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= Extending Java Classes
= Type Conversion Fun
= Arrays

Program
Agenda
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So, You Want To Write a Language on JVM

= You likely want to have your language somehow interface with the
underlying platform: VM, libraries, etc.

= There are some typical things that you need to solve for a rich interop
story.

= Extending JVM classes and implementing interfaces in your
language

= Type conversions
= Handling arrays (yes, it can be quite a special case)
= [nvocation of Java methods
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Extending Java Classes

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Confidential and Proprietary

implementors().stream()
Alter(i = L projects().any(=isLanguage))

¥ o L4 WG eFerFUeT AL ST C G L LK
bk AU pifi dne y TODUURTIO OGN [ o L E LT

e JET X & WD RING ONID L 440 ATV
YEAHLTA SO ISCZAN L7 ¥ Y L

KXXEBT¥L
1adauorigmydo

xr

=’Java ORACLE



Extend/Implement a JVM Class/Interface

= Typical Nashorn code:

var r = new java.lang.Runnable() ({
run: function() {
print (“Hello!”)
}
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Extend/Implement a JVM Class/Interface

= Simpler Nashorn code:
var r = new Jjava.lang.Runnable (function() {

print (“Hello!”)
})

- y |-
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Adapter Classes

= Obviously, when you write code like this, we instantiate an adapter
class.

= Question is: how is it supposed to look like when implemented
around invokedynamic?

- y |-
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Anatomy of an Adapter

package jdk.nashorn.javaadapters.java.lang;

public final class Runnable implements java.lang.Runnable {

private

private
private
private
private

}

final ScriptObject

final MethodHandle
final MethodHandle
final MethodHandle
final MethodHandle
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run;
toString;
hashCode;
equals;
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Anatomy of an Adapter - Fields

Can’t define classes in java.* package

package jdk.nashorn.javaadapters.java.lang;

public final class Runnable implements java.lang.Runnable {

private

private
private
private
private

}

final ScriptObiject

final MethodHandle
final MethodHandle
final MethodHandle
final MethodHandle
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run;
toString;
hashCode;
equals;

Overridable toString,
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Anatomy of an Adapter - Constructors

Repeated for every
public <init>(Ljava/lang/Object;)V MethodHandle field

ALOAD 0
INVOKESPECIAL j ang/Object.<init> ()V /

ILDC ()V.class
INVOKESTATIC JavaAdapterServices.getHandle() ;
PUTFIELD run;

o ) .
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Anatomy of an Adapter - Constructor in Java

public Runnable (Object o) {

super () ;

this.run = JavaAdapterServices.getHandle (o, “run”,
MethodType .methodType (void.class)) ;

this.equals = JavaAdapterServices.getHandle (o, “equals”,
MethodType .methodType (boolean.class, Object.class));

this.hashCode = JavaAdapterServices.getHandle (o, “hashCode”,
MethodType .methodType (int.class)) ;

this.toString = JavaAdapterServices.getHandle (o, “toString”,
MethodType .methodType (String.class)) ;

this.global = Context.getGlobal () ;
this.global.getClass() ;

p y :
13 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— I a Va orRrRACLE



Anatomy of an Adapter

public static MethodHandle getHandle (Object obj, String name, MethodType type) ({
final ScriptObject sobj = (ScriptObiject)obj;

// Since every JS Object has a toString, we only override

// "String toString()" it if it's explicitly specified

if ("toString".equals(name) && !sobj.hasOwnProperty("toString")) {
return null;

}

final Object fnObj = sobj.get (name) ;
if (fnObj instanceof ScriptFunction) ({
return adaptHandle (
((ScriptFunction) £nObj) .getBoundInvokeHandle (sobj) , type) ;
} else if (£fnObj == null || £fnObj instanceof Undefined) {
return null;
} else {
throw typeError ("not.a.function", name);

}

- )
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Anatomy of an Adapter - Constructors

Single method handle

public <init>(ScriEtFunctipn)V for the function.
ALOAD O '
INVOKESPECIAL java/lang/Object.<init> ()V /

LOAD 0
ALOAD 1
LDC ()V.class
INVOKESTATIC JavaAdapterServices.getHandle() ;
PUTFIELD run

ALOAD O
ACONST_NULL (———-— null for all other overrides
PUTFIELD toString

o ) .
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Anatomy of an Adapter - Constructor in Java

@Override
public Runnable (ScriptFunction f) ({
super () ;
this.run = JavaAdapterServices.getHandle (f,
MethodType .methodType (void.class)) ;

this.equals = null;
this.hashCode = null;
this. toString null;

this.global = Context.getGlobal () ;
this.global.getClass() ;

e )
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Anatomy of an Adapter - Constructors

= A public constructor is emitted for every superclass public or
protected constructor.

= We add Object at the end of superclass constructor signature.
= Yes, we convert variable arity constructors into fixed arity.
= Allows us touse thenew T(x, y) { ... } syntax extension.

= If we’re implementing a SAM, another constructor with ScriptFunction
as its final argument is emitted too.

= Dynalink overloaded method resolution ensures the right constructor
Is picked up at run time.

- y -
17 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary — l (a Va OQAC LE



Anatomy of an Adapter - Methods

= For an abstract method:
public run()V

ALOAD O
GETFIELD run;
DUP
IFNONNULL L4
POP
NEW java/lang/UnsupportedOperationException
DUP
INVOKESPECIAL UnsupportedOperationException.<init> ()V
ATHROW
L4 INVOKEVIRTUAL java/lang/invoke/MethodHandle.invokeExact
RETURN

o y :
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Anatomy of an Adapter - Methods

= For a non-abstract method:

public toString()Ljava/lang/String;

ALOAD O
GETFIELD toString
DUP
IFNONNULL L4
POP
ALOAD O
INVOKESPECIAL java/lang/Object.toString;
ARETURN

L4 INVOKEVIRTUAL java/lang/invoke/MethodHandle.invokeExact

ARETURN

o ) .
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Anatomy of an Adapter - Methods

= Exception handling

public toString()Ljava/lang/String;
TRYCATCHBLOCK LO Ll L3 java/lang/RuntimeException
TRYCATCHBLOCK LO L1 L3 java/lang/Error
TRYCATCHBLOCK LO L1 L2 java/lang/Throwable

L2

NEW java/lang/RuntimeException

DUP_X1 (——How often do you get to use this opcode?

SWAP

INVOKESPECIAL RuntimeException.<init>(Throwable)V
L3

ATHROW

o ) .
20 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— ] a Va orRrRACLE



Anatomy of an Adapter - Method in Java

@QOverride
public boolean equals (Object o) {
if (equals == null) {
return super.equals (o) ;
}

try {
return equals.invokeExact (this, o) ;

} catch (RuntimeException|Error) ({
throw e;

} catch(Throwable t) {
throw new RuntimeException(t) ;

}

o y :
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Anatomy of an Adapter - Method in Java, real

@Override
public boolean equals (Object o) {
if (equals == null) {
return super.equals (o) ;

}

try {

return equals.invokeExact (this, o)
} catch(RuntimeException|Error) ({

throw e;
} catch (Throwable t) {

throw new RuntimeException(t) ;

}
}

o ) .
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Anatomy of an Adapter

= MethodHandle objects - the behavior - is instance bound.
= What if you want class bound?

var Hello = Java.extend(java.lang.Runnable, ({
run: function() {
print (“Hello!”)
}
})

var hl
var h2

new Hello ()
new Hello ()

- ) o
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Anatomy of an Adapter - Class Behavior

package jdk.nashorn.javaadapters.java.lang;

public final class Runnable implements java.lang.Runnable {

24

private
private

private
private
private
private

private
private
private
private

final ScriptObject global;
static final ScriptObject staticGlobal;

final MethodHandle run;
final MethodHandle toString;
final MethodHandle hashCode;
final MethodHandle equals;

static final MethodHandle run_static;
static final MethodHandle toString static;
static final MethodHandle hashCode_ static;
static final MethodHandle equals_static;

- )
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Anatomy of an Adapter - Class Behavior

Pass parameter to static

block in a thread local.
static {
Object o = JavaAdapterServices.getClassOverrides() ;
if (o instanceof ScriptFunction) {
run static = JavaAdapterServices.getHandle ((ScriptFunction)o, ..);
hashCode_ static = null;

} else {

run static = JavaAdapterServices.getHandle(o, “run”, .);
hashCode static = JavaAdapterServices.getHandle (o, “hashCode”, .));

- )
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Anatomy of an Adapter - Class Behavior

@Override
public boolean equals (Object o) {
try {
if (equals !'= null) {
return equals.invokeExact (o) ;
} else if(equals static !'= null) {
return equals static.invokeExact (o) ;
}
} catch (RuntimeException|Error) {
throw e;
} catch(Throwable t) {
throw new RuntimeException(t) ;

}

return super.equals (o) ;

}

e )
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Anatomy of an Adapter - Class Behavior

= Of course, actual code is more complex, as it needs to deal with
management of appropriate global too.

= Up to three constructors emitted for every superclass constructor:
= One with same arguments as superclass constructor
= One with added Object argument for instance overrides

= One with added ScriptFunction argument for SAM instance
override.

- y -
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Overrides and Overloads in Adapters

= JavaScript has no concept of overloaded methods.

= Our adopted policy is: a named function is used as the
implementation of all non-final overloads with the same name.

= True for adapters written in JavaScript; if your language could
distinguish between overloads, feel free to write a different adapter.
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Adapters and Security

= Adapters can only extend/implement public classes/interfaces.

= Classes/interfaces in restricted packages subject to access
check.

= Can only override public and protected methods.

= @CallerSensitive methods can’t be overridden as it'd mess up
the caller identification.

- y |-
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Adapters and Security

= Adapters are defined in a separate ProtectionDomain with
AllPrivileges.

= S0 as to not narrow the caller privileges.

= They are just pass-through delegates, so no risk of privilege
escalation.

= They don't use doPrivileged blocks.

= Effective permissions are the intersection of permissions of
caller and delegate function.

- y -
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Adapters and Security

private static final ProtectionDomain GENERATED PROTECTION DOMAIN =
createGeneratedProtectionDomain () ;

private static ProtectionDomain createGeneratedProtectionDomain () {
final Permissions permissions = new Permissions() ;
permissions.add (new AllPermission()) ;
return new ProtectionDomain (
new CodeSource (null, (CodeSigner|[])null), permissions)

defineClass (name, classBytes, 0, classBytes.length,
GENERATED_PROTECT ION_DOMAIN) ;

= Obviously, our own code needs “createClassLoader” permission to
create a class loader to invoke defineClass in.

- )
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Where Should | Define Thee?

= What's the parent class loader for your adapter class?

= Take the set of class loaders for the extended class and all
implemented interfaces...

= ...as well as the class loader for your language runtime classes.

= Find the “Maximum Visibility Loader” - one that sees classes in all the
other loaders.

= |f there’s no such loader, can’t define the adapter!
= Can cause surprises in exotic situations.

- y -
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Type Conversion Fun
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Ain't No Script Like JavaScript...

= ... for ultimate type conversion fun.
=‘cause [+'+[]11+[+[]1] == 10, of course!

= Most type conversions are straightforward; some are more
Interesting.

= We mostly encounter type conversions to target Java types when
invoking Java methods and have to match parameters to their
signatures.

- y |-
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Stuff that's almost trivial

var x = new (Java.type("boolean[]")) (1)

test (0) 0 => false

test (1) 1 => true

test({}) {} => true
test([]) [] => true
test("") "" => false
test("false") "false" => true
test (null) null => false

test (undefined) undefined => false

function test(v) {
x[0] = v
print (JSON.stringify(v) + " => " + x[0])

p y :
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Stuff that’s almost trivial

var x = new (Java.type("java.lang.Boolean[]")) (1)

test (0) 0 => false

test (1) 1 => true
test({}) {} => true
test([]) [] => true
test("") "" => false
test("false") "false" => true
test (null) null => null

test (undefined) undefined => null

function test(v) {
x[0] = v
print (JSON.stringify(v) + " => " + x[0])
}
= When converting to boxed type, we can preserve nulls.

o ) .
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Stuff that’s nifty

= |f the target is a SAM type, and you supply a ScriptFunction, we
supply an on-the-fly allocated adapter.

Collections.sort (new function(x, y) { return y < x })

= All of this is handled with Dynalink linkers implementing the optional
GuardingTypeConverterFactory interface’s
GuardedInvocation getTypeConverter (Class from, Class to)
method.

- )
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Comparison prioritization

= Yet another Dynalink feature. To wit:

new Thread(new function() { print(“Hello!”) 1})

= Can apply both to Thread (Runnable) and sadly also to
Thread (String) method, as JS has implicit object-to-string
conversion.

- y |-
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Comparison prioritization

= By definition needed whenever your language allows more
conversions than JLS does.

= ‘Cause you'll end up widening the set of applicable overloaded
methods at a call site.

public interface ConversionComparator {
enum Comparison { TYPEl BETTER, TYPE2 BETTER, INDETERMINATE }

public Comparison compareConversion (Class sourceType,
Class targetTypel, Class targetType2) ;

- )
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Comparison prioritization

public class NashornLinker implements
TypeBasedGuardingDynamicLinker,
GuardingTypeConverterFactory,
ConversionComparator {

public Comparison compareConversion (Class sourceType,
Class targetTypel, Class targetType2) ({
if (ScriptObject.class.isAssignableFrom(sourceType)) {
if (targetTypel.isInterface()) {
if ('targetType2.isInterface()) {
return Comparison.TYPE 1 BETTER;
}
} else if (targetType2.isInterface()) {
return Comparison.TYPE 2 BETTER;

}

}
return Comparison.INDETERMINATE;

- )
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Handling Strings, Numbers, and Booleans

= JavaScript string, number, and boolean values are represented as
Java String, Number, and Boolean objects. These are considered JS
primitive types and handled as such.

= Still possible to invoke Beans methods on them, e.g.
“foo” .hashCode ().
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Primitives’ Conversion Prioritization

= Say you're invoking bean.foo(“123”) and you have overloaded
methods foo(int) and foo(Object).

= Three types in play: type of value “123” (String), and the types of
formal parameters in the method.

= Which one do you choose?
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Primitives’ Conversion Prioritization

= Conversion prioritization turned out to be somewhat hairy:
= |f exactly one target type matches source type, pick it.
= if exactly one target type is a number, pick it

= if exactly one target type is char, pick it (number to UTF-16
conversion)

= Between possible two number types, choose the wider one.

= |In all other cases, if one of the target types is string, choose it as
strings can represent any value without precision loss.
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SAM Type Conversion

= A.K.A. instant lambdas
= Pass a function in place of an argument expecting a SAM type...
= ... it gets wrapped.

new Thread (function() { print (“Hello!”) 1}) .start()

- y |-
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Arrays

45
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Java Array vs. Your Language’s Arrays

= JavaScript arrays are particularly nasty:
= They can grow and shrink.
= They can be sparse.

= |[f we provided an automatic conversion from JavaScript array to
Java array, what would the semantics be?

= Decision: we don’t provide automatic conversion!
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Java Array vs. Your Language’s Arrays

= This won’t work:

java.lang.Array.toString([1l, 2, 3])

= This will:
java.lang.Array.toString(Java.to([1, 2, 3]))

= Rare case of mandating explicit conversion.

- y |-
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Java Array vs. Your Language’s Arrays

= API| design is a tradeoff.

= No way we are making a copying operation with linear time and
unbounded memory needs implicit.

= The programmer is also expected to understand there are no two-
way updates between Java and JavaScript arrays.
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Java Array vs. Your Language’s Arrays

= Java.to(jsObj[, clazz]) converts a JavaScript Array to a Java
array, a List, Or a Deque.

= Default value for clazz is Object[].

* Java.from(javaObj) converts a Java array or List to a
JavaScript Array.

= Finally, it is perfectly possible to use Java arrays and lists in JS;
for..in and [] syntax work on them.

= Only if you need functionality from the JS prototype (e.g. map,
reduce, etc.) is when you need to explicitly use Java. from to get
an actual JS Array.

- y |-
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Component Type Conversion

= Java.to([12, false, “55”], int.class]) Wwill use language
conversion logic to int elementwise.

- y |-
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Component Type Conversion

public Object asArrayOfType (final Class<?> componentType) {
final Object[] src = asObjectArray() ;
final int 1 = src.length;
final Object dst = Array.newlInstance (componentType, 1) ;
final MethodHandle converter =
linkerServices.getTypeConverter (Object.class, componentType) ;
for (int i = 0; 1 < src.length; i++) {
Array.set(dst, i, converter.invokeExact (converter, srcl[il]));

}

return dst;

p y :
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Java Objects are Maps, So Why Aren't...

= Fun fact: scriptObject implements java.util.Map.
= S0, why doesn’t our NativeArray implement java.util.List?

- y |-
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Java Objects are Maps, So Why Aren't...

* NativeArray extends scriptObject, implicitly implements Map.
= Turns out no class can implement both List and Map:

= boolean List.remove (Object)
= Object Map.remove (Object)

= Some battles you can’t win.

- y |-
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Statics
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Class vs. Statics

= As a Java programmer, you understand the difference between
java.io.File and java.io.File.class.

= One is a compile-time identifier providing access to constructors and
static members. It is not reified at run-time.

= Other is a reified run-time representation of an object’s class.
= They are separate concepts.
= Probably shouldn’t mix them up in other languages either.

- y |-
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StaticClass

= Dynalink has a staticClass class that is a reification of Java’s
compile-time class identifier.

= |t's just a boring little wrapper around a class object.

= However, the linker will correctly link to static members of the
represented class when faced with such object.

= |t will also link to constructors when linking dyn : new operation.

- y |-
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StaticClass

= dyn:getProp:class IS also linked to retrieve the runtime class.

= var fileClazz = Java.type(“java.io.File”) .class // or
var fileClazz = java.io.File.class // familiar, right?

= On the other hand, dyn:getProp:static is linked to static class from
a Class object - a capability you don’t have in the Java language.

var file = ... // somehow get a java.io.File

file.class === java.io.File.class // like in Java
file.class !'== java.io.File // wouldn’t compile in Java!
file.class.static === java.io.File // neither would this!

file instanceof java.io.File // true: special handling

o ) .
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The Incredible Package
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Packages Aren’t Reified

= There’s no object in JVM that represents a package, e.g. java.util.
= java.lang.Package doesn’t count.
= Can't verify existence of a package.

= Yet dynamic languages often want to give users stuff like:
var list = new java.util.List().

o y -
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Stepping Stones

= Typical solution: “stepping stones” approach: provide a java object,
that provides a util object, that provides a List object.

= Problem: must optimistically presume any identifier to be a package

when a class of that name is not found
var PiratelList = java.util.ArrrayList
var list = new Piratelist()

= Typos can end up being detected late; effort must be taken to report
the right error.
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Stepping Stones

@Override
protected GuardedInvocation findCallMethod (CallSiteDescriptor desc) {

final MethodType type = desc.getMethodType() ;
return new GuardedInvocation (MH.dropArguments (CLASS NOT FOUND, 1,

type.parameterList() .subList (1, type. parameterCount())),
TYPE GUARD ) ;
}

@SuppressWarnings ("unused")
private static void classNotFound (final NativeJavaPackage pkg) throws

ClassNotFoundException ({
throw new ClassNotFoundException (pkg.name) ;

}

=’ |ava ORACLE'
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Linking a Thrower vs. Throwing an Exception

= |[n previous example, we linked an exception throwing method
handle.

= \WWe could’ve also thrown the exception from linking code too.
= Design choice:

= Linking an exception thrower eliminates linker plumbing frames
from the call stack.

= Throwing in-situ can help debugging the runtime because it does
not eliminate those same stack frames.

= Possible compromise: Throwable.addSuppressed ()
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Nashorn solution

= We support stepping stones, but try to steer users towards avoiding
them.

= Preferred idiom is Java. type ().
var List = Java.type(“java.util.ArrayList”)
var list = new List ()

= Can invoke it directly too, but a bit awkward because of call operator

precedence:
var list = new (Java.type(“java.util.ArrayList”))
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Also supports arrays

= var intArr5 = new (Java.type(“int[]”)) (5)

» var IntArray = Java.type (“int[]”)
var intArr5 = new IntArray (5)
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Educate the Users

= |n general, we try to actively educate users to use Java. type () and
if we can help it don’'t even mention stepping stones.

= |t's your choice how much of JVM do you want to expose or hide.
= Hey Dorothy, You're not in Java anymore.
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Dynalink Evolved

= Nashorn embeds Dynalink.

= Dynalink underwent lots of improvements as a result of having an
actual client runtime.

= Still available as external standalone project.
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Composite Operations

= JavaScript doesn’t have separate namespaces for methods,
properties, and collection elements.

= Which one of dyn:getProp, dyn:getElem, Or dyn:getMethod doO
you emit for obj . £00?

= Correct answer: all of them!
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Composite operations

source operation operation name
obj.foo dyn:getProp|getElem|getMethod: foo
obj.foo () dyn:getMethod|getProp|getElem: foo
obj [x] dyn:getElem|getProp|getMethod
obj[x] () dyn:getMethod|getElem|getProp
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Composite Operations

= BeansLinker correctly supports them.
= |[n most cases, can evaluate the effective operation at link time.
= Except getElem on a map followed by getProp and/or getMethod.

a . P
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Linking Security

= Dynalink BeansLinker uses publicLookup for cacheable method
handles (most of them).

= Completely prevents access to restricted packages (in presence of
a security manager!)

= Correctly handles methods marked as @CallerSensitive.

= Method handles are never cached, but unreflected on every link
request, with caller’'s Lookup.
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Miscellaneous Dynalink Improvements

= Inner classes are properties of StaticClass

= Detection of frequently relinked call sites;
LinkRequest.isCallSiteUnstable().

* dyn:callMethod was split into dyn:getMethod and dyn:call.
= ‘cause you don’t always call a named function on an object.

= dyn: new for invoking constructors.

= Manual overload resolution: dyn:getMethod:println (char).

= Never really needed; usable by programmer as a performance
enhancement. Really introduced for compatibility with Rhino.
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Leveraging It From Java

private static final MethodHandle REDUCE CALLBACK INVOKER =
Bootstrap.createDynamicInvoker ("dyn: call", Object class,
Object.class, Undefined.class, Object.class, Object.class,
long.class, Object.class);

private static Object reducelInner(...) {

return new IteratorAction<Object>(...) {
protected boolean forEach(...) {
result = REDUCE CALLBACK INVOKER.invokeExact (
callbackfn, ScriptRuntime.UNDEFINED, result, val, i,
self) ;
return true;
}
}.apply ()
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Leveraging It From Java

* createDynamicInvoker IS sSimply a dynamic invoker on a Nashorn-
linked call site.

* dyn:call will be able to invoke anything that Nashorn can invoke.
public static MethodHandle createDynamicInvoker (
final String opDesc, final MethodType type) ({

return bootstrap (MethodHandles.publicLookup (), opDesc, type,
0) .dynamicInvoker() ;
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“InvokeByName™ pattern

= Java code needs to invoke a function on a JavaScript object.
= e.J. Array. toString iInVOKes this.join ().

class NativeArray {

private static final InvokeByName JOIN = new InvokeByName ("join",
ScriptObject.class) ;

public static Object toString(final Object obj) {

final ScriptObject sobj = (ScriptObject)obj;
final Object joinFn = JOIN.getGetter () .invokeExact (sobj) ;
if (Bootstrap.isCallable(joinFn)) {

return JOIN.getInvoker () .invokeExact(joinFn, sobj);

}
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InvokeByName

public class InvokeByName ({
private final MethodHandle getter;
private final MethodHandle invoker;

public InvokeByName (String name, Class targetClass, Class rtype,
Class... ptypes) {

getter = Bootstrap.createDynamicInvoker (
"dyn:getMethod|getProp|getElem:" + name, Object.class,
targetClass) ;
final Class[] finalPtypes = ...; // omitted type massaging
invoker = Bootstrap.createDynamicInvoker ("dyn:call", rtype,
finalPtypes) ;
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Security So Far

= Dynalink prevents access to non-public members
= Also to classes in restricted packages.

= That’s stricter than Java, but a conscious decision.

= Package restrictions are only in place with SecurityManager.
= Dynalink correctly handles ecallerSensitive methods.
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Nashorn Additional Security Features

= Nashorn prevents Java. type () access to classes in restricted
packages.

= Nashorn ties access to reflective classes to a a new
"Nashorn.JavaReflect” runtime permission.

= Class, ClassLoader, everything in java.lang.reflect and
java.lang.invoke packages.
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Rationale

= None of the restrictions are in place when there is no security
manager.

= Most uses are unaffected even under a security manager.

= You can do less things from JavaScript than from Java
= Namely, manipulate stuff in restricted packages.
= Actually, you can: through reflection; if you have the permission.
= Even then, it won't be pleasant.

= Nashorn runs with Al1Permission since it lives in jre/lib/ext.
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= Extending Java Classes
= Type Conversion Fun
= Arrays

Program
Agenda
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