
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 131

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 132

Square Pegs, Round Holes

 Attila Szegedi
Principal Member of Technical Staff

or: How To Fit a Language On the JVM (Without a Hammer.)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.3

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be

incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied

upon in making purchasing decisions. The development,
release, and timing of any features or functionality described for

Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13Copyright © 2013, Oracle and/or its affiliates. All rights reserved.4

Program
Agenda

 Extending Java Classes
 Type Conversion Fun
 Arrays
 The Incredible Package Illusion
 Linking
 Security

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary5

So, You Want To Write a Language on JVM

 You likely want to have your language somehow interface with the
underlying platform: VM, libraries, etc.

 There are some typical things that you need to solve for a rich interop
story.
 Extending JVM classes and implementing interfaces in your

language
 Type conversions
 Handling arrays (yes, it can be quite a special case)
 Invocation of Java methods

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary6

Extending Java Classes

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary7

Extend/Implement a JVM Class/Interface

 Typical Nashorn code:

var r = new java.lang.Runnable() {
 run: function() {
 print(“Hello!”)
 }
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary8

Extend/Implement a JVM Class/Interface

 Simpler Nashorn code:

var r = new java.lang.Runnable(function() {
 print(“Hello!”)
})

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary9

Adapter Classes

 Obviously, when you write code like this, we instantiate an adapter
class.

 Question is: how is it supposed to look like when implemented
around invokedynamic?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary10

Anatomy of an Adapter

package jdk.nashorn.javaadapters.java.lang;

public final class Runnable implements java.lang.Runnable {

 private final ScriptObject global;

 private final MethodHandle run;
 private final MethodHandle toString;
 private final MethodHandle hashCode;
 private final MethodHandle equals;

 ...
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary11

Anatomy of an Adapter - Fields

package jdk.nashorn.javaadapters.java.lang;

public final class Runnable implements java.lang.Runnable {

 private final ScriptObject global;

 private final MethodHandle run;
 private final MethodHandle toString;
 private final MethodHandle hashCode;
 private final MethodHandle equals;

 ...
}

Can’t define classes in java.* package

Need defining context

Overridable toString,
hashCode, equals

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary12

Anatomy of an Adapter - Constructors

 public <init>(Ljava/lang/Object;)V
 ALOAD 0
 INVOKESPECIAL java/lang/Object.<init> ()V

 ALOAD 0
 ALOAD 1
 LDC "run"
 LDC ()V.class
 INVOKESTATIC JavaAdapterServices.getHandle();
 PUTFIELD run;

Repeated for every
MethodHandle field

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary13

Anatomy of an Adapter - Constructor in Java

public Runnable(Object o) {
 super();
 this.run = JavaAdapterServices.getHandle(o, “run”,
 MethodType.methodType(void.class));
 this.equals = JavaAdapterServices.getHandle(o, “equals”,
 MethodType.methodType(boolean.class, Object.class));
 this.hashCode = JavaAdapterServices.getHandle(o, “hashCode”,
 MethodType.methodType(int.class));
 this.toString = JavaAdapterServices.getHandle(o, “toString”,
 MethodType.methodType(String.class));

 this.global = Context.getGlobal();
 this.global.getClass();
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary14

Anatomy of an Adapter
public static MethodHandle getHandle(Object obj, String name, MethodType type) {
 final ScriptObject sobj = (ScriptObject)obj;

 // Since every JS Object has a toString, we only override
 // "String toString()" it if it's explicitly specified
 if ("toString".equals(name) && !sobj.hasOwnProperty("toString")) {
 return null;
 }

 final Object fnObj = sobj.get(name);
 if (fnObj instanceof ScriptFunction) {
 return adaptHandle(
 ((ScriptFunction)fnObj).getBoundInvokeHandle(sobj), type);
 } else if(fnObj == null || fnObj instanceof Undefined) {
 return null;
 } else {
 throw typeError("not.a.function", name);
 }
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary15

Anatomy of an Adapter - Constructors

 public <init>(ScriptFunction)V
 ALOAD 0
 INVOKESPECIAL java/lang/Object.<init> ()V

 ALOAD 0
 ALOAD 1
 LDC ()V.class
 INVOKESTATIC JavaAdapterServices.getHandle();
 PUTFIELD run

 ALOAD 0
 ACONST_NULL
 PUTFIELD toString

Single method handle
for the function.

null for all other overrides

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary16

Anatomy of an Adapter - Constructor in Java

@Override
public Runnable(ScriptFunction f) {
 super();
 this.run = JavaAdapterServices.getHandle(f,
 MethodType.methodType(void.class));

 this.equals = null;
 this.hashCode = null;
 this.toString = null;

 this.global = Context.getGlobal();
 this.global.getClass();
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary17

Anatomy of an Adapter - Constructors

 A public constructor is emitted for every superclass public or
protected constructor.

 We add Object at the end of superclass constructor signature.
 Yes, we convert variable arity constructors into fixed arity.
 Allows us to use the new T(x, y) { ... } syntax extension.

 If we’re implementing a SAM, another constructor with ScriptFunction
as its final argument is emitted too.

 Dynalink overloaded method resolution ensures the right constructor
is picked up at run time.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary18

Anatomy of an Adapter - Methods

 public run()V
 ALOAD 0
 GETFIELD run;
 DUP
 IFNONNULL L4
 POP
 NEW java/lang/UnsupportedOperationException
 DUP
 INVOKESPECIAL UnsupportedOperationException.<init> ()V
 ATHROW
L4 INVOKEVIRTUAL java/lang/invoke/MethodHandle.invokeExact
 RETURN

 For an abstract method:

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary19

Anatomy of an Adapter - Methods

 public toString()Ljava/lang/String;
 ALOAD 0
 GETFIELD toString
 DUP
 IFNONNULL L4
 POP
 ALOAD 0
 INVOKESPECIAL java/lang/Object.toString;
 ARETURN
L4 INVOKEVIRTUAL java/lang/invoke/MethodHandle.invokeExact
 ARETURN

 For a non-abstract method:

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary20

Anatomy of an Adapter - Methods

 public toString()Ljava/lang/String;
 TRYCATCHBLOCK L0 L1 L3 java/lang/RuntimeException
 TRYCATCHBLOCK L0 L1 L3 java/lang/Error
 TRYCATCHBLOCK L0 L1 L2 java/lang/Throwable
 ...
 L2
 NEW java/lang/RuntimeException
 DUP_X1
 SWAP
 INVOKESPECIAL RuntimeException.<init>(Throwable)V
 L3
 ATHROW

 Exception handling

How often do you get to use this opcode?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary21

Anatomy of an Adapter - Method in Java

@Override
public boolean equals(Object o) {
 if(equals == null) {
 return super.equals(o);
 }
 try {
 return equals.invokeExact(this, o);
 } catch(RuntimeException|Error) {
 throw e;
 } catch(Throwable t) {
 throw new RuntimeException(t);
 }
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary22

Anatomy of an Adapter - Method in Java, real
@Override
public boolean equals(Object o) {
 if(equals == null) {
 return super.equals(o);
 }
 final Global currentGlobal = Context.getGlobal();
 final boolean differentGlobal = currentGlobal != global;
 if(differentGlobal) {
 Context.setGlobal(global);
 }
 try {
 return equals.invokeExact(this, o);
 } catch(RuntimeException|Error) {
 throw e;
 } catch(Throwable t) {
 throw new RuntimeException(t);
 } finally {
 if(differentGlobal) {
 Context.setGlobal(currentGlobal);
 }
 }
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary23

Anatomy of an Adapter

 MethodHandle objects - the behavior - is instance bound.
 What if you want class bound?

var Hello = Java.extend(java.lang.Runnable, {
 run: function() {
 print(“Hello!”)
 }
})

var h1 = new Hello()
var h2 = new Hello()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary24

Anatomy of an Adapter - Class Behavior

package jdk.nashorn.javaadapters.java.lang;

public final class Runnable implements java.lang.Runnable {

 private final ScriptObject global;
 private static final ScriptObject staticGlobal;

 private final MethodHandle run;
 private final MethodHandle toString;
 private final MethodHandle hashCode;
 private final MethodHandle equals;

 private static final MethodHandle run_static;
 private static final MethodHandle toString_static;
 private static final MethodHandle hashCode_static;
 private static final MethodHandle equals_static;
 ...

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary25

Anatomy of an Adapter - Class Behavior

static {
 Object o = JavaAdapterServices.getClassOverrides();
 if(o instanceof ScriptFunction) {
 run_static = JavaAdapterServices.getHandle((ScriptFunction)o, …);
 hashCode_static = null;
 ...
 } else {
 run_static = JavaAdapterServices.getHandle(o, “run”, …);
 hashCode_static = JavaAdapterServices.getHandle(o, “hashCode”, …);
 ...
 }
}

Pass parameter to static
block in a thread local.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary26

Anatomy of an Adapter - Class Behavior
@Override
public boolean equals(Object o) {
 try {
 if(equals != null) {
 return equals.invokeExact(o);
 } else if(equals_static != null) {
 return equals_static.invokeExact(o);
 }
 } catch(RuntimeException|Error) {
 throw e;
 } catch(Throwable t) {
 throw new RuntimeException(t);
 }
 return super.equals(o);
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary27

Anatomy of an Adapter - Class Behavior

 Of course, actual code is more complex, as it needs to deal with
management of appropriate global too.

 Up to three constructors emitted for every superclass constructor:
 One with same arguments as superclass constructor
 One with added Object argument for instance overrides
 One with added ScriptFunction argument for SAM instance

override.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary28

Overrides and Overloads in Adapters

 JavaScript has no concept of overloaded methods.
 Our adopted policy is: a named function is used as the

implementation of all non-final overloads with the same name.
 True for adapters written in JavaScript; if your language could

distinguish between overloads, feel free to write a different adapter.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary29

Adapters and Security

 Adapters can only extend/implement public classes/interfaces.
 Classes/interfaces in restricted packages subject to access

check.
 Can only override public and protected methods.

 @CallerSensitive methods can’t be overridden as it’d mess up
the caller identification.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary30

Adapters and Security

 Adapters are defined in a separate ProtectionDomain with
AllPrivileges.
 So as to not narrow the caller privileges.
 They are just pass-through delegates, so no risk of privilege

escalation.
 They don’t use doPrivileged blocks.
 Effective permissions are the intersection of permissions of

caller and delegate function.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary31

Adapters and Security
private static final ProtectionDomain GENERATED_PROTECTION_DOMAIN =
 createGeneratedProtectionDomain();

private static ProtectionDomain createGeneratedProtectionDomain() {
 final Permissions permissions = new Permissions();
 permissions.add(new AllPermission());
 return new ProtectionDomain(
 new CodeSource(null, (CodeSigner[])null), permissions);
}

...
defineClass(name, classBytes, 0, classBytes.length,
 GENERATED_PROTECTION_DOMAIN);

 Obviously, our own code needs “createClassLoader” permission to
create a class loader to invoke defineClass in.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary32

Where Should I Define Thee?

 What’s the parent class loader for your adapter class?
 Take the set of class loaders for the extended class and all

implemented interfaces…
 …as well as the class loader for your language runtime classes.
 Find the “Maximum Visibility Loader” - one that sees classes in all the

other loaders.
 If there’s no such loader, can’t define the adapter!
 Can cause surprises in exotic situations.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary33

Type Conversion Fun

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary34

Ain’t No Script Like JavaScript…

 … for ultimate type conversion fun.
 ‘cause [+!+[]]+[+[]] == 10, of course!
 Most type conversions are straightforward; some are more

interesting.
 We mostly encounter type conversions to target Java types when

invoking Java methods and have to match parameters to their
signatures.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary35

Stuff that’s almost trivial

var x = new (Java.type("boolean[]"))(1)
test(0)
test(1)
test({})
test([])
test("")
test("false")
test(null)
test(undefined)

function test(v) {
 x[0] = v
 print(JSON.stringify(v) + " => " + x[0])
}

0 => false
1 => true
{} => true
[] => true
"" => false
"false" => true
null => false
undefined => false

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary36

Stuff that’s almost trivial

var x = new (Java.type("java.lang.Boolean[]"))(1)
test(0)
test(1)
test({})
test([])
test("")
test("false")
test(null)
test(undefined)

function test(v) {
 x[0] = v
 print(JSON.stringify(v) + " => " + x[0])
}

0 => false
1 => true
{} => true
[] => true
"" => false
"false" => true
null => null
undefined => null

 When converting to boxed type, we can preserve nulls.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary37

Stuff that’s nifty

Collections.sort(new function(x, y) { return y < x })

 If the target is a SAM type, and you supply a ScriptFunction, we
supply an on-the-fly allocated adapter.

 All of this is handled with Dynalink linkers implementing the optional
GuardingTypeConverterFactory interface’s
GuardedInvocation getTypeConverter(Class from, Class to)
method.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary38

Comparison prioritization

new Thread(new function() { print(“Hello!”) })

 Yet another Dynalink feature. To wit:

 Can apply both to Thread(Runnable) and sadly also to
Thread(String) method, as JS has implicit object-to-string
conversion.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary39

Comparison prioritization

 By definition needed whenever your language allows more
conversions than JLS does.

 ‘Cause you’ll end up widening the set of applicable overloaded
methods at a call site.

public interface ConversionComparator {
 enum Comparison { TYPE1_BETTER, TYPE2_BETTER, INDETERMINATE }

 public Comparison compareConversion(Class sourceType,
 Class targetType1, Class targetType2);
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary40

Comparison prioritization
public class NashornLinker implements
 TypeBasedGuardingDynamicLinker,
 GuardingTypeConverterFactory,
 ConversionComparator {

 ...
 public Comparison compareConversion(Class sourceType,
 Class targetType1, Class targetType2) {
 if(ScriptObject.class.isAssignableFrom(sourceType)) {
 if(targetType1.isInterface()) {
 if(!targetType2.isInterface()) {
 return Comparison.TYPE_1_BETTER;
 }
 } else if(targetType2.isInterface()) {
 return Comparison.TYPE_2_BETTER;
 }
 }
 return Comparison.INDETERMINATE;
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary41

Handling Strings, Numbers, and Booleans

 JavaScript string, number, and boolean values are represented as
Java String, Number, and Boolean objects. These are considered JS
primitive types and handled as such.

 Still possible to invoke Beans methods on them, e.g.
“foo”.hashCode().

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary42

Primitives’ Conversion Prioritization

 Say you’re invoking bean.foo(“123”) and you have overloaded
methods foo(int) and foo(Object).

 Three types in play: type of value “123” (String), and the types of
formal parameters in the method.

 Which one do you choose?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary43

Primitives’ Conversion Prioritization

 Conversion prioritization turned out to be somewhat hairy:
 If exactly one target type matches source type, pick it.
 if exactly one target type is a number, pick it
 if exactly one target type is char, pick it (number to UTF-16

conversion)
 Between possible two number types, choose the wider one.
 In all other cases, if one of the target types is string, choose it as

strings can represent any value without precision loss.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary44

SAM Type Conversion

 A.K.A. instant lambdas
 Pass a function in place of an argument expecting a SAM type…
 … it gets wrapped.

new Thread(function() { print(“Hello!”) }).start()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary45

Arrays

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary46

Java Array vs. Your Language’s Arrays

 JavaScript arrays are particularly nasty:
 They can grow and shrink.
 They can be sparse.

 If we provided an automatic conversion from JavaScript array to
Java array, what would the semantics be?
 Decision: we don’t provide automatic conversion!

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary47

Java Array vs. Your Language’s Arrays

 This won’t work:
java.lang.Array.toString([1, 2, 3])

 This will:
java.lang.Array.toString(Java.to([1, 2, 3]))

 Rare case of mandating explicit conversion.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary48

Java Array vs. Your Language’s Arrays

 API design is a tradeoff.
 No way we are making a copying operation with linear time and

unbounded memory needs implicit.
 The programmer is also expected to understand there are no two-

way updates between Java and JavaScript arrays.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary49

Java Array vs. Your Language’s Arrays

 Java.to(jsObj[, clazz]) converts a JavaScript Array to a Java
array, a List, or a Deque.
 Default value for clazz is Object[].

 Java.from(javaObj) converts a Java array or List to a
JavaScript Array.

 Finally, it is perfectly possible to use Java arrays and lists in JS;
for..in and [] syntax work on them.

 Only if you need functionality from the JS prototype (e.g. map,
reduce, etc.) is when you need to explicitly use Java.from to get
an actual JS Array.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary50

Component Type Conversion

 Java.to([12, false, “55”], int.class]) will use language
conversion logic to int elementwise.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary51

Component Type Conversion
public Object asArrayOfType(final Class<?> componentType) {
 final Object[] src = asObjectArray();
 final int l = src.length;
 final Object dst = Array.newInstance(componentType, l);
 final MethodHandle converter =
 linkerServices.getTypeConverter(Object.class, componentType);
 for (int i = 0; i < src.length; i++) {
 Array.set(dst, i, converter.invokeExact(converter, src[i]));
 }
 return dst;
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary52

Java Objects are Maps, So Why Aren’t…

 Fun fact: ScriptObject implements java.util.Map.
 So, why doesn’t our NativeArray implement java.util.List?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary53

Java Objects are Maps, So Why Aren’t…

 NativeArray extends ScriptObject, implicitly implements Map.
 Turns out no class can implement both List and Map:

 boolean List.remove(Object)

 Object Map.remove(Object)

 Some battles you can’t win.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary54

Statics

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary55

Class vs. Statics

 As a Java programmer, you understand the difference between
java.io.File and java.io.File.class.

 One is a compile-time identifier providing access to constructors and
static members. It is not reified at run-time.

 Other is a reified run-time representation of an object’s class.
 They are separate concepts.
 Probably shouldn’t mix them up in other languages either.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary56

StaticClass

 Dynalink has a StaticClass class that is a reification of Java’s
compile-time class identifier.

 It’s just a boring little wrapper around a Class object.
 However, the linker will correctly link to static members of the

represented class when faced with such object.
 It will also link to constructors when linking dyn:new operation.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary57

StaticClass

 dyn:getProp:class is also linked to retrieve the runtime Class.
 var fileClazz = Java.type(“java.io.File”).class // or
var fileClazz = java.io.File.class // familiar, right?

 On the other hand, dyn:getProp:static is linked to static class from
a Class object - a capability you don’t have in the Java language.
var file = ... // somehow get a java.io.File
file.class === java.io.File.class // like in Java
file.class !== java.io.File // wouldn’t compile in Java!
file.class.static === java.io.File // neither would this!
file instanceof java.io.File // true: special handling

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary58

The Incredible Package
Illusion

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary59

Packages Aren’t Reified

 There’s no object in JVM that represents a package, e.g. java.util.
 java.lang.Package doesn’t count.
 Can’t verify existence of a package.
 Yet dynamic languages often want to give users stuff like:
var list = new java.util.List().

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary60

Stepping Stones

 Typical solution: “stepping stones” approach: provide a java object,
that provides a util object, that provides a List object.

 Problem: must optimistically presume any identifier to be a package
when a class of that name is not found
var PirateList = java.util.ArrrayList
var list = new PirateList()

 Typos can end up being detected late; effort must be taken to report
the right error.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary61

Stepping Stones
@Override
protected GuardedInvocation findCallMethod(CallSiteDescriptor desc) {
 final MethodType type = desc.getMethodType();
 return new GuardedInvocation(MH.dropArguments(CLASS_NOT_FOUND, 1,
 type.parameterList().subList(1, type.parameterCount())),
 TYPE_GUARD);
}

@SuppressWarnings("unused")
private static void classNotFound(final NativeJavaPackage pkg) throws
ClassNotFoundException {
 throw new ClassNotFoundException(pkg.name);
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary62

Linking a Thrower vs. Throwing an Exception

 In previous example, we linked an exception throwing method
handle.

 We could’ve also thrown the exception from linking code too.
 Design choice:

 Linking an exception thrower eliminates linker plumbing frames
from the call stack.

 Throwing in-situ can help debugging the runtime because it does
not eliminate those same stack frames.
 Possible compromise: Throwable.addSuppressed()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary63

Nashorn solution

 We support stepping stones, but try to steer users towards avoiding
them.

 Preferred idiom is Java.type().
var List = Java.type(“java.util.ArrayList”)
var list = new List()

 Can invoke it directly too, but a bit awkward because of call operator
precedence:
var list = new (Java.type(“java.util.ArrayList”))

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary64

Also supports arrays

 var intArr5 = new (Java.type(“int[]”))(5)

 var IntArray = Java.type(“int[]”)
var intArr5 = new IntArray(5)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary65

Educate the Users

 In general, we try to actively educate users to use Java.type() and
if we can help it don’t even mention stepping stones.

 It’s your choice how much of JVM do you want to expose or hide.
 Hey Dorothy, You’re not in Java anymore.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary66

Linking

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary67

Dynalink Evolved

 Nashorn embeds Dynalink.
 Dynalink underwent lots of improvements as a result of having an

actual client runtime.
 Still available as external standalone project.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary68

Composite Operations

 JavaScript doesn’t have separate namespaces for methods,
properties, and collection elements.

 Which one of dyn:getProp, dyn:getElem, or dyn:getMethod do
you emit for obj.foo?

 Correct answer: all of them!

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary69

Composite operations

source operation operation name

obj.foo dyn:getProp|getElem|getMethod:foo

obj.foo() dyn:getMethod|getProp|getElem:foo

obj[x] dyn:getElem|getProp|getMethod

obj[x]() dyn:getMethod|getElem|getProp

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary70

Composite Operations

 BeansLinker correctly supports them.
 In most cases, can evaluate the effective operation at link time.
 Except getElem on a map followed by getProp and/or getMethod.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary71

Linking Security

 Dynalink BeansLinker uses publicLookup for cacheable method
handles (most of them).

 Completely prevents access to restricted packages (in presence of
a security manager!)

 Correctly handles methods marked as @CallerSensitive.
 Method handles are never cached, but unreflected on every link

request, with caller’s Lookup.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary72

Miscellaneous Dynalink Improvements

 Inner classes are properties of StaticClass
 Detection of frequently relinked call sites;
LinkRequest.isCallSiteUnstable().

 dyn:callMethod was split into dyn:getMethod and dyn:call.
 ‘cause you don’t always call a named function on an object.

 dyn:new for invoking constructors.
 Manual overload resolution: dyn:getMethod:println(char).

 Never really needed; usable by programmer as a performance
enhancement. Really introduced for compatibility with Rhino.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary73

Leveraging It From Java
private static final MethodHandle REDUCE_CALLBACK_INVOKER =
 Bootstrap.createDynamicInvoker("dyn:call", Object.class,
 Object.class, Undefined.class, Object.class, Object.class,
 long.class, Object.class);

...
private static Object reduceInner(...) {
 ...
 return new IteratorAction<Object>(...) {
 protected boolean forEach(...) {
 result = REDUCE_CALLBACK_INVOKER.invokeExact(
 callbackfn, ScriptRuntime.UNDEFINED, result, val, i,
 self);
 return true;
 }
 }.apply();

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary74

Leveraging It From Java

public static MethodHandle createDynamicInvoker(
 final String opDesc, final MethodType type) {
 return bootstrap(MethodHandles.publicLookup(), opDesc, type,
 0).dynamicInvoker();
}

 createDynamicInvoker is simply a dynamic invoker on a Nashorn-
linked call site.

 dyn:call will be able to invoke anything that Nashorn can invoke.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary75

“InvokeByName” pattern

class NativeArray {
 ...
 private static final InvokeByName JOIN = new InvokeByName("join",
 ScriptObject.class);
 ...
 public static Object toString(final Object obj) {
 ...
 final ScriptObject sobj = (ScriptObject)obj;
 final Object joinFn = JOIN.getGetter().invokeExact(sobj);
 if (Bootstrap.isCallable(joinFn)) {
 return JOIN.getInvoker().invokeExact(joinFn, sobj);
 }

 Java code needs to invoke a function on a JavaScript object.
 e.g. Array.toString invokes this.join().

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary76

InvokeByName
public class InvokeByName {
 private final MethodHandle getter;
 private final MethodHandle invoker;

 public InvokeByName(String name, Class targetClass, Class rtype,
 Class... ptypes) {

 getter = Bootstrap.createDynamicInvoker(
 "dyn:getMethod|getProp|getElem:" + name, Object.class,
 targetClass);

 final Class[] finalPtypes = ...; // omitted type massaging
 invoker = Bootstrap.createDynamicInvoker("dyn:call", rtype,
 finalPtypes);
 }

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary77

Security

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary78

Security So Far

 Dynalink prevents access to non-public members
 Also to classes in restricted packages.

 That’s stricter than Java, but a conscious decision.
 Package restrictions are only in place with SecurityManager.

 Dynalink correctly handles @CallerSensitive methods.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary79

Nashorn Additional Security Features

 Nashorn prevents Java.type() access to classes in restricted
packages.

 Nashorn ties access to reflective classes to a a new
”Nashorn.JavaReflect” runtime permission.
 Class, ClassLoader, everything in java.lang.reflect and
java.lang.invoke packages.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Confidential and Proprietary80

Rationale

 None of the restrictions are in place when there is no security
manager.

 Most uses are unaffected even under a security manager.
 You can do less things from JavaScript than from Java

 Namely, manipulate stuff in restricted packages.
 Actually, you can: through reflection; if you have the permission.
 Even then, it won’t be pleasant.

 Nashorn runs with AllPermission since it lives in jre/lib/ext.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13Copyright © 2013, Oracle and/or its affiliates. All rights reserved.81

Program
Agenda

 Extending Java Classes
 Type Conversion Fun
 Arrays
 The Incredible Package Illusion
 Linking
 Security

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1382

