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Abstract—Local surface feature based 3D object recognition
is a rapidly growing research field. In time-critical applications
such as robotics, training free recognition techniques are always
the first choice as they are free from heavy statistical training.
This paper presents an experimental analysis of 3D texture-less
object recognition techniques that are free from any training.
To our best knowledge, this is the first survey that includes
experimental evaluation of top-rated training free recognition
techniques on the datasets acquired by an RGBD camera. Based
on the experimentation, we briefly present a discussion on
potential future research directions.

Index Terms—3D object recognition, Feature descriptors.

I. INTRODUCTION

In the field of computer vision, object recognition is a
fundamental research area that has many applications, such as
intelligent surveillance, automatic assembly and dismantling,
biometric analysis, robotics and medical treatment [1], [2], [3],
[4]. For robust recognition, the researchers have focused on the
development of 3D recognition techniques. The advantages of
3D object recognition over 2D object recognition made 3D
recognition an active research topic [5]. Moreover, low-cost 3D
acquisition systems (e.g., Intel Real Sense, Microsoft Kinect
etc.) make 3D data more accessible [6], [7], [8].

In literature, 3D object recognition techniques can be di-
vided into two broad categories of global feature based tech-
niques and local feature based techniques [9], [10]. The global
feature based techniques consider the object as a whole for the
recognition. These techniques compute a set of global features
that effectively represent the entire 3D object [11]. They have
been widely used for 3D shape retrieval and classification [12].
Given that, these techniques ignore the details of the shape of
the object and need a priori segmentation of the object [7].
Therefore, they are not suitable for the recognition of an object
in occlusion and cluttered scenes [10]. On the other hand, the
local feature based techniques compute features around spe-
cific keypoints from the neighborhood. These techniques are
capable of handling occlusion and clutter better in comparison
to the global feature based techniques [10].
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Real-time object recognition is an important and challenging
task in the application of robotics. This field has a strong
need for computationally efficient techniques to recognize new
objects without training. For such time-critical applications,
real-time object recognition is an attractive solution because
new objects can be easily added and matched online, in
contrast to statistical-learning techniques that require many
training samples and are often too computationally intensive
for real-time performance [13], [14], [15], [16], [17].

Textured objects are often recognized based on their ap-
pearance by computing patch descriptor [18]. However, this
appearance based recognition will not work for texture-less ob-
jects whose appearance is often dominated by their projected
contours [19]. Recent advanced technological development in
real-time range sensors enables us to obtain high-resolution
depth images in real-time. These sensors are very useful,
as they are small and light and provide accurate and dense
depth measurements for near objects. In spite of popularity,
there is still a need of experimentation on data acquired
by an RGBD camera [20]. The detailed description of 3D
recognition techniques can be accessed from another survey
[20]. However, this survey has not included results on data
acquired by the RGBD camera.

From the above discussion, this study aims to present an
experimental survey on training free 3D texture-less object
recognition techniques. Generally, data acquired by the RGBD
camera consists of cluttered surfaces and occlusions. And most
of the training free, texture-less object recognition techniques
in the literature have not experimented on these cluttered
RGBD data. Therefore, we analyze the performance of state-
of-the-art techniques on such datasets. The rest of the paper
is organized as follows. Section II presents related works on
training free 3D recognition techniques. Experimental results
are discussed in Section III. Future direction is discussed in
Section IV. Finally, the paper is concluded in Section V.

II. TRAINING FREE 3D RECOGNITION TECHNIQUES

In this section, we present a brief survey on training free,
local feature based 3D descriptors that can handle texture-
less objects. These techniques are discussed as follows. A
technique proposed in [21] called Point Feature Histograms
(PFH) has encoded the local features of an object. This



TABLE I: Description of considered datasets. #M. and #S.
represent the number of models and scenes respectively.

Datasets #M./#S. RGBD Camera
Clutter [27] 18/30 Kinect

Challenge [7] 35/176 Kinect

technique has defined a Darboux frame for each pair of points
in the object. Further, the technique has computed unique
measures using angles between the points’ normal and the
distance vector between them. Finally, a histogram of 16-bin
has been formed using these measures to define a feature
descriptor of PFH. The computationally efficient version of
PFH is proposed in [22]. The Fast Point Feature Histograms
(FPFH) has computed the measures in the same way as PFH
but only between the keypoint and its neighbors and this has
reduced the time of computation of feature descriptor. The
technique proposed in [23] has utilized the radial relationship
of the point and its neighborhood to compute the Radius-based
Surface Descriptor (RSD). This technique has computed the
distance and the difference between normals for every pair of
keypoint and a neighbor. The technique named Signature of
Histograms of OrienTations (SHOT) is proposed in [24]. It has
constructed a Local Reference Frame (LRF) for a keypoint and
divided the neighborhood space into 3D spherical volumes.
Further, this technique has computed a local histogram using
the number of points concerning the angles between the
normal at the keypoint and the neighboring points with in the
volume. Finally, the technique has fused all local histograms to
compute a 3D descriptor. The technique proposed in [25] has
utilized the normal of a keypoint as the local reference axis and
presented each neighboring point using two variables: signed
distance (β) and radial distance (α). This technique has further
divided α− β space into a 2D array and counted the number
of points fell into bins. Finally, the 2D array has bilinearly
interpolated to obtain a Spin descriptor. A robust technique
has proposed in [26] that represented the LRF by estimating
the covariance matrix of all points on the local surface.
This technique has computed the descriptor named Rotational
Projection Statistics (RoPS) for a keypoint by rotationally
projecting the neighboring points onto 2D planes and then low-
order central moments and entropy of these projected points
have been computed to form the final descriptor.

III. EXPERIMENTAL EVALUATION

We have experimented to evaluate the performance of five
state-of-the-art 3D descriptors, including Spin Image [25],
SHOT [24], RoPS [26], FPFH [22] and RSD [23]. The
considered techniques have experimented on the Clutter [27]
and Challenge [7] RGBD datasets acquired by an RGBD
camera. The description of these datasets is presented in Table
I. Clutter and Challenge datasets include RGBD data of typical
household objects. The density of cluttered background and
occlusions in these datasets is very high. Recognition rate (RR)
is commonly used to evaluate the performance of recognition
system [20], [28], [26], [29] and [30]. Therefore, we have used

TABLE II: Recognition rate on Clutter and Challenge datasets

Techniques SPIN SHOT RSD RoPS FPFH
Clutter: RR (%) 7.5 5.8 18.33 10.8 4.1

Challenge: RR (%) 1.70 0.6 5.06 0.4 0.4

RR as our evaluation metric to validate the performance of
each technique. RR defines the number of correct matching out
of the total instances of a model in the scenes of a dataset. In
order to compute RR, a pose is estimated between a model and
matched corresponding points provided by a 3D descriptor.
This estimated pose is further compared with the pose obtained
from the ground truth of the considered dataset to verify the
matching (true or false).

A. Performance on the Clutter and Challenge Datasets
In real time applications, the heavy cluttered background

and occlusions may present in scenes acquired by an RGBD
camera. Therefore, there is a need to verify the performance
of recognition techniques on very cluttered and occluded
data. Clutter and Challenge datasets provide data with heavily
cluttered background and high occlusions. For fair experimen-
tation, we have not removed any background or plane surfaces
from the scenes. We keep original data as it was in these
datasets. Table II shows recognition rate of all techniques
on these datasets. From the table, it is clear that the RSD
technique has performed better than other techniques, however,
it also failed to perform well. This is due to heavy cluttered
background and occlusions present in both datasets.

IV. FUTURE DIRECTION

All considered techniques have created a relationship of
a keypoint with only its neighbors to form a 3D feature
descriptor [20]. That means all techniques have achieved the
stability of the descriptor by focusing only on one location i.e.
neighbors around the keypoints. The stability achieved from
this one place may not be sufficient for the computation of a
robust descriptor for a keypoint. Therefore, the development
of a robust 3D descriptor using different regions of an object
would be the future direction. From our experimentation, we
found that the cluttered background is mainly responsible for
the poor performance of state-of-the-art techniques. Therefore,
automatic filtering of cluttered surfaces will enhance the
performance of 3D recognition techniques.

V. CONCLUSION

We present a survey on training free 3D object recognition
techniques that can handle texture-less objects. This paper has
demonstrated the experimental results of top-rated techniques
on RGBD datasets acquired by an RGBD camera. We have
also discussed the reasons for their poor performance and
future research directions.
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