= jJavar

ORACLE

Square Pegs, Round Holes
or: How To Fit a Language On the JVM (Without a Hammer.)

Attila Szegedi
Principal Member of Technical Staff

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development,
release, and timing of any features or functionality described for
Oracle’s products remains at the sole discretion of Oracle.

orRACLE

3 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. |

= Extending Java Classes
= Type Conversion Fun
= Arrays

Program
Agenda

4 , Copyright © 2013, Oracle and/or its affiliates. All rights rese!

So, You Want To Write a Language on JVM

= You likely want to have your language somehow interface with the
underlying platform: VM, libraries, etc.

= There are some typical things that you need to solve for a rich interop
story.

= Extending JVM classes and implementing interfaces in your
language

= Type conversions
= Handling arrays (yes, it can be quite a special case)
= [nvocation of Java methods

ial and Proprietary :’- e l(a Va ORACLE

6

Extending Java Classes

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Confidential and Proprietary

implementors().stream()
Alter(i = L projects().any(=isLanguage))

¥ o L4 WG eFerFUeT AL ST C G L LK
bk AU pifi dne y TODUURTIO OGN [o L E LT

e JET X & WD RING ONID L 440 ATV
YEAHLTA SO ISCZAN L7 ¥ Y L

KXXEBT¥L
1adauorigmydo

xr

=’Java ORACLE

Extend/Implement a JVM Class/Interface

= Typical Nashorn code:

var r = new java.lang.Runnable() ({
run: function() {
print (“Hello!”)
}

ial and Proprietary :13 ‘ JaVa ORACLE

Extend/Implement a JVM Class/Interface

= Simpler Nashorn code:
var r = new Jjava.lang.Runnable (function() {

print (“Hello!”)
})

- y |-
8 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary < pe— J a Va OQAC Le

Adapter Classes

= Obviously, when you write code like this, we instantiate an adapter
class.

= Question is: how is it supposed to look like when implemented
around invokedynamic?

- y |-
9 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e I (a Va OQAC LE

Anatomy of an Adapter

package jdk.nashorn.javaadapters.java.lang;

public final class Runnable implements java.lang.Runnable {

private

private
private
private
private

}

final ScriptObject

final MethodHandle
final MethodHandle
final MethodHandle
final MethodHandle

10] Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary

global;

run;
toString;
hashCode;
equals;

=’]ava

OoORrRACLE

Anatomy of an Adapter - Fields

Can’t define classes in java.* package

package jdk.nashorn.javaadapters.java.lang;

public final class Runnable implements java.lang.Runnable {

private

private
private
private
private

}

final ScriptObiject

final MethodHandle
final MethodHandle
final MethodHandle
final MethodHandle

1] Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary

global; 4—Need defining context

run;
toString;
hashCode;
equals;

Overridable toString,
hashCode, equals

=’ lava

ORACLE

Anatomy of an Adapter - Constructors

Repeated for every
public <init>(Ljava/lang/Object;)V MethodHandle field

ALOAD 0
INVOKESPECIAL j ang/Object.<init> ()V /

ILDC ()V.class
INVOKESTATIC JavaAdapterServices.getHandle() ;
PUTFIELD run;

o) .
12 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r—] a Va orRrRACLE

Anatomy of an Adapter - Constructor in Java

public Runnable (Object o) {

super () ;

this.run = JavaAdapterServices.getHandle (o, “run”,
MethodType .methodType (void.class)) ;

this.equals = JavaAdapterServices.getHandle (o, “equals”,
MethodType .methodType (boolean.class, Object.class));

this.hashCode = JavaAdapterServices.getHandle (o, “hashCode”,
MethodType .methodType (int.class)) ;

this.toString = JavaAdapterServices.getHandle (o, “toString”,
MethodType .methodType (String.class)) ;

this.global = Context.getGlobal () ;
this.global.getClass() ;

p y :
13 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— I a Va orRrRACLE

Anatomy of an Adapter

public static MethodHandle getHandle (Object obj, String name, MethodType type) ({
final ScriptObject sobj = (ScriptObiject)obj;

// Since every JS Object has a toString, we only override

// "String toString()" it if it's explicitly specified

if ("toString".equals(name) && !sobj.hasOwnProperty("toString")) {
return null;

}

final Object fnObj = sobj.get (name) ;
if (fnObj instanceof ScriptFunction) ({
return adaptHandle (
((ScriptFunction) £nObj) .getBoundInvokeHandle (sobj) , type) ;
} else if (£fnObj == null || £fnObj instanceof Undefined) {
return null;
} else {
throw typeError ("not.a.function", name);

}

-)
14 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e l a Va OQAC I_G

Anatomy of an Adapter - Constructors

Single method handle

public <init>(ScriEtFunctipn)V for the function.
ALOAD O '
INVOKESPECIAL java/lang/Object.<init> ()V /

LOAD 0
ALOAD 1
LDC ()V.class
INVOKESTATIC JavaAdapterServices.getHandle() ;
PUTFIELD run

ALOAD O
ACONST_NULL (———-— null for all other overrides
PUTFIELD toString

o) .
15 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r—] a Va orRrRACLE

Anatomy of an Adapter - Constructor in Java

@Override
public Runnable (ScriptFunction f) ({
super () ;
this.run = JavaAdapterServices.getHandle (f,
MethodType .methodType (void.class)) ;

this.equals = null;
this.hashCode = null;
this. toString null;

this.global = Context.getGlobal () ;
this.global.getClass() ;

e)
16 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— I a Va ORACLE

Anatomy of an Adapter - Constructors

= A public constructor is emitted for every superclass public or
protected constructor.

= We add Object at the end of superclass constructor signature.
= Yes, we convert variable arity constructors into fixed arity.
= Allows us touse thenew T(x, y) { ... } syntax extension.

= If we’re implementing a SAM, another constructor with ScriptFunction
as its final argument is emitted too.

= Dynalink overloaded method resolution ensures the right constructor
Is picked up at run time.

- y -
17 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary — l (a Va OQAC LE

Anatomy of an Adapter - Methods

= For an abstract method:
public run()V

ALOAD O
GETFIELD run;
DUP
IFNONNULL L4
POP
NEW java/lang/UnsupportedOperationException
DUP
INVOKESPECIAL UnsupportedOperationException.<init> ()V
ATHROW
L4 INVOKEVIRTUAL java/lang/invoke/MethodHandle.invokeExact
RETURN

o y :
18 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— I a Va orRrRACLE

Anatomy of an Adapter - Methods

= For a non-abstract method:

public toString()Ljava/lang/String;

ALOAD O
GETFIELD toString
DUP
IFNONNULL L4
POP
ALOAD O
INVOKESPECIAL java/lang/Object.toString;
ARETURN

L4 INVOKEVIRTUAL java/lang/invoke/MethodHandle.invokeExact

ARETURN

o) .
19 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r—] a Va orRrRACLE

Anatomy of an Adapter - Methods

= Exception handling

public toString()Ljava/lang/String;
TRYCATCHBLOCK LO Ll L3 java/lang/RuntimeException
TRYCATCHBLOCK LO L1 L3 java/lang/Error
TRYCATCHBLOCK LO L1 L2 java/lang/Throwable

L2

NEW java/lang/RuntimeException

DUP_X1 (——How often do you get to use this opcode?

SWAP

INVOKESPECIAL RuntimeException.<init>(Throwable)V
L3

ATHROW

o) .
20 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r—] a Va orRrRACLE

Anatomy of an Adapter - Method in Java

@QOverride
public boolean equals (Object o) {
if (equals == null) {
return super.equals (o) ;
}

try {
return equals.invokeExact (this, o) ;

} catch (RuntimeException|Error) ({
throw e;

} catch(Throwable t) {
throw new RuntimeException(t) ;

}

o y :
21 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— I a Va orRrRACLE

Anatomy of an Adapter - Method in Java, real

@Override
public boolean equals (Object o) {
if (equals == null) {
return super.equals (o) ;

}

try {

return equals.invokeExact (this, o)
} catch(RuntimeException|Error) ({

throw e;
} catch (Throwable t) {

throw new RuntimeException(t) ;

}
}

o) .
22 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— J a Va orRrRACLE

Anatomy of an Adapter

= MethodHandle objects - the behavior - is instance bound.
= What if you want class bound?

var Hello = Java.extend(java.lang.Runnable, ({
run: function() {
print (“Hello!”)
}
})

var hl
var h2

new Hello ()
new Hello ()

-) o
23 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary < pe— J a Va OQAC Le

Anatomy of an Adapter - Class Behavior

package jdk.nashorn.javaadapters.java.lang;

public final class Runnable implements java.lang.Runnable {

24

private
private

private
private
private
private

private
private
private
private

final ScriptObject global;
static final ScriptObject staticGlobal;

final MethodHandle run;
final MethodHandle toString;
final MethodHandle hashCode;
final MethodHandle equals;

static final MethodHandle run_static;
static final MethodHandle toString static;
static final MethodHandle hashCode_ static;
static final MethodHandle equals_static;

-)
Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary - — I a Va

ORACLE

Anatomy of an Adapter - Class Behavior

Pass parameter to static

block in a thread local.
static {
Object o = JavaAdapterServices.getClassOverrides() ;
if (o instanceof ScriptFunction) {
run static = JavaAdapterServices.getHandle ((ScriptFunction)o, ..);
hashCode_ static = null;

} else {

run static = JavaAdapterServices.getHandle(o, “run”, .);
hashCode static = JavaAdapterServices.getHandle (o, “hashCode”, .));

-)
25 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— J a Va ORACLE

Anatomy of an Adapter - Class Behavior

@Override
public boolean equals (Object o) {
try {
if (equals !'= null) {
return equals.invokeExact (o) ;
} else if(equals static !'= null) {
return equals static.invokeExact (o) ;
}
} catch (RuntimeException|Error) {
throw e;
} catch(Throwable t) {
throw new RuntimeException(t) ;

}

return super.equals (o) ;

}

e)
26 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— I a Va ORACLE

Anatomy of an Adapter - Class Behavior

= Of course, actual code is more complex, as it needs to deal with
management of appropriate global too.

= Up to three constructors emitted for every superclass constructor:
= One with same arguments as superclass constructor
= One with added Object argument for instance overrides

= One with added ScriptFunction argument for SAM instance
override.

- y -
27 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary — l (a Va OQAC LE

Overrides and Overloads in Adapters

= JavaScript has no concept of overloaded methods.

= Our adopted policy is: a named function is used as the
implementation of all non-final overloads with the same name.

= True for adapters written in JavaScript; if your language could
distinguish between overloads, feel free to write a different adapter.

ial and Proprietary :’- e l(a Va ORACLE

Adapters and Security

= Adapters can only extend/implement public classes/interfaces.

= Classes/interfaces in restricted packages subject to access
check.

= Can only override public and protected methods.

= @CallerSensitive methods can’t be overridden as it'd mess up
the caller identification.

- y |-
29 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e I (a Va OQAC LE

Adapters and Security

= Adapters are defined in a separate ProtectionDomain with
AllPrivileges.

= S0 as to not narrow the caller privileges.

= They are just pass-through delegates, so no risk of privilege
escalation.

= They don't use doPrivileged blocks.

= Effective permissions are the intersection of permissions of
caller and delegate function.

- y -
30 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary — l (a Va OQAC LE

Adapters and Security

private static final ProtectionDomain GENERATED PROTECTION DOMAIN =
createGeneratedProtectionDomain () ;

private static ProtectionDomain createGeneratedProtectionDomain () {
final Permissions permissions = new Permissions() ;
permissions.add (new AllPermission()) ;
return new ProtectionDomain (
new CodeSource (null, (CodeSigner|[])null), permissions)

defineClass (name, classBytes, 0, classBytes.length,
GENERATED_PROTECT ION_DOMAIN) ;

= Obviously, our own code needs “createClassLoader” permission to
create a class loader to invoke defineClass in.

-)
31 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r—] a Va ORACLE

Where Should | Define Thee?

= What's the parent class loader for your adapter class?

= Take the set of class loaders for the extended class and all
implemented interfaces...

= ...as well as the class loader for your language runtime classes.

= Find the “Maximum Visibility Loader” - one that sees classes in all the
other loaders.

= |f there’s no such loader, can’t define the adapter!
= Can cause surprises in exotic situations.

- y -
32 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary — l (a Va OQAC LE

33

Type Conversion Fun

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Confidential and Proprietary

implementors().stream()
Alter(i = L projects().any(=isLanguage))

¥ o L4 WG eFerFUeT AL ST C G L LK
bk AU pifi dne y TODUURTIO OGN [o L E LT

e JET X & WD RING ONID L 440 ATV
YEAHLTA SO ISCZAN L7 ¥ Y L

KXXEBT¥L
1adauorigmydo

xr

=’Java ORACLE

Ain't No Script Like JavaScript...

= ... for ultimate type conversion fun.
=‘cause [+'+[]11+[+[]1] == 10, of course!

= Most type conversions are straightforward; some are more
Interesting.

= We mostly encounter type conversions to target Java types when
invoking Java methods and have to match parameters to their
signatures.

- y |-
34 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary _— I (a Va OoORACLE

Stuff that's almost trivial

var x = new (Java.type("boolean[]")) (1)

test (0) 0 => false

test (1) 1 => true

test({}) {} => true
test([]) [] => true
test("") "" => false
test("false") "false" => true
test (null) null => false

test (undefined) undefined => false

function test(v) {
x[0] = v
print (JSON.stringify(v) + " => " + x[0])

p y :
35 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— I a Va orRrRACLE

Stuff that’s almost trivial

var x = new (Java.type("java.lang.Boolean[]")) (1)

test (0) 0 => false

test (1) 1 => true
test({}) {} => true
test([]) [] => true
test("") "" => false
test("false") "false" => true
test (null) null => null

test (undefined) undefined => null

function test(v) {
x[0] = v
print (JSON.stringify(v) + " => " + x[0])
}
= When converting to boxed type, we can preserve nulls.

o) .
36 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— J a Va orRrRACLE

Stuff that’s nifty

= |f the target is a SAM type, and you supply a ScriptFunction, we
supply an on-the-fly allocated adapter.

Collections.sort (new function(x, y) { return y < x })

= All of this is handled with Dynalink linkers implementing the optional
GuardingTypeConverterFactory interface’s
GuardedInvocation getTypeConverter (Class from, Class to)
method.

-)
37 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary < pe—] a Va OQAC Le

Comparison prioritization

= Yet another Dynalink feature. To wit:

new Thread(new function() { print(“Hello!”) 1})

= Can apply both to Thread (Runnable) and sadly also to
Thread (String) method, as JS has implicit object-to-string
conversion.

- y |-
38 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary < pe— J a Va OQAC Le

Comparison prioritization

= By definition needed whenever your language allows more
conversions than JLS does.

= ‘Cause you'll end up widening the set of applicable overloaded
methods at a call site.

public interface ConversionComparator {
enum Comparison { TYPEl BETTER, TYPE2 BETTER, INDETERMINATE }

public Comparison compareConversion (Class sourceType,
Class targetTypel, Class targetType2) ;

-)
39 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary < pe—] a Va OQAC Le

Comparison prioritization

public class NashornLinker implements
TypeBasedGuardingDynamicLinker,
GuardingTypeConverterFactory,
ConversionComparator {

public Comparison compareConversion (Class sourceType,
Class targetTypel, Class targetType2) ({
if (ScriptObject.class.isAssignableFrom(sourceType)) {
if (targetTypel.isInterface()) {
if ('targetType2.isInterface()) {
return Comparison.TYPE 1 BETTER;
}
} else if (targetType2.isInterface()) {
return Comparison.TYPE 2 BETTER;

}

}
return Comparison.INDETERMINATE;

-)
40] Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e l a Va OQAC LE

Handling Strings, Numbers, and Booleans

= JavaScript string, number, and boolean values are represented as
Java String, Number, and Boolean objects. These are considered JS
primitive types and handled as such.

= Still possible to invoke Beans methods on them, e.g.
“foo” .hashCode ().

ial and Proprietary _.1 e I(a Va ORACLE

Primitives’ Conversion Prioritization

= Say you're invoking bean.foo(“123”) and you have overloaded
methods foo(int) and foo(Object).

= Three types in play: type of value “123” (String), and the types of
formal parameters in the method.

= Which one do you choose?

ial and Proprietary :’- e l (a Va ORACLE

Primitives’ Conversion Prioritization

= Conversion prioritization turned out to be somewhat hairy:
= |f exactly one target type matches source type, pick it.
= if exactly one target type is a number, pick it

= if exactly one target type is char, pick it (number to UTF-16
conversion)

= Between possible two number types, choose the wider one.

= |In all other cases, if one of the target types is string, choose it as
strings can represent any value without precision loss.

ial and Proprietary :’- e l(a Va ORACLE

SAM Type Conversion

= A.K.A. instant lambdas
= Pass a function in place of an argument expecting a SAM type...
= ... it gets wrapped.

new Thread (function() { print (“Hello!”) 1}) .start()

- y |-
44 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary _— J a Va OoORACLE

Arrays

45

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Confidential and Proprietary

implementors().stream()
Alver(s = L projects().any(=isLanguage))
JorBach(l — Lhall("
Hello language implementors!
pxtully 26-31, 2013...

A

L4 WunEng ePerFueT AL ST C G L LK

lodad LG Y eff fney RVUIUR IO OMI® Lo L E LT

YA AHLTA SO ISCEAN L7 ¥ & L

S JE T X % WINED) WIUNG ONID L 4 40 A

KX XETY L
112 dauorigmyydo

s
¥

= Java ORACLE

Java Array vs. Your Language’s Arrays

= JavaScript arrays are particularly nasty:
= They can grow and shrink.
= They can be sparse.

= |[f we provided an automatic conversion from JavaScript array to
Java array, what would the semantics be?

= Decision: we don’t provide automatic conversion!

ial and Proprietary :’- e l(a Va ORACLE

Java Array vs. Your Language’s Arrays

= This won’t work:

java.lang.Array.toString([1l, 2, 3])

= This will:
java.lang.Array.toString(Java.to([1, 2, 3]))

= Rare case of mandating explicit conversion.

- y |-
47 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary — J a Va OQAC LE

Java Array vs. Your Language’s Arrays

= API| design is a tradeoff.

= No way we are making a copying operation with linear time and
unbounded memory needs implicit.

= The programmer is also expected to understand there are no two-
way updates between Java and JavaScript arrays.

ial and Proprietary :’- e l(a Va ORACLE

Java Array vs. Your Language’s Arrays

= Java.to(jsObj[, clazz]) converts a JavaScript Array to a Java
array, a List, Or a Deque.

= Default value for clazz is Object[].

* Java.from(javaObj) converts a Java array or List to a
JavaScript Array.

= Finally, it is perfectly possible to use Java arrays and lists in JS;
for..in and [] syntax work on them.

= Only if you need functionality from the JS prototype (e.g. map,
reduce, etc.) is when you need to explicitly use Java. from to get
an actual JS Array.

- y |-
49 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved.] Confidential and Proprietary e] a Va OQAC LG

Component Type Conversion

= Java.to([12, false, “55”], int.class]) Wwill use language
conversion logic to int elementwise.

- y |-
50 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary e J a Va OQAC Le

Component Type Conversion

public Object asArrayOfType (final Class<?> componentType) {
final Object[] src = asObjectArray() ;
final int 1 = src.length;
final Object dst = Array.newlInstance (componentType, 1) ;
final MethodHandle converter =
linkerServices.getTypeConverter (Object.class, componentType) ;
for (int i = 0; 1 < src.length; i++) {
Array.set(dst, i, converter.invokeExact (converter, srcl[il]));

}

return dst;

p y :
51 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— I a Va orRrRACLE

Java Objects are Maps, So Why Aren't...

= Fun fact: scriptObject implements java.util.Map.
= S0, why doesn’t our NativeArray implement java.util.List?

- y |-
52 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary e J a Va OQAC Le

Java Objects are Maps, So Why Aren't...

* NativeArray extends scriptObject, implicitly implements Map.
= Turns out no class can implement both List and Map:

= boolean List.remove (Object)
= Object Map.remove (Object)

= Some battles you can’t win.

- y |-
53 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary < pe— J a Va OQAC Le

54

Statics

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Confidential and Proprietary

implementors().stream()
Alver(s = L projects().any(=isLanguage))
JorBach(l — Lhall("
Hello language implementors!
pxtully 26-31, 2013...

A

L4 WunEng ePerFueT AL ST C G L LK

lodad LG Y eff fney RVUIUR IO OMI® Lo L E LT

YA AHLTA SO ISCEAN L7 ¥ & L

S JE T X % WINED) WIUNG ONID L 4 40 A

KX XETY L
112 dauorigmyydo

s
¥

=’Java ORACLE'

Class vs. Statics

= As a Java programmer, you understand the difference between
java.io.File and java.io.File.class.

= One is a compile-time identifier providing access to constructors and
static members. It is not reified at run-time.

= Other is a reified run-time representation of an object’s class.
= They are separate concepts.
= Probably shouldn’t mix them up in other languages either.

- y |-
55 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e I (a Va OQAC LE

StaticClass

= Dynalink has a staticClass class that is a reification of Java’s
compile-time class identifier.

= |t's just a boring little wrapper around a class object.

= However, the linker will correctly link to static members of the
represented class when faced with such object.

= |t will also link to constructors when linking dyn : new operation.

- y |-
56 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e I (a Va OQAC LE

StaticClass

= dyn:getProp:class IS also linked to retrieve the runtime class.

= var fileClazz = Java.type(“java.io.File”) .class // or
var fileClazz = java.io.File.class // familiar, right?

= On the other hand, dyn:getProp:static is linked to static class from
a Class object - a capability you don’t have in the Java language.

var file = ... // somehow get a java.io.File

file.class === java.io.File.class // like in Java
file.class !'== java.io.File // wouldn’t compile in Java!
file.class.static === java.io.File // neither would this!

file instanceof java.io.File // true: special handling

o) .
57 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r—] a Va orRrRACLE

58

The Incredible Package

lllusion

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Confidential and Proprietary

implementors().stream()
Alter(- Lprojects().any(=isLanguage))
JorBach(i — Lhadl("
Hello language implementors!
petalyly 20-31, 2013...

KEXXET¥ L
1adauorigmydo

X L4 WG FenFUeT wNAL S T C S L LK
Al peff dne y TONUUR I O 42 L E LT

Ay

YR LHLTS SIORISGZAN A7 XYY L

G SETX R WV RING NONID L 440 ATV

xr

=’Java ORACLE

Packages Aren’t Reified

= There’s no object in JVM that represents a package, e.g. java.util.
= java.lang.Package doesn’t count.
= Can't verify existence of a package.

= Yet dynamic languages often want to give users stuff like:
var list = new java.util.List().

o y -
59 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary P —] a Va OoOrRACLE

Stepping Stones

= Typical solution: “stepping stones” approach: provide a java object,
that provides a util object, that provides a List object.

= Problem: must optimistically presume any identifier to be a package

when a class of that name is not found
var PiratelList = java.util.ArrrayList
var list = new Piratelist()

= Typos can end up being detected late; effort must be taken to report
the right error.

o y -
60 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary P —] a Va OoOrRACLE

Stepping Stones

@Override
protected GuardedInvocation findCallMethod (CallSiteDescriptor desc) {

final MethodType type = desc.getMethodType() ;
return new GuardedInvocation (MH.dropArguments (CLASS NOT FOUND, 1,

type.parameterList() .subList (1, type. parameterCount())),
TYPE GUARD) ;
}

@SuppressWarnings ("unused")
private static void classNotFound (final NativeJavaPackage pkg) throws

ClassNotFoundException ({
throw new ClassNotFoundException (pkg.name) ;

}

=’ |ava ORACLE'

61 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary

Linking a Thrower vs. Throwing an Exception

= |[n previous example, we linked an exception throwing method
handle.

= \WWe could’ve also thrown the exception from linking code too.
= Design choice:

= Linking an exception thrower eliminates linker plumbing frames
from the call stack.

= Throwing in-situ can help debugging the runtime because it does
not eliminate those same stack frames.

= Possible compromise: Throwable.addSuppressed ()

ial and Proprietary _.1 e I(a Va ORACLE

Nashorn solution

= We support stepping stones, but try to steer users towards avoiding
them.

= Preferred idiom is Java. type ().
var List = Java.type(“java.util.ArrayList”)
var list = new List ()

= Can invoke it directly too, but a bit awkward because of call operator

precedence:
var list = new (Java.type(“java.util.ArrayList”))

- y |-
63 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary < pe— J a Va OQAC Le

Also supports arrays

= var intArr5 = new (Java.type(“int[]”)) (5)

» var IntArray = Java.type (“int[]”)
var intArr5 = new IntArray (5)

-) .
64 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e I a Va OQAC LE

Educate the Users

= |n general, we try to actively educate users to use Java. type () and
if we can help it don’'t even mention stepping stones.

= |t's your choice how much of JVM do you want to expose or hide.
= Hey Dorothy, You're not in Java anymore.

- y |-
65 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e I (a Va OQAC LE

66

Linking

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Confidential and Proprietary

implementors().stream()
Alver(s = L projects().any(=isLanguage))
JorBach(l — Lhall("
Hello language implementors!
pxtully 26-31, 2013...

A

L4 WunEng ePerFueT AL ST C G L LK

lodad LG Y eff fney RVUIUR IO OMI® Lo L E LT

YA AHLTA SO ISCEAN L7 ¥ & L

S JE T X % WINED) WIUNG ONID L 4 40 A

KX XETY L
112 dauorigmyydo

s
¥

=’Java ORACLE'

Dynalink Evolved

= Nashorn embeds Dynalink.

= Dynalink underwent lots of improvements as a result of having an
actual client runtime.

= Still available as external standalone project.

- y |-
67 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e I (a Va OQAC LE

Composite Operations

= JavaScript doesn’t have separate namespaces for methods,
properties, and collection elements.

= Which one of dyn:getProp, dyn:getElem, Or dyn:getMethod doO
you emit for obj . £00?

= Correct answer: all of them!

o y -
68 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary P —] a Va OoOrRACLE

Composite operations

source operation operation name
obj.foo dyn:getProp|getElem|getMethod: foo
obj.foo () dyn:getMethod|getProp|getElem: foo
obj [x] dyn:getElem|getProp|getMethod
obj[x] () dyn:getMethod|getElem|getProp

69 | Copyright © 2013, Oracle andjor its affiliates. All rights reserved. | Confidential and Proprietary avd ORACLE

Composite Operations

= BeansLinker correctly supports them.
= |[n most cases, can evaluate the effective operation at link time.
= Except getElem on a map followed by getProp and/or getMethod.

a . P
70 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary — I a Va OoOrRACLE

Linking Security

= Dynalink BeansLinker uses publicLookup for cacheable method
handles (most of them).

= Completely prevents access to restricted packages (in presence of
a security manager!)

= Correctly handles methods marked as @CallerSensitive.

= Method handles are never cached, but unreflected on every link
request, with caller’'s Lookup.

- y |-
71 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e I (a Va OQAC LE

Miscellaneous Dynalink Improvements

= Inner classes are properties of StaticClass

= Detection of frequently relinked call sites;
LinkRequest.isCallSiteUnstable().

* dyn:callMethod was split into dyn:getMethod and dyn:call.
= ‘cause you don’t always call a named function on an object.

= dyn: new for invoking constructors.

= Manual overload resolution: dyn:getMethod:println (char).

= Never really needed; usable by programmer as a performance
enhancement. Really introduced for compatibility with Rhino.

o y -
72 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary P —] a Va OoOrRACLE

Leveraging It From Java

private static final MethodHandle REDUCE CALLBACK INVOKER =
Bootstrap.createDynamicInvoker ("dyn: call", Object class,
Object.class, Undefined.class, Object.class, Object.class,
long.class, Object.class);

private static Object reducelInner(...) {

return new IteratorAction<Object>(...) {
protected boolean forEach(...) {
result = REDUCE CALLBACK INVOKER.invokeExact (
callbackfn, ScriptRuntime.UNDEFINED, result, val, i,
self) ;
return true;
}
}.apply ()

p y :
73 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— l a Va OrRACLE

Leveraging It From Java

* createDynamicInvoker IS sSimply a dynamic invoker on a Nashorn-
linked call site.

* dyn:call will be able to invoke anything that Nashorn can invoke.
public static MethodHandle createDynamicInvoker (
final String opDesc, final MethodType type) ({

return bootstrap (MethodHandles.publicLookup (), opDesc, type,
0) .dynamicInvoker() ;

-) :
74 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary — J a Va OQAC LG

“InvokeByName™ pattern

= Java code needs to invoke a function on a JavaScript object.
= e.J. Array. toString iInVOKes this.join ().

class NativeArray {

private static final InvokeByName JOIN = new InvokeByName ("join",
ScriptObject.class) ;

public static Object toString(final Object obj) {

final ScriptObject sobj = (ScriptObject)obj;
final Object joinFn = JOIN.getGetter () .invokeExact (sobj) ;
if (Bootstrap.isCallable(joinFn)) {

return JOIN.getInvoker () .invokeExact(joinFn, sobj);

}

o) .
75 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r—] a Va orRrRACLE

InvokeByName

public class InvokeByName ({
private final MethodHandle getter;
private final MethodHandle invoker;

public InvokeByName (String name, Class targetClass, Class rtype,
Class... ptypes) {

getter = Bootstrap.createDynamicInvoker (
"dyn:getMethod|getProp|getElem:" + name, Object.class,
targetClass) ;
final Class[] finalPtypes = ...; // omitted type massaging
invoker = Bootstrap.createDynamicInvoker ("dyn:call", rtype,
finalPtypes) ;

p y :
76 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary r— l a Va OrRACLE

77

implementors().stream()
Alver(s = L projects().any(=isLanguage))
JorBach(l — Lhall("
Hello language implementors!
pxtully 26-31, 2013...

Security

lodad LG Y eff fney RVUIUR IO OMI® Lo L E LT

¥ o L WG ePerBuel wNAP ST C L LK

G JET X % WV WIUING NONID L 440 ATV
YA AHLTA SO ISCEAN L7 ¥ & L

EXXET YL
112 dauorigmyydo

xr

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary = ; J a Va ORACLE

Security So Far

= Dynalink prevents access to non-public members
= Also to classes in restricted packages.

= That’s stricter than Java, but a conscious decision.

= Package restrictions are only in place with SecurityManager.
= Dynalink correctly handles ecallerSensitive methods.

- y |-
78 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e I (a Va OQAC LE

Nashorn Additional Security Features

= Nashorn prevents Java. type () access to classes in restricted
packages.

= Nashorn ties access to reflective classes to a a new
"Nashorn.JavaReflect” runtime permission.

= Class, ClassLoader, everything in java.lang.reflect and
java.lang.invoke packages.

- y |-
79 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary e J a Va OQAC Le

Rationale

= None of the restrictions are in place when there is no security
manager.

= Most uses are unaffected even under a security manager.

= You can do less things from JavaScript than from Java
= Namely, manipulate stuff in restricted packages.
= Actually, you can: through reflection; if you have the permission.
= Even then, it won't be pleasant.

= Nashorn runs with Al1Permission since it lives in jre/lib/ext.

- y |-
80 | Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Confidential and Proprietary e I (a Va OQAC LE

= Extending Java Classes
= Type Conversion Fun
= Arrays

Program
Agenda

81 , Copyright © 2013, Oracle and/or its affiliates. All rights rese

= jJavar

