
HOW TO PROGRAM AN INFINITE ABACUS

Joachim Lambek

(received June 15, 1961)

This is an expository note to show how an "infinite abacus11

(to be defined presently) can be programmed to compute any
computable (recursive) function. Our method is probably not
new, at any rate , it was suggested by the ingenious technique of
Melzak [2] and may be regarded as a modification of the latter-

By an infinite abacus we shall understand a countably in
finite set of locations (holes, wires etc .) together with an un
limited supply of counters (pebbles, beads e tc .) . The locations
a,re distinguishable, the counters are not. The confirmed finitist
need not worry about these two infinitudes: To compute any given
computable function only a finite number of locations will be
used, and this number does not depend on the argument (or
arguments) of the function. Moreover, to evaluate such a function
at a given argument only a finite number of counters a re r e
quired.

So far our abacus does not differ from Melzak1 s machine.
However, while he admits one ternary operation, we require
two unary operations X+ and X-. X+ means: Place one counter
into location X. X- means: Remove one counter from location
X if this is possible, that i s , if X is not empty.

^y a P r o g r a m w e shall understand a finite set of ins t ruct
ions to perform these two elementary operations together with
indications to show the following:

1. Which instruction is to be car r ied out f i rs t?
2. Which instruction comes after X+?
3. Which two instructions come after X- in the two

cases : (a) X is not empty, (b) X is empty?
4. When do we stop?

The idea of using a sometimes impossible instruction to deter
mine two different steps to follow it is taken from Melzak' s paper.

Canad. Math- Bull. vol. 4, no. 3, September 1961

295

Downloaded from https://www.cambridge.org/core. 02 Mar 2021 at 20:33:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

For a rigorous mathematical definition of "program11 , see
Appendix II. In the meantime we i l lustrate this concept by two
simple examples. As in [2], we use "flow cha r t s " to represent
p rograms . An incoming arrow indicates s tar t and an outgoing
a r row indicates stop.

EXAMPLE 1. X

This program tel ls us to remove one counter from location X
and to repeat this operation until X is empty, We may the re
fore t ransla te this program to read: Empty X.

EXAMPLE 2. |

This program tel ls us to t ransfer one counter from X to Y
and to keep on doing this until X is empty. We may t ransla te
this to read: Transfer the content of X to Y.

By a configuration of the abacus we understand an ass ign
ment of counters to locations. Thus the program of example 1
t ransforms the configuration

X
(X has content x)

x
into the configuration

X
(X has content zero).

Similarly the program of example 2 t rans forms the configuration
X Y
x y

into the configuration
X Y
0 x+y.

The contents of all locations not shown are understood to remain
constant. A small Roman le t ter when first introduced will usually
denote the current content of the location denoted by the cor res - .
ponding capital.

We a r e concerned with functions in n var iab les (n > 1),

296

Downloaded from https://www.cambridge.org/core. 02 Mar 2021 at 20:33:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

whose a r g u m e n t s and v a l u e s a r e non-nega t ive i n t e g e r s . To
compute such funct ions on our a b a c u s , it wil l be convenient to
divide the set of loca t ions into two dis joint infinite s u b s e t s . One
subse t of loca t ions wil l be used for showing the a r g u m e n t s and
v a l u e s of t h e s e funct ions , the o the r for t e m p o r a r y s to r age of
i n t e r m e d i a t e r e s u l t s in the ca l cu l a t i ons . When comput ing a
p a r t i c u l a r function, only a finite n u m b e r of the t e m p o r a r y s t o r
age loca t ions wil l be used , and t he se wil l be r e s e r v e d once and
for a l l for th i s function.

We shal l say that a p r o g r a m computes the function z =
<|>(x, y) , if it t r a n s f o r m s the conf igurat ion

X Y Z T . . . T
1 m

x y 0 0 . . . 0
into the conf igura t ion

X Y Z T . . . T
1 m ,

x y <)>(x, y) 0 . . . 0
w h e r e T , . . . , T a r e the r e s e r v e d t e m p o r a r y s t o r age

1 m
loca t ions . A s i m i l a r definit ion i s u s e d for funct ions of n
v a r i a b l e s , n > 1.

E X A M P L E 3.
Compute the function y = x. Let T be a t e m p o r a r y s t o r a g e
locat ion- We a s s u m e that Y and T a r e empty .

i
X

i
empty X into T

YH

I
X+

The phrase "empty X into T l ! should of course be replaced by
the program of example 2 (with T instead of Y). It i s easy
to see that the f irst instruction transforms the configuration

X Y T
x 0 0

into the configuration
X Y T
0 0 x .

297

Downloaded from https://www.cambridge.org/core. 02 Mar 2021 at 20:33:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Then going once round the loop we ob ta in
X Y T
1 1 x - 1 .

Af te r t r a v e r s i n g the loop x t i m e s we get
X Y T
x x 0 .

Now going a long a r r o w b we c o m e to a s top , wi th the r e q u i r e d
output conf igura t ion .

F r o m now on we sha l l u s e the s a m e t e m p o r a r y s t o r a g e
loca t ion T w h e n e v e r we compu te the ident i ty funct ion, be it
c a l l e d y = x a s above o r z = u, fo r t ha t m a t t e r , a s long a s
n e i t h e r v a r i a b l e i s t .

A c c o r d i n g to Kleene [l] , the se t of r e c u r s i v e funct ions
i s the s m a l l e s t se t conta in ing the funct ions d e s c r i b e d in I to
III be low and c l o s e d u n d e r the s c h e m e s IV to VI.

I. 4>(x) = x + 1 .
II. «>(xlf . .

III. «Mx^ . .

IV. cf)(x , . . . , x) = iKX.(x . , x) , . . . , X (x , . . . , x)).
1 n 1 1 n m l n

v . 4>(o, x 2 ?

4>(y+l, x , . . . , x) = X(y, 4>(y, x , . . . , x), x , . . . , x)

x) = k.
n

x) = x. , l < i < n .
n l - — —

x) = + (X, (x > . . . , x), .
n 1 1 n

. , x) = \\t[x , . . . , x) ,
n 2 n

. . . , x) = X(y, 4>(y* x , .
n ù

. . , X (x ,
m 1

• - , x), x
n 2

VI. <KX » • - • » x) = the s m a l l e s t y such tha t
n

X(x^, . . . , x , y) = 0.
1 n

H e r e k > 0 , n > l , m > ^ l and the funct ion X in VI i s a s s u m e d
to sa t is fy the condi t ion

Vx^ . . - \/x 3y M* , . . . , x , y) = 0).
1 n -J 1 n

To say tha t the se t of r e c u r s i v e funct ions i s c l o s e d u n d e r r a l e IV,
fo r e x a m p l e , m e a n s tha t the lunc t ion <f) de l ined by IV i s in
the se t w h e n e v e r \\i and X a r e g i v e n funct ions in the se t .

T H E O R E M . E v e r y r e c u r s i v e function can be c o m p u t e d
by a (finite) p r o g r a m on a n infinite a b a c u s .

We could p r o v e t h i s t h e o r e m by showing tha t o u r a b a c u s
i s equ iva len t to M e l z a k ' s m a c h i n e and by quot ing Melzak 1 s r e -

298

Downloaded from https://www.cambridge.org/core. 02 Mar 2021 at 20:33:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

suit that every Turing machine can be simulated on his machine
as well as the well-known result that every recursive function
can be computed on a Turing machine. However, it will be more
instructive to sketch a direct proof of our theorem.

I. The function y = (|>(x) = x + 1 is computed by the
following program. 1

compute y = x

Y+

I
Here the phrase "compute y = x" must of course be replaced
by the program of example 3.

II. For the sake of concreteness, let us take k = 2. The.
function z = <j>(x, y) = 2 is computed by the following program.

1
Z+

i
z+ 1

m . For concreteness take n = 2, i = 2. The function
z = 4>(x, y) = y is computed as in example 3.

IV. For concreteness , take m = 2, n = 2. By inductional
assumption we know that 7C , X and ^ a r e computable on an

abacus, using only a finite number of temporary storage locations.
The function z = <|>(x, y) = ^(X.Cx, y), X^x , y)) is then computed

by the following program:

i compute u = X (x, y)

i
compute v = X (x, y)

i
compute z = <|>(u, v)

1
empty U

empty V

i

299

Downloaded from https://www.cambridge.org/core. 02 Mar 2021 at 20:33:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Here U and V a re temporary storage locations not
used in the computations of X , X- and V|J.

1 Z

V. For concreteness take n = 2. The function z = 4>(y, x)
which is defined recursively by the equations

<t>(0, x) = iMx) >
4>(y+l, x) = X(y, 4>(y, x), x) ,

is computed thus: |
compute z = ^(x)

t ransfer content of Y to U

i
'U-

• / \ >
Y+

i
t ransfer content of Z to V

i
compute z = X(y, v, x)

empty V
Here U and V a r e two temporary storage locations not used
in computing the identity function as well as the functions ^
and X.

VI. Fo r concreteness take n = 1. We a re given that

\/x 3t wx' *) = °)-
The function y = $(x) = smallest z such that X(x, z) = 0 is
computed thus: I

• compute u = X(x, y)

u-
a / \ b

emi^ry U

Here U is a temporary storage location not used in computing X

It becomes c lear from the proof sketched above that the
program for computing a given computable function is of the
same o rde r of complexity a s i ts derivation from rules I to VI.

300

Downloaded from https://www.cambridge.org/core. 02 Mar 2021 at 20:33:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

That is to say, the program for computing a function is no more
complicated than the proof that it is recurs ive.

APPENDIX I.

The theory of the infinite abacus may be developed further
along lines that are familiar from Turing machines [l , XIII].
We shall give a brief outline of such a development.

A partial function is a function which is defined only for
a subset of its argument set, here the set of non-negative integers.
The set of partial recursive functions is defined like the set of
recursive functions, except that the above condition on rule VI
is now dropped. The partial recursive functions can also be
programmed on an infinite abacus, the point being that the com
putation of 4>(c) will never come to an end if 4>(x) is not defined
for x = c. It is possible to correlate the set of all programs in
an effective way with the non-negative integers. Let TT > TT »

o 1
be such an enumeration of all programs. For certain n > 0,
J J will compute a function y = <KX)> a n d we write 4> = 4> .

n n
Consider the part ial function y = §(z, x) = cj> (x) if TT does

z z
compute a recursive function, otherwise we leave §(z, x) un
defined. It can be shown that <| is part ial recurs ive , and so
there is a universal program TT which (partially) computes

— m

§. It also follows that every function of one variable which can
be computed by a program on an infinite abacus is a recursive
function, and this result may easily be extended to any number
of var iables . A Cantor type argument shows that the problem
of deciding for a rb i t ra ry n > 0 whether TT computes a function

— n
y = 4>(x) cannot be programmed on the abacus.

APPENDIX II.

We wish to give a formal definition of "program". We
recall that an infinite abacus is essentially a countable set L
of locations. A program is described by a finite set N of
nodes, together with two distinguished elements n (start)

and n (stop) of N and three functions

301

Downloaded from https://www.cambridge.org/core. 02 Mar 2021 at 20:33:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

a: N - {n } - N - {n } ,
oo o

N - { n } -» N - { n } ,
00 O

N » {n , n } *-* L
oo

subject to the condition that a(n) = b(n).
o o

With any node we associate an instruction as follows:
Case 1: n = n . Go to node a(n).

o o
Case 2: n ^ n , n ; a(n) = b(n). Add 1 to content of

o oo
location c(n) and proceed to node a(n).

Case 3: n ^ n , n ; a(n) 4 b(n). Take 1 from content
o oo

of location c(n), if this is possible, then go to node a(n).
Otherwise go to node b(n).

Case 4: n = n . Stop.
00

We il lustrate this definition by exhibiting the three functions
belonging to the program of example 2.

n a(n) b(n) c(n)
1 2 2
2 3 4 X
3 2 2 Y
4

Here N = {l, 2, 3, 4} , n = 1 , n = 4.

REFERENCES

1. S. C. Kleene, Introduction to metamathematic s, (New York,
1952).

2. Z. A. Melzak, An informal ar i thmet ical approach to com-
putability and computation, Canad. Math. Bull. 4 (1961),
279-293.

McGill University

302

Downloaded from https://www.cambridge.org/core. 02 Mar 2021 at 20:33:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

