
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2020. All

rights reserved. Draft of December 30, 2020.

CHAPTER

8 Sequence Labeling for Parts of
Speech and Named Entities

To each word a warbling note
A Midsummer Night’s Dream, V.I

Dionysius Thrax of Alexandria (c. 100 B.C.), or perhaps someone else (it was a long
time ago), wrote a grammatical sketch of Greek (a “technē”) that summarized the
linguistic knowledge of his day. This work is the source of an astonishing proportion
of modern linguistic vocabulary, including the words syntax, diphthong, clitic, and
analogy. Also included are a description of eight parts of speech: noun, verb,parts of speech

pronoun, preposition, adverb, conjunction, participle, and article. Although earlier
scholars (including Aristotle as well as the Stoics) had their own lists of parts of
speech, it was Thrax’s set of eight that became the basis for descriptions of European
languages for the next 2000 years. (All the way to the Schoolhouse Rock educational
television shows of our childhood, which had songs about 8 parts of speech, like the
late great Bob Dorough’s Conjunction Junction.) The durability of parts of speech
through two millennia speaks to their centrality in models of human language.

Proper names are another important and anciently studied linguistic category.
While parts of speech are generally assigned to individual words or morphemes, a
proper name is often an entire multiword phrase, like the name “Marie Curie”, the
location “New York City”, or the organization “Stanford University”. We’ll use the
term named entity for, roughly speaking, anything that can be referred to with anamed entity

proper name: a person, a location, an organization, although as we’ll see the term is
commonly extended to include things that aren’t entities per se.

Parts of speech (also known as POS) and named entities are useful clues to sen-POS

tence structure and meaning. Knowing whether a word is a noun or a verb tells us
about likely neighboring words (nouns in English are preceded by determiners and
adjectives, verbs by nouns) and syntactic structure (verbs have dependency links to
nouns), making part-of-speech tagging a key aspect of parsing. Knowing if a named
entity like Washington is a name of a person, a place, or a university is important to
many natural language understanding tasks like question answering, stance detec-
tion, or information extraction.

In this chapter we’ll introduce the task of part-of-speech tagging, taking a se-
quence of words and assigning each word a part of speech like NOUN or VERB, and
the task of named entity recognition (NER), assigning words or phrases tags like
PERSON, LOCATION, or ORGANIZATION.

Such tasks in which we assign, to each word xi in an input word sequence, a
label yi, so that the output sequence Y has the same length as the input sequence X
are called sequence labeling tasks. We’ll introduce classic sequence labeling algo-sequence

labeling
rithms, one generative— the Hidden Markov Model (HMM)—and one discriminative—
the Conditional Random Field (CRF). In following chapters we’ll introduce modern
sequence labelers based on RNNs and Transformers.

2 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

8.1 (Mostly) English Word Classes

Until now we have been using part-of-speech terms like noun and verb rather freely.
In this section we give more complete definitions. While word classes do have
semantic tendencies—adjectives, for example, often describe properties and nouns
people— parts of speech are defined instead based on their grammatical relationship
with neighboring words or the morphological properties about their affixes.

Tag Description Example

O
pe

n
C

la
ss

ADJ Adjective: noun modifiers describing properties red, young, awesome
ADV Adverb: verb modifiers of time, place, manner very, slowly, home, yesterday
NOUN words for persons, places, things, etc. algorithm, cat, mango, beauty
VERB words for actions and processes draw, provide, go
PROPN Proper noun: name of a person, organization, place, etc.. Regina, IBM, Colorado
INTJ Interjection: exclamation, greeting, yes/no response, etc. oh, um, yes, hello

C
lo

se
d

C
la

ss
W

or
ds

ADP Adposition (Preposition/Postposition): marks a noun’s
spacial, temporal, or other relation

in, on, by under

AUX Auxiliary: helping verb marking tense, aspect, mood, etc., can, may, should, are
CCONJ Coordinating Conjunction: joins two phrases/clauses and, or, but
DET Determiner: marks noun phrase properties a, an, the, this
NUM Numeral one, two, first, second
PART Particle: a preposition-like form used together with a verb up, down, on, off, in, out, at, by
PRON Pronoun: a shorthand for referring to an entity or event she, who, I, others
SCONJ Subordinating Conjunction: joins a main clause with a

subordinate clause such as a sentential complement
that, which

O
th

er PUNCT Punctuation ,̇ , ()
SYM Symbols like $ or emoji $, %
X Other asdf, qwfg

Figure 8.1 The 17 parts of speech in the Universal Dependencies tagset (Nivre et al., 2016a). Features can
be added to make finer-grained distinctions (with properties like number, case, definiteness, and so on).

Parts of speech fall into two broad categories: closed class and open class.closed class
open class Closed classes are those with relatively fixed membership, such as prepositions—

new prepositions are rarely coined. By contrast, nouns and verbs are open classes—
new nouns and verbs like iPhone or to fax are continually being created or borrowed.
Closed class words are generally function words like of, it, and, or you, which tendfunction word

to be very short, occur frequently, and often have structuring uses in grammar.
Four major open classes occur in the languages of the world: nouns (including

proper nouns), verbs, adjectives, and adverbs, as well as the smaller open class of
interjections. English has all five, although not every language does.

Nouns are words for people, places, or things, but include others as well. Com-noun

mon nouns include concrete terms like cat and mango, abstractions like algorithmcommon noun

and beauty, and verb-like terms like pacing as in His pacing to and fro became quite
annoying. Nouns in English can occur with determiners (a goat, its bandwidth)
take possessives (IBM’s annual revenue), and may occur in the plural (goats, abaci).
Many languages, including English, divide common nouns into count nouns andcount noun

mass nouns. Count nouns can occur in the singular and plural (goat/goats, rela-mass noun

tionship/relationships) and can be counted (one goat, two goats). Mass nouns are
used when something is conceptualized as a homogeneous group. So snow, salt, and
communism are not counted (i.e., *two snows or *two communisms). Proper nouns,proper noun

like Regina, Colorado, and IBM, are names of specific persons or entities.

8.1 • (MOSTLY) ENGLISH WORD CLASSES 3

Verbs refer to actions and processes, including main verbs like draw, provide,verb

and go. English verbs have inflections (non-third-person-singular (eat), third-person-
singular (eats), progressive (eating), past participle (eaten)). While many scholars
believe that all human languages have the categories of noun and verb, others have
argued that some languages, such as Riau Indonesian and Tongan, don’t even make
this distinction (Broschart 1997; Evans 2000; Gil 2000) .

Adjectives often describe properties or qualities of nouns, like color (white,adjective

black), age (old, young), and value (good, bad), but there are languages without
adjectives. In Korean, for example, the words corresponding to English adjectives
act as a subclass of verbs, so what is in English an adjective “beautiful” acts in
Korean like a verb meaning “to be beautiful”.

Adverbs are a hodge-podge. All the italicized words in this example are adverbs:adverb

Actually, I ran home extremely quickly yesterday

Adverbs generally modify something (often verbs, hence the name “adverb”, but
also other adverbs and entire verb phrases). Directional adverbs or locative ad-locative

verbs (home, here, downhill) specify the direction or location of some action; degreedegree

adverbs (extremely, very, somewhat) specify the extent of some action, process, or
property; manner adverbs (slowly, slinkily, delicately) describe the manner of somemanner

action or process; and temporal adverbs describe the time that some action or eventtemporal

took place (yesterday, Monday).
Interjections (oh, hey, alas, uh, um), are a smaller open class, that also includesinterjection

greetings (hello, goodbye), and question responses (yes, no, uh-huh).
English adpositions occur before nouns, hence are called prepositions. They canpreposition

indicate spatial or temporal relations, whether literal (on it, before then, by the house)
or metaphorical (on time, with gusto, beside herself), and relations like marking the
agent in Hamlet was written by Shakespeare.

A particle resembles a preposition or an adverb and is used in combination withparticle

a verb. Particles often have extended meanings that aren’t quite the same as the
prepositions they resemble, as in the particle over in she turned the paper over. A
verb and a particle acting as a single unit is called a phrasal verb. The meaningphrasal verb

of phrasal verbs is often non-compositional—not predictable from the individual
meanings of the verb and the particle. Thus, turn down means ‘reject’, rule out
‘eliminate’, and go on ‘continue’.

Determiners like this and that (this chapter, that page) can mark the start of andeterminer

English noun phrase. Articles like a, an, and the, are a type of determiner that markarticle

discourse properties of the noun and are quite frequent; the is the most common
word in written English, with a and an right behind.

Conjunctions join two phrases, clauses, or sentences. Coordinating conjunc-conjunction

tions like and, or, and but join two elements of equal status. Subordinating conjunc-
tions are used when one of the elements has some embedded status. For example,
the subordinating conjunction that in “I thought that you might like some milk” links
the main clause I thought with the subordinate clause you might like some milk. This
clause is called subordinate because this entire clause is the “content” of the main
verb thought. Subordinating conjunctions like that which link a verb to its argument
in this way are also called complementizers.complementizer

Pronouns act as a shorthand for referring to an entity or event. Personal pro-pronoun

nouns refer to persons or entities (you, she, I, it, me, etc.). Possessive pronouns
are forms of personal pronouns that indicate either actual possession or more often
just an abstract relation between the person and some object (my, your, his, her, its,
one’s, our, their). Wh-pronouns (what, who, whom, whoever) are used in certainwh

4 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

question forms, or act as complementizers (Frida, who married Diego. . .).
Auxiliary verbs mark semantic features of a main verb such as its tense, whetherauxiliary

it is completed (aspect), whether it is negated (polarity), and whether an action is
necessary, possible, suggested, or desired (mood). English auxiliaries include the
copula verb be, the two verbs do and have, forms, as well as modal verbs used tocopula

modal mark the mood associated with the event depicted by the main verb: can indicates
ability or possibility, may permission or possibility, must necessity.

An English-specific tagset, the 45-tag Penn Treebank tagset (Marcus et al., 1993),
shown in Fig. 8.2, has been used to label many syntactically annotated corpora like
the Penn Treebank corpora, so is worth knowing about.

Tag Description Example Tag Description Example Tag Description Example
CC coord. conj. and, but, or NNP proper noun, sing. IBM TO “to” to
CD cardinal number one, two NNPS proper noun, plu. Carolinas UH interjection ah, oops
DT determiner a, the NNS noun, plural llamas VB verb base eat
EX existential ‘there’ there PDT predeterminer all, both VBD verb past tense ate
FW foreign word mea culpa POS possessive ending ’s VBG verb gerund eating
IN preposition/

subordin-conj
of, in, by PRP personal pronoun I, you, he VBN verb past partici-

ple
eaten

JJ adjective yellow PRP$ possess. pronoun your, one’s VBP verb non-3sg-pr eat
JJR comparative adj bigger RB adverb quickly VBZ verb 3sg pres eats
JJS superlative adj wildest RBR comparative adv faster WDT wh-determ. which, that
LS list item marker 1, 2, One RBS superlatv. adv fastest WP wh-pronoun what, who
MD modal can, should RP particle up, off WP$ wh-possess. whose
NN sing or mass noun llama SYM symbol +,%, & WRB wh-adverb how, where
Figure 8.2 Penn Treebank part-of-speech tags.

Below we show some examples with each word tagged according to both the
UD and Penn tagsets. Notice that the Penn tagset distinguishes tense and participles
on verbs, and has a special tag for the existential there construction in English. Note
that since New England Journal of Medicine is a proper noun, both tagsets mark its
component nouns as NNP, including journal and medicine, which might otherwise
be labeled as common nouns (NOUN/NN).

(8.1) There/PRO/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS
there/ADV/RB ./PUNC/.

(8.2) Preliminary/ADJ/JJ findings/NOUN/NNS were/AUX/VBD reported/VERB/VBN
in/ADP/IN today/NOUN/NN ’s/PART/POS New/PROPN/NNP
England/PROPN/NNP Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP

8.2 Part-of-Speech Tagging

Part-of-speech tagging is the process of assigning a part-of-speech to each word inpart-of-speech
tagging

a text. The input is a sequence x1,x2, ...,xn of (tokenized) words and a tagset, and
the output is a sequence y1,y2, ...,yn of tags, each output yi corresponding exactly to
one input xi, as shown in the intuition in Fig. 8.3.

Tagging is a disambiguation task; words are ambiguous —have more than oneambiguous

possible part-of-speech—and the goal is to find the correct tag for the situation.
For example, book can be a verb (book that flight) or a noun (hand me that book).
That can be a determiner (Does that flight serve dinner) or a complementizer (I

8.2 • PART-OF-SPEECH TAGGING 5

will

NOUN AUX VERB DET NOUN

Janet back the bill

Part of Speech Tagger

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 8.3 The task of part-of-speech tagging: mapping from input words x1,x2, ...,xn to
output POS tags y1,y2, ...,yn .

thought that your flight was earlier). The goal of POS-tagging is to resolve theseambiguity
resolution

ambiguities, choosing the proper tag for the context.
The accuracy of part-of-speech tagging algorithms (the percentage of test setaccuracy

tags that match human gold labels) is extremely high. One study found accuracies
over 97% across 15 languages from the Universal Dependency (UD) treebank (Wu
and Dredze, 2019). Accuracies on various English treebanks are also 97% (no matter
the algorithm; HMMs, CRFs, BERT perform similarly). This 97% number is also
about the human performance on this task, at least for English (Manning, 2011).

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:
Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

Figure 8.4 Tag ambiguity in the Brown and WSJ corpora (Treebank-3 45-tag tagset).

We’ll introduce algorithms for the task in the next few sections, but first let’s
explore the task. Exactly how hard is it? Fig. 8.4 shows that most word types
(85-86%) are unambiguous (Janet is always NNP, hesitantly is always RB). But the
ambiguous words, though accounting for only 14-15% of the vocabulary, are very
common, and 55-67% of word tokens in running text are ambiguous. Particularly
ambiguous common words include that, back, down, put and set; here are some
examples of the 6 different parts of speech for the word back:

earnings growth took a back/JJ seat
a small building in the back/NN
a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door
enable the country to buy back/RP debt
I was twenty-one back/RB then

Nonetheless, many words are easy to disambiguate, because their different tags
aren’t equally likely. For example, a can be a determiner or the letter a, but the
determiner sense is much more likely.

This idea suggests a useful baseline: given an ambiguous word, choose the tag
which is most frequent in the training corpus. This is a key concept:

Most Frequent Class Baseline: Always compare a classifier against a baseline at
least as good as the most frequent class baseline (assigning each token to the class
it occurred in most often in the training set).

6 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

The most-frequent-tag baseline has an accuracy of about 92%1. The baseline
thus differs from the state-of-the-art and human ceiling (97%) by only 5%.

8.3 Named Entities and Named Entity Tagging

Part of speech tagging can tell us that words like Janet, Stanford University, and
Colorado are all proper nouns; being a proper noun is a grammatical property of
these words. But viewed from a semantic perspective, these proper nouns refer to
different kinds of entities: Janet is a person, Stanford University is an organization,..
and Colorado is a location.

A named entity is, roughly speaking, anything that can be referred to with anamed entity

proper name: a person, a location, an organization. The task of named entity recog-
nition (NER) is to find spans of text that constitute proper names and tag the type ofnamed entity

recognition
NER the entity. Four entity tags are most common: PER (person), LOC (location), ORG

(organization), or GPE (geo-political entity). However, the term named entity is
commonly extended to include things that aren’t entities per se, including dates,
times, and other kinds of temporal expressions, and even numerical expressions like
prices. Here’s an example of the output of an NER tagger:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text contains 13 mentions of named entities including 5 organizations, 4 loca-
tions, 2 times, 1 person, and 1 mention of money. Figure 8.5 shows typical generic
named entity types. Many applications will also need to use specific entity types like
proteins, genes, commercial products, or works of art.

Type Tag Sample Categories Example sentences
People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams The IPCC warned about the cyclone.
Location LOC regions, mountains, seas Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity GPE countries, states Palo Alto is raising the fees for parking.

Figure 8.5 A list of generic named entity types with the kinds of entities they refer to.

Named entity tagging is a useful first step in lots of natural language understand-
ing tasks. In sentiment analysis we might want to know a consumer’s sentiment
toward a particular entity. Entities are a useful first stage in question answering,
or for linking text to information in structured knowledge sources like Wikipedia.
And named entity tagging is also central to natural language understanding tasks
of building semantic representations, like extracting events and the relationship be-
tween participants.

Unlike part-of-speech tagging, where there is no segmentation problem since
each word gets one tag, the task of named entity recognition is to find and label

1 In English, on the WSJ corpus, tested on sections 22-24.

8.3 • NAMED ENTITIES AND NAMED ENTITY TAGGING 7

spans of text, and is difficult partly because of the ambiguity of segmentation; we
need to decide what’s an entity and what isn’t, and where the boundaries are. Indeed,
most words in a text will not be named entities. Another difficulty is caused by type
ambiguity. The mention JFK can refer to a person, the airport in New York, or any
number of schools, bridges, and streets around the United States. Some examples of
this kind of cross-type confusion are given in Figure 8.6.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.

Figure 8.6 Examples of type ambiguities in the use of the name Washington.

The standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows us
to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[PER Jane Villanueva] of [ORG United] , a unit of [ORG United Airlines
Holding] , said the fare applies to the [LOC Chicago] route.

Figure 8.7 shows the same excerpt represented with BIO tagging, as well asBIO

variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an I, and any tokens outside of any span of interest are labeled O. While
there is only one O tag, we’ll have distinct B and I tags for each named entity class.
The number of tags is thus 2n+1 tags, where n is the number of entity types. BIO
tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label yi to each input word xi:

Words IO Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O
. O O O
Figure 8.7 NER as a sequence model, showing IO, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: IO tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.

8 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

8.4 HMM Part-of-Speech Tagging

In this section we introduce our first sequence labeling algorithm, the Hidden Markov
Model, and show how to apply it to part-of-speech tagging. Recall that a sequence
labeler is a model whose job is to assign a label to each unit in a sequence, thus map-
ping a sequence of observations to a sequence of labels of the same length. HMMs
are a classic model that introduces many of the key concepts of sequence modeling
that we will see again in more modern models.

An HMM is a probabilistic sequence model: given a sequence of units (words,
letters, morphemes, sentences, whatever), it computes a probability distribution over
possible sequences of labels and chooses the best label sequence.

8.4.1 Markov Chains
The HMM is based on augmenting the Markov chain. A Markov chain is a modelMarkov chain

that tells us something about the probabilities of sequences of random variables,
states, each of which can take on values from some set. These sets can be words, or
tags, or symbols representing anything, for example the weather. A Markov chain
makes a very strong assumption that if we want to predict the future in the sequence,
all that matters is the current state. All the states before the current state have no im-
pact on the future except via the current state. It’s as if to predict tomorrow’s weather
you could examine today’s weather but you weren’t allowed to look at yesterday’s
weather.

WARM3HOT1

COLD2

.8

.6

.1
.1
.3

.6

.1
.1

.3

charminguniformly

are

.1

.4 .5

.5
.5

.2

.6 .2

(a) (b)

Figure 8.8 A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution π is required; setting π = [0.1, 0.7, 0.2] for (a) would mean a
probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

More formally, consider a sequence of state variables q1,q2, ...,qi. A Markov
model embodies the Markov assumption on the probabilities of this sequence: thatMarkov

assumption
when predicting the future, the past doesn’t matter, only the present.

Markov Assumption: P(qi = a|q1...qi−1) = P(qi = a|qi−1) (8.3)

Figure 8.8a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. The
states are represented as nodes in the graph, and the transitions, with their probabil-
ities, as edges. The transitions are probabilities: the values of arcs leaving a given
state must sum to 1. Figure 8.8b shows a Markov chain for assigning a probability to
a sequence of words w1...wt . This Markov chain should be familiar; in fact, it repre-
sents a bigram language model, with each edge expressing the probability p(wi|w j)!
Given the two models in Fig. 8.8, we can assign a probability to any sequence from
our vocabulary.

8.4 • HMM PART-OF-SPEECH TAGGING 9

Formally, a Markov chain is specified by the following components:
Q = q1q2 . . .qN a set of N states
A = a11a12 . . .aN1 . . .aNN a transition probability matrix A, each ai j represent-

ing the probability of moving from state i to state j, s.t.∑n
j=1 ai j = 1 ∀i

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in state i.
Some states j may have π j = 0, meaning that they cannot
be initial states. Also,

∑n
i=1 πi = 1

Before you go on, use the sample probabilities in Fig. 8.8a (with π = [0.1,0.7,0.2])
to compute the probability of each of the following sequences:

(8.4) hot hot hot hot
(8.5) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. 8.8a?

8.4.2 The Hidden Markov Model
A Markov chain is useful when we need to compute a probability for a sequence
of observable events. In many cases, however, the events we are interested in are
hidden: we don’t observe them directly. For example we don’t normally observehidden

part-of-speech tags in a text. Rather, we see words, and must infer the tags from the
word sequence. We call the tags hidden because they are not observed.

A hidden Markov model (HMM) allows us to talk about both observed eventshidden Markov
model

(like words that we see in the input) and hidden events (like part-of-speech tags) that
we think of as causal factors in our probabilistic model. An HMM is specified by
the following components:

Q = q1q2 . . .qN a set of N states
A = a11 . . .ai j . . .aNN a transition probability matrix A, each ai j representing the probability

of moving from state i to state j, s.t.
∑N

j=1 ai j = 1 ∀i
O = o1o2 . . .oT a sequence of T observations, each one drawn from a vocabulary V =

v1,v2, ...,vV
B = bi(ot) a sequence of observation likelihoods, also called emission probabili-

ties, each expressing the probability of an observation ot being generated
from a state qi

π = π1,π2, ...,πN an initial probability distribution over states. πi is the probability that
the Markov chain will start in state i. Some states j may have π j = 0,
meaning that they cannot be initial states. Also,

∑n
i=1 πi = 1

A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1, ...,qi−1) = P(qi|qi−1) (8.6)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1, . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT) = P(oi|qi) (8.7)

10 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

8.4.3 The components of an HMM tagger
Let’s start by looking at the pieces of an HMM tagger, and then we’ll see how to use
it to tag. An HMM has two components, the A and B probabilities.

The A matrix contains the tag transition probabilities P(ti|ti−1) which represent
the probability of a tag occurring given the previous tag. For example, modal verbs
like will are very likely to be followed by a verb in the base form, a VB, like race, so
we expect this probability to be high. We compute the maximum likelihood estimate
of this transition probability by counting, out of the times we see the first tag in a
labeled corpus, how often the first tag is followed by the second:

P(ti|ti−1) =
C(ti−1, ti)
C(ti−1)

(8.8)

In the WSJ corpus, for example, MD occurs 13124 times of which it is followed
by VB 10471, for an MLE estimate of

P(V B|MD) =
C(MD,V B)

C(MD)
=

10471
13124

= .80 (8.9)

Let’s walk through an example, seeing how these probabilities are estimated and
used in a sample tagging task, before we return to the algorithm for decoding.

In HMM tagging, the probabilities are estimated by counting on a tagged training
corpus. For this example we’ll use the tagged WSJ corpus.

The B emission probabilities, P(wi|ti), represent the probability, given a tag (say
MD), that it will be associated with a given word (say will). The MLE of the emis-
sion probability is

P(wi|ti) =
C(ti,wi)

C(ti)
(8.10)

Of the 13124 occurrences of MD in the WSJ corpus, it is associated with will 4046
times:

P(will|MD) =
C(MD,will)

C(MD)
=

4046
13124

= .31 (8.11)

We saw this kind of Bayesian modeling in Chapter 4; recall that this likelihood
term is not asking “which is the most likely tag for the word will?” That would be
the posterior P(MD|will). Instead, P(will|MD) answers the slightly counterintuitive
question “If we were going to generate a MD, how likely is it that this modal would
be will?”

The A transition probabilities, and B observation likelihoods of the HMM are
illustrated in Fig. 8.9 for three states in an HMM part-of-speech tagger; the full
tagger would have one state for each tag.

8.4.4 HMM tagging as decoding
For any model, such as an HMM, that contains hidden variables, the task of deter-
mining the hidden variables sequence corresponding to the sequence of observations
is called decoding. More formally,decoding

Decoding: Given as input an HMM λ = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

8.4 • HMM PART-OF-SPEECH TAGGING 11

NN3VB1

MD2

a22

a11

a12

a21

a13

a33

a32

a23

a31

P("aardvark" | NN)
...
P(“will” | NN)
...
P("the" | NN)
...
P(“back” | NN)
...
P("zebra" | NN)

B3

P("aardvark" | VB)
...
P(“will” | VB)
...
P("the" | VB)
...
P(“back” | VB)
...
P("zebra" | VB)

B1

P("aardvark" | MD)
...
P(“will” | MD)
...
P("the" | MD)
...
P(“back” | MD)
...
P("zebra" | MD)

B2

Figure 8.9 An illustration of the two parts of an HMM representation: the A transition
probabilities used to compute the prior probability, and the B observation likelihoods that are
associated with each state, one likelihood for each possible observation word.

For part-of-speech tagging, the goal of HMM decoding is to choose the tag
sequence t1 . . . tn that is most probable given the observation sequence of n words
w1 . . .wn:

t̂1:n = argmax
t1... tn

P(t1 . . . tn|w1 . . .wn) (8.12)

The way we’ll do this in the HMM is to use Bayes’ rule to instead compute:

t̂1:n = argmax
t1... tn

P(w1 . . .wn|t1 . . . tn)P(t1 . . . tn)
P(w1 . . .wn)

(8.13)

Furthermore, we simplify Eq. 8.13 by dropping the denominator P(wn
1):

t̂1:n = argmax
t1... tn

P(w1 . . .wn|t1 . . . tn)P(t1 . . . tn) (8.14)

HMM taggers make two further simplifying assumptions. The first is that the
probability of a word appearing depends only on its own tag and is independent of
neighboring words and tags:

P(w1 . . .wn|t1 . . . tn) ≈
n∏

i=1

P(wi|ti) (8.15)

The second assumption, the bigram assumption, is that the probability of a tag is
dependent only on the previous tag, rather than the entire tag sequence;

P(t1 . . . tn) ≈
n∏

i=1

P(ti|ti−1) (8.16)

Plugging the simplifying assumptions from Eq. 8.15 and Eq. 8.16 into Eq. 8.14
results in the following equation for the most probable tag sequence from a bigram
tagger:

t̂1:n = argmax
t1... tn

P(t1 . . . tn|w1 . . .wn)≈ argmax
t1... tn

n∏
i=1

emission︷ ︸︸ ︷
P(wi|ti)

transition︷ ︸︸ ︷
P(ti|ti−1) (8.17)

The two parts of Eq. 8.17 correspond neatly to the B emission probability and A
transition probability that we just defined above!

12 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

8.4.5 The Viterbi Algorithm
The decoding algorithm for HMMs is the Viterbi algorithm shown in Fig. 8.10.Viterbi

algorithm
As an instance of dynamic programming, Viterbi resembles the dynamic program-
ming minimum edit distance algorithm of Chapter 2.

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1]←πs ∗ bs(o1)
backpointer[s,1]←0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t]← N
max

s′=1
viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

backpointer[s,t]← N
argmax

s′=1

viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

bestpathprob← N
max

s=1
viterbi[s,T] ; termination step

bestpathpointer← N
argmax

s=1
viterbi[s,T] ; termination step

bestpath← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

Figure 8.10 Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and
an HMM λ = (A,B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

The Viterbi algorithm first sets up a probability matrix or lattice, with one col-
umn for each observation ot and one row for each state in the state graph. Each col-
umn thus has a cell for each state qi in the single combined automaton. Figure 8.11
shows an intuition of this lattice for the sentence Janet will back the bill.

Each cell of the lattice, vt(j), represents the probability that the HMM is in state
j after seeing the first t observations and passing through the most probable state
sequence q1, ...,qt−1, given the HMM λ . The value of each cell vt(j) is computed
by recursively taking the most probable path that could lead us to this cell. Formally,
each cell expresses the probability

vt(j) = max
q1,...,qt−1

P(q1...qt−1,o1,o2 . . .ot ,qt = j|λ) (8.18)

We represent the most probable path by taking the maximum over all possible
previous state sequences max

q1,...,qt−1
. Like other dynamic programming algorithms,

Viterbi fills each cell recursively. Given that we had already computed the probabil-
ity of being in every state at time t−1, we compute the Viterbi probability by taking
the most probable of the extensions of the paths that lead to the current cell. For a
given state q j at time t, the value vt(j) is computed as

vt(j) =
N

max
i=1

vt−1(i) ai j b j(ot) (8.19)

The three factors that are multiplied in Eq. 8.19 for extending the previous paths to
compute the Viterbi probability at time t are

8.4 • HMM PART-OF-SPEECH TAGGING 13

JJ

NNP NNP NNP

MD MD MD MD

VB VB

JJ JJ JJ

NN NN

RB RBRBRB

DT DT DT DT

NNP

Janet will back the bill

NN

VB

MD

NN

VB

JJ

RB

NNP

DT

NN

VB

Figure 8.11 A sketch of the lattice for Janet will back the bill, showing the possible tags (qi)
for each word and highlighting the path corresponding to the correct tag sequence through the
hidden states. States (parts of speech) which have a zero probability of generating a particular
word according to the B matrix (such as the probability that a determiner DT will be realized
as Janet) are greyed out.

vt−1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

8.4.6 Working through an example
Let’s tag the sentence Janet will back the bill; the goal is the correct series of tags
(see also Fig. 8.11):

(8.20) Janet/NNP will/MD back/VB the/DT bill/NN

NNP MD VB JJ NN RB DT
<s> 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322 0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017

Figure 8.12 The A transition probabilities P(ti|ti−1) computed from the WSJ corpus with-
out smoothing. Rows are labeled with the conditioning event; thus P(V B|MD) is 0.7968.

Let the HMM be defined by the two tables in Fig. 8.12 and Fig. 8.13. Figure 8.12
lists the ai j probabilities for transitioning between the hidden states (part-of-speech
tags). Figure 8.13 expresses the bi(ot) probabilities, the observation likelihoods of
words given tags. This table is (slightly simplified) from counts in the WSJ corpus.
So the word Janet only appears as an NNP, back has 4 possible parts of speech, and

14 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

Janet will back the bill
NNP 0.000032 0 0 0.000048 0
MD 0 0.308431 0 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0 0
NN 0 0.000200 0.000223 0 0.002337
RB 0 0 0.010446 0 0
DT 0 0 0 0.506099 0

Figure 8.13 Observation likelihoods B computed from the WSJ corpus without smoothing,
simplified slightly.

the word the can appear as a determiner or as an NNP (in titles like “Somewhere
Over the Rainbow” all words are tagged as NNP).

π

P(NNP|start)

= .28

* P(MD|MD)
= 0

*
P(M

D|N
NP)

.00
00

09
*.0

1
=

.9e
-8

v1(2)=
.0006 x 0 =

0

v1(1) =
 .28* .000032

= .000009

t

MDq2

q1

o1

Janet billwill
o2 o3

back

VB

JJ

v1(3)=
.0031 x 0

= 0

v1(4)= .
045*0=0

o4

 * P(MD|VB) = 0

 * P(MD|JJ)

= 0

P(VB|start)

= .0031

P(JJ |start) =

.045

backtrace

q3

q4

the

NNq5

RBq6

DTq7

v2(2) =
max * .308 =

2.772e-8

v2(5)=
max * .0002
= .0000000001

v2(3)=
max * .000028
= 2.5e-13

v3(6)=
max * .0104

v3(5)=
max * .
000223

v3(4)=
max * .00034

v3(3)=
max * .00067

v1(5)

v1(6)

v1(7)

v2(1)

v2(4)

v2(6)

v2(7)

backtrace

* P
(R

B|NN)

* P(NN|NN)

start start start start start

o5

NNP

P(MD|start)

= .0006

Figure 8.14 The first few entries in the individual state columns for the Viterbi algorithm. Each cell keeps
the probability of the best path so far and a pointer to the previous cell along that path. We have only filled out
columns 1 and 2; to avoid clutter most cells with value 0 are left empty. The rest is left as an exercise for the
reader. After the cells are filled in, backtracing from the end state, we should be able to reconstruct the correct
state sequence NNP MD VB DT NN.

Figure 8.14 shows a fleshed-out version of the sketch we saw in Fig. 8.11, the
Viterbi lattice for computing the best hidden state sequence for the observation se-
quence Janet will back the bill.

There are N = 5 state columns. We begin in column 1 (for the word Janet) by
setting the Viterbi value in each cell to the product of the π transition probability
(the start probability for that state i, which we get from the <s> entry of Fig. 8.12),

8.5 • CONDITIONAL RANDOM FIELDS (CRFS) 15

and the observation likelihood of the word Janet given the tag for that cell. Most of
the cells in the column are zero since the word Janet cannot be any of those tags.
The reader should find this in Fig. 8.14.

Next, each cell in the will column gets updated. For each state, we compute the
value viterbi[s, t] by taking the maximum over the extensions of all the paths from
the previous column that lead to the current cell according to Eq. 8.19. We have
shown the values for the MD, VB, and NN cells. Each cell gets the max of the 7
values from the previous column, multiplied by the appropriate transition probabil-
ity; as it happens in this case, most of them are zero from the previous column. The
remaining value is multiplied by the relevant observation probability, and the (triv-
ial) max is taken. In this case the final value, 2.772e-8, comes from the NNP state at
the previous column. The reader should fill in the rest of the lattice in Fig. 8.14 and
backtrace to see whether or not the Viterbi algorithm returns the gold state sequence
NNP MD VB DT NN.

8.5 Conditional Random Fields (CRFs)

While the HMM is a useful and powerful model, it turns out that HMMs need a
number of augmentations to achieve high accuracy. For example, in POS tagging
as in other tasks, we often run into unknown words: proper names and acronymsunknown

words
are created very often, and even new common nouns and verbs enter the language
at a surprising rate. It would be great to have ways to add arbitrary features to
help with this, perhaps based on capitalization or morphology (words starting with
capital letters are likely to be proper nouns, words ending with -ed tend to be past
tense (VBD or VBN), etc.) Or knowing the previous or following words might be a
useful feature (if the previous word is the, the current tag is unlikely to be a verb).

Although we could try to hack the HMM to find ways to incorporate some of
these, in general it’s hard for generative models like HMMs to add arbitrary features
directly into the model in a clean way. We’ve already seen a model for combining
arbitrary features in a principled way: log-linear models like the logistic regression
model of Chapter 5! But logistic regression isn’t a sequence model; it assigns a class
to a single observation.

Luckily, there is a discriminative sequence model based on log-linear models:
the conditional random field (CRF). We’ll describe here the linear chain CRF,CRF

the version of the CRF most commonly used for language processing, and the one
whose conditioning closely matches the HMM.

Assuming we have a sequence of input words X = xn
1 = x1...xn and want to

compute a sequence of output tags Y = yn
1 = y1...yn. In an HMM to compute the

best tag sequence that maximizes P(Y |X) we rely on Bayes’ rule and the likelihood
P(X |Y):

Ŷ = argmax
Y

p(Y |X)

= argmax
Y

p(X |Y)p(Y)

= argmax
Y

∏
i

p(xi|yi)
∏

i

p(yi|yi−1) (8.21)

In a CRF, by contrast, we compute the posterior p(Y |X) directly, training the

16 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

CRF to discriminate among the possible tag sequences:

Ŷ = argmax
Y∈Y

P(Y |X) (8.22)

However, the CRF does not compute a probability for each tag at each time step. In-
stead, at each time step the CRF computes log-linear functions over a set of relevant
features, and these local features are aggregated and normalized to produce a global
probability for the whole sequence.

Let’s introduce the CRF more formally, again using X and Y as the input and
output sequences. A CRF is a log-linear model that assigns a probability to an en-
tire output (tag) sequence Y , out of all possible sequences Y , given the entire input
(word) sequence X . We can think of a CRF as like a giant version of what multino-
mial logistic regression does for a single token. Recall that the feature function f in
regular multinomial logistic regression maps a tuple of a token x and a label y into
a feature vector. In a CRF, the function F maps an entire input sequence X and an
entire output sequence Y to a feature vector. Let’s assume we have K features, with
a weight wk for each feature Fk:

p(Y |X) =

exp

(
K∑

k=1

wkFk(X ,Y)

)
∑

Y ′∈Y
exp

(
K∑

k=1

wkFk(X ,Y ′)

) (8.23)

It’s common to also describe the same equation by pulling out the denominator into
a function Z(X):

p(Y |X) =
1

Z(X)
exp

(
K∑

k=1

wkFk(X ,Y)

)
(8.24)

Z(X) =
∑

Y ′∈Y
exp

(
K∑

k=1

wkFk(X ,Y ′)

)
(8.25)

We’ll call these K functions Fk(X ,Y) global features, since each one is a property
of the entire input sequence X and output sequence Y . We compute them by decom-
posing into a sum of local features for each position i in Y :

Fk(X ,Y) =
n∑

i=1

fk(yi−1,yi,X , i) (8.26)

Each of these local features fk in a linear-chain CRF is allowed to make use of the
current output token yi, the previous output token yi−1, the entire input string X (or
any subpart of it), and the current position i. This constraint to only depend on
the current and previous output tokens yi and yi−1 are what characterizes a linear
chain CRF. As we will see, this limitation makes it possible to use versions of thelinear chain

CRF
efficient Viterbi and Forward-Backwards algorithms from the HMM. A general CRF,
by contrast, allows a feature to make use of any output token, and are thus necessary
for tasks in which the decision depend on distant output tokens, like yi−4. General
CRFs require more complex inference, and are less commonly used for language
processing.

8.5 • CONDITIONAL RANDOM FIELDS (CRFS) 17

8.5.1 Features in a CRF POS Tagger
Let’s look at some of these features in detail, since the reason to use a discriminative
sequence model is that it’s easier to incorporate a lot of features.2

Again, in a linear-chain CRF, each local feature fk at position i can depend on
any information from: (yi−1,yi,X , i). So some legal features representing common
situations might be the following:

1{xi = the, yi = DET}
1{yi = PROPN, xi+1 = Street, yi−1 = NUM}
1{yi = VERB, yi−1 = AUX}

For simplicity, we’ll assume all CRF features take on the value 1 or 0. Above, we
explicitly use the notation 1{x} to mean “1 if x is true, and 0 otherwise”. From now
on, we’ll leave off the 1 when we define features, but you can assume each feature
has it there implicitly.

Although the idea of what features to use is done by the system designer by hand,
the specific features are automatically populated by using feature templates as wefeature

templates
briefly mentioned in Chapter 5. Here are some templates that only use information
from yi−1,yi,X , i):

〈yi,xi〉,〈yi,yi−1〉,〈yi,xi−1,xi+2〉

These templates automatically populate the set of features from every instance in
the training and test set. Thus for our example Janet/NNP will/MD back/VB the/DT
bill/NN, when xi is the word back, the following features would be generated and
have the value 1 (we’ve assigned them arbitrary feature numbers):

f3743: yi = VB and xi = back
f156: yi = VB and yi−1 = MD
f99732: yi = VB and xi−1 = will and xi+2 = bill

It’s also important to have features that help with unknown words. One of the
most important is word shape features, which represent the abstract letter patternword shape

of the word by mapping lower-case letters to ‘x’, upper-case to ‘X’, numbers to
’d’, and retaining punctuation. Thus for example I.M.F would map to X.X.X. and
DC10-30 would map to XXdd-dd. A second class of shorter word shape features is
also used. In these features consecutive character types are removed, so words in all
caps map to X, words with initial-caps map to Xx, DC10-30 would be mapped to
Xd-d but I.M.F would still map to X.X.X. Prefix and suffix features are also useful.
In summary, here are some sample feature templates that help with unknown words:

xi contains a particular prefix (perhaps from all prefixes of length ≤ 2)
xi contains a particular suffix (perhaps from all suffixes of length ≤ 2)
xi’s word shape
xi’s short word shape

For example the word well-dressed might generate the following non-zero val-
ued feature values:

2 Because in HMMs all computation is based on the two probabilities P(tag|tag) and P(word|tag), if
we want to include some source of knowledge into the tagging process, we must find a way to encode
the knowledge into one of these two probabilities. Each time we add a feature we have to do a lot of
complicated conditioning which gets harder and harder as we have more and more such features.

18 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

prefix(xi) = w
prefix(xi) = we
suffix(xi) = ed
suffix(xi) = d
word-shape(xi) = xxxx-xxxxxxx
short-word-shape(xi) = x-x

The known-word templates are computed for every word seen in the training
set; the unknown word features can also be computed for all words in training, or
only on training words whose frequency is below some threshold. The result of the
known-word templates and word-signature features is a very large set of features.
Generally a feature cutoff is used in which features are thrown out if they have count
< 5 in the training set.

Remember that in a CRF we don’t learn weights for each of these local features
fk. Instead, we first sum the values of each local feature (for example feature f3743)
over the entire sentence, to create each global feature (for example F3743). It is those
global features that will then be multiplied by weight w3743. Thus for training and
inference there is always a fixed set of K features with K weights, even though the
length of each sentence is different.

8.5.2 Features for CRF Named Entity Recognizers

A CRF for NER makes use of very similar features to a POS tagger, as shown in
Figure 8.15.

identity of wi, identity of neighboring words
embeddings for wi, embeddings for neighboring words
part of speech of wi, part of speech of neighboring words
presence of wi in a gazetteer
wi contains a particular prefix (from all prefixes of length ≤ 4)
wi contains a particular suffix (from all suffixes of length ≤ 4)
word shape of wi, word shape of neighboring words
short word shape of wi, short word shape of neighboring words
gazetteer features

Figure 8.15 Typical features for a feature-based NER system.

One feature that is especially useful for locations is a gazetteer, a list of placegazetteer

names, often providing millions of entries for locations with detailed geographical
and political information.3 This can be implemented as a binary feature indicating a
phrase appears in the list. Other related resources like name-lists, for example from
the United States Census Bureau4, can be used, as can other entity dictionaries like
lists of corporations or products, although they may not be as helpful as a gazetteer
(Mikheev et al., 1999).

The sample named entity token L’Occitane would generate the following non-
zero valued feature values (assuming that L’Occitane is neither in the gazetteer nor
the census).

3 www.geonames.org
4 www.census.gov

8.5 • CONDITIONAL RANDOM FIELDS (CRFS) 19

prefix(xi) = L suffix(xi) = tane
prefix(xi) = L’ suffix(xi) = ane
prefix(xi) = L’O suffix(xi) = ne
prefix(xi) = L’Oc suffix(xi) = e
word-shape(xi) = X’Xxxxxxxx short-word-shape(xi) = X’Xx

Figure 8.16 illustrates the result of adding part-of-speech tags and some shape
information to our earlier example.

Words POS Short shape Gazetteer BIO Label
Jane NNP Xx 0 B-PER
Villanueva NNP Xx 1 I-PER
of IN x 0 O
United NNP Xx 0 B-ORG
Airlines NNP Xx 0 I-ORG
Holding NNP Xx 0 I-ORG
discussed VBD x 0 O
the DT x 0 O
Chicago NNP Xx 1 B-LOC
route NN x 0 O
. . . 0 O

Figure 8.16 Some NER features for a sample sentence, assuming that Chicago and Vil-
lanueva are listed as locations in a gazetteer. We assume features only take on the values 0 or
1, so the first POS feature, for example, would be represented as 1{POS = NNP}.

8.5.3 Inference and Training for CRFs
How do we find the best tag sequence Ŷ for a given input X? We start with Eq. 8.22:

Ŷ = argmax
Y∈Y

P(Y |X)

= argmax
Y∈Y

1
Z(X)

exp

(
K∑

k=1

wkFk(X ,Y)

)
(8.27)

= argmax
Y∈Y

exp

(
K∑

k=1

wk

n∑
i=1

fk(yi−1,yi,X , i)

)
(8.28)

= argmax
Y∈Y

K∑
k=1

wk

n∑
i=1

fk(yi−1,yi,X , i) (8.29)

= argmax
Y∈Y

n∑
i=1

K∑
k=1

wk fk(yi−1,yi,X , i) (8.30)

We can ignore the exp function and the denominator Z(X), as we do above, because
exp doesn’t change the argmax, and the denominator Z(X) is constant for a given
observation sequence X .

How should we decode to find this optimal tag sequence ŷ? Just as with HMMs,
we’ll turn to the Viterbi algorithm, which works because, like the HMM, the linear-
chain CRF depends at each timestep on only one previous output token yi−1.

Concretely, this involves filling an N×T array with the appropriate values, main-
taining backpointers as we proceed. As with HMM Viterbi, when the table is filled,
we simply follow pointers back from the maximum value in the final column to
retrieve the desired set of labels.

20 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

The requisite changes from HMM Viterbi have to do only with how we fill each
cell. Recall from Eq. 8.19 that the recursive step of the Viterbi equation computes
the Viterbi value of time t for state j as

vt(j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T (8.31)

which is the HMM implementation of

vt(j) =
N

max
i=1

vt−1(i) P(s j|si) P(ot |s j) 1≤ j ≤ N,1 < t ≤ T (8.32)

The CRF requires only a slight change to this latter formula, replacing the a and b
prior and likelihood probabilities with the CRF features:

vt(j) =
N

max
i=1

vt−1(i)
K∑

k=1

wk fk(yt−1,yt ,X , t) 1≤ j ≤ N,1 < t ≤ T (8.33)

Learning in CRFs relies on the same supervised learning algorithms we presented
for logistic regression. Given a sequence of observations, feature functions, and cor-
responding outputs, we use stochastic gradient descent to train the weights to maxi-
mize the log-likelihood of the training corpus. The local nature of linear-chain CRFs
means that a CRF version of the forward-backward algorithm (see Appendix A) can
be used to efficiently compute the necessary derivatives. As with logistic regression,
L1 or L2 regularization is important,

8.6 Evaluation of Named Entity Recognition

Part-of-speech taggers are evaluated by the standard metric of accuracy. Named
entity recognizers are evaluated by recall, precision, and F1 measure. Recall that
recall is the ratio of the number of correctly labeled responses to the total that should
have been labeled; precision is the ratio of the number of correctly labeled responses
to the total labeled; and F-measure is the harmonic mean of the two.

To know if the difference between the F1 scores of two MT systems is a signif-
icant difference, we use the paired bootstrap test, or the similar randomization test
(Section ??).

For named entities, the entity rather than the word is the unit of response. Thus
in the example in Fig. 8.16, the two entities Jane Villanueva and United Airlines
Holding and the non-entity discussed would each count as a single response.

The fact that named entity tagging has a segmentation component which is not
present in tasks like text categorization or part-of-speech tagging causes some prob-
lems with evaluation. For example, a system that labeled Jane but not Jane Vil-
lanueva as a person would cause two errors, a false positive for O and a false nega-
tive for I-PER. In addition, using entities as the unit of response but words as the unit
of training means that there is a mismatch between the training and test conditions.

8.7 Further Details

In this section we summarize a few remaining details of the data and models, be-
ginning with data. Since the algorithms we have presented are supervised, hav-

8.7 • FURTHER DETAILS 21

ing labeled data is essential for training and test. A wide variety of datasets exist
for part-of-speech tagging and/or NER. The Universal Dependencies (UD) dataset
(Nivre et al., 2016b) has POS tagged corpora in 92 languages at the time of this
writing, as do the Penn Treebanks in English, Chinese, and Arabic. OntoNotes has
corpora labeled for named entities in English, Chinese, and Arabic (Hovy et al.,
2006). Named entity tagged corpora also available in particular domains, such as
for biomedical (Bada et al., 2012) and literary text (Bamman et al., 2019).

8.7.1 Bidirectionality

One problem with the CRF and HMM architectures as presented is that the models
are exclusively run left-to-right. While the Viterbi algorithm still allows present
decisions to be influenced indirectly by future decisions, it would help even more if
a decision about word wi could directly use information about future tags ti+1 and
ti+2.

Alternatively, any sequence model can be turned into a bidirectional model by
using multiple passes. For example, the first pass would use only part-of-speech
features from already-disambiguated words on the left. In the second pass, tags for
all words, including those on the right, can be used. Alternately, the tagger can be
run twice, once left-to-right and once right-to-left. In Viterbi decoding, the labeler
would chooses the higher scoring of the two sequences (left-to-right or right-to-left).
Bidirectional models are quite standard for neural models, as we will see with the
biLSTM models to be introduced in Chapter 9.

8.7.2 Rule-based Methods

While machine learned (neural or CRF) sequence models are the norm in academic
research, commercial approaches to NER are often based on pragmatic combina-
tions of lists and rules, with some smaller amount of supervised machine learning
(Chiticariu et al., 2013). For example in the IBM System T architecture, a user
specifies declarative constraints for tagging tasks in a formal query language that
includes regular expressions, dictionaries, semantic constraints, and other operators,
which the system compiles into an efficient extractor (Chiticariu et al., 2018).

One common approach is to make repeated rule-based passes over a text, starting
with rules with very high precision but low recall, and, in subsequent stages, using
machine learning methods that take the output of the first pass into account.

1. First, use high-precision rules to tag unambiguous entity mentions.

2. Then, search for substring matches of the previously detected names.

3. Use application-specific name lists to find likely domain-specific mentions.

4. Finally, apply supervised sequence labeling techniques that use tags from pre-
vious stages as additional features.

Rule-based methods were also the earliest methods for part-of-speech tagging.
Rule-based taggers like the English Constraint Grammar system (Karlsson et al. 1995,
Voutilainen 1999). use the two-stage formalism that was invented in the 1950s and
1960s: a morphological analyzer with tens of thousands of word stem entries re-
turns all parts of speech for a word. Then a large set of thousands of constraints are
applied to the input sentence to rule out parts of speech inconsistent with the context.

22 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

8.7.3 POS Tagging for Morphologically Rich Languages
Augmentations to tagging algorithms become necessary when dealing with lan-
guages with rich morphology like Czech, Hungarian and Turkish.

These productive word-formation processes result in a large vocabulary for these
languages: a 250,000 word token corpus of Hungarian has more than twice as many
word types as a similarly sized corpus of English (Oravecz and Dienes, 2002), while
a 10 million word token corpus of Turkish contains four times as many word types
as a similarly sized English corpus (Hakkani-Tür et al., 2002). Large vocabular-
ies mean many unknown words, and these unknown words cause significant per-
formance degradations in a wide variety of languages (including Czech, Slovene,
Estonian, and Romanian) (Hajič, 2000).

Highly inflectional languages also have much more information than English
coded in word morphology, like case (nominative, accusative, genitive) or gender
(masculine, feminine). Because this information is important for tasks like pars-
ing and coreference resolution, part-of-speech taggers for morphologically rich lan-
guages need to label words with case and gender information. Tagsets for morpho-
logically rich languages are therefore sequences of morphological tags rather than a
single primitive tag. Here’s a Turkish example, in which the word izin has three pos-
sible morphological/part-of-speech tags and meanings (Hakkani-Tür et al., 2002):

1. Yerdeki izin temizlenmesi gerek. iz + Noun+A3sg+Pnon+Gen
The trace on the floor should be cleaned.

2. Üzerinde parmak izin kalmiş iz + Noun+A3sg+P2sg+Nom
Your finger print is left on (it).

3. Içeri girmek için izin alman gerekiyor. izin + Noun+A3sg+Pnon+Nom
You need permission to enter.

Using a morphological parse sequence like Noun+A3sg+Pnon+Gen as the part-
of-speech tag greatly increases the number of parts of speech, and so tagsets can
be 4 to 10 times larger than the 50–100 tags we have seen for English. With such
large tagsets, each word needs to be morphologically analyzed to generate the list
of possible morphological tag sequences (part-of-speech tags) for the word. The
role of the tagger is then to disambiguate among these tags. This method also helps
with unknown words since morphological parsers can accept unknown stems and
still segment the affixes properly.

8.8 Summary

This chapter introduced parts of speech and named entities, and the tasks of part-
of-speech tagging and named entity recognition:

• Languages generally have a small set of closed class words that are highly
frequent, ambiguous, and act as function words, and open-class words like
nouns, verbs, adjectives. Various part-of-speech tagsets exist, of between 40
and 200 tags.

• Part-of-speech tagging is the process of assigning a part-of-speech label to
each of a sequence of words.

• Named entities are words for proper nouns referring mainly to people, places,
and organizations, but extended to many other types that aren’t strictly entities
or even proper nouns.

BIBLIOGRAPHICAL AND HISTORICAL NOTES 23

• Two common approaches to sequence modeling are a generative approach,
HMM tagging, and a discriminative approach, CRF tagging. We will see a
neural approach in following chapters.

• The probabilities in HMM taggers are estimated by maximum likelihood es-
timation on tag-labeled training corpora. The Viterbi algorithm is used for
decoding, finding the most likely tag sequence

• Conditional Random Fields or CRF taggers train a log-linear model that can
choose the best tag sequence given an observation sequence, based on features
that condition on the output tag, the prior output tag, the entire input sequence,
and the current timestep. They use the Viterbi algorithm for inference, to
choose the best sequence of tags, and a version of the Forward-Backward
algorithm (see Appendix A) for training,

Bibliographical and Historical Notes
What is probably the earliest part-of-speech tagger was part of the parser in Zellig
Harris’s Transformations and Discourse Analysis Project (TDAP), implemented be-
tween June 1958 and July 1959 at the University of Pennsylvania (Harris, 1962),
although earlier systems had used part-of-speech dictionaries. TDAP used 14 hand-
written rules for part-of-speech disambiguation; the use of part-of-speech tag se-
quences and the relative frequency of tags for a word prefigures modern algorithms.
The parser was implemented essentially as a cascade of finite-state transducers; see
Joshi and Hopely (1999) and Karttunen (1999) for a reimplementation.

The Computational Grammar Coder (CGC) of Klein and Simmons (1963) had
three components: a lexicon, a morphological analyzer, and a context disambigua-
tor. The small 1500-word lexicon listed only function words and other irregular
words. The morphological analyzer used inflectional and derivational suffixes to as-
sign part-of-speech classes. These were run over words to produce candidate parts
of speech which were then disambiguated by a set of 500 context rules by relying on
surrounding islands of unambiguous words. For example, one rule said that between
an ARTICLE and a VERB, the only allowable sequences were ADJ-NOUN, NOUN-
ADVERB, or NOUN-NOUN. The TAGGIT tagger (Greene and Rubin, 1971) used
the same architecture as Klein and Simmons (1963), with a bigger dictionary and
more tags (87). TAGGIT was applied to the Brown corpus and, according to Francis
and Kučera (1982, p. 9), accurately tagged 77% of the corpus; the remainder of the
Brown corpus was then tagged by hand. All these early algorithms were based on
a two-stage architecture in which a dictionary was first used to assign each word a
set of potential parts of speech, and then lists of handwritten disambiguation rules
winnowed the set down to a single part of speech per word.

Probabilities were used in tagging by Stolz et al. (1965) and a complete proba-
bilistic tagger with Viterbi decoding was sketched by Bahl and Mercer (1976). The
Lancaster-Oslo/Bergen (LOB) corpus, a British English equivalent of the Brown cor-
pus, was tagged in the early 1980’s with the CLAWS tagger (Marshall 1983; Mar-
shall 1987; Garside 1987), a probabilistic algorithm that approximated a simplified
HMM tagger. The algorithm used tag bigram probabilities, but instead of storing the
word likelihood of each tag, the algorithm marked tags either as rare (P(tag|word)<
.01) infrequent (P(tag|word)< .10) or normally frequent (P(tag|word)> .10).

DeRose (1988) developed a quasi-HMM algorithm, including the use of dy-
namic programming, although computing P(t|w)P(w) instead of P(w|t)P(w). The
same year, the probabilistic PARTS tagger of Church (1988), (1989) was probably

24 CHAPTER 8 • SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

the first implemented HMM tagger, described correctly in Church (1989), although
Church (1988) also described the computation incorrectly as P(t|w)P(w) instead
of P(w|t)P(w). Church (p.c.) explained that he had simplified for pedagogical pur-
poses because using the probability P(t|w) made the idea seem more understandable
as “storing a lexicon in an almost standard form”.

Later taggers explicitly introduced the use of the hidden Markov model (Ku-
piec 1992; Weischedel et al. 1993; Schütze and Singer 1994). Merialdo (1994)
showed that fully unsupervised EM didn’t work well for the tagging task and that
reliance on hand-labeled data was important. Charniak et al. (1993) showed the
importance of the most frequent tag baseline; the 92.3% number we give above
was from Abney et al. (1999). See Brants (2000) for HMM tagger implementa-
tion details, including the extension to trigram contexts, and the use of sophisticated
unknown word features; its performance is still close to state of the art taggers.

Log-linear models for POS tagging were introduced by Ratnaparkhi (1996),
who introduced a system called MXPOST which implemented a maximum en-
tropy Markov model (MEMM), a slightly simpler version of a CRF. Around the
same time, sequence labelers were applied to the task of named entity tagging, first
with HMMs (Bikel et al., 1997) and MEMMs (McCallum et al., 2000), and then
once CRFs were developed (Lafferty et al. 2001), they were also applied to NER
(McCallum and Li, 2003). A wide exploration of features followed (Zhou et al.,
2005). Neural approaches to NER mainly follow from the pioneering results of Col-
lobert et al. (2011), who applied a CRF on top of a convolutional net. BiLSTMs
with word and character-based embeddings as input followed shortly and became a
standard neural algorithm for NER (Huang et al. 2015, Ma and Hovy 2016, Lample
et al. 2016) followed by the more recent use of Transformers and BERT.

The idea of using letter suffixes for unknown words is quite old; the early Klein
and Simmons (1963) system checked all final letter suffixes of lengths 1-5. The
unknown word features described on page 17 come mainly from Ratnaparkhi (1996),
with augmentations from Toutanova et al. (2003) and Manning (2011).

State of the art POS taggers use neural algorithms, either bidirectional RNNs or
Transformers like BERT; see Chapter 9 and Chapter 10. HMM (Brants 2000; Thede
and Harper 1999) and CRF tagger accuracies are likely just a tad lower.

Manning (2011) investigates the remaining 2.7% of errors in a high-performing
tagger (Toutanova et al., 2003). He suggests that a third or half of these remaining
errors are due to errors or inconsistencies in the training data, a third might be solv-
able with richer linguistic models, and for the remainder the task is underspecified
or unclear.

Supervised tagging relies heavily on in-domain training data hand-labeled by
experts. Ways to relax this assumption include unsupervised algorithms for cluster-
ing words into part-of-speech-like classes, summarized in Christodoulopoulos et al.
(2010), and ways to combine labeled and unlabeled data, for example by co-training
(Clark et al. 2003; Søgaard 2010).

See Householder (1995) for historical notes on parts of speech, and Sampson
(1987) and Garside et al. (1997) on the provenance of the Brown and other tagsets.

Exercises
8.1 Find one tagging error in each of the following sentences that are tagged with

the Penn Treebank tagset:
1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN

EXERCISES 25

2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
4. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

8.2 Use the Penn Treebank tagset to tag each word in the following sentences
from Damon Runyon’s short stories. You may ignore punctuation. Some of
these are quite difficult; do your best.

1. It is a nice night.
2. This crap game is over a garage in Fifty-second Street. . .
3. . . . Nobody ever takes the newspapers she sells . . .
4. He is a tall, skinny guy with a long, sad, mean-looking kisser, and a

mournful voice.
5. . . . I am sitting in Mindy’s restaurant putting on the gefillte fish, which is

a dish I am very fond of, . . .
6. When a guy and a doll get to taking peeks back and forth at each other,

why there you are indeed.

8.3 Now compare your tags from the previous exercise with one or two friend’s
answers. On which words did you disagree the most? Why?

8.4 Implement the “most likely tag” baseline. Find a POS-tagged training set,
and use it to compute for each word the tag that maximizes p(t|w). You will
need to implement a simple tokenizer to deal with sentence boundaries. Start
by assuming that all unknown words are NN and compute your error rate on
known and unknown words. Now write at least five rules to do a better job of
tagging unknown words, and show the difference in error rates.

8.5 Build a bigram HMM tagger. You will need a part-of-speech-tagged corpus.
First split the corpus into a training set and test set. From the labeled training
set, train the transition and observation probabilities of the HMM tagger di-
rectly on the hand-tagged data. Then implement the Viterbi algorithm so you
can decode a test sentence. Now run your algorithm on the test set. Report its
error rate and compare its performance to the most frequent tag baseline.

8.6 Do an error analysis of your tagger. Build a confusion matrix and investigate
the most frequent errors. Propose some features for improving the perfor-
mance of your tagger on these errors.

8.7 Develop a set of regular expressions to recognize the character shape features
described on page 17.

8.8 The BIO and other labeling schemes given in this chapter aren’t the only
possible one. For example, the B tag can be reserved only for those situations
where an ambiguity exists between adjacent entities. Propose a new set of
BIO tags for use with your NER system. Experiment with it and compare its
performance with the schemes presented in this chapter.

8.9 Names of works of art (books, movies, video games, etc.) are quite different
from the kinds of named entities we’ve discussed in this chapter. Collect a
list of names of works of art from a particular category from a Web-based
source (e.g., gutenberg.org, amazon.com, imdb.com, etc.). Analyze your list
and give examples of ways that the names in it are likely to be problematic for
the techniques described in this chapter.

8.10 Develop an NER system specific to the category of names that you collected in
the last exercise. Evaluate your system on a collection of text likely to contain
instances of these named entities.

26 Chapter 8 • Sequence Labeling for Parts of Speech and Named Entities

Abney, S. P., Schapire, R. E., and Singer, Y. (1999). Boosting
applied to tagging and PP attachment. EMNLP/VLC.

Bada, M., Eckert, M., Evans, D., Garcia, K., Shipley, K., Sit-
nikov, D., Baumgartner, W. A., Cohen, K. B., Verspoor, K.,
Blake, J. A., and Hunter, L. E. (2012). Concept annotation
in the craft corpus. BMC bioinformatics 13(1), 161.

Bahl, L. R. and Mercer, R. L. (1976). Part of speech assign-
ment by a statistical decision algorithm. Proceedings IEEE
International Symposium on Information Theory.

Bamman, D., Popat, S., and Shen, S. (2019). An annotated
dataset of literary entities. NAACL HLT.

Bikel, D. M., Miller, S., Schwartz, R., and Weischedel,
R. (1997). Nymble: A high-performance learning name-
finder. ANLP.

Brants, T. (2000). TnT: A statistical part-of-speech tagger.
ANLP.

Broschart, J. (1997). Why Tongan does it differently. Lin-
guistic Typology 1, 123–165.

Charniak, E., Hendrickson, C., Jacobson, N., and Perkowitz,
M. (1993). Equations for part-of-speech tagging. AAAI.

Chiticariu, L., Danilevsky, M., Li, Y., Reiss, F., and Zhu, H.
(2018). SystemT: Declarative text understanding for enter-
prise. NAACL HLT, Vol. 3.

Chiticariu, L., Li, Y., and Reiss, F. R. (2013). Rule-Based
Information Extraction is Dead! Long Live Rule-Based In-
formation Extraction Systems!. EMNLP.

Christodoulopoulos, C., Goldwater, S., and Steedman, M.
(2010). Two decades of unsupervised POS induction: How
far have we come?. EMNLP.

Church, K. W. (1988). A stochastic parts program and noun
phrase parser for unrestricted text. ANLP.

Church, K. W. (1989). A stochastic parts program and noun
phrase parser for unrestricted text. ICASSP.

Clark, S., Curran, J. R., and Osborne, M. (2003). Bootstrap-
ping pos taggers using unlabelled data. CoNLL.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural language
processing (almost) from scratch. JMLR 12, 2493–2537.

DeRose, S. J. (1988). Grammatical category disambiguation
by statistical optimization. Computational Linguistics 14,
31–39.

Evans, N. (2000). Word classes in the world’s languages.
Booij, G., Lehmann, C., and Mugdan, J. (Eds.), Morphol-
ogy: A Handbook on Inflection and Word Formation, 708–
732. Mouton.

Francis, W. N. and Kučera, H. (1982). Frequency Analysis
of English Usage. Houghton Mifflin, Boston.

Garside, R. (1987). The CLAWS word-tagging system. Gar-
side, R., Leech, G., and Sampson, G. (Eds.), The Computa-
tional Analysis of English, 30–41. Longman.

Garside, R., Leech, G., and McEnery, A. (1997). Corpus
Annotation. Longman.

Gil, D. (2000). Syntactic categories, cross-linguistic varia-
tion and universal grammar. Vogel, P. M. and Comrie, B.
(Eds.), Approaches to the Typology of Word Classes, 173–
216. Mouton.

Greene, B. B. and Rubin, G. M. (1971). Automatic grammat-
ical tagging of English. Department of Linguistics, Brown
University, Providence, Rhode Island.

Hajič, J. (2000). Morphological tagging: Data vs. dictionar-
ies. NAACL. Seattle.

Hakkani-Tür, D., Oflazer, K., and Tür, G. (2002). Statistical
morphological disambiguation for agglutinative languages.
Journal of Computers and Humanities 36(4), 381–410.

Harris, Z. S. (1962). String Analysis of Sentence Structure.
Mouton, The Hague.

Householder, F. W. (1995). Dionysius Thrax, the technai,
and Sextus Empiricus. Koerner, E. F. K. and Asher, R. E.
(Eds.), Concise History of the Language Sciences, 99–103.
Elsevier Science.

Hovy, E. H., Marcus, M. P., Palmer, M., Ramshaw, L. A.,
and Weischedel, R. (2006). Ontonotes: The 90% solution.
HLT-NAACL.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional
LSTM-CRF models for sequence tagging. arXiv preprint
arXiv:1508.01991.

Joshi, A. K. and Hopely, P. (1999). A parser from antiq-
uity. Kornai, A. (Ed.), Extended Finite State Models of
Language, 6–15. Cambridge University Press.

Karlsson, F., Voutilainen, A., Heikkilä, J., and Anttila,
A. (Eds.). (1995). Constraint Grammar: A Language-
Independent System for Parsing Unrestricted Text. Mouton
de Gruyter.

Karttunen, L. (1999). Comments on Joshi. Kornai, A. (Ed.),
Extended Finite State Models of Language, 16–18. Cam-
bridge University Press.

Klein, S. and Simmons, R. F. (1963). A computational ap-
proach to grammatical coding of English words. Journal of
the ACM 10(3), 334–347.

Kupiec, J. (1992). Robust part-of-speech tagging using a
hidden Markov model. Computer Speech and Language 6,
225–242.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001).
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. ICML.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., and Dyer, C. (2016). Neural architectures for named
entity recognition. NAACL HLT.

Ma, X. and Hovy, E. H. (2016). End-to-end sequence label-
ing via bi-directional LSTM-CNNs-CRF. ACL.

Manning, C. D. (2011). Part-of-speech tagging from 97% to
100%: Is it time for some linguistics?. CICLing 2011.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
(1993). Building a large annotated corpus of English: The
Penn treebank. Computational Linguistics 19(2), 313–330.

Marshall, I. (1983). Choice of grammatical word-class with-
out global syntactic analysis: Tagging words in the LOB
corpus. Computers and the Humanities 17, 139–150.

Marshall, I. (1987). Tag selection using probabilistic meth-
ods. Garside, R., Leech, G., and Sampson, G. (Eds.), The
Computational Analysis of English, 42–56. Longman.

McCallum, A., Freitag, D., and Pereira, F. C. N. (2000).
Maximum entropy Markov models for information extrac-
tion and segmentation. ICML.

McCallum, A. and Li, W. (2003). Early results for named
entity recognition with conditional random fields, feature
induction and web-enhanced lexicons. CoNLL.

Exercises 27

Merialdo, B. (1994). Tagging English text with a probabilis-
tic model. Computational Linguistics 20(2), 155–172.

Mikheev, A., Moens, M., and Grover, C. (1999). Named
entity recognition without gazetteers. EACL.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajič,
J., Manning, C. D., McDonald, R., Petrov, S., Pyysalo, S.,
Silveira, N., Tsarfaty, R., and Zeman, D. (2016a). Univer-
sal Dependencies v1: A multilingual treebank collection.
LREC.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajič,
J., Manning, C. D., McDonald, R., Petrov, S., Pyysalo, S.,
Silveira, N., Tsarfaty, R., and Zeman, D. (2016b). Univer-
sal Dependencies v1: A multilingual treebank collection.
LREC.

Oravecz, C. and Dienes, P. (2002). Efficient stochastic part-
of-speech tagging for Hungarian. LREC.

Ramshaw, L. A. and Marcus, M. P. (1995). Text chunking us-
ing transformation-based learning. Proceedings of the 3rd
Annual Workshop on Very Large Corpora.

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech
tagger. EMNLP.

Sampson, G. (1987). Alternative grammatical coding sys-
tems. Garside, R., Leech, G., and Sampson, G. (Eds.), The
Computational Analysis of English, 165–183. Longman.

Schütze, H. and Singer, Y. (1994). Part-of-speech tagging
using a variable memory Markov model. ACL.

Søgaard, A. (2010). Simple semi-supervised training of part-
of-speech taggers. ACL.

Stolz, W. S., Tannenbaum, P. H., and Carstensen, F. V.
(1965). A stochastic approach to the grammatical coding
of English. CACM 8(6), 399–405.

Thede, S. M. and Harper, M. P. (1999). A second-order hid-
den Markov model for part-of-speech tagging. ACL.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y.
(2003). Feature-rich part-of-speech tagging with a cyclic
dependency network. HLT-NAACL.

Voutilainen, A. (1999). Handcrafted rules. van Halteren, H.
(Ed.), Syntactic Wordclass Tagging, 217–246. Kluwer.

Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L. A.,
and Palmucci, J. (1993). Coping with ambiguity and un-
known words through probabilistic models. Computational
Linguistics 19(2), 359–382.

Wu, S. and Dredze, M. (2019). Beto, Bentz, Becas: The
surprising cross-lingual effectiveness of BERT. EMNLP.

Zhou, G., Su, J., Zhang, J., and Zhang, M. (2005). Exploring
various knowledge in relation extraction. ACL.

	Sequence Labeling for Parts of Speech and Named Entities
	(Mostly) English Word Classes
	Part-of-Speech Tagging
	Named Entities and Named Entity Tagging
	HMM Part-of-Speech Tagging
	Markov Chains
	The Hidden Markov Model
	The components of an HMM tagger
	HMM tagging as decoding
	The Viterbi Algorithm
	Working through an example

	Conditional Random Fields (CRFs)
	Features in a CRF POS Tagger
	Features for CRF Named Entity Recognizers
	Inference and Training for CRFs

	Evaluation of Named Entity Recognition
	Further Details
	Bidirectionality
	Rule-based Methods
	POS Tagging for Morphologically Rich Languages

	Summary
	Bibliographical and Historical Notes
	Exercises

