| Group Name:                                                                                                                                                                                                                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                         |  |
| Practice problems<br>Worksheet                                                                                                                                                                                                          |  |
| Please don't edit, rearrange or delete anything that is already in this document. Just add your answers inside the boxes. You can use shortcuts for superscripts and subscripts when needed:                                            |  |
| X <sup>2</sup> Superscript Ctrl+.                                                                                                                                                                                                       |  |
| X <sub>2</sub> Subsc <u>r</u> ipt Ctrl+,                                                                                                                                                                                                |  |
| 6.31 g of Mg is added to 36.5 mL of 1.200M HCl. A double displacement reaction occurs in a sealed container at 25.0°C with 100.0ml above the solution. What is the pressure of the hydrogen gas generated?  1. Write balanced equation. |  |
|                                                                                                                                                                                                                                         |  |
| 2. Determine moles of all reactants.                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                         |  |
| 3. Identify the limiting reagent.                                                                                                                                                                                                       |  |

| 4.              | Calculate the moles of the desired product based on complete consumption of limiting reagent.                                                                                                                       |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                                                                                                                     |
| 5.              | Calculate hydrogen pressure using Ideal Gas Law.                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                     |
| Probl           | .em #2: Two State Stoichiometric Problem                                                                                                                                                                            |
| when<br>is fini | gen dioxide is formed in a closed container at 97°C and 1.00 atm 2.10 g NO gas and 1.800 mole of O <sub>2</sub> gas are mixed. After the reaction shed the pressure changes to 3.70 atm. What is the final erature? |
| Part I          | : Stoichiometric Step                                                                                                                                                                                               |
| 1.              | Express all reactants in terms of moles and calculate initial moles.                                                                                                                                                |
|                 |                                                                                                                                                                                                                     |
| 2.              | Balance the equation                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                     |
| 3.              | Identify the limiting reagent.                                                                                                                                                                                      |
|                 |                                                                                                                                                                                                                     |
| 4.              | Calculate the moles of the desired product based on complete consumption of limiting reagent.                                                                                                                       |
|                 |                                                                                                                                                                                                                     |

5. Calculate moles excess reagent6. Calculate total number of moles.

Part II: Two State Step

1. Fill in the values

| State 1        |  | State 2        |   |
|----------------|--|----------------|---|
| P <sub>1</sub> |  | P <sub>2</sub> |   |
| V <sub>1</sub> |  | $V_2$          |   |
| n <sub>1</sub> |  | n <sub>2</sub> |   |
| T <sub>1</sub> |  | T <sub>2</sub> | ? |

2. Solve for T.

$$\frac{P_1 V_1}{P_2 V_2} = \frac{n_1 R T_1}{n_2 R T_2} \quad \Longrightarrow \quad \frac{P_1}{P_2} = \frac{n_1 T_1}{n_2 T_2}$$

Problem #3: Diffusion

A gas of unknown identity diffuses at a rate of 70.9 mL/s in a diffusion apparatus in which carbon dioxide diffuses at the rate of 89.6 mL/s. Calculate the molecular mass of the unknown gas. Hint: use Graham's law.