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Chapter 15 

Distributed Lag Models 

15.1 Introduction 

• In this chapter we focus on the dynamic nature of the economy, and the corresponding 

dynamic characteristics of economic data. 

• We recognize that a change in the level of an explanatory variable may have 

behavioral implications beyond the time period in which it occurred.  The 

consequences of economic decisions that result in changes in economic variables can 

last a long time. 

• When the income tax is increased, consumers have less disposable income, reducing 

their expenditures on goods and services, which reduces profits of suppliers, which 
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reduces the demand for productive inputs, which reduces the profits of the input 

suppliers, and so on. 

• These effects do not occur instantaneously but are spread, or distributed, over future 

time periods.  As shown in Figure 15.1, economic actions or decisions taken at one 

point in time, t, affect the economy at time t, but also at times t + 1, t + 2, and so on. 

• Monetary and fiscal policy changes, for example, may take six to eight months to have 

a noticeable effect; then it may take twelve to eighteen months for the policy effects to 

work through the economy. 

• Algebraically, we can represent this lag effect by saying that a change in a policy 

variable xt has an effect upon economic outcomes yt, yt+1, yt+2, … .  If we turn this 

around slightly, then we can say that yt is affected by the values of xt, xt-1, xt-2, … , or 

 

yt = f(xt, xt-1, xt-2,…)                                           (15.1.1) 
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• To make policy changes policymakers must be concerned with the timing of the 

changes and the length of time it takes for the major effects to take place.  To make 

policy, they must know how much of the policy change will take place at the time of 

the change, how much will take place one month after the change, how much will take 

place two months after the changes, and so on. 

• Models like (15.1.1) are said to be dynamic since they describe the evolving economy 

and its reactions over time. 

• One immediate question with models like (15.1.1) is how far back in time we must go, 

or the length of the distributed lag.  Infinite distributed lag models portray the effects 

as lasting, essentially, forever.  In finite distributed lag models we assume that the 

effect of a change in a (policy) variable xt affects economic outcomes yt only for a 

certain, fixed, period of time. 
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15.2 Finite Distributed Lag Models 

 

15.2.1   An Economic Model 

• Quarterly capital expenditures by manufacturing firms arise from appropriations 

decisions in prior periods.  Once an investment project is decided on, funds for it are 

appropriated, or approved for expenditure.  The actual expenditures arising from any 

appropriation decision are observed over subsequent quarters as plans are finalized, 

materials and labor are engaged in the project, and construction is carried out. 

• If xt is the amount of capital appropriations observed at a particular time, we can be 

sure that the effects of that decision, in the form of capital expenditures yt, will be 

“distributed” over periods t, t + 1, t + 2, and so on until the projects are completed. 

• Furthermore, since a certain amount of “start-up” time is required for any investment 

project, we would not be surprised to see the major effects of the appropriation 

decision delayed for several quarters. 
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• As the work on the investment projects draws to a close, we expect to observe the 

expenditures related to the appropriation xt declining. 

• Since capital appropriations at time t, xt, affect capital expenditures in the current and 

future periods (yt, yt+1, yt+2, …), until the appropriated projects are completed, we may 

say equivalently that current expenditures yt are a function of current and past 

appropriations xt, xt-1, … . 

• Furthermore, let us assert that after n quarters, where n is the lag length, the effect of 

any appropriation decision on capital expenditure is exhausted.  We can represent this 

economic model as 

 

yt = f(xt, xt-1, xt-2, … , xt-n)                                     (15.2.1) 

 

• Current capital expenditures yt depend on current capital appropriations, xt, as well as 

the appropriations in the previous n periods, xt, xt-1, xt-2, … , xt-n.  This distributed lag 
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model is finite as the duration of the effects is a finite period of time, namely n 

periods.  We now must convert this economic model into a statistical one so that we 

can give it empirical content. 

 
 

15.2.2   The Econometric Model 

• In order to convert model (15.2.1) into an econometric model we must choose a 

functional form, add an error term and make assumptions about the properties of the 

error term. 

• As a first approximation let us assume that the functional form is linear, so that the 

finite lag model, with an additive error term, is 

 

yt = α + β0xt + β1xt-1 + β2xt-2 + … + βnxt-n + et,  t = n + 1, … , T         (15.2.2) 
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where we assume that E(et) = 0, var(et) = σ2, and cov(et, es) = 0. 

• Note that if we have T observations on the pairs (yt, xt) then only T − n complete 

observations are available for estimation since n observations are “lost” in creating xt-1, 

xt-2, … , xt-n. 

• In this finite distributed lag the parameter α is the intercept and the parameter βi is 

called a distributed lag weight to reflect the fact that it measures the effect of changes 

in past appropriations, ∆xt-i, on expected current expenditures, ∆E(yt), all other things 

held constant.  That is, 

 

( )t
i

t i

E y
x −

∂
= β

∂
                                               (15.2.3) 

 

• Equation (15.2.2) can be estimated by least squares if the error term et has the usual 

desirable properties.  However, collinearity is often a serious problem in such models.  
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Recall from Chapter 8 that collinearity is often a serious problem caused by 

explanatory variables that are correlated with one another. 

• In Equation (15.2.2) the variables xt and xt-1, and other pairs of lagged x’s as well, are 

likely to be closely related when using time-series data.  If xt follows a pattern over 

time, then xt-1 will follow a similar pattern, thus causing xt and xt-1 to be correlated.  

There may be serious consequences from applying least squares to these data. 

• Some of these consequences are imprecise least squares estimation, leading to wide 

interval estimates, coefficients that are statistically insignificant, estimated coefficients 

that may have incorrect signs, and results that are very sensitive to changes in model 

specification or the sample period.  These consequences mean that the least squares 

estimates may be unreliable. 

• Since the pattern of lag weights will often be used for policy analysis, this imprecision 

may have adverse social consequences.  Imposing a tax cut at the wrong time in the 

business cycle can do much harm. 
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15.2.3   An Empirical Illustration 

• To give an empirical illustration of this type of model, consider data on quarterly 

capital expenditures and appropriations for U. S. manufacturing firms.  Some of the 

observations are shown in Table 15.1. 

• We assume that n = 8 periods are required to exhaust the expenditure effects of a 

capital appropriation in manufacturing.  The basis for this choice is investigated in 

Section 15.2.5, since the lag length n is actually an unknown constant.  The least 

squares parameter estimates for the finite lag model (15.2.2) are given in Table 15.2. 

 
 

Table 15.2  Least Squares Estimates for the Unrestricted Finite 

Distributed Lag Model 

Variable Estimate Std. Error t-value p-value 

const. 3.414   53.709 0.622         0.5359 
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tx   0.038    0.035          1.107         0.2721 

1tx −            0.067    0.069          0.981         0.3300 

2tx −            0.181    0.089          2.028         0.0463 

3tx −           0.194    0.093          2.101         0.0392 

4tx −            0.170    0.093          1.824         0.0723 

5tx −           0.052    0.092         0.571         0.5701 

6tx −           0.052    0.094          0.559         0.5780 

7tx −           0.056    0.094          0.597         0.5526 

8tx −           0.127    0.060          2.124         0.0372 

 

• The R2 for the estimated relation is 0.99 and the overall F-test value is 1174.8.  The 

statistical model “fits” the data well and the F-test of the joint hypotheses that all 

distributed lag weights βi = 0, i = 0, ... , 8, is rejected at the α = .01 level of 

significance. 
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• Examining the individual parameter estimates, we notice several disquieting facts.  

First, only the lag weights b2, b3, b4, and b8 are statistically significantly different from 

zero based on individual t-tests, reflecting the fact that the estimates’ standard errors 

are large relative to the estimated coefficients. 

• Second, the estimated lag weights b7 and b8 are larger than the estimated lag weights 

for lags of 5 and 6 periods.  This does not agree with our anticipation that the lag 

effects of appropriations should decrease with time and in the most distant periods 

should be small and approaching zero. 

• These characteristics are symptomatic of collinearity in the data.  The simple 

correlations among the current and lagged values of capital appropriations are large.  

Consequently, a high level of linear dependence is indicated among the explanatory 

variables.  Thus, we conclude that the least squares estimates in Table 15.2 are subject 

to great sampling variability and are unreliable, owing to the limited independent 

information provided by each explanatory variable xt-i. 
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• In Chapter 8 we noted that one way to combat the ill-effects of collinearity is to use 

restricted least squares.  By replacing restrictions on the model parameters we reduce 

the variances of the estimator. 

• In the context of distributed lag models we often have an idea of the pattern of the 

time effects, which we can translate into parameter restrictions.  In the following 

section we restrict the lag weights to fall on a polynomial. 

 
 

15.2.4   Polynomial Distributed Lags 

• Imposing a shape on the lag distribution will reduce the effects of collinearity.  Let us 

assume that the lag weights follow a smooth pattern that can be represented by a low 

degree polynomial.  Shirley Almon introduced this idea, and the resulting finite lag 

model is often called the Almon distributed lag, or a polynomial distributed lag. 
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• For example, suppose we select a second-order polynomial to represent the pattern of 

lag weights.  Then the effect of a change in xt-i on E(yt) is 

 

2
0 1 2

( ) , 0,   ,  t
i

t i

E y i i i n
x −

∂
= β = γ + γ + γ =

∂
K                          (15.2.4) 

 

• An example of this quadratic polynomial lag is depicted in Figure 15.2.  The 

polynomial lag in Figure 15.2 depicts a situation that commonly arises when modeling 

the effects of monetary and fiscal policy.  At time t the effect of a change in a policy 

variable is 

 

0 0
( )t

t

E y
x

∂
= β = γ

∂
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The immediate impact might well be less than the impact after several quarters, or 

months.  After reaching its maximum, the policy effect diminishes for the remainder 

of the finite lag. 

• For illustrative purposes again suppose that the lag length is n = 4 periods.  Then the 

finite lag model is 

 

yt = α + β0xt + β1xt-1 + β2xt-2 + β3xt-3 + β4xt-4 + et,  t = 5, … , T        (15.2.5) 

 

• Then the relations in Equation (15.2.4) become 

 

β0 = γ0    i = 0 

β1 = γ0 + γ1 + γ2  i = 1 

β2 = γ0 + 2γ1 + 4γ2  i = 2                                   (16.2.6) 

β3 = γ0 + 3γ1 + 9γ2  i = 3 
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β4 = γ0 + 4γ1 + 16γ2  i = 4 

 

• In order to estimate the parameters describing the polynomial lag, γ0, γ1, and γ2, we 

substitute Equation (15.2.6) into the finite lag model Equation (15.2.5) to obtain 

 

yt = α + γ0xt + (γ0 + γ1 + γ2)xt-1 + (γ0 + 2γ1 + 4γ2)xt-2 

       + (γ0 + 3γ1 + 9γ2)xt-3 + (γ0 + 4γ1 + 16γ2)xt-4 + et 

   = α + γ0zt0 + γ1zt1 + γ2zt2 + et                                                (15.2.7) 

 

In Equation (15.2.7) we have defined the constructed variables ztk as 

 

zt0 = xt + xt-1 + xt-2 + xt-3 + xt-4 

zt1 = xt-1 + 2xt-2 + 3xt-3 + 4xt-4 

zt2 = xt-1 + 4xt-2 + 9xt-3 + 16xt-4 
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• Once these variables are created the polynomial coefficients are estimated by applying 

least squares to Equation (15.2.7). 

• If we denote the estimated values of γk by ˆ kγ , then we can obtain the estimated lag 

weights as 

 
2

0 1 2
ˆ ? � , 0,   ,  i i i i nβ = γ + γ + γ = K                                   (15.2.8) 

 

Whatever the degree of the polynomial, the general procedure is an extension of what 

we have described for the quadratic polynomial. 

• Equation (15.2.7) is a restricted model.  We have replaced (n + 1) = 5 distributed lag 

weights with 3 polynomial coefficients.  This implies that in constraining the 

distributed lag weights to a polynomial of degree 2 we have imposed J = (n + 1) − 3 = 

2 parameter restrictions. 
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• We may wish to check the compatibility of the quadratic polynomial lag model with 

the data by performing an F-test, comparing the sum of squared errors from the 

restricted model in Equation (15.2.7) to the sum of squared errors from the 

unrestricted model (15.2.5). 

• As an illustration, we will fit a second-order polynomial lag to the capital expenditure 

data in Table 15.1, with a lag length of n = 8 periods.  In Table 15.3 are the estimated 

polynomial coefficients from Equation (15.2.7). 

 

Table 15.3  Estimated (Almon) Polynomial 

Coefficients 

Parameter Estimates t-value p-value

α       51.573      0.970       0.3351

γ0          0.067       4.411        0.0001

γ1        0.038        2.984     0.0038
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γ2            −0.005    −3.156     0.0023

 

• In Table 15.4 we present the distributed lag weights calculated using Equation (15.2.8).  

The reported standard errors are based on the fact that the estimated distributed lag 

weights are combinations of the estimates in Table 15.3. 

 

Table 15.4  Estimated Almon Distributed Lag Weights from 

Polynomial of Degree Two 

Parameter Estimate Std. Error t-value p-value

0β         0.067    0.015    4.41  0.0001

1β     0.100    0.005  19.60  0.0001

2β   0.123  0.005   22.74  0.0001

3β  0.136     0.009   14.40  0.0001

4β        0.138    0.011   12.86  0.0001
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5β     0.130    0.009  14.31  0.0001

6β     0.112     0.005   20.92  0.0001

7β  0.083    0.007   11.32   0.0001

8β    0.044    0.018    2.47  0.0156

 

• Since the estimated weights in Table 15.4 are linear combinations of the estimated 

polynomial coefficients in Table 15.3, as shown in Equation (15.2.8), their estimated 

variances are calculated using Equation (2.5.8), from Chapter 2. 

• Constraining the distributed lag weights to fall on a polynomial of degree two has 

drastically affected their values as compared to the unconstrained values in Table 15.2. 

• Also, note that the standard errors of the estimated coefficients are much smaller than 

those in the unconstrained model indicating more precise parameter estimation. 
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Remark:  Recall that imposing restrictions on parameters leads to bias unless 

the restrictions are true.  In this case we do not really believe that the 

distributed lag weights fall exactly on a polynomial of degree two.  However, if 

this assumption approximates reality, then the constrained estimator will 

exhibit a small amount of bias.  Our objective is to trade a large reduction in 

sampling variance for the introduction of some bias, increasing the probability 

of obtaining estimates close to the true values. 

 

• In Figure 15.3 we plot the unrestricted estimates of lag weights and the restricted 

estimates.  Note that the restricted estimates display the increasing-then-decreasing 

“humped” shape that economic reasoning led us to expect.  The effect of a change in 

capital appropriations xt at time t leads to an increase in capital expenditures in the 

current period, yt, by a relatively small amount.  However, the expenditures arising 
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from the appropriation decision increase during the next four quarters, before the 

effect begins to taper off. 

 
 

15.2.5   Selection of the Length of the Finite Lag 

• Numerous procedures have been suggested for selecting the length n of a finite 

distributed lag.  None of the proposed methods is entirely satisfactory.  The issue is an 

important one, however, because fitting a polynomial lag model in which the lag 

length is either over- or understated may lead to biases in the estimation of the lag 

weights, even if an appropriate polynomial degree has been selected. 

• We offer two suggestions that are based on “goodness-of-fit” criteria.  Begin by 

selecting a lag length N that is the maximum that you are willing to consider.  The 

unrestricted finite lag model is then 

 



 
Slide 15.22 

Undergraduate Econometrics, 2nd Edition-Chapter 15 
 

yt = α + β0xt + β1xt-1 + β2xt-2 + β3xt-3 + … + βNxt-N + et               (15.2.9) 

 

• We wish to assess the goodness of fit for lag lengths n ≤ N.  The usual measures of 

goodness-of-fit, R2 and 2R , have been found not to be useful for this task. 

• Two goodness-of-fit measures that are more appropriate are Akaike’s AIC criterion 

 

2( 2)ln nSSE nAIC
T N T N

+
= +

− −
                                    (15.2.10) 

 

and Schwarz’s SC criterion 

 

( 2) ln( )ln nSSE N T NSC
T N T N

+ −
= +

− −
                             (15.2.11) 
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• For each of these measures we seek that lag length n* that minimizes the criterion 

used.  Since adding more lagged variables reduces SSE, the second part of each of the 

criteria is a penalty function for adding additional lags. 

• These measures weigh reductions in sum of squared errors obtained by adding 

additional lags against the penalty imposed by each.  They are useful for comparing 

lag lengths of alternative models estimated using the same number of observations. 

 

 

 

 

 

 

 

 



 
Slide 15.24 

Undergraduate Econometrics, 2nd Edition-Chapter 15 
 

15.3 The Geometric Lag 

An infinite distributed lag model in its most general form is: 

 

0 1 1 2 2 3 3

0

t t t t t t

i t i t
i

y x x x x e

x e

− − −

∞

−
=

= α + β + β + β + β + +

= α + β +∑

L

                     (15.3.1) 

 

• In this model yt is taken to be a function of xt and all its previous values.  There may 

also be other explanatory variables on the right-hand side of the equation.  The model 

in Equation (15.3.1) is impossible to estimate since there are an infinite number of 

parameters. 

• Models have been developed that are parsimonious, and which reduce the number of 

parameters to estimate.  The cost of reducing the number of parameters is that these 
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models must assume particular patterns for the parameters βi, which are called 

distributed lag weights. 

• One popular model is the geometric lag, in which the lag weights are positive and 

decline geometrically.  That is 

 

βi = βφi,  |φ| < 1                                               (15.3.2) 

 

The parameter β is a scaling factor and the parameter φ is less than 1 in absolute value.  

The pattern of lag weights βi is shown in Figure 15.4. 

• The lag weights βi = βφi decline toward zero as i gets larger.  The most recent past is 

more heavily weighted than the more distant past, and, although the weights never 

reach zero, beyond a point they become negligible. 

• Substituting Equation (15.3.2) into Equation (15.3.1) we obtain, 
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yt = α + β0xt + β1xt-1 + β2xt-2 + β3xt-3 + … + et 

   = α + β(xt + φxt-1 + φ2xt-2 + φ3xt-3 + … ) + et                       (15.3.3) 

 

which is the infinite geometric distributed lag model.  In this model there are 3 

parameters, α-an intercept parameter, β-a scale factor, and φ-which controls the rate at 

which the weights decline. 

• In Equation (15.3.3) the effect of a one unit change in xt-i on E(yt) is 

 

( ) it
i

t i

E y
x −

∂
= β = βφ

∂
                                            (15.3.4) 

 

This equation says that the change in the average value of y in period t given a change 

in x in period t − i, all other factors held constant, is βi = βφi. 
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• The change in E(yt) given a unit change in xt is β; it is called an impact multiplier 

since it measures the change in the current period. 

• If the change in period t is sustained for another period then the combined effect β + 

βφ is felt in period t + 1.  If the change is sustained for three periods the effect on 

E(yt+2) is β + βφ + βφ2.  These sums are called interim multipliers and are the effect 

of sustained changes in xt. 

• If the change is sustained permanently then the total effect, or the long run 

multiplier, is 

 

2 3(1 )
1

β
β + φ + φ + φ + =

− φ
L  
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15.4 The Koyck Transformation 

How shall we estimate the geometric lag model represented by Equation (15.3.3)?  As it 

stands, it is an impossible task, since the model has an infinite number of terms, and the 

parameters β and φ are multiplied together, making the model nonlinear in the 

parameters.  One way around these difficulties is to use the Koyck transformation, in 

deference to L. M. Koyck, who developed it. 

• To apply the Koyck transformation, lag equation (15.3.3) one period, multiply by φ, 

and subtract that result from lag equation (15.3.3).  We obtain 

 
2 3

1 1 2 3

2 3
1 2 3 4 1

1

[ ( ) ]

[ ( ) ]
(1 ) ( )

t t t t t t t

t t t t t

t t t

y y x x x x e

x x x x e
x e e

− − − −

− − − − −

−

− φ = α + β + φ + φ + φ + +

− φ α + β + φ + φ + φ + +
= α − φ + β + − φ

L

L            (15.4.1) 
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• Solving for yt we obtain the Koyck form of the geometric lag, 

 

yt = α(1 − φ) + φyt-1 + βxt + (et − φet-1) 

    = β1 + β2yt-1 + β3xt + vt                                               (15.4.2) 

 

where β1 = α(1 − φ), β2 = φ, β3 = β and the random error vt = (et − φet-1). 

 
 

15.4.1   Instrumental Variables Estimation of the Koyck Model 

• The last line of equation (15.4.2) looks like a multiple regression model, with two 

special characteristics.  The first is that one of the explanatory variables is the lagged 

dependent variable, yt-1.  The second is that the error term vt depends on et and on et-1.  

Consequently, yt-1 and the error term vt must be correlated, since equation (15.3.3) 

shows that yt-1 depends directly on et-1. 
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• In Chapter 13.2.4, we showed that such a correlation between an explanatory variable 

and the error term causes the least squares estimator of the parameters is biased and 

inconsistent.  Consequently, in Equation (15.4.2) we should not use the least squares 

estimator to obtain estimates of β1, β2, and β3. 

• We can estimate the parameters in Equation (15.4.2) consistently using the 

instrumental variables estimator. 

• The “problem” variable in Equation (15.4.2) is yt-1, since it is the one correlated with 

the error term vt. 

• An appropriate instrument for yt-1 is xt-1, which is correlated with yt-1 (from Equation 

(15.4.2)) and which is uncorrelated with the error term vt (since it is exogenous). 

• Instrumental variables estimation can be carried out using two-stage least squares.  

Replace yt-1 in Equation (15.4.2) by 1 0 1 1ˆt ty a a x− −= + , where the coefficients a0 and a1 

are obtained by a simple least squares regression of yt-1 on xt-1, to obtain 
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1 2 1 3ˆt t ty y x error−= δ + δ + δ +                                    (15.4.3) 

 

• Least squares estimation of Equation (15.4.3) is equivalent to instrumental variables 

estimation, as we have shown in Chapter 13.3.5.  The variable xt-1 is an instrument for 

yt-1, and xt is an instrument for itself. 

• Using the instrumental variables estimates of δ1, δ2, and δ3, we can derive estimates of 

α, β, and φ in the geometric lag model. 

 
 

15.4.2   Testing for Autocorrelation in Models with Lagged Dependent Variables 

• In the context of the lagged dependent variable model (15.4.2), obtained by the Koyck 

transformation, we know that the error term is correlated with the lagged dependent 

variable on the right-hand side of the model, and thus that the usual least squares 

estimator fails. 
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• Suppose, however, that we have obtained a model like (15.4.2) through other 

reasoning, and that we do not know whether the error term is correlated with the 

lagged dependent variable or not.  If it is not, then we can use least squares estimation.  

If it is, we should not use least squares estimation. 

• The key question is whether the error term, vt in Equation (15.4.2), is serially 

correlated or not, since if it is, then it is also correlated with yt-1.  The Durbin-Watson 

test is not applicable in this case, because in a model with an explanatory variable that 

is a lagged dependent variable it is biased towards finding no autocorrelation. 

• A test that is valid in large samples is the LM test for autocorrelation introduced in 

Chapter 12.6.2.  Estimate Equation (15.4.2) by least squares and compute the least 

squares residuals, t̂e .  Then estimate the artificial regression 

 

1 2 1 3 4 1ˆt tt ty a a y a x a e error− −= + + + +                                  (15.4.4) 
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• Test the significance of the coefficient on 1t̂e −  using the usual t-test.  If the coefficient 

is significant, then reject the null hypothesis of no autocorrelation.  This alternative 

test is also useful in other general circumstances and can be extended to include least 

squares residuals with more than one lag. 
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15.5 Autoregressive Distributed Lags 

 

• There are some obvious problems with the two distributed lags models we have 

discussed.  The finite lag model requires us to choose the lag length and then deal with 

collinearity in the resulting model.  The polynomial distributed lag (PDL) addresses 

the collinearity by requiring the lag weights to fall on a smooth curve.  While the PDL 

is flexible, it is still a very strong assumption to make about the structure of lag 

weights. 

• The infinite lag model removes the problem of specifying the lag length, but requires 

us to impose structure on the lag weights to get around the problem that there are an 

infinite number of parameters. 

• The geometric lag is one such structure, but it imposes the condition that successive 

lag weights decline geometrically.  This model would not do in a situation in which 
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the peak effect does not occur for several periods, such as when modeling monetary or 

fiscal policy. 

• In this section we present an alternative model that may be useful when neither a 

polynomial distributed lag nor a geometric lag is suitable. 

 
 
15.5.1   The Autoregressive Distributed Lag Model 

• The autoregressive-distributed lag (ARDL) is an infinite lag model that is both flexible 

and parsimonious. 

• An example of an ARDL is as follows: 

 

yt = µ + β0xt + β1xt-1 + γ1yt-1 + et                                 (15.5.1) 

 

In this model we include the explanatory variable xt, and one or more of its lags, with 

one or more lagged values of the dependent variable. 
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• The model in (15.5.1) is denoted as ARDL(1, 1) as it contains one lagged value of x 

and one lagged value of y.  A model containing p lags of x and q lags of y is denoted 

ARDL(p, q). 

• If the usual error assumptions on the error term e hold, then the parameters of 

Equation (15.5.1) can be estimated by least squares. 

• Despite its simple appearance the ARDL(1,1) model represents an infinite lag.  To see 

this we repeatedly substitute for the lagged dependent variable on the right-hand side 

of Equation (15.5.1).  The lagged value yt-1 is given by 

 

yt-1 = µ + β0xt-1 + β1xt-2 + γ1yt-2 + et-1                              (15.5.2) 

 

Substitute Equation (15.5.2) into Equation (15.5.1) and rearrange, 
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0 1 1 1 0 1 1 2 1 2 1
2

1 0 1 1 0 1 1 1 2 1 2 1 1

[ ]

(1 ) ( ) ( )
t t t t t t t t

t t t t t t

y x x x x y e e

x x x y e e
− − − − −

− − − −

= µ + β + β + γ µ + β + β + γ + +

= µ + γ + β + β + γ β + γ β + γ + γ +
         (15.5.3) 

 

Substitute the lagged value yt-2 = µ + β0xt-2 + β1xt-3 + γ1yt-3 + et-2 into Equation (15.5.3) 

to obtain 

 
2 2

1 1 0 1 1 0 1 1 1 1 0 2 1 1 2
3 2
1 3 1 2 1 1

(1 ) ( ) ( )

      ( )
t t t t t

t t t t

y x x x x

y e e e
− − −

− − −

= µ + γ + γ + β + β + γ β + γ β + γ β + γ β

+ γ + γ + γ +
     (15.5.4) 

 

Continue this process, and assuming that |γ1| < 1, we obtain in the limit 

 

( 1)
0 1 1 1 0 1

1
( )i

t t t t
i

y x x u
∞

−
−

=

= α + β + γ β + γ β +∑                            (15.5.5) 
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where 2 3
1 1 1 1(1 ) (1 )α = µ + γ + γ + γ + = µ − γK  and 2 3

1 1 1 2 1 3t t t t tu e e e e− − −= + γ + γ + γ +K .  

Equation (15.5.5) is an infinite distributed lag model, 

 

1
0

t i t t
i

y x u
∞

−
=

= α + α +∑                                          (15.5.6) 

 

with lag weights 

 

0 0

1 1 1 0

2 1 1 1 0 1 1

2
3 1 1

( 1)
1 1

( )
( )

s
s

−

α = β
α = β + γ β
α = γ β + γ β = γ α

α = γ α

α = γ α

M

                                    (15.5.7) 
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• Estimating the ARDL(1, 1) model yields an infinite lag model with weights given by 

Equation (15.5.7). 

• Similarly, the ARDL(2, 2) model, given by 

 

yt = µ + β0xt + β1xt-1 + β2xt-2 + γ1yt-1 + γ2yt-2 + et                    (15.5.8) 

 

yields the infinite lag Equation (15.5.6) with weights 

 

0 0

1 1 1 0

2 0 2 1 1 2

3 2 1 1 2

4 3 1 2 2

1 1 2 2

( )

s s s− −

α = β
α = β + γ β
α = α γ + α γ + β
α = α γ + α γ
α = α γ + α γ

α = α γ + α γ
M

                                          (15.5.9) 
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• It can be shown that the infinite lag arising from the ARDL(p, q) model is flexible 

enough to approximate any shape infinite lag distribution with sufficiently large values 

of p and q. 

 

 

15.5.2   An Illustration of the ARDL Model 

 

• To illustrate the estimation of an infinite ARDL, let us use the capital expenditure data 

in Table 15.1.  Figure 15.5 shows the first eight lag weights from three alternative 

ARDL models. 
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PLOT ARDL(1, 1) ARDL(2, 2) ARDL(3, 3)

A
R
D
L
(
1
,
1
)

0. 03

0. 04

0. 05

0. 06

0. 07

0. 08

0. 09

0. 10

0. 11

0. 12

0. 13

0. 14

0. 15

0. 16

0. 17

0. 18

0. 19

Lag i

0 1 2 3 4 5 6 7 8

 

 

• We see that unlike a geometric lag, the lag weights implied by the ARDL models 

capture the delay in the peak lag effect. 
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• As the order of the ARDL(p, q) increases, the lag weights exhibit a more flexible 

shape, and the peak effect is further delayed. 

• The ARDL(3, 3) model yields lag weights not unlike the polynomial distributed lag of 

order two, shown in Figure 15.3; one difference is that the maximum weight is now at 

lag 3 instead of lag 4, which is more in line with the unrestricted lag weights. 
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Exercise 

15.2 15.3 15.4   

 


