintained in appli-
cations and this is one of the reasons why inconsistencies may occur, if fuzzy sets
are applied only on an intuitive basis. If we interpret fuzzy sets as generalized char-

http://dx.doi.org/10.1007/978-1-4471-7296-3_20
http://dx.doi.org/10.1007/978-1-4471-7296-3_19
http://dx.doi.org/10.1007/978-1-4471-7296-3_20
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acteristic functions, there no is ultimate reason for choosing the unit interval as the
canonical extension of the set {0, 1}. In principle, it is possible that any linearly
ordered set or — more generally — a lattice L might be better suited than the unit
interval. In this case, one speaks of L fuzzy sets. But even if we agree on the unit
interval as the set of possible degrees of membership, we should explain in which
sense or as what kind of structure we understand it. Although a metric interpretation
of the unit interval is generally very tempting (due to its mathematical properties), it
can be viewed as a purely ordinal scale, ignoring its metric structure. That is, only the
linear ordering of the numbers is considered for expressing preferences, their numer-
ical values are disregarded. In this case, the interpretation of a number between 0
and 1 as a degree of membership makes sense only if it is compared (in the sense
of greater or smaller) to another degree of membership, but we cannot consider the
numerical difference between any two degrees of membership. Thus can we express
that one element belongs more to a fuzzy set than another element, but we cannot say
by how much more (even though the fact that the membership degrees are numbers,
and thus we can formally subtract them from each other, seems to allow for such a
statement).

A problem resulting from this purely ordinal view of the unit interval is the incom-
parability of degrees of membership stated by different persons. The same difficulty
occurs if we compare grades. Two examinees receiving the same grade from dif-
ferent examiners may have performed very differently. However, under normal cir-
cumstances, the scale of grades used for examinations is not seen as a purely ordinal
scale. Pointing out which performance or which amount of mistakes leads to which
grade is an attempt to make it possible to compare grades given by different exam-
iners. With the canonical metric quantifying the distance between two numbers and
operations like addition and multiplication the unit interval has a considerably richer
structure than the linear ordering of the numbers. As a consequence, a metric inter-
pretation of numeric membership degrees is always highly tempting and therefore
it is usually better (at least from a psychological point of view) to understand the
unit interval as a metric scale in order to obtain a more concrete interpretation of
the degrees of membership and to avoid the confusion that metric operations like
subtraction, even though they look natural enough on a number scale, are not allowed
if the scale is actually only ordinal. We will discuss the issue of semantics of degrees
of membership and fuzzy sets in the application oriented chapters. For the moment,
we confine ourselves to a naive interpretation of degrees of memberships and say
that the property of being an element of a fuzzy set can be satisfied to some degree.

15.4 Representation of Fuzzy Sets

After having introduced fuzzy sets formally as functions from a universe of discourse
to the unit interval, we now discuss different methods for specifying concrete fuzzy
sets and adequate techniques for representing fuzzy sets as well as for storing them
in a computer.
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15.4.1 Definition Based on Functions

If the universe of discourse X = {x1, . . . , xn} is a finite, discrete set of objects xi, a
fuzzy set μ can, in general, only be specified by the degrees of membership μ(x) for
each element x ∈ X, i.e., in the form of μ =̂ {(

x1, μ(x1)
)
, . . . ,

(
xn, μ(xn)

)}
.

In most of the cases, we will consider fuzzy sets here, the universe of discourse X
will be the domain of a real-valued variable, i.e., a subset of the real line, usually an
interval. Then a fuzzy set μ is a real function taking values in the unit interval and
can be illustrated by drawing its graph. With a purely graphical definition of fuzzy
sets membership degrees of the single elements can only be specified up to a certain,
quite rough precision leading to difficulties and errors in further calculations. Thus
the graphical representation is only suitable for illustration purposes.

Usually fuzzy sets are used for modeling expressions — sometimes also called
linguistic expressions in order to emphasize the relation to natural language, e.g.,
“about 3,” “of middle height” or “very tall” which describe an imprecise value or an
imprecise interval. Fuzzy sets associatedwith such expressions shouldmonotonically
increase up to a certain value andmonotonically decrease from this value. Such fuzzy
sets are called convex.

Figure15.3 shows three convex fuzzy sets which could model the expressions
“about 3,” “of middle height” and “very tall.” In Fig. 15.4 we see a non-convex fuzzy
set. Note that the convexity of a fuzzy set μ does not imply that μ is also convex as
real function.

For applications it is very often sufficient to consider only a few basic forms
of convex fuzzy sets, so that a fuzzy set can be specified uniquely by a few para-
meters. Typical examples of such parametric fuzzy sets are triangular functions

Fig. 15.3 Three convex
fuzzy sets

Fig. 15.4 A non-convex
fuzzy set
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(cf. Fig. 15.5)

Λa,b,c : R → [0, 1], x �→
⎧⎨
⎩

x−a
b−a if a ≤ x ≤ b
c−x
c−b if b ≤ x ≤ c
0 otherwise,

where a < b < c holds.
Triangular functions are special cases of trapezoidal functions (cf. Fig. 15.5)

Πa′,b′,c′,d′ : R → [0, 1], x �→

⎧⎪⎪⎨
⎪⎪⎩

x−a′
b′−a′ if a′ ≤ x ≤ b′
1 if b′ ≤ x ≤ c′
d′−x
d′−c′ if c′ ≤ x ≤ d′
0 otherwise,

where a′ < b′ ≤ c′ < d′ holds. We also permit the following parameter combina-
tions: a′ = b′ = −∞ or c′ = d′ = ∞. The resulting trapezoidal functions are shown
in Fig. 15.6. For b′ = c′ we have Πa′,b′,c′,d′ = Λa′,b′,d′ .

If we want to use smooth functions instead of piecewise linear functions like
triangular or trapezoidal ones, bell curves in the form of

Ωm,s : R → [0, 1], x �→ exp

(−(x − m)2

s2

)

might be a possible choice. We have Ωm,s(m) = 1. The parameter s determines the
width of the bell curve.

Fig. 15.5 The triangular function Λa,b,c, the trapezoidal function Πa′,b′,c′,d′ and the bell curve
Ωm,s

Fig. 15.6 The trapezoidal
functions Π−∞,−∞,a,b,

Πa,b,c,d and Πc,d,∞,∞
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15.4.2 Level Sets

The representation of a fuzzy set as a function from the universe of discourse to the
unit interval, assigning a membership degree to each element is called vertical view.
Another possibility to describe a fuzzy set is the horizontal view. For each value α

of the unit interval, we consider the set of elements having a membership degree of
at least α to the fuzzy set.

Definition 15.2 Let μ ∈ F (X) be a fuzzy set over the universe of discourse X and
let 0 ≤ α ≤ 1. The (usual) set

[μ]α = {x ∈ X | μ(x) ≥ α}
is called α-level set or α-cut of the fuzzy set μ.

Figure15.7 shows the α-cut [μ]α of the fuzzy set μ for the case that μ is a
trapezoidal function. In this case, the α-cut is a closed interval. For an arbitrary
fuzzy set μ over the real numbers we have that μ is convex as a fuzzy set if all
its level sets are intervals. Figure15.8 shows an α-cut of a non-convex fuzzy set
consisting of two disjoint intervals.

The level sets of a fuzzy set have the important property of characterizing the fuzzy
set uniquely. When we know the level sets [μ]α of a fuzzy setμ for all α ∈ [0, 1], we
can determine the degree of membership μ(x) of any element x to μ by the equation

μ(x) = sup
{
α ∈ [0, 1] | x ∈ [μ]α

}
. (15.1)

Geometrically speaking, a fuzzy set is the upper envelope of its level sets.

Fig. 15.7 The α-level set or
α-cut [μ]α of the fuzzy set μ

Fig. 15.8 α-cut [μ]α of the
fuzzy set μ consisting of two
disjoint intervals
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Characterizing a fuzzy set through its level sets to work level-wise with operations
on fuzzy sets on the basis of usual sets, see Sect. 15.6.

The connection between a fuzzy set and its level sets is frequently used for the
internal representation of fuzzy sets in computers. But only the α-cuts for a finite
amount of selected values α, e.g., 0.25, 0.5, 0.75, 1, are used and the corresponding
level sets of the fuzzy set are saved. In order to determine the degree of membership
of an element x to the fuzzy set μ, Eq. 15.1 can be used, where the supremum is
only taken over a finite number of values for α. Thus we discretize the degrees of
membership and obtain an approximation of the original fuzzy set. Figure15.9 shows
the level sets [μ]0.25, [μ]0.5, [μ]0.75 and [μ]1 of the fuzzy setμ defined in Fig. 15.10.
If we only use these four level sets in order to represent μ, we obtain the fuzzy set

μ̃(x) = max
{
α ∈ {0.25, 0.5, 0.75, 1} | x ∈ [μ]α

}
in Fig. 15.11 as an approximation for μ.

Confining us to a finite number of level sets in order to represent or save a fuzzy
set corresponds to a discretization of the membership degrees. Besides this vertical
discretization we can also discretize the domain (horizontal discretization). Depend-
ing on the considered problem, we have to choose how fine the discretization should
be chosen in both directions. Therefore, no general rules for discretization can be
specified. In general, a refined discretization of themembership degrees seldom leads
to significant improvements of a fuzzy system. One reason for this is that the fuzzy
sets are usually determined heuristically or can only be specified roughly. Another
reason is that human experts tend to use a limited amount of differentiation levels or
degrees of acceptance or membership in order to judge a situation.

Fig.15.9 The α-level sets of
the fuzzy set μ for
α = 0.25, 0.5, 0.75, 1

Fig. 15.10 The fuzzy set μ
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Fig. 15.11 The
approximation of the fuzzy
set μ resulting from the
α-level sets

15.5 Fuzzy Logic

The notion fuzzy logic has three different meanings. In most cases the term fuzzy
logic refers to fuzzy logic in the broader sense, including all applications and theories
where fuzzy sets or concepts are involved.

On the contrary, the second (andnarrower)meaning of the term fuzzy logic focuses
on the field of approximative reasoning where fuzzy sets are used and propagated
within an inference mechanism as it is for instance common in expert systems.

Finally, fuzzy logic in the narrow sense,which is the topic of this section, considers
fuzzy systems from the point of view of multivalued logic and is devoted to issues
connected to logical calculi and the associated deduction mechanisms.

We cannot provide a complete introduction to fuzzy logic as a multivalued
logic (Hajek 1998). A detailed study of this aspect is found in (Gottwald 2003). In this
section, we will introduce those notions of fuzzy logic which are necessary or use-
ful to understand fuzzy controllers. In Sect. 19.4 about logic-based fuzzy controllers
on p. 410, we discuss some further aspects of fuzzy logic in the narrow sense. We
mainly need the concepts of (fuzzy) logic to introduce the set theoretical operations
for fuzzy sets. The basis for operations like union, intersection, and complement are
the logical connectives disjunction, conjunction, and negation, respectively. There-
fore we briefly repeat some fundamental concepts from classical logic in order to
generalize them to the field of fuzzy logic.

15.5.1 Propositions andTruthValues

Classical propositional logic deals with the formal handling of statements (proposi-
tions) to which one of the two truth values 1 (for true) or 0 (for false) can be assigned.
We represent these propositions by Greek letters ϕ, ψ etc. Typical propositions, for
which the formal symbols ϕ1 and ϕ2 may stand are

ϕ1 : Four is an even number.
ϕ2 : 2 + 5 = 9.

The truth value which is assigned to a proposition ϕ is denoted by [[ϕ]]. For the above
propositions we obtain [[ϕ1]] = 1 and [[ϕ2]] = 0. If the truth values of single proposi-
tions are known, we can determine the truth values of combined propositions using
truth tables that define the interpretation of the corresponding logical connectives.

http://dx.doi.org/10.1007/978-1-4471-7296-3_19
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Table 15.1 The truth value table for conjunction, disjunction, implication, and negation

The most important logical connectives are the logical AND ∧ (conjunction), the
logic OR ∨ (disjunction), the negation NOT ¬ and the IMPLICATION →.

The conjunction ϕ ∧ ψ of two propositions ϕ and ψ is true, if and only if both ϕ

and ψ are true. The disjunction ϕ ∨ ψ of ϕ and ψ obtains the truth value 1 (true),
if and only if at least one of the two propositions is true. The implication ϕ → ψ is
only false, if the antecedent ϕ is true and the consequent ψ is false. The negation ¬ϕ

of the proposition ϕ is false, if and only if ϕ is true. These definitions are shown
in the truth value tables for conjunction, disjunction, implication, and negation in
Table15.1.

This definition implies that the propositions

Four is an even number AND 2 + 5 = 9.

and
Four is an even number IMPLICATION 2 + 5 = 9.

are false, whereas the propositions

Four is an even number OR 2 + 5 = 9.

and
NOT 2 + 5 = 9.

are true. Formally expressed, this means that we have [[ϕ1 ∧ ϕ2]] = 0, [[ϕ1 → ϕ2]] =
0, [[ϕ1 ∨ ϕ2]] = 1 and [[¬ϕ2]] = 1.

The assumption that a statement is either true or false is suitable for mathemat-
ical issues. But for many expressions formulated in natural language such a strict
separation between true and false statements would be unrealistic and would lead to
counterintuitive consequences. If somebody promises to come to an appointment at
5 o’clock, his statement would have been false, if he came one minute later. Nobody
would call him a liar, although, strictly speaking, his statement was not true. Even
more complicated is the statement of being at a party at about 5. The greater the
difference between the arrival and 5 o’clock the “less true” the statement is. A sharp
definition of an interval of time corresponding to “about 5” is impossible.

Humans are able to formulate such “fuzzy” statements, understand them, draw
conclusions from them and work with them. If someone starts an approximately
four-hour-drive at around 11 o’clock and is going to have lunch for about half an
hour, we can use these imprecise pieces of information and conclude at what time
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more or less the person will arrive. A formalization of this simple issue in a logical
calculus, where statements can be either true or false only, is not adequate.

In natural language using fuzzy statements or information is not an exception
but normal. In a recipe nobody would replace the statement “Take a pinch of salt”
by “Take 80 grain of salt.” A driver will not calculate the distance he will need for
stopping his car abruptly on a wet road by using another friction constant in some
mathematical formula to calculate this distance. He will consider the rule: the wetter
the road, the longer the distance needed for breaking.

In order to model this human information processing in a more appropriate way,
we use gradual truth values for statements. This means a statement can not only be
true (truth value 1) or false (truth value 0) but also more or less true expressed by a
value between 0 and 1.

The connection between fuzzy sets and imprecise or fuzzy statements can be
described in the following way. A fuzzy set models a property that elements of the
universe of discourse can have more or less. For example, let us consider the fuzzy
set μhv of high velocities from Fig. 15.2 on p. 331. The fuzzy set represents the
property or the predicate high velocity. That means the degree of membership of a
specific velocity v to the fuzzy set of high velocities corresponds to the “truth value”
which is assigned to the statement “v is a high velocity.” In this sense, a fuzzy set
determines the corresponding truth values for a set of statements — in our example
for all statements we obtain, when we consider in a concrete velocity value for v. In
order to understand how to operate with fuzzy sets, it is first of all useful to consider
classical crisp propositions.

Dealing with combined propositions like “160km/h is a high velocity AND the
stopping distance is about 110m” requires the extension of the truth tables for logical
connectives like conjunction, disjunction, implication, or negation. The truth tables
shown in Table15.1 determine a truth function for each logic connective. For con-
junction, disjunction, and implication this truth function assigns to each combination
of two truth values (the truth value assigned to ϕ and ψ) one truth value (the truth
value of the conjunction, disjunction ofϕ andψ or the implicationϕ → ψ). The truth
function assigned to the negation has only one truth value as argument. If we denote
the truth function by w∗ associated with the logical connective ∗ ∈ {∧,∨,→,¬},
w∗ is a binary or unary function. This means

w∧, w∨, w→ : {0, 1}2 → {0, 1}, w¬ : {0, 1} → {0, 1}.
For fuzzy propositions, where the unit interval [0, 1] replaces the binary set {0, 1}

as set of possible truth values, we have to assign truth functions to the logic connec-
tives accordingly. These truth functions have to be defined on the unit square or the
unit interval.

w∧, w∨, w→ : [0, 1]2 → [0, 1], w→ : [0, 1] → [0, 1]
A minimum requirement we demand of these functions is that, limited to the val-
ues 0 and 1, they should provide the same values as the corresponding truth function
associated with the connectives of classical logic. This requirement says that a com-
bination of fuzzy propositions which are actually crisp (non-fuzzy), because their
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truth values are 0 or 1 were, coincide with the usual combination of classical crisp
propositions.

The most frequently used truth functions for conjunction and disjunction in fuzzy
logic are theminimumormaximum.Thatmeansw∧(α, β) = min{α, β},w∨(α, β) =
max{α, β}. Normally the negation is defined by w¬(α) = 1 − α. In his seminal
work (Zadeh 1965), Lotfi Zadeh introduced the concept of fuzzy sets and used these
functions for operating with fuzzy sets.

The implication is often understood in the sense of the Łukasiewicz implication

w→(α, β) = min{1 − α + β, 1}
or the Gödel implication

w→(α, β) =
{
1 if α ≤ β

β otherwise.

15.5.2 t-Norms and t-Conorms

Until now we have interpreted the truth values from the unit interval in a purely
intuitive way as gradual truths. So, choosing the truth functions for the logical con-
nectives in the above-mentioned way seems to be plausible but it is not unique at
all. Instead of trying to find more or less arbitrary functions, we might better use
an axiomatic approach where we define some reasonable properties a truth func-
tion should satisfy and thus confining the possible truth functions. We discuss this
axiomatic approach in detail for the conjunction.

Let us consider the function t : [0, 1]2 → [0, 1] as a potential candidate for the
truth function of a conjunction for fuzzypropositions. The truth value of a conjunction
of several propositions should not depend on the order in which the propositions
are considered. In order to guarantee this property t has to be commutative and
associative, that means

(T1) t(α, β) = t(β, α)

(T2) t(t(α, β), γ ) = t(α, t(β, γ ))

should hold for all α, β and γ .
The truth value of the conjunction ϕ ∧ ψ should not be less than the truth value

of the conjunction ϕ ∧ χ , if χ has a lower truth value than ψ . Therefore, we require
some monotonicity condition of t:

(T3) From β ≤ γ follows t(α, β) ≤ t(α, γ ),

for all α, β and γ . Because of the commutativity (T1), (T3) implies that t is nonde-
creasing in both arguments.

Furthermore, we require that the truth value of a proposition ϕ will be the same
as the truth value of the conjunction of ϕ with any true proposition ψ . For the truth
function t this leads to

(T4) t(α, 1) = α, for all α.
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Definition 15.3 A function t : [0, 1]2 → [0, 1] is called a t-norm (triangular norm),
if the axioms (T1)–(T4) are satisfied.

In the framework of fuzzy logic we should always choose a t-norm as the truth
function for conjunction (Klirsps and Yuan 1995; Klement et al. 2000). From the
property (T4) follows that for every t-norm t we have t(1, 1) = 1 and t(0, 1) =
0. From t(0, 1) = 0 we obtain t(1, 0) = 0 using the commutativity property (T1).
Furthermore, because of the monotonic property (T3) and t(0, 1) = 0 we must have
t(0, 0) = 0. In this way every t-norm restricted to the values 0 and 1 coincides with
the truth function given by the truth table of the usual conjunction.

We can verify easily that the discussed truth function t(α, β) = min{α, β} for the
conjunction is a t-norm. Other examples of t-norms are

Łukasiewicz t-norm: t(α, β) = max{α + β − 1, 0}
algebraic product: t(α, β) = α · β

drastic product: t(α, β) =
{
0 if 1 /∈ {α, β}
min{α, β} otherwise.

The minimum, the algebraic product and the Łukasiewicz t-norm are illustrated as
three-dimensional function graphs in Fig. 15.12.

These few examples show that the spectrum of the t-norms is very broad. The
limits are given by the drastic product, which is the smallest t-norm and which is
discontinuous, and the minimum, which is the greatest t-norm. Besides this, the
minimum can be considered as a special t-norms, since it is the only idempotent
t-norm which means that only the minimum satisfies the property t(α, α) = α for all
α ∈ [0, 1].

Only the idempotence of a t-norm can guarantee that the truth values of the propo-
sition ϕ and ϕ ∧ ϕ coincide, which at first sight seems to be a canonical requirement,
letting the minimum seem to be the only reasonable choice for the truth functions
for the conjunction in the context of fuzzy logic. However, the following example
shows that the idempotency property is not always desirable.

Example 15.2 A buyer has to decide between the houses A and B. The houses are
very similar in most aspects. So, he makes his decision considering the criteria good

Fig. 15.12 The t-norms tmin (minimum), tprod (algebraic product) and tluka (Łukasiewicz)
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price and good location. After careful consideration he assigns the following “truth
values” to the decisive aspects:

statement truth value [[ϕi]]
ϕ1 The price of house A is good. 0.9
ϕ2 The location of house A is good. 0.6
ϕ3 The price of house B is good. 0.6
ϕ4 The location of house B is good. 0.6

He chooses house x ∈ {A, B} for which the proposition “The price of house x is
good AND The location of house x is good” yields the greater truth value. This means
that the buyer will choose house A if [[ϕ1 ∧ ϕ2]] > [[ϕ3 ∧ ϕ4]] holds, and house B
otherwise. When we determine the truth value of the conjunction by the minimum,
we would obtain the value 0.6 for both of the houses and thus the houses would be
regarded as equally good. But this is counterintuitive because house A has definitely
a better price than house B and the locations are equally good. However, when we
choose a non-idempotent t-norm, e.g., the algebraic product or the Łukasiewicz t-
norm, as truth function for the conjunction, we will always favor house A. �

Besides the discussed examples for the t-norms there aremanyothers. In particular,
there are whole families of t-norms which can be defined in a parametric way. For
example, the Weber family

tλ(α, β) = max

{
α + β − 1 + λαβ

1 + λ
, 0

}

which determines a t-norm for each λ ∈ (−1, ∞). For λ = 0 it results in the
Łukasiewicz t-norm.

In most practical applications only the minimum, the algebraic product and the
Łukasiewicz t-norm are chosen. Therefore, wewill not consider the enormous variety
of other t-norms here. For further readings on t-norms, we refer the gentle reader to
(Butnariu and Klement 1993; Kruse et al. 1994).

In the same way as we have defined t-norms as possible truth functions for the
conjunction, we can define candidates for truth functions for the disjunction. Just
like the t-norms they should satisfy the properties (T1)–(T3). Instead of (T4) we ask
for

(T4’) s(α, 0) = α, for all α,

which means that the truth value of a proposition ϕ will be the same as the truth
value of the disjunction of ϕ with any false proposition ψ .

Definition 15.4 A function s : [0, 1]2 → [0, 1] is called t-conorm (triangular
conorm) if the axioms (T1)–(T3) and (T4’) are satisfied.
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t-norms and t-conorms are dual concepts in the following sense. Each t-norm
induces a t-conorm s by

s(α, β) = 1 − t(1 − α, 1 − β), (15.2)

and vice versa, from a t-conorm s we obtain the corresponding t-norm by

t(α, β) = 1 − s(1 − α, 1 − β). (15.3)

Equations15.2 and 15.3 correspond to De Morgan’s Laws

[[ϕ ∨ ψ]] = [[¬(¬ϕ ∧ ¬ψ)]] and [[ϕ ∧ ψ]] = [[¬(¬ϕ ∨ ¬ψ)]]

if we compute the negation using the truth function [[¬ϕ]] = 1 − [[ϕ]].
The t-conorms we obtain from the t-norms minimum, Łukasiewicz t-norm, alge-

braic, and drastic product by applying Eq.15.2 are

maximum: s(α, β) = max{α, β}
Łukasiewicz t-conorm: s(α, β) = min{α + β, 1}
algebraic sum: s(α, β) = α + β − αβ

drastic sum: s(α, β) =
{
1 if 0 /∈ {α, β}
max{α, β} otherwise.

The minimum, the algebraic sum and the Łukasiewicz t-conorm are illustrated as
three-dimensional function graphs in Fig. 15.13.

The duality between t-norms and t-conorms implies immediately that the drastic
sum is the greatest, the maximum is the smallest t-conorm, and the maximum is
the only idempotent t-conorm. Analogously to t-norms we can define parametric
families of t-conorms. Such as

sλ(α, β) = min

{
α + β − λαβ

1 + λ
, 1

}

which is the Weber family of the t-conorms.
Operating with t-norms and t-conorms, we should be aware that not all laws we

know for classical conjunction and disjunction hold also for t-norms and t-conorms.
For instance, minimum and maximum are not merely the only idempotent t-norms
or t-conorms, but also the only pair defined by duality (cf. Eq.15.2) which satisfies
the distribution laws.

Fig. 15.13 The t-conorms smax (maximum), ssum (algebraic sum) and sluka (Łukasiewicz)
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In the example of the man who wanted to buy a house we could see that the
idempotency of a t-norm is not always desirable. The same holds for t-conorms. Let
us consider the propositions ϕ1, . . . , ϕn which shall be connected in a conjunctive or
disjunctivemanner. The significant disadvantage of the idempotency is the following.
Applying the conjunction in terms of the minimum, the resulting truth value of the
connection of propositions depends only on the truth value of the proposition to
which the least truth value is assigned. Applying the disjunction in the sense of the
maximumonly the propositionwith the greatest truth value determines the truth value
of the disjunction of the propositions. We can avoid this disadvantage, if we give up
idempotency. Another approach is to use an averaging function, see Sect. 15.5.3.

In addition to the connection between t-norms and t-conorms, we can also find
connections between t-norms and implications. A continuous t-norm t induces the
residuated implication

→
t by the formula

→
t (α, β) = sup{γ ∈ [0, 1] | t(α, γ ) ≤ β}.

Thus we obtain by residuation the Łukasiewicz implication from the Łukasiewicz
t-norm and the Gödel implication from the minimum.

Later we will need the corresponding biimplication
↔
t which is defined by the

formula
↔
t (α, β) = →

t
(
max{α, β},min{α, β}) (15.4)

= t
(→

t (α, β),
→
t (β, α)

)
= min{→

t (α, β),
→
t (β, α)}.

This formula is motivated by the definition of the biimplication or equivalence in
classical logic in terms of

[[ϕ ↔ ψ]] = [[(ϕ → ψ) ∧ (ψ → ϕ)]].

Besides the logical operators like conjunction, disjunction, implication, or nega-
tion in (fuzzy) logic, there also exist the quantifiers ∀ (all) and ∃ (exists).

The universal quantifier ∀ and the existential quantifier ∃ are closely related to
the conjunction and the disjunction, respectively. Let us consider the universe of
discourseX and the predicateP(x). For instance,X could be the set {2, 4, 6, 8, 10} and
P(x) the predicate “x is an even number.” If the set X is finite, e.g., X = {x1, . . . , xn},
the statement (∀x ∈ X)(P(x)) is equivalent to the statement P(x1) ∧ · · · ∧ P(xn).
Therefore, in this case it is possible to define the truth value of the statement (∀x ∈
X)(P(x)) on the basis of the conjunction which means

[[∀x ∈ X : P(x)]] = [[P(x1) ∧ · · · ∧ P(xn)]].

If we assign the minimum to the conjunction as truth value function we obtain

[[∀x ∈ X : P(x)]] = min{[[P(x)]] | x ∈ X}
which can be extended to an infinite universe of discourse X by

[[∀x ∈ X : P(x)]] = inf{[[P(x)]] | x ∈ X}.
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Other t-norms than the minimum are normally not used for the universal quantifier,
since the non-idempotent property leads easily to the truth value zero in the case of
an infinite universe of discourse.

The same consideration about the existential quantifier leads to its definition

[[∃x ∈ X : P(x)]] = sup{[[P(x)]] | x ∈ X}.
If the universe of discourse for the existential quantifier is finite, the propositions
∃x ∈ X : P(x) and P(x1) ∨ · · · ∨ P(xn) are equivalent.

Example 15.3 As an example we consider the predicate P(x) with the interpretation
“x is a high velocity.” Let the truth value [[P(x)]] be given by the fuzzy set of the high
velocities from Fig. 15.2 on p. 331 which means [[P(x)]] = μhv(x). So, we have for
instance [[P(150)]] = 0, [[P(170)]] = 0.5 and [[P(190)]] = 1. Thus the statement∀x ∈
[170, 200] : P(x) (“All velocities between 170 and 200km/h are high velocities”) has
the truth value

[[∀x ∈ [170, 200] : P(x)]] = inf{[[P(x)]] | x ∈ [170, 200]}
= inf{μhv(x) | x ∈ [170, 200]}
= 0.5.

Analogously we obtain [[∃x ∈ [100, 180] : P(x)]] = 0.75. �

15.5.3 Aggregation Functions

The aggregation (or fusion) of several input values of the unit interval into one most
informative value is a basic task in handling quantitative information (Torra and
Narukawa 2007; Mesiar et al. 2015). Properties of the aggregation functions are
mostly related to the field of their application, such as multicriteria decision-making,
multivalued logics, or probability theory.

We used T-norms for modeling a kind of conjunctive aggregation: The result of
the fusion function T for the n values of the unit interval is always smaller than or
equal to the minimum, i.e.,

T(α1, . . . , αn) ≤ min {α1, . . . , αn}.
T-norms were originally used in the framework of probabilistic metric spaces
(Schweizer and Sklar 1983). The name triangular norm refers to the fact that in
the framework of probabilistic metric spaces t-norms are used to generalize triangle
inequalities of ordinarymetric spaces.Another class of conjunctive aggregation func-
tions is studied in the context of statistics: The dependency structure of a bivariate
random vector (X, Y) can be captured by so-called copulas. For each (X, Y) there is a
copulaC : [0, 1]2 → [0, 1] such thatP(X ≤ x ∧ Y ≤ y) = C(P(X ≤ x), P(Y ≤ y)).
A copula is a binary operation C on the unit interval that satisfies

C(0, x) = C(x, 0) = 0,

C(1, x) = C(x, 1) = x, and

if x < y and u < v then C(y, v) − C(y, u) − C(x, v) + C(x, u) ≥ 0
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for each x, y, u, v ∈ [0, 1].
Copulas have been used as truth functions of fuzzy conjunctions which are not

necessary associative (Neldsen 2006).
In the Example15.2 on p. 331 of the man who wanted to buy a house we can

also think of using a “compensatory” operator which is a compromise between
conjunction and disjunction. An example for such a compensatory operator is the
Gamma operator (Zimmermann and Zysno 1980)

Γγ (α1, . . . , αn) =
(

n∏
i=1

αi

)
·
(
1 −

n∏
i=1

(1 − αi)

)γ

with the parameter γ ∈ [0, 1]. For γ = 0 this results in the algebraic product, for
γ = 1 we obtain the algebraic sum. Another compensatory operator is of course the
arithmetical mean.

The arithmetic mean belongs to the class of averaging aggregation functions F,
which share the property

min {α1, . . . , αn} ≤ F (α1, . . . , αn) ≤ max {α1, . . . , αn}.
The ordered weighted averaging operator introduced in (Yager 1988) provides a
parametrized family of aggregation operators which have been used in many appli-
cations (Yager and Kacprzyk 1997).

The OWA (ordered weighted averaging) operator is defined by

F(α1, . . . , αn) =
n∑

i=1

wibi

where bi is the ith largest of the αj and wi are a collection of weights such that
wi ∈ [0, 1] and

∑n
i=1 wi = 1.

A convenient vector expression of this aggregation operator can be obtained if we
let W be an n-dimensional vector whose components are the wi and let B be an
n-dimensional vector whose components are the bi. We call W the weighting
vector and B the ordered argument vector. Using these vectors we can express
F(α1, . . . , αn) = WT B.

By selecting different manifestations of W we can implement different aggrega-
tions. Particularly notable among the operators that can be obtained are themaximum,
minimum, and the arithmetic mean. These are respectively obtained by the vectors
W where w1 = 1 and wi = 0 for i �= 1, W, where wn = 1 and wi = 0 for i �= n,
and WA where wi = 1

n . (Yager 1988; Yager and Kacprzyk 1997) discusses various
different examples of weighting vectors.

15.5.4 Basic Assumptions and Problems

In this section, about fuzzy logic we have discussed various ways of combining
fuzzy propositions. An essential assumption we have used in the section is that of
truth functionality. This means that the truth value of the combination of several
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propositions depends only on the truth values of the propositions, but not on the
individual propositions. This assumption holds in classical logic but not, for example,
in the context of probability theory or probabilistic logic. In probability theory, it is
not enough to know the probability of two events in order to determine the probability
that both events will occur simultaneously or at least one of them will occur. For
this we also need information about the dependency of these events. In the case
of independence, the probability that both events occur is the product of the single
probabilities, and the probability that at least one of the events will occur is the sum
of the probabilities if the two events exclude each other. We cannot determine these
probabilities without knowing the independence of the events.

We should be aware of the assumption of truth functionality in the framework of
fuzzy logic. It is not always satisfied. Coming back to the example of the man buying
a house, we gave reasons for using non-idempotent t-norms. If we use these t-norms,
like for instance the algebraic product, for propositions like “The price of the houseA
is good AND …AND the price of house A is good,” this combined proposition can
obtain a very small truth value. Depending on how we interpret the conjunction,
this effect might be desirable or might lead to inconsistency. If we understand the
conjunction in its classical sense, a conjunctive combination of a proposition with
itself should be equivalent to itself which is not satisfied for non-idempotent t-norms.
Another possibility is to understand the conjunction as a list of pro and con arguments
for a thesis or as a proof. The repeated use of the same (fuzzy) argument within a
proof might result in a loss of credibility and thus idempotency is not desirable, even
for a conjunction of a proposition with itself.

Fortunately, for fuzzy control these consideration are of minor importance,
because in this application area fuzzy logic is used in a more restricted context,
where we do not have to worry about combining the same proposition with itself.
More difficulties will show up, when we apply fuzzy logic in the framework of
complex expert systems.

15.6 Operations on Fuzzy Sets

Sections15.2 and 15.4 described how vague concepts can be modeled using fuzzy
sets and how fuzzy sets can be represented. In order to operate with vague concepts
or apply some kind of deduction mechanism to them, we need suitable operations
for fuzzy sets. Therefore, in this section operations like union, intersection, or com-
plement well known from classical set theory will be extended to fuzzy sets.

15.6.1 Intersection

The underlying concept of generalizing fundamental set-theoretic operations to fuzzy
sets is explained in detail for the intersection of (fuzzy) sets. For the other operations,
a generalization can be carried out in a straight forward manner analogously to
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intersection. For two ordinary sets M1 and M2 we have that an element x belongs to
the intersection of the two sets, if and only if it belongs to both M1 and M2. Whether
x belongs to the intersection depends only on the membership of x to M1 and M2 but
not on the membership of any other element y �= x toM1 andM2. Formally speaking,
this means

x ∈ M1 ∩ M2 ⇐⇒ x ∈ M1 ∧ x ∈ M2. (15.5)

For two fuzzy setsμ1 andμ2 we also assume that the degree of membership of an
element x to the intersection of the two fuzzy sets depends only on the membership
degrees of x toμ1 andμ2.We interpret the degree ofmembershipμ(x)of an element x
to the fuzzy set μ as truth value [[x ∈ μ]] of the fuzzy proposition “x ∈ μ,” that x is
an element of μ. In order to determine the membership degree of an element x to
the intersection of the fuzzy sets μ1 and μ2, we have to calculate the truth value of
the conjunction “x is an element of μ1 AND x is an element of μ2” following the
equivalence in Eq.15.5. The previously discussed concepts of fuzzy logic have told
us, how we can define the truth value of the conjunction of two fuzzy propositions.
Therefore, it is necessary to choose a suitable t-norm t as the truth function for the
conjunction. Thus we define the intersection of two fuzzy sets μ1 and μ2 (w.r.t. the
t-norm t) as the fuzzy set μ1 ∩t μ2 with

(μ1 ∩t μ2)(x) = t (μ1(x), μ2(x)) .

If we interpret the degree of membership μ(x) of an element x to the fuzzy set μ as
truth value [[x ∈ μ]] of the fuzzy proposition “x ∈ μ,” that x is an element of μ, the
definition of the intersection of two fuzzy sets can be written in the following way

[[x ∈ (μ1 ∩t μ2)]] = [[x ∈ μ1 ∧ x ∈ μ2]]

where we assign the t-norm t as truth function for the conjunction.
By defining the intersection of fuzzy sets on the basis of a t-norm, the properties

of the t-norm are inherited to the intersection operator: the axioms (T1) and (T2)
make the intersecting of fuzzy sets commutative and associative, respectively. The
monotonicity property (T3) guarantees that replacing a fuzzy setμ1 by a larger fuzzy
set μ2, which means μ1(x) ≤ μ2(x) for all x, can only lead to a larger intersection

μ1 ≤ μ2 implies μ ∩t μ1 ≤ μ ∩t μ2.

Axiom (T4) guarantees that the intersection of a fuzzy set with an ordinary set,
respectively, its characteristic function, results in the original fuzzy set limited to the
ordinary set with which we intersected it. If M ⊆ X is an ordinary subset of X and
μ ∈ F (X) a fuzzy set of X, we have

(μ ∩t IM) (x) =
{

μ(x) if x ∈ M
0 otherwise.

If not otherwise stated, the intersection of two fuzzy sets will be computed w.r.t. the
minimum t-norm. In this case, or when it is clear to which t-norm we refer, we will
write μ1 ∩ μ2 instead of μ1 ∩t μ2 for the case of t = min.
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Fig. 15.14 The fuzzy set
μ170−190 of the velocities not
much less than 170km/h and
not much greater than
190km/h

Fig. 15.15 Intersection
μhv ∩t μ170−190 of the fuzzy
sets μhv and μ170−190

calculated with the minimum
(solid black line) and the
Łukasiewicz t-norm (dashed
gray line)

Example 15.4 We consider the intersection of the fuzzy set μhv of high velocities
from Fig. 15.2 on p. 331 and the fuzzy set μ170−190 of the velocities not much less
than 170km/h and not much greater than 190km/h from Fig. 15.14. Both of them
are trapezoidal functions

μhv = Π150,180,∞,∞, μ170−190 = Π160,170,190,200.

Figure15.15 shows the intersection of the two fuzzy sets on the basis of theminimum
(solid line) and the Łukasiewicz t-norm (dashed line). �

15.6.2 Union

From the representation in Eq.15.5 we have derived the definition for the intersection
of two fuzzy sets. Analogously we can define the union of two fuzzy sets on the basis
of

x ∈ M1 ∪ M2 ⇐⇒ x ∈ M1 ∨ x ∈ M2.

This leads to
(μ1 ∪s μ2)(x) = s (μ1(x), μ2(x)) ,

as the union of the two fuzzy setsμ1 andμ2 w.r.t. the t-conorm s. In the interpretation
of the membership degree μ(x) of an element x to the fuzzy set μ as truth value [[x ∈
μ]] of the fuzzy proposition “x ∈ μ” we can define the union in the form of

[[x ∈ (μ1 ∪t μ2)]] = [[x ∈ μ1 ∨ x ∈ μ2]].

where we assign the t-conorm s as the truth function for the disjunction. As in the
case of the intersection, we will write μ1 ∪ μ2 instead of μ1 ∪s μ2 when we use the
maximum t-conorm or when it is clear which t-conorm we refer to.
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15.6.3 Complement

The complement of a fuzzy set is derived from the formula

x ∈ M ⇐⇒ ¬(x ∈ M)

for ordinary sets where M stands for the complement of the (ordinary) set M. If we
assign the truth function w¬(α) = 1 − α to the negation, we obtain the fuzzy set

μ1(x) = 1 − μ(x),

as the complement μ of the fuzzy set μ. This is also in accordance with

[[x ∈ μ]] = [[¬(x ∈ μ)]].

Figure15.16 illustrates the intersection (top right), union (bottom right) and comple-
ment (bottom left) of two fuzzy sets (top left).

Like the complement for ordinary sets, the complementing of fuzzy sets is an
involution, which means that μ = μ holds. In classical set theory, we have that the
intersection of a set with its complement yields the whole universe of discourse.
In the context of fuzzy sets, these two laws are weakened to (μ ∩ μ)(x) ≤ 0.5 and
(μ ∪ μ)(x) ≥ 0.5 for all x. Figure15.17 illustrates this phenomenon.

If the intersection and the union are defined on the basis ofminimumormaximum,
we can use the representation of fuzzy sets by the level sets introduced in Sect. 15.4
in order to computer the resulting fuzzy set. We have

[μ1 ∩ μ2]α = [μ1]α ∩ [μ2]α and [μ1 ∪ μ2]α = [μ1]α ∪ [μ2]α

for all α ∈ [0, 1]. According to these equations, the level sets of the intersection and
the union of two fuzzy sets are the intersection or the union of the level sets of the
single fuzzy sets.

Fig. 15.16 Intersection, union, and complement for fuzzy sets
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Fig. 15.17 Union and intersection of a fuzzy set with its complement

15.6.4 Linguistic Modifiers

Besides the complement as a unary operation on fuzzy sets, derived from the corre-
sponding operation for ordinary sets, there are more fuzzy set specific unary opera-
tions that have no counterpart in classical set theory. Normally, a fuzzy set represents
an imprecise concept like “high velocity,” “young” or “tall.” From such concepts,
we can derive other imprecise concepts applying linguistic modifiers (“linguistic
hedges”) like “very” or “more or less.”

As an example we consider the fuzzy set μhv of high velocities from Fig. 15.2
on p. 331. How should the fuzzy set μvhv representing the concept of the “very
high velocities” look like? A very high velocity is also a high velocity but not vice
versa. Thus the membership degree of a specific velocity v to the fuzzy set μvhv
should not exceed its membership degree to the fuzzy set μhv. We can achieve this
by understanding the linguistic modifier “very,” similar to the negation, as a unary
operator and assigning a suitable truth function to it, for instance wvery(α) = α2. In
this way we obtain μvhv(x) = (μhv(x))

2. Now, a velocity which is to a degree of 1
a high velocity is also a very high velocity. A velocity which is not a high velocity
(membership degree of 0) is not a very high velocity either. If the membership degree
of a velocity toμhv is between 0 and 1, it is also a very high velocity but with a lower
membership degree.

In the same way we can assign a truth function to the modifier “more or
less.” This truth function should increase the degree of membership, for instance
wmore or less(α) = √

α.
Figure15.18 shows the fuzzy set μhv of high velocities and the resulting fuzzy

sets μvhv of very high velocities and μmhv of more or less high velocities.
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Fig. 15.18 The fuzzy sets
μhv, μvhv and μmhv of high,
very high, and more or less
high velocities

15.7 Extensions of Fuzzy Set Theory

In classical fuzzy set theory a membership degree is expressed by a real number
in the unit interval. However, in some applications experts prefer to use linguistic
expressions instead of numbers asmembership degrees. Furthermore, it is sometimes
necessary to integrate imprecision of the membership degree into the modeling. In
this situation one can use membership degrees that are elements of a general lattice
L, due to which we then speak of L-fuzzy sets. This extension, which was already
proposed in (Goguen 1967), provides us with more flexibility for the specification
of membership degrees.

Definition 15.5 Let (L,≤) be a lattice, and let sup and inf be its join and meet
operators, respectively. A lattice is called complete if any nonempty subset of L
has a join (sup) and a meet (inf). A negation on a complete lattice is an operator
not : L → L such that not(not(l)) = l for all l ∈ L, and if l ≤ l′ then not(l) ≥ not(l′),
for all l, l′ ∈ L. A lattice is called distributive if for all x, y and z in L the following
holds:

inf {x, sup {y, z}} = sup {inf {x, y}, inf {x, z}}

The extension of fuzzy sets from the unit interval [0, 1] to a general lattice L and the
operations can be easily defined as follows:

Definition 15.6 An L-fuzzy set on the universe X is a mapping μ : X → L. The
operations on the class FL(X) of L-fuzzy sets are defined pointwise by setting

(μ ∧ μ′)(x) := inf {μ(x), μ′(x)} (intersection),

(μ ∨ μ′)(x) := sup {μ(x), μ′(x)} (union),

(¬μ)(x) := notμ(x) (complement).

Example 15.5 Let ([0, 1] ,≤) be a complete distributive lattice. Classical fuzzy sets
can be seen as L-fuzzy sets with L = [0, 1]. The family of fuzzy sets over X with
the inclusion (F(X), ≤) also forms a complete distributive lattice. This allows us to
define“second order fuzzy sets.”
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L-fuzzy sets can be also used in situations, in which the user prefers to express
his knowledge about a membership degree of fuzzy sets by imprecise statements
like “the membership degree is between 0.7 and 0.9.” A simple way is to express
such information is to use an interval-valued fuzzy sets μ : X → L([0, 1]), where
L([0, 1]) := {[x, x

] : 0 ≤ x ≤ x ≤ 1} denotes the set of all closed sub-intervals
of [0, 1].

Definition 15.7 An interval-valued fuzzy set μ on a universe X �= ∅ is a mapping
μ : X → L [0, 1] such that the membership degree of x ∈ X is given by

μ(x) =
[
μ(x), μ(x)

]
∈ L([0, 1]),

whereμ(x) : X → [0, 1] andμ(x) : X → [0, 1] aremappings defining the lower and
upper bounds of the membership interval μ(x).

Example 15.6 Let μ be the interval-valued fuzzy set on R depicted in Fig. 15.19.
The aim is to describe an expert’s perception of “approximately 100” by assigning

to each x an interval
[
μ(x), μ(x)

]
. The membership at 95 is a value that belongs to

the interval [0.5, 0.75]. The interval representation is used since the expert cannot
precisely say what that number is. Thus she/he provides merely bounds for that
number.

Definition 15.8 The standard operations on interval-valued fuzzy sets are

(μ ∨ μ′)(x) =
[
max

{
μ(x), μ′(x)

}
,max

{
μ(x), μ′(x)

}]
(union)

(μ ∧ μ′)(x) =
[
min

{
μ(x), μ′(x)

}
,min

{
μ(x), μ′(x)

}]
(intersection)

(¬μ)(x) =
[
1 − μ(x), 1 − μ(x)

]
(complement)

for all x ∈ X.

There are applications in fuzzy decision analysis in which the user is more com-
fortable with imprecise statements like “The membership degree μ is 0.7, while

Fig. 15.19 Interval-valued fuzzy set
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the degree of non-membership ν is 0.2.” Note that in this statement the degrees of
membership and non-membership do not sum to 1, as one would expect in standard
fuzzy set theory, but only to 0.9. We may say that in this case we are hesitant with
respect to what the exact membership value is depending on whether we look from
the membership or the non-membership side. The value 1 − μ − ν = 0.1 is called
the hesitance (Herrera and Herrera Viedma 2000; Ye 2010). A simple method for
modelingmathematically such a type of knowledge is to use a pair ofmappings (μ, ν)

that fulfill the conditions μ : X → [0, 1] , ν : X → [0, 1] and μ(x) + ν(x) ≤ 1 for
all x ∈ X. Such a pair is called Intuitionistic Fuzzy Set (Atanassov 1986) or Bipolar
Fuzzy Set (Dubois Prade 2008).

A standard fuzzy set μ can be interpreted as a pair (μ, 1 − μ). Mathematically
Intuitionistic fuzzy sets can be seen as L-fuzzy sets that are based on the lattice
L = { (x, y) ∈ [0, 1]2 : x + y ≤ 1}, where the inequality relation ≤L generating
the lattice structure is defined by (x, y) ≤L (x′, y′) if and only if x ≤ x′ and y′ ≤ y
for all x, x′, y, y′ ∈ [0, 1]. The basic operations are defined as follows:

(μ, ν) ∩ (μ′, ν′) := (min {μ, μ′},max {ν, ν′}) (intersection)

(μ, ν) ∪ (μ′, ν′) := (max {μ, μ′},min {ν, ν′}) (union)

¬(μ, ν) := (ν, μ) (complement)

In order tomotivate the introduction of further extensions of fuzzy set we use a differ-
ent visualization of the interval-valued fuzzy setμ : X → L [0, 1] of Example15.6 in
Fig. 15.20. For each x ∈ X we depict the indicator function μ(x) : [0, 1] → [0, 1] of

the interval
[
μ(x), μ(x)

]
. The shaded area (as a relation) gives a good visualization

of all possible fuzzy sets that fit to the given information. This information is also
visualized in Fig. 15.20 on p. 357.

A further extension of expressivity (but also of complexity) is to allow the descrip-
tion of a membership to be itself a fuzzy set, that is to consider L-fuzzy sets with
L = F(X). The idea of taking the experts uncertainty into account when they deter-
mine the membership degrees of elements of a fuzzy sets was originally developed
in (Zadeh 1971):

Fig. 15.20 Isometric representation of an interval-valued fuzzy set



358 15 Introduction to Fuzzy Sets and Fuzzy Logic

Fig. 15.21 Different slices of a type-2 fuzzy set

Definition 15.9 A type-2 fuzzy set on X is a mapping μ : X → F [0, 1].

Example 15.7 Let μ : X → F [0, 1] be a type-2 fuzzy set depicted in Fig. 15.21.
We use the notion μ : x → μx, where μx : [0, 1] → [0, 1]. The objective here is to
describe his perception of “approximately 100” by assigning to each x ∈ X a fuzzy
set of [0, 1].

Type-2 fuzzy sets (Zadeh 1971; Mendel and John 2002) are particular L-fuzzy
sets, so we can define the standard lattice-based algebraic operations as in Defin-
ition15.6. Another option consists in employing the extension principle to define
operations (Mizumoto Tanaka 1976). In Sect. 15.3 we stressed that it is important to
be aware of the fact that there are several semantics for fuzzy sets such as similarity,
preference, possibility, and so on. In the case of “second order concepts” such as
type-2 fuzzy sets or fuzzy random variables (see Sect. 20.5), these semantical issues
are even more complicated. It is clear that handling the complexity of these exten-
sions is a considerable challenge. On the other hand, the extended approaches give us
more flexibility due to more parameters, see e.g., (Karnik andMendel 2001). Hence,
it is not surprising that there are some applications in which these extended models
produce results which are better than those obtained with standard fuzzy sets.
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16TheExtensionPrinciple

In Sect. 15.6 we have discussed how set theoretic operations like intersection, union,
and complement can be generalized to fuzzy sets. This section is devoted to the issue
of extending the concept of mappings or functions to fuzzy sets. These ideas allow
us to define operations like addition, subtraction, multiplication, division, or taking
squares as well as set theoretic concepts like the composition of relations for fuzzy
sets.

16.1 Mappings of Fuzzy Sets

As an example, let us consider the mapping f : R → R with x �→ |x |. The fuzzy
set μ = Λ−1.5,−0.5,2.5 shown in Fig. 16.1 models the vague concept “about −0.5.”

Which fuzzy set should represent “the absolute value of about −0.5” or, in other
words, what is the image f [μ] of the fuzzy set μ? For a usual subset M of the
universe of discourse X the image f [M] under the mapping f : X → Y is defined
as the subset of Y that contains all images of elements of M . Technically speaking,
this means

f [M] = {y ∈ Y | ∃x ∈ X : x ∈ M ∧ f (x) = y},
or, in other words,

y ∈ f [M] ⇐⇒ (∃x ∈ X)(x ∈ M ∧ f (x) = y). (16.1)

For instance, for M = [−1, 0.5] ⊆ R and the mapping f (x) = |x | we obtain the set
f [M] = [0, 1] as image of M under f .
Equation16.1 allows us to define the image of a fuzzy set μ under a mapping f .

As in Sect. 15.6 on the extension of the set theoretic operations to fuzzy sets, we use
the concepts of fuzzy logic again, which we introduced in Sect. 15.5. For fuzzy sets,
Eq. 16.1 means

[[y ∈ f [μ]]] = [[∃x ∈ X : x ∈ μ ∧ f (x) = y]].
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Fig. 16.1 The fuzzy set
μ = Λ−1.5,−0.5,1.5 standing
for “about −0.5”

1

1 5 0 5 0 2.5

As explained in Sect. 15.5 we evaluated the existential quantifier by the supremum
and associate a t-norm t with the conjunction. Therefore, the fuzzy set

f [μ](y) = sup {t (μ(x), [[ f (x) = y)]]) | x ∈ X} (16.2)

represents the image of μ under f . The choice of the t-norm t does not play any
role in this case because the statement f (x) = y is either true or false which means
[[ f (x) = y]] ∈ {0, 1}, and therefore

t (μ(x), [[ f (x) = y)]]) =
{

μ(x) if f (x) = y
0 otherwise

Thus Eq.16.2 is reduced to

f [μ](y) = sup {μ(x) | f (x) = y} . (16.3)

This definition says that the membership degree of an element y ∈ Y to the image
of the fuzzy set μ ∈ F (X) under the mapping f : X → Y is the greatest possible
membership degree of all x to μ that are mapped to y under f . This extension
of a mapping to fuzzy sets is called extension principle (for a function with one
argument) (Nguyen 1978).

From the example of the fuzzy set μ = Λ−1.5,−0.5,2.5 representing the vague
concept “about −0.5” we obtain the fuzzy set shown in Fig. 16.2 as the image under
the mapping f (x) = |x |. To illustrate the underlying principle, we determine the
membership degree f [μ](y) for y ∈ {−0.5, 0, 0.5, 1}. Because of f (x) = |x | ≥ 0
no value is mapped to y = −0.5 under f . So, we obtain f [μ](−0.5) = 0. There
is only one value that is mapped to y = 0, i.e., x = 0, hence, we have f [μ](0) =
μ(0) = 5/6. For y = 0.5, there exist two values (x = −0.5 and 0.5) mapped to y,
which lead to

f [μ](0.5) = max{μ(−0.5), μ(0.5)} = max{1, 2/3} = 1.

Fig. 16.2 The fuzzy set
standing for the vague
concept “the value of
about −0.5”

1

1 5 0 5 0 0.5 1 2.5
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Fig. 16.3 Projection of a
fuzzy set into the space X2

1

x1

x2

The values mapped to y = 1 are x = −1 and x = 1, respectively. Therefore, we
obtain

f [μ](1) = max{μ(−1), μ(1)}
= max{0.5, 0.5} = 0.5.

Example 16.1 Let X = X1 × · · · × Xn , i ∈ {1, . . . , n}.
πi : X1 × · · · × Xn → Xi , (x1, . . . , xn) �→ xi

denotes the projection of the Cartesian product X1 × · · · × Xn to the i th coordinate
space Xi . According to the extension principle defined in Eq.16.3, the projection of
a fuzzy set μ ∈ F (X) to the space Xi is given by

πi [μ](x) = sup{ μ(x1, . . . , xi−1, x, xi+1, . . . , xn) |
x1 ∈ X1, . . . , xi−1 ∈ Xi−1, xi+1 ∈ Xi+1, . . . , xn ∈ Xn}.

Figure16.3 shows the projection of a fuzzy set which has nonzero membership
degrees in two different regions. �

16.2 Mapping of Level Sets

The membership degree of an element to the image of a fuzzy set can be computed
on the basis of the membership degrees of all elements to the original one that are
mapped to the considered element. Another way to characterize the image of a fuzzy
set is to determine its level sets. Unfortunately, the level set of the image of a fuzzy set
cannot be derived directly form the corresponding level set of the original fuzzy set.
The inclusion [ f [μ]]α ⊇ f [[μ]α] is always valid, but equality of these two sets is
only satisfied in special cases. For instance, for the fuzzy set

μ(x) =
{
x if 0 ≤ x ≤ 1
0 otherwise

we obtain as an image under the mapping

f (x) = I{1}(x) =
{
1 if x = 1
0 otherwise
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Fig. 16.4 The fuzzy sets μ

and f [μ] that represent the
vague concepts “about 1”
and “square of about 1,”
respectively

1

0 1 2 3 4

f

the fuzzy set

f [μ](y) =
{
1 if y ∈ {0, 1}
0 otherwise.

Hence, we have
[
f [μ]]1 = {0, 1} and f

[[μ]1
] = {1} because of [μ]1 = {1}.

Provided that the universe of discourse X = R is the set of real numbers, the effect
that the image of a level set is smaller than the corresponding level set of the image
fuzzy set cannot happen, when the mapping f is continuous and for all α > 0 the
α-level sets of the original fuzzy set are compact. Therefore, in this case it is possible
to characterize the image fuzzy set by the level sets.

Example 16.2 Let us consider the mapping f : R → R, x �→ x2. Obviously, the
image of a fuzzy set μ ∈ F (R) is given by

f [μ](y) =
{
max{μ(

√
y), μ(−√

y)} if y ≥ 0
0 otherwise.

Let the fuzzy set μ = Λ0,1,2 represent the vague concept “about 1.” The question,
what “the square of about 1” is, can be answered by determining the level sets of
the image fuzzy set f [μ] from the level sets of μ. Here, this is possible because the
function f has compact level sets and the fuzzy set μ is continuous. Thus, we have
[μ]α = [α, 2 − α] for all 0 < α ≤ 1 and we obtain[

f [μ]]
α

= f
[[μ]α

] = [α2, (2 − α)2].
The fuzzy sets μ and f [μ] are shown in Fig. 16.4. Here, we can observe that the
vague concept “the square of about 1” does not exactly match to the vague concept
“about 1.” The concept “the square of about 1” is “fuzzier” than “about 1.” This effect
is very similar to the increase in rounding errors when more and more computation
steps are performed. �

16.3 Cartesian Product and Cylindrical Extension

So far we have only extended mappings with one argument to fuzzy sets. To define
operations like addition for fuzzy sets over real numbers, we need a concept how
to apply a mapping f : X1 × · · · × Xn → Y to a tuple (μ1, . . . , μn) ∈ F (X1) ×
· · · × F (Xn) of fuzzy sets. Interpreting addition as a function in two arguments
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f : R × R → R, (x1, x2) �→ x1 + x2, this concept will enable us to extend addition
and other algebraic operations to fuzzy sets over real numbers.

In order to generalize the extension principle described in Eq.16.3 to mappings
with several arguments, we introduce the concept of the Cartesian product of fuzzy
sets. Consider the fuzzy sets μi ∈ F (Xi ), i = 1, . . . , n. The Cartesian product of
the fuzzy sets μ1, . . . , μn is the fuzzy set

μ1 × · · · × μn ∈ F (X1 × · · · × Xn)

with
(μ1 × · · · × μn)(x1, . . . , xn) = min{μ1(x1), . . . , μn(xn)}.

This definition is motivated by the property

(x1, . . . , xn) ∈ M1 × · · · × Mn ⇐⇒ x1 ∈ M1 ∧ . . . ∧ xn ∈ Mn

of the Cartesian product of usual sets and corresponds to the formula

[[(x1, . . . , xn) ∈ μ1 × · · · × μn]] = [[x1 ∈ μ1 ∧ . . . ∧ xn ∈ μn]],

where the minimum is chosen as truth function for the conjunction.
A special case of a Cartesian product is the cylindrical extension of a fuzzy

set μ ∈ F (Xi ) to a product space X1 × · · · × Xn . The cylindrical extension is the
Cartesian product of μ with the remaining universe of discourses X j , j �= i or their
characteristic functions:

π̂i (μ) = IX1 × · · · × IXi−1 × μ × IXi+1 × · · · × IXn ,

π̂i (μ)(x1, . . . , xn) = μ(xi ).

Obviously, projecting a cylindrical extension results in the original fuzzy set which
means πi

[
π̂i (μ)

] = μ provided that the sets X1, . . . , Xn are nonempty. In general,
πi [μ1 × · · · × μn] = μi holds if the fuzzy sets μ j , j �= i are normal which means
(∃x j ∈ X j )

(
μ j (x j )

) = 1.

16.4 Extension Principle for Multivariate Mappings

Using the Cartesian product, the extension principle for mappings with several argu-
ments can be simplified to the extension principle for functions with one argument.
Consider the mapping

f : X1 × · · · × Xn → Y.

Then, the image of the tuple

(μ1, . . . , μn) ∈ F (X1) × · · · × F (Xn)

of fuzzy sets under f is the fuzzy set

f [μ1, . . . , μn] = f [μ1 × · · · × μn]
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over the universe of discourse Y . That means

f [μ1, . . . , μn](y) (16.4)

= sup
(x1,...,xn)∈X1×···×Xn

{(μ1 × · · · × μn)(x1, . . . , xn) f (x1, . . . , xn) = y}
= sup

(x1,...,xn)∈X1×···×Xn

{min{μ1(x1), . . . , μn(xn)} f (x1, . . . , xn) = y}.

This formula represents the extension principle (Zadeh 1975a, b, c).

Example 16.3 Consider the mapping f : R × R → R, (x1, x2) �→ x1 + x2 rep-
resenting the addition. The fuzzy sets μ1 = Λ0,1,2 and μ2 = Λ1,2,3 model the
vague concepts “about 1” and “about 2.” Applying the extension principle, we
obtain the fuzzy set f [μ1, μ2] = Λ1,3,5 for the vague concept “about 1 + about 2”
(cf. Fig. 16.5).We can observe the effect we already know from computing the square
of “about 1” (see Example 16.2 and Fig. 16.4). The “fuzziness” of the resulting fuzzy
set is greater than these of the original fuzzy sets to be added. �

Analogously to the addition of fuzzy setswe can define subtraction,multiplication,
and division using the extension principle. These operations are continuous, therefore
wecan, like inExample 16.2, calculate the level sets of the resulting fuzzy sets directly
from the level sets of the given fuzzy sets, provided that these are compact. When we
have convex fuzzy sets, we carry out interval arithmetic on the corresponding levels.
Interval arithmetic (Moore 1966, 1979) allows us to operate with intervals instead
of real numbers.

Applying the extension principle, we should be aware that we carry out two
generalization steps at the same time: the extension of single elements to sets and the
change fromcrisp to fuzzy sets. The extension principle cannot preserve all properties
of the original mapping. This effect is not necessarily caused by the extension from
crisp to fuzzy sets. Most of the problems are caused by the step from extending a
pointwise mapping to (crisp) sets. For example, in contrast to the standard addition,
there is no inverse for the addition of fuzzy sets. There is no fuzzy set which added
to the fuzzy set for “about 1 + about 2” from Fig.16.5 which will yield back the
fuzzy set “about 1.” This phenomenon already occurs in interval arithmetic, so not
the “fuzzification” of the addition is the problem, but the extension of the addition
from numbers (points) to sets.

Fig. 16.5 The result of the
extension principle for
“about 1 + about 2”

1

0 1 2 3 4 5

about1 about 2 about 1 about 2
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17FuzzyRelations

Relations can be used to model dependencies, correlations, or connections between
variables, quantities, or attributes. Technically speaking, a (binary) relation over the
universes of discourse X and Y is a subset R of the Cartesian product X × Y of X
andY . The pairs (x, y) ∈ X×Y belonging to the relation R are linked by a connection
described by the relation R. Therefore, a common notation for (x, y) ∈ R is also
x Ry.

We generalize the concept of relations to fuzzy relations. Fuzzy relations are useful
for representing and understanding fuzzy controllers that describe a vague connection
between input and output values. Furthermore, we can establish an interpretation of
fuzzy sets and membership degrees on the basis of special fuzzy relations called
similarity relations. This interpretation plays a crucial role in the context of fuzzy
controllers. Similarity relations will be discussed in Chap.18.

17.1 Crisp Relations

Before we introduce the definition of a fuzzy relation, we briefly review the funda-
mental concepts andmechanisms of crisp relations that are needed for understanding
fuzzy relations.

Example 17.1 A house has six doors and each of them has a lock which can be
unlocked by certain keys. Let the set of doors be T = {t1, . . . , t6}, the set of keys
S = {s1, . . . , s5}. Key s5 is the main key and fits to all doors. Key s1 fits only to
door t1, s2 to t1 and t2, s3 to t3 and t4, s4 to t5. This situation can be formally described
by the relation R ⊆ S × T (“fits to”). The pair (s, t) ∈ S × T is an element of R if
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Table 17.1 The relation R: “key fits to door”

R t1 t2 t3 t4 t5 t6

s1 1 0 0 0 0 0

s2 1 1 0 0 0 0

s3 0 0 1 1 0 0

s4 0 0 0 0 1 0

s5 1 1 1 1 1 1

and only if key s fits to door t that means

R = {(s1, t1), (s2, t1), (s2, t2), (s3, t3), (s3, t4), (s4, t5),
(s5, t1), (s5, t2), (s5, t3), (s5, t4), (s5, t5), (s5, t6)}.

Another way of describing the relation R is shown in Table17.1. The entry 1 at
position (si , t j ) indicates that (si , t j ) ∈ R holds, 0 stands for (si , t j ) /∈ R. �

Example 17.2 Let us consider, ameasuring instrumentwhich canmeasure a quantity
y ∈ Rwith a precision of±0.1. If x0 is themeasured value, we know the true value y0
lies within the interval [x0 − 0.1, x0 + 0.1]. This can be described by the relation

R = {(x, y) ∈ R × R | |x − y| ≤ 0.1}.
A graphical representation of this relation is given in Fig. 17.1. �

Mappings or their graphs can be considered as special cases of relations. If the
function f : X → Y is a mapping of X to Y , the graph of f is the relation

graph( f ) = {(x, f (x)) | x ∈ X} .

In order to be able to interpret a relation R ⊆ X × Y as a graph of a function we
need that for each x ∈ X there exists exactly one y ∈ Y such that the pair (x, y) is
contained in R.

Fig. 17.1 The relation
y=̂x ± 0.1

x

y

0.1

0.1

R
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17.2 Application of Relations and Deduction

So far we have used relations in a merely descriptive way. But similar to functions
relations can also be applied to elements or sets. If R ⊆ X × Y is a relation between
the sets X and Y and M ⊆ X is a subset of X , the image of M under R is the set

R[M] = {y ∈ Y | ∃x ∈ X : (x, y) ∈ R and x ∈ M} . (17.1)

R[M] contains the elements from Y which are related to at least one element of the
set M .

If f : X → Y is a mapping, then applying the relation graph( f ) to a one-element
set {x} ⊆ X we obtain the one-element set which contains the image of x under the
function f :

graph( f )[{x}] = { f (x)}.
More generally, we have

graph( f )[M] = f [M] = {y ∈ Y | ∃x ∈ X : x ∈ M ∧ f (x) = y}
for arbitrary subsets M ⊆ X .

Example 17.3 Now we use the relation R from Example 17.1 in order to determine
which doors can be unlocked if we have keys s1, . . . , s4. All we have to do is to
calculate all elements (doors) which are related (relation “fits to”) to at least one of
the keys s1, . . . , s4. That means

R[{s1, . . . , s4}] = {t1, . . . , t5}
is the set of doors we want to know.

The set R[{s1, . . . , s4}] can be determined easily using the matrix in Table17.1
in the following way. We encode the set M = {s1, . . . , s4} as a row vector with five
components which contains the entry 1 at the i th place if si ∈ M holds, and 0 in the
case of si /∈ M . Thus we obtain the vector (1, 1, 1, 1, 0). Analogously to the Falk
scheme for matrix multiplication of a vector by a matrix, we write the vector to the
lower left of the matrix. Then, we transpose the vector and compare it with every
column of the matrix. If we find at least one position during this comparison of the
vector and a matrix column where the vector and the matrix have the entry 1, we
write a one under this column, otherwise a zero. The resulting vector (1, 1, 1, 1, 1, 0)
below the matrix specifies the set R[M]we are looking for in an encoded form: It
contains a 1 at place i if and only if ti ∈ R[M] holds. Table17.2 illustrates this “Falk
scheme” for relations. �

Example 17.4 We follow up Example 17.2 and assume that we have the information
that the measuring instrument indicated a value between 0.2 and 0.4. From this we

can conclude that the true value is contained in the set R
[
[0.2, 0.4]

]
= [0.1, 0.5]

which is illustrated in Fig. 17.2.
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Table 17.2 Falk scheme for the calculation of R[M]
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 0

Fig. 17.2 How to determine
the set R[M] graphically

x

y

0.1 0.2 0.4

0.5

0.1

R

R x M

x M

M

R M

In this figure, we can see that we obtain the set R[M] as the projection of the
intersection of the relation with the cylindrical extension of the set M which means

R[M] = πy
[
R ∩ π̂x (M)

]
. (17.2)

�

Example 17.5 Logical deduction based on an implication of the form x ∈ A → y ∈
B can be modeled and computed by relations, too. All we have to do is to encode
the rule x ∈ A → y ∈ B by the relation

R = {(x, y) ∈ X × Y | x ∈ A → y ∈ B} = (A × B) ∪ Ā × Y. (17.3)

X and Y are the sets of possible values that x and y can attain. For the rule “If the
velocity is between 90 and 100km/h, then the fuel consumption is between 6 and
8L” (as a logical formula: v ∈ [90, 110] → b ∈ [6, 8]) we obtain the relation shown
in Fig. 17.3.

If we know that the velocity has the value v, in the case 90 ≤ v ≤ 110 we
can conclude that for the consumption b we must have 6 ≤ b ≤ 8. Otherwise and
without further knowledge and any pieces of information than just the rule and the
value for v, we cannot say anything about the value for the consumptionwhichmeans
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Fig. 17.3 Relation for the
rule
v ∈ [90, 110] → b ∈ [6, 8]

consumption

velocity

8

6

90 110

that we obtain b ∈ [0,∞). We get the same result by applying the relation R to the
one-element set {v}:

R[{v}] =
{ [6, 8] if v ∈ [90, 110]

[0,∞) otherwise.

More generally, we have: When we know that the velocity attains a value in the
set M , we can conclude in the case M ⊆ [90, 110] that the consumption is between
6 and 8L, otherwise we only know b ∈ [0,∞). This coincides with the result we
obtained by applying the relation R to the set M :

R[M] =
⎧⎨
⎩

[6, 8] if M ⊆ [90, 110]
∅ if M = ∅
[0,∞) otherwise.

�

17.3 Chains of Deductions

The example above shows how logical deduction can be represented in terms of a
relation. Inferring new facts from rules and known facts usually means that we deal
with chained deduction steps in the form of ϕ1 → ϕ2, ϕ2 → ϕ3 from which we can
derive ϕ1 → ϕ3. A similar principle can be formulated in the context of relations.
Consider the relations R1 ⊆ X × Y and R2 ⊆ Y × Z . An element x is indirectly
related to an element z ∈ Z if there exists an element y ∈ Y such that x and y are in
the relation R1 and y and z are in the relation R2. We can say that we go from x to z
via y. In this way, the composition of the relations R1 and R2 can be defined as the
relation

R2 ◦ R1 = {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R1 ∧ (y, z) ∈ R2} (17.4)

between X and Z . Then, we have for all M ⊆ X

R2

[
R1[M]

]
= (R2 ◦ R1)[M].

For the relations graph( f ) and graph(g) induced by the mappings f : X → Y or
g : Y → Z , respectively, the composition of these relations is equal to the relation
induced by the composition of the two mappings:



374 17 Fuzzy Relations

graph(g ◦ f ) = graph(g) ◦ graph( f ).

Example 17.6 We extend Example 17.1 of the keys and doors by considering a set
P = {p1, p2, p3} of three people owning various keys. This is expressed by the
relation

R′ = {(p1, s1), (p1, s2), (p2, s3), (p2, s4), (p3, s5)} ⊆ P × T .

(pi , s j ) ∈ R′ means that person pi owns the key s j . The composition

R ◦ R′ = {(p1, t1), (p1, t2), (p2, t3), (p2, t4), (p2, t5),
(p3, t1), (p3, t2), (p3, t3), (p3, t4), (p3, t5), (p3, t6)}

of the relations R′ and R contains the pair (p, t) ∈ P × T if and only if person p
can unlock door t . For example, using the relation R ◦ R′ we can determine which
doors can be unlocked if the people p1 and p2 are present. The corresponding set of
doors is

(R ◦ R′)[{p1, p2}] = {t1, . . . , t5} = R
[
R′[{p1, p2}]

]
.

�

Example 17.7 In Example 17.2we used the relation R = {(x, y) ∈ R×R | |x−y| ≤
0.1} to model the fact that the measured value x represents the true value y with a
precision of 0.1. When we can determine the quantity z from the quantity y with a
precision of 0.2, we obtain the relation R′ = {(y, z) ∈ R × R | |x − y| ≤ 0.2}. The
composition of R′ and R results in the relation R′ ◦ R = {(x, z) ∈ R×R | |x − z| ≤
0.3}. If the measuring instrument indicates the value x0, we can conclude that the
value of the quantity z is in the set

(R′ ◦ R)[{x0}] = [x0 − 0.3, x0 + 0.3].
�

Example 17.8 Example 17.5 demonstrated how an implication of the form x ∈ A →
y ∈ B can be represented by a relation.When another rule y ∈ C → z ∈ D is known,
in the case of B ⊆ C we can derive the rule x ∈ A → z ∈ D. Otherwise, knowing x
does not provide any information about z in the context of these two rules. Thatmeans
we obtain the rule x ∈ X → z ∈ Z in this case. Correspondingly, the composition
of the relations R′ and R representing the implications x ∈ A → y ∈ B and
y ∈ C → z ∈ D, respectively, results in the relation associated with the implication
x ∈ A → z ∈ D and x ∈ A → z ∈ Z , respectively:

R′ ◦ R =
{

(A × D) ∪ ( Ā × Z) if B ⊆ C
(A × Z) ∪ ( Ā × Z) = X × Z otherwise.

�
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17.4 Simple Fuzzy Relations

After giving a general idea about the fundamental terminology and concepts of crisp
relations, we can now introduce fuzzy relations.

Definition 17.1 A fuzzy set ρ ∈ F (X×Y ) is called (binary) fuzzy relation between
the reference sets X and Y .

In this sense, a fuzzy relation is a generalized crisp relation where two elements
can be gradually related to each other. The greater the membership degree ρ(x, y)
the stronger is the relation between x and y.

Example 17.9 Let X = {s, f, e} denote a set of financial fonds, devoted to shares (s),
fixed-interest stocks ( f ), and real estates (e). The set Y = {l,m, h} contains the
elements low (l), medium (m), and high (h) risk. The fuzzy relation ρ ∈ F (X × Y )

in Table17.3 shows for every pair (x, y) ∈ X×Y howmuch the fond x is considered
having the risk factor y.

For example, the entry in column m and row e means that the fond dedicated to
real estates is considered to have a medium risk with a degree of 0.5. Therefore,
ρ(e,m) = 0.5. �

Example 17.10 The measuring instrument from Example 17.2 had a precision
of ± 0.1. However, it is not very realistic to assume that, given that the instru-
ment shows the value x0, all values from the interval [x0 − 0.1, x0 + 0.1] are equally
likely to represent the true value of the measured quantity. Instead of the crisp rela-
tion R from Example 17.2 for representing this fact, we can use a fuzzy relation, for
instance

ρ : R × R → [0, 1], (x, y) �→ 1 − min{10|x − y|, 1},
yielding the membership degree of 1 for x = y. The membership degree to the rela-
tion decreases linearly with increasing distance |x− y| until the difference between x
and y exceeds the value 0.1. �

In order to operate with fuzzy relations in a similar way as with usual relations,
we have define what the image of a fuzzy set under a fuzzy relation is. This means
we have to extend Eq.17.1 to the framework of fuzzy sets and fuzzy relations.

Table 17.3 The fuzzy relation ρ: “x is a financial fond with risk factor y”

ρ l m h

s 0.0 0.3 1.0

f 0.6 0.9 0.1

e 0.8 0.5 0.2
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Definition 17.2 For a fuzzy relation ρ ∈ F (X × Y ) and a fuzzy set μ ∈ F (X) the
image of μ under ρ is the fuzzy set

ρ[μ](y) = sup
{
min{ρ(x, y), μ(x)} | x ∈ X

}
(17.5)

over the universe of discourse Y .

This definition can be justified in several ways. If ρ and μ are the characteristic
functions of a usual relation R and the crisp set M , respectively, then ρ[μ] is the
characteristic function of the image R[M] of M under R. In this sense, the definition
is a generalization of Eq.17.1 for sets to fuzzy sets.

Equation17.1 is equivalent to

y ∈ R[M] ⇐⇒ ∃x ∈ X : (x, y) ∈ R ∧ x ∈ M.

We obtain Eq.17.5 for fuzzy relations from this equivalence by assigning the min-
imum as truth function to the conjunction and evaluate the existential quantifier by
the supremum. This means

ρ[μ](y) = [[y ∈ ρ[μ]]]
= [[∃x ∈ X : (x, y) ∈ ρ ∧ x ∈ μ]]

= sup
{
min{ρ(x, y), μ(x)} | x ∈ X

}
.

Definition 17.2 can also be derived from the extension principle. In order to do
this, we consider the partial mapping

f : X × (X × Y ) → Y,
(
x, (x ′, y)

) �→
{
y if x = x ′
undefined otherwise.

(17.6)

It is obvious that for a set M ⊆ X and a relation R ⊆ X × Y , we have

f [M, R] = f [M × R] = R[M].
When we introduced the extension principle, we did not require that the map-

ping f , which has to be extended to fuzzy sets, must be defined everywhere. There-
fore, the extension principle can also be applied to partial mappings. The extension
principle for the mapping in Eq.17.6, which can be used to compute the image of
a set under a relation, leads to the formula specified in Definition 17.2, the formula
for the image of a fuzzy set under a fuzzy relation.

Another justification of Definition 17.2 is based on the idea that was exploited in
Example 17.4 and Fig. 17.2. There, we computed the image of a set under a relation
as projection of the intersection of the cylindrical extension of the set with the relation
(cf. Eq. 17.2). Having this equation in mind, we replace the set M by a fuzzy set μ

and the relation R by a fuzzy relation ρ and again obtain Eq.17.5 if the intersection
of fuzzy sets is computed using the minimum and the projection and the cylindrical
extension for fuzzy sets are calculated as in Chap.16.

http://dx.doi.org/10.1007/978-1-4471-7296-3_16
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Example 17.11 On the basis of the fuzzy relations from Example 17.9 we want to
estimate the risk of a mixed fond which concentrates on shares but also invests a
smaller part of its many into real estates. We represent this mixed fond over the
universe of discourse {s, r, f } as a fuzzy set μ with

μ(s) = 0.8, μ( f ) = 0, μ(r) = 0.2.

In order to determine the risk of this mixed fond we compute the image of the fuzzy
set μ under the fuzzy relation ρ from Table17.3. We obtain

ρ[μ](l) = 0.2, ρ[μ](m) = 0.3, ρ[μ](h) = 0.8.

Analogously to Example 17.3, the fuzzy set ρ[μ] can be determined using amodified
Falk scheme. The zeros and ones in Table17.2 have to be replaced by the correspond-
ing membership degrees. Below each column of the fuzzy relation, we obtain the
membership degree of the corresponding value to the image fuzzy set ρ[μ] in the
following way.We first take the componentwise minimum of the vector representing
the fuzzy set μ and the corresponding column of the matrix representing the fuzzy
relation ρ and then we compute the maximum of these minima.

In this sense, the calculation of the image of a fuzzy setμ under a fuzzy relation ρ

is similar to matrix multiplication of a matrix with a vector where the multiplication
of the components is replaced by the minimum and the addition by the maximum. �

Example 17.12 We have the information that the measuring instrument from Exam-
ple 17.10 indicated a value of “about 0.3” which we represent by the fuzzy
set μ = Λ0.2,0.3,0.4. For the true value y we obtain the fuzzy set

ρ[μ](y) = 1 − min{5|y − 0.3|, 1}
as image of the fuzzy set μ under the relation ρ from Example 17.10. �

Example 17.13 Example 17.5 illustrated how logic deduction on the basis of an
implication of the form x ∈ A → y ∈ B can be represented using a relation. We
generalize this method for the case that the sets A and B are replaced by the fuzzy
sets μ or ν. Following Eq.17.3 and using the formula [[(x, y) ∈ ρ]] = [[x ∈ μ →
y ∈ ν]] where we choose the Gödel implication as truth function for the implication,
we define the fuzzy relation

ρ(x, y) =
{
1 if μ(x) ≤ ν(y)
ν(y) otherwise.

The rule “If x is about 2, then y is about 3” leads to the fuzzy relation

ρ(x, y) =
{
1 if min{|3 − y|, 1} ≤ |2 − x |
1 − min{|3 − y|, 1} otherwise,

if we model “about 2” by the fuzzy set μ = Λ1,2,3 and “about 3” by the fuzzy set
ν = Λ2,3,4. Knowing “x is about 2.5” represented by the fuzzy set μ′ = Λ1.5,2.5,3.5
we obtain for y the fuzzy set
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ρ[μ′](y) =

⎧⎪⎪⎨
⎪⎪⎩

y − 1.5 if 2.0 ≤ y ≤ 2.5
1 if 2.5 ≤ y ≤ 3.5
4.5 − y if 3.5 ≤ y ≤ 4.0
0.5 otherwise,

shown in Fig. 17.4.
The membership degree of an element y0 to this fuzzy set should be interpreted as

how much one can believe that it is possible that the variable y attains the value y0.
This interpretation is a generalization of what we have obtained for the implication
based on crisp sets in Example 17.5. In that case, only two sets were possible results
of applying the deduction scheme: either the entire universe of discourse, if we could
not guarantee that the antecedent of the implication is satisfied, or the set determined
specified in the consequent of the implication for the case that the antecedent is
satisfied. The first case tells us that — only knowing the single rule — all values for
y are still possible, since the rule is not applicable in this case. In the second case, we
know that the rule is applicable and only those values specified in the consequent of
the rule are considered possible for Y . Extending this framework from crisp to fuzzy
sets, the antecedent and the consequent of the implication can be partially satisfied.
The consequence is that not only the whole universe of discourse and the fuzzy set in
the consequent are possible results, but also fuzzy sets in between. In our example,
all values y have a membership degree of at least 0.5 to the fuzzy set ρ[μ′]. The
reason for this is that there exists a value, namely x0 = 2.0 which has a membership
degree of 0.5 to the fuzzy set μ′ and a membership degree of 0 to μ. This means that
the variable x can attain a value with a degree of 0.5, for which we cannot apply the
rule, i.e., y can attain any value. The membership degree 1 of the value x0 = 2.5
to the fuzzy set μ′ leads to the fact that all values of the interval [2.5, 3.5] have a
membership degree of 1 to ρ[μ′]. For x0 = 2.5, we obtain μ(2.5) = 0.75 which
means that the antecedent of the implication is satisfied with the degree of 0.75. This
implies that in order to satisfy the implication, a membership degree of at least 0.75
is required for the consequent. And the values in the interval [2.5, 3.5] are those with
a membership degree of at least 0.75 to the fuzzy set ν.

In a similar way, we can treat membership degrees between 0 and 1 to justify or
compute the fuzzy set ρ[μ′]. �

Fig. 17.4 The fuzzy set
ρ[μ′] 1

0.5

0 2 2.5 3 3.5 4
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17.5 Composition of Fuzzy Relations

Now we are able to discuss the composition of fuzzy relations. The definition of an
image of a fuzzy set under a fuzzy relation was motivated by Eq.17.1 for crisp sets.
Analogously, we define the composition of fuzzy relations based on Eq.17.4 that
describes composition in the case of crisp relations.

Definition 17.3 Let ρ1 ∈ F (X × Y ) and ρ2 ∈ F (Y × Z) be fuzzy relations. The
composition of the two fuzzy relations is the fuzzy relation

(ρ2 ◦ ρ1)(x, z) = sup
{
min{ρ1(x, y), ρ2(y, z)} | y ∈ Y

}
(17.7)

between the universes of discourse X and Z .

This definition can be obtained from the equivalence

(x, z) ∈ R2 ◦ R1 ⇐⇒ ∃y ∈ Y : (x, y) ∈ R1 ∧ (y, z) ∈ R2,

assigning the minimum as truth function to the conjunction and evaluating the exis-
tential quantifier by the supremum such that we obtain

(ρ2 ◦ ρ1)(x, z) = [[(x, y) ∈ (ρ2 ◦ ρ1)]]

= [[∃y ∈ Y : (x, y) ∈ R1 ∧ (y, z) ∈ R2]]

= sup
{
min{ρ1(x, y), ρ2(y, z)} | y ∈ Y

}
.

Equation17.7 can also be derived by applying the extension principle to the partial
mapping

f : (X × Y ) × (Y × Z) → (X × Y ),

(
(x, y), (y′, z)

) �→
{

(x, z) if y = y′
undefined otherwise,

on which the composition of crisp relations is based because we have

f [R1, R2] = f [R1 × R2] = R2 ◦ R1.

If ρ1 and ρ2 are the characteristic functions of the crisp relations R1 or R2, then
ρ2 ◦ ρ1 is the characteristic function of the relation R2 ◦ R1. In this sense, Defini-
tion 17.3 generalizes the compositions of crisp relations to fuzzy relations.

For every fuzzy set μ ∈ F (X) we have

(ρ2 ◦ ρ1)[μ] = ρ2
[
ρ1[μ]].

Example 17.14 Let us come back to Example 17.11 analyzing the risk of financial
fonds. Now, we extend the risk estimation of fonds by the set Z = {hl, ll, lp, hp}.
The elements stand for “high loss,” “low loss,” “low profit,” “high profit.” The fuzzy
relation ρ′ ∈ F (Y × Z) in Table17.4 determines for each tuple (y, z) ∈ Y × Z the
possibility to have a profit or loss of z under the risk y. The fuzzy relation resulting
from the composition of the fuzzy relations ρ and ρ′ is shown in Table17.5.
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Table 17.4 The fuzzy relation ρ′: “Given the risk y the profit/loss z is possible”

ρ′ hl ll lp hp

l 0.0 0.4 1.0 0.0

m 0.3 1.0 1.0 0.4

h 1.0 1.0 1.0 1.0

Table 17.5 The fuzzy relation ρ′ ◦ ρ: “With the yield object x the profit/loss z is possible”

ρ′ hl ll lp hp

s 1.0 1.0 1.0 1.0

f 0.3 0.9 0.9 0.4

r 0.3 0.5 0.8 0.4

In this case, where the universes of discourse are finite and the fuzzy relations can
be represented as tables or matrices, the computation scheme for the composition
of fuzzy relations is similar to matrix multiplication, where we have to replace the
componentwise multiplication by the minimum and the addition by the maximum.
For the mixed fond from Example 17.11 which was represented by the fuzzy set μ

μ(s) = 0.8, μ( f ) = 0, μ(r) = 0.2,

we obtain

(ρ′ ◦ ρ)[μ](hl) = (ρ′ ◦ ρ)[μ](ll) = (ρ′ ◦ ρ)[μ](lp) = (ρ′ ◦ ρ)[μ](hp) = 0.8

as fuzzy set describing the possible profit or loss. �

Example 17.15 The precision of the measuring instrument from Example 17.10 was
described by the fuzzy relation ρ(x, y) = 1 − min{10|x − y|, 1} which determines
in how far the value y is the true value if x is the value indicated by the measuring
instrument. We assume that we cannot exactly read the value from the (analog)
instrument, and therefore use the fuzzy relation ρ′(a, x) = 1 − min{5|a − x |, 1}.
This relation tells us in how far the value x is the value indicated by the measuring
instrument when we read the value a. In order to estimate which value could be the
true value y of the measured quantity, given we have read the value a, we have to
compute the composition of the fuzzy relations ρ′ and ρ

(ρ ◦ ρ′)(a, y) = 1 − min

{
10

3

∣∣a − y
∣∣, 1

}
.

Assuming we have read a = 0, we obtain the fuzzy set

(ρ ◦ ρ′)[I{0}] = Λ−0.3,0,0.3

for the true value y. �
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17.6 Fuzzy Relational Equations

Let the fuzzy sets μ on X and ν on Y be given. Suppose we are searching for a fuzzy
relation ρ on X × Y that satisfies the equality ν = μ ◦ ρ. Such an equation is called
a fuzzy relational equation (DiNola 1989; Gottwald 1993; Gottwald 1995; Gottwald
2000; and Novak 2000). Let us first assume that the composition of the fuzzy set and
the fuzzy relation is defined by the minimum operator for the conjunction:

μ ◦ ρ : Y → [0, 1] , y �→ sup
x∈X

{min {μ(x), ρ(x, y)}}
A fuzzy relational equation does not always have a solution.However, if it is solvable,
then the Gödel implication

ρGödel
μ,ν = X × Y → [0, 1] , (x, y) �→

{
1, if μ(x) ≤ ν(y),

ν(y), otherwise

is the greatest solution. In general there is no single smallest solution with respect to
the inclusion of fuzzy relations— the space of solutions forms an upper semi-lattice.
The Cartesian product μ × ν of μ and ν defined on X × Y by

(μ × ν)(x, y) := min {μ(x), ν(y)}
is a “small” solution, if there is a solution at all.

Example 17.16 Let the fuzzy setsμon X = {x1, x2, x3} andν onY = {y1, y2, y3, y4}
be given:

x x1 x2 x3
μ(x) 0.9 1.0 0.7

y y1 y2 y3 y4
ν(y) 0.1 0.4 0.8 0.7

The Gödel relation ρGödel
μ,ν is the greatest solution ofμ◦ρ = ν, whereas ρ1 and ρ2 are

two different minimal solutions. The cartesian product μ × ν is a “small” solution.

ρGödelμ,ν y1 y2 y3 y4
x1 1.0 0.4 0.8 0.7
x2 1.0 0.4 0.8 0.7
x3 1.0 0.4 1.0 1.0

μ × ν y1 y2 y3 y4
x1 0.9 0.4 0.8 0.7
x2 1.0 0.4 0.8 0.7
x3 0.7 0.4 0.7 0.7

ρ1 y1 y2 y3 y4
x1 0.0 0.0 0.0 0.7
x2 1.0 0.4 0.8 0.0
x3 0.0 0.0 0.0 0.0

ρ2 y1 y2 y3 y4
x1 0.0 0.4 0.8 0.0
x2 1.0 0.0 0.0 0.0
x3 0.0 0.0 0.0 0.7

These results can be generalized to systems of fuzzy relational equations. Let
μ1, . . . , μr be fuzzy sets on X and ν1, . . . , νr be fuzzy sets on Y . We are searching
for a (single) fuzzy relation ρ on X ×Y that satisfies the r fuzzy relational equations

νi = μi ◦ ρ, i = 1, . . . , r

If this system has a solution at all, then the fuzzy relation

min
i∈{1,...,r}

{
ρGödel

μi ,νi

}
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is the greatest solution of this system of equations.
The central role that is played by the Gödel relation in this context is due to the

fact that the minimum operator for the conjunction was chosen. If the minimum was
replaced by some other t-norm, a different relation would take the role of the Gödel
relation.
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18Similarity Relations

In this chapter, we discuss a special type of fuzzy relations called similarity relations.
They play an important role in interpreting fuzzy controllers and, more generally,
can be used to characterize the inherent indistinguishability or vagueness of a fuzzy
systems.

18.1 Similarity

Similarity relations are fuzzy relations that specify for pairs of elements or objects
how indistinguishable or similar they are. From a similarity relation we should expect
that it is reflexive and symmetric which means that every element is similar to itself
(with degree 1) and that x is as similar to y as y to x . In addition to these two minimum
requirements, we also ask for the following weakened transitivity condition: If x is
similar to y to a certain degree and y is similar to z to a certain degree, then x should
also be similar to z to a certain (maybe lower) degree. Technically speaking, we
define a similarity relation as follows:

Definition 18.1 A similarity relation E : X × X → [0, 1] with respect to the t-
norm t on the set X is a fuzzy relation over X × X which satisfies the conditions

(E1) E(x, x) = 1, (reflexivity)
(E2) E(x, y) = E(y, x), (symmetry)
(E3) t

(
E(x, y), E(y, z)

) ≤ E(x, z). (transitivity)

for all x, y, z ∈ X .

The transitivity conditions for similarity relations can be understood in terms of
fuzzy logic, as it was presented in Sect. 15.5, as follows: The truth value of the
proposition

x and y are similar AND y and z are similar

383
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should be at most as great as the truth value of the proposition

x and z are similar

where the t-norm t is used as the truth function for the conjunction AND.
In Example 17.10, we have already seen an example for a similarity relation, i.e.,

the fuzzy relation

ρ : R × R → [0, 1], (x, y) �→ 1 − min{10|x − y|, 1}
that indicates how indistinguishable two values are using a measuring instrument.
We can prove easily that this fuzzy relation is a similarity relation with respect to
the Łukasiewicz t-norm t (α, β) = max{α + β − 1, 0}. More generally, an arbitrary
pseudometric, i.e., a distance measure δ : X × X → [0,∞) satisfying the symmetry
condition δ(x, y) = δ(y, x) and the triangle inequality δ(x, y) + δ(y, z) ≥ δ(x, z)
induces a similarity relation with respect to the Łukasiewicz t-norm by

E (δ)(x, y) = 1 − min{δ(x, y), 1}
and vice versa, every similarity relation E with respect to the Łukasiewicz t-norm
defines a pseudometric by

δ(E)(x, y) = 1 − E(x, y).

Furthermore, we have E = E (δ(E)) and δ(x, y) = δ(E (δ))(x, y) if δ is bounded by one,
i.e., δ(x, y) ≤ 1 holds for all x, y ∈ X , such that similarity relations and pseudomet-
rics (bounded by one) represent dual concepts.

Later on, other examples will provide a motivation to consider similarity relations
with respect to other t-norms than the Łukasiewicz t-norm in order to characterize
the vagueness or indistinguishability that is inherent in a fuzzy system.

18.2 Fuzzy Sets and Extensional Hulls

If we assume that a similarity relation characterizes a certain indistinguishability,
we should expect that elements that are (almost) indistinguishable should behave
similar or have similar properties. For fuzzy systems the (fuzzy) property of being
an element of a (fuzzy) set is essential. Therefore, those fuzzy sets play an important
role that are coherent with respect to a given similarity relation in the sense that
similar elements have similar membership degrees. This property of a fuzzy set is
called extensionality and is formally defined as follows:

Definition 18.2 Let E : X × X → [0, 1] be a similarity relation with respect to the
t-norm t on the set X . A fuzzy set μ ∈ F (X) is called extensional with respect to E
if

t
(
μ(x), E(x, y)

) ≤ μ(y)

holds for all x, y ∈ X .

http://dx.doi.org/10.1007/978-1-4471-7296-3_17
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In the view of fuzzy logic, the extensionality condition can be interpreted in the
sense that the truth value of the proposition

x is an element of the fuzzy set μ AND

x and y are similar (indistinguishable)

should not be smaller than the truth value of the proposition

y is an element of the fuzzy set μ

where the t-norm t as truth function is assigned to the conjunction AND.
A fuzzy set can always be made extensional by adding all elements which are

similar to at least one of its elements. If we formalize this idea, we obtain the following
definition:

Definition 18.3 Let E : X × X → [0, 1] be a similarity relation with respect to the
t-norm t on the set X . The extensional hull μ̂ of the fuzzy set μ ∈ F (X) (with
respect to the similarity relation E) is given by

μ̂(y) = sup
{
t
(
E(x, y), μ(x)

) | x ∈ X
}
.

If t is a continuous t-norm, then the extensional hull μ̂ of μ is the smallest exten-
sional fuzzy set containing μ in the sense of μ ≤ μ̂.

In principle, we obtain the extensional hull of a fuzzy set μ under the similarity
relation E as the image of μ under the fuzzy relation E as in Definition 17.2. For
the extensional hull, the minimum in Eq. 17.5 in Definition 17.2 is replaced by the
t-norm t .

Example 18.1 Let us consider the similarity relation E : R × R → [0, 1] defined
by E(x, y) = 1 − min{|x − y|, 1} with respect to the Łukasiewicz t-norm which is
induced by the usual metric δ(x, y) = |x − y| on the real numbers. A (crisp) set M ⊆
R can be viewed as a special type of fuzzy set when we consider its characteristic
function IM . In this way, we can also compute the extensional hulls of crisp sets.

The extensional hull of a point x0, which means the one-element set {x0}, with
respect to the similarity relation E mentioned above is a fuzzy set with a triangular
membership function Λx0−1,x0,x0+1. The extensional hull of the interval [a, b] is the
trapezoidal function Πa−1,a,b,b+1 (cf. Fig. 18.1). �

This example establishes an interesting connection between fuzzy sets and similar-
ity relations: triangular and trapezoidal membership functions, that are very popular
in most applications of fuzzy systems, can be interpreted as extensional hulls of
points or intervals, that means as fuzzy points or fuzzy intervals in a vague environ-
ment which is characterized by a similarity relation induced by the standard metric
on the real numbers.

http://dx.doi.org/10.1007/978-1-4471-7296-3_17
http://dx.doi.org/10.1007/978-1-4471-7296-3_17
http://dx.doi.org/10.1007/978-1-4471-7296-3_17
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Fig. 18.1 Extensional hull
of the point x0 and the
interval [a, b]

1

x0 −1 x0 x0 +1 a−1 a b b+1

18.3 Scaling Concepts

The standard metric on the real numbers allows only very limited forms of triangular
and trapezoidal functions as extensional hulls of points and intervals: the slopes where
the membership degrees increase and decrease are always 1 and −1, respectively.
However, it is reasonable to allow a scaling of the standard metric so that other forms
of fuzzy sets as extensional hulls can result. This scaling can have two different
meanings.

The degree of similarity of two measured values depends on the measuring unit.
Two values measured in kilo units can have a small distance and might be considered
as almost indistinguishable or very similar, while the very same quantities measured
in milli units have a much greater distance and are distinguishable. Of course, the
degree of similarity should not depend on the measurement unit. The height of two
persons should have the same degree of similarity, no matter whether we measure
the height in centimeters, meters, or inches. In order to adapt a similarity relation to
a measuring unit, the distance or the real axis has to be scaled by a constant factor
c > 0, as in Example 17.10. In this way, we obtain scaled metric |c · x − c · y| which
induces the similarity relation E(x, y) = 1 − min{|c · x − c · y|, 1}.

An extension of the scaling concept is the use of varying scaling factors allowing
a local scaling fitting to the problem.

Example 18.2 We want to describe the behavior of an air conditioner using fuzzy
rules. It is neither necessary nor desirable to measure the room temperature, to which
the air conditioner will react, as exactly as possible. However, the temperature values
are of different importance for the air conditioner. Temperatures of 10 ◦C or 15 ◦C,
for example, are much too cold, so the air conditioner should heat at full power,
and the values 27 ◦C or 32 ◦C are much too hot and the air conditioner should cool
at full power. Therefore, there is no need to distinguish between the values 10 ◦C
and 15 ◦C or 27 ◦C and 32 ◦C for the control of the room temperature. Since we
do not have to distinguish between 10 ◦C and 15 ◦C, we can choose a very small
positive scaling factor—in the extreme case even the factor 0, then these temperatures
are not distinguished at all. However, it would not be correct, if we chose a small
scaling factor for the entire range of the temperature, because the air conditioner
has to distinguish very well between the cold temperature 18.5 ◦C and the warm one
23.5 ◦C.

http://dx.doi.org/10.1007/978-1-4471-7296-3_17
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Table 18.1 Different sensitivities and scaling factors for controlling the room temperature

Temperature
(in ◦C)

Scaling factor Interpretation

<15 0.00 exact value insignificant (much too cold temperature)

15–19 0.25 too cold but near approximately OK, not very sensitive

19–23 1.50 very sensitive, near the optimum

23–27 0.25 too cold but near approximately OK, not very sensitive

>27 0.00 exact value insignificant (much too hot temperature)

Table 18.2 Transformed distances based on the scaling factors and the induced similarity degrees

Pair of variates Scaling factor Transf. distance Similarity degree

(x, y) c δ(x, y) = E(x, y) =
|c · x − c · y| 1 − min{δ(x, y), 1}

(13, 14) 0.00 0.000 1.000

(14, 14.5) 0.00 0.000 1.000

(17, 17.5) 0.25 0.125 0.875

(20, 20.5) 1.50 0.750 0.250

(21, 22) 1.50 1.500 0.000

(24, 24.5) 0.25 0.125 0.875

(28, 28.5) 0.00 0.000 1.000

Instead of a global scaling factor we should choose individual scaling factors for
different ranges of the temperature, so that we can make a fine distinction between
temperatures which are near the optimum room temperature and a more rough one
between temperatures which are much too cold or much too warm. Table 18.1 shows
an example of a partition into five temperature ranges, each one having its individual
scaling factor.

These scaling factors define a transformation of the range and the distances for
the temperature, that can be used to define a similarity relation. Table 18.2 shows the
transformed distances and the resulting similarity degrees for some pairs of values of
the temperature. For each pair the two values lie in a range where the scaling factor
does not change. In order to understand how to determine the transformed distance
and the resulting similarity degree for two temperatures that are not in a range with
a constant scaling factor, we first analyze the effect of a single scaling factor.

Let us consider an interval [a, b] where we measure the distance between two
points based on the scaling factor c. Computing the scaled distance means that we
apply stretching (c > 1) or shrinking (0 ≤ c < 1) to the interval according to the
factor c and calculate the distances between the points in the transformed (stretched
or shrunk) interval. In order to take individual scaling factors for different ranges into
account, we have to stretch or shrink each range, where the scaling factor is constant,
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transformed co-domain
0 1 7 8

0 15 19 23 27 35
original co-domain

Fig. 18.2 Transformation of a codomain with the help of scaling factors

correspondingly. Gluing these transformed ranges together, we can now measure the
distance between points that do not lie in a region with a constant scaling factor. The
induced transformation is piecewise linear as shown in Fig. 18.2.

On the basis of the following three examples, we explain and illustrate the calcu-
lation of the transformed distance and the resulting similarity degrees. We determine
the similarity degree between the values 18 and 19.2. The value 18 is in the interval
[15, 19] with constant scaling factor 0.25. This interval of length 4 is now shrunk to
an interval of length 1. Therefore, the distance of the value 18 to the right boundary
of the interval, i.e., 19, is also shrunk by the factor 0.25, such that the transformed
distance between 18 and 19 is exactly 0.25. In order to calculate the transformed
distance between 18 and 19.2, we have to add the transformed distance between 19
and 19.2. In this range the scaling factor is constantly 1.5, so the distance between 19
and 19.2 is stretched by the factor 1.5 and the resulting transformed distance is 0.3.
Thus the transformed distance between the values 18 and 19.2 is 0.25 + 0.3 = 0.55
which leads to a similarity degree of 1 − min{0.55, 1} = 0.45.

In the second example, we consider the values 13 and 18. Because of the scaling
factor 0, the transformed distance between 13 and 15 is also 0. In the range between 15
and 18 the scaling factor is 0.25 and therefore the transformed distance between 13
and 18 is 0.75. Since the transformed distance between 13 and 15 is zero, the overall
transformed distance between 13 and 18 is 0.75 and the similarity degree between 13
and 18 is 0.25.

Finally, we determine the transformed distance and the similarity degree between
the values 22.8 and 27.5. Here, we have to take three ranges with different scaling
factors into account: the scaling factor between 22.8 and 23 is 1.5, between 23 and 27
it is 0.25, and between 27 and 27.5 it is constantly 0. Therefore, the transformed dis-
tances for the pairs (22.8, 23), (23, 27), and (27, 27.5) are 0.3, 1, and 0, respectively.
The sum of these distances and therefore the transformed distance between 22.8
and 27.5 is 1.3. The degree of similarity is 1 − min{1.3, 1} = 0. �

The idea of using different scaling factors for different ranges can be extended by
assigning a scaling factor to each single value which determines how to distinguish in
the direct environment of this value. Instead of a piecewise constant scaling function
as in Example 18.2 any (integrable) scaling functions c : R → [0,∞) can be used.
The transformed distance between the values x and y under such a scaling function
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can be calculated using the following equation (Klawonn 1994):∣∣∣∣
∫ y

x
c(s) ds

∣∣∣∣ . (18.1)

18.4 Fuzzy Sets and Similarity Relations

We have seen that fuzzy sets can be interpreted as induced concepts based on simi-
larity relation. Assuming that a similarity relation models a problem-specific indis-
tinguishability, fuzzy sets are induced by crisp values or sets in a canonical way in
the form of extensional hulls. In the following, we analyze the opposite view. Given
a set of fuzzy sets, can we find a suitable similarity relation such that the fuzzy sets
are nothing but extensional hulls of crisp values or sets? The results that we present
here will be helpful in analyzing and understanding fuzzy controllers later on. In the
context of fuzzy controllers a number of vague expression modeled by fuzzy sets
are used for each considered variable. So for each domain X a set A ⊆ F (X) of
fuzzy sets is given. As we will see later the inherent indistinguishability of these
fuzzy sets can be characterized by similarity relations. The coarsest (greatest) simi-
larity relation for which all fuzzy sets in A are extensional plays an important role.
The following theorem (Klawonn and Castro 1995) describes how to compute this
similarity relation.

Theorem 18.1 Let t be a continuous t-norm and A ⊆ F (X) a set of fuzzy sets.
Then

EA (x, y) = inf
{↔

t
(
μ(x), μ(y)

) | μ ∈ A
}

(18.2)

is the coarsest (greatest) similarity relation with respect to the t-norm t for which
all fuzzy sets in A are extensional.

↔
t is the bi-implication from Eq.15.4 associated

with the t-norm t.

Coarsest similarity relation means that for every similarity relation E for which
all fuzzy sets in A are extensional, we have that EA (x, y) ≥ E(x, y) holds for all
x, y ∈ X .

Equation 18.2 for the similarity relation EA can be understood and interpreted
within the framework of fuzzy logic. We interpret the fuzzy sets in A as representa-
tions of vague properties. Two elements x and y are similar with respect to a single
property, if x has the property if and only if y has the property. Modeling this idea
within fuzzy logic, this means that we have to interpret “x has the property associated
with the fuzzy set μ” as the membership degree of x to μ. Then the similarity degree
of x and y, taking only the property associated with the fuzzy set μ into account, is
defined by

↔
t
(
μ(x), μ(y)

)
. When we can use all properties associated with the fuzzy

sets in A to distinguish x and y, this means: x and y are similar if they are similar
with respect to all properties in A . Evaluating “for all” by the infimum, we obtain
Eq. 18.2 for the similarity degree of two elements.

http://dx.doi.org/10.1007/978-1-4471-7296-3_15
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We have seen in Example 18.1 that typical fuzzy sets with triangular membership
functions can be interpreted as extensional hulls of single points or values. This
interpretation of fuzzy sets as vague values will be very useful in the context of
fuzzy control. This is why we also study the issue, when a set A ⊆ F (X) of fuzzy
sets can be interpreted as extensional hulls of points.

Theorem 18.2 Let t be a continuous t-norm and A ⊆ F (X) a set of fuzzy sets. Let
each μ ∈ A have the property such that there exists an xμ ∈ X with μ(xμ) = 1.
There exists a similarity relation E, such that for all μ ∈ A the extensional hull of
the point xμ is equal to the fuzzy set μ if and only if

sup
x∈X

{t(μ(x), ν(x)
)} ≤ inf

y∈X
{↔
t
(
μ(y), ν(y)

)} (18.3)

holds for all μ, ν ∈ A . In this case, E = EA is the coarsest similarity relation for
which all fuzzy sets in A are extensional hulls of points.

Condition 18.3 says that the degree of nondisjunction of any two fuzzy sets μ, ν ∈
A must not exceed their degree of equality. The corresponding formulas are obtained
by interpreting the following conditions in terms of fuzzy logic:

• Two sets μ and ν are non-disjoint if and only if

∃x : x ∈ μ ∧ x ∈ ν

holds.
• Two sets μ and ν are equal if and only if

∀y : y ∈ μ ↔ y ∈ ν

holds.

Condition 18.3 in Theorem 18.2 is definitely satisfied when the fuzzy sets μ and ν

are disjoint with respect to the t-norm t , that is, we have t
(
μ(x), ν(x)

) = 0 for all
x ∈ X . A proof for this theorem can be found in Kruse et al. (1994).

Most of the variables in the context of fuzzy control are numerical or continuous.
Similarity relations on the real line can be defined in a simple and understandable way
using scaling functions based on the concept of distance, as described in Eq. 18.1.
When we require that the similarity relation in Theorem 18.2 should be definable
in terms of a scaling function, the following result proved in Klawonn (1994) is
important.

Theorem 18.3 Let A ⊆ F (R) be a nonempty, at most countable set of fuzzy sets
such that for each μ ∈ A the following conditions are satisfied:

• There exists an xμ ∈ R such that μ(xμ) = 1.
• μ (as real-valued function) is nondecreasing in the interval (−∞, xμ].
• μ is nonincreasing in the interval [xμ, ∞).
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• μ is continuous.
• μ is differentiable almost everywhere.

There exists a scaling function c : R → [0, ∞) such that for all μ ∈ A the exten-
sional hull of the point xμ with respect to the similarity relation

E(x, y) = 1 − min

{∣∣∣∣
∫ y

x
c(s) ds

∣∣∣∣ , 1

}

is equal to the fuzzy set μ if and only if the condition

min{μ(x), ν(x)} > 0 ⇒
∣∣∣∣dμ(x)

dx

∣∣∣∣ =
∣∣∣∣dν(x)

dx

∣∣∣∣ (18.4)

is satisfied for all μ, ν ∈ A almost everywhere. In this case

c : R → [0,∞), x �→
{∣∣∣ dμ(x)

dx

∣∣∣ if μ ∈ A and μ(x) > 0

0 otherwise

can be chosen as (almost everywhere well-defined) scaling function.

Example 18.3 In order to illustrate how extensional hulls of points with respect to a
similarity relation induced by a piecewise constant scaling function might look like,
we recall the scaling function

c : [0, 35) → [0,∞), s �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if 0 ≤ s < 15
0.25 if 15 ≤ s < 19
1.5 if 19 ≤ s < 23
0.25 if 23 ≤ s < 27
0 if 27 ≤ s < 35.

from Example 18.2. Figure 18.3 shows the extensional hulls of the points 15, 19, 21,
23, and 27 with respect to the similarity relation induced by the scaling function c.

These extensional hulls have triangular or trapezoidal membership functions. The
reason for this is that the points are chosen in such a way that—moving away from
the corresponding point—the membership degree drops to zero before the scaling
function changes its value. When we choose a point close to a point where the scaling
function jumps from one value to another we will not obtain a triangular or trapezoidal

1

0 15 19 19.7 21 22.3 23 27 35

Fig. 18.3 The extensional hulls of the points 15, 19, 21, 23, and 27
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1

0.75

0.25

0 15 18 19 19.5 21.8 22.5 23 24 27 35

Fig. 18.4 The extensional hulls of the points 18.5 and 22.5

membership function for the extensional hull. In the case of a piecewise linear scaling
function we can only guarantee that we obtain piecewise linear membership functions
as extensional hulls as they are shown in Fig. 18.4.

It is quite common to use sets of fuzzy sets for fuzzy controllers as they are illus-
trated in Fig. 18.5. There, we choose values x1 < x2 < . . . < xn and use triangular
functions of the form Λxi−1,xi ,xi+1 or the trapezoidal functions Π−∞,−∞,x1,x2 and
Πxn−1,xn ,∞,∞ at the limits x1 and xn of the corresponding range, i.e.,

A = {Λxi−1,xi ,xi+1 | 1 < i < n} ∪ {Π−∞,−∞,x1,x2 , Πxn−1,xn ,∞,∞}.
In this case we can always define a scaling function c such that the fuzzy sets can be
interpreted as the extensional hulls of the points x1, . . . , xn , namely

c(x) = 1

xi+1 − xi
if xi < x < xi+1.

�

Now that we have introduced the basic concepts of similarity relations and their
relation to fuzzy sets, we are able to discuss in more detail the conceptual background
of fuzzy sets.

Using gradual membership degrees is the fundamental principle of fuzzy sets.
Similarity relations are based on the fundamental concept of indistinguishability or
similarity. The unit interval serves as the domain for gradual memberships as well as
for similarity degrees. The values between 0 and 1 are interpreted in a mere intuitive
way. There is no clear definition what exactly a membership or similarity degree of
0.8 or 0.9 means or what the quantitative difference is, apart from the fact that 0.9 is
greater than 0.8.

Fig. 18.5 Fuzzy sets for
which we can define a
scaling function

1

x1 x2 x3 x4 x5 x6 x7
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Similarity relations with respect to the Łukasiewicz t-norm can be induced by
pseudometrics. The concept of metric or distance is, at least in the case of the real
line, elementary and does not need any further explanation or motivation.

In this sense, similarity relations, induced by the canonical metric—perhaps with
some additional suitable scaling—can be understood as an elementary concept where
the similarity degrees are interpreted dual to the concept of distances or metrics.

Fuzzy sets can be understood as concepts derived from similarity relations in the
sense of extensional hulls of points or sets. In this interpretation, the membership
degrees have a concrete meaning. The question is whether fuzzy sets should always
be interpreted in this way. The answer is yes and no. Yes, because lacking an inter-
pretation for membership degrees, the choice of the fuzzy sets and operations like
t-norms becomes more or less arbitrary and a pure problem of parameter optimiza-
tion. Yes, because at least in the context of fuzzy control, in most cases we have
to deal with real numbers and the fuzzy sets usually fit quite well to the notion of
an imprecise value, i.e., an extensional hull of a point with respect to some suitable
similarity relation. Also, the results on how fuzzy sets can be induced by similarity
relations and how we can compute suitable similarity relations for given fuzzy sets
speak in favor of an interpretation in terms of similarity relations.
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The biggest success of fuzzy systems in the field of industrial and commercial appli-
cations has been achieved with fuzzy controllers. Fuzzy control is a way of defining
a nonlinear table-based controller whereas its nonlinear transition function can be
defined without specifying every single entry of the table individually. Fuzzy control
does not result from classical control engineering approaches. In fact, its roots can be
found in the area of rule-based systems. Fuzzy controllers simply comprise a set of
vague rules that can be used for knowledge-based interpolation of a vaguely defined
function (Moewes and Kruse 2012).

19.1 Mamdani Controllers

The first model of a fuzzy controller we introduce here was developed in 1975 by
Mamdani (Mamdani and Assilian 1975) on the basis of the more general ideas of
Zadeh published in Zadeh (1971, 1972, 1973).

TheMamdani controller is based on a finite setR of if-then-rules R ∈ R of the
form

R : If x1 is μ
(1)
R and . . . and xn is μ

(n)
R

then y is μR . (19.1)

x1, . . . , xn are input variables of the controller and y is the output value. Usually,
the fuzzy sets μ

(i)
R or μR stand for linguistic values, that is, for vague concepts

like “about zero”, “of average height” or “negative small” which, for their part, are
represented by fuzzy sets. In order to simplify the notation, we do not distinguish
between membership functions and linguistic values that they represent.

How to precisely interpret the rules is essential for understanding the Mamdani
controller. Although the rules are formulated in terms of if-then statements, they
should not be understood as logical implications but in the sense of a piecewise

395
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defined function. If the rule base R consists of the rules R1, . . . , Rr , we should
understand it as a piecewise definition of a fuzzy function, that is

f (x1, . . . , xn) ≈

⎧⎪⎪⎨
⎪⎪⎩

μR1 if x1 ≈ μ
(1)
R1

and . . . and xn ≈ μ
(n)
R1
,

...

μRr if x1 ≈ μ
(1)
Rr

and . . . and xn ≈ μ
(n)
Rr

.

(19.2)

This is similar to the pointwise specification of a crisp function defined over a product
space of finite sets in the form

f (x1, . . . , xn) ≈

⎧⎪⎨
⎪⎩

y1 if x1 = x (1)
1 and . . . and xn = x (n)

1 ,
...

yr if x1 = x (1)
r and . . . and xn = x (n)

r .

(19.3)

We obtain the graph of this function by

graph( f ) =
r⋃

i=1

(
π̂1({x (1)

i }) ∩ · · · ∩ π̂n({x (n)
i }) ∩ π̂Y ({yi })

)
. (19.4)

“Fuzzifying” this equation using the minimum for the intersection and the maximum
(supremum) for the union, the fuzzy graph of the function described by the rule setR
is the fuzzy set

μR : X1 × · · · × Xn × Y → [0, 1],
(x1, . . . , xn, y) �→ sup

R∈R
{min{μ(1)

R (x1), . . . , μ
(n)
R (xn), μR(y)}

or
μR : X1 × · · · × Xn × Y → [0, 1],

(x1, . . . , xn, y) �→ max
i∈{1,...,r}{min{μ(1)

Ri
(x1), . . . , μ

(n)
Ri

(xn), μRi (y)}
in the case of a finite rule base R = {R1, . . . , Rr }.

If a concrete input vector (a1, . . . , an) for the input variables x1, . . . , xn is given,
then we obtain the fuzzy set

μ
output
R,a1,...,an

: Y → [0, 1], y �→ μR(a1, . . . , an, y)

as the fuzzy “output value.”
The fuzzy set μR can be interpreted as fuzzy relation over the sets X1 ×· · ·× Xn

and Y . Therefore, the fuzzy set μ
output
R,a1,...,an

corresponds to the image of the one-
element set {(a1, . . . , an)} or its characteristic function under the fuzzy relation μR .
So in principle, instead of a sharp input vector we could also use a fuzzy set as
input. For this reason, it is very common to call the procedure of feeding concrete
input values to a fuzzy controller as fuzzification, i.e. the input vector (a1, . . . , an)
is transformed into a fuzzy set which is nothing else than a representation of a one-
element set in terms of its characteristic function.

Fuzzification can also be interpreted in another way. In Chap.17 we have seen that
we can obtain the image of a fuzzy set under a fuzzy relation computing the cylindri-
cal extension of the fuzzy set, intersecting the cylindrical extension with the fuzzy

http://dx.doi.org/10.1007/978-1-4471-7296-3_17
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Fig. 19.1 The projection of the input value x1 onto the output axis y

relation and projecting the result to the output space. In this sense, we can understand
the cylindrical extension of the measured tuple or the corresponding characteristic
function as a the fuzzification procedure which is necessary for intersecting it with
the fuzzy relation.

Figure19.1 shows this procedure. In order to make a graphical representation
possible, we consider only one input and output variable. Three rules are shown in
the figure:

If x is Ai , then y is Bi , (i = 1, 2, 3).

The fuzzy relation μR is represented by the three pyramids. If the input value x is
given, the cylindrical extension of {x} defines a plane cutting through the pyramids.
The projection of this cutting plane onto the y-axis (pointing from the front to the
back) yields us the fuzzy set μ

output
R,x which describes the desired output value (in

fuzzy terms).
We can illustrate the computation of the output value by the following scheme.

Figure19.2 shows two rules of a Mamdani controller with two input variables and
one variable. At first, we consider only one of the two rules, say the rule R. The degree
to which the antecedent is satisfied for the given input values is determined by taking
the minimum of the membership degrees of the corresponding fuzzy sets. Then, the
fuzzy set in the consequent of the rule is “cut off” at this level. This means that the
membership degree to the actual output fuzzy set is the minimum of the membership
degrees to the fuzzy set in the antecedent of the rule and the firing strength of the
rule.

If the firing strength of rule is 1, then we exactly obtain the fuzzy set in the
consequent as result, i.e.μR = μ

output
R,a1,...,an

. When the rule is not applicable, meaning

that the firing strength is 0, we obtain μ
output
R,a1,...,an

= 0, i.e. based on this rule nothing
can be said about the output value.
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Fig. 19.2 Illustration of the Mamdani controller computation scheme

All other rules are treated in the same way—Fig.19.2 shows just two rules—so,
for every rule R we obtain a fuzzy set μoutput

R,a1,...,an
. In real applications, usually only a

few rules have a non-zero firing strength at the same time and thus contribute to the
final output fuzzy set. In the second step, these output fuzzy sets derived from single
rules have to be joint to a single fuzzy set which characterizes the described output
value.

In order to explain in which way this aggregation is carried out, we reconsider
the interpretation of the rule base of a fuzzy controller in the sense of a piecewise
definition of a function (cf. Eq.19.2). For a crisp piecewisely defined function, the
r different cases have to be disjoint or, if they overlap they must provide the same
output because otherwise the function value is not well defined.We assume that each
single case describes a “function value” in the form of a set for every input value:
If a considered input value satisfies the condition of the corresponding case, then
we obtain a one-element set with the specified function value. Otherwise, we obtain
the empty set for this case. With this interpretation the actual function value or the
one-element set which contains this function value is given by the union of the sets
resulting from the single cases.

For this reason the (disjoint) union of the fuzzy sets μ
output
R,a1,...,an

resulting from the
single rules should be computed for the overall fuzzy output. In order to compute
the union of fuzzy sets we use a t-conorm, e.g. the maximum. Thus we obtain

μ
output
R,a1,...,an

= max
R∈R

{μoutput
R,a1,...,an

} (19.5)
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as the final output fuzzy set given both the rule base R and the input vector
(a1, . . . , an). In this way, the two rules shown in Fig. 19.2 lead to the output fuzzy
set which is also shown there.

In order to obtain a single crisp output value, the output fuzzy set has to be
defuzzified. A large variety of heuristic defuzzification strategies has been proposed
in the literature. However, without specifying more precisely how the fuzzy sets
and rules should be interpreted, defuzzification remains a matter of pure heuristics.
Therefore, we restrict our considerations to one defuzzification strategy and will
discuss the issue of defuzzification inmore detail after the introduction of conjunctive
rule systems.

In order to understand the fundamental idea of defuzzification applied in the case
of Mamdani controllers, we consider the output fuzzy set determined in Fig. 19.2
once again. The fuzzy sets in the consequents of the two rules are interpreted as
vague or imprecise values. In the same sense, the resulting output fuzzy set is a
vague or imprecise description of the desired output value. Intuitively, the output
fuzzy set in Fig. 19.2 can be understood in the sense that we should favor a larger
output value, but should also consider a smaller output value with a lower preference.
This interpretation is justified by the fact that the first rule, voting for a larger output
value, fires with a higher degree than the second rule that points to a lower output
value. Therefore, we should choose an output value that is large, but not too large,
i.e. a compromise of the proposed outputs of the two rules, however, putting a higher
emphasis on the first rule.

A defuzzification strategy which satisfies this criterion is the center of grav-
ity(COG) method which is also called center of area (COA). The output value of
this method is the center of gravity (or, to be precise, its projection onto the output
axis) of the area under the output fuzzy set, i.e.

COA(μ
output
R,a1,...,an

) =
∫
Y μ

output
R,a1,...,an

· y dy∫
Y μ

output
R,a1,...,an

dy
. (19.6)

This method requires the implicit condition that the functions μ
output
R,a1,...,an

· y and

μ
output
R,a1,...,an

are integrable which is always satisfied, provided that the membership
functions appearing in the consequents of the rules are chosen in a reasonable way,
e.g. when they are continuous.

19.1.1 Remarks on Fuzzy Controller Design

When choosing the fuzzy sets for the input variables, one should make sure that the
domain of each input variable is completely covered, this means, for every possible
value there exists at least one fuzzy set to which it has a non-zeromembership degree.
Otherwise, the fuzzy controller cannot determine an output value for this input value.

The fuzzy sets should represent vague or imprecise values or ranges. Therefore,
convex fuzzy sets are preferable. Triangular and trapezoidal membership functions
are especially suitable, because they have a simple parametric representation and
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determining the membership degrees can be achieved with low computational effort.
In ranges where the controller has to react very sensitively to small changes of an
input value we should choose very narrow fuzzy sets in order to distinguish between
the values well enough. We should, however, take into account that the number of
possible rules grows very fast with the number of fuzzy sets. If we have ki fuzzy
sets for the i th input variable, then a complete rule base that assigns to all possible
combinations of input fuzzy sets an output fuzzy set, contains k1 · . . . · kn rules when
we have n input variables. If we have four input values with only five fuzzy sets for
each of them, then we already get 625 rules.

Concerning the choice of the fuzzy sets for the output variable similar constraints
as for the input variables should be considered. They should be convex and in the
ranges, where a very exact output value is important, narrow fuzzy sets should be
used. Additionally, the choice of fuzzy sets for the output value strongly depends on
the defuzzification strategy. It should be noted that the defuzzification of asymmet-
rical triangular membership functions of the form Λx0−a,x0,x0+b with a �= b does
not always correspond to what we might expect. If only one single rule fires with
the degree 1 and all others with degree 0, we obtain the corresponding fuzzy set in
the consequent of this rule as the output fuzzy set of the controller before defuzzifi-
cation. If this is an asymmetrical triangular membership function Λx0−a,x0,x0+b, we
have COA(Λx0−a,x0,x0+b) �= x0, i.e. not the point where the triangular membership
function reaches the membership degree 1.

Another problem of the center of gravity method is that it can never return a
boundary value of the interval of the output variable. This means, the minimum and
maximum value of the output domain are not accessible for the fuzzy controller. A
possible solution of this problem is to extend the fuzzy sets beyond the interval limits
for the output variable. However, in this case we have to ensure that the controller
will never yield an output value outside the range of permitted output values.

For the design of the rule base, completeness is an important issue. We have to
make sure that for any possible input vector there is at least one rule that fires. This
does not mean that for every combination of fuzzy sets of input values we have to
formulate a rule with these fuzzy sets in the antecedent. On the one hand, a sufficient
overlapping of the fuzzy sets guarantees that there will still be rules firing, even if we
have not specified a rule for all possible combinations of input fuzzy sets. On the other
hand, there might be combinations of input values that correspond to a state which
the system can or must never reach. For these cases it is not necessary to specify
rules. We should also avoid contradicting rules. Rules with identical antecedents and
different consequents should be avoided.

TheMamdani controllerwe have introduced here is also calledmax-min controller
because of Eq.19.5 for computing the output fuzzy set μ

output
R,a1,...,an

. Maximum and
minimum were used to calculate the union and the intersection, respectively, in
Eq.19.4.

Of course, also other t-norms and t-conorms canbe considered insteadofminimum
or maximum. In applications the product t-norm is often preferred and the bounded
sum s(α, β) = min{α+β, 1} is sometimes used as the corresponding t-conorm. The
disadvantage of minimum and maximum is the idempotency property. The output
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fuzzy set μ
output
R,a1,...,an

of a rule R depends only on the input variable for which the
minimum membership degree to the corresponding fuzzy set in the antecedent is
obtained. A change of another input variable will not affect the output of this rule,
unless the change is large enough to let the membership degree of this input value
to its corresponding fuzzy set drop below the membership degree of the other input
values.

If the fuzzy sets μ
output
R,a1,...,an

of different rules support a certain output value to
some degree, the aggregation based on the maximum will only take the largest of
these membership degrees into account. It might be desirable that such an output
value obtains a higher support than another one that is supported to the same degree,
but only by a single rule. In this case a t-conorm like the bounded sum should be
preferred to the maximum.

In principle, we could also compute the firing strength of a rule and the influence
of this degree to the fuzzy set in the consequent of this rule based on different t-norms.
Some approaches even choose an individual t-norm for each rule.

Sometimes, even t-conorms are used to compute the firing strength of a rule. In
this case, the corresponding rule must read as

R : If x1 is μ
(1)
R or . . . or xn is μ

(n)
R

then y is μR .

In the sense of our interpretation of the rules as a piecewise definition of a fuzzy
function this rule can be replaced by the following n rules.

Ri : If xi is μ
(i)
R

then y is μR .

In some commercial programs, weighted rules are allowed. The resulting output
fuzzy set of a rule is then multiplied by the assigned weight. Such weights increase
the number of the free parameters of a fuzzy controller. But the same effect can be
achieved directly by an adequate choice of the fuzzy sets in the antecedent or the
consequent of the rule without any weights. In most cases, weights make it more
difficult to interpret a fuzzy controller.

The fundamental idea of the Mamdani controller as a piecewise definition of a
fuzzy function requires implicitly that the antecedents of the rules represent disjoint
fuzzy situations or cases. At this point we do not to formalize this concept of dis-
jointness for fuzzy sets exactly. However, when this assumption is ignored, this can
lead to an undesired behavior of the fuzzy controller. For instance, refining the con-
trol actions cannot be achieved by merely adding rules without changing the already
existing fuzzy sets. As an extreme example we consider the rule

If x is IX , then y is IY ,

where the fuzzy sets IX and IY are the characteristic functions of the input and output
domain, respectively, yielding membership degree 1 for any value. The rule can be
read as

If x is anything, then y is anything,
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Fig.19.3 A car driving towards an object (left) and possible output fuzzy set of a steering controller
consisting of two disjoint fuzzy (right)

With the rule, the output fuzzy set will always be constantly 1, the characteristic
function of the whole output domain. It does not depend on or change with other
rules that we add to the rule base. We will discuss this problem again, when we
introduce conjunctive rule systems.

Another problem of the disjoint fuzzy cases is illustrated in Fig. 19.3 which shows
an output fuzzy set where the defuzzification is difficult.

Should we interpolate between the two fuzzy values represented by the triangles
like it would be done by the center of gravity method? That would mean that a
defuzzification yields a value whose membership degree to the output fuzzy set
is 0 which surely does not fit to our intuition. Or do the two triangles represent
two alternative output values from which we have to choose one? For example, the
illustrated fuzzy set could be the output fuzzy set of a controller which is supposed
to drive a car around an obstacle. Then, the fuzzy set says that we have to evade the
obstacle either to the left or to the right, but not keep on driving straight ahead. The
latter solution would be proposed by the center of gravity method, leading to the
effect that the car will bump into the obstacle. The interpretation of two alternative
outputs is contradictory to the underlying philosophy of the Mamdani controller as
a piecewise definition of a fuzzy function, because, in this case, the function is not
well-defined, since two fuzzy values are assigned at the same time to only one input.

19.1.2 DefuzzificationMethods

In recent years numerous defuzzification methods were proposed which were devel-
oped more or less intuitively on the basis of the fact that a fuzzy set, but no further
information is given. But what is missing is a systematic approach which is based
on a more rigorous interpretation of the fuzzy set which has to be defuzzified.

A general defuzzification strategy has to fulfill two tasks at the same time. It has
to turn a fuzzy set into a set and it has to choose one (fuzzy) value from a set of
(fuzzy) values. It is not obvious in which order these two steps should be carried out.
For example, the fuzzy set from Fig. 19.3 could be defuzzified by first choosing one
of the two fuzzy values it represents, i.e. by choosing one of the two triangles. In the
second step, the corresponding triangle, representing only a single fuzzy value must
be turned into a suitable crisp value. We could also exchange the order of these two
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steps. Then we would first turn the fuzzy set into a crisp set that in this case would
contain two elements. Afterwards we have to pick one of the values from this crisp
set. These considerations are not taken into account in the axiomatic approach for
defuzzification in Runkler and Glesner (1993) nor by most defuzzification methods
which implicitly assume that the fuzzy set which is to be defuzzified represents just
a single vague value and not a set of vague values.

The underlying semantics or interpretation of the fuzzy controller or fuzzy sys-
tem is also essential for the choice of the defuzzification strategy. In the following
section we will explain in further detail that the Mamdani controller is based on an
interpolation philosophy. Other approaches do not fit into this interpolation scheme,
as we will see in the section on conjunctive rule systems.

At this point we explain some other defuzzification strategies and their properties
in order to better understand the issue of defuzzification.Themeanofmaxima (MOM)
method is a very simple defuzzification strategy which chooses as output value the
mean values of the values with maximum membership degree to the output fuzzy
set. This method is rarely applied in practice because for symmetrical fuzzy sets it
leads to a discontinuous controller behavior. Given the input values, the output value
depends only on the output fuzzy set which belongs to the rule with the highest firing
strength—provided that there are not two or more rule which by chance fire to the
same degree and which have different fuzzy sets in their consequents. When we use
symmetrical fuzzy sets in the consequents of the rules in the context of the mean of
maxima method, the output value will always be on of the centers of the fuzzy sets,
except in the rare case when two or more rules fire with the same maximum degree.
Therefore, the rule with the highest firing strength will determine the constant output
until another rule takes over. Then the controller output will jump directly or with one
intermediate step to the output of the rule that has now the maximum firing strength.

Both the center of area method as well es MOM will result in the possibly non-
desired mean value in the defuzzification problem shown in Fig. 19.3. There, they
always choose the right-most value of the values with maximummembership degree
to the output fuzzy set. (Alternatively one can always take the left-most one.) Accord-
ing to Kahlert and Frank (1994), the authors hold a patent on this method. But similar
to MOM, it can also lead to discontinuous changes of the output value.

The center of gravity method requires relatively high computational costs and
does not have the interpolation properties we would expect. To illustrate this, we
consider a Mamdani controller with the following rule base:

If x is ‘about 0’, then y is ‘about 0’
If x is ‘about 1’, then y is ‘about 1’
If x is ‘about 2’, then y is ‘about 2’
If x is ‘about 3’, then y is ‘about 3’
If x is ‘about 4’, then y is ‘about 4’

The terms “about 0”, . . ., “about 4” are represented by fuzzy sets in the form of
symmetrical triangular membership functions of width two, i.e. Λ−1,0,1, Λ0,1,2,
Λ1,2,3,Λ2,3,4 andΛ3,4,5, respectively. It seems that these rules describe the function
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Fig. 19.4 Interpolation of a
straight line using the center
of gravity method

y = x , i.e. a straight line.Applying the center of gravitymethod the resulting function
matches the straight line only at the values 0, 0.5, 1, 1.5, . . . , 3.5 and 4. At all of the
other points, the control function differs a little bit from the simple straight line as
shown in Fig. 19.4.

These and other undesirable effects, which, for example, can appear using asym-
metrical membership functions in the consequent, can be avoided by using rules with
a crisp value in the consequent. For describing the input values we still use fuzzy
sets, but the outputs are specified not in terms of fuzzy sets, but as a single value for
each rule. In this case, the defuzzification is also very simple. We take the weighted
mean of the rule outputs, i.e. each rule assigns its firing strength as weight to its crisp
output value in the consequent. In this way, we obtain

y =
∑

R μ
output
R,a1,...,an

· yR∑
R μ

output
R,a1,...,an

(19.7)

as the output of the fuzzy controller. The rules have the form

R : If x1 is μ
(1)
R and . . . and xn is μ

(n)
R , then y is yR

with crisp output values yR . a1, . . . , an are the measured input values of the input
variables x1, . . . , xn andμ

output
R,a1,...,an

denotes—as it used to do so— thefiring strength
of the rule R with these input values.

The question how to defuzzify output fuzzy sets is actively discussed even today:
Recently, kernel functions have been introduced to generalize existing defuzzification
methods (Runkler 2012), e.g. in order to improve smoothness properties.



19.2 Takagi–Sugeno–Kang Controllers 405

19.2 Takagi–Sugeno–Kang Controllers

Takagi–Sugeno or Takagi–Sugeno–Kang controllers (TS or TSK models) (Sugeno
1985; Takagi and Sugeno 1985) use rules of the form

R : If x1 is μ
(1)
R and . . . and xn is μ

(n)
R , then y = fR(x1, . . . , xn). (19.8)

In the same manner as in the case of the Mamdani controller (cf. Eq.19.1) the input
values in the rules are described by fuzzy sets. However, using a TSK model, the
consequent of a single rule consists no longer of a fuzzy set, but determines a func-
tion with the input variables as arguments. The basic idea is that the corresponding
function is a good local control function for the fuzzy region that is described by the
antecedent of the rule. For instance, ifweuse linear functions, the desired input/output
behavior of the controller is described locally (in fuzzy regions) by linear models.
At the boundaries between single fuzzy regions, we have to interpolate in a suitable
way between the corresponding local models. This is done by

y =
∑

R μR,a1,...,an · fR(x1, . . . , xn)∑
R μR,a1,...,an

(19.9)

where a1, . . . , an are the measured input values of the input variables x1, . . ., xn ,
and μR,a1,...,an denotes the firing strength of rule R which results given these input
values.

A special case of the TSK models is the variant of the Mamdani controller where
the fuzzy sets in the consequent of the rules are replaced by constant values and the
output value is calculated by Eq.19.7. In this case, the functions fR are constant.

In order to maintain the interpretability of a TSK controller in terms of local
models fR for fuzzy regions, a strong overlap of these regions should be avoided,
since otherwise the interpolation formula given in Eq.19.9 can completely blur the
singlemodels andmix them together into one complexmodel, that might have a good
control behavior, but looses interpretability completely. As an example we consider
the following rules:

If x is ‘very small’, then y = x
If x is ‘small’, then y = 1
If x is ‘large’, then y = x − 2
If x is ‘very large’, then y = 3

First, the terms ‘very small’, ‘small’, ‘large’ and ‘very large’ are modeled by the
four non-overlapping fuzzy sets in Fig. 19.5. In this case, the four functions or local
models y = x , y = 1, y = x − 2 and y = 3 defined in the rules are reproduced
exactly as shown in Fig. 19.5. If we choose only slightly overlapping fuzzy sets, the
TSKmodel yields the control function in Fig. 19.6. Finally, Fig. 19.7 shows the result
of the TSK model which uses fuzzy sets that overlap even more.

We can see that the TSKmodel can lead to slight overshoots as shown in Fig. 19.6,
even if the fuzzy sets overlap just slightly. If we choose an overlap of the fuzzy sets
typical for Mamdani controllers, then the single local model are not visible anymore
as Fig. 19.7 shows.
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Fig. 19.5 Four non-overlapping fuzzy sets: exact reproduction of the local models

Fig. 19.6 Four slightly overlapping fuzzy sets: slight mixture of the local models

Fig. 19.7 Four strongly overlapping fuzzy sets: almost complete mix of the local models

A suitable way to avoid this undesirable effect is to use trapezoidal membership
functions instead of triangular ones, when working with TSK models. When we
choose trapezoidalmembership functions in such away that an overlap occurs only at
the edges of the trapezoidal functions, the corresponding localmodels are reproduced
exactly in the regions where membership degree is 1.
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19.3 Mamdani Controller and Similarity Relations

When we introduced the Mamdani controllers we have already seen that the fuzzy
rules there represent fuzzy points on the graph of the control or transfer function
which is described by the controller. Based on the concept of similarity relations
as discussed in Chap.18, fuzzy sets, such as the ones appearing in the Mamdani
controller, can be interpreted as fuzzy points. Here we discuss this interpretation of
the Mamdani controller and its consequences in detail.

19.3.1 Interpretation of a Controller

At first, we consider a given Mamdani controller. Let us assume that the fuzzy sets
defined for the input and output domains satisfy the conditions of Theorem 18.2 or
even better of Theorem 18.3. In this case, we can derive similarity relations such that
the fuzzy sets can be interpreted as extensional hulls of single points.

Example 19.1 For a Mamdani controller with two input variables x and y and one
output variable z we use the left fuzzy partition from Fig. 19.8 for the input variables
and the right one for the output variable. The rule base consists of four rules.

R1: If x is small and y is small then z is positive
R2: If x is medium and y is small then z is zero
R3: If x is medium and y is big then z is zero
R4: If x is big and y is big then z is negative

These fuzzy partitions satisfy the conditions of Theorem 18.3 such that suitable
scaling functions can be found. For the left fuzzy partition in Fig. 19.8, the scaling
function is

c1 : [0, 6] → [0,∞), x �→
{
0.25 if 0 ≤ x < 4
0.5 if 4 ≤ x ≤ 6,

for the right fuzzy partition, it is

c2 : [−3, 3] → [0,∞), x �→ 1

3
.

Fig. 19.8 Two fuzzy partitions

http://dx.doi.org/10.1007/978-1-4471-7296-3_18
http://dx.doi.org/10.1007/978-1-4471-7296-3_18
http://dx.doi.org/10.1007/978-1-4471-7296-3_18
http://dx.doi.org/10.1007/978-1-4471-7296-3_18
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The fuzzy sets small, medium, big, negative, zero and positive correspond to the
extensional hulls of the points 0, 4, 6,−3, 0 and 3, respectively, if the similarity
relations induced by the above scaling functions are considered.

Then, the four rules say that the graph of the function described by the con-
troller should pass through the corresponding points (0, 0, 3), (4, 0, 0), (4, 6, 0) and
(6, 6,−3). �

The interpretation on the basis of similarity relations in the example above speci-
fies four points on the graph of the control function as well as additional information
encoded in the similarity relations. The construction of the whole control function is
therefore an interpolation task. We want to find a function which passes through the
given points and maps similar values to similar values in the sense of the similarity
relations.

If we, for example, want to find a suitable output value for the input (1, 1), we can
see that (0, 0) is the most similar input pair for which we know an output value, i.e.
3 according to rule R1. The similarity degree of 1 to 0 is nothing but the membership
degree of the value 1 to the extensional hull of 0, that is, to the fuzzy set small, which
is 0.75. The input (1, 1) also similar to the input pair (4, 0) in rule R2, however,
much less similar than to (0, 0). The similarity degree of 1 to 4 is 0.25, the similarity
of 1 to 0 is again 0.75. Thus the output value for (1, 1) should be quite similar to the
output value 3 for the input (0, 0) (rule R1) but also a little bit similar to the output
value 0 of the input (4, 0) (rule R2).

So far we have left the question open, how the two similarity degrees, which we
obtain for the two components x and y of the input pair, should be aggregated. A
t-norm is a suitable choice in this case, e.g. the minimum. As an example, let us
determine how well the output value 2 fits to the input (1, 1). In order to answer this
question, we have to compute the similarity degrees to the points defined by the four
rules. Each of these similarity degrees is simply the minimum of the membership
degrees of the three components 1, 1 and 2 to the three fuzzy sets in the corresponding
rule.

In this way, for the point induced by rule R1 we obtain a similarity degree of
2/3 = min{3/4, 3/4, 2/3}. For R2 the result is 0.25 = min{1/4, 3/4, 2/3}. For the
two rules R3 and R4 the similarity degree is 0 because already the considered input
values do not fit to these rules at all. The similarity degree according to the four
given points or rules corresponds to the best possible value, that is 2/3. Repeating the
calculation for any value z in the input/output tuple (1, 1, z), we obtain a function

μ : [−3, 3] → [0, 1]
for the given input (1, 1). This function can be interpreted as a fuzzy set over the
output range. When we compare this computation scheme with the calculations car-
ried for the Mamdani controller, we obtain exactly the output fuzzy set (cf. Eq.19.5)
of the corresponding Mamdani controller.
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19.3.2 Construction of a Controller

Instead of determining the scaling functions or similarity relations and the corre-
sponding interpolation points indirectly from a Mamdani controller we can also
specify them directly and then derive the corresponding Mamdani controller. The
advantage of this procedure is on the one hand that we can no longer specify arbi-
trary fuzzy sets, but only fuzzy sets which are consistent in a certain way. And on
the other hand the interpretation of the scaling functions and especially of the inter-
polation points that have to be specified is very simple. The scaling functions can be
interpreted in the sense of Example 18.2 on p. 386. In ranges where the control is
very sensitive to a change of the value, we should distinguish very exactly between
the single values. So we should choose a larger scaling factor. For ranges where the
exact values are less important for the control, a small scaling factor is sufficient.
This leads to very narrow fuzzy sets in ranges where very precise control actions
have to be taken, while larger fuzzy sets are used in regions where a rough control is
sufficient. In this way we can explain, why fuzzy sets near the operating point of a
controller are usually chosen to be very narrow in contrast to the other ranges. The
operating point requires very exact control actions in most cases. In contrast to this,
if the process is far from the operating point, first of all rough and strong actions
have to be carried out to force the process closer to its operating point.

Using scaling function it is also obvious which additional hidden assumptions are
used for the design of a Mamdani controller. The fuzzy partitions are defined for
the single domains and are then used in the rules. In the sense of scaling functions
this means that the scaling functions for the different domains are assumed to be
independent from each other. The similarity of the values in a domain does not
depend on the values in other domains. In order to illustrate this issue, we consider
a simple PD controller which uses as input variable the error — the difference from
the reference variable — and the change of the error. For a very small error value
it is obviously very important for the controller whether the change of the error is
slightly positive or slightly negative. Therefore we would choose a larger scaling
factor near zero in the domain of the change of error, resulting in narrow fuzzy sets.
On the other hand, if the error value is large, it is not very important whether the
change of error tends to be slightly positive or slightly negative. First of all we have
to reduce the error. This fact speaks in favor for a small scaling factor near zero in
the domain of the change of error, i.e. we should use wider fuzzy sets. In order to
solve this problem, there are three possibilities:

1. We specify a similarity relation in the product space of the domains error and
change of error which models the dependence described above. But this seems
to be quite difficult because the similarity relation in the product space cannot be
specified using scaling functions.

2. We choose a high scaling factor near zero in the domain of the change of error.
However, in this case, it might be necessary to specify many almost identical
rules for the case of a large error value. The rules differ only in the fuzzy sets for
the change of the error, like

http://dx.doi.org/10.1007/978-1-4471-7296-3_18
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If error is big and change is positive small, then y is negative.
If error is big and change is zero, then y is negative.
If error is big and change is negative small, then y is negative.

3. We define rules that do not use all input values, for instance

If error is big, then y is negative.

The interpretation of the Mamdani controller in the sense of similarity relations
also explains why it is very convenient that adjacent sets of a fuzzy partition meet
each other at the level of 0.5. A fuzzy set is a vague value which will be used for the
interpolation points. If a certain value has been specified, this value provides also
some information about similar values, where similar should be interpreted in the
sense of the corresponding similarity relation. So, as long as the similarity degree
does not drop to zero, there is still some information available. Therefore, once the
similarity degree is zero, new information is needed, i.e. a new interpolation point
must be introduced. Following this principle, the fuzzy sets will exactly overlap at
the level of 0.5. Of course, the interpolation points could be chosen closer, provided
sufficiently detailed knowledge about the process is available. This would lead to
strongly overlapping fuzzy sets. However, this does notmake sense, whenwe desire a
representation of the experts knowledge on the process that is as compact as possible.
Therefore, new interpolation points are only introduced, when they are needed.

Even if a Mamdani controller does not satisfy the conditions of one of the The-
orems 18.2 or 18.3, calculating the similarity relations from Theorem 18.1 will
still provide important pieces of information. The corresponding similarity relations
always exist andmake the fuzzy sets extensional, even though theymight not be inter-
preted as extensional hulls of points. The following results are taken from Klawonn
and Castro (1995), Klawonn and Kruse (2004).

1. The output of a Mamdani controller does not change if we use instead of a crisp
input value its extensional hull as input.

2. The output fuzzy set of a Mamdani controller is always extensional.

This means that we cannot overcome the indistinguishability or vagueness that is
inherently coded in the fuzzy partitions.

19.4 Logic-Based Controllers

In this section we discuss the consequences resulting from an interpretation of the
rules of a fuzzy controller in the sense of logical implications. In Example 17.13 on
p. 371 we have already seen how logical inference can be modeled on the basis of
fuzzy relations. This concept is now applied to fuzzy control. In order to simplify
the notation, we first restrict our considerations to fuzzy controllers with only one

http://dx.doi.org/10.1007/978-1-4471-7296-3_18
http://dx.doi.org/10.1007/978-1-4471-7296-3_18
http://dx.doi.org/10.1007/978-1-4471-7296-3_18
http://dx.doi.org/10.1007/978-1-4471-7296-3_17
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input and one output variable. The rules have the form

If x is μ, then y is ν.

With one single rule of this form and a given input value x we obtain an output
fuzzy set according the computation scheme from Example 17.13. When the input
value x has a membership degree of 1 to the fuzzy set μ, the resulting output fuzzy
matches exactly the fuzzy set μ, just as in the case of the Mamdani controller.
However, in contrast to the Mamdani controller, the output fuzzy set becomes larger,
the less the antecedent of the rule is satisfied, i.e. the lower the value μ(x) is. In the
extreme caseμ(x) = 0 we obtain as output the fuzzy set which is constantly 1. For a
Mamdani controller we would obtain the fuzzy set which is constantly 0. Therefore,
using a logic-based controller we should interpret the output fuzzy set as set of the
yet possible values. If the antecedent does not apply at all (μ(x) = 0), the rule
does not provide any information about the output value and all output values are
possible. If the rule applies to 100% (μ(x) = 1), only the values from the (fuzzy)
set μ are possible. Therefore, a single rule provides a (fuzzy) constraint on the set of
possible values. Since all rules are considered to be correct (true), all fuzzy constraints
specified by the rules have to be satisfied, i.e. the fuzzy sets resulting from the single
rules have to be intersected with each other. If r rules of the form

Ri : If x is μRi , then y is νRi (i = 1, . . . , r).

are given and the input is x = a, the output fuzzy set of a logic-based controller is

μ
out, logic
R,a : Y → [0, 1], y �→ min

i∈{1,...,r}{[[a ∈ μRi → y ∈ νRi ]]}.
Here, we still have to choose a truth function for the implication →. With the Gödel
implication we obtain

[[a ∈ μRi → y ∈ νRi ]] =
{

νRi (y) if νRi (y) < μRi (a)

1 otherwise,

and the Łukasiewicz implication leads to

[[a ∈ μRi → y ∈ νRi ]] = min{1 − νRi (y) + μRi (a), 1}.
In contrast to the Gödel implication, which can lead to discontinuous output fuzzy
sets, the output fuzzy sets of the Łukasiewicz implication are always continuous,
provided that the involved fuzzy sets are continuous (as real-valued functions).

So far, we have only considered one input variable. When we have to deal with
more than one input variable in the rules, i.e. rules in the form of Eq.19.1, we have
to replace the value μRi (a) by

[[a1 ∈ μ
(1)
Ri

∧ . . . ∧ an ∈ μ
(n)
Ri
]]

for the input vector (a1, . . . , an). For the conjunction we have to choose a suitable
t-norm as its truth function, for example the minimum, the Łukasiewicz t-norm or
the algebraic product.

http://dx.doi.org/10.1007/978-1-4471-7296-3_17
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In the case of the Mamdani controller, where the rules represent fuzzy points, it
makes no sense to use rules of the form

If x1 is μ1 or x2 is μ2, then y is ν.

But if we use a logic-based controller, we can determine an arbitrary logic expres-
sion with predicates (fuzzy sets) over the input variables as antecedent, so that it is
reasonable to have also rules with disjunction or negation for logic-based controllers
(Klawonn 1992). We only have to specify suitable truth functions for the logical
connectives.

We want to emphasize an essential difference between Mamdani controllers and
logic-based ones. Each rule of a logic-based controller is a constraint for the control
function (Klawonn and Novak 1996). Therefore, the choice of very narrow fuzzy
sets for the output and (strongly) overlapping fuzzy sets in the input can lead to
contradictory constraints and the controller yields the empty fuzzy set (constantly 0)
as output. While specifying the fuzzy sets this fact should be taken into account by
preferring narrower fuzzy sets for the input variables and wider ones for the output
variables.

Increasing the number of rules for the Mamdani controller leads, in general, to a
more fuzzy output, because the output fuzzy set is the union of the output fuzzy sets
resulting from the single rules. In the extreme case, the trivial but empty rule

If x is anything, then y is anything,

where anything is is modeled by the fuzzy set which is constantly 1, causes that the
output fuzzy set to be constantly 1. This is independent of other rules occurring in the
rule base of the Mamdani controller. In a logic-based controller this true but useless
rule has no effect and does not destroy the control function completely.

19.5 Control Based on Fuzzy Relational Equations

In this section we discuss the interpretation of the rules of a fuzzy controller in the
sense of a fuzzy relation in the context of fuzzy relational equations (cf. Sect. 17.6). In
order to simplify the notation, we first restrict our considerations to fuzzy controllers
with only one input and one output variable. A rule has the form

if x is μ then y is ν.

We interpret a rule as a fuzzy relational equation

μ ◦ ρ = ν.

Which fuzzy relations should we choose? We know from the treatment of fuzzy
relational equations: If there is a solution for ρ, then the greatest solution is the
Gödel implication, often called Gödel relation. In case of the existence of a solution
the cartesian product of μ and ν is also a (rather small) solution, and that there are
in general several minimal solutions.

http://dx.doi.org/10.1007/978-1-4471-7296-3_17
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If a suitable fuzzy relation ρ is chosen, then it can be applied by using the com-
position to other inputs as well, especially to crisp inputs (real numbers or intervals)
whose characteristic functions may be viewed as fuzzy sets. As a result we obtain a
controller with (fuzzy) inputs and fuzzy outputs.

Now consider the following system of m rules with n inputs and one output

If x1 is μ1
1 and x2 is μ1

2 and . . . and xn is μ1
n then y is ν1.

...
...

If x1 is μm
1 and x2 is μm

2 and . . . and xn is μm
n then y is νm .

We interpret this set of rules as system of fuzzy relational equations:

min {μi
1, . . . , μ

i
n} ◦ ρ = νi , i = 1, . . . ,m

From Sect. 17.6 we know already that, if a solution ρ exists, then the minimum of
all Gödel relations is the greatest solution. The basic principle to solve a system of
relational equation consists in determining the Gödel relation separately for each
relational equation, and subsequently finding a combined solution for the entire
system by calculating the minimum of the solutions for the single equations.

Suppose that a solution exists. Then assembling the overall solution from small
solutions of the single relational equations is another way to find a convenient solu-
tion. A reasonable approach to derive such an assembled solution is to calculate the
maximum of the cartesian products of the single solutions. We obtain as the general
solution

max
{
min

{
μi
1, . . . , μ

i
n

}
× νi

}

The resulting control strategy corresponds exactly to a Mamdani fuzzy controller.
In this sense the Mamdami controller can also be motivated on the basis of fuzzy
relational equations.

19.6 Hybrid Systems to Tune Fuzzy Controllers

A very interesting field of application for fuzzy control is to combine them with
computational intelligence methods in order to complete the advantages of a fuzzy
controller (i.e. linguistic interpretability) by the ones of a neural networks (i.e. abil-
ity to learn) or evolutionary algorithms (i.e. ability to evolve). Such combinations
exist in many different varieties and are referred to as hybrid fuzzy systems. Their
goal is to fine tune fuzzy control rules by optimizing certain objective functions. In
the following, we present a couple of the most known approaches of hybrid fuzzy
systems. First, in Sect. 19.6.1 we talk about neuro-fuzzy control that exploits the
learning techniques of artificial neural networks to obtain fuzzy rules from data. We
remark that other machine learning techniques (e.g. support vector machines or a
rough set approach) have been used as well to accomplish this task (Moewes and
Kruse 2011; 2013). Then, in Sect. 19.6.2 we explain how evolutionary algorithms

http://dx.doi.org/10.1007/978-1-4471-7296-3_17
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can be used to evolve chromosomes where each of it represents either one fuzzy rule
or an entire fuzzy rule base. For further details about this and other topics of fuzzy
control, we refer the interested reader to Michels et al. (2006).

19.6.1 Neuro-Fuzzy Control

Promising approaches for optimization of existing fuzzy controllers and to learn a
fuzzy system from scratch are techniques that combine fuzzy systems and learning
methods of artificial neural networks. These methods are called neuro-fuzzy sys-
tems. Nowadays, there are many specialized models. Beside the models for system
control, especially systems for classification and more general models for function
approximation have been developed. For a detailed introduction to this broad field
see, e.g. Nauck et al. (1997), Nauck and Nüernberger (2012). In this section we only
introduce systematics and discuss some approaches.

Fuzzy systems provides the ability of interpreting a fuzzy controller and to intro-
duce a priori knowledge whereas and neural networks contribute its capability of
learning and therefore the ability of automatic optimization or automatic generation
of the whole controller. Due to the possibility to introduce a priori knowledge by
fuzzy rules into the system, we expect to strongly reduce both the optimization time
and the amount of training data required to train the system in comparison with pure
neural network based controllers. If we have only some training data available, the
prior knowledge might be even necessary in order to be able to create a controller.
Furthermore, with neuro-fuzzy systems we are — in principle — able to learn a
controller and then to interpret its control strategy by analyzing the learned fuzzy
rules and fuzzy sets and, if necessary, revise them.

Essentially, neuro-fuzzy controllers can be divided in cooperative and hybrid
models. In cooperative models the neural network and the fuzzy controller operate
separately. The neural network generates (offline) or optimizes (online, i.e. during
control) some parameters (Kosko 1992; Nomura et al. 1992). Hybrid models try to
unite the structures of neural networks and fuzzy controllers. Thus a hybrid fuzzy
controller can be interpreted as neural network and can even be implementedwith the
help of a neural network. Hybrid models have the advantage of an integrated struc-
ture which does not require any communication between the two different models.
Therefore, the system is principally able to learn online as well as offline and thus
these approaches have become much more accepted than the cooperative models
(Halgamuge and Glesner 1994; Jang 1993; Nauck et al. 1993).

The idea of hybridmethods is tomap fuzzy sets and fuzzy rules to a neural network
structure. This principle is explained in the following. For that, we reconsider the
fuzzy rules Ri of a Mamdani controller defined in Eq.19.1, i.e.

Ri : If x1 is μ
(1)
i and . . . and xn is μ

(n)
i

then y is μi ,

or the fuzzy rules R′
i of a TSK controller (cf. Eq.19.8), i.e.

R′
i : If x1 is μ

(1)
i and . . . and xn is μ

(n)
i , then y = fi (x1, . . . , xn).



19.6 Hybrid Systems to Tune Fuzzy Controllers 415

The activation ãi of these rules can be calculated by a t-norm.With given input values
x1, . . . , xn , we obtain for ãi using the minimum t-norm

ãi (x1, . . . , xn) = min{μ(1)
i (x1), . . . , μ

(n)
i xn}.

One way to represent such a rule with a neural network is to replace each real-valued
connection weight wji from an input neuron u j to an inner neuron ui by a fuzzy

set μ
( j)
i . Therefore, an inner neuron represents a rule and the connections from the

input units represent the fuzzy sets of the antecedents of the rules. In order to calculate
the rule activation of the the inner neurons, we just have to modify their network
input functions. If we, for example, choose the minimum as t-norm, then we define

neti = min{μ(1)
i (x1), . . . , μ

(n)
i xn}

as network input function.
If we finally replace the activation function of the neuron by the identity, then the

activation of the neuron corresponds to the rule activation ãi . Therefore, the neuron
can be used directly to compute the rule activity of any fuzzy rule. A graphical
representation of such a structure for a rule with two inputs is shown in Fig. 19.9 (on
the left).

We obtain another representation if the fuzzy sets of the antecedent aremodeled as
separate neurons. For that, the network input function is the identity and the activation
function of the neuron is the membership function of the fuzzy set. Thus the neuron
calculates for each input the degree ofmembership to the fuzzy set represented by the
activation function. For this representation, we need two layers of neurons in order
to model the antecedent of a fuzzy rule (see Fig. 19.9 (on the right)). The advantage
of this representation is that the fuzzy sets can be directly used in several rules in
order to ensure the interpretability of the entire rule base. In this representation the
network weights wi j in the connections from the fuzzy sets to the rule neuron are
initialized with 1 and are regarded as constant. The weights of the input values to
the fuzzy sets can be used for scaling the input values.

If the evaluation of the entire rule base shall to be modeled as well, then we have
to decide whether a Mamdani or a TSK controller is needed. For the TSK controller,
various realizations are possible. But, in principle, for each rule we get one more unit
for evaluating the output function fi —which will then be implemented as network

Fig. 19.9 Example of a neural network for calculating the activation of the antecedent of a fuzzy
rule: Modeling of the fuzzy sets as weights (left) and as activation functions of a neuron (right)
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input function — and it will be connected to all of the input units (x1, . . . , xn). In an
output neuron, the outputs of these units will be combined with the rule activations ãi
which are calculated by the rule neurons. This output neuron will finally calculate
the output of the TSK controller with the help of the network input function

out =
∑r

i=1 ãi · fi (xi , . . . , xn)∑r
i=1 ãi

.

The connection weights between the neurons are again constantly 1 and the identity
is used as activation function.

For the Mamdani controller, the concrete implementation depends on the chosen
t-conorm and the defuzzification method. In any case, a common output neuron
combines the activations of the rule neurons and calculates a crisp output value with
the help of a modified network input function based on the corresponding fuzzy sets
in the consequents of the rules.

The transfer of a fuzzy rule base into a network structure can be summarized by
the following steps:

1. For every input variable xi , we create a neuron of the same denotation in the input
layer.

2. For every fuzzy set μ( j)
i , we create a neuron of the same denotation and connect

it to the corresponding xi .
3. For every output variable yi , we create a neuron of the same denotation.
4. For every fuzzy rule Ri , we create an inner (rule) neuron of the same denotation

and we specify a t-norm for calculating the rule activation.
5. Every rule neuron Ri is connected according to its fuzzy rule to the corresponding

neurons that represent the fuzzy sets of the antecedent.
6. Mamdani controller: Every rule neuron is connected to the output neuron accord-

ing to the consequent of its fuzzy rule. As connection weight, we have to choose
the consequent of the corresponding fuzzy set. Furthermore, a t-conorm and the
defuzzification method have to be integrated adequately into the output neurons.

TSK controller: For every rule unit, one more neuron is created to calculate
the output function. These neurons are connected to the corresponding output
neuron. Furthermore, all of the input units are connected to the neurons for the
calculation of the output function and all of the rule neurons are connected to the
output neuron.

Having described the mapping of a rule base as a network, learning algorithms
of artificial neural networks can be applied to this structure. However, the learning
methods usually have to be modified due to several reasons. First of all, the network
input and activation functions changed. Second, not the real-valued network weights
but the parameter of the fuzzy sets have to be learned. In the following sections we
discuss two hybrid neuro-fuzzy systems in more detail. Furthermore, we explain
the principles and problems of neuro-fuzzy architectures, especially in terms of
applications in system control.
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19.6.1.1 Models with Supervised LearningMethods
Neuro-fuzzy models with supervised learning methods try to optimize the fuzzy sets
and— for a TSKmodel— the parameters of the output function of a given rule base
with the help of known input-output tuples. Therefore, applying supervised models
is convenient if we already have a description of the system to be control but need
the control behavior — and thus the rule base — to be more exact. If measured data
of the system to be modeled exist (tuple of state, output and control variables), they
can be used to retrain the system.

Neuro fuzzy models with supervised learning methods are also convenient if an
existing controller is to be replaced by a fuzzy controller, that is, that measured
data of the control behavior of the real controller are available. Here, an existing
rule base is also presupposed. The learning methods can then be used in order to
optimize the approximation of the original controller. If no initial fuzzy rule base is
available describing the system that should be approximated and if an approximate
rule base also cannot be created manually, we might use fuzzy clustering methods
(see Chap.20.2 on p. 432) or evolutionary algorithms (to be discussed) in order to
obtain an initial rule base if measured data for training is available.

In the following, we discuss a typical example for a neuro-fuzzy system with
supervised learning, i.e. the ANFIS model. Beside this one, there are several other
approaches which are based on similar principles. For an overview of other models
see, e.g. Nauck et al. (1997).

The ANFIS Model

In Jang (1993) the neuro-fuzzy systemANFIS (Adaptive-Network-basedFuzzy Infer-
ence System) was developed which by now has been integrated in many controllers
and simulation tools. The ANFIS model is based on a hybrid structure, i.e. it can be
interpreted as neural network and as fuzzy system. The model uses the fuzzy rules
of a TSK controller. Figure19.10 shows an example for a model with the three fuzzy
rules

R1 : If x1 is A1 and x2 is B1 then y = f1(x1, x2)

R2 : If x1 is A1 and x2 is B2 then y = f2(x1, x2)

R3 : If x1 is A2 and x2 is B2 then y = f3(x1, x2)

Fig. 19.10 Structure of an ANFIS network with three rules

http://dx.doi.org/10.1007/978-1-4471-7296-3_20
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where A1, A2, B1 and B2 are linguistic expressions which are assigned to the cor-
responding fuzzy sets μ

(i)
j in the antecedents. The functions fi in the consequent of

the ANFIS model are defined by linear combination of the input variables, i.e. in the
example above by

fi = pi x1 + qi x2 + ri .

Here, we use the product t-norm for the evaluation of the antecedent, i.e. the
neurons in the layer 2 calculate activation ãi of rule Ri by

ãi =
∏
j

μ
( j)
i (x j ).

In the ANFIS model, the evaluation of the consequent and the calculation of the
output value is split up to layers 3–5. Layer 3 calculates the contribution āi each rule
made to creating the total output by taking into account the activations ãi . Therefore,
the neurons of layer 3 calculate

āi = ai = neti = ãi∑
j ã j

.

Then, the neurons of layer 4 calculate the weighed control outputs based on the
input variables xk and the relative control activations āi of the previous layer:

ȳi = ai = neti = āi fi (x1, . . . , xn).

Finally, the output neuron uout of layer 5 calculates the total output of the network
and the fuzzy system, respectively:

y = aout = netout =
∑
i

ȳi =
∑

i ãi fi (x1, . . . , xn)∑
i ãi

.

For learning, the ANFIS model needs a fixed learning exercise. Therefore for
training, it is necessary that a sufficient amount of input/output tuples exists. Based
on these training data, model parameters are determined, i.e. the parameters of the
fuzzy sets and the parameters of the output function fi .

As learningmethod, different approaches are suggested in Jang (1993).Besides the
pure gradient descent method which is analogous to the backpropagation method for
neural networks (see Sect. 5.5 on p. 65), also combinations with methods for solving
overdetermined linear equation systems (i.e. the method of least square (estimate) )
are suggested. Here, the parameters of the antecedents (i.e. fuzzy sets) are determined
with a gradient descent method and the parameters of the consequents (i.e. linear
combination of the input variables) with the least squares method. The learning
occurs in several separated steps where the parameters of the antecedents and of the
consequents are alternatingly optimized by fixing the other ones.

In the first step, all input vectors are propagated through the network to layer 3. For
every input vector, the control activations are stored. Based on these values, for the
parameters of the functions fi in the consequent, a overdetermined equation system
is created.

http://dx.doi.org/10.1007/978-1-4471-7296-3_5
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Let ri j be the parameters of the output function fi , xi (k) the input values, y(k) the
output value of the kth training pair and āi (k) the relative control activation. Then,
we obtain

y(k) =
∑
i

āi (k)yi (k) =
∑
i

āi (k)

⎛
⎝ n∑

j=1

ri j x j (k) + ri0

⎞
⎠ , ∀i, k.

Therefore, with x̂i (k) := [1, x1(k), . . . , xn(k)]T we obtain the overdetermined linear
equation system

y = āRX

for a sufficient number m of training data (m > (n + 1) · r , where r is the number
of rules and n the number of input variables).

Therefore, the parameters of the linear equation system, which is built in this way,
— the parameters of the output function fi in thematrixR—can be determinedwith
themethod of least squares after the propagation of all of the training data. Finally, the
error is determined in the output units based on the new calculated output functions
and with the help of a gradient descent method the parameters of the fuzzy sets are
optimized. The combination of the two methods leads to an improved convergence
because the method of least squares already has an optimal solution (i.e. the one with
the least error squares) for the parameters of the output function with regard to the
initial fuzzy sets.

Unfortunately, the ANFIS model has no restrictions for the optimization of the
fuzzy sets in the antecedents, i.e. it is not ensured that the input range will still be
covered completely with fuzzy sets after the optimization. Thus definition gaps can
appear. This has necessarily to be checked after optimizing. Fuzzy sets can also can
change, independently form each other and can also exchange their order and thus
their importance. We have to pay attention to this, especially if an initial rule base
was set manually and the controller has to be interpreted afterwards.

19.6.1.2 Models with Reinforcement Learning
The fundamental idea of the models of reinforcement learning (Barto et al. 1983) is
to determine a controller with knowing as little as possible about the system. The
aim is that the learning process can be managed with a minimum of information
about the aim of the control. In the extreme case, the learning method gets merely
the information whether the system is still stable or the controller had failed.

The main problem of these approaches is that to rework the control action such
that it can be used for learning and optimizing the controller. In general, we cannot
assume that the last control action has the greatest influence on the current system
state. This problem is also called credit assignment problem (Barto et al. 1983), i.e.
the problem of assigning to a control action the (long-term) effect which it has on
the system.

By now, many models have been suggested in the field of reinforcement learning.
All of these are essentially based on the principle of dividing the learning problem
into two systems: A criticizing system (critic) and a systemwhich stores a description
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of the control strategy and applies this to the system (actor). The critic evaluates the
current state considering the previous states and control action, evaluates as well the
output of the actor based on these information and, if necessary, adapts its control
strategy.

The methods suggested by now for using the principles of reinforcement learning
are mostly based on the combination with neural nets (Kaelbling et al. 1996). Very
promising are the methods which use dynamic programming in order to determine
an optimal control strategy. For a more detailed discussion about this topic, see e.g.
Sutton and Barto (1998).

In the field of neuro-fuzzy systems there aremany approaches. But by now none of
these have achieved the quality of the systems based on neural networks. Examples of
such approaches are GARIC (Berenji and Khedkar 1992), FYNESSE (Riedmiller et
al. 1999) and theNEFCONmodel (Nürnberger et al. 1999)which is shortly presented
below.

The NEFCONModel

The principal aim of the NEFCONmodel (neuro-fuzzy controller) is to detect online
a suitable and interpretable rule base with a the least amount of training cycles.
Furthermore, it should be possible to bring previous knowledge into the training
process in the easiest way in order to speed up the learning process. This is the
difference to the most reinforcement learning approaches which try to generate the
most optimal controller and therefore lose much time in the long learning phases.
Furthermore, in the NEFCON model has also heuristic approaches for learning a
rule base. In this point is is different to the most of the other neuro fuzzy systems
which, in general, can only be used for optimizing a rule base.

The NEFCON model is a hybrid model of a neuro-fuzzy controller. We assume
the definition of a Mamdani controller and obtain the network structure if we —
analogously to the description in Sect. 19.6.1 — interpret the fuzzy sets as weights
and the measuring and regulating variables as well as the rules as operating units.
Then, the net has the structure of a multilayer perceptron and can be interpreted
as three-layer fuzzy perceptron. The fuzzy perceptron arises from a perceptron by
modeling theweights, the network inputs and the activation of the output unit as fuzzy
sets. An example for a fuzzy controller with 5 rule units, two measuring variables
and one regulating variable is shown in Fig. 19.11.

The inner units R1, . . . , R5 represent the rules, the units x1, x2 and y themeasuring
and regulating variables and μ

(i)
r and νr the fuzzy sets for the antecedents and the

consequents, respectively. The connection with common weights denote equal fuzzy
sets. A changing of these weights makes it necessary that all connections with this
weight have to be adapted in order to ensure that the same fuzzy sets keep represented
by the same weights. Thus the rule base defined by the network structure can also
be formulated in the form of the fuzzy rules listed in Table19.1.

The learning process of the NEFCONmodel can be divided into twomain phases.
The first phase is designed to learn an initial rule base, if no prior knowledge about
the system is available. Furthermore it can be used to complete a manually defined
rule base. The second phase optimizes the rules by shifting or modifying the fuzzy
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Fig. 19.11 A NEFCON system with two input variables and 5 rules

Table 19.1 The rule base of the NEFCON system shown in Fig. 19.11

R1: if x1 is A
(1)
1 and x2 is A

(2)
1 then y is B1

R2: if x1 is A
(1)
1 and x2 is A

(2)
2 then y is B1

R3: if x1 is A
(1)
2 and x2 is A

(2)
2 then y is B2

R4: if x1 is A
(1)
3 and x2 is A

(2)
2 then y is B3

R5: if x1 is A
(1)
3 and x2 is A

(2)
3 then y is B3

sets of the rules. Both phases use a fuzzy error e, which describes the quality of the
current system state, to learn or to optimize the rule base. The fuzzy error plays the
role of the critic element in reinforcement learning models. In addition the sign of
the optimal output value must be known. Thus, the extended fuzzy error E is defined
as

E(x1, ..., xn) = sgn(yopt) · e(x1, ..., xn),
with the input (x1, ..., xn). At the end of this section we briefly discuss somemethods
to describe the system error.

Learning a Rule Base

If for the system which has to be controlled an adequate rule base does not exist or
cannot be determined manually, it has to be created by an appropriate rule learn-
ing method. Methods to learn an initial rule base can be divided into three classes:
Methods starting with an empty rule base, methods starting with a “full” rule base
(combination of every fuzzy set in the antecedents with every consequent) and meth-
ods starting with a random rule base. In the following we briefly present algorithms
of the first two classes. The algorithms do not require a given fixed learning problem
but they try to determine a suitable rule base based on the extended system error E
(see also Nüernberger et al. (1999)). However, both methods require an appropriate
fuzzy partitioning of the input and output variables

If for the systemwhich has to be controlled does not exist an adequate rule base, or
it cannot be determined, it has to be created by an appropriate rule learning method.
Following we present some algorithms for learning a rule base, they do not need a
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given fixed learning exercises but based on the system error they try to determine
a suitable rule base (see also Nüernberger et al. (1999)). Both of the methods need
suitable fuzzy partitioning of the measuring and regulating variable ranges (see also
the discussion in Sect. 19.3.2).

An Elimination Method for Learning a Rule Base

The elimination method starts with a complete overdetermined rule base, that is, the
rule base consists of all rules which can be defined by the combination of all fuzzy
sets in the initial fuzzy partitions of the input and output variables.

The algorithm can be divided into two phases which are executed during a fixed
period of time or a fixed number of iteration steps. During the first phase, rules with
an output sign different from that of the optimal output value are removed. During
the second phase, a rule base is constructed for each control action by selecting
randomly one rule from every group of rules with identical antecedents. The error
of each rule (the output error of the whole network weighted by the activation of the
individual rule) is accumulated. At the end of the second phase from each group of
rule nodes with identical antecedents the rule with the least error value remains in
the rule base. All other rule nodes are deleted. In addition, rules used very rarely are
removed from the rule base.

A disadvantage of the eliminationmethod is that it starts with a very large rule base
and, thus, for systems with many state variables or fine grained partitions, i.e. many
fuzzy sets are used to model the input and output values, it requires much memory
and is computationally expensive. Therefore it is advisable to use the incremental
rule learning procedure for larger rule bases.

Incremental Learning the Rule Base

This learning methods starts with an empty rule base. However, an initial fuzzy
partitioning of the input and output intervals must be given. The algorithm can be
divided into two phases. During the first phase, the rules’ antecedents are determined
by classifying the input values, i.e. finding thatmembership function for each variable
that yields the highest membership value for the respective input value. Then the
algorithm tries to “guess” the output value by deriving it from the current fuzzy error
with a heuristics. It is assumed that input patterns with similar error values require
similar output (control) values. The so found rule is inserted into the rule base. In
the second phase we try to optimize the rule consequent by applying the learned rule
base to the system and, based on the detected error values, exchanging the fuzzy sets
in the consequents, if necessary.

The used heuristics maps the extended error E merely linearly to the interval of
the control variable. Thus, we assume a direct dependency between the error and
the control variable. This is might be critical, especially for systems which would
require an integrator for control, that is, which require a control value unequal 0 in
order to achieve the control goal or to keep it. This heuristic also assumes that the
error in not determined only from the control deviation but that the error also take
the following system states into account.
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Through the incremental learningmethod it is easily possible to introduce previous
knowledge into the rule base. Missing rules are added during learning. However,
because of the already discussed problems, both of the presented heuristics cannot
provide a rule base which is appropriate for all systems.

The rule bases learned with the methods presented above should be checked
manually for its consistence— at least if the optimization method, which we discuss
in the following paragraph, is unable to provide a satisfying solution. In any case, the
possibility to introduce prior knowledge should be considered, that is, known rules
should be inserted into the rule base before learning and the rule learning methods
should not change the manually defined rules afterwards.

Optimization of the Rule Base

The NEFCON learning algorithm for optimizing a rule base is based on the idea of
the backpropagation algorithm for the multilayer perceptron. The error is, beginning
with the output unit, propagated backwards trough the network and used locally for
adapting the fuzzy sets.

The optimization of the rule base is done by changing the fuzzy sets in the
antecedents and consequents. Depending on the contribution to the control action
and the resulting error the fuzzy sets of a rule are ‘rewarded’ or ‘punished’. Thus
the principle of the reinforcement learning is applied. A ‘reward’ or ‘punishment’
can be done by displacing or reducing/enlarging the support of the fuzzy set. These
adaptations are made iteratively, that is, during the learning process the controller is
used for controlling the system, and after every control action an evaluation of the
new state is made as well as a incremental adaption of the controller.

The principal problemof this approach is that the systemerror has to be determined
very carefully in order to avoid the problems of evaluating a control action which we
discussed at the beginning of this section. In many cases, this can be very difficult
or even impossible. Nevertheless, the discussed methods can be applied to simple
systems, and they can very helpful for designing fuzzy controllers for more complex
systems. We have to pay attention to the fact that then such a controller should be
checked very carefully for its stability.

19.6.2 Evolutionary Fuzzy Control

If a fuzzy controller should be generated automatically by an evolutionary algo-
rithms, at first, we have to define the objective function which has to be optimized by
the evolutionary algorithm. If measure data of a controller are given — e.g. measur-
ing data obtained from observing a human operator — the fuzzy controller should
approximate the underlying control function as good as possible. As the error func-
tion, which has to be minimized, we could use the mean squared error or the absolute
error as well as the maximum deviation of the control function from the measured
output. When the measured data come from different operators, an approximation
can lead to a very bad behavior of the controller. If the single operators use effective,
but different control strategies and the controller is forced to approximate the data as
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good as possible, it will interpolate between the different strategies at each point. In
the worst case, this mixed or interpolated control function might not work at all. If,
for example, a car shall drive around an obstacle, and in the data for half of the cases
an operator (driver) chose to avoid the obstacle to the right side and for the other half
to the left side, interpolation will result in a strategy that keeps on driving straight
ahead. If possible, the observed data should always be checked for consistency.

Whenwehave a simulationmodel of the systemor process to be controlled,we can
define various criteria that a good controller should satisfy, e.g. the time or the energy
the controller needs to bring the process from different initial states to the desired
state, some kind of evaluation of overshoots etc. If the evolutionary algorithm uses a
simulation model with such an objective function, it is often better to slowly tighten
the conditions of the objective function. In a random initial population it is very
probable that no individual (controller) at all will be able to bring the process very
close to a desired state. Therefore, at first the objective function might only measure
the time how long a controller is able to keep the process in a larger vicinity of the
desired state (Hopf and Klawonn 1994). With an increasing number of generations
the objective function is chosen more strict until it reflects the actual criterion.

The parameters of a fuzzy controller which can be learned with an evolutionary
algorithm can be divided into three groups, described in more detail in the following.

19.6.2.1 The Rule Base
Let us first assume that the fuzzy sets are specified in advance or are optimized
at simultaneously by another method. For instance, if the controller has two input
variables for which n1, respectively n2 fuzzy sets are defined, for each of the possi-
ble n1 · n2 combinations an output can be defined. For a Mamdani controller with
no fuzzy sets for the output variables, we could use a chromosome with n1 · n2 para-
meters (genes, where each of these genes can take one of no values. But the coding
of the rule table as linear vector with n1 · n2 components, which is required for
the genetic algorithm, is not optimal for the crossover. Crossover should enable
the genetic algorithm to combine to solutions (chromosomes) that have optimized
different parameters (genes) to one good solution.

For the optimization of a rule base of a fuzzy controller the conditions needed
to benefit from crossover are satisfied, i.e. that the parameters are independent to
a certain degree. Adjacent rules in a rule base operate on overlapping regions, so
that they contribute to the output of the controller at the same time, meaning that
they interact and are dependent. Non-adjacent rules do not interact and never fire
simultaneously. In this sense they are independent. If there are two fuzzy controllers
in a population, which found, each one in a different part of the rule table, well-
performing entries for the output of the rules, the combination of the two parts of the
table will result in a better controller. However, a (fuzzy) region does not correspond
to a rowor a column in a rule table, but to a rectangular region in the table.A traditional
genetic algorithm would only exchange linear parts in the crossover process. In the
case of optimizing the rule base of a controller with two input variables it makes
sense, to deviate from the linear chromosome structure and to use a planar structure
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for the chromosome. Crossover should then exchange smaller rectangles within the
rule table (Kinzel et al. 1994). Here we discussed the case of only two input variables.
This idea can be generalized to more input variables in a straight forward manner.
For k input variables, we would use a k-dimensional hyperbox as the chromosome
structure.

In order to guarantee small changes in the mutation process, an output fuzzy set
should not be replaced by an arbitrary other fuzzy set, but by an adjacent one.

For a TSK model for the rule base we have to determine output functions instead
of output fuzzy sets. Usually, these functions are given in parametrized form, e.g.

f (x, y; aR, bR, cR) = aR + bRx + cR y

for input variables x and y as well as three parameters aR , bR and cR that have to be
determined for each rule R. For a rule table with — like above — n1 · n2 entries we
had to determine, in total, 3 · n1 · n2 real parameters for the rule table. In this case,
we should apply an evolution strategy (see Sect. 13.2 on p. 257) since the parameters
are not discrete but continuous.

If we do not want to fill the rule table completely and want to limit the number
of rules, we could assign to each rule an additional binary gene (parameter) which
tells us whether the rule of the controller is used or not. For a TSK model, we have a
proper evolutionary algorithm, because we have to deal with continuous and discrete
parameters at the same time. The number of active rules can be fixed in advance,
where we have to ensure that this number is not changed by mutation or crossover.
Mutation could always activate one rule and deactivate another one at the same
time, so that the number of active rules is not changed by mutation. For crossover a
repairing algorithm is needed. If we have too many active rules after crossover, then,
for example, rules could be deactivated randomly, until the desired number of active
rule is reached again.

A better strategy is not to fix the number of active rules in advance. Since fuzzy
controllers with a smaller number of rules are to be preferred due to better inter-
pretability, we could introduce an additional term in the objective function penaliz-
ing higher numbers of rules. This additional term should have a suitable weight. If
the weight is too large, the emphasis is put more or less completely on keeping the
number of rules small, ignoring the performance of the controller. A weight chosen
too small will not contribute enough to keep the rule base small.

19.6.2.2 The Fuzzy Sets
Usually, the fuzzy sets are represented in a parametrized form like triangular, trape-
zoidal or Gaussian membership functions. The corresponding real parameters are
suitable for an optimization based on evolution strategies. However, giving complete
freedom to the evolution to optimize these parameters, seldom to meaningful results.
The optimized fuzzy controller might perform perfectly but the fuzzy sets overlap
completely, so that it is hardly possible to assign meaningful linguistic terms to them
and to formulate interpretable rules. In this case the fuzzy controller corresponds to a

http://dx.doi.org/10.1007/978-1-4471-7296-3_13


426 19 Fuzzy Control

black box, as a neural network, without any chance to explain or interpret its control
strategy.

It is recommended to choose the parameter set in such a way that the inter-
pretability of the fuzzy controller is always guaranteed. One possible way would be
the restriction to triangular functions which are chosen in such a way that the left and
the right neighbor of a fuzzy set get the value 1 at the point where the membership
degree of the fuzzy set in the middle drops to 0. In this case, the evolution strategy
would have for each input or output variable asmany real parameters as fuzzy sets are
used for the corresponding domain. The respective real parameters indicate where
the corresponding triangular function assume the value 1.

Even with this parametrization undesired effects can occur, for example, if the
fuzzy set “approximately zero”, because ofmutation, overtakes the fuzzy set “positive
small”.A simple change in the codingof theparameters can avoid this effect: the value
of the parameter k determines no longer the point where the triangular membership
function is 1, but how far it is shifted to the left relative to its left neighbor. The
disadvantage of this coding is that a change (mutation) of the first value leads to a
new position for fuzzy sets and therefore a quite great change of the total behavior
of the controller. If the fuzzy sets are parametrized independently, a mutation only
has local effect. Therefore, we should stick to the independent parametrization, but
prohibit mutations which lead to overtaking fuzzy sets. In this way, mutations causes
small changes and the interpretability of the fuzzy controller is preserved.

19.6.2.3 Additional Parameters
With evolutionary algorithmswe can— if wewant to— adjust also other parameters
of a fuzzy controller. For example, we can use a parametrized t-norm for the aggre-
gation of the rule antecedents and for each rule adjust the parameter of the t-norm
individually. The same approach can also be used for a parametrized defuzzification
strategy. Such parameters tend to cause problems in the interpretability of a fuzzy
controller and will not be further pursued here.

So far, we have not answered the question, whether the rule base and the fuzzy
sets should be optimized at the same time or separately. As long as the rule base
can change drastically, it does not make sense to fine-tune the fuzzy set. The rule
base functions as the skeleton of a fuzzy controller. The concrete choice of the fuzzy
sets is responsible for fine-tuning. In order to keep the number of parameters to be
optimized by the evolutionary algorithm small, it is often better to learn at first the
rule base on the basis of standard fuzzy partitions and then optimize the fuzzy sets
with a fixed rule base.

19.6.2.4 A Genetic Algorithm for Learning a TSK Controller
In order to illustrate the principle of parameter coding, in the following section we
present a genetic algorithm for learning a TSK controller which was suggested in
Lee and Takagi (1993). The algorithm tries to optimize all of the parameters of the
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controller, that is, the rule base, the form of the fuzzy sets and the parameters of the
consequents at the same time.

In order to learn the rules

Rr : If x1 is μ
(1)
R and . . . and xn is μ

(n)
R then y = fr (x1, . . . , xn),

of a Takagi–Sugeno controller with

fr (x1, . . . , xn) = pr0 + x1 · pr1 + . . . + xn · prn,
we have to encode the fuzzy sets of the input values and the parameters p0, . . . , pn
of each rule.

In this approach, a triangular fuzzy set is described by three binary coded para-
meters (membership function chromosome (MFC)):

leftbase center rightbase
10010011 10011000 11101001

The parameters leftbase, rightbase and center are no absolute quantities but denote
the distances to the reference point. leftbase and rightbase refer to the center of a
fuzzy set and the center refers to the distance between the center and the left neighbor
of the fuzzy set. If these parameters are positive, passing and abnormal fuzzy sets
can be avoided.

The parameters p0, . . . , pn of a rule are encoded directly by binary numbers and
result in the rule-consequent parameters chromosome (RPC):

p0 . . . pn
10010011 . . . 11101001

Based on these parameter encodings, the complete rule base of a TSK controller is
encoded in the form of a bit string:

variable 1 . . . variable n parameters of the consequents
MFC1...m1 … MFC1...mn RPC1...(m1·...·mn )

Besides the parameter optimization, the algorithm tries to minimize the amount of
fuzzy sets assigned to a variable and thus also tries to minimize the amount of rules
in a rule base. For that, we assume a maximum amount of fuzzy sets. We eliminate
fuzzy sets which are no longer in the permitted domain of a variable. Furthermore,
among controllers of the same performance the selection process prefers the ones
with less rules.

In Lee and Takagi (1993) this approach was tested with a inverted pendulum
(i.e. pole balancing problem). For a rule base with five fuzzy sets for each of the
two input variables and 8-bit binary numbers, we obtain a chromosome of length
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2 · (5 · 3 · 8) + (5 · 5) · (3 · 8) = 840. For the evaluation of the learning process, the
controllers were tested with eight different starting conditions and the time which
the controller needed to bring the pendulum to the vertical position was measured.
For this, we have to distinguish three cases:

1. If the controller brings the pendulum to the vertical position within a certain
period of time, it obtains the more points the faster it was done.

2. If the controller is not able to bring the pendulum to the vertical position within
this period of time, it obtains a predetermined amount of points which is lower
than in the first case.

3. If the pendulum falls over within the period of simulation, the controller obtains
the more points the longer the pendulum did not fall but less than in the two
previous cases.

The authors of Lee and Takagi (1993) report that for learning a ‘usable’ controller,
more than1000generationswere needed.This quite big amount of generations results
from the great chromosome length. Furthermore, for encoding, neighbor relations
are hardly used. Thus, it can happen that the antecedent of a rule is determined by the
fuzzy set which is coded at the beginning of the chromosome but the corresponding
consequent is at the end of the chromosome. Therefore, the probability that the
crossover destroys a good rule is quite big.

The interesting point of this approach is the ability of minimizing the required
amount of rules. Here, the main idea is not only to optimize the controller’s behavior
but to determine the important rules for the controller.
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20FuzzyDataAnalysis

So far, we considered fuzzy methods for modeling purposes, for which it is bene-
ficial to incorporate vague concepts. As a consequence, the created (fuzzy) models
are designed by domain experts and thus result from a purely knowledge-driven
approach. However, fuzzy models may also be derived (automatically) from data if
a sufficient amount of suitable data is available (data-driven approach).

20.1 FuzzyMethods in Data Analysis

Purely knowledge-driven and purely data-driven approaches for constructingmodels
can be seen as the extreme ends of a range of strategies. It is possible, however, to
combine them on any level: to provide a knowledge-based model and adjust only a
few parameters—for instance, the exact location of triangular fuzzy sets—or to use
domain knowledge only to choose a very general model class from which a specific
model with concrete parameters is chosen based on the data. Neural networks are a
typical example for the latter strategy where only the type or structure of the neural
network is fixed and then the neural network must be trained with data.

With a data-driven approach it is no wonder that fuzzy techniques are also used in
the context of data analysis, data mining, and machine learning. Note that here the
term fuzzy data analysis may be interpreted in two fundamentally different ways
as follows:

• Fuzzy Techniques for the Analysis of (Crisp) Data
Although datamight be noisy or imprecise, they often remain crisp in this approach
and fuzzy techniques are applied to analyze the data. In this case the objective is
often to obtain fuzzy models that describe the crisp data. As an example for the
application of fuzzy methods in data analysis, we focus in this chapter on fuzzy
cluster analysis as the oldest fuzzy approach to data analysis. In order to analyze
(crisp) data, a large variety of fuzzy techniques have been developed. For example,
there is vast collection of methods to tune the parameters or to learn the rules of
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a fuzzy system based on data (Hüllermeier 2011). But there are also applications
in the context of data mining and machine learning. It is beyond the scope of this
book to discuss these approaches in detail. An interested reader can find overviews
in Hüllermeier (2005, 2011).

• Analysis of Fuzzy Data
Measured data are often imprecise or under the influence of noise. Answers in
questionnaires usually involve terms like “strongly agree,” “agree,” “neither agree
or disagree,” “disagree,” “strongly disagree,” which are essentially fuzzy terms.
One way to handle this inherent fuzziness in the data is to model the data by fuzzy
sets and then to analyze the fuzzy data. There are twomain interpretations of fuzzy
sets in the context of statistical data analysis (Dubois 2012): in the epistemic view
fuzzy sets are used to represent incomplete knowledge about an underlying object
or a precise quantity (Kwakernaak 1978; Kruse 1987). In the ontic view fuzzy sets
are considered as real complex humped entities (Puri and Ralescu 1986; Blanco-
Fernández et al. 2012). Note that due to the different semantics of the data also the
statistical methods have to be different. An interested reader can find an abundance
of information on this topic in the textbooks (Kruse and Meyer 1987; Bandemer
and Näther 1992; Viertl 2011) and the proceedings of the conference series Soft
Methods in Probability and Statistics (Kruse et al. 2012).

Both research areas are still discussed lively: two recent conferences on these topics
were organized by two of the authors (Borgelt et al. 2012; Kruse et al. 2012).

20.2 Fuzzy Clustering

After a brief overview of clustering, this chapter focuses on fuzzy cluster analysis
as the oldest fuzzy approach to data analysis. Fuzzy clustering comprises a family
of prototype-based clustering methods that can be formulated as the problem of
minimizing an objective function. These methods can be seen as “fuzzifications” of,
for example, the classical c-means algorithm, which strives to minimize the sum of
the (squared) distances between the data points and the cluster centers to which they
are assigned. However, in order to “fuzzify” such a crisp clustering approach, it is not
enough to merely allow values from the unit interval for the variables encoding the
assignments of the data points to the clusters: theminimum is still obtained for a crisp
data point assignment. As a consequence, additional means have to be employed in
the objective function in order to obtain actual degrees of membership. This chapter
surveys the most common fuzzification means and examines and compares their
properties.
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20.2.1 Clustering

The general objective of clustering or cluster analysis (Everitt 1981; Jain and Dubes
1988; Kaufman andRousseeuw 1990; Hoeppner et al. 1999) is to group given objects
in such a way that objects from the same cluster are as similar as possible, while
objects from different clusters are as dissimilar as possible. In order to formalize
the notion of similarity, so that it becomes mathematically treatable, it is usually
expressed as a distance measure between points (or vectors) representing the objects
in a metric space, usually R

m . Two objects are then seen as the more similar, the
smaller the distance between the data points that represent them.

A common approach to describe the clusters is to use prototypes that capture the
location and possibly also the shape and size of the clusters in the data space. With
such an approach the general objective of clustering can be reformulated as the task
to find a set of cluster prototypes together with an assignment of the data points to
them, so that the data points are as close as possible to their assigned prototypes. By
formalizing this approach, and using for the prototypes only points in the data space
that represent the cluster centers, one obtains immediately the objective function of
classical c-means clustering (Ball and Hall 1967; Hartigan and Wong 1979; Lloyd
1982): simply sum the (squared) distances of the data points to the center of the
cluster to which they are assigned. The c-means algorithm then strives to minimize
this objective function by iteratively updating the assignment of the data points to
the clusters and recomputing the cluster centers.

Unfortunately, c-means clustering always partitions the data, that is, each data
point is assigned to one cluster and one cluster only. This is often inappropriate,
as it can lead to somewhat arbitrary cluster boundaries and certainly does not treat
points properly that lie between two (or more) clusters without belonging to any of
them unambiguously. Solutions to this problem consist in either using a probabilistic
approach, like applying the expectation maximization (EM) algorithm to a mixture
of Gaussians (see, for example, Dempster et al. 1977; Everitt and Hand 1981; Bilmes
1997), or to employ one of the different “fuzzifications” of the classical crisp scheme
(see, for instance, Ruspini 1969; Dunn 1973; Bezdek 1981; Bezdek et al. 1999;
Hoeppner et al. 1999; Borgelt 2005).

In this chapter we focus on the latter approach, that is, on how the objective
function of classical c-means clustering can be modified in order to obtain graded
cluster memberships (so-called fuzzy clustering). We survey different methods that
have been suggested in the literature and examine and compare their properties.

20.2.2 Presuppositions and Notation

We are given a data set X = {x1, . . . , xn} with n data points, each of which is an m-
dimensional real-valued vector, that is, ∀ j; 1 ≤ j ≤ n : x j = (x j1, . . . , x jm) ∈ R

m .
These data points are to be grouped into c clusters, each of which is described by a
prototype ci , i = 1, . . . , c. The set of all prototypes is denoted by C = {c1, . . . , cc}.
We confine ourselves here to cluster prototypes that consist merely of a cluster center,
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that is, ∀i; 1 ≤ i ≤ c : ci = (ci1, . . . , cim) ∈ R
m . The assignment of the data points

to the cluster centers is encoded as a c × n matrix U = (ui j )1≤i≤c;1≤ j≤n , which is
often called the partitionmatrix. In the crisp case, amatrix element ui j ∈ {0, 1} states
whether data point x j belongs to cluster ci or not. In the fuzzy case, ui j ∈ [0, 1] states
the degree to which x j belongs to ci (degree of membership).

Furthermore, we confine ourselves to the (squared) Euclidean distance as the
measure for the distance between a data point x j and a cluster center ci , that is,

d2i j = d2(ci , x j ) = (x j − ci )�(x j − ci ) =
m∑

k=1

(x jk − cik)
2.

A common alternative is the (squared) Mahalanobis distance with a cluster-specific
covariance matrix Σi (Gustafson and Kessel 1979; Gath and Geva 1989), that is,
d2i j = (x j − ci )�Σ−1

i (x j − ci ). However, this choice adds at least a shape parameter
and in some approaches also a size parameter to the cluster prototypes (see, for
example, Bezdek et al. 1999; Hoeppner et al. 1999; Borgelt 2005). Nevertheless,
extending the approaches to this distance measure is usually fairly straightforward.
An extension to the L1-distance (Jajuga 2003), that is, to di j = ∑m

k=1 |x jk − cik |,
or to other Minkowski metrics, although certainly useful in specific cases, is less
simple to achieve and clearly beyond the scope of this chapter.

20.2.3 Classical c-Means Clustering

As already stated, classical c-means clustering strives to find, for a given data set X,
a set C of cluster centers and a partition matrix U, such that the objective function

J (X,C,U) =
c∑

i=1

n∑
j=1

ui j d
2
i j

is minimized under the constraints ∀i; 1 ≤ i ≤ c : ∀ j; 1 ≤ j ≤ n : ui j ∈ {0, 1} and
∀ j; 1 ≤ j ≤ n : ∑c

i=1 ui j = 1. These constraints ensure that each data point is
assigned to one cluster and to one cluster only (crisp partition of the data set).

Since the minimum cannot be found directly using analytical means, an alter-
nating optimization scheme is employed. At the beginning, the cluster centers are
initialized randomly, for example, by selecting c data points arbitrarily or by sampling
c points from some distribution on the data space. Then the two steps of partition
matrix update (data point assignment) and cluster center update are iterated until
convergence, that is, until the cluster centers do not change anymore.

In the partition matrix update each data point x j is assigned to the cluster ci , the
center of which is closest to it. That is, the partition matrix is updated according to

ui j =
{
1, if i = argminci=1d

2
i j ,

0, otherwise.
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In the cluster center update each cluster center is recomputed as the mean of the data
points that were assigned to it (hence the name c-means clustering), that is,

ci =
∑n

j=1 ui j x
2
j∑n

j=1 ui j
.

This update process is guaranteed to converge and usually does so after fairly few
steps. However, it is fairly sensitive to the initial conditions (i.e., the initial cluster
centers), due towhich it can yield undesired results,which are caused by localminima
of the objective function. In order to handle this drawback, it is usually recommended
to execute the clustering algorithm multiple times and take the best result, that is,
the result that yields the smallest value of the objective function.

As an illustration of the problem of local minima, consider the simple two-
dimensional data set shown in Fig. 20.1. Visual inspection clearly tells us that there
are three clusters (ignore the additional data point marked with a star for now) and
hence we expect a clustering result as it is shown on the left: the diamonds mark the
cluster centers. Although this result is obtained for a suitable initialization, another
initialization yields the result shown on the right. Since two centers are located in
the same cluster (the one on the top right), while the other two clusters are captured
by a single center that is located between them, this result is clearly undesirable. It
corresponds to a local optimum of the objective function, though, and thus the update
process may converge to it (depending on the initialization).

However, even if c-means clustering correctly identifies the three clusters (as in
Fig. 20.1 on the left), it is not quite clear to which cluster the additional point (marked
with a star) should be assigned, because it lies in the middle between two clusters.
Although it is clearly counter-intuitive to assign this point uniquely to one cluster,
c-means clustering has to do so, because it always yields a (crisp) partition of the data
set. Clearly, it would be more appropriate to be able to assign this point with degrees
of membership to more than one cluster, for example, with a degree of about 0.5 to
both of the clusters the centers of which are closest to it.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

Fig. 20.1 A data set with three clusters and an additional point (marked with a star). Result of a
successful c-means clustering (left) and a local optimum (right); diamonds mark cluster centers
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To obtain such degrees of membership, it may seem, at first sight, to be sufficient
to simply extend the allowed range of values of the ui j from the set {0, 1} to the
real interval [0, 1], but to make no changes to the objective function itself. However,
this is not the case: the optimum of the objective function is obtained for a crisp
assignment, regardless of whether we enforce a crisp assignment or not.

This can easily be demonstrated as follows: let k j = argminci=1d
2
i j , that is, let k j

be the index of the cluster center closest to the data point x j . Then it is

J (X,C,U) =
c∑

i=1

n∑
j=1

ui j d
2
i j ≥

c∑
i=1

n∑
j=1

ui j d
2
k j j =

n∑
j=1

d2k j j

c∑
i=1

ui j

︸ ︷︷ ︸
=1 (due to the constraints)

=
n∑
j=1

(
1 · d2k j j +

c∑
i=1
i �=k j

0 · d2i j
)

.

Therefore it is best to set∀ j; 1 ≤ j ≤ n : uk j j = 1 and ui j = 0 for 1 ≤ i ≤ c, i �= k j .
In other words: the objective function is minimized by assigning each data point
crisply to the closest cluster, even though we allowed for degrees of membership.

20.2.4 Fuzzification byMembership Transformation

Since we cannot obtain degrees of membership by merely expanding the range of
values of the ui j , we have tomodify the objective function if we desire graded assign-
ments. The most common approach is to apply a transformation to the membership
degrees, that is, to use an objective function of the form

J (X,C,U) =
c∑

i=1

n∑
j=1

h(ui j ) d
2
i j ,

where h is a convex function on the real interval [0, 1]. This general form was first
studied by Klawonn and Hoeppner (2003), where the convexity of h was derived as
follows: for simplicity, we confine ourselves to two clusters c1 and c2 and consider
the terms of the objective function that refer to a single data point x j . That is, we
consider J (x j , c1, c2, u1 j , u2 j ) = h(u1 j ) d21 j + h(u2 j ) d22 j and study how it behaves
for different values u1 j and u2 j . Note that a crisp assignment should not be ruled
out categorically, namely if the distances d1 j and d2 j differ significantly. Hence we
assume that d1 j and d2 j differ only slightly, so that a graded assignment is desired.

J (x j , c1, c2, u1 j , u2 j ) is minimized by choosing u1 j and u2 j appropriately.
Exploiting

∑c
i=1 ui j = 1 yields J (x j , c1, c2, u1 j ) = h(u1 j ) d21 j + h(1 − u1 j ) d22 j .

A necessary condition for a minimum is ∂
∂u1 j

J (x j , c1, c2, u1 j ) = h′(u1 j ) d21 j −
h′(1 − u1 j ) d22 j = 0, where ′ denotes taking the derivative w.r.t. the argument of the

function. This leads to h′(u1 j ) d21 j = h′(1 − u1 j ) d22 j , which yields another argu-
ment that a graded assignment cannot be optimal without any function h: if h is the
identity, we have h′(u1 j ) = h′(1 − u1 j ) = 1 and thus the equation cannot hold if the
distances differ.
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For the further analysis let us assume, without loss of generality, that d1 j < d2 j ,
which implies h′(u1 j ) > h′(1 − u1 j ). In addition, we know that u1 j > u2 j = 1 −
u1 j , because the degree of membership should be higher for the cluster that is closer.
In other words, the function hmust be the steeper, the greater its argument. Therefore
it must be a convex function on the unit interval (Klawonn and Hoeppner 2003).

Since we confine ourselves to the Euclidean distance (see Sect. 20.2.2), we can
already derive the update rule for the cluster centers, namely by exploiting that a
necessary condition for a minimum of the objective function J is that the partial
derivatives w.r.t. the cluster centers vanish. Therefore we have ∀k; 1 ≤ k ≤ c:

∇ck J (X,C,U) = ∇ck

c∑
i=1

n∑
j=1

h(ui j ) (x j − ci )�(x j − ci ) = −2
n∑
j=1

h(ui j )(x j − ci )
!= 0.

Independent of the function h, it follows immediately

ci =
∑n

j=1 h(ui j )x j∑n
j=1 h(ui j )

.

This update rule already shows one of the core drawbacks of a fuzzification by mem-
bership transformation, namely that the transformation function enters the update
of the cluster centers. It would be more intuitive to use the membership degrees
directly as the weights for the mean computation, which would also ensure that all
data points enter with the same total unit weight (since

∑c
i=1 ui j = 1 by definition).

However, the weights are rather the transformed membership degrees h(ui j ), which
gives unequal weight to the data points as they need not sum to 1.

It may be argued, though, that this effect can actually be desirable: due to the
convexity of the function h the total weight

∑c
i=1 h(ui j ) of data points x j with a

less ambiguous assignment is higher than that of more ambiguously assigned data
points. (The maximum 1 is obtained for a crisp assignment.) Hence in this scheme
the locations of the cluster centers depend more strongly on the data points that are
“typical” for the clusters. Such an effect is very much in the spirit of, for instance,
robust regression techniques, in which data points receive a lower weight if they do
not fit well to the regression function. This connection to robust statistical methods
was explored in more detail, for example, in Davé and Krishnapuram (1997).

In order to derive the update rule for the partition matrix (and thus for the mem-
bership degrees ui j ) we need to know the exact form of the function h. The most
common choice is h(ui j ) = u2i j , which leads to the standard objective function of
fuzzy clustering (Dunn 1973). The more general form h(ui j ) = uwi j was introduced
by Bezdek (1981). The exponent w, w > 1, is called the fuzzifier, since it controls
the “fuzziness” of the data point assignments: the higher w, the softer the boundaries
between the clusters. This leads to the commonly used objective function (Bezdek
1981; Bezdek et al. 1999; Hoeppner et al. 1999; Borgelt 2005)

J (X,U,C) =
c∑

i=1

n∑
j=1

uwi j d
2
i j .



438 20 Fuzzy Data Analysis

The update rule for the membership degrees is now derived by incorporating the con-
straints ∀ j; 1 ≤ j ≤ n : ∑c

i=1 ui j = 1 with Lagrange multipliers into the objective
function. This yields the Lagrange function

L(X,U,C,Λ) =
c∑

i=1

n∑
j=1

uwi j d
2
i j

︸ ︷︷ ︸
=J (X,U,C)

+
n∑
j=1

λ j

(
1 −

c∑
i=1

ui j

)
,

where Λ = (λ1, . . . , λn) are the Lagrange multipliers, one per constraint.
Since a necessary condition for a minimum of the Lagrange function is that the

partial derivatives w.r.t. the membership degrees vanish, we obtain

∂

∂ukl
L(X,U,C, Λ) = w uw−1

kl d2kl − λl
!= 0 and thus ukl =

(
λl

w d2kl

) 1
w−1

.

Summing these equations over the clusters (in order to be able to exploit the cor-
responding constraints on the membership degrees, which are recovered from the
fact that it is a necessary condition for a minimum that the partial derivatives of the
Lagrange function w.r.t. the Lagrange multipliers vanish), we get

1 =
c∑

i=1

ui j =
c∑

i=1

(
λ j

w d2i j

) 1
w−1

and thus λ j =
( c∑

i=1

(
w d2i j

) 1
1−w

)1−w

.

Therefore we finally have for themembership degrees ∀i; 1 ≤ i ≤ c: ∀ j; 1 ≤ j ≤ n:

ui j = d
2

1−w
i j∑c

k=1 d
2

1−w
k j

and thus for w = 2 : ui j = d−2
i j∑c

k=1 d
−2
k j

.

This rule is fairly intuitive, as it updates the membership degrees according to the
relative inverse squared distances of the data points to the cluster centers.

The effect of the fuzzifierw is illustrated in Fig. 20.2,which shows themembership
degrees of points on the x-axis for two clusters, which are located at x = 0 and x = 1,
for the fuzzifiers w = 2 (left) and w = 1.5 (right). Clearly, the larger fuzzifier w = 2
yields a smoother transition between the two clusters as the degree of membership
rises (or falls) less steeply than for the fuzzifier w = 1.5.
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Fig. 20.2 Membership degrees for two clusters with fuzzifiers w = 2 (left) and w = 1.5 (right)
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Unfortunately, the above rule has the disadvantage that it necessarily yields a
graded assignment. Regardless of how far a data point is from a cluster center, it
always receives a nonvanishing degree of membership to the corresponding cluster.
Even worse: the farther a data point is from all clusters, the more the membership
degrees become equal. This effect can also be seen in Fig. 20.2: the farther we get
to the right in the diagrams, the more the degrees of membership to the two clusters
approach each other. The undesirable results that can be caused by this property in the
presence of clusters with fairly uneven numbers of members have been demonstrated
clearly by Klawonn and Hoeppner (2003).

In addition, it was revealed in Klawonn and Hoeppner (2003) that the reason
lies essentially in the fact that h′(ui j ) = d

dui j
uwi j = w uw−1

i j vanishes at ui j = 0. This
suggests the idea to use a transformation function that does not have this property and
thus allows, at least for sufficiently large distance relationships, a crisp assignment of
data points to cluster centers. InKlawonn andHoeppner (2003) the function h(ui j ) =
αu2i j + (1 − α)ui j , α ∈ (0, 1], or, with a more easily interpretable parametrization,

h(ui j ) = 1−β
1+β

u2i j + 2β
1+β

ui j , β ∈ [0, 1), was suggested as such a transformation. It

relies on the standard function h(ui j ) = u2i j and mixes it with the identity to avoid
a vanishing derivative at zero. The parameter β is, for two clusters, the ratio of the
smaller to the larger squared distance, at and below which we get a crisp assignment
(Klawonn and Hoeppner 2003). It therefore takes the place of the fuzzifier w: the
smaller β, the softer the boundaries between the clusters.

The update rule for the membership degrees is derived in essentially the same
way as for h(ui j ) = uwi j , although one has to pay attention to the fact that crisp
assignments are now possible and thus some membership degrees may vanish. The
detailed derivation, which we omit here, can be found in Klawonn and Hoeppner
(2003) or in Borgelt (2005). It yields

ui j = u′
i j∑c

k=1 u
′
k j

with u′
i j = max

{
0, d−2

i j − β

1 + β(c j − 1)

c j∑
k=1

d−2
ς(k) j

}
,

where ς : {1, . . . , c} → {1, . . . c} is a mapping function for the cluster indices such
that ∀i; 1 ≤ i < c : dς(i) j ≤ dς(i+1) j (that is, ς sorts the distances ascendingly) and

c j = max

{
k

∣∣∣∣ d−2
ς(k) j >

β

1 + β(k − 1)

k∑
i=1

d−2
ς(i) j

}

is the number of clusters to which the data point x j has a nonvanishing membership.
This update rule is fairly interpretable, as it still assigns membership degrees essen-
tially according to the relative inverse squared distances to the clusters, but subtracts
an offset from them, which makes crisp assignments possible.

20.2.5 Fuzzification byMembership Regularization

We have seen that transforming themembership degrees in the objective function has
the disadvantage that the transformation function appears in the update rule for the
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cluster centers. In order to avoid this drawback, onemay try to achieve a fuzzification
by leaving the membership degrees in their weighting of the (squared) distances
untouched. Graded memberships are rather achieved by adding a regularization term
to the objective function, which pushes the minimum away from a crisp assignment.
Most commonly, the objective function then takes the form

J (X,C,U) =
c∑

i=1

n∑
j=1

ui j d
2
i j + γ

c∑
i=1

n∑
j=1

f (ui j ),

where f is a convex function on the real interval [0, 1]. The parameter γ takes the
place of the fuzzifier w: the higher γ , the softer the boundaries between the clusters.

To analyze this objective function, we use the same basic means as in the preced-
ing section: we confine ourselves to two clusters c1 and c2 and consider the terms
of the objective function that refer to a single data point x j , that is, we consider
J (x j , c1, c2, u1 j , u2 j ) = u1 j d21 j + u2 j d22 j + γ f (u1 j ) + γ f (u2 j ). Since u2 j = 1 −
u1 j , it is J (x j , c1, c2, u1 j ) = u1 j d21 j + (1 − u1 j )d22 j + γ f (u1 j ) + γ f (1 − u1 j ). A

necessary condition for a minimum is ∂
∂u1 j

J (x j , c1, c2, u1 j ) = d21 j − d22 j + γ f ′

(u1 j ) − γ f ′(1 − u1 j ) = 0, where ′ denotes taking the derivative w.r.t. the argu-
ment of the function. This leads to the simple condition d21 j + γ f ′(u1 j ) = d22 j + γ

f ′(1 − u1 j ).
We now assume again, without loss of generality, that d1 j < d2 j , which implies

f ′(u1 j ) > f ′(1 − u1 j ). In addition we know u1 j > u2 j = 1 − u1 j , because the
degree of membership should be higher for the cluster that is closer. In other words,
the function f must be the steeper, the greater its argument. Hence it must be a
convex function on the unit interval in order to allow for graded memberships.

More concretely, we obtain (d22 j − d21 j )/γ = f ′(u1 j ) − f ′(1 − u1 j ) as a condi-
tion for a minimum. Since f is a convex function on the unit interval, the maximum
value of the right hand side is f ′(1) − f ′(0). If f ′(1) − f ′(0) < ∞, we have the
possibility of crisp assignments, because in this case there exist values for d21 j , d

2
2 j ,

and γ such that the minimum of the function J (x j , c1, c2, u1 j ) w.r.t. ui j either does
not exist or lies outside the unit interval. In such a situation the best choice is the
crisp assignment u1 j = 1 and u2 j = 0 (still assuming that d1 j < d2 j ).

To obtain the update rule for the cluster centers we can simply transfer the result
from the preceding section, since the regularization term does not refer to the cluster
centers. Therefore we have the simple rule (because here h(ui j ) = ui j )

ci =
∑n

j=1 ui jx j∑n
j=1 ui j

.

This demonstrates the advantage of a membership regularization approach, because
the membership degrees are directly the weights with which the data points enter the
mean computation that yields the new cluster center.

In order to derive the update rule for the membership degrees, we have to respect
the constraints ∀ j; 1 ≤ j ≤ n : ∑c

i=1 ui j = 1. This is achieved in the usual way
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(cf. the preceding section) by incorporating them with Lagrange multipliers into the
objective function. The resulting Lagrange function is

L(X,U,C,Λ) =
c∑

i=1

n∑
j=1

ui j d
2
i j + γ

c∑
i=1

n∑
j=1

f (ui j )

︸ ︷︷ ︸
=J (X,C,U)

+
n∑
j=1

λ j

(
1 −

c∑
i=1

ui j

)
,

where Λ = (λ1, . . . , λn) are the Lagrange multipliers, one per constraint.
Since a necessary condition for a minimum of the Lagrange function is that the

partial derivatives w.r.t. the membership degrees vanish, we obtain

∂

∂ukl
L(X,U,C) = d2kl + γ f ′(ukl) − λl

!= 0 and thus ukl = f ′−1
(
λl − d2kl

γ

)
,

where ′ denotes taking the derivative w.r.t. the argument of the function and f ′−1

denotes the inverse of the derivative of the function f . In analogy to Sect. 20.2.4, the
constraints on the membership degrees are now exploited to obtain 1 = ∑c

k=1 ukj =∑c
k=1 f ′−1((λ j − d2k j )/γ ). This equation has to be solved for λ j and the result has

to be used to substitute λl in the expression for the ukl derived above. However, in
order to do so, we need to know the exact form of the regularization function f .

The regularization functions f that have been suggested in the literature (con-
crete examples are studied below) can be seen as derived from a maximum entropy
approach. That is, the term of the objective function that forces the ui j to minimize
the weighted sum of squared distances is complemented by a term that forces them
to maximize the entropies of the distributions over the clusters, the ui j describe for
each data point. Thus the ui j are pushed away from a crisp assignment, which has
minimum entropy, and toward a uniform assignment, which has maximum entropy.
Generally, such an approach starts from the objective function

J (X,C,U) =
c∑

i=1

n∑
j=1

ui j d
2
i j − γ

n∑
j=1

H(u j ),

where u j = (u1 j , . . . , ucj ) comprises the degrees of membership the data point x j

has to the different clusters. H computes their entropy, as u j is, at least formally, a
probability distribution, since it satisfies ∀i; 1 ≤ i ≤ c : ui j ∈ [0, 1] and∑c

i=1 ui j =
1.

In order to develop the maximum entropy approach in more detail, we consider
the generalized entropy proposed by Daroczy (1970). Let p = (p1, . . . , pr ) be a
probability distribution over r values. Then Daróczy entropy is defined as

Hβ(p) = 2β−1

2β−1 − 1

r∑
i=1

pi
(
1 − pβ−1

i

)
= 2β−1

2β−1 − 1

(
1 −

r∑
i=1

pβ
i

)
.

From this general formula the well-known Shannon entropy (Shannon 1948) can be
derived as the limit for β → 1, that is, as

H1(p) = lim
β→1

Hβ(p) = −
r∑

i=1

pi log2 pi .
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Employing it in the entropy-regularized objective function leads to

J (X,C,U) =
c∑

i=1

n∑
j=1

ui j d
2
i j + γ

c∑
i=1

n∑
j=1

ui j ln ui j ,

where the factor 1/ ln 2 (which stems from the relation log2 ui j = ln ui j/ ln 2) is
incorporated into the factor γ , as the natural logarithm allows for easier mathe-
matical treatment. That is, we have f (ui j ) = ui j ln ui j (Karayiannis 1994; Li and
Mukaidono 1995; Miyamoto and Mukaidono 1997; Boujemaa 2000) and therefore
obtain f ′(ui j ) = 1 + ln ui j and f ′−1(y) = ey−1. Using the latter in the formulae
obtained above for deriving the update rule for the membership degrees yields

ui j = e−d2i j /γ

∑c
k=1 e

−d2k j /γ
.

Aswas pointed out inMori et al. (2003), Honda and Ichihashi (2005), this update rule
relates the approach very closely to the expectation maximization (EM) algorithm
for Gaussian mixtures (Dempster et al. 1977; Everitt and Hand 1981; Bilmes 1997),
since by setting γ = 2σ 2, we obtain exactly the formula for the expectation step. As
a consequence, this update rule can be interpreted as computing the probability that
a data point x j was sampled from a Gaussian distribution centered at ci and having
the variance σ 2. In addition, since the update rule for the cluster centers coincides
with themaximization step, this form of fuzzy clustering is actually indistinguishable
from the expectation maximization algorithm for a mixture of Gaussians.

It should be noted that f ′(ui j ) = 1 + ln ui j implies f ′(1) − f ′(0) = ∞ and thus
Shannon entropy regularization always yields graded assignments. However, this

drawback is less harmful here, because e−d2i j /γ is much “steeper” than d−2
i j and thus

is less prone to produce undesired results (cf. the discussion in Döering et al. 2005).
Another commonly used special case of Daróczy entropy is so-called quadratic

entropy, which results if we set the parameter β = 2, that is,

H2(p) = 2
r∑

i=1

pi (1 − pi ) = 2 − 2
r∑

i=1

p2i .

Employing it in the entropy-regularized objective function leads to

J (X,C,U) =
c∑

i=1

n∑
j=1

ui j d
2
i j + γ

c∑
i=1

n∑
j=1

u2i j ,

as the constant term 2 has no influence on the location of the minimum and thus can
be discarded, and the factor 2 can be incorporated into the factor γ . That is, we have
f (ui j ) = u2i j (Miyamoto and Umayahara 1997) and therefore obtain f ′(ui j ) = 2ui j
and finally f ′−1(y) = y

2 for the needed inverse function of the derivative.
In order to derive the update rule for the memberships, one has to pay attention

to the fact that f ′(1) − f ′(0) = 2. Therefore crisp assignments are possible and
some membership degrees may vanish. However, the detailed derivation can easily
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be found by following, for example, the same lines as for the analogous approach in
the preceding section, which also allowed for vanishing membership degrees.

The resulting membership degree update rule is ∀i : 1 ≤ i ≤ c : ∀ j : 1 ≤ j ≤ n:

ui j = max

{
0,

1

c j

(
1 +

c j∑
k=1

d2ς(k) j

2γ

)
− di j

2γ

}
,

where ς : {1, . . . , c} → {1, . . . c} is a mapping function for the cluster indices such
that ∀i; 1 ≤ i < c : dς(i) j ≤ dς(i+1) j (that is, ς sorts the distances ascendingly) and

c j = max

{
k

∣∣∣∣
k∑

i=1

d2ς(i) j > k dk j − 2γ

}

is the number of clusters to which the data point x j has a nonvanishing membership.
In this update rule 2γ can be interpreted as a reference distance relative to which all
distances are judged. For two clusters, 2γ is the difference between the distances of
a data point to the cluster centers, at and above which a crisp assignment is used.
Clearly, this is equivalent to saying that the distances, if measured in 2γ units, must
differ by less than 1 in order to obtain a graded assignment.

A disadvantage of this update rule is that it refers to the difference of the distances
rather than their ratio, which seems more intuitive. As a consequence, a data point
that has distance x to one cluster and distance y to the other is assigned in exactly the
same way as a data point that has distance x + z to the first cluster and distance y + z
to the second, regardless of the value of z (provided z ≥ −min{x, y}).

Alternatives to the discussed approaches modified the Shannon entropy term,
using, for instance, f (ui j ) = ui j ln ui j + (1 − ui j ) ln(1 − ui j ) (Yasuda et al. 2001),
or replaced it with Kullback–Leibler information divergence (Kullback and Leibler
1951) to the (estimated) cluster probability distribution (Ichihashi et al. 2001), that
is, f (ui j ) = ui j ln

ui j
pi

with pi = 1
n

∑n
j=1 ui j .

It has also been tried to use f (ui j ) = uwi j (Yang 1993; Özdemir and Akarun
2002), but combined with h(ui j ) = uwi j (to avoid technical complications), so that
the objective function is effectively

J (X,C,U) =
c∑

i=1

n∑
j=1

uwi j (d
2
i j + γ ).

Hence this is actually a hybrid approach that combines membership transformation
and regularization. Another hybrid approach, proposed inWei and Fahn (2002), com-
bines h(ui j ) = uwi j and Shannon entropy regularization f (ui j ) = ui j ln ui j . Finally,
a generalized objective function was presented in Bezdek and Hathaway (2003) and
analyzed in more detail in Yu and Yang (2007).

It should be noted, though, that the approach of Frigui and Krishnapuram (1997),
which is covered by the generalized objective function of Bezdek and Hathaway
(2003) and based on

J (X,C,U) =
c∑

i=1

n∑
j=1

uwi j d
2
i j − γ

c∑
i=1

p2i with pi = 1

n

n∑
j=1

ui j ,
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is not a membership regularization scheme, as it yields crisp assignments unless
w > 1. In this approach the entropy term (which is added rather than subtracted)
serves the purpose to choose the number of clusters automatically.

A closely related approach is possibilistic clustering (Krishnapuram and Keller
1993, 1996), which eliminates the membership constraints ∀ j; 1 ≤ j ≤ n : ∑c

i=1
ui j = 1 and is based on the objective function

J (X,C,U) =
c∑

i=1

n∑
j=1

uwi j d
2
i j +

c∑
i=1

ηi

n∑
j=1

(1 − ui j )
w.

Here the ηi are suitable positive numbers (one per cluster ci , 1 ≤ i ≤ c) that deter-
mine the distance at which the membership degree of a point to a cluster is 0.5.
They are usually initialized, based on the result of a preceding run of standard fuzzy
clustering, as the average fuzzy intra-cluster distance ηi = ∑n

j=1 u
w
i j d

2
i j/

∑n
j=1 u

w
i j

and may or may not be updated in each iteration (Krishnapuram and Keller 1993).
Although this approach is useful in certain applications, it should be noted that the

objective function of possibilistic clustering is truly optimized only if all clusters are
identical (Timm et al. 2004), because the missing constraints decouple the clusters.
Thus it actually requires that the optimization process gets stuck in a local optimum
in order to yield useful results, which is a somewhat strange property.

20.2.6 Comparison

Since classical c-means clustering does not yield graded data point assignments,
even if one allows the membership variables to take values in the unit interval, the
objective function has to be modified if graded assignments are desired. There are
two fundamental approaches to this: transforming the membership degrees or adding
amembership regularization term. In both the cases variants can be derived that allow
partially crisp assignments, that is, allow for vanishing membership degrees, as well
as variants that enforce graded assignments regardless of the data.All of these variants
have advantages and disadvantages: membership transformation suffers generally
from the fact that the transformation function enters the cluster center update, but uses
a fairly intuitive relative inverse squareddistance scheme for themembership updates.
Quadratic entropy regularization allows for vanishingmembership degrees, but refers
to distance differences rather than more intuitive distance ratios. Shannon entropy
regularization leads to a procedure that is equivalent to the expectation maximization
(EM) algorithm for a mixture of Gaussian and thus is not a specifically “fuzzy”
approach anymore. However, judging from the discussion in Döering et al. (2005)
due to which the forced graded assignment is unproblematic, its practical advantages
make it, in our opinion, the most recommendable approach.
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20.3 Analysis of Imprecise Data Using Random Sets

Standard statistical data analysis is formally based on random variables and tries
to derive properties of these random variables with the help of probability theory.
However, most commonly the considered random variables map to the real numbers
R and thus are restricted to precise values. A natural extension that allows for impre-
cision are so-called random sets, which are set-valued random variables and thus
can map, for example, to subsets of a finite set or to intervals of the real numbers.
While in the case of a random variable X : Ω �→ A the result of an experiment is
an element of the set A, in the case of a random set X : Ω �→ 2A the result of an
experiment is a subset of A, i.e., an element of the power set of A.

A random set generalizes the notion of a random variable: In the case of a random
variable X : Ω �→ A the result of an experiment is an element of the set A, whereas
in case of a random set X : Ω �→ 2A the result of an experiment is a subset of A,
i.e., an element of the power set of A.

Themodern theory of random sets was initiated in the seventies byKendall (1974)
and Matheron (1975), and it has been applied in different fields such as economy
and stochastic geometry. Let us illustrate the main ideas and techniques by studying
two examples as follows:

Example 20.1 Let us consider the following set of languages L = {English, German,
French, Spanish}. Suppose that we randomly select a person ω from the set Ω of
employees of a working group and we ask about the languages the employee can
speak. We can model the outcome of this experiment by means of a set-valued
functionΓ : Ω �→ 2L\{∅}, whereΓ (ω) ⊆ L is the collection of languages the person
ω can speak. We suppose that each person is able to speak at least one language in
L . If every employee has the same probability to be selected, we use the uniform
probability distribution P defined on the finite setΩ . The triplet (Ω, P, Γ ) describes
the random set adequately. Typical questions that are of interest in such a context are
the following:

• What is the proportion P1 of employees that can speak German and English and
cannot speak any other language?

• What is the proportion P2 of employees that can speak German or English but no
other language?

• What is the proportion P3 of employees that can speak German or English?
• What is the proportion P4 of employees that can speak at least three languages?

Such questions can be answered by a formal analysis of the corresponding random
set respectively as follows:

P1 = P ({ω ∈ Ω : Γ (ω) = {English,German}})
P2 = P ({ω ∈ Ω : Γ (ω) ⊆ {English,German}})

P3 = P ({ω ∈ Ω : Γ (ω) ∩ {English,German} �= ∅})
P4 = P ({ω ∈ Ω : |Γ (ω)| ≥ 3})
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In the above example we consider the outcome of the random set as a precise piece
of information. In the scientific literature this is called the conjunction interpretation
of a set or the ontic view of a set (Dubois and Prade 2012).

Let (Ω, 2Ω, P) be a finite probability space and Γ : Ω �→ 2U be a multi-valued
mappingwith nonempty images. Inmost applicationswe are interested in the propor-
tion of elements ofΩ whose images “touch” a given subset A ofU or are completely
included in A. These proportions are called upper probability P�(A) and lower prob-
ability P�(A) and can be calculated by

P�(A) = P ({ω ∈ Ω|Γ (ω) ⊆ A}) , A ⊆ U and

P�(A) = P ({ω ∈ Ω|Γ (ω) �= ∅ ∧ Γ (ω) ⊆ A}) , A ⊆ U.

According to the ontic view the randomset is seen as a “randomobject,” i.e., a particu-
larmeasurablemappingwithin the frameworkof canonical probability theory.Hence,
it induces a probabilitymeasure of the correspondingσ -algebra, and its relevant para-
meters are calculated as a function of such a probability measure (Molchanov 2006).
It is possible to formulate extensions of classical statistics to random sets. One can
prove, for example, the strong law of large numbers for random sets, which is the
key to inductive statistics (Puri and Ralescu 1983).

Example 20.2 Let us consider the random experiment that consists in randomly
selecting a day in the year 1982 and recording the interval given by the lowest
and the highest recorded temperature at Brunswick airport. The task is to study the
distribution of the daily mean temperatures in Brunswick in 1982. We assume that
we are just provided with the pair of minimum and maximum temperature and we
have no further information about the remaining records during the day.

We can model the experiment again by using a (Laplace) probability P on Ω and
the set-valuedmappingΓ : Ω �→ 2R, ω �→ [Tmin(ω), Tmax (ω)], where the intervals
represent the possible temperatures on a date. In this experiment the sets have a
different semantics, because we know that for each day there is exactly one true
mean value. There is an “original” random variable X0 : Ω → R that assigns to each
day its true mean temperature value. We know that for all ω ∈ Ω the inequalities
Tmin(ω) ≤ X0(ω) ≤ Tmax (ω) hold, i.e., X0(ω) ∈ Γ (ω) for all ω ∈ Ω . But we do
not know which one is the underlying original X0. All random variables X with
the property X (ω) ∈ Γ (ω) are candidates for the original. These candidates are
called “admissible” random variables or selectors. The random set is regarded as
the representation of the perception of an otherwise point-valued random variable.
Therefore, the information given by the random set is regarded the same as the
information given in the set of admissible selectors. This identification can be used
to define statistical parameters of a random set.

Let (Ω, 2Ω, P) be a probability space and Γ : Ω → 2R a multi-valued (measur-
able) mapping with nonempty images. Then the expected value is defined as the set

E(Γ ) = {E(X)|X (ω) ∈ Γ (ω),

X is random variable such that E(X) exists and ∀ω ∈ Ω}
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and the variance as the set

Var(Γ ) = {Var(X)|X (ω) ∈ Γ (ω),

X is random variable such that Var(X) exists and ∀ω ∈ Ω} .

E(Γ ) was studied in Aumann (1965), Var(X) in Kruse (1987). Descriptive statistics
can be extended using these ideas to random sets using these ideas (Kruse andMeyer
1987).

20.4 Possibility Theory and GeneralizedMeasures

Probability theory is a well-known calculus for handling uncertainty. Possibility
theory, as an alternative with close links to fuzzy sets, has been aired for quite some
time, but it is still much less well known. As we already mention in Sect. 15.3 a
possibility distribution π aims to quantify the state of knowledge of an agent. The
aim is to distinguish between what is surprising from what is expected, and what
is plausible from what is less plausible. It represents a flexible restriction on what
is the actual state with the following convention: π(u) = 0 means that u is rejected
as impossible, π(u) = 1 means that u is totally possible, and the larger π(u) is, the
more plausible u is.

Definition 20.1 A possibility distribution π on X is a mapping from the reference
set X into the unit interval [0, 1], π : X �→ [0, 1], for which there exists an x0 ∈ X
such that π(x0) = 1.

A possibility distribution π is said to be at least as specific as another π ′, if and
only if for each x the inequality π(x) ≤ π ′(x) holds. Possibility theory is driven by
the so-called principle of minimal specificity. It states that any hypothesis not known
for certain to be impossible cannot be ruled out. Given a piece of information in the
form of a fuzzy set μ, this principle leads to represent the knowledge by π ≤ μ.
The minimal specificity principle enforces π = μ if no other piece of information
is given.

Example 20.3 Consider the fuzzy set μcloudy : X �→ [0, 1], where X = [0, 100], as
the description of the imprecise concept cloudy. Here x ∈ X denotes the clouding
degree in percent, and μcloudy(x) is the membership degree of x to the fuzzy set
μcloudy (Fig. 20.3).

Suppose we are interested in modeling our knowledge about the degree of cloud-
ing observable at Brunswick airport on Sept 12th, 1982, at 2 p.m. There exists exactly
one true clouding value at that time, and the only piece of information is a remark of a
colleague that the weather was cloudy on that day. In order to model our uncertainty
about the true but unknown value, a reasonable estimate is to use the possibility dis-
tributionπ defined byπ(x) := μ(x), for all x ∈ R. Here 40 is rejected as impossible,

http://dx.doi.org/10.1007/978-1-4471-7296-3_15
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Fig. 20.3 Fuzzy set for
cloudy

50 65 85 100

1
cloudy

Fig. 20.4 Possibility
distribution

50 65 85 100

1

70 is totally possible for a possibility distribution, while 60 is possible with a degree
of 0.7.

Given a possibility distribution for elementary events, we can also give answers
to question such as “Does the true value lie in the set A?”. For example choosing
A = [60, 70], we obtain by inspecting the possibility distribution in Fig. 20.4 that A
is fully possible, because the true, but unknown value could be 65. But it is neither
certain nor necessary that the event A occurs. Using measure theory one can answer
such questions in a formalized way.

Definition 20.2 Letπ : X �→ [0, 1] be a possibility distribution. Then the possibility
degree of a subset A of X with respect to π is defined as

Π(A) := sup {π(x) : x ∈ A},
and the necessity degree of a subset A of X with respect to π is defined as

N (A) := inf {1 − π(x) : x ∈ A}.

Π(A) evaluates to what extent A is consistent with π , while N (A) evaluates to what
extent A is certainly implied. The duality is expressed by N (A) = 1 − Π(A) and is
valid for all A. Generally

Π(X) = N (X) = 1

Π(∅) = N (∅) = 0, and

Π(A ∪ B) = max {Π(A),Π(B)} for all A and B

Π(A ∩ B) ≤ min {Π(A),Π(B)} for all A and B

holds, but there are cases for which the strict inequality holds.

Example 20.4 Five observers A, B, C, D, E provide information about the same, but
unknown airplane. The plane could be of type 1, 2, or 3. The observers are allowed
to mark with an × in a table (see Table20.1), whether it is possible that the observed
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Table 20.1 Information given by the five observers about possible plane types

Observer Observation

1 2 3

A ×
B × ×
C × ×
D × × ×
E × ×
Total 5 3 2

Rel. Frequency 1.0 0.6 0.4

plane is of a specific type. They are allowed to provide precise information (e.g., A
states that the airplane is of type 1) or imprecise information (e.g., B states that it
was of type 1 or 2). We can summarize the information given by the observers by
using the (normalized) relative frequencies as degrees of possibility, and we obtain
as a result π : {1, 2, 3} �→ [0, 1], π(1) = 1, π(2) = 0.6, π(3) = 0.4.

There are several interpretations for a possibility degree (Dubois Prade 2015;
Gebhard Kruse 1993). In the above example we used the so-called context model.
In this interpretation a set of contexts is presumed from each of which an actual
situation can be described. These contexts could be, e.g., several observers that have
to state their individual observations. These need not necessarily be disjoints. By
these contexts a probability distribution is defined which gives the probability of
each context to be used for a description. Each context contains the possible values
or (with metric attributes) an interval. A possibility degree is then attributed to each
value from the base set,which is equal to the sumof probabilities of the contexts under
which the value is possible. Therefore, with this model a possibility degree states the
probability that a value is possible (and not the probability of the value). Formally
the possibility degree can be defined with the help of a random set (i.e., a set-valued
random variable) and its envelope. From this point of view it follows immediately
that possibility degrees can be interpreted as upper bounds for probabilities since
with the mapping of a context’s complete probability to each of its values the upper
bound of a conditional probability of 1.0 has been accounted for.

Possibility measures belong to the class of fuzzy measures.

Definition 20.3 Let X be a finite set, and let g be a function from 2X to [0, 1]. The
function g is called a fuzzy measure if and only if

(i) g(∅) = 0, g(X) = 1, and
(ii) for all A, B ⊆ X, A ⊆ B the inequality g(A) ≤ g(B) holds.
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Probability measures p : 2X �→ [0, 1] on a finite set X have the additivity property,
i.e., if A ∩ B is empty, then P(A ∪ B) = P(A) + P(B), so they are monotone set
functions and therefore fuzzymeasures. Another type of fuzzymeasures was defined
by Sugeno: A Sugeno λ-measure gλ has the property

gλ(A ∪ B) = gλ(A) + gλ(B) + λgλ(A)gλ(B).

For λ > −1 a Sugeno measure is a fuzzy measure (Sugeno 1987; Kruse 1982). Note
that there are several notions for integrals that can be obtained by starting from the
concept of a fuzzy measure (Bede 2013).

In agreement with other uncertainty theories, possibility and necessity measures
represent degrees of plausibility and belief (Yager and Liu 2008). Notions of con-
ditioning and several variants of independence between events exist in possibility
theory. For example, possibilistic graphical models as an alternative to probabilistic
graphical models (Borgelt et al. 2009) have been developed by two of the authors
of this book. Possibility theory has not been the main framework for engineering
applications of fuzzy sets, but it has significant potential for further applied devel-
opments.

20.5 Fuzzy RandomVariables

In this section we study a generalization of the concept of a random set. We assume
that the uncertainty handling is modeled by a probability space, (see Borgelt and
Kruse 2015; Couso and Dubois 2009; Dubois 2000; Grabisch 2000; Kwakernaak
1979;Walley 1991;Wolkenhauer 2001; Zadeh 1978). The data are modeled by fuzzy
sets, where there are two different interpretations in the context of statistical data
analysis (Couso et al. 2014): In the epistemic view fuzzy sets are used to represent
incomplete knowledge about an underlying object or a precise quantity (Kwakernaak
1978; Kruse 1987). In the ontic view fuzzy sets are considered as real complex
humped entities (Puri and Ralescu 1986; Blanco-Fernández et al. 2012).

Example 20.5 Let us consider the languages S = {English, German, French,
Spanish}. Suppose the set Ω of employees of a working group have different lan-
guage skills, and we want to model the information about the language skills of the
persons.

If we know the personsCEFR levels (European Language Test), thenwe assign for
each person and for each language amembership value on a [0, 1]-scale, e.g., by using
normalized CEFR levels. The fuzzy sets μ : S �→ [0, 1] describe the language skills
of a person. Note that the fuzzy sets are considered as precise pieces of information.
We use an ontic view of a fuzzy set.

In order to use the information for statistical purposes, it is convenient to model
the uncertainty of selecting a person by a probability space on Ω and the infor-
mation about the persons by fuzzy sets. We obtain a mapping Γ : Ω �→ F(S),
which is called a fuzzy random variable. The statistical analysis of a fuzzy random
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variable Γ : Ω �→ F(X) with ontic fuzzy sets on a probability space (Ω, B, P)

is mathematically demanding. The standard way is to define a suitable σ -algebra
over a class of fuzzy sets on X . Then a fuzzy random variable is a measurable
mapping, and the probability distribution induced by this generalized random vari-
able can be used to analyze the probabilistic information. A typical question in
our example could be “What is the probability of the people that speak both Eng-
lish and German to a degree of at least 0.8?”. This question could be answered
by calculating the probability P({ω ∈ Ω : Γ (ω) ≤ μ}, where μ : X �→ [0, 1] and
μ(English) = μ(German) = 0.8, μ(French) = μ(Spanish) = 1.

In applications with objects described as fuzzy sets of the real line, a restriction
to fuzzy sets μ with compact level sets μα , α > 0, is mathematically convenient.
In that case we can define metrics on this subset of fuzzy sets of the real line by
generalizing the Hausdorff pseudometric defined for subsets of the real line:

d(μ, ν) =
1∫

0

dH (μα, να)dα,

where
dH (A, B) = max {sup

a∈A
inf
b∈B

{|a − b|}, sup
b∈B

inf
a∈A

{|a − b|}}

is the Hausdorff pseudometric defined for nonempty sets A, B ⊆ R.
Beside the equipment of the space of fuzzy (compact) objects with topologi-

cal properties we can additionally equip the space with algebraic operations such
as an addition and a scalar multiplication by extending the Minkowski operations
A + B = { a + b : a ∈ A, b ∈ B} by using Zadehs extension principle to fuzzy
compact objects. Under these structures one can prove the generalized strong law of
large numbers (Puri and Ralescu 1983), which gives the key to inductive statistics
with random fuzzy objects.

Let us now consider a random experiment where the data are described by fuzzy
sets with an epistemic interpretation. Then our model consists of a probability space
(Ω, B, P) and a mapping Γ : Ω �→ F(X) with possibility distributions as values.
Themapping is again called a fuzzy randomvariable, but in this situation themapping
is used for modeling a situation in which a second-order uncertainty occurs.

Example 20.6 Suppose we want to analyze statistical observations on a database,
in which the clouding degree at noon for several day are stored. The information
about the true clouding degrees is sometime precise, but in some cases interval-
valued (using min–max information) and for some days only described by subjective
information by using possibility distributions.

In order to explain the procedure we use the very small data set of Fig. 20.5
consisting only of three data points Γ (ω1), Γ (ω2), Γ (ω3). The first observation is
exactly 60, and the second observation is between 50 and 60, but we have no fur-
ther information about the true value, the underlying “original”. Our information
about the third datum is encoded by using a possibility distribution: We have some
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Fig. 20.5 Expected value of a random sample of fuzzy sets

background knowledge about the location of the unknown original. In order to per-
form descriptive statistics with this data set we want to determine suitable location
and range parameters such as the mean value and the variance. How to define such
parameters? This can be done by

(1) defining a possibility distribution on the set of all randomvariables, that describes
the possibility of a random set of being the original, and

(2) applying the extension principle to the mapping that assigns to each random
variable its expected value.

Let U : Ω → X be a random variable. We know the possibility degree that U (ω)

is the original of Γ (ω) is ((Γ (ω))(U (ω)), and according to the insufficient reason
principle we conclude that the possibility that U is the original on Γ is

πΓ (U ) := inf
ω∈Ω

{Γ (ω))(U (ω))}

Let E(U ) denote the expected value of a randomvariableU with existing expected
value, and πΓ the possibility distribution on the set of all random variables defined
above. Consider the mapping E from the set of all random variables to the real
numbers that assigns to each random variableU its expected value E(U ). Using the
extension principle for defining the expected value for fuzzy subsets of the set of
random variables, we obtain a reasonable definition for the expected value of a fuzzy
random variable Γ .

Definition 20.4 Let Γ : Ω → F(X) be a fuzzy random variable. Then the expected
value E(Γ ) : X → [0, 1] is a fuzzy set of X defined by

x �→ sup
U :E(U )=x

{
min
ω∈Ω

{(Γ (ω))(U (ω))}
}
.

Parameters such as the variance can be defined in the same way. Note that for finite
probability spaces Ω = {ω1, . . . , ωn} and possibility distributions on the real line R
the calculation of the parameters can be facilitated by using level sets. Then for each
α > 0 the level sets E(Γ )α (see Definition 15.2 in Sect. 15.4.2 on p. 338) are equal

http://dx.doi.org/10.1007/978-1-4471-7296-3_15
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to the weighted Minkowski sum of the level sets of the data, i.e.,

[E(Γ )]α =
∑
ω∈Ω

P{ω} · [Γ (ω)]α for α > 0

If the level sets are closed intervals, then the calculation of the expected value can
be efficiently done by using simple interval arithmetic.

Using this technique, we can extend classical statistical notions such as the dis-
tribution function to the case of fuzzy random variables. Conceptually the approach
can be seen as a build-in “sensitivity analysis.”
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21Introduction toBayesNetworks

Relational database systems are amongst the most wide-spread data management
systems in today’s businesses. A database typically consists of several tables that
contain data about business objects such as customer data, sales orders or product
information. Each table row represents a description of a single object with each table
column representing an attribute of that object. Relations between these objects are
also modeled via tables. Please note that we use the notions table and relation inter-
changeably. A major part of database theory is concerned with the task to represent
data with as little redundancy as possible.

A Fictitious Example

Before we introduce the theoretical background, we will illustrate the concepts in the
setting of a fictitious car manufacturer. For each part of a car a table with different
suppliers is maintained. For the sake of simplicity let us assume there are only three
different parts: engine, transmission and brakes.

Tables21.1, 21.2 and 21.3 show example values for these parts. The first column
denotes the primary key, that is, the identifying table entry. Let us assume further
that all attributes’ value combinations are possible and hence there are 36 different
unique carmodels. The above-mentioned decomposition for redundancy reduction is
not shown here. For example, in real life there would be another table containing the
address and contact data for each supplier which in turn are referenced in Tables21.1,
21.2 and 21.3 by their name.

Apart from just querying the database we would like to go further than this and
draw inferences like “Supplier X can only deliver transmission t4 at the moment.
Which consequences have to be inferred for the procurement of brakes and engines?”
Answering such questions involves historical information (e.g. installation rates of
single car parts from the past) and expert knowledge (e.g. the allowed technical
combinations of parts) that are modeled and exploited via probability theory. Such
a probability distribution is exhaustively (together with all marginal distributions)
displayed in Fig. 21.1. Table21.4 sketches how they are stored inside the database.
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Table 21.1 Table Engines EID Power Type · · ·
e1 100kW Diesel · · ·
e2 150kW Otto · · ·
e3 200kW Otto · · ·

Table 21.2 Table Brakes BID Material Manufacturer · · ·
b1 Steal Firm 1 · · ·
b2 Steal Firm 2 · · ·
b3 Ceramic Firm 2 · · ·

Table 21.3
Table Transmissions TID Gears Automatic · · ·

t1 4 n · · ·
t2 5 n · · ·
t3 5 y · · ·
t4 6 y · · ·

Fig. 21.1 Three-dimensional probability distribution over the attributes Transmission, Engine
and Brakes. Additionally, the marginal distributions (sums over rows, columns or both) are shown

The above question how the distribution of brakes and engines changes if only trans-
mission t4 is available is shown in Fig. 21.2. Obviously, all combinations with T �= t4
become impossible. Since the result needs to be another probability distribution, all
remaining entries of the “slice” T = t4 were normalized to sum up to one. This was
done by dividing all entries by the marginal installation rate P(T = t4) = 0.280.
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Table 21.4 Sketch of the
ternary relation with the
relative frequencies of all
36 possible car combinations.
The full relation can be found
in Fig. 21.1

TID EID BID P(·)
t1 e1 b1 0.084

t1 e1 b2 0.056
.
.
.

.

.

.
.
.
.

.

.

.

t4 e3 b2 0.072

t4 e3 b3 0.080

Fig. 21.2 Conditional distribution(s) given the condition T = t4

Now, let dom(E) be the domain of attribute E , that is, the set of all possible values E
can assume. To determine e.g. the new installation rates for brake b1, the following
implicit steps are required:

P(B = b1 | T = t4) =

∑
e∈dom(E)

P(E = e, B = b1, T = t4)

∑
e∈dom(E)

∑
b∈dom(B)

P(E = e, B = b , T = t4)

= 8 + 17 + 9

80 + 17 + 3 + 72 + 68 + 6 + 8 + 17 + 9
≈ 0.122

These summations clearly show what effort it takes to compute the conditional dis-
tributions directly. Dealing with a three-dimensional database, such a procedure is
still feasible. In real-world applications, however, one has to deal with hundreds of
attributes having considerably larger domains. Assuming a more realistic number of
attributes of 200 and only three values per attribute, the state space has a cardinality
of 3200 ≈ 2.6 · 1095 and thus contains more unique combinations than there are ele-
mentary particles in the universe, that is, an estimated number of 1087 elementary
particles. Even a summation over subsets of the distribution is impossible. Another



462 21 Introduction to Bayes Networks

challenge is to efficiently store the distribution since a enumeration of all possible
combinations is infeasible and most of them are likely never used at all. This can be
seen as follows: assume that all vehicles on the planet were built by our manufac-
turer and no two vehicles are identical (w.r.t. their attribute values). Even then the
estimated number of just below a billion of those vehicles is negligible compared to
the number 3200 of theoretically possible ones.

The main idea to efficiently store and use a high-dimensional probability distribu-
tion p (containing the knowledge about a certain area of application) is to decompose
it into a set {p1, . . . , ps} of lower-dimensional and possibly overlapping distribu-
tions. If this is achieved one can infer from it the same conclusions as from the original
distribution p. As one can easily verify, the following criterion is valid inside the
example distribution P(T, E, B) from Fig. 21.1:

P(T = t, E = e, B = b) = P(T = t, E = e) · P(E = e, B = b)

P(E = e)
(21.1)

Obviously, it is sufficient to store the two-dimensional distributions over attributes B
and E , and T and E in order to correctly reconstruct the original three-dimensional
distribution since the one-dimensional distribution over E can be computed via
(affordable) summation over one of the two two-dimensional distributions. The
attribute E apparently plays an important role w.r.t. the decomposability since it is
contained in both two-dimensional distributions. We will later refer to the criterion
in Eq.21.1 as conditional independence (of the attributes T and B given attribute E).
Such conditional independences will later be intuitively represented by (directed or
undirected) graphs. The objective is to be able to infer all valid stochastic statements
from the underlying probability distribution by only using graph-theoretic criteria.
The undirected graph for our small example is depicted in Fig. 21.3. The attributes
for which we need a joint distribution are connected by an edge. Another advantage
of a graphical representation will be the ability to use it to determine the paths and
steps needed to update the remaining attributes in the presence of evidence (like
known attribute values such as the value t4 of attribute T in our example) without
the need to reconstruct the original distribution.

The graph in Fig. 21.3 describes a path over which information about attribute T
can be transferred via attribute E to infer a changed probability distribution of
attribute B. Thus, only those two lower-dimensional distributions are necessary that
are represented by the edges:

P(B = b1 | T = t4) = 1

P(T = t4)
·

∑
e∈dom(E)

P(T = t4, E = e) · P(E = e, B = b1)

P(E = e)

= 1000

280
·
(

18 · 180
360 · 1000 + 102 · 40

240 · 1000 + 160 · 20
400 · 1000

)
= 34

280
≈ 0.122

Fig. 21.3 Graphical model of the relation shown in Fig. 21.1
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One can easily understand that in a scenario with a reasonable (large) number of
attributes, only exploiting the previously sketched concepts allows for a feasible
evidence propagation. Concluding the above ideas, the following list of questions
will be answered in the next chapters:

1. How can expert knowledge about complex domains be efficiently represented?
We will look into knowledge representations based on directed and undirected
Bayes and Markov network.

2. How can inferences be drawn inside these representations? The graphical repre-
sentations will provide the paths over which the evidence needs to be propagated
inside the respective Bayes or Markov networks.

3. How can such graphical representations be automatically learned from data? We
will discuss learning principles for Bayes and Markov networks and look deeper
into an example for Bayes networks.
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This chapter introduces required theoretical concepts for the definition of Bayes and
Markov networks. After important elements of probability theory—especially (con-
ditional) independences—are discussed, we present relevant graph-theoretic notions
with emphasis on so-called separation criteria. These criteria will later allow us to
capture probabilistic independences with an undirected or directed graph.

22.1 Probability Theory

The classical notion of probability and its interpretation in terms of relative fre-
quencies are deeply embedded in our intuition. Modern mathematics embraced an
axiomatic methodology which abstracts from specific meanings of objects. Rather,
it assumes all objects to be given with no further property than their own identity
(i.e., the objects aremutually distinguishable) and studies the relations amongst these
objects resulting from postulated axioms.

Probability theory is formed in that axiomatic way by employing the so-called
Kolmogorov axioms (Kolmogorov 1933). An event in this nomenclature is simply
a set of elementary events that are distinguishable, i.e., that have an identity. A
probability is then a number assigned to an event satisfying certain criteria that are
defined by the above-mentioned axioms. Let us first define the fundamental notions
of an event algebra and a σ -algebra.

Definition 22.1 (Event algebra) Let Ω be an event space (i.e., a universal set of
elementary events). A system of subsets S over Ω is called event algebra if and
only if the following conditions hold:

• The certain event Ω and the impossible event ∅ are in S .
• For every A ∈ S the complement A = Ω\A is also contained inS .

465
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• If A and B are in S , then A ∪ B and A ∩ B are also in S .

The following condition may also hold:

• If for all i ∈ N the event Ai is inS ,
then the events

⋃∞
i=1 Ai and

⋂∞
i=1 Ai are also in S .

In that case S is called a σ -algebra.

The semantic of A ∪ B is the event that occurs if A or B occurs. The intersection
A ∩ B occurs if and only if A and B occur. The complement A occurs if and only
if A does not occur. Two events A and B are disjoint if and only if they cannot occur
simultaneously, i.e., if their intersection is the impossible event: A ∩ B = ∅.

To assign a probability to an event, the so-called Kolmogorov axioms are used:

Definition 22.2 (Kolmogorov axioms)
Let S be an event algebra over a finite event space Ω .

• The probability P(A) of an event A ∈ S is a uniquely defined nonnegative number
of value at most one, i.e., if 0 ≤ P(A) ≤ 1 holds.

• The certain event Ω has probability one: P(Ω) = 1
• Addition axiom: If the events A and B are disjoint (A ∩ B = ∅), then P(A ∪ B) =
P(A) + P(B) holds.

In event spaces Ω containing infinitely many elementary events, S has to be a
σ -algebra and the addition axiom has to be replaced by

• Extended addition axiom: If A1,A2, . . . are countably infinitely many pairwise
disjoint events, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Ai.

These three axioms already implies the following (incomplete) list of properties:

• ∀A ∈ S : P(A) = 1 − P(A).
• P(∅) = 0.
• For pairwise disjoint events A1, . . . ,An holds:

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai).

• For any (not necessarily disjoint) events A and B holds:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
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The Kolmogorov axioms are consistent since there exist systems that satisfy all
axioms. Kolmogorov’s axioms allow for an embedding of probability theory into
measure theory and to interpret the probability as an nonnegative normalized additive
set function, i.e., as a measure.

Since the definitions of event algebra and Kolmogorov axioms are not unique
but represent a class of set systems and functions, respectively, one has to specify
precisely for every application the underlying objects. This is done with the notion
of a probability space.

Definition 22.3 (Probability space) LetΩ be an event space,S a σ -algebra overΩ
and P a probability onS . The the triple (Ω,S ,P) is called a probability space.

Up to now, we only computed the probabilities of events without discussing the
change of this probability when new information (in form of, again, events) becomes
known. That is, we now ask for the probability of an event given the knowledge that
one or more other events have (or have not) occurred.

Definition 22.4 (Conditional probability) Let A and B be events with P(B) > 0.
Then

P(A | B) = P(A ∩ B)

P(B)

is called the conditional probability of A given (the condition) B.

The following theorem directly follows:

Theorem 22.1 (Product theorem/Multiplication theorem) For any two events A and
B holds:

P(A ∩ B) = P(A | B) · P(B) = P(B | A) · P(A).

For a set U of events together with a total ordering ≺ on this set, we can generalize
the product theorem by induction over the events:

P
( ⋂
A∈U

A
)

=
∏
A∈U

P
(
A

∣∣∣ ⋂
B≺A

B
)

If there is no B ∈ U with B ≺ A, then the intersection in the condition of the
right-hand side is not empty but it is not computed at all, leading to an implicit Ω:

P
(
A

∣∣∣ ⋂
B≺A

B
)

= P
(
A

∣∣∣ Ω ∩
⋂
B≺A

B
)

= P(A | Ω) = P(A)

For U = {A,B} with B ≺ A the above Theorem 22.1 follows. Further, multiple
events can make up the condition.

Theorem 22.2 Let U, V , and W be nonempty sets of events with U = V ∪ W and
V ∩ W = ∅. Then the following statement holds:

P
( ⋂
A∈U

A
)

= P
( ⋂
A∈V

A
∣∣∣ ⋂
A∈W

A
)

· P
( ⋂
A∈W

A
)
.
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A conditional probability satisfies all Kolmogorov axioms. With this we get the
following theorem:

Theorem 22.3 For any fixed event B with P(B) > 0 the function PB defined as

PB(A) = P(A | B)

constitutes a probability function that satisfies the condition PB(B) = 0.

Definition 22.5 (Event partition) Let U be a set of events. The events in U form an
event partition if all events are pairwise disjoint (that is, if ∀A,B ∈ U : A 
= B ⇔
A∩B = ∅ holds) and if

⋃
A∈U = Ω holds (that is, they cover the entire event space).

Theorem 22.4 (Total probability) Let U be a set of events that form an event parti-
tion. Then the probability of any event B can be written as

P(B) =
∑
A∈U

P(B | A)P(A).

If one replaces the P(B) in the right-hand side of the equation in Definition 22.4 by
an event partition, we arrive at the Bayes theorem.

Theorem 22.5 (Bayes theorem) Let U be a set of events that form an event partition.
Further let B be an event with P(B) > 0. Then the following equality holds:

∀A ∈ U : P(A | B) = P(B | A)P(A)

P(B)
= P(B | A)P(A)∑

A′∈U P(B | A′)P(A′)
.

This equation is also known as the equation on the probability of hypotheses because
it is possible to compute the probability of hypotheses (e.g., diseases), given the
knowledge about the probabilities with which the respective hypotheses (here: A)
lead to the events B ∈ U (e.g., symptoms).

22.1.1 RandomVariables and RandomVectors

Until now, we combined elements of the event space to make up events without
discussing a specific way how to determine the elements of an event A. Further, we
still lack the ability to specify properties of the elementary events. Let us assume
that the event space Ω be the set of all students at the University of Magdeburg. We
are interested in, say, the attributes Gender, Year, and Course. To assign values
to these attributes we use functions defined on Ω having a reasonable domain (e.g.,
{male, female} or {CS,Math,Econ, . . .}). The preimage of such a function is a
set of elementary events (e.g., the set of computer science students or all female
students). If these preimages constitute proper events (w.r.t. an underlying event
algebra) we will refer to these functions as random variables.
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Definition 22.6 ((Discrete) Random variable) A function X defined on an event
space Ω with domain dom(X) is called a random variable if the preimage of any
subset of its domain has a probability. A subset W ⊆ dom(X) has w.r.t. X the
following preimage:

X−1(W ) = {ω ∈ Ω | X(ω) ∈ W } abbr.= {X ∈ W }

Note that despite the name random variable and the traditional uppercase letter we
are dealing with a function here! In the remainder, we refer to the domain of any
function X (including random variables, of course) by dom(X). The concept of a
random variable can be generalized to sets of random variables.

Definition 22.7 (Random vector) Let X1, . . . ,Xn be random variables over the same
event space Ω and the same event algebra S . Then the vector X = (X1, . . . ,Xn) is
called a random vector.

We will use the following conjunctive interpretation for the computation of the prob-
ability of the value of a random vector. Simultaneously, we will introduce some
shorthand notations:

∀x ∈
n×

i=1

dom(Xi) : P(X = x)

≡ P(x)

≡ P(x1, . . . , xn)

≡ P(X1 = x1, . . . ,Xn = xn)

≡ P
( n∧
i=1

Xi = xi
)

:= P
( n⋂
i=1

{Xi = xi}
)

= P
(
X−1
1 (x1) ∩ · · · ∩ X−1

n (xn)
)

Given a set of random variables, we can consider the probabilities of all (domain)
value combinations a structured representation of the underlying probability space
and will refer to them as a probability distribution. We first define distributions for a
single random variable.

Definition 22.8 ((Probability) distribution) A random variable X with a finite or
countably infinite domain dom(X) is called discrete. The entirety pX of all pairs(

xi,P(X = xi)
)

with xi ∈ dom(X)

is called the (probability) distribution of the discrete random variable X. We use the
notation

pX(xi) = P(X = xi) for all xi ∈ dom(X).
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The generalization of this notion to sets of random variables is straightforward and
not given here.

Until now, we used vectors to represent higher dimensions (of random variables).
The (domain) value combinations thus were vectors, i.e., elements of the Cartesian
product of the domains of the respective random variables. In order to simplify nota-
tions later on, we need to do away with the implicit order that underlies a Cartesian
product. We choose to use tuples (instead of a vector) as functions on the set of
random variables. With this rationale, the order of the random variables becomes
irrelevant.

Definition 22.9 (Tuple) Let V = {A1, . . . ,An} be a finite set of random variables
with the respective domains dom(Ai), i = 1, . . . , n. An instantiation of the random
variables in V or a tuple over V is a mapping

tV : V →
⋃
A∈V

dom(A),

that satisfies the following condition:

∀A ∈ V : tV (A) ∈ dom(A).

The vector notation illustrates that the tuple assigns values to multiple random vari-
ables. A tuple that assigns a value to only a single random variable will be denoted in
its scalar form: t. The index V is dropped if the set V is clear from context. A tuple
over the set {A,B,C} of random variables which assigns to A the value a1, to B the
value b2, and to C the value c2, is denoted as

t = (A �→ a1,B �→ b2,C �→ c2),

or shorter (if one can infer the attribute from its value):

t = (a1, b2, c2)

For two tuples to be equal, theymust be declared on the same sets of randomvariables
and map to identical values:

tV = t′U ⇔ V = U ∧ ∀A ∈ V : t(A) = t′(A)

The domain of a tuple is restricted using a projection that is defined as follows:

Definition 22.10 (Projection (of a tuple)) Let tX be a tuple over a set X of random
variables and Y ⊆ X. Then projXY (tX) be the projection of tuple tX to Y . That is, the
mapping projXY (tX) assigns values only to elements of Y .

We, again, drop the index X if it is clear from context.
Up to now, we always considered all random variables for computation of proba-

bilities. If only fewer random variables are required, we marginalize (sum) over all
value combinations of the variables to be eliminated.
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Definition 22.11 (Marginalization, Marginal distribution) Let V = {X1, . . . ,Xn}
be a set of random variables over the same probability space and pV a probability
distribution over V . For any subset M ⊂ V the marginalization over M is defined
as the distribution pV \M that results when summing over all values of all random
variables in M, i.e., if the following holds:

∀x1 ∈ dom(X1) : · · · ∀xn ∈ dom(Xn) :
pV \M

( ∧
Xi∈V \M

Xi = xi
)

=
∑

∀Xj∈M:
∀xj∈dom(Xj )

pV
( ∧
Xj∈M

Xj = xj,
∧

Xi∈V \M
Xi = xi

)

For V \M = {X} pX is called the marginal distribution of X.

Using this definition, we can easily verify the values of the marginal distributions in
Table22.1:

P(G = m) = 0.5 P(Sm = sm) = 0.3
P(G = f) = 0.5 P(Sm = sm) = 0.7

P(Sm = sm,Pr = pr) = 0.01 P(Sm = r,Pr = pr) = 0.29
P(Sm = sm,Pr = pr) = 0.04 P(Sm = sm,Pr = pr) = 0.66

In the last paragraphs, we used the notion random variable and attribute interchange-
ably. Additional synonyms that we will use in the remainder, are random variable,
property, and dimension . Further, we will from now on only use probability state-
ments w.r.t. random variables; no directly specified events (as subsets of Ω) will be
used anymore. Therefore, we need to emphasize the difference between the proba-
bility statements: P(A) together with a specific event A ⊆ Ω stands for a specific
probability, i.e., P(A) ∈ [0, 1]. If the object A is a random variable (as it will be the
case from now on) the proposition P(A) represents an all-quantified statement over
all values of the domain of A. For two random variables A and B the equation

P(A | B) = P(A,B)

P(B)

is a shorthand notation for the following verbose statement:

∀a ∈ dom(A) : ∀b ∈ dom(B) : P(A = a | B = b) = P(A = a,B = b)

P(B = b)
.

Table 22.1 Example distribution with conditional independence

porig G = m G = f

Sm = sm Sm = sm Sm = sm Sm = sm

Pr = pr 0 0 0.01 0.04

Pr = pr 0.2 0.3 0.09 0.36
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22.1.2 Independences

In Chap.21, we motivated the decomposition of a high-dimensional distribution into
several lower dimensional distributions. The exploited property for that process is
the (conditional) independence between attributes. Let us start with the so-called
marginal (i.e., unconditional) independence. As the name suggests, we need a cri-
terion which tells that for two attributes A and B it is irrelevant for the probabilities
of A to know anything about B. Formally, the marginal probability distribution of A
shall not be any different from the conditional distribution of A given B:

Definition 22.12 (Independence of random variables) The random variable A is
(stochastically) independent of random variable B with 0 < P(B) < 1 if and only if

P(A | B) = P(A)

or, equivalently, if
P(A,B) = P(A) · P(B).

The last proposition is obtained by applying Definition 22.4 which was declared on
events to P(A | B) and resolve for P(A,B) where we use the implicitly all-quantified
version over all values of the attributes. Note that the (stochastic) independence is
symmetric, i.e., if A is (stochastically) independent of B, then B is (stochastically)
independent of A. The notion of (stochastic) independence is easily generalized to
more than two events:

Definition 22.13 (Full (stochastic) independence) Let U be a set of random vari-
ables. The random variables in U are fully (stochastically) independent, if the fol-
lowing holds:

∀V ⊆ U : P
( ⋂
A∈V

A
)

=
∏
A∈V

P(A).

As none of the probability statements had a condition, we refer to the above concept
as unconditional or marginal independence.

Table22.1 shows a three-dimensional example distribution over the Boolean
attributes Gender, Pregnant, and Smoker. The distribution after marginalizing
over the attribute Gender is depicted in Table22.2a. Marginalizing further to the
one-dimensional distributions forSmoker andPregnant, we can construct the two-
dimensional joint distribution via multiplication as depicted in Table22.2b. Even
though the values are close, both two-dimensional distributions over Smoker and
Pregnant (the original and the reconstructed one) are different. Hence, attributes
Smoker and Pregnant are not independent.

However, if we consider the columns for the values of attribute Gender in
Table22.1 separately and renormalize the probabilities to one, we arrive at the con-
ditional distributions as shown in Table22.2c and Table22.2d, respectively.

http://dx.doi.org/10.1007/978-1-4471-7296-3_21
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Table 22.2 Distributions to illustrate conditional independence of “Pregnant is conditionally
independent of Smoker given Gender”

Testing these distributions for independence reveals that in both cases the attributes
Pregnant and Smoker are independent. We observe an independence under the
condition that the value of the third attribute Gender is known. Hence, we refer
to this concept as conditional independence of Pregnant and Smoker given (the
condition) Gender.

The mathematical formulation results by inserting into the probability functions
of Definition 22.12 one or more additional conditions:

P(A | B,C) = P(A | C) ⇔ P(A,B | C) = P(A | C)P(B | C).

Note that the independence has to hold for all conditions, i.e., for all attribute values
of C, in order to conclude a conditional independence given C:

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
P(A = a,B = b | C = c) = P(A = a | C = c)P(B = b | C = c)

In the remainder we will use the generalized notion of conditional independence
which is extended to sets of attributes.

Definition 22.14 (Conditional independence of random variables)
Let X = {A1, . . . ,Ak}, Y = {B1, . . . ,Bl} and Z = {C1, . . . ,Cm} be three pairwise
disjoint sets of random variables. X and Y are conditionally independent given Z
(w.r.t. a given distribution p)—written as X ⊥⊥p Y | Z—if and only if the following
holds:

∀a1 ∈ dom(A1) : · · · ∀ak ∈ dom(Ak) :
∀b1 ∈ dom(B1) : · · · ∀bl ∈ dom(Bl) :

∀c1 ∈ dom(C1) : · · · ∀cm ∈ dom(Cm) :
P(A1 = a1, . . . ,Ak = ak | B1 = b1, . . . ,Bl = bl,C1 = c1, . . . ,Cm = cm)

= P(A1 = a1, . . . ,Ak = ak | C1 = c1, . . . ,Cm = cm).
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Or in shorthand notation:

P(A1, . . . ,Ak | B1, . . . ,Bl,C1, . . . ,Cm) = P(A1, . . . ,Ak | C1, . . . ,Cm).

22.2 GraphTheory

In order to represent Bayes and Markov networks, we will need directed, acyclic
graphs (short: DAGs) and undirected graphs. This section introduces the necessary
graph-theoretic notions.

22.2.1 Background

Definition 22.15 ((Simple) graph) A simple graph—in the remainder just referred to
as graph—is a tuple G = (V,E)where V = {A1, . . . ,An} is a finite set of n vertices
or nodes and E ⊆ (V × V ) \ {(A,A) | A ∈ V } is a set of edges.

Such a graph is called simple because no multiple edges or loops (edges from a node
to itself) are allowed.

Definition 22.16 (Directed edge) Let G = (V,E) be a simple graph.
An edge e = (A,B) ∈ E is called a directed edge if

(A,B) ∈ E ⇒ (B,A) /∈ E.

Such an edge point from A to B is denoted as A → B. The node A is called parent
node of B while B is called the child node of A.

Definition 22.17 (Undirected edge) Let G = (V,E) be a (simple) graph. Two
pairs (A,B) and (B,A) from E comprise a single undirected edge between nodes A
and B if

(A,B) ∈ E ⇒ (B,A) ∈ E.

We denote such an edge as A−B or B−A.

Definition 22.18 (Adjacency set) Let G = (V,E) be a graph. The set of nodes that
are reachable from a given node A is called adjacency set of A:

adj(A) = {B ∈ V | (A,B) ∈ E}

Definition 22.19 (Path) LetG = (V,E) be a graph.A seriesρ of r pairwise different
nodes

ρ = 〈
Ai1 , . . . ,Air

〉
is called a path from Ai to Aj if
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• Ai1 = Ai

• Air = Aj

• (Aik ,Aik+1) ∈ E or (Aik+1 ,Aik ) ∈ E, 1 ≤ k < r

The symmetric formulation of the last item allows paths that run against the edge
direction (which will be important later on). A path consisting only of undirected
edges is called undirected path and is denoted as

ρ = Ai1 − · · · − Air

while paths consisting only of directed edges that run exclusively in edge direction
are called directed paths and denoted as

ρ = Ai1 → · · · → Air .

Paths with only directed edges that also might run in opposite edge directed are
called mixed paths and are denoted according to the contained edges. The left graph
of Fig. 22.1 contains, e.g., the mixed path F ← D → G ← E. If two nodes A and B
are connected via a directed path ρ in a graph G we denote it as A �ρ

G
B. In case of

an undirected path, we write A �ρ

G
B.

A graph with only undirected edges is called undirected graph . A graph with only
directed edges is called directed graph . Note that the path Definition 22.19 allows
edges from the last node to the first one. In that case we call them cycles or circles
for directed or undirected graphs, respectively.

Definition 22.20 (Cycle) Let G = (V,E) be a directed graph. A path

ρ = X1 → · · · → Xk

with Xk → X1 ∈ E is called a cycle.

Definition 22.21 (Circle) Let G = (V,E) be an undirected graph. A path

ρ = X1 − · · · − Xk

with Xk − X1 ∈ E is called circle.

In Fig. 22.1, the path A−D−F−C is a cycle in the directed graph and a circle in the
undirected graph.

A B

C D E

F G

A B

C D E

F G

Fig. 22.1 The adjacency sets of node D w.r.t. the directed and undirected case are shaded in gray.
The closed path A−D−F−C represents a cycle and circle, respectively



476 22 Elements of Probability and Graph Theory

Definition 22.22 (Tree) An undirected graph inwhich any pair of nodes is connected
by exactly one path is called a tree.

Definition 22.23 (Minimum spanning tree) Let G = (V,E) be an undirected graph
and w a function assigning to each edge in E a weight:

w : E → R

A graph G ′ = (V,E′) is called minimum spanning tree if

• G ′ is a tree.
• E′ ⊆ E
• ∑

e∈E′
w(e) = min

That is, there is no other tree over all nodes V with a smaller edge weight sum. There
may be, however, multiple trees with equal minimal edge weight sums.

Along these lines maximal spanning trees can be defined: The sum of the edge
weights has then to be maximal. Two widely known algorithms for constructing
minimal or maximal spanning trees are:

• Kruskal algorithm (Kruskal 1956)
• Prim algorithm (Prim 1957)

We now introduce notions for directed graphs.

Definition 22.24 (Parent nodes, child nodes, family) Let G = (V,E) be a directed
graph and A ∈ V a node.

pa(A) = {B ∈ V | B → A ∈ E}.
Analogous, the set of child nodes of A is defined as

ch(A) = {B ∈ V | A → B ∈ E}.
The family of a node A consists of the node A itself together with its parent nodes:

fa(A) = {A} ∪ pa(A).

Definition 22.25 (Directed acyclic graph (DAG)) A directed graph G = (V,E) is
called acyclic if for each path X1 → · · · → Xk in G holds:

Xk → X1 /∈ E
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Definition 22.26 (Ancestors, Descendants, Nondescendants) Let G = (V,E) be a
directed acyclic graph and A ∈ V a node. In contrast to Definition 22.24 we require
acyclicity. Otherwise, nodes could be ancestors or descendants of themselves. The
set of ancestors of A is defined as

ancs(A) = {B ∈ V | ∃ρ : B �ρ

G
A}

The set of descendants of A is defined as

descs(A) = {B ∈ V | ∃ρ : A �ρ

G
B}

The set of nondescendants of node A is defined as

non−descs(A) = V \{A}\ descs(A)

Example 22.1 The left graph in Fig. 22.2 shows a directed acyclic graph (DAG)
together with the parents, children, and the family of node F. The right graph shows
the DAG together with the ancestors, descendants, and nondescendants of node F.
Table22.3 contains the ancestors, descendants, and nondescendants of all nodes of
the DAG in Fig. 22.2. �

Definition 22.27 ((Induced) subgraph) Let G = (V,E) be an undirected graph and
W ⊆ V a set of nodes. Then GW = (W,EW ) with

EW = {(u, v) ∈ E | u, v ∈ W }
is called subgraph of G induced by W .

A B

C D

E F G

H I J

K L

pa(F) = {C,D}
ch(F) = {J,K}
fa(F) = {C,D,F}

A B

C D

E F G

H I J

K L

ancs(F) = {A,B,C,D}
descs(F) = {J,K,L,M}

non-descs(F) = {A,B,C,D,E,G,H}

Fig. 22.2 Node relations in directed graphs
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Table 22.3 Properties of the example graph in Fig. 22.2

Ancestors Descendants Nondescendants

A ∅ {C,E,F, J,K,L,M} {B,D,G,H}
B ∅ {C,D,E,F, J,K,L,M} {A,G,H}
C {A,B} {E,F, J,K,L,M} {A,B,D,G,H}
D {B} {F, J,K,L,M} {A,B,C,E,G,H}
E {A,B,C} ∅ {A,B,C,D,F,G,H, J,K,L,M}
F {A,B,C,D} {J,K,L,M} {A,B,C,D,E,G,H}
G ∅ {K,M} {A,B,C,D,E,F,H, J,L}
H ∅ {L} {A,B,C,D,E,F,G, J,K,M}
J {A,B,C,D,F} {L} {A,B,C,D,E,F,G,H,K,M}
K {A,B,C,D,F,G} {M} {A,B,C,D,E,F,G,H, J,L}
L {A,B,C,D,F,H, J} ∅ {A,B,C,D,E,F,G,H, J,K,M}
M {A,B,C,D,F,G,K} ∅ {A,B,C,D,E,F,G,H, J,K,L}

Definition 22.28 (Minimal ancestral graph) Let G = (V,E) be a directed acyclic
graph and M ⊆ V a set of nodes. The smallest subgraph of G that contains all
ancestors of all nodes of M is called minimal ancestral graph. That is, it is the
subgraph of G induced by the following set:

M ∪
⋃
A∈M

ancs(A)

Definition 22.29 (Moral graph, Moralization) LetG = (V,E) be a directed acyclic
graph. Its moral graph G ′ is an undirected graph with the same node set that is
obtained by first adding (arbitrarily directed) edges between unconnected parent
nodes of all families and then replacing all edges by undirected ones. This transfor-
mation is known as moralization.

This notion goes back to Lauritzen and Spiegelhalter (1988). The intuition being that
“unmarried” parents of a common child node are “married”. This rather conserva-
tive naming is unfortunate as child nodes may have more than two parents that by
definition have to be married to each other. The notion, however, caught on.

Example 22.2 (Moralized minimal ancestral graph) We first consider the minimal
ancestral graph induced by the node set {E,F,G} in Fig. 22.2. It is drawn black in
Fig. 22.3. The dropped descendants of the nodes of the inducing set are drawn in gray.
This graph shall now be moralized: All unconnected parents have to be connected
after which all edge directions are dropped. This applies to the parents {C,D} of
node F and parents {A,B} of node C. Note that in case of more than two parents, all
possible parent pairs have to be connected! Fig. 22.4 illustrates this. The edge A−D
must not be overlooked here. �
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H I J

K L

A B

C D

E F G

Fig. 22.3 Moral graph of the minimal ancestral graph induced from Fig.22.2 by the node set
{E,F,G}. Edges inserted during moralization are drawn dashed

A B

C D

A B

C D

A B
C

D

Fig. 22.4 All pairs of parents have to be connected by an edge during moralization. It might be
helpful to change the graph layout to observe all missing edges more easily. The edge A−D may
be overlooked in the left graph. An equivalent graph is shown on the right which clearly shows all
needed edges for moralization

Definition 22.30 (Complete graph) An undirected graph G = (V,E) is called com-
plete if and only if each pair of (different) nodes from V is connected by an edge.

Definition 22.31 (Complete set, Clique) Let G = (V,E) be an undirected graph.
A set W ⊆ V is called complete if and only if it induces a complete subgraph.
Additionally, W is called a clique if and only if it is maximal, i.e., if it is impossible
to add a node to W without violating the completeness.

We will later apply the notion of a clique to subgraphs. We then refer to the node set
of the respective subgraph.

Example 22.3 (Cliques) The three graphs in Fig. 22.5 contain the following cliques:

left: {A,B,C,D} and {B,D,E}
middle: {A,B,C} and {B,E}
right: {A,B,C,D}



480 22 Elements of Probability and Graph Theory

A B

C D

E

Incomplete graph

A B

C

E

Induced subgraph (W,EW )
withW = {A,B,C,E}

A B

C D

Complete (sub)graph

Fig. 22.5 Induction of two subgraphs from the left graph

In a tree (e.g., the graph in Fig. 22.2 without edge (B,C) andwithout edge directions)
each edge represents a clique. �

Definition 22.32 (Ordering) Let G = (V,E) be an (arbitrary) graph and α a bijec-
tive function with

α : V → {1, . . . , |V |}.
Then α is called an ordering.

Definition 22.33 (Topological ordering) Let α be an ordering on a directed acyclic
graph G = (V,E). α is called a topological ordering if

∀A ∈ V : ∀B ∈ descs(A) : α(A) < α(B).

A directed acyclic graph may have multiple topological orderings.

Definition 22.34 (Perfect ordering) Let G = (V,E) be an undirected graph with
n nodes and a total ordering α = 〈v1, . . . , vn〉 on V . α is called perfect if the sets

adj(vi) ∩ {v1, . . . , vi−1}, i = 1, . . . , n

are complete.

An undirected graph can have multiple perfect orderings or none at all.
Figure22.6 depicts an undirected graph and a node ordering α that is perfect w.r.t.

the graph. The table shows the perfectness criterion for each node. The intersections
on the right side show that for each step the criterion fromDefinition 22.34 is satisfied:
the two-element sets correspond to edges that are contained in the graph. All single-
element sets are nodes and thus trivially complete.

Definition 22.35 (Chord of a circle) A chord of a circle is an edge between two
nodes of the circle which is not contained in the circle itself.

The circle B−D−F−H−E of the graph in Fig. 22.6 has two chords:D−E and F−E.
Obviously, only circles of length greater than tree can have chords.
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A B

C D E

F G H

1 6

2 3 5

8 4 7

i adj(vi)∩{v1, . . . ,vi−1}
1 {C}∩ /0 /0=
2 {A,D,F}∩{A} = {A}
3 {C,B,E,F}∩{A,C} = {C}
4 {G,C,D,E,H}∩{A,C,D} = {C,D}
5 {B,D,F,H}∩{A,C,D,F} = {D,F}
6 {D,E}∩{A,C,D,F,E} = {D,E}
7 {F,E}∩{A,C,D,F,E,B} = {F,E}
8 {F}∩{A,C,D,F,E,B,H} = {F}

Fig. 22.6 α is a perfect ordering

Chords subdivide larger circles into smaller ones. It will be beneficial in the later
sections not to have chordless circles with more than three nodes.

Definition 22.36 (Triangulated graph) An undirected graph is called triangulated
if and only if every simple circle (i.e., a path with its nodes occurring at most once
(except for the start/end node, of course)) with more than three nodes has a chord.

Note that a triangulated graph not necessarily needs to consist solely of triangles. For
example, the graph in the center of Fig. 22.5 is triangulated: the edgeC−E need not be
inserted. Contrary, not every graph that consists of triangles is also triangulated: The
top part of Fig. 22.7 depicts an obvious triangulation. The same insertion, however,
must also be applied in the bottom part. The circle A−B−E−C has no chord in both
scenarios.

Fig. 22.7 Top: triangulation
is achieved by insertion of
edge B−C (or A−D).
Bottom: graph is not
triangulated as can be seen
easier in the alternative
drawing

A

B C

D

not triangulated

→

A

B C

D

triangulated

A

B C

D

E

not triangulated

=

A

B C

D

E

no chord in A−B−E −C
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Fig. 22.8 Example of a
maximum cardinality search
starting with node A.
Number 3 can be assigned to
nodes D or F, for number 6
we have the choice between
nodes H and B

A B

C D E

F G H

Definition 22.37 (Maximum cardinality search (MCS)) Let G = (V,E) be an undi-
rected graph. A node ordering α by maximum cardinality search is constructed as
follows:

1. Choose an arbitrary start node from V and assign it number 1.
2. Assign the next higher order number to the node that is adjacent to the largest

number of already numbered nodes.

Obviously, MCS is not unique. Figure22.8 shows an example. Node A gets assigned
number 1, node C then has to follow with number 2 as it is the only neighbor.
For number 3, we have the choice of nodes D and F because both are adjacent to
one already numbered node (C). Let us choose D as the third node which leads
immediately to node F with number 4 as it is the only one that is now connected to
two already numbered nodes (C and D). The same arguments lead to number 5 of
node E. For number 6, we again have two choices: nodes B or H. Setting α(B) = 6
leads to α(H) = 7 and finally to α(G) = 8.

22.2.2 Join Graphs

The (undirected) graph concept discussed so far provided an algebraic structure to
describe the relations amongst single objects (nodes). It is a relation in the algebraic
sense, because the edge set is a subset of V × V . The relations coincide with the
edges. We now want to extend this concept to relations between sets of nodes and
introduce so-called join graphs (or cluster graphs). Since we only define notions
that we need later on, we refrain from an exhaustive introduction of the matter. For
more details, the reader is referred to Castillo et al. (1997). Instead allowing arbitrary
subsets of V to be the new nodes, we restrict them to be cliques of a graph.

Definition 22.38 (Join graph) Let G = (V,E) be an undirected graph and C =
{C1, . . . ,Cp} its cliques. G ′ = (C ,E′) is called a join graph if E′ only contains
edges between non-disjoint nodes, i.e., if holds:

(Ci,Cj) ∈ E′ ⇒ Ci ∩ Cj 
= ∅



22.2 Graph Theory 483

A B

C D E

F G H

AC BD

CDG

GF EGH

BE

Fig. 22.9 Corresponding join graph of an undirected graph for which there is no join tree. If we
delete, e.g., the two dashed edges to form a tree, the RIP will not be satisfied: The marked path
from BD to BE does not contain the attribute B. It is not possible here to achieve the RIP by deleting
any other edges

Given an undirected graph, we can easily derive its associated join graph: After
identifying all cliques we connect them by an edge if their intersection is nonempty.
Figure22.9 shows an example. The undirected graph on the left contains six cliques:
{A,C}, {C,D,F}, {B,D}, {B,E}, {G,F}, and {E,F,H}. These form the nodes of the
join graph depicted on the right. The seven edges follow from the mutual intersection
conditions.

Wewill later use join graphs to propagate evidence about certain attributes (which
coincide with the nodes in V , obviously) to all other attributes. The underlying
algorithm will, however, require a special form of a join graph. First, it must be
guaranteed that information is transferred from clique to clique across a unique path.
And second, any change of an attribute contained in a clique must be transferable
to any other clique containing that attribute. The first requirement can be achieved
using so-called join trees, i.e., join graphs with tree structure. Since in a tree there is
exactly one path between any two nodes, this will be the unique path for the evidence
propagation. The second requirement can be formulated as follows: If two cliques
share some attributes (i.e., have a nonempty intersection), then these attributes must
be contained in each clique of the path connecting the two cliques. In that way, no
“gaps” on the path will block the evidence propagation. This latter property is known
as the so-called running intersection property.

Definition 22.39 (Running intersection property (RIP)) LetG = (V,E) be an undi-
rected graph with r cliques. An ordering of these cliques has running intersection
property if for each j > 1 there exists an i < j for which the condition

Cj ∩ (C1 ∪ · · · ∪ Cj−1) ⊆ Ci

holds.

Before illustrating the running intersection property, we need to introduce the notion
of a join tree.

Definition 22.40 (Join tree) A join graph with tree structure whose cliques satisfy
the running intersection property, is called a join tree.
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Table 22.4 The clique
ordering C1, . . . ,C6 of the
graph in Fig. 22.10 has RIP

Fig. 22.10 Corresponding
join graph of an undirected,
triangulated graph

A B

C D E

F G H

C1

C2 C3

C4

C5C6

AC BDE

CDG DEG

GF EGH

C1 C4

C2 C3

C6 C5

Let us discuss the RIPwith an example. Consider the graph in Fig. 22.10. Ordering
the cliques ascendingly w.r.t. their index will yield an ordering satisfying RIP which
can be validated in Table22.4. This allows us to use the RIP to construct the tree: For
each clique we immediately know that there is at least one preceding clique with at
least one common attribute. Therefore, each clique (except the first one, of course)
has a neighbor candidate. We do not need to worry about circles as we only consider
preceding cliques (w.r.t. the ordering). Hence we can use the following scheme to
form a join tree: Starting with the last clique of the ordering (that satisfies the RIP),
we connect it to that preceding clique that shares the largest number of attributes. Ties
are resolved arbitrarily. Figure22.10 shows a possible join tree which was created
as follows:

1. Starting with the last clique C6 of the ordering, we look for preceding cliques
satisfying the RIP (see also Table22.4). There are three candidates: C5, C3, and
C2. All three have an equally large (single-element) intersection {F} with C6. We
(arbitrarily) choose a clique to be the neighbor in the join tree: C5.

2. C5 forms the largest intersection {E,F} with C3 and hence is connected to it.
3. C4 also forms the largest intersection {D,E} with C3 and is connected to it.
4. CliqueC3 forms a nonempty intersection with onlyC2 and is therefore connected

to that clique.
5. C2 is connected trivially to C1 as it is the last remaining clique with nonempty

intersection.

The created join tree is shown on the right of Fig. 22.10 by the bold edges.
To create a tree structure from a given join graph is rather simple as only some

edges need to be deleted. The question ariseswhether theRIP can always be achieved.
This is not the case as it can be seen from Fig. 22.9. Two edges need to be deleted to
arrive at a tree structure. However, none of the two resulting trees satisfies the RIP.



22.2 Graph Theory 485

Table 22.5 Generating a
clique ordering with RIP from
a perfect node ordering α of
Fig. 22.6

If we delete, e.g., the edges CDF−EFH and BD−BE, the cliques BD and BE both
contain the attribute B but this does not hold for the cliques on their connecting path.

The questionwhether there is a structural property of a join graph (or its underlying
undirected graph) that guarantees the existence of a corresponding join tree was
positively answered in Jensen (1988): An undirected graph G has a join tree if and
only if G is triangulated. Unfortunately, the definition of the RIP is not constructive,
i.e., it gives us a criterion to test a given clique ordering for RIP but it does not
produce an algorithm to find such a clique ordering.We exploit the following relation
to solve the problem: If an undirected graph has a perfect ordering and if we order
its cliques ascendingly w.r.t. the largest perfect number of its contained attributes,
then the resulting clique ordering will satisfy the RIP. The clique ordering from
Table22.4 was generated from the perfect ordering in Fig. 22.6. Table22.5 illustrates
the assignment.

We just reduced the problem of finding an appropriate clique ordering to the
problem of finding a perfect node ordering, which might seem little beneficial at
first sight since there exist more nodes than cliques. The objective thus is to find a
perfect ordering on the nodes of an undirected graph. For that task, the following
relationship is helpful: The nodes of an undirected graph have at least one perfect
ordering if and only if the graph is triangulated.

The last building block in this chain is the construction of such a perfect order-
ing. We exploit the following statement: A node ordering induced by a maximum
cardinality search on a triangulated graph is perfect. Let us summarize this chain of
reasoning:

1. Undirected, triangulated graph G=(V,E)

2. Node ordering induced by MCS on V is perfect
3. Clique ordering w.r.t. largest perfect node number has RIP
4. Construct join tree using RIP

22.2.3 Separations

One objective of graphical models is to capture as many (conditional) independences
of a high-dimensional probability distribution as possible in an undirected or directed
graph in order to infer probabilistic statements solely by exploiting graph-theoretic
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criteria. The fact that there exist certain (conditional) independences amongst a set of
attributes shall be represented by means of separation criteria of the corresponding
nodes inside a graph. We will discuss such separation criteria for both directed and
undirected graphs.

Let us begin with an undirected graph G = (V,E) and three mutually disjoint
node subsets X, Y , and Z . The set Z shall u-separate X and Y (the u stands for
undirected) if and only if each path from a node in X to a node in Y is blocked. A
path is blocked if and only if it contains a blocking node. And, finally, a node is
blocking if and only if it is contained in Z . This somewhat artificial definition of
u-separation will help us later to define the corresponding concept of d-separation
for directed graphs.

Definition 22.41 (u-separation) Let G = (V,E) be an undirected graph and X, Y ,
and Z three disjoint subsets of V . The setsX and Y are u-separated by Z inG, written
X ⊥⊥G Y | Z , if and only if each path from a node in X to a node in Y contains at
least one node of Z . A path that contains at least one node of Z is called blocked,
otherwise it is active.

Let us consider an example in Fig. 22.11. The set Z = {E,F} separates the node sets
{A,B,C,D} and {G,H, J} since all paths from the one set to the other are running
through Z as is shown exemplary with path A−B−E−G−H.

An alternative but equivalent way to test for u-separation is as follows: the nodes
(and all adjacent edges) of set Z are deleted from the graph. If no path is left that
connects the sets X and Y , we can conclude the u-separation of them by the set Z .
Figure22.12 illustrates this with the example taken from Fig. 22.11. Because of
semantic reasons discussed later, for directed graphs we have to take the edge direc-
tions into account when deciding whether a path is blocked or not. From now on, we
will consider mixed paths, i.e., paths that might run against edge directions. Again,
let X, Y , and Z be three disjoint subsets of nodes of a directed graph. We use the

Fig. 22.11 The node sets
{A,B,C,D} and {G,H, J}
are u-separated by {E,F}.
The emphasized path
A−B−E−G−H is blocked
by node E

A B

C D
F

G

H

I

E

X Z Y

Fig. 22.12 After deleting
the nodes of set Z from the
graph there is no path left
from X to Y : both sets are
u-separated by Z

E

F

A B

C D

G

H

I

X Z Y
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same reasoning as above for u-separation, only the blocking criteria are modified
for the directed case. Again, the sets X and Y are d-separated by Z (the d stands for
directed) if and only if each path from a node in X to a node in Y is blocked (by Z).
A path is blocked if and only if it contains at least one blocking node. A node is
blocking if its edge directions along the path are

• serial or diverging and the node itself lies in Z , or
• converging and neither the node itself nor any of its descendants lies in Z .

The four possible edge directions at a node are grouped as follows:

serial

serial

diverging converging

The type of a node (i.e., serial, converging or diverging) depends on the path in which
it is contained. In Fig. 22.13 the node E is serial w.r.t. the path C → E → G while
it is converging w.r.t. the path C → E ← D. The same node is finally diverging in
the path F ← E → G.

Definition 22.42 (d-separation) LetG = (V,E) be a directed graph andX, Y , and Z
three disjoint subsets of V .X and Y are d-separated by Z inG, writtenX ⊥⊥G Y | Z ,
if and only if there is no path froma node inX to a node inY alongwhich the following
criteria are satisfied:

1. Every node with converging edges (along the path) is Z or has a descendant in Z .
2. Every other node is not in Z .

A path satisfying both above criteria is called active, else blocked (by Z).

Note the two equivalent but mutually negated definitions of d-separation. The first
description defines the blockade of a path and requires for a d-separation every path
to be blocked. The second description defines d-separation as the absence of any
active path. We mentioned both versions here as both are found in literature.

Let us consider some examples. In the following figures, the sets X and Y will be
shaded light and medium gray, while Z will be drawn in dark gray.

Fig. 22.13 Node E blocks
the only path from A to D:
A ⊥⊥G D | ∅ A

B D

F

G

H

I

C

E

X

Y

Z = /0
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Example 22.4 In Fig. 22.13 bothX and Y contain just one node and Z is empty. Since
we deal with a tree, only the path A → C → E ← D needs to be checked.

• C is a serial node in the path and not in Z . It is therefore nonblocking.
• E is a converging node in the path and not in Z . Also, none of its descendants F,
H, G, and J is in Z . Thus, E is blocking.

The existence of one blocking node is sufficient for the blockade of the entire path.
Hence we can conclude A ⊥⊥G D | ∅. �

Example 22.5 In contrast to the Example 22.4, the set Z now contains the node E.
Figure22.14 depicts this situation. Again, only the path A → C → E ← D needs
to be checked.

• C is a serial node in the path and not in Z . Therefore, it is nonblocking.
• E is a converging node in the path and contained in Z . Thus, it is nonblocking as
well.

All nodes of the only path are nonblocking which renders the path active. Hence, A
and D are not d-separated and therefore A ⊥
⊥G D | E. �

Example 22.6 Instead of node E we now add one of its descendants to the set Z , see
Fig. 22.15. Again, only the path A → C → E ← D needs to be checked.

• C is a serial node in the path and not in Z . Therefore, it is nonblocking.
• E is a converging node in the path but not in Z . However, one of its descendants,
namely J , is in Z . Hence, E is nonblocking.

Fig. 22.14 The path from A
to E is active because of
E ∈ Z: A ⊥
⊥G D | E A

B D

F

G

H

I

C

E

X

Y

Z

Fig. 22.15 J activates the
path from A to D:
A ⊥
⊥G D | J A

B D

F

G

H

I

C

E

X

Y

Z



22.2 Graph Theory 489

Fig. 22.16 Graph for
Example 22.7

A B C

E F G

H I J

K

M

D

L

All nodes of the only path are nonblocking which renders the path active. A and D
are not d-separated by J . Therefore, A ⊥
⊥G D | J . �

Example 22.7 Let us consider Fig. 22.16 as an example with more than one path
between the (still single-element) sets X = {D} and Y = {L}. We will successively
add nodes to the set Z to check different scenarios. Following paths exist between
the nodes D and L:

1. D → H → K ← I → L
2. D ← B → E → I → L
3. D ← B → E ← C → F → J → L

• Z = ∅

Path 1: blocked K,M /∈ Z
Path 2: active B,E, I /∈ Z ⇒ D ⊥
⊥G L | ∅
Path 3: blocked E, I /∈ Z

• Z = {E}

Path 1: blocked K,M /∈ Z
Path 2: blocked E ∈ Z ⇒ D ⊥
⊥G L | E
Path 3: active E ∈ Z

• Z = {E, J}

Path 1: blocked K,M /∈ Z
Path 2: blocked E ∈ Z ⇒ D ⊥⊥G L | E, J
Path 3: blocked J ∈ Z

�
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Note thatu-separation (in contrast tod-separation) ismonotonic. If a setZ u-separates
two node sets X and Y , then X and Y are also u-separated by all supersets of Z .
Formally, we have

X ⊥⊥ Y | Z ⇒ X ⊥⊥ Y | Z ∪ W, (22.1)

where W is a fourth disjoint node set. This is immediately clear as paths can only
be blocked by nodes in Z . Adding more nodes to Z may block further paths but it
can never activate a blocked path. This is completely different to d-separation where
adding nodes to Z may indeed activate a path and thus render previously d-separated
sets X and Y connected. In Example 22.7 the set Z = {E, J} d-separates the nodesD
andL. Ifwe added the nodeK toZ , itwould activate the pathD → H → K ← I → L
and thus prevents the d-separation of D and L:

D ⊥⊥ L | E, J but D ⊥
⊥ L | E, J,K .

Also, u-separation and d-separation have different expressiveness. Consider the undi-
rected graph in Fig. 22.17. Via u-separation we can easily conclude the following
separations:

A ⊥⊥ C | B,D and B ⊥⊥ D | A,C.

However, there exists no directed graph encoding exactly the same separations. We
need to require an exact match here to prevent any additional separations. Otherwise,
an edgeless graph would encode all possible separations and thus also both above-
mentioned ones. If we directed the edges starting at A via B and D to C, we would
actually get the separation A ⊥⊥ C | B,D, but this would imply B ⊥
⊥ D | A,C
because C would be a converging node which activates the path D → C ← B.

Likewise, there is not necessarily for every directed graph an equivalent undirected
one (w.r.t. the encoded separations) as illustrated on the right of Fig. 22.17. It encodes
the d-separation

A ⊥⊥ B | ∅.

Again,we cannot represent this separation in an undirected graphwithout introducing
new separations (which are not valid in the directed graph).

Finally, we recall the running intersection property (RIP) which defines two other
important node sets:

Definition 22.43 (Residual set, Separator set) Let C1, . . . ,Cn be a clique ordering
satisfying the RIP. The sets

Si = Ci ∩ (C1 ∪ · · · ∪ Ci−1), i = 1, . . . , n, S1 = ∅

A B

C D

A B

C

Fig.22.17 Undirected graph without equivalent directed graph and directed graph without equiv-
alent undirected graph
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Ci Ri Si
C1 {A,C}
C2 {D,F} {C}
C3 {E} {D,F}
C4 {B} {D,E}
C5 {H} {E,F}
C6 {G} {F}

D,F ⊥⊥G A |C
E ⊥⊥G A,C | D,F
B ⊥⊥G A,C,F | D,E
H ⊥⊥G A,B,C,D | E,F
G ⊥⊥G A,B,C,D,E,H | F

/0

Fig. 22.18 Residual and separator sets of the graph in Fig. 22.10 together with the encoded u-
separations

are called separator sets and the sets

Ri = Ci\Si, i = 1, . . . , n

are called residual sets.

With these definitions together with the RIP we can easily conclude the following
separation criteria inside join graphs:

Ri ⊥⊥ (R1 ∪ · · · ∪ Ri−1)\Si | Si, i = 2, . . . , n (22.2)

Example 22.8 Let us clarify these conceptswith thegraphs inFig. 22.10. Figure22.18
lists all residual and separator sets of all cliques. The u-separations that are derivable
via Eq.22.2 are given as well. �
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23Decompositions

The objective of this chapter is to connect the concepts of conditional independence
with the separation in graphs.Both canbe represented by a ternary relation (· ⊥⊥ · | ·)
on either the set of attributes or nodes and it seems to be promising to investigate how
to represent the probabilistic properties of a distribution by the means of a graph.
The idea then is to use only graph-theoretic criteria (separations) to draw inferences
about (conditional) independences because it is them what enables us to decompose
a high-dimensional distribution and propagate evidence.

We first introduce an axiomatic approach to the concept of conditional indepen-
dence (or separation) that goes back to Dawid (1979) and Pearl and Paz (1987). With
these axioms, we can syntactically derive new separations or independences from a
given set without checking for graph-theoretic nor probabilistic conditions.

Definition 23.1 (Semi-graphoid and Graphoid Axioms)
Let V be a set of (mathematical) objects and (· ⊥⊥ · | ·) a ternary relation of subsets
of V . Furthermore, let W , X , Y , and Z be four disjoint subsets of V . The four
statements

(a) symmetry: (X ⊥⊥ Y | Z) ⇒ (Y ⊥⊥ X | Z)

(b) decomposition: (W ∪ X ⊥⊥ Y | Z) ⇒ (W ⊥⊥ Y | Z) ∧ (X ⊥⊥ Y | Z)

(c) weak union: (W ∪ X ⊥⊥ Y | Z) ⇒ (X ⊥⊥ Y | Z ∪ W )

(d) contraction: (X ⊥⊥ Y | Z ∪ W ) ∧ (W ⊥⊥ Y | Z) ⇒ (W ∪ X ⊥⊥ Y | Z)

are called the semi-graphoid axioms. A ternary relation (· ⊥⊥ · | ·) that satisfies the
semi-graphoid axioms for all W , X , Y , and Z is called a semi-graphoid. The above
four statements together with

(e) intersection: (W ⊥⊥ Y | Z ∪ X) ∧ (X ⊥⊥ Y | Z ∪ W ) ⇒ (W ∪ X ⊥⊥ Y | Z)

493
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Fig. 23.1 Illustration of the graphoid axioms and separation in graphs

are called the graphoid axioms. A ternary relation (· ⊥⊥ · | ·) that satisfies the
graphoid axioms for all W , X , Y and Z is called a graphoid.

The axioms (b) to (e) are illustrated in Fig. 23.1.
If we talk about setsI of independence or separation statements, we refer to the

same structures in an algebraic way—only the origin is different.

Definition 23.2 Let V = {A1, . . . , An} be a set of attributes. Furthermore, let p
be a distribution over the attributes V . Then Ip ⊆ 2V × 2V × 2V be the set of all
(conditional) independence statements that are valid in p.

Definition 23.3 Let V = {A1, . . . , An} be as set of nodes. Furthermore, let G be an
undirected graph with node set V . Then IG be the set of all separation statements
that can be read from G via u-separation.

Definition 23.4 Let V = {A1, . . . , An} be a set of nodes. Furthermore, let G be
a directed acyclic graph with node set V . Then IG be the set of all separation
statements that can be read from G via d-separation.

Given a set of axioms A , we can syntactically derive from a set I of conditional
independence statements additional statements. If a statement I can be derived from
I by application of A we write

I �A I.

If a conditional independence statement follows semantically (w.r.t. an underlying
theory T ) from a set I of statements we denote this with

I |=T I.

In our case the theories T refer to the probability theory, d- and u-separation. The
semantic deducibility of a conditional independence I from a set of independence
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Table 23.1 Summary of soundness and completeness of the (semi-)graphoid axioms w.r.t. four
different independence and separation criteria

∗Conjectured in Pearl (1988), refuted in Studney (1989,1990)
†If weak union is replaced by two other axioms Pearl and Paz (1987), the resulting axiom set is
sound and complete
‡Counterexample in Borgelt et al. (2009, [p. 102])

statementsI then it means that I is valid in all distributions in which all statements
of I are valid:

I |=P I ⇔ ∀p : I ⊆ Ip ⇒ I ∈ Ip

The semantic deducibility for graphs is defined in an analogous way.
For every system of axioms it needs to be answered whether the deductions are

sound and complete. That is, whether each deducible statement is correct w.r.t. the
theory T and whether all statements that can be inferred fromI via theory T can
also be deduced by applying the axioms.

I �A I ⇒ I |=T I (Soundness)
I |=T I ⇒ I �A I (Completeness)

After these theoretical considerations we turn to specific answers w.r.t. conditional
independence and both separation criteria.

Theorem 23.1 Conditional stochastic independence satisfies the semi-graphoid
axioms. For strictly positive probability distributions it satisfies the graphoid axioms.

Theorem 23.2 Both u-separation and d-separation satisfy the graphoid axioms.

Both theorems obviously contain soundness statements: the semi-graphoid axioms
are sound for arbitrary probability distributions whereas the graphoid axioms are
sound for strictly positive probability distributions, d- and u-separation. The axioms
are, however, not complete in general (Studney 1989,1990). Table23.1 summarizes
these facts.

We observed that both u- and d-separation satisfy the same axioms as the notion
of conditional independence (of a strictly positive probability distribution). The idea
suggests itself to use a (directed or undirected) graph to encode the conditional inde-
pendence statements that hold in a given distribution such that deducible separations
directly correspond to valid conditional independence statements.

Unfortunately, there is in general no isomorphism of both notion (that is, between
the conditional independence and one of the separations). One reason for that is that
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u-separation satisfies stronger axioms than the graphoid axioms. As an example,
consider the discrepancy between the (semi-)graphoid axiom of weak union and the
monotonicity of the u-separation: On the one hand, the Eq.22.1 on p. 490 resembles
the weak union axiom with the difference that the node set W does not have to be
u-separated beforehand. The Eq.22.1 is also called strong union axiom Pearl and Paz
(1987). On the other hand, the conditional independence in general only satisfies the
semi-graphoid axioms (see Theorem 23.1). That is, applying the intersection axiom
can already lead to incorrect results as the following example illustrates:

Example 23.1 (Cond. indep. does not satisfy intersection axiom in general)
We consider the following (not strictly positive) three-dimensional probability dis-
tribution over the binary attributes A, B and C with P(A = a1, B = b1,C = c1) =
P(A = a2, B = b2,C = c2) = 0.5 (all other value combinations have probability
zero). In this distribution, the following conditional independences hold:

A ⊥⊥ B | C, A ⊥⊥ C | B and B ⊥⊥ C | A.

This can be easily seen as follows: The left table shows the distribution pABC while
the other two show the conditional distributions given the attribute C . Both distrib-
utions also show the marginal distributions pA|C and pB|C .

c1 c2pABC
a1 a2 a1 a2

b1 1/2 0 0 0
b2 0 0 0 1/2

pAB|c1 a1 a2
b1 1 0 1
b2 0 0 0

1 0

pAB|c2 a1 a2
b1 0 0 0
b2 0 1 1

0 1

Obviously, the following relationship holds which corresponds to the above condi-
tional independences:

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
P(A = a, B = b | C = c) = P(A = a | C = c) · P(B = b | C = c)

Applying the intersection axiom (with Z = ∅) to the above independences results in

W X Y Inference

{A} {C} {B} AC ⊥⊥ B | ∅
{A} {B} {C} AB ⊥⊥ C | ∅
{B} {C} {A} BC ⊥⊥ A | ∅

pAB a1 a2
b1 1/2 0 1/2
b2 0 1/2

1/2
1/2

1/2

p′
AB a1 a2
b1 1/4

1/4
1/2

b2 1/4
1/4

1/2
1/2

1/2

Applying the decomposition axiom on the previous independences, we finally arrive
at the following statements:

A ⊥⊥ B | ∅, B ⊥⊥ C | ∅ and C ⊥⊥ A | ∅.

None of these three (here: marginal) independences holds true in pABC as can be
easily verified: The distribution pAB cannot be reconstructed from the two marginal
distributions pA and pB as the comparison between pAB and p′

AB shows. The same
holds also for the other attribute combinations.

http://dx.doi.org/10.1007/978-1-4471-7296-3_22
http://dx.doi.org/10.1007/978-1-4471-7296-3_22
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Since we cannot rely on isomorphism between the separation and independence
concepts, we will have to confine ourselves to weaker statements. For that, we first
consider the following definitions.

Definition 23.5 (Dependence, Independence, and Perfect Map)
Let (· ⊥⊥p · | ·) be a ternary relation representing the conditional independences
of a given distribution p over the attribute set V . An undirected (directed) graph
G = (V, E) is called conditional dependence graph or dependence map w.r.t. p if
and only if for all disjoint subsets X, Y, Z ⊂ V the implication

X ⊥⊥p Y | Z ⇒ X ⊥⊥G Y | Z
holds. That is, if G describes via u-separation (d-separation) all conditional inde-
pendences of p and thus describes only sound dependences.

An undirected (directed) graph G = (V, E) is called conditional independence
graph or independence mapw.r.t. p if and only if for all disjoint subsets X, Y, Z ⊂ V
the implication

X ⊥⊥G Y | Z ⇒ X ⊥⊥p Y | Z
holds. That is, if G describes via u-separation (d-separation) only those conditional
independences that are valid in p. G is called a perfect map of the conditional
(in)dependences in p if and only if it is both a dependence map and an independence
map.

A dependence graph represents all conditional independences that are valid in the
distribution p but may contain additional ones that are not valid in p. An indepen-
dence graph, however, encodes only those conditional independences that are valid
in p but maybe not all of them. Figure23.2 illustrates these relationships.

We saw inChap.21 thatwe can decompose a distribution by exploiting conditional
independences. Consequently, me must make sure that no independence can be read
from the graph that is not valid inside the distribution. Since we cannot hope for
perfectmaps in general, wewill confine ourselves to independencemaps.Wemay not
be able to derive all valid independences from them (and, hence, the decomposition
might not be as efficient as it could be) but we can be sure that we do not derive
invalid independences (w.r.t. the distribution) and thus that the decomposition will
be correct.

Fig.23.2 Relationships between deducibility of conditional independences in different map types

http://dx.doi.org/10.1007/978-1-4471-7296-3_21
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Note that any isolated graphG = (V,∅)which consists only of unconnectednodes
constitutes a trivial dependence map. Such a graph encodes all possible conditional
and marginal independences amongst the attributes in V and thus, obviously, also
those contained in any distribution (over V ). Put differently: Definition 23.5 stated
that a dependence map encodes only correct dependences. Dependences, however,
require connected nodes. In consequence, the set of encoded dependences in an
isolated graph is empty. And this empty set is (trivially) a subset of any set of
dependences of any distribution. Contrary, each complete graph (that is, a clique V )
constitutes a trivial independencemap. Since independences are encoded viamissing
edges, the setIG is obviously empty in a complete graphG. Thus it is (trivial) subset
of any set Ip.

A trivial independence map is—albeit correct—of little use. Therefore, we are
interested in graphs that encode as many independences of a given distribution as
possible, that is, where |IG | is large, but without violating the inclusionIG ⊆ Ip.
Although we maximize the number of conditional independences that are contained
in IG , they are referred to as minimal independence maps in the literature because
the number of edges is minimized. We will follow this convention here and define:

Definition 23.6 (Minimal Independence Map) Let G = (V, E) be a (directed or
undirected) independencemap of a probability distribution pV .G is called aminimal
independence map or minimal independence graph if it is not possible to delete an
edge from E without introducing a conditional independence that is invalid in pV .

An analogous definition for dependence maps is possible as well. We omit it here, as
we do not use this notion in the remainder. As we now have defined the type of graphs
that are of interest to us, we can now define the notion of decomposition or decom-
posability (which was used rather colloquially up to now). Again, we distinguish
between the two graph types.

Definition 23.7 (Decomposable w.r.t. an Undirected Graph)
Aprobability distribution pV over an attribute setV = {A1, . . . , An} is called decom-
posable or factorizable w.r.t. to an undirected graph G = (V, E) if and only if it can
be written as a product of nonnegative functions that are defined on the cliques of G.
Precisely: Let C be a family (that is, a set) of subsets of V such that the subgraphs
induced by the sets C ∈ C coincide with the cliques of G. Let further be EC the set
of events that can be described by assigning values to the attributes in C . Then pV is
called decomposable or factorizable w.r.t. G if there exist functions φC : EC → R

+
0 ,

C ∈ C , such that the following holds:

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :
pV

( ∧
Ai∈V

Ai = ai
)

=
∏
C∈C

φC

( ∧
Ai∈C

Ai = ai
)
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Definition 23.8 (Decomposable w.r.t. a Directed Acyclic Graph)
Aprobability distribution pV over an attribute setV = {A1, . . . , An} is called decom-
posable or factorizable w.r.t. a directed acyclic graph G = (V, E) if and only if it
can be written as the product of the conditional probabilities of the attributes given
their parent attributes in G. That is, if the following holds:

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :
pV

( ∧
Ai∈V

Ai = ai
)

=
∏
Ai∈V

P
(
Ai = ai

∣∣∣ ∧
A j∈paG (Ai )

A j = a j

)

Let us consider two examples to illustrate the decomposition of a distribution w.r.t.
an undirected and a directed acyclic graph.

Example 23.2 (Decomposition w.r.t. an undirected graph)
The undirected graph in Fig. 23.3 contains the following cliques:

C1 = {B,C, E,G},C2 = {A, B,C},C3 = {C, F,G},C4 = {B, D},C5 = {G, F, H}.
The decomposition induced by these cliques reads:

∀a ∈ dom(A) : · · · ∀h ∈ dom(H) :
pV (A = a, . . . , H = h) = φC1(B = b,C = c, E = e,G = g)

· φC2(A = a, B = b,C = c)
· φC3(C = c, F = f,G = g)
· φC4(B = b, D = d)

· φC5(G = g, F = f, H = h)

Example 23.3 (Decomposition w.r.t. a directed acyclic graph)
The directed acyclic graph in Fig. 23.3 induces the following decomposition:

∀a ∈ dom(A) : · · · ∀h ∈ dom(H) :
pV (A = a, . . . , H = h) = P(H = h | G = g, F = f ) · P(G = g | B = b, E = e)

· P(F = f | C = c) · P(E = e | B = b,C = c)
· P(D = d | B = b) · P(C = c | A = a)

· P(B = b | A = a) · P(A = a)

Fig. 23.3 Two graphs to illustrate the decomposition of a distribution
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As both the notions decomposability w.r.t. a graph and independence map are
now defined, we still need the connection between them. Our objective is to infer
correct (sound) conditional independences of an underlying distribution from the
separation criteria read from an independence map. This connection is established
by the following two theorems.

Theorem 23.3 Let pV be a strictly positive probability distribution over a set V
of (discrete) attributes. pV is factorizable w.r.t. an undirected graph G = (V, E), if
and only if G is a conditional independence map of pV .

Theorem 23.4 Let pV be probability distribution over a set V of (discrete) attribute.
pV is factorizable w.r.t. a directed acyclic graph G = (V, E) if and only if G is a
conditional independence map of pV .

Both theorems can be summarized as follows (taking care of the restriction w.r.t.
strict positivity of p in Theorem 23.3):

G factorizes p ⇔ G is an independence map of p.

Let us clarify which conclusion we can draw from this equivalence. Assume, we
observe that a distribution pV can be decomposed w.r.t. a given graph G. It is imme-
diately clear that G must be an independence map of pV (implication from left to
right). This in turn allows us to read every separation in G as a valid conditional
independence in pV (implication from right to left).

Until now, most definitions and theorems assumed a graph and a distribution
to be given. Usually, this is not the case. Therefore, we will now answer the two
questions how to construct a minimal independence map (directed and undirected)
given a distribution and how to construct a distribution for which a given (directed
and undirected) graph is an independence map. Hence, we will now introduce four
algorithms that establish the constructive connection between distributions and the
decomposition w.r.t. a graph.

Algorithm 23.1 (Decomposition w.r.t. an Undirected Triangulated Graph)
Input: undirected triangulated graph G = (V, E)

Output: decomposition of a distribution pV with independence map G

1. Determine all cliques of G.
2. Determine a clique ordering C1, . . . ,Cr with the running intersection property

(see Definition 22.39).
3. Determine the sets S j = C j ∩ (C1 ∪ · · · ∪ C j−1) and R j = C j \ S j .
4. Return ∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :

pV
( ∧

Ai∈V
Ai = ai

)
=

∏
C j∈C

P
( ∧

Ai∈R j

Ai = ai
∣∣∣ ∧
Ai∈S j

Ai = ai
)

http://dx.doi.org/10.1007/978-1-4471-7296-3_22
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Example 23.4 (Illustration of Algorithm 23.1) Consider again the undirected trian-
gulated graph in Fig. 23.3. The following clique ordering has running intersection
property (see Definition 22.43 on p. 490) which allows us to state the following
residual and separator sets:

i Ci Ri Si
1 {B,C, E,G} {B,C, E,G} ∅
2 {A, B,C} {A} {B,C}
3 {C, F,G} {F} {C,G}
4 {B, D} {D} {B}
5 {F,G, H} {H} {F,G}

This leads to the following decomposition as described by Algorithm 23.1 (for the
sake of clarity, we omit the all-quantifiers over the respective attributes domains):

pV (A, B,C, D, E, F,G, H)

= P(R1 | S1) ·P(R2 | S2) ·P(R3 | S3) ·P(R4 | S4) ·P(R5 | S5)
= P(B,C, E,G) ·P(A | B,C) ·P(F | C,G) ·P(D | B) ·P(H | F,G)

= P(B,C, E,G)

1
· P(A, B,C)

P(B,C)
· P(F,C,G)

P(C,G)
· P(D, B)

P(B)
· P(H, F,G)

P(F,G)

= P(C1)

1
· P(C2)

P(S2)
· P(C3)

P(S3)
· P(C4)

P(S4)
· P(C5)

P(S5)

The last line in this equation shows an alternative representation without explicitly
stating conditional probabilities (by just replacing them by their definition). For a
general clique set C satisfying RIP we get

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :

pV
( ∧

Ai∈V
Ai = ai

)
=

r∏
j=1

P
( ∧

Ai∈C j

Ai = ai
)

r∏
j=2

P
( ∧

Ai∈S j
Ai = ai

)

The start index 2 in the denominator excludes the probability of the formally
empty separator set S1. We will use the above decomposition formula in join trees.
The separator sets are the intersections of neighboring cliques. Since there only
n − 1 edges in a tree with n nodes, this explains the “absence” of one separator set.

Algorithm 23.2 (Decomposition w.r.t. a Directed Acyclic Graph)
Input: directed acyclic graph G = (V, E)

Output: decomposition of a distribution pV with independence map G

1. Determine the parent sets paG(Ai ).

http://dx.doi.org/10.1007/978-1-4471-7296-3_22
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2. Return

∀a1 ∈ dom(A1) : · · · ∀an ∈ dom(An) :
pV

( ∧
Ai∈V

Ai = ai
)

=
∏
Ai∈V

P
(
Ai = ai

∣∣∣ ∧
A j∈paG (Ai )

A j = a j

)

This algorithm basically coincides with Definition 23.8. In contrast to a decompo-
sition by an undirected graph where appropriate clique potentials have to be found,
they are immediately clear here. Example 23.3 serves as an illustration.

Algorithm 23.3 (Minimal Undirected Independence Map)
Input: strictly positive distribution pV over a set V = {A1, . . . , An} of attributes
Output: minimal undirected independence map G = (V, E) of pV .

1. Start with G = (V, E) as fully connected graph: E = V × V .
2. For each edge (A, B) ∈ E compute:

pV \{A}
( ∧

Ai∈V \{A}
Ai = ai

)
=

∑
a∈dom(A)

pV
( ∧

Ai∈V
Ai = ai

)

pV \{B}
( ∧

Ai∈V \{B}
Ai = ai

)
=

∑
b∈dom(B)

pV
( ∧

Ai∈V
Ai = ai

)

pV \{A,B}
( ∧

Ai∈V \{A,B}
Ai = ai

)
=

∑
a∈dom(A)

∑
b∈dom(B)

pV
( ∧

Ai∈V
Ai = ai

)

If pV
( ∧

Ai∈V
Ai = ai

)
· pV \{A,B}

( ∧
Ai∈V \{A,B}

Ai = ai
)

= pV \{A}
( ∧

Ai∈V \{A}
Ai = ai

)
· pV \{B}

( ∧
Ai∈V \{B}

Ai = ai
)
,

then delete edge (A, B) from E (and also delete (B, A)).
3. Return G.

The independence test in step 2 exploits the following fact of undirected graphs: the
absence of an edge (A, B) in an undirected graphG = (V, E) implies that those two
nodes A and B are u-separated by all other nodes:

∀A, B ∈ V, A �= B : (A, B) /∈ E ⇒ A ⊥⊥G B | V \{A, B}.
Since the graph G shall be an independence map w.r.t. a given distribution pV
we must ensure that deducible u-separations also hold true in form of conditional
independence statements in pV . The separation A ⊥⊥G B | V \{A, B} in G has to
have the following corresponding probabilistic counterpart in pV :

P(A, B | V \{A, B}) = P(A | V \{A, B}) · P(B | V \{A, B}).
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Applying equivalence transformations (multiply twice with P(V \{A, B})) we arrive
at the test criterion of step 2:

P(A, B | V \{A, B}) = P(A | V \{A, B}) · P(B | V \{A, B})
P(V ) = P(A | V \{A, B}) · P(V \{A})

P(V ) · P(V \{A, B}) = P(V \{B}) · P(V \{A})

The resulting independencemap is obviouslyminimal: no further edge can be deleted
(because we tested them all) without encoding an invalid independence.

Algorithm 23.4 (Minimal Directed Independence Map)
Input: distribution pV over a set V = {A1, . . . , An} of attributes
Output: minimal directed independence map G = (V, E) of pV .

1. Determine an arbitrary attribute ordering A1, . . . , An .
2. Find for each Ai a minimal predecessor set Πi ,

that renders Ai conditionally independent of {A1, . . . , Ai−1}\Πi .
3. Start with G = (V,∅) and insert for each Ai an edge from each node inΠi to Ai .
4. Return G.

Example 23.5 Consider the three-dimension distribution of Table22.1 on p. 471
which is repeated as Table23.2. Let us assume the following node order:

G ≺ Pr ≺ Sm.

We know from Sect. 22.1.2 (and the distributions in Table22.2) that only the follow-
ing conditional independence holds in the distribution pGPrSm (and, of course, its
symmetric counterpart):

Pr ⊥⊥pGPrSm Sm | G.

Let us now start to determine the sets Πi . We always start with all predecessors as
the candidate set: Πi = {A1, . . . , Ai−1}. We then delete as many attributes from Πi

until the conditional independence would be violated. The remaining attributes will
become the parents of Ai . It may happen, that we cannot exclude any attribute from
the initial set Πi . We then add all predecessors A1, . . . , Ai−1 of Ai as its parents.

Table 23.2 Three-dimensional example distribution

porig G = m G = w

Sm = sm Sm = sm Sm = sm Sm = sm

Pr = pr 0 0 0.01 0.04

Pr = pr 0.2 0.3 0.09 0.36

http://dx.doi.org/10.1007/978-1-4471-7296-3_22
http://dx.doi.org/10.1007/978-1-4471-7296-3_22
http://dx.doi.org/10.1007/978-1-4471-7296-3_22
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Fig. 23.4 Resulting graph
for Example 23.5

1. G has no predecessor. Hence it is (and remains) ΠG = ∅.
2. For Pr we start with ΠPr = {G}. The first (and only) reduction of ΠPr is the one

leading to the empty set. Consequently, we test whether Pr ⊥⊥pGPrSm G | ∅. This
is not the case as can be easily verified. There are no other options to set ΠS,
hence the initial set remains: ΠPr = {G}.

3. We start with ΠSm = {G, Pr} and test the following three options:

R ⊥⊥pGPrSm Pr | G, R ⊥⊥pGPrSm G | Pr and R ⊥⊥pGPrSm G,Pr | ∅
The only valid independence isSm ⊥⊥pGPrSm Pr | Gwhich leads toΠSm = {G}.

We arrive at the graph shown in Fig. 23.4, which is not only a minimal independence
map but also a perfect map in this case.

Finally, we can define the core structures covered by the term graphical models.

Definition 23.9 (Markov Network) AMarkov network is an undirected conditional
independence graph G = (V, E) of a probability distribution pV together with a
family of nonnegative functions φM of the factorization induced by the graph.

Theundirectedgraph inFig. 23.3 togetherwith the decomposition fromExample23.2
(and appropriately selected clique potentials) is a Markov network.

Definition 23.10 (Bayes Network) A Bayes network is a directed conditional inde-
pendence graph of a probability distribution pV together with a family of conditional
probabilities of the factorization induced by the graph.

The directed acyclic graph in Fig. 23.3 together with the decomposition from Exam-
ple 23.3 (and appropriately selected conditional distributions) is a Bayes network.
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After havingdiscussed efficient representations for expert anddomain knowledge,we
intent to exploit them to draw inferences when new information (evidence) becomes
known. The objective is to propagate the evidence through the underlying network
to reach all relevant attributes. Obviously, the graph structure will play an important
role.

Given a graphical model (no matter whether a Markov or Bayes network)
G = (V, E) over an attribute set V with underlying distribution pV and an observed
value ao of the attribute Ao ∈ V , propagating this evidence corresponds formally to
the calculation of the following probabilities:

∀A ∈ V \ {Ao} : ∀a ∈ dom(A) : P(A = a | Ao = ao).

Evidence propagation is thoroughly treated in the literature and a multitude of dif-
ferent algorithms exist. They can be distinguished by model type (Markov or Bayes
network), by graph topology (tree, polytree, general graph or completely indepen-
dent of any graph structure), or by type of computation (exact or approximative),
just to name the most important criteria for comparison. A polytree is a directed tree
where nodes can have more than one parent. The graph G1 in Fig. 24.2 on p. 508 is
a polytree while G2 is a simple tree.

It is not our intention to provide a wide coverage over those algorithms. We rather
intent to discuss one particular evidence propagation algorithm in greater detail in
order to stress the underlying ideas.

We already saw in the introductionChap.21 that we can exploit the graph structure
to guide the evidence propagation: First, the (undirected) tree structure guaranteed
unique paths between the attributes and second, the tree decomposes into multiple
isolated subgraphs when any node is deleted. The latter coincides with the statement
that (in an undirected tree) an instantiated attribute (where instantiated here means
that for this attributes we have observed evidence) separates the attributes in the
subtrees as depicted in Fig. 24.1. An alike separation can also be observed in directed
trees: Given an attribute A, the attributes of the child trees (i.e., the subtrees having

507

http://dx.doi.org/10.1007/978-1-4471-7296-3_21


508 24 Evidence Propagation

Fig. 24.1 The gray node
separates the notes in all four
subtrees. We will use that
idea to simplify the evidence
propagation

Fig. 24.2 In general,
ignoring the edge directions
in general does not result in
an equivalent (w.r.t. the
encoded conditional
independence statements)
undirected graph

a child of A as the root node) become conditionally independent from each other.
However, we have to take into account that in a polytree we might have to deal with
multiple parent nodes. These form a converging connectionwith A which is activated
when A is instantiated. The matter becomes even more complex when dealing with
general graphs, i.e., arbitrary undirected or directed acyclic graphs: Since theremight
be multiple paths between two nodes, we do not have a unique route for propagating
evidence. There exist algorithms that deal with all of the mentioned problems. We
will shortly discuss a solution that can deal with all of the above-mentioned network
and graph types.

The evidence propagation itself will be carried out on a join tree. The tree struc-
ture guarantees the uniqueness of the evidence flow while the choice of a join tree
is justified by the fact that every general (undirected or directed) graph can be trans-
formed into a semantically equivalent join tree. Semantic equivalence means here
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that the resulting join tree is still a conditional independence map of the underlying
distribution.

How any undirected graph can be transformed into a join tree was shown in
Sect. 22.2.2. Let us therefore focus on the transformation of a directed acyclic graph
into a join tree. The idea to just drop the edge directions in order to get an equivalent
undirected graph does unfortunately not work as we can easily see. Consider the
directed acyclic graph G1 in Fig. 24.2. It encodes only the following conditional
independence statements (although the symmetric counterparts do, of course, hold
but we omit them here for the sake of brevity):

IG1 = { A ⊥⊥G1 D | C, B ⊥⊥G1 D | C, A ⊥⊥G1 B | ∅ }.
By dropping the edge directions we arrive at the undirected graph Gu as depicted in
Fig. 24.2. Its set of encoded conditional independence statements is, alas, no subset
of those of G1:

IGu = { A ⊥⊥Gu D | C, B ⊥⊥Gu D | C, A ⊥⊥Gu B | C } � IG1 .

There is one new conditional independence statement (here: A ⊥⊥ B | C) that is not
valid in the original graph G1. The fact that we lost a previously valid independence,
namely A ⊥⊥G1 B | ∅, is unfortunate but does not invalidate the character of the
independencemap. Hence, Gu is not an equivalent undirected graph for G1! The goal
must be to find a transformation that by no means introduces any new conditional
independences—and be it at the loss of existing ones.

Note, that not every directed acyclic graph suffers from the illustrated phenom-
enon. Consider graph G2 in Fig. 24.2. For its undirected pendant Gu we indeed
have

IGu ⊆ IG2 .

(We even achieve equality here which is not necessarily always the case.)
Obviously, the illustrated problems arise due to the asymmetric definition of the

d-separation which cause problems when dealing with converging nodes. It must
be prevented that both parent nodes of a common child node become conditionally
independent given the child node. This is achieved by connecting parent nodes that
are not yet connected (the edge direction can be chosen arbitrarily as we drop it in
the next step). This is depicted on the right of Fig. 24.2 and graph G ′

1. By connecting
the nodes A and B we loose a (marginal) independence statement, but we prevent
the introduction of a new one which leads to IGu ⊆ IG ′

1
.

The transformation of connecting unconnected parent nodes we already know
as moralization (see Definition22.29 on p. 478). With these prerequisites we can
transform any given graphical model into a common input format (namely a join
tree): If the given graph is a Markov network we might need to triangulate the graph
before it is transformed into a join tree. If we are given a Bayes network, wemoralize
the graph, triangulate it (if necessary) and transform it into a join tree afterwards.
We will illustrate this with an example that we will reuse later when running the
evidence propagation algorithm.

http://dx.doi.org/10.1007/978-1-4471-7296-3_22
http://dx.doi.org/10.1007/978-1-4471-7296-3_22
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(a) (b)

(c)
(d)

Fig. 24.3 Transformation of a Bayes network into a join tree. a Bayes network, b Moral graph,
c Triangulated moral graph, d Join tree

Example 24.1 (Join tree from a Bayes network) We will shortly consider an propa-
gation of evidence inside the Bayes network depicted in Fig. 24.3a. The result of the
moralization step can be seen in Fig. 24.3b. The circle E − C − F − G has no chord
which leads to the insertion of one. We decide for chord C − G (E − F would have
been possible as well) and arrive at the triangulated graph in Fig. 24.3c.We know this
graph already from Fig. 23.3 and Example23.2 which allows us to directly reuse the
cliques identified back then, resulting in the join tree in Fig. 24.3d. Note, that during
triangulation as well as moralization only edges might be added (never deleted) and
hence the character of a conditional independence map never changes. �

The evidence propagation will consist of the following principal steps:

Initialization: Evidences, i.e., the known attribute values will be incorporated
into all relevant clique potentials.

Message passing: Neighboring cliques send a message to each other to announce
the changes. Hence, there are exactly two messages sent across
each edge. Having r cliques in the tree, 2(r − 1) messages will
be sent.

Update: After all messages have been sent, each clique can update the
joint probability of its attributes.

http://dx.doi.org/10.1007/978-1-4471-7296-3_23
http://dx.doi.org/10.1007/978-1-4471-7296-3_23
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Marginalization: Since we are interested in the marginal distribution of single
attributes, we finally marginalize out each attribute from the
smallest clique that contains it.

We now investigate these four steps more closely.

24.1 Initialization

We already know Algorithm 23.1 from p. 500 to determine the clique potentials. If
the join tree resulted from an initial Bayes network (as in our example case), we
can easily determine the clique potentials of all cliques C ∈ C as the product of the
conditional probabilities of all node families which are properly contained in C :

φC (c) = 1 ·
∏

fa(A)⊆C

P
(

A = projC{A}(c)
∣∣∣ pa(A) = projCpa(A)(c)

)
(24.1)

If the values of one or more attributes become known, it leads to the modification
of those cliques that contain these attributes: All attribute value combinations that
are incompatible with the evidence get assigned a value of zero by the potential
functions. In all other cases, the potential functions remain unchanged:

φ′
C (c) =

{
0, if projCE∩C (c) 	= projEE∩C (e)
φC (c), otherwise.

24.1.1 Message Passing

After initialization, neighboring cliques exchange messages to inform each other
about (a possible) change in their potential functions. Each clique sends exactly one
message to each neighbor. Themessage MB→C from clique B to cliqueC is declared
on the attributes of the separator set SBC . The values of the message from B to C
depends on the potential of the sending clique φB and the messages of all other
neighbors of B. The values are multiplied and marginalized on the attributes in SBC :

MB→C (sBC ) =
∑
b\sBC

[
φB(b) ·

∏
D∈adj(B)\{C}

MD→B(sDB)
]

(24.2)

Since we need for the computation of the message from B toC all receivedmessages
from all other neighbors of B, it is clear that only cliques with no other neighbors
can send its messages first: namely the outer nodes of the join tree. We will later see
how this leads to a message sending cascade across the join tree.

http://dx.doi.org/10.1007/978-1-4471-7296-3_23
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24.1.2 Update

After all messages have been sent, each clique C can compute its joint probability
distribution P(c) as the product of its potential function and all received messages
from its neighbors:

P(c) ∝ φC (c) ·
∏

B∈adj(C)

MB→C

(
projCSBC

(c)
)

(24.3)

The ∝-sign denotes that the distribution P(c) needs to be normalized in case it does
not add up to one (over all c).

24.1.3 Marginalization

After each clique has updated its joint distribution, we look for each attribute A
for the smallest clique C that contains it in order to minimize the marginalization
effort (a marginalization from other cliques that contain A would be also possible,
of course):

P(a) =
∑
c\a

P(c)

Let us now study a full run of the algorithm. The parameters of the Bayes network
in Fig. 24.3a are shown in Fig. 24.4.

Example 24.2 (Initialization, propagating “zero”evidence) For the join tree in
Fig. 24.3d we use the initial Bayes network from Fig. 24.3a and can compute the
following potentials:

φC1(b, c, e, g) = P(e | b, c) · P(g | e, b)

φC2(a, b, c) = P(b | a) · P(c | a) · P(a)

φC3(c, f, g) = P( f | c)

φC4(b, d) = P(d | b)

φC5(g, f, h) = P(h | g, f )

Fig. 24.4 Parameters of the Bayes network in Fig. 24.3a
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Since each conditional probability occurs in exactly on potential, it is immediately
clear that the product of all potentials equals the network’s decomposition formula.
The clique potentials derived via Algorithm 23.1 based on separator and residual
sets would lead to the following potentials:

φC1(b, c, e, g) = P(b, e | c, g)

φC2(a, b, c) = P(a | b, c)

φC3(c, f, g) = P(c | f, g)

φC4(b, d) = P(d | b)

φC5(g, f, h) = P(h, g, f )

In the remainder of this example, we will use potentials retrieved from the Bayes
network. Since we want to compute the a-priori distribution of all attributes first, no
clique potentials are modified in this run. �

Example 24.3 (Message passing) Figure24.5 shows the join tree from Fig. 24.3d
together with all eight messages which are computed as follows:

M21(b, c) = ∑
a φ2(a, b, c),

M41(b) = ∑
d φ4(b, d),

M53( f, g) = ∑
h φ5( f, g, h),

M13(c, g) = ∑
b,e φ1(b, c, e, g) M21(b, c) M41(b),

M31(c, g) = ∑
f φ3(c, f, g) M53( f, g),

M12(b, c) = ∑
e,g φ2(b, c, e, g) M31(c, g) M41(b),

M35( f, g) = ∑
c φ3(c, f, g) M13(c, g),

M14(b) = ∑
c,e,g φ1(b, c, e, g) M21(b, c) M31(c, g).

As can easily be seen, the messages M41, M53 and M21 can be computed (in arbitrary
order) first because they do not require other messages for their computation. This
is immediately clear as they originate from leaf nodes which do not have any other

Fig. 24.5 Messages that
need to be sent across the
join tree together with a
dependency graph of the
messages

http://dx.doi.org/10.1007/978-1-4471-7296-3_23
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neighbors except the recipient of the message. After these three messages are sent,
we can compute (and send) M31 and M13. Only then we are able to compute M12,
M14 and M35. Figure24.5 depicts the just mentioned dependencies as a directed
graph with edges directed to the dependent messages. The computed messages are
as follows:

M21 = ( b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)
M41 = ( b1

1 ,
b2
1

)
M13 = ( c1,g1

0.254,
c1,g2
0.206,

c2,g1
0.290,

c2,g2
0.250

)
M35 = ( f1,g1

0.14,
f1,g2
0.12,

f2,g1
0.40,

f2,g2
0.33

)
M53 = ( f1,g1

1 ,
f1,g2
1 ,

f2,g1
1 ,

f2,g2
1

)
M31 = ( c1,g1

1 ,
c1,g2
1 ,

c2,g1
1 ,

c2,g2
1

)
M12 = ( b1,c1

1 ,
b1,c2
1 ,

b2,c1
1 ,

b2,c2
1

)
M14 = ( b1

0.16,
b2

0.84
)

�

Example 24.4 (Update) After all messages have been sent, the cliques can update
their joint probability distribution. For the five cliques of our example we get the
following:

P(c1) = P(b, c, e, g) = φ1(b, c, e, g) · M21(b, c) · M31(c, g) · M41(b)

P(c2) = P(a, b, c) ∝ φ2(a, b, c) · M12(b, c)
P(c3) = P(c, f, g) ∝ φ3(c, f, g) · M13(c, g) · M53( f, g)

P(c4) = P(b, d) ∝ φ4(b, d) · M14(b)

P(c5) = P( f, g, h) ∝ φ5( f, g, h) · M35( f, g)

The numbers can be found in the P-columns of the potential tables in Table24.1. In
this case, no normalization is necessary. �

Example 24.5 (Marginalization) Finally, we determine the marginal probabilities
for each attribute from the clique potentials. To keep the effort low, we choose the
smallest clique that contains the attribute.Wearrive at the followingmarginalizations:

P(a) = ∑
b,c P(a, b, c), P(b) = ∑

d P(b, d),

P(c) = ∑
a,b P(a, b, c), P(d) = ∑

b P(b, d),

P(e) = ∑
b,c,g P(b, c, e, g), P( f ) = ∑

c,g P(c, f, g),

P(g) = ∑
c, f P(c, f, g), P(h) = ∑

g, f P(g, f, h).

The actual numbers can be found in Table24.2. �

Example 24.6 (Second propagation run, now with evidence) We will now do a sec-
ond propagation run and propagate the evidence H = h1 in order to arrive at the
conditional probability distributions P(A | H = h1) to P(G | H = h1). As the
steps are identical to the previous run, we will only tell the changed parameters and
intermediate values.

For initialization we set all those clique potential entries to zero that contradict
the evidence, i.e., for which H 	= h1. Since H is only contained in clique C5, we
only need to change one potential table:
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Table 24.1 The potential tables of the join tree from Fig.24.3d. The first column contains the
potentials according to Eq. (24.1), the second column contains the updated joint probabilities of the
cliques according Eq. (24.3) after zero evidence has been propagated. The third column contains
the probabilities after the evidence H = h1 has been propagated

Table 24.2 Marginal probabilities of the Bayes network (w.r.t. the corresponding join tree) in
Fig. 24.3 without evidence present. They represent the a-priori distribution of the attributes and
were computed by propagating “zero evidence”

P(·) A B C D E F G H

·1 0.6000 0.1600 0.4600 0.6520 0.2144 0.2620 0.5448 0.4842

·2 0.4000 0.8400 0.4500 0.3480 0.7856 0.7380 0.4552 0.5158

′
5 P

h1 0.2
g1

h2 0
h1 0.5

f1
g2

h2 0
h1 0.4

g1
h2 0
h1 0.7

f2
g2

h2 0
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The message computation and passing is equivalent to the previous run. The
messages are now as follows:

M21 = ( b1,c1
0.06,

b1,c2
0.10,

b2,c1
0.40,

b2,c2
0.44

)
M41 = ( b1

1 ,
b2
1

)
M13 = ( c1,g1

0.254,
c1,g2
0.206,

c2,g1
0.290,

c2,g2
0.250

)
M35 = ( f1,g1

0.14,
f1,g2
0.12,

f2,g1
0.40,

f2,g2
0.33

)
M53 = ( f1,g1

0.2 ,
f1,g2
0.5 ,

f2,g1
0.4 ,

f2,g2
0.7

)
M31 = ( c1,g1

0.38,
c1,g2
0.68,

c2,g1
0.32,

c2,g2
0.62

)
M12 = ( b1,c1

0.527,
b1,c2
0.434,

b2,c1
0.512,

b2,c2
0.464

)
M14 = ( b1

0.075,
b2

0.409
)

After all messages have been sent, we can again update the joint probability dis-
tributions according to Eq. (24.3). These result in the values of the P ′-column of
Table24.1. In this case a normalization is necessary. Finally, we marginalize over
the clique joint distributions to get the updated marginal attribute distributions (given
H = h1). These are shown in Table24.3. �

Figure24.6 contains notations that will help to illustrate the propagation algo-
rithm (Castillo et al. 1997).

1. CC B be the set of cliques of the join subtree containing C that results when
edge C − B is removed. If the cliques differ only in the indices of its names, we
will use these indices in the notation.
Example: CC1,C3 = C13 = {C1, C2, C4} and CC3,C1 = C31 = {C3, C5}

Table 24.3 Marginal probabilities of the Bayes network (w.r.t. the corresponding join tree) in
Fig. 24.3 given evidence H = h1. They represent the a-posteriori distributions of the attributes

P(· | h1) A B C D E F G H

·1 0.5888 0.1557 0.4884 0.6533 0.1899 0.1828 0.3916 1.0000

·2 0.4112 0.8443 0.5116 0.3467 0.8101 0.8172 0.6084 0.0000

Fig. 24.6 Example for the
notation used to derive the
evidence propagation steps

ABC BD

BC
EG

CFG

GFH

C13

C31

C2 C4

C1

C3

C5

ABC BD

BC
EG

CFG

GFH

C2 C4

C1

C3

C5

BC B

CG

FG

S12 S14

S13

S35
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2. The union of all attributes of all cliques of CC B is denoted as XC B .
Example: XC1,C3 = X13 = {A, B, C, D, E, G} and XC3,C1 = X31 =
{C, F, G, H}

3. We obviously get V = XC B ∪ X BC .
4. Separator and residual sets are already known. We will now index them with the

cliques between which they are defined:

SC B = SBC = C ∩ B

and
RC B = XC B \ SC B .

Example: RC1,C3 = R13 = {A, B, D, E}, RC3,C1 = R31 = {F, G} and
SC1,C3 = S13 = {C, G}

5. From 3. and 4. follows that the entire node set V partitions into the following
three disjoint node sets given any edge (C, B) ∈ E :

V = RC B ∪ SC B ∪ RBC .

Hence, the attributes RC B are u-separated from the attributes RBC by the
attributes SBC .

RBC ⊥⊥ RC B | SC B

24.1.4 Derivation

We will now derive the origin of the essential Eqs. (24.2) and (24.3) needed for
evidence propagation. Let us begin with the update rule for the clique distribution.
This can be written as follows (we discuss the single steps afterwards):

P(c)
(1)=

∑
v\c︸︷︷︸

Marginalization

∏
D∈C

φD(projVD(v))

︸ ︷︷ ︸
Decomposition of P(v)

(2)= φC (c)
∑
v\c

∏
D 	=C

φD(projVD(v))

(3)= φC (c)
∑

⋃
B∈adj(C) rBC

∏
D 	=C

φD(projVD(v))

(4)= φC (c)
∏

B∈adj(C)

( ∑
rBC

∏
D∈CBC

φD(projVD(v))
)

︸ ︷︷ ︸
MB→C (sBC )

= φC (c)
∏

B∈adj(C)

MB→C (sBC )
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(1) The vector v is defined on all attributes. Since we are only interested in attributes
in C , we marginalize all remaining attributes’ value combinations v\c. The
product is the application of Definition23.7 on p. 498 about the decomposition
of a distribution w.r.t. an undirected graph.

(2) The product in (1) ran over all cliques, including C . This factor is now pulled
out of the product and since it is independent of the sum, also pulled out of the
sum.

(3) We simplify the marginalization. Instead to run over all value combinations v\c,
we exploit the following relationship that we can derive from the separations
induced by the running intersection property in Eq.22.2 on p. 491. Applied to
the join tree, we get:

V \ C =
( ⋃

B∈adj(C)

X BC

)
\ C =

⋃
B∈adj(C)

(X BC \ C) =
⋃

B∈adj(C)

RBC

The sum index
⋃

B∈adj(C) rBC means the iteration over all value combinations
of all attributes in all RBC .

(4) The sum is split up by assigning the residuals to the respective neighboring
cliques. The resulting factors are the starting point for the messages.

The messages MB→C (sBC ) declared on the separators can be further simplified to
finally arrive at the Eq. (24.2):

MB→C (sBC ) =
∑

xBC \sBC︸ ︷︷ ︸
rBC

∏
D∈CBC

φD(d)

=
∑
b\sBC

φB(b)
∏

D∈adj(B)\{C}
MD→B(sDB)

24.2 Other Propagation Algorithms

Wewill sketch two related evidence propagation algorithms at the end of this chapter.
Information on other approaches can be found in, e.g., (Castillo et al. 1997, Borgelt
et al. 2009).

The algorithm described above (Jensen 1996, 2001; Jensen and Nielsen 2007)
allows any directed (but acyclic) graph structure as input. If simpler structures are
employed, one can use simpler algorithms, of course. One example is polytree prop-
agation algorithms (Pearl 1988). Since polytrees are singly connected (i.e., they fall
apart into two subgraphs if an edge is removed), the propagation path is already clear
without the need to construct a secondary structure. Because of the edge directions,
two message types are distinguished: λ-messages from child to parent nodes and
π -messages from parent to child nodes. Of course, one can apply the join tree prop-
agation algorithm on polytrees. This will lead to cliques consisting of nodes together
with its parent nodes.

http://dx.doi.org/10.1007/978-1-4471-7296-3_23
http://dx.doi.org/10.1007/978-1-4471-7296-3_22
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Another technique that not necessarily needs to operate on graph structures is
the so-called bucket elimination (Dechter 1996; Zhang and Poole 1996). Given a
factorization of a probability distribution, an attribute can be eliminated by summing
over all factors containing the attribute. Successive summing allows to isolate tar-
get attributes. The efficiency of this approach depends heavily on the order of the
summations. A conditional independence graph can be used to suggest an order by
means of its edges.
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Wewill now address the third question fromChap.21, namely how graphical models
can be learned from given data. Until now, we were given the graphical structure.
Now, we will introduce heuristics that allow us to induce these structures.

In principle, we seek for a graph G that fits best to a given database D. Pretty
much all learning algorithms for graphical models consist of the following two parts:

• A heuristic that efficiently traverses the search space and generates promising
graph candidates.

• An evaluation measure that assigns to each candidate graph a goodness value
(w.r.t. the database). This value is then used to guide the heuristic through the
search space.

An exhaustive search through all possible graphs excludes itself as the size of the
search space grows huge even for small numbers of nodes. For example, the set of
directed acyclic graphs grows super-exponentially in the number of nodes (Robinson
1977): For 10 nodes the graph set has already a cardinality of 4.18 · 1018.

The evaluation function quantifies how “good” the candidate graph “explains”
the database. One way to do this is to compute the probability with which the graph
might have generated the database.Wewill see shortly, that the pure form of this idea
does not work for a learning algorithm. However, adaptations of it are used in many
learning algorithms, like the K2 algorithm that we will discuss later on. Generating
a database based on a graph means that the probability distribution described by the
graphical model was used to sample tuples that make up the database.

In the following, wewill refer to the graph structure (nomatter whether directed or
undirected) of a graphical model as BS . The set of all probability parameters (entries
of the potential tables in the undirected case or the conditional probabilities in the
directed case) be BP . Let us consider the component BP in case of a Bayes network.
It contains the specific entries of the conditional probability distributions P(A |
pa(A)). Each node maintains a potential table which contains for each combination

521
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of the parent attributes values of a node Ai the probability of the attribute values of Ai .
In general, the potential table of attribute Ai contains the columns Qi1, . . . , Qiqi .
Each of these qi columns corresponds to a conditional probability distribution of the
attribute values ai1, . . . , airi given the attribute value combination associated with
the column.

As an example, consider the simple Bayes network in Fig. 25.1. All attributes
should be binary and represent Grippe, Malaria, and Fever. Note that we use the
dated notion grippe here as the modern word fly would obviously interfere with the
variable naming. The node F has two parent attributes (G and M) which are both
binary. Hence, there exist four parent attributes value combinations: (g,m), (g,m),
(g,m) and (g,m) which correspond to the four columns in the potential table for F
in Fig. 25.1. If the node Ai is a root node, the potential table contains the marginal
distribution P(Ai ). This artificial column is denoted by ∅.

The entries of these tables are denoted as θi jk and represent the probability of
attribute Ai assuming value aik while its parent attributes pa(Ai ) assume the j th
value combination Qi j . Figure25.2 shows a general potential table whose indices
we use in the remainder: the index i runs over the attributes (i = 1, . . . , n), j runs
over the different parent attributes’ value combinations of attribute Ai ( j = 1, . . . , qi )
and k runs over all ri values of Ai (k = 1, . . . , ri ). The values (θi j1, . . . , θi jri ) rep-
resent a probability distribution: They correspond to the parameters of multinomial
distribution of order ri .

Let us know discuss two examples for computing the parameters BP from given
data D and given structure BS . With D and BS provided, we can easily determine
the parameters BP by counting. This is justified because the conditional distributions

Fig. 25.1 Induction of the
potential tables structure BS

of the depicted Bayes
network

Fig. 25.2 General potential
table of attribute Ai . Each
column represents a
probability distribution
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Table 25.1 An example database with 100 cases

Grippe g g g g g g g g

Malaria m m m m m m m m

Fever f f f f f f f f

# 34 6 2 8 16 24 0 10

are multinomial distributions and relative frequencies constitute optimal estimators.
Table25.1 shows an example database with 100 cases.

In the first partwe assume the network structure BS to be an edgeless graph, i.e., we
deal with three marginal distributions. The “decomposition” of the joint distribution
then reads as follows:

P(G = g,M = m,F = f ) = P(G = g) P(M = m) P(F = f )

with g ∈ {g,g},m ∈ {m,m}, f ∈ {f, f}
Consequently, the distributions P(G), P(M), and P(F) have to be estimated from
data.

P(G = g) ≈ P̂(G = g) = #(G = g)

|D|
where the statements #(X = x) and #(x) denote the number of tuples in D hav-

ing the value x for attribute X , that is, #(X = x) = #(x)
Def= |{t ∈ D | t (X) = x}| =

|{X = x}|. Estimated from the example distribution in Table25.1 we obtain the fol-
lowing:

P̂(G = g) = 50/100 = 0.50, P̂(G = g) = 1 − P̂(G = g) = 0.50,
P̂(M = m) = 20/100 = 0.20, P̂(M = m) = 1 − P̂(M = m) = 0.80,
P̂(F = f) = 50/100 = 0.48, P̂(F = f) = 1 − P̂(F = f) = 0.52.

In the second part we assume the network structure BS to be as depicted in Fig. 25.1.
The decomposition reads as follows:

P(G = g,M = m,F = f ) = P(G = g) P(M = m) P(F = f | G = g,M = m).

The estimations for P(G) and P(M) are computed as in the previous example while
we use the following formula to estimate the conditional probability distribution
P(F | G,M):

P̂( f | g,m) = P̂( f, g,m)

P̂(g,m)
=

#(g,m, f )

|D|
#(g,m)

|D|
= #(g,m, f )

#(g,m)
.
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We get the following numbers for the distribution P̂(F | G,M) from the example
data as follows:

P̂(F = f | G = g,M = m) = 1/100
1/100

= 1.00,

P̂(F = f | G = g,M = m) = 24/100
40/100

= 0.60,

P̂(F = f | G = g,M = m) = 8/100
10/100

= 0.80,

P̂(F = f | G = g,M = m) = 6/100
40/100

= 0.15.

Given a database D, a potential network structure BS and the estimated parame-
ters BP , we can compute P(D | BS, BP )when accepting the following assumptions.

1. The data-generating process can be modeled by the Bayes network represented
by (BS, BP ).

2. The tuples in the database occur independently from each other.
3. All tuples are complete, i.e., there are no missing values.

Assumption 1 legitimates the investigation for a Bayes network as the underlying
model since in case of a violation of this assumption, the entire search would be
pointless. Assumption 2 states that the occurrence of a tuple does not affect the
probability of the other tuples. It is not to be confused with the statement of all tuples
being equally probable! Assumption 3 finally allows us to use the above-mentioned
counting as we do not need to take care of missing values.

The probability of database D (given the graph candidate) can now be computed
as follows:

P(D | BS, BP ) = ∏100
h=1 P(ch | BS, BP )

=
case 1︷ ︸︸ ︷

P(g,m, f) ·
case 10︷ ︸︸ ︷

P(g,m, f)︸ ︷︷ ︸
10 times

·
case 51︷ ︸︸ ︷

P(g,m, f) ·
case 58︷ ︸︸ ︷

P(g,m, f)︸ ︷︷ ︸
8 times

·
case 67︷ ︸︸ ︷

P(g,m, f) ·
case 100︷ ︸︸ ︷
P(g,m, f)︸ ︷︷ ︸

34 times

=
‖︷ ︸︸ ︷

P(g,m, f)10︸ ︷︷ ︸
‖

·
‖︷ ︸︸ ︷

P(g,m, f)8︸ ︷︷ ︸
‖

·
‖︷ ︸︸ ︷

P(g,m, f)34︸ ︷︷ ︸
‖

=
︷ ︸︸ ︷
P(f |g,m)10P(g)10P(m)10 ·

︷ ︸︸ ︷
P(f |g,m)8P(g)8P(m)8 ·

︷ ︸︸ ︷
P(f |g,m)34P(g)34P(m)34

= P(f | g,m)10P(f | g,m)0P(f | g,m)24P(f | g,m)16

· P(f | g,m)8P(f | g,m)2P(f | g,m)6P(f | g,m)34

· P(g)50P(g)50P(m)20P(m)80

The last equation shows the principle by which the factors were reordered: First, sort
by attribute (in the example F, G then M). Within an attribute we group by parent
value combinations (in the example, for Fwe do (g,m), (g,m), (g,m) and (g,m)).
Finally, we sort by equal attribute values (in the example, for attribute F: first f,
then f).
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The general computation of the probability of a database D is as follows (Castillo
et al. 1997):

P(D | BS, BP ) =
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
αi jk
i jk (25.1)

We saw that with known structure BS we could estimate the parameters BP from the
database. This could lead us to the idea to use a maximum likelihood approach to
infer the structure from data:

B̂S = argmax
BS∈BR

P(D | BS, BP )

This approach, alas, has the drawback that the probability increases with the number
of parameters which would lead to a model with maximal parameter number, i.e., a
fully connected graph BS .

We can easily tackle this problem using a maximum a-posteriori estimator. The
approach hence would be as follows:

B̂S = argmax
BS

P(BS | D) = argmax
BS

P(D | BS) P(BS)

P(D)

= P(D, BS) P(BS)

P(D) P(BS)
= argmax

BS

P(BS, D)

P(D)

= argmax
BS

P(BS, D)

Consequently, we seek a computational expression for the term P(BS, D). The result
of the following derivationwill be theK2metric. An elaborate treatment can be found
in Cooper and Herskovits (1992).

First, we consider P(BS, D) to be the marginalization of P(BS, BP , D) over
all possible parameters BP which is known as model averaging. The number of
parameters is fixed (finite number of entries in the potential tables of the attributes),
however, the values of these entries—the θi jk —are continuous valueswhich requires
us to integrate over all models. Indeed, we deal with a multiple integral over all θi jk
which is later made explicit.

P(BS, D) =
∫
BP

P(BS, BP , D) dBP (25.2)

=
∫
BP

P(D | BS, BP ) P(BS, BP ) dBP (25.3)

=
∫
BP

P(D | BS, BP ) f (BP | BS)P(BS) dBP (25.4)

= P(BS)︸ ︷︷ ︸
A-priori prob.

∫
BP

P(D | BS, BP )︸ ︷︷ ︸
Prob. of data

f (BP | BS)︸ ︷︷ ︸
Parameter densities

dBP

(25.5)
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The a-priori distribution can be used to put a bias on certain classes of graph structures
(e.g., by assigning a low probability to overly complex structures). Assuming that
there is an underlying Bayes network, that the database cases are independent of
each other and that the tuples are complete, we can apply Eq.25.1

P(BS, D) = P(BS)

∫
BP

⎡
⎣ n∏
i=1

qi∏
j=1

ri∏
k=1

θ
αi jk
i jk

⎤
⎦ f (BP | BS) dBP

The parameter densities f (BP | BS) make a statement how probable the respective
parameters BP of a given network structure are. Hence, they are second-order densi-
ties as they represent densities about probability distributions.
A vector (θi j1, . . . , θi jri ) is a probability distribution for fixed i and j (the j th
column of the i th potential table, see Fig. 25.2). Assuming the densities of all
columns of all attributes are mutually independent, we can simplify the expression
for f (BP | BS) to

f (BP | BS) =
n∏

i=1

qi∏
j=1

f (θi j1, . . . , θi jri )

Plugging this term into P(BS, D), we arrive at the following expression:

P(BS, D)

= P(BS)
∫

· · ·
∫

θi jk

⎡
⎣ n∏
i=1

qi∏
j=1

ri∏
k=1

θ
αi jk
i jk

⎤
⎦·

⎡
⎣ n∏
i=1

qi∏
j=1

f (θi j1, . . . , θi jri )

⎤
⎦ dθ111, . . . , dθnqnrn

= P(BS)
n∏

i=1

qi∏
j=1

∫
· · ·

∫
θi jk

⎡
⎣ ri∏
k=1

θ
αi jk
i jk

⎤
⎦ · f (θi j1, . . . , θi jri ) dθi j1, . . . , dθi jri

The last simplifying assumption, again, regards the parameter densities. For fixed i
and j , the density f (θi j1, . . . , θi jri ) be uniform. Hence, we get the following:

f (θi j1, . . . , θi jri ) = (ri − 1)!

P(BS, D) = P(BS)

n∏
i=1

qi∏
j=1

∫
· · ·

∫
θi jk

[ ri∏
k=1

θ
αi jk
i jk

]
· (ri − 1)! dθi j1, . . . , dθi jri

= P(BS)

n∏
i=1

qi∏
j=1

(ri − 1)!
∫

· · ·
∫

θi jk

ri∏
k=1

θ
αi jk
i jk dθi j1, . . . , dθi jri

︸ ︷︷ ︸
Dirichlet integral =

∏ri
k=1 αi jk !

(
∑ri

k=1 αi jk + ri − 1)!
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Finally, we get the equation for P(BS, D) which is referred to as the K2 metric of
the network structure BS given the data D:

P(BS, D) = K2(BS | D) = P(BS)

n∏
i=1

qi∏
j=1

[
(ri − 1)!

(Ni j + ri − 1)!
ri∏
k=1

αi jk !
]

with Ni j =
ri∑
k=1

αi jk (25.6)

The parameter independences are two important properties of the K2 metric. They
can be distinguished into global and local properties (see Heckerman et al. 1994, p.
13f):

• Global — This property manifests itself in the outer product of the K2 formula:
The product runs over all K2 values of the families of the attributes. It originates
from the likelihood Eq.25.1.

• Local—The Eq.25.1 assumes the independence of the child attribute values given
the parent attributes values. This is manifested in the product over all qi different
parent attributes’ value combinations of the attribute Ai . The equation for the
K2 metric also contains this product.

We exploit the global parameter independence to represent the K2metric as follows:

K2(BS | D) = P(BS)

n∏
i=1

K2local(Ai | D) with

K2local(Ai | D) =
qi∏
j=1

[
(ri − 1)!

(Ni j + ri − 1)!
ri∏
k=1

αi jk !
]

The presented K2 metric computes for a given database D the quality of a network
candidate BS . We saw that the set of candidate graphs BR for the given attribute
set R becomes way too large to allow to consider each individual graph. Hence we
need a heuristic how to check only a computationally feasible subset ofBR .

The following algorithm uses the K2 metric as its evaluation metric and a greedy
search as search heuristic. It further requires a topological ordering (see Defini-
tion 22.33 on p. 480) on the attributes (nodes).

The search starts with an isolated graph, i.e., with n isolated nodes. That is, the
parent sets pa(Ai ) are empty at the beginning. The indices 1 ≤ i ≤ n shall represent
the topological ordering. The function qi is defined as the local K2 value of node Ai

given the parent set M :

qi (M) = K2local(Ai | D) with pa(Ai ) = M

The parent sets pa(Ai ) for all nodes Ai are determined incrementally using the
following heuristic:

http://dx.doi.org/10.1007/978-1-4471-7296-3_22
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1. Determine for a parentless node Ai the quality measure qi (∅).
2. Then, all predecessors {A1, . . . , Ai−1} are tested individually as potential parent

nodes and the quality measure is recomputed. Let Y be the node that leads to
the best quality:

Y = argmax
1≤l≤i−1

qi ({Al})

This best quality be g = qi ({Y }).
3. If g is better than qi (∅), the node Y is permanently added as a parent of Ai :

pa(Ai ) = {Y }.
4. Steps 2 and 3 are repeated to augment the parent node set until no potential

attributes are left, the quality cannot be increased or a certain maximal number
of parent nodes is reached.

Algorithm 25.1 shows the K2 algorithm in pseudocode. Figures25.3 and 25.4 show
a specific example.

Fig. 25.3 An example run of the K2 algorithm (Step 1–6). The topological ordering is L ≺ KA ≺
M ≺ KV
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Fig.25.4 An example run of the K2 algorithm (Step 7–12). The topological ordering is L ≺ KA ≺
M ≺ KV

Algorithm 25.1 (K2 Algorithm)

procedure K2;
begin
for i ← 1 . . . n do (∗ initialization ∗)

pa(Ai ) ← ∅;
for i ← n . . . 1 do begin (∗ iteration ∗)

repeat
Choose Y ∈ {A1, . . . , Ai−1} \ pa(Ai ) which maximizes g = qi (pa(Ai ) ∪ {Y });
δ ← g − qi (pa(Ai ));
if δ > 0 then pa(Ai ) ← pa(Ai ) ∪ {Y }; end

until δ ≤ 0 or pa(Ai ) = {A1, . . . , Ai−1} or | pa(Ai )| = nmax;
end

end
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26Belief Revision

In Chap.23 we discussed graphical models as tools for structuring uncertain
knowledge about high-dimensional domains. More precisely, we introduced Bayes
networks, which are based on directed graphs and conditional distributions, and
Markov networks, which refer to undirected graphs and marginal distributions or
factor potentials. Further, we presented an evidence propagation method in Chap.24
with which it is possible to condition the probability distribution represented by a
graphical model on given evidence, i.e., on observed values for some of the vari-
ables, a reasoning process that is also called focusing. Efficient and user-friendly
commercial tools for this task, like HUGIN (2016) and NETICA (2016), are widely
available. In practice, however, the need also arises to revise the probability dis-
tribution that is represented by a graphical model so that it satisfies given frame
conditions, for example, given marginal distributions. For this task, pure evidence
propagation methods like join tree propagation and bucket elimination are unsuited.
The available commercial tools, however, only provide these standard methods, and
thus do not support the revision operation.

26.1 Introduction

Suppose that we are given a Markov network which represents a joint probability
distribution pU on a set U of variables. In addition, let J be a set of indices of
variables together with marginal probability distributions p∗

A j
on the domains of the

variables A j for all j ∈ J . The task is to revise the Markov network in such a way
that the marginal probability distributions p′

A j
of the distribution p′

U represented by
the new Markov network coincide with the distributions p∗

A j
for all j ∈ J .

W.r.t. the principle of minimal change (Gardenfors 1988), p′
U should also pre-

serve as much as possible the properties of the old probability distribution pU . This
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means that the structure of the graph underlying the Markov network must remain
unchanged, i.e., the new probability distribution should exhibit (at least) the condi-
tional independences that hold in the old one. Furthermore, we require the (condi-
tional) dependences between variables, as they can be assessed by some dependence
measure, to stay constant or to change as little as possible. It is quite easy to see
that p′

U in case of existence is uniquely determined: although we may find many
distributions that fit the conditions on the new marginals, there can be only one
distribution that maximally preserves the available knowledge on qualitative and
quantitative dependences adapted from the prior probability distribution.

In mathematical terms, this sort of additional information leads to competing
partial or total changes of selected (conditional) low-dimensional probability dis-
tributions in the Markov network. They can be interpreted as the basis for a revi-
sion operation, where a prior state of knowledge (represented by the initial Markov
network) in the light of new information (which is the new set of probability dis-
tributions) is revised to a posterior state of knowledge that incorporates the new
information in the sense of the principle of minimal change.

Translated into the probabilistic framework, the task is to calculate a posterior
Markov network thatmeets the newdistribution conditions, only accepting aminimal
changeof the qualitative andquantitative interaction structures of the underlyingprior
distribution.

Preserving the qualitative structure means to leave the network structure (inde-
pendence relations) unchanged, which, of course, is only possible if the revision
conditions themselves do not contradict this assumption. That is, all new distribu-
tions fit the clique structure of the Markov network.

Preserving the quantitative structure means to hold the cross-product ratios of the
distributions, as far as they are not affected by the revision information.

Using some concepts of multivariate statistics, especially the method of propor-
tional iterative fitting (Whittaker 1990), and formalizing the concept of revision and
the principle of minimal change toMarkov networks, it is possible to prove that there
is a unique solution of the above mentioned revision problem. The only natural side
condition to get this result is that the new marginal probability distributions do not
contradict themselves, and do not contradict to the rules system that is integrated in
the prior network. An in-depth examination of such a clean knowledge-based solu-
tion of the revision problem can be found in (Gebhardt 2001). The obtained results
have the advantage that they are also useful for the development of decision support
algorithms for the recognition, description, avoidance, and goal-oriented correction
of inconsistent revision input data.

In the following sections, we present a knowledge-based probabilistic formaliza-
tion and solution of the basic revision problem forMarkov networks, restricted to a set
of nonconditional marginals for single variables. This clean probabilistic approach
avoids any concepts offered by calculi with deviating semantic foundations, for
example, to minimize probabilistic difference measures that could be adapted from
information theory.
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26.2 Revision Procedure

In order to solve the revision problem specified above, we need an approach that
supports the construction of the distribution p′

U that we are searching for. From
multivariate statistics, iterative proportional fitting is a well-known algorithm for
adapting the marginal distributions of a given joint distribution to desired values. It
consists in computing the following sequence of probability distributions:

p(0)U (u) ≡ pU (u)

∀i = 1, 2, . . . : p(i)U (u) ≡ p(i−1)
U (u)

p∗
A j
(a)

p(i−1)
A j

(a)

where j is the ((i − 1) mod |J | + 1)-th element of J , the index set that indicates
the variables for which marginal distributions are given. p∗

A j
is the desired marginal

probability distribution on the domain of the variable A j , p
(i−1)
A j

the corresponding

distribution as it can be computed from p(i−1)
U by summing over the values of all

variables in U except A j .
In each step the probability distribution is modified in such away that the resulting

distribution satisfies one given marginal distribution (namely the distribution p∗
A j
).

However, this will, in general, change the marginal distribution for a variable Ak ,
which has been processed in a previous step. Therefore the adaptation has to be
iterated, traversing the set of variables several times.

If the revision problem has a solution, it converges to a (uniquely determined)
probability distribution that has the desired marginals, has the same structure of
(in)dependences as the original distribution as well as the same conditional proba-
bility distribution of the non-revised variables given the revised ones. For proofs of
these properties, see e.g. (Gebhardt et al. 2004). In case a unique solution does not
exist due to inconsistencies, experts will rely on techniques that allow to refine and
resolve the knowledge base (Schmidt et al. 2013; 2015b).

Up to now we considered revision with iterative proportional fitting on the whole
probability distribution pU represented by the given Markov network. In practice,
however, this cannot be done, because one of the main reasons for using a Markov
network in the first place is that the distribution pU cannot be represented as a whole
due to its size. Therefore we have to consider how the revision has to be performed
on the parameters of the given Markov network, that is, the factor potentials of
the factorization. However, in implementations usually not the factor potentials are
stored with the cliques, but the corresponding marginal distributions, because this
has advantages w.r.t. evidence propagation.

The idea of the algorithm is to first assign each attribute (the marginal distribution
ofwhich is to be revised) to amaximal clique of theMarkov network.As a next phase,
steps of iterative proportional fitting are used to adapt the marginal distributions on
the maximal cliques. Finally, information added by such a revision is distributed to
the other maximal cliques by standard evidence propagation (preferably carried out
by join tree propagation). More formally, we split the set J of indices of all variables,
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the marginal distributions of which are to be revised, into sets JC of indices for all
C ∈ C , where C is the set of sets of variables underlying the maximal cliques of the
Markov network. These sets JC of indicesmust satisfy the following three conditions:

(i)
⋃
C∈C

JC = J

(i i) ∀C1,C2 ∈ C : (C1 �= C2) ⇒ (JC1 ∩ JC2 = ∅)
(i i i) ∀ j ∈ JC : A j ∈ C

Thus each variable A j is assigned to the clique C , for which j ∈ JC . Note that there
are, in general, several ways to split the set J into sets JC ,C ∈ C , because a variable
may be contained in several cliques and thus there may be a choice into which set JC
to put its index.

In pseudocode, the resulting revision algorithm reads:

forall C ∈ C do // traverse the maximal cliques and
p(0)C (c) :≡ pC (c) // initialize marginal distributions

i := 0; // initialize the step counter
repeat // iterative proportional fitting
i := i + 1; // increment the step counter
forall C ∈ C do begin // traverse the maximal cliques
forall j ∈ JC do // traverse the assigned attributes

p(i)C (c) :≡ p(i−1)
C (c) · p∗

A j
(a)

p(i−1)
A j

(a)
; // revise the marginal distribution

// on the current maximal clique
do evidence propagation; // adapt the marginal distributions

end // on all other maximal cliques
until convergence; // until limiting distribution reached

Convergence may be checked, for instance, by determining the maximal change
of a marginal probability on a maximal clique: If this maximal change falls below
a user-defined threshold, the loop is terminated. It is useful to add a check on the
number of iterations done, because there may be no distribution that satisfies the
revision settings and then convergence cannot be achieved. That is, if a user-defined
threshold on the number of iterations is reached without meeting the convergence
criterion, the loop is terminated and a failure reported. In this case the revision settings
(i.e., the desired marginal distributions) have to be reconsidered and adapted.

As an alternative to adapting the revision settings, it is also possible to take one
of the competing revision distributions that level off during the iteration process as
an approximation that meets at least a part of the desired constraints.

That what is done inside the loop over the maximal cliques in the above algo-
rithm, namely applying some iterative proportional fitting steps only to the marginal
distribution on a maximal clique and distributing the revision information afterwards
by standard evidence propagation, is indeed equivalent to performing the analogous
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iterative proportional fitting steps on the whole probability distribution, can easily
be seen by considering how join tree propagation (Lauritzen and Spiegelhalter 1988;
Jensen 1996) works. Intuitively, the conditional probability distribution of all vari-
ables not contained in the current maximal clique given the variables in this maximal
clique is factored out, the marginal distribution of the maximal clique is adapted, and
the two factors are put together again.

Note that revision is only one of the many operations onMarkov networks needed
in order to develop and implement an innovative software system that is focused on,
but not restricted to item planning and the prediction of parts demand in the auto-
motive industry. Other necessary functionalities consist in the fusion of historical
random samples with rules systems for a future planning interval into a Markov
network, different kinds of updating operations, high-speed propagation and infor-
mation retrieval techniques, explanation functionality for inconsistencies arising in
revision (Schmidt et al. 2015a), and so forth.

26.3 A Real-World Application

This section illustrates knowledge representation with Markov networks using a
real-world industrial example. Volkswagen Group favors a marketing policy that
provides a maximum degree of freedom in choosing individual specifications of
vehicles. That is, considering personal preferences, a customer may select from a
large variety of options, each of which is taken from a so-called item family that
characterizes a certain line of equipment. Body variants, engines, gearshifts, door
layouts, seat coverings, radios, and navigation systems reflect only a small subset of
the whole range of item families. In case of the VWGolf—being Volkswagen’s most
popular car class—there are about 200 families with typically 4 to 8 values each, and
a total range of cardinalities from 2 up to 150.

Of course, not all of the possible instantiations of item variables lead to valid
vehicle configurations, since technical rules, restrictions in manufacturing and sales
requirements induce a common rule system that limits the acceptable ways of item
combination. Nevertheless, dealing with more than 10,000 technical rules in the Golf
class and even more rules delivered by the sales programs for the special needs of the
different countries, there remains a giant number of correct vehicle specifications.

The major aim of the project EPL (EigenschaftsPLanung, the German word for
item planning) at Volkswagen Group is the development and implementation of a
software system that supports item planning, parts demand calculation, and capacity
management with the aim of short-term as well as medium-term forecasts up to
24 months of future vehicle production.

In order to reach high quality of planning results, all relevant information sources
have to be considered, namely rules for the correct combinationof items into complete
vehicle specifications, samples of produced vehicles as a reflection of customers’
preferences, market forecasts that lead to stipulations of modified item rates for
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planning intervals, capacity restrictions, and production programs that fix the number
of planned vehicles.

W.r.t. the logistics view, the most essential result of the item planning process
is to assess the rates of all those item combinations that are known to be relevant
for the demand calculation of parts, always related to a certain vehicle class in a
certain planning interval. The importance of these item combinations arises from
the fact that a vehicle can be interpreted as a large set of installation points, each
of which is characterized by a set of alternative built-in parts for the corresponding
location. Which one of the alternative parts has to be chosen at an installation point,
depends on its installation condition that can be specified by an item combination.
Of course, at a selected installation point, all occurring installation conditions have
to be disjoint, and their disjunction has to form a tautology. That is, given any correct
vehicle specification, for each installation point we obtain a unique decision which
of its alternative parts has to be used.

In the context of the Golf class, a total of about 70,000 different item combinations
are required as installation conditions for thewhole set of installation points. The data
structure that lists all installation points, their installation conditions, and the built-in
quantities of the referenced parts, is called a variants-related bill of material. The
task of predicting the total demand of a certain part with respect to a future planning
interval is to sum up the demands over all of its installation points. The demand at
any installation point results from multiplying the rate of the item combination that
represents its installation condition with the built-in quantity and the total number
of vehicles intended to be produced in the respective planning interval.

26.3.1 Knowledge Representation

The domain knowledge is formally represented by a distribution pU over the set
of relevant item families or attributes U . Conditional independences are used to
decompose this distribution into lower-dimensional distributions using aMarkov net-
work. Figure26.1 shows a real-worldMarkovNetwork from the planning application
(Gebhardt and Kruse 2005). The different attributes of a car are described by
204 attributes which are anonymized by numbers in the figure. The Markov net-
work in the figure consists of 123 at most 18-dimensional cliques (51 attributes of
the original 204 are independent, that is, they are not connected to the join tree and
omitted here for brevity, otherwise the figure would show 174 cliques). Let us make
clear the efficiency gain of such a representation by comparing the theoretical neces-
sary storage for the original 204-dimensional distribution porig with the distribution
pnet encoded by the Markov network. To simplify the estimation, we assume that
the domains of all attributes contain only five values which come close to the aver-
age number of domain sizes in typical industrial projects. Our argumentation w.r.t.
the efficiency gain does not change if we assume a different domain size. With this
assumption we arrive at the following number of parameters for each representation
(i.e., single probabilities or clique potential entries):
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Fig.26.1 Markov network of a real-world application with 204 attributes (51 of which are indepen-
dent and therefore not shown). The distribution can be approximated by 123 cliques (or 174 cliques
if the independent attributes are taken into account) with at most 18 dimensions

Distribution Number of parameters

porig 1 · 5204 ≈ 4 · 10142
pnet

∑174
i=1 5

|Ci | ≈ 1 · 1013

The number of parameters for porig exceeds any imaginable measure. The size
of pnet, however, can be handled if certain additional observations are taken into
account. The high-dimensional cliques, for example, are usually quite sparse which
allows for better representations than a full joint distribution.

For reasons of fairness we have to admit that this sparseness criterion also applies
to the distribution porig, which would be extremely sparse in reality. Even if every
human being on earth would own a unique Volkswagen, then porig would only con-
tain around 7 billion nonzero probabilities which would be almost negligible in
contrast to the 10142 possible combinations. Hence, we would most likely use a data
structure that accounts for the sparsity which would lead to some kind of list which
in turn would grow with the number of cars. The Markov network representation,
however, can cater for any car combination without growing as long as the represen-
tation is compatible with the conditional (in)dependences encoded by the network
structure. It is immediately clear that any new data (in form of adjusted car con-
figuration frequencies) have to satisfy the (conditional) independences because it is
these independences that allow for the efficient representation. In practice, the exact
decomposability never fully holds. One confines oneself with an approximate notion
of decomposability. For details regarding the treatment of approximate independence
structures) refer to (Gebhardt et al. 2003; 2006).
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Once a basic prior Markov network for a certain planning interval has been gener-
ated, it becomes subject to a variety of planning operations which involve marketing
and sales stipulations (e.g., installation rate of comfort navigation system increases
from 20 to 35%) and capacity restrictions from logistics (e.g., maximum availabil-
ity of seat coverings in leather is 5,000). These quantitative input data are strongly
related to the planning interval itself and therefore not learnable, neither from his-
torical data nor from the nonprobabilistic rules system. They typically consist of
predicted installation rates or absolute demands for single items, sets of items, or
(sets of) item combinations, and are frequently related to refined planning contexts
(e.g., VW Golf with all-wheel drive for the US market).
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27DecisionGraphs

In this chapter we will introduce the concepts of decision graphs (also referred to
as influence diagrams) that are extensions to Bayes networks targeted for sequential
decision making with dedicated focus on evaluating strategies and expected utilities.
Section27.1 motivates requirements based on a pure Bayes network while Sect. 27.2
formally defines decision graphs. In Sect. 27.3wewill introduce the concepts of deci-
sion policies and strategies, Sect. 27.4 discusses how to arrive at optimal strategies
and closes with a thorough example.

27.1 Motivation

Let us discuss a pure Bayes network as depicted in Fig. 27.1 to identify additional
requirements desired for decision making. It shows a simplified decision scenario
from the medical domain. A certain disease causes different symptoms (here: cough,
nausea or chill) which might incline a physician towards a blood test. The blood
test result will then determine whether or not to administer a certain drug. Even
though the network structure encodes plausible causal dependencies, there are some
drawbacks when it comes to decision making.

All nodes in a Bayes network are random variables by definition. However, the
nodes “Blood Test” and “Drug” should represent a physician’s decisions based on
evidence and hopefully be not random at all. If we treat all nodes as random vari-
ables, we need to specify factor potentials for them. In case of a Bayes network the
factorization is constructed as the product of all conditional probability distributions
of all nodes given their parent nodes. While the distributions for “Disease” and the
three symptoms can be specified using disease incidence rates and expert knowledge,
we will have a harder time parameterizing the “Blood Test” node. One could argue
that the probability parameters needed for this node can be extracted from clinical
treatment guidelines. However, those guidelines will contain specific treatment plans
or strategies involving a physician’s judgment which we cannot guarantee to be rep-
resentable by pure probabilities. In addition to that, assume a physician observes

541
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Disease
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Chill

Blood 
Test

Test 
Result Drug

Fig. 27.1 Pure Bayes network illustrating a medical decision scenario

some symptoms and decides to administer a blood test. This corresponds to ini-
tializing the respective symptom nodes and the “Blood Test” node with evidence.
Propagating this evidence through the network will likely update the probabilities
of all other nodes including, e.g., the “Disease” node. From the physician’s point of
view it is undesirable to have the disease distribution change based on the conduc-
tion of the blood test because she wants to determine the state of the “Disease” node
rather than altering it with a pure observation decision. One could argue that for an
outside observer, however, this effect (of the “Disease” distribution changing based
on evidence for “Blood Test” node) is plausible. If a physician conducts a blood
test based on observed symptoms, then a disease might be more likely as a blood
test costs money and nobody would order one without reasonable cause. A decision
making framework should be able to model and treat those two different points of
view separately.

Let us discuss the above-mentioned cost aspects further. A blood test costs money
and depending on the severity of the (conjectured) disease a physician might opt
against it. The same is true for drug administration. Also, drugs can have side effects
that may outweigh the curative properties (if the disease is not too severe). A decision
making framework should have devices to explicitly model costs (or losses) in order
to guide the decisions that will be made. The following list summarizes requirements
regarding an extension framework of Bayes networks in order to facilitate decision
making.

• Decisions. The framework shall offer explicit tools to model decision points.
• Temporal order. Decisions shall be explicitly temporally ordered to maintain con-
sistency of sequential decisions.1

• Utilities. The framework shall offer explicit tools to model utilities (costs) based
on decisions and random nodes.

• Strategies. The framework shall offer the explicit notion of a strategy in order to
evaluate them.

1We have not covered this requirement explicitly in the medical example as the decision for “Drug”
obviously follows the decision for “Blood Test”. In more complex networks it might become less
obvious in what order to make decisions.
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Disease

Cough

Nausea

Chill

Blood Test Test 
Result Drug

Utility

Fig.27.2 Decision graph that better encodes the requirements motivated in Sect. 27.1 and Fig. 27.1

• Bayes semantics. While extending the notion of Bayes networks, the underlying
probabilistic properties and tools (such as evidence propagation) shall be kept
intact in order to drive adoption.

27.2 Definition

Decision graphs introduce the following extensions which are illustrated in Fig. 27.2
and will be summarized in Definition 27.1. Let us assume, we are given a Bayes
network with the underlying directed, acyclic graph G = (VC , EC ).2 As usual,
we depict the random (or chance) nodes as ellipses. We introduce a second set
of nodes VD of so-called decision nodes which will be drawn as rectangles. Each
decision node D ∈ VD has a finite domain dom(D) consisting of all possible deci-
sions that can be made. For example, in our medical scenario above, we would have
dom(BloodTest) = {yes, no}. Further, we introduce a third set VU of so-called util-
ity nodes. Each utility nodeU ∈ VU represents a utility function that assigns to each
value combination of its parent nodes (both chance or decision nodes are allowed as
parent nodes) a real-valued (cost or loss) utility value3:

U : dom(pa(U )) → R

We impose the restrictions depicted in Fig. 27.3 as to which node types can be
connected by a directed edge in the final decision graph:

(a) Probabilistic edge: Normal edge between chance nodes in a Bayes network
encoding qualitative knowledge.

2The index C is often used in decision graph literature to highlight chance nodes, i.e., random
variables, of a Bayes network.
3The shorthand notation dom(W ) with W being a set of nodes shall denote the set of tuples repre-
senting all combinations of values in all domains of nodes in W .
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Fig. 27.3 Allowed edge
connections in a decision
graph
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(b) Informational edge: The known state of node C might have an influence on the
decision D and thus needs to be determined before the decision D is made.

(c) Utility edge: The state of chance node C must be known in order to compute the
utility value of U.

(d) Probabilistic edge: The decision ofD influences the probability distribution ofC.
For chance node C, the decision node D is treated as a normal parent node. That
is, the conditional probability distribution has the shape P(C|D).

(e) Temporal edge: An edge between decision nodes imposes an order in which to
make the decisions. We impose that such edges are inserted to ensure a total
ordering of the nodes in VD . With this property satisfied we call the network a
perfect recall decision graph.

(f) Utility edge: The decision of D influences the utility value of U . That is, the
decision must be made before the utility value can be computed.

Obviously, utility nodes are sinks, that is, they cannot have outgoing edges.
Figure27.2 shows a decision graph for the medical scenario illustrated above. The

nodes BloodTest and Drug have been turned into decision nodes and a Utility node
was added. The value of theUtility node represents some combined quantitativemea-
sure of the medical and monetary quality of the sequence of the two decisions. That
is, a severe disease that goes untested and untreated would lead to a very low utility
while a detected and treated disease would be assigned high utility. Unnecessarily
conducted blood tests would be penalized with a low utility. Note, that we added an
edge from Disease to TestResult. Otherwise, the test result would solely depend
on whether a blood test is conducted or not. With this edge we can, e.g., model the
specificity of the test.4

Assuming the following domains, we will briefly outline the structure of the
conditional probability distributions and utility function that are needed to fully
specify the decision graph.

dom(Disease) = dom(TestResult) = {none, malaria, flu}
dom(Cough) = dom(Nausea) = dom(Chill) = {yes, no}

4We could have added this edge with the same rationale already in Fig. 27.1 but omitted it for
brevity.
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dom(BloodTest) = {yes, no}
dom(Drug) = {none, drug1, drug2, drug3}

Utility : dom(Disease) × dom(BloodTest) × dom(Drug) → R

The structure of the conditional probability distributions is as follows:

P(Disease)

P(Cough|Disease)

P(Nausea|Disease)

P(Chill|Disease)

P(TestResult|Disease, BloodTest)

The following definition formally summarizes the notion of a perfect recall deci-
sion graph (Howard and Matheson 1981; Kjaerulff and Madsen 2013):

Definition 27.1 ((Perfect recall) Decision Graph) A (perfect recall) decision graph
is a tuple D = (VC ∪ VD, E, P, VU ) satisfying the following properties:

• VC is a set of chance nodes, VD is a set of decision nodes and VU is a set of utility
nodes.

• The structure (VC ∪ VD ∪ VU , E) is a directed, acyclic graph.
• The subgraph induced by VC ∪ VD together with P is a Bayes network.
• The nodes sets VC , VD and VU are mutually disjoint.
• The graph structure imposes a total ordering on the nodes in VD .
• Each utility node U ∈ VU is assigned a function U : dom(pa(U )) → R.

The definition explicitly splits the node set into VC ∪ VD and VU to be consistent
with the literature where the utility set is explicitly exposed in the algebraic structure.

Given a fully specified decision graph, we can compute the joint expected utility
for the chance and decision nodes EU(VC ∪ VD)5:

EU(VC ∪ VD) :=
∏

A∈VC∪VD

P(A| pa(A))
∑
U∈VU

U (pa(U )) (27.1)

Given all conditional probability distributions and utility function definitions, we
can derive from this joint expected utility function all information needed to evaluate
decision policies and strategies.

5Note, that we use the symbol U to denote the node in a graph as well as the utility function
associated with it for brevity. This is perfectly fine as nodes in a graph are symbolic objects and a
function qualifies as such an object. Further, we have a one-to-one mapping between a utility node
and its assigned utility function. In some literature, nodes and functions are distinguished.
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27.3 Policies and Strategies

To solve a certain problem for which we are given a decision graph, we need to visit
all decision nodes Di ∈ VD in the imposed order andmake a decision d∗

i ∈ dom(Di ).
In our medical example, we first need to decide whether or not to conduct a blood
test and then which drug to administer (or not to administer any drug at all). We will
use the notion of a policy to describe the rules or function for a single decision node
and the notion of a strategy to describe sequences of policies.

Formally, a policy δD for a decision node D ∈ VD must assign for each value
combination of its parent nodes a decision from the domain dom(D):

δD : dom(pa(D)) → dom(D)

Technically, all information that is available at the time of decision can influence
that decision. In order to formally amount for that prior information, we impose
that an edge shall be inserted that connects that prior information and the decision
node. For example, the Drug decision node in Fig. 27.2 is only connected to the
TestResult chance node and thus a policy δDrug will only base its decision on the
test result outcome. However, the fact whether the patient shows any symptoms
(that is, the state of the chance nodes Cough, Nausea and Chill) are known by
the time of the drug decision, too. In order to allow the policy δDrug to take those
observations into account requires to insert a directed edge from, e.g., Cough to
Drug. The assumption that all such prior information is always available is known
as the no-forgetting assumption.

An example for a policy of the decision node BloodTest could be defined or
derived as follows (wewill discuss how to find optimal sequences of policies below):

δBloodTest(Cough, Nausea, Chill) =
{

yes if two or all symptom nodes equal yes

no if no or one symptom node equals yes

A strategy Δ is a sequence of policies, e.g., Δ = 〈
δBloodTest, δDrug

〉
. Let EU(Δ)

denote the expected utility of the strategy Δ. We are henceforth interested in finding
an optimal strategy Δ̂ for which holds:

∀Δ : EU(Δ̂) ≥ EU(Δ)

27.4 Finding Optimal Strategies

When dealing with finding optimal strategies, we need to distinguish two modi in
which to reason about a strategy:

1. Execution time. This is the time when the strategy is actually carried out by a
decision maker. Executing a strategy Δ = {δ1, . . . , δn} entails sequentially exe-
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cuting all policies δi . If a policy δi contains a chance node in the parent set, the
decision maker must wait until this chance node has evaluated to a specific value
which can be observed and which then will drive the policy decision.

2. Optimization time. This is the time when the fully specified decision graph (and
hence its joint expected utility function) are assessed in order to determine an
optimal strategy. At that time, no chance node has assumed a specific value. Yet
we must come up with policies that tell how to act when certain chance nodes
will have assumed final values (during execution time).

The underlying idea for finding optimal strategies is to average over chance nodes6

and maximize over decision nodes (Jensen 2001). Averaging accounts for the uncer-
tainty about the specific observations of the chance nodes at optimization time.Taking
the maximum ensures to choose the best decision to build up an optimal strategy.

Since we have a total order on the decision nodes, we can pick the last one (Dn)
and compute the expected utilities for all decision options dom(Dn) given the past.
From this, we pick the decision option with maximal expected utility, essentially
creating a policy δ̂n . We then advance backwards to Di−1 and repeat the process

until a full sequence of policies Δ̂ =
〈
δ̂1, . . . , δ̂n

〉
is obtained. The averaging and

maximization to determine the expected utilities is carried out on the joint expected
utility function induced by any fully specified decision graph:

EU(Δ̂) =
∑
I0

max
D1

∑
I1

max
D2

· · ·
∑
In−1

max
Dn

∑
In

EU(VC ∪ VD)

The sets Ii ⊆ VC comprise chance nodes that need to be observed before the
decision Di+1 can be made. As mentioned above, the order in which to maximize
over the decision nodes is determined by the total order on them. However, the
averaging over the chance nodes needs to be carried out in an order that represents
the temporal order in which they will (need to) be observed at execution time. Hence,
wemust derive from the decision graph a partition of the chance nodes that tellswhich
chance nodes need to be observed before the first and in between any subsequent
decision.

For the medical scenario above, we would derive the following order of chance
node sets and decision nodes:

{Cough, Nausea, Chill}︸ ︷︷ ︸
I0

≺ BloodTest︸ ︷︷ ︸
D1

≺ {TestResult}︸ ︷︷ ︸
I1

≺ Drug︸ ︷︷ ︸
D2

≺ {Disease}︸ ︷︷ ︸
I2

Let us now discuss a full scenario from the definition of the decision graph, over
the joint expected utility function towards the final optimal strategy.We borrow from
a network contained in Kjaerulff and Madsen (2013) that has fewer chance nodes
but two utility nodes and thus still induces a smaller amount of parameters to discuss
and present.

6We stick to the notion of a node since it also represents a chance or decision variable.
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27.5 Example Scenario

An oil wildcatter needs to decide whether or not to drill in a specific location. There
is uncertainty about the amount of oil beneath that location. He could decide to test
the location first by taking seismic soundings which give an indication of the geo-
graphical structure of the location (and thus give hints about potential oil quantities).
Figure27.4 depicts the qualitative structure of the scenario. The example is taken
from Kjaerulff and Madsen (2013). The domains of the chance and decision nodes
are as follows:

dom(Test) = {no, yes}
dom(Drill) = {no, yes}
dom(Oil) = { dry︸︷︷︸

no oil

, wet︸ ︷︷ ︸
some oil

, soaking︸ ︷︷ ︸
much oil

}

dom(Seismic) = { closed︸ ︷︷ ︸
hints much oil

, open︸ ︷︷ ︸
hints some oil

, diffuse︸ ︷︷ ︸
hints no oil

}

Tables27.1 and 27.2 contain the conditional probabilities for the chance nodes
Seismic and Oil. A test costs 10,000 while drilling costs 70,000. The utilities for
reaching a dry, wet or soaking oil source are 0, 120,000 and 270,000, respectively.
Hence, both utility functions U1 and U2 are defined as follows (we divide the costs
by 1,000):

Fig. 27.4 The Oil
Wildcatter example network Test Oil

U1

U2

Seismic Drill

Table 27.1 Conditional probabilities of Seismic node. The uniform distributions for the cases
where Test = no model ignorance when no test was conducted

P(Seismic
|Test, Oil)

Test = no Test = yes

Oil = dry Oil = wet Oil = soaking Oil = dry Oil = wet Oil = soaking

closed 1/3
1/3

1/3 0.1 0.3 0.5

open 1/3
1/3

1/3 0.3 0.4 0.4

diffuse 1/3
1/3

1/3 0.6 0.3 0.1

Table 27.2 Marginal
distribution for Oil

P(Oil)

dry 0.5

wet 0.3

soaking 0.2
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U1(Test) =
{

0 if Test = no
−10 if Test = yes

U2(Drill, Oil) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−70 if Drill = yes, Oil = dry
50 if Drill = yes, Oil = wet

200 if Drill = yes, Oil = soaking
0 if Drill = no

With this information, the decision graph is fully specified. The objective is now
to derive an optimal strategy for conducting the decisions Test and Drill. For this, we
will apply the averaging and maximization procedure on the joint expected utilities
function. This function is fully specified in Table27.3 andwas computed via Eq.27.1.
As an example, the value for the last entry in the joint expected utility function in
Table27.3 is computed as follows:

EU(O = soaking, S = closed, T = yes, D = yes)
= P(O = soaking) · P(S = closed|O = soaking, T = yes)·(

U1(yes) +U2(yes, soaking)
)

= 0.2 · 0.5 ∗ (−10 + 200) = 19

The network structure and the total ordering on both decision nodes leads to the
following node set order:

∅ ≺ Test ≺ {Seismic} ≺ Drill ≺ {Oil}
This allows us to write down the averaging and maximization equation7:

EU(Δ̂) = max
T

∑
S

max
D

∑
O

P(O) · P(S|O, T) · (
U1(T) +U2(D, S)

)

That is, in order to determine the policy forDrill, we need to average overOil. Since
the utilities are part of the joint expected utility function, we can just marginalize
over Oil.8 The result is depicted in the upper right of Table27.3. Maximizing it over
Drill allows us to derive the following drilling policy δ̂Drill:

δ̂Drill(Seismic, Test) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yes if Seismic = closed, Test = no
yes if Seismic = open, Test = no
yes if Seismic = diffuse, Test = no
yes if Seismic = closed, Test = yes
yes if Seismic = open, Test = yes
no if Seismic = diffuse, Test = yes

7We abbreviate the node names using the first letter to reduce visual clutter.
8Since the utility values are already included in the expected utility values, a marginalization effec-
tively represents the mentioned averaging.
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Table 27.3 Original joint expected utility function for the oil wildcatter decision graph EU(O, S,

T, D), joint expected utility function EU(S, T, D) after averaging over Oil and expected utility
EU(Test) for Test

Oil Seismic Test Drill EU(O,S,T,D)
no 0no
yes -11.67
no -3

diffuse

yes
yes -24
no 0no
yes -11.67
no -1.5

dry open

yes
yes -12
no 0no
yes -11.67
no -0.5

closed

yes
yes -4

no 0no
yes 5
no -0.9

diffuse

yes
yes 3.6
no 0no
yes 5
no -1.2

wet open

yes
yes 4.8
no 0no
yes 5
no -0.9

closed

yes
yes 3.6
no 0no
yes 13.34
no -0.2

diffuse

yes
yes 3.8
no 0no
yes 13.34
no -0.8

soaking open

yes
yes 15.2
no 0no
yes 13.34
no -1

closed

yes
yes 19

Seismic Test Drill EU(S,T,D)
no 0no
yes 6.67
no -4.1

diffuse

yes
yes -16.6
no 0no
yes 6.67
no -3.5

open

yes
yes 8
no 0no
yes 6.67
no -2.4

closed

yes
yes 18.6

Test EU(Test)
no 20
yes 22.5

This policy can be summarized as “Always drill unless the test shows no indication
of oil”. Continuing this procedure leads us finally to the expected utility for Test as
depicted in the lower right of Table27.3. From it we derive the policy δ̂Test = yes
which translates to “Always test”. This concludes the task of finding an optimal
strategy.
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It is obvious that operating according to the averaging and maximization rule in
Eq.27.1 becomes quickly infeasible as the number of nodes and their domains grow.
Instead, one can exploit the network structure to simplify computation (similar to
exploiting network structure for evidence propagation).
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Resilient backpropagation, 75
Restricted Boltzmann machine, 155
Restricted evaporation, 323
Retina, 11
Riemann-integrable, 54, 98
Robinson projection, 115
Roulette-wheel selection, 221, 294
Round-robin tournament, 290
Routing problem, 190
Row vector, 50
Running intersection property (RIP), 483, 500,
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S
Saltationism, 188
Scalar product, 15, 140
Scaling, 225
linear dynamic, 225
σ -, 225

Scheduling problem, 190
Schema, 247
Schema theorem, 247

building block hypothesis, 254
defining length, 250
don’t-care symbol, 247
implicit parallelism, 248
matching, 247
order, 252
principle of minimal alphabets, 256
two-armed bandit, 254
wildcard character, 247

Scheme, 270
Search space, 521
closedness, 218
disconnected, 220
exploitation, 221
exploration, 221

Selection, 220
Boltzmann, 226
characterization, 231
deterministic crowding, 231
elitism, 230
expected value model, 227
fitness proportionate, 221, 222
natural, 185, 188
power law sharing, 231
rank-based, 228
roulette-wheel selection, 221
sharing, 231
stochastic universal sampling, 227
tournament selection, 229
variance problem, 227

Selection method, 195
fitness-proportionate, 276
niche technique, 231, 284
power law sharing, 284
rank-based selection, 228, 284
roulette-wheel selection, 247
tournament selection, 201, 284

Selective pressure, 221
time-dependent, 221
vanishing, 223

Self-adaptive error backpropagation, 74
Self-adaptive Gaussian mutation, 234
Self-organizing map (SOM), 113
Semi-graphoid axiom, 493
Semi-linear function, 57
Sensitivity analysis, 89
Sensory system, 11
Separating line, 17, 18
Separating plane, 18
Separator set, 490, 501, 517
Set
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adjacency, 474
complete, 479
residual, 490, 501, 517
separator, 490, 501, 517

Shannon entropy, 441
Sharing, 231
Shift mutation, 235
Shortest path, 317
Shrinkage factor, 74
Shuffle crossover, 237, 241
σ -algebra, 466
Sigmoid function, 47
bipolar, 48
unipolar, 48

Signal, 10
Similarity relation, 383
Simple graph, 474
Simulated annealing, 150, 206, 226
Simulated evolution, 189
Slope, 173
Social interaction, 288
Sodium ions, 12
Soft learning vector quantization, 121
Softplus function, 85
Solution, 189
Soma, 11
SPEA2, 285
Speciation, 187
Stacked autoencoder, 86
Stair step, 53
Standard deviation, 46
Standard mutation, 235, 292
Starvation, 119
State graph, 135
State space, 461
Step border, 53
Step function, 48, 53
Step height, 56
Step width, 160, 204
Stigmergy, 317
Stochastic independence, 472
Stochastic universal sampling, 227
Stokesian friction, 167
Strategy, 546
optimal, 546

Strategy problem, 191
Subgraph, 477
Subsequence operator, 235
Sub-symbolic, 10
success rule, 1

5 , 259
Successor, 38

Sugeno-Takagi controller, 405
Super self-adaptive backpropagation, 74
SuperSAB, 74
Support vector, 173
Swarm intelligence, 299
alignment, 300
attraction, 301
cohesion, 300
computational, 300
repulsion, 301
separation, 300

Switching time, 11
Symbol, 10
Symmetric matrix, 264
Symmetric traveling salesman problem, 209
Symmetric weights, 131
Symmetry axiom, 493
Synapse, 12
Synchronous update, 41, 134

T
Takagi–Sugeno–Kang controller, 405
t-conorm, 345
Weber family, 346

Terminal buttons, 12
Terminal symbol, 268
Termination criterion, 195, 201, 295
Theorem
Bayes, 468
multiplication, 467
product, 467

Thermal equilibrium, 153
Three-parent operator, 240
Threshold, 15
Threshold accepting, 206
Threshold adaptation, 23
Threshold logic unit, 15
Thymine, 245
Tit for tat, 291
Tit for two tat, 291
t-norm, 344
Weber family, 345

Topological ordering, 42, 480
Topology preserving map, 115
Total ordering, 467
Total probability, 468
Tournament selection, 201, 229, 284, 294
Tournament size, 229
Training, 23, 153
batch, 25, 64
online, 25, 64
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Training data, 80
Training epoch, 25
Training pattern, 44
Transmutation, 188
Transposition, 50, 235
Trapezoidal functions, 337
Traveling salesman problem (TSP), 145, 190,

208, 217, 220, 238, 320
asymmetric, 209, 320
encoding, 217
symmetric, 209

Tree, 476
join, 483, 508
minimum spanning, 476
parse, 270

Triangular conorm, 345
Triangular function, 337
Triangular norm, 344
Triangulated graph, 481
Triangulation, 510
Truth functionality, 349
TS model, 405
TSK model, 405
Tuple, 470
Two-armed bandit, 254
Two-point crossover, 236
Type-2 fuzzy set, 358

U
Unconditional
independence, 472

Unconditional independence, 472
Underfitting, 80
Undirected edge, 474
Undirected graph, 475
Undirected path, 475
Unfolding in time, 169
Uniform crossover, 237, 241
Uniform order-based crossover, 237
Union, 352
Unipolar, 48
Unit, 38
Unit cube, 18
Unit step function, 48, 53
Unpredictability, 189
u-separation, 486, 495
Utility
expected, 546

joint expected, 545

V
Validation data, 80
Vanishing gradient, 83, 84
Vanishing selective pressure, 223
Variance, 45
Variance problem, 227
Variation, 187
Vector
column, 50
row, 50

Vector field, 62, 203
Vector quantization, 114
learning, 116

VEGA, 283
Vertex, 37, 474
Vertical view, 338
Visible neuron, 153
Voronoi diagram, 115

W
Weak union, 493
Weight, 15, 38
Weight adaptation, 23
center coordinates in an RBF network, 110
error backpropagation, 67
Euclidean distance, 110
Gaussian activation function, 110
hidden neuron of an RBF network, 110
logistic activation function, 65, 67
output neuron of an MLP, 64
output neuron of an RBF network, 108
radius in an RBF network, 111
self-organizing map, 124
vector quantization, 117

attraction rule, 119
repulsion rule, 119

Weight decay, 77
Weight matrix, 48, 132
Weight vector, 15
extended, 28

Weighted graph, 320
Widrow–Hoff procedure, 27, 33
Wildcard character, 247
Window rule, 120
Winner neuron, 117
Work phase, 41
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