Inapproximability

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms — Inapproximability 29-2

Center Selection and Friends

Metric Center Selection
Instance:

Aset V of n sites, distances satisfying the triangle inequality, k,
the number of centers

Objective:

Finda set S <V such that the maximal (over all sites) distance
from a site to a closest center is as small as possible

Dominating Set
Instance:
A graph G = (V,E).
Objective:

Find a smallest dominating setin G, i.e. a set adjacent to all
nodes in G

Algorithms — Inapproximability 29-3

Center Selection: Hardness of Approximation

Theorem

Unless P = NP, there is no p-approximation algorithm for Metric k-
Center problem for any p < 2. (k is considered a part of the input.)

Proof

We show how we could use a (2 - €)-approximation algorithm for
k-Center to solve DOMINATING-SET in poly-time.

Let G = (V, E), k be an instance of DOMINATING-SET
Construct instance G' of k-center with sites V and distances
d(u,v)=1if(u,v)e E
d(u,v)=2if(u,v) ¢ E
Note that G' satisfies the triangle inequality.

Algorithms — Inapproximability 29-4

Center Selection: Hardness of Approximation

Proof (cntd)
Claim:

G has dominating set of size k iff there exists k centers C* with
r(C*) =1.

Thus, if G has a dominating set of size k, a (2 - €)-approximation
algorithm on G' must find a solution C* with r(C*) =1 since it
cannot use any edge of distance 2.

QED

Algorithms — Inapproximability 29-5

TSP

Theorem
Unless P=NP, TSP is not approximable

Proof

Suppose for contradiction that there is an (1+¢&)-approximating
algorithm for TSP; that is, for any collection of cities and distances
between them, the algorithm finds a tour of length | such that

[-OPT
<eg
OPT

We use this algorithm to solve Hamiltonian Cycle in polynomial time

Algorithms — Inapproximability 29-6

TSP

For any graph G = (V,E), construct an instance of TSP as follows:
- Let the set of cities be V
- Let the distance between a pair of cities vi,V> be
d(vl,v2)={1 ' (vl".jz)EE
2(1+ &)1V 1 otherwise
- If G has a Hamilton Cycle, then it has a tour of length |V
- Otherwise the minimal tour is at least 2(1+¢)1V |

Hence the (1+¢€)-approximating algorithm would find a tour of length [
such that

— _—1<e = 1<(1+¢&)-OPT

Algorithms — Inapproximability 29-7

More Inapproximability

Maximum Independent Set
Instance:
A graph G=(V,E).
Objective:

Find a largest set M < N such that no two vertices from M are
connected

Maximum Clique
Instance:
A graph G = (V,E).
Objective:
Find a largest cliqgue in G

Algorithms — Inapproximability 29-8

Independent Set vs. Clique

Observation

Foragraph G with n vertices, the following conditions are
equivalent

- G has a vertex cover of size k
- G has an independent set of size n -k
- G has aclique of size n-k

Theorem
Unless P = NP, Max Independent Set and Max Clique are not
approximable

Algorithms — Inapproximability

Proof

We prove a weaker result:

If there is an (1-&)-approximating algorithm for Max Independent
Set then there is a FPAS for this problem

Fora graph G =(V,E), the square of G is the graph G* such that
- itsvertex setis VXV ={(u,v)lu,veV}
- {(u,u'),(v,v")} is an edge if and only if
{u,vle E or u=v and {u',v'}e E

(1,2)
o ! (1,1) (1,3)
® 2.1) (2,3)
® 3 (3,1) (3,3)

(3,2)

29-9

Algorithms — Inapproximability 29-10

Independent Set: Hardness of Approximation

Lemma

A graph G has an independent set of size k if and only if G*
has a independent set of size k>

Proof
If | is anindependent set of G then {(u,v)lu,ve I}
is an independent set of G*

Conversely, if 77 is an independent set of G* with k* vertices,
then

- I={ul(u,v)e I* for some v} is an independent set of G
- I, ={vl(u,v)e I*} isan independent set of G

Algorithms — Inapproximability

Proof (cntd)

Suppose that a (1-€)-approximating algorithm exists, working in O(n')
time

Let G be a graph with n vertices, and let a maximal independent set
of G has size k

Applying the algorithm to G we obtain an independent set of G* of
size (1—&)k? inatime O(n?)

By Lemma, we can get an independent set of G of size V1—€-k
Therefore, we have an +/1— & -approximating algorithm

Repeating this process m times, we obtain a 2"/1 = ¢-approximation
algorithm working in O(n* ') time

29-11

Algorithms — Inapproximability 29-12

Proof (cntd)

Given € we need m such that
1-21-¢g)< ¢
Z1-e>1-¢
log(1-¢€)
2m
1 < log(1-¢&")

2" log(l—-¢)
log(1-¢€)

log(1-¢&")

>log(l—¢&")

m >log

log(1—¢)
z
Then our ¢€’-approximating algorithm works in a time Q| n °08(1-¢)

FPTAS

Design and Analysis of Algorithms
Andrei Bulatov

Algorithms — More Approximation II 28-14

Polynomial Time Approximation Scheme

« PTAS. An approximation algorithm for any constant relative error
1+e>0.

— Load balancing. [Hochbaum-Shmoys 1987]
— Euclidean TSP. [Arora 1996]

» Consequence. PTAS produces arbitrarily high quality solution, but
trades off accuracy for time.

« FPTAS (Fully polynomial approximation scheme)
if the algorithm is polynomial time in the size of the input and 1/e

Algorithms — More Approximation II 28-15

Knapsack

The Knapsack Problem

Instance:
A set of n objects, each of which has a positive integer value v,
and a positive integer weight w;. A weight limit W.

Objective:

Select objects so that their total weight does not exceed W, and
they have maximal total value

Example: {3, 4 } has value 40.

Algorithms — Inapproximability 29-16

Knapsack: Dynamic Programming Il
OPT(i, v) is min weight subset of items 1, ..., i of value exactly v.
Case 1: OPT does not select item i.

OPT selects bestof 1, ...,1—1 that achieves exactly value v

Case 2: OPT selects item |.

consumes weight w;, new value needed is v —v;
OPT selects bestof 1, ...,i-1 that achieves exactly value v —v;
0 if v=0
.\ Joo f i=0,v>0
OPT(i,v) =+ OPT (i—1,v) if v;>v
min{OPT (i —1,v),w;+OPT (i —1,v—v;) } otherwise

x
V* <N Vpox

Running tim O(n*Vinax)

V* = optimal

value = maximum v such that OPT(n,v) <W.

Not polynomial in input size!

Algorithms — Inapproximability 29-17

Knapsack: FPTAS

Intuition for approximation algorithm.
— Round all values up to lie in smaller range.
— Run dynamic programming algorithm on rounded instance.
— Return optimal items in rounded instance.

1,734,221
6,656,342
18,810,013

22,217,800
28,343,199

W

original instance rounded instance

Algorithms — Inapproximability 29-18

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:
* v... = largest value in original instance

e € = precision parameter yi= [‘ﬂ 6, 9= le
«® = scalingfactor=ev_, /n

Observation. Optimal solution to problems with v or v are equivalent.

Intuition. v close to v so optimal solution using v is nearly optimal;
v small and integral so dynamic programming algorithm is fast.

Running time. O(n3/ €).
— Dynamic program Il running time is o*+,,,,), where

) Vmax n
[

Algorithms — More Approximation II

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: v;= [‘ﬂ 6

28-19

Theorem
If S is the solution found by our algorithm and S* is any other
feasible solutionthen 1+ v, = > v,

ieS ie S*

Proof:
Let S* be any feasible solution satisfying weight constraint

Algorithms — More Approximation II 28-20

Knapsack: FPTAS

2.Vi < 2V always round up
€S €S
<2V solve rounded instance optimally
€S
<2 (v +6) never round up by more than 6
€S
<> v, +nb S| <n
ics DP alg can take v.,
l
S(1+8)Zvi no = 8Vmax’ VmaxSZ’ieSVi

=Y

