
Foundations of Computer Science
Logic, models, and computations

Chapter: Incompleteness of arithmetic

Course INF412

of l’Ecole Polytechnique

Olivier Bournez

bournez@lix.polytechnique.fr

Version of July 21, 2020

2

Incompleteness of arithmetic

In 1930, Kurt Gödel proved a result whose philosophical consequences in science
started a revolution: He proved that any sufficiently expressive theory to capture
the arithmetic reasoning’s is necessarily incomplete, that is to say that there
exists some statements that cannot be proved, and whose negation can nor be
proved.

This theorem is largely considered as one of the greatest achievements of the
logic in the 20th century.

With all the previous ingredients, we are in position to understand this
theorem, and to provide a full proof. This is the objective of this chapter.
Actually, we will propose a proof due to Turing. We will only mention the proof
from Gödel, that allows to say more.

1 Theory of Arithmetic

1.1 Peano axioms

The question we are focusing on now is to try to axiomatise the arithmetic, that
is to say the properties of the inters.

We have already presented in Chapter 6, the axioms of the arithmetic from
Robinson and the axioms from Peano: One expects that all these axioms are
satisfied on the integers, that is to say in the standard model of the integers
where the base set is the integers, and where ` is interpreted by addition, ˚ by
multiplication and spxq by successor function x ÞÑ x` 1.

In other words, one expects that these axioms have at least one model: The
standard model of the integers.

Given some closed formula F on the signature containing these symbols, F
is either true or false on the integers (that is to say in the standard model of
the integers). Call theory!of the arithmetic the set ThpNq of closed formula F
that are true over the integers.

1.2 Some concepts from arithmetic

It is possible to prove that numerous concepts from number theory can be
defined perfectly from these axioms.

3

4

For example, we can express the following concepts:

• INTDIVpx, y, q, rq defined as “q is the quotient and r the remainder of the
euclidean division of x by y”.

Indeed, this can be written as formula:

px “ q ˚ y ` r ^ r ă yq.

• DIVpy, xq defined as “y divides x”.

Indeed, this can be written:

Dq INTDIVpx, y, q, 0q.

• EVENpxq defined as “x is even". Indeed, this can be written:

DIVp2, xq.

• ODDpxq defined as “x is odd. Indeed, this can be written:

 EVENpxq.

• PRIMEpxq defined as “x is prime”. Indeed, this can be written:

px ě 2^ @ypDIVpy, xq ñ py “ 1_ y “ xqqq.

• POWER2pxq defined as “x is a power of 2". Indeed, this can be written:

@yppDIVpy, xq ^ PRIMEpyqq ñ y “ 2q.

1.3 The possibility of talking of bits of an integer

One can also write formulas like BITpx, yq that means that “y is a power of 2,
say 2k, and the kth bit of the binary representation of integer x is 1” ’.

This is more subtle, but possible. Indeed, this can be written:

pPOWER2pyq ^ @q@rpINTDIVpx, y, q, rq ñ ODDpqqqq.

The idea is that if y satisfies the formula, then y is a power of 2, and hence
in binary is written 2k for some integer k. By dividing x by y, the remainder of
the division r will be the k less significant bits of x and the quotient q the other
bits of x since we have x “ q ˚ y ` r. By testing if q is odd, one “reads” the
k` 1th bit of x, hence the bit corresponding to the bit set to 1 in the integer y
encoding this position.

2. INCOMPLETENESS THEOREM 5

1.4 Principle of the proof from Gödel
Kurt Gödel proved the incompleteness theorem by building in any reasonable
proof system a formula φ from arithmetic that states its own non-provability in
the system:

φ is true ô φ is not provable. (1)

Every reasonable proof system is valid, and hence one must have.

ψ provable ñ ψ is true. (2)

Then φ must be true, since otherwise.

φ is wrong ñ φ is provable. (par (1))
ñ φ is true. (by (2))

The construction of φ by itself is instructive, as it captures the notion of self-
reference.

We will come back to the construction from Gödel.

2 Incompleteness theorem

2.1 Principle of the proof from Turing
We will prove the incompleteness theorem by using an approach that allows to
get the main consequences of the theorem, and which is due to Alan Turing.

This approach is simpler, and mainly, we have now all the ingredients to do
full formal proof, by using the arguments from computability theory.

The idea is to convince ourselves that in Peano arithmetic, as well as in any
"reasonable" proof system for the theory of arithmetic:

Theorem 1 1. The set of theorems (closed formula that can be proved from
the Peano axioms (or any "reasonable" axiomatisation of integers)) is
computably enumerable.

2. The set ThpNq of closed formal F that are rue on the integers is not
computably enumerable.

Consequently, the two sets cannot be the same, and the proof system cannot
be complete. In other words:

Corollary 1 There consequently exist some closed formula of ThpNq that can-
not be proved, or whose negation cannot be proved from Peano axioms or from
any "reasonable" axiomatisation of the integers.

This is the first incompleteness theorem from Kurt Gödel.

Exercise 1 (solution on page 237) How to conciliate the previous incom-
pleteness result (Gödel incompleteness theorem) with the completeness theorem
(Gödel completeness theorem)?

6

2.2 The easy direction
The set of theorems (closed formula provable from Peano axioms) is certainly
computably enumerable: Whatever the proof method is (see for example those
of Chapter 6), one can enumerate the theorems by enumeration the axioms
and by applying in a systematic way all the reduction rules in all the possible
manners, and produce as an output all the closed formula that can be derived.

This remains true as soon as we suppose that one can enumerate the axioms
of the axiomatisation that one starts from. This is why, one can state that the
set of theorems from any reasonable axiomatisation of the integers is recursively
enumerable.

Remark 1 In other words, if one wants a formal definition of “reasonable”, one
can take “computably enumerable”.

2.3 Crucial lemma
The crucial point is then to prove the following lemma.

Lemma 1 The set ThpNq is not computably enumerable.

We prove this by reducing the complementary HP of the halting problem of
Turing machines to this problem, i.e. by proving that HP ďm ThpNq.

The theorem then follows from:

• HP is not recursively enumerable;

• and from the fact that A ďm B and that A is not recursively enumerable,
then consequently neither B.

Remember that the halting problem HP is the following problem: Given
xxMy, wy, one must determine if the Turing machine M halts on input w.

Given xxMy, wy, we show how to produce a closed formula γ on the signature
of arithmetic such that

xxMy, wy P HP ô γ P ThpNq.

In other words, given M and w, we must produce a closed formula γ on the
signature of arithmetic that states that “the Turing machine M is not halting
on input w”.

This turns out to be possible since the language of arithmetic is sufficiently
powerful to talk about Turing machines and the fact that they halt.

By using the principle of the previous formula BITpy, xq, we will construct a
sequence of formula whose culminating point will be a formula VALCOMPM,wpyq
that asserts that y is some integer that represents a sequence of configurations
of M on input w: In other words, y represents a sequence of configurations
C0, C1, ¨ ¨ ¨ , Ct of M , encoded on a given alphabet Σ such that:

• C0 is the initial configuration Crws of M on w;

2. INCOMPLETENESS THEOREM 7

• Ci`1 is the successor configuration o f Ci, according to the transition
function δ of the Turing machine M , for i ă t;

• Ct is some accepting configuration

Once we will succeed to write the formula VALCOMPM,wpyq, it will be easy
to write that M is not halting on input x: The formula γ can be written as

 Dy VALCOMPM,wpyq.

This proves the reduction and will terminate the proof of previous lemma,
and hence the proof of the theorem, recalling that HP is not recursively enu-
merable.

2.4 Construction of the formula

There only remain to provide the tedious details of the construction of the
formula γ from M and w. Let us go.

Suppose that we encode the configurations of M on some finite alphabet
Σ, that we will suppose without loss of generality of size p, with p some prime
integer.

Every number has a unique representation in radix p: We will use this
representation in radix p instead of the the binary representation to simplify
the discussion.

Suppose that the initial configuration of M on w “ a1a2 ¨ ¨ ¨ an is encoded
by the integer whose digits in radix p are respectively q0a1a2 ¨ ¨ ¨ an: We use the
representation of the Definition 7.4 to represent configurations.

Consider that the blank symbol B is coded by digit k in radix p.
Let LEGAL the set of 6-tuples pa, b, c, d, e, fq of numbers in radix p that

correspond to some legal windows for machineM : See the notion of legal window
of Chapter 7. If one prefers, LEGAL is the set of 6-tuples pa, b, c, d, e, fq such
that these three elements of Σ represented respectively by a, b and c appear
consecutively in a configuration Ci, and if d, e, f appear consecutively in same
locations in configuration Ci`1, then this is coherent with the transition function
δ of Turing machine M .

We now define a few formulas:

• POWERppxq: “The number x is a power of p”: Here p is a fixed primed
number. This can be written:

@yppDIVpy, xq ^ PRIMEpyqq ñ y “ pq.

• LENGTHppv, dq: “The number d is a power of p that provides (an upper
bound of) the length of v seen as a word on alphabet Σ with p letters.
This can be written:

pPOWERppdq ^ v ă d^ p ˚ v ě dq.

8

• DIGITppv,K, bq: “The ’kth digit of v written in radix p is b (where K “

pk)”. This can be written:

DuDapv “ a` b ˚K ` u ˚ p ˚K ^ a ă K ^ b ă pq.

• 3 DIGITppv,K, b, c, dq: “The 3 consecutive digits of v at position k are b,
c and d (where K “ pk)”. This can be written

DuDapv “ a`b˚K`c˚p˚K`d˚p˚p˚K`u˚p˚p˚p˚K^a ă K^b ă p^c ă p^d ă pq.

• MATCHppv, L,Mq: “The 3 digits of v at the position ` are respectively a,
b and c and correspond to the 3 digits of v at the position m according
to the transition function δ of the Turing machine (where L “ p` and
M “ pm). This can be written

ł

pa,b,c,d,e,fqPLEGAL

3 DIGITppv, L, a, b, cq ^ 3 DIGITppv,M, d, e, fq.

Remark 2 We write obviously here,
Ź

pa,b,c,d,e,fqPLEGAL for the conjunc-
tion for each of the 6-tuples of LEGAL.

• MOVEppv, C,Dq: “The sequence v describe1 a sequence of successive con-
figurations of M of length c until d (where C “ pc and D “ pd): All
the pairs of sequences of 3-digits separated by exactly c positions in v are
corresponding according to δ”. This can be written as:

@yppPOWERppyq ^ y ˚ p ˚ p ˚ C ă Dq ñ MATCHppv, y, y ˚ Cqq.

• STARTppv, Cq: “The sequence v starts with the initial configuration of M
on input w “ a1a2 ¨ ¨ ¨ an with the addition of some blanks B until length c
(C “ pc; n, pi, 0 ď i ď n are some fixed constants that are not depending
of w)”. This can be written:

n
ľ

i“0

DIGITppv, p
i, aiq^p

n ă C^@ypPOWERppyq^p
n ă y ă C ñ DIGITppv, y,Bqq.

• HALTppv,Dq: “The sequence v has some accepting state somewhere”. This
can be written as:

DypPOWERppyq ^ y ă D ^DIGITppv, y, qaqq.

• VALCOMPM,wpvq: “The sequence v is a valid computation of M on w”.
This can be written as:

DcDd pPOWERppcq^c ă d^LENGTHppv, dq^STARTppv, cq^MOVEppv, c, dq^HALTppv, dqq.
1We see here a two-dimensional array as a unique word by putting the lines one after the

other.

3. THE PROOF FROM GÖDEL 9

• γM,w: “The machine M is not halting on w”. This can be written as:

 Dv VALCOMPM,wpvq.

Our proof is over.

*Exercise 1 (solution on page 237) The default of the previous constructions
is that they allow to claim that there exists some true formulas which are not
probable, but without providing any example of such a closed formula.

Use the fix point theorem of computability (previous chapter) to provide ex-
plicitly a formula ψ which is not provable.

We will see later that the second theorem from Kurt Gödel allows to go
further, and to prove that one can take ψ as the formula that asserts that the
theory is not coherent.

(The solution of the previous formula produces a formula ψ whose practical
interpretation is not clear).

3 The proof from Gödel
Kurt Gödel proved his incompleteness theorem in another manner, by construct-
ing a closed formula that states its own non-provability. Write $ for provable
and |ù for true over the integers.

Suppose that we fix an encoding of formulas by the integers in any reasonable
manner: If φ is a formula, then xφy denotes its encoding (an integer).

3.1 Fixpoint lemma
Here is a lemma that has been proved by Gödel, and that reads similar to the
fixed point theorems already mentioned in previous chapter.

Lemma 2 (Gödel’s fixpoint theorem) For any formula ψpxqwith free vari-
able x, there is a closed formula τ such that

$ τ ô ψpxτyq,

i.e. the closed formula τ and ψpxτyq are provably equivalent in Peano arithmetic.

Proof: Let x0 be a fixed variable. One can certainly construct a formula
SUBSTpx, y, zq with free variables x, y, z which claims “the number z is the
encoding of a formula obtained by substituting the constant whose value is x in
any occurrence of the free variable x0 in the formula whose encoding is y".

For example, if φpx0q is a formula that contains a free occurrence of x0, but no
other free variable, the formula SUBSTp7, xφpx0qy, 312q is true if 312 “ xφp7qy.

We will not provide the details of the construction of the formula SUBST,
but the idea is to observe that this is indeed possible, by using for example the
idea of relation BITpx, yq.

10

One considers now σpxq defined by @y pSUBSTpx, x, yq ñ ψpyqq, and τ
defined by σpxσpx0qyq.

Then τ is the desired solution, since

τ “ σpxσpx0qyq
“ @y pSUBSTpxσpx0qy, xσpx0qy, yq ñ ψpyqq
ô @y y “ xσpxσpx0qyqy ñ ψpyq
ô @y y “ xτy ñ ψpyq
ô ψpxτyq

Of course, we have used here some informal equivalences, but the argument
can indeed be fully formalized in Peano arithmetic. l

3.2 Arguments from Gödel

We observe now that the language of arithmetic is sufficiently expressive to talk
about provability in Peano arithmetic. In particular, it is possible to code a
sequence of formulas by an integer and to write a formula PROOFpx, yq that
means that the sequence of formulas whose encoding is x is a proof of the formula
whose encoding is y.

In other words, $ PROOFpxπy, xψyq ô π is a proof of ψ in Peano arithmetic.
The provability in Peano arithmetic can hence be coded by the formula

PROVABLEpyq defined by Dx PROOFpx, yq.
Then for any closed formula φ,

$φô |ùPROV ABLEpxφyq. (3)

We then have

$ φô $ PROV ABLEpxφyq. (4)

The direction ñ is true since if φ is provable then there is a proof π of φ.
The arithmetic of Peano and the proof system allow to use this proof to prove
φ (i.e. that PROOFpxπy, xφyq). The direction ð follows from 3 and from the
validity of proof in Peano arithmetic.

Let us then use the point fix lemma to the closed formula PROVABLEpxq.
We then obtain a closed formula ρ that states its own non-provability:

$ ρô PROVABLEpxρyq,

in other words, ρ is true if and only if it is not provable in Peano arithmetic.
From the validity of proof in Peano arithmetic, we have

|ù ρô PROVABLEpxρyq. (5)

Then formula ρ must be true, since otherwise then

4. BIBLIOGRAPHIC NOTES 11

|ù ρ ñ PROVABLEpxρyq (by 5)
ñ $ ρ (by 3)
ñ |ù ρ (by validity of Peano arithmetic)

a contradiction.
So |ù ρ. But now,

|ù ρ ñ PROVABLEpxρyq (by 5)
ñ ­|ù ρ (by definition of truth)
ñ & ρ (by 3)

Hence ρ is true, but cannot be proved.

3.3 Second incompleteness theorem from Kurt Gödel
The default of the previous proof is of course that it does not really make sense
to formula ρ.

The second incompleteness theorem from Kurt Gödel provides an explicit
example of a formula that cannot be proved.

One can express a formula CONSIST that expresses the fact that the theory
is coherent. Basically, one writes that its is not possible to prove a for-
mula F and its negations: It is “sufficient” ’ to write DxpPROVABLEpxq ^
PROVABLEpyq ^NEGpx, yqq, where NEGpx, yq means that y is the encoding
of the negation of the formula encoded by x.

The second incompleteness theorem from Kurt Gödel allows to prove that
this precise formula cannot be proved.

In other words:

Theorem 2 (Second incompleteness theorem from Kurt Gödel) No de-
duction system can prove its own coherence.

We will not go into further details.

4 Bibliographic notes
Suggested readings To go further with the notions of this chapter, we sug-
gest the reading of the last chapters of the book [Kozen, 1997], which remain
short and direct, or of the book [Cori and Lascar, 1993] for a complete proof.

Bibliography This chapter is taken from one of the last three chapters of the
excellent book [Kozen, 1997].

Index

ThpNq, 3, 5, 6
|ù, 9
|ù, 10
$, 9
$, 10
xφy, 9

arithmetic
Robinson, see Robinson arithmetic

axioms
of Peano arithmetic, 3
of Robinson arithmetic, 3

coherent
theory, 11

Gödel incompleteness theorem, 3, 5
fixed point lemma, 9
Gödel’s proof, 10, 11
principle, 3, 5
second theorem, 11
Turing’s proof, 5

Gödel theorem
second, see Gödel incompleteness

theorem

HP, 6
HP, 6, 7

incompleteness, see Gödel incomplete-
ness theorem

LEGAL, 7
legal window, 7

model
standard, see standard model of

the integers

Peano arithmetic, 3

Robinson arithmetic, 3

standard model of the integers, 3

theory
coherent, see coherent
of the arithmetic, 3

12

Bibliography

[Cori and Lascar, 1993] Cori, R. and Lascar, D. (1993). Logique Mathématique,
volume II. Mason.

[Kozen, 1997] Kozen, D. (1997). Automata and computability. Springer Verlag.

13

	Theory of Arithmetic
	Peano axioms
	Some concepts from arithmetic
	The possibility of talking of bits of an integer
	Principle of the proof from Gödel

	Incompleteness theorem
	Principle of the proof from Turing
	The easy direction
	Crucial lemma
	Construction of the formula

	The proof from Gödel
	Fixpoint lemma
	Arguments from Gödel
	Second incompleteness theorem from Kurt Gödel

	Bibliographic notes

