

Sample Size Effect

 Bias of a classifier performance index estimated from a set of design samples, relative to the estimate at infinite sample size:

$$E\{f(N_{\textit{train}})\} - f(\infty) \cong \frac{1}{N_{\textit{train}}} + \textit{higher-order terms}$$

Ref. Fukunaga K, Introduction to Statistical Pattern Recognition. 2nd Ed. (Academic Press, NY) 1990.

Sample Size Effect on Bias of Classifier Performance

- Monte Carlo simulation study
- Classifier performance index: Area under the ROC curve, A_z
- Dependence of A_z on design sample size
- Comparison of classifiers of different complexity

Classifiers of Different Complexity

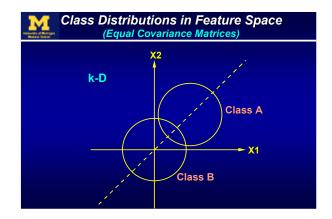
Examples:

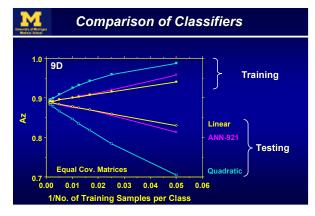
- Linear discriminant classifier
- Quadratic classifier
- Artificial neural network (ANN)

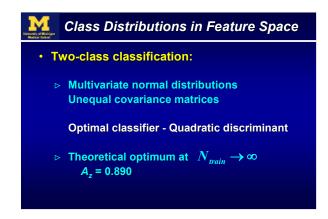
Class Distributions in Feature Space

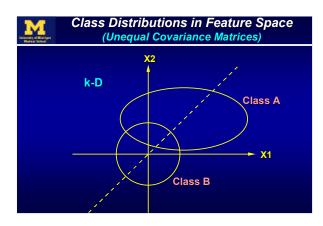
- Two-class classification:
 - ▶ Multivariate normal distributions Equal covariance matrices

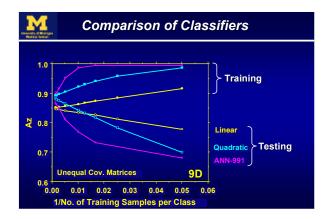
Optimal classifier - Linear discriminant

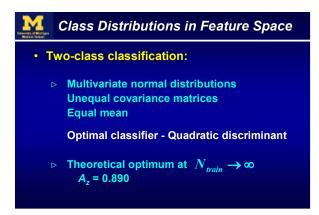


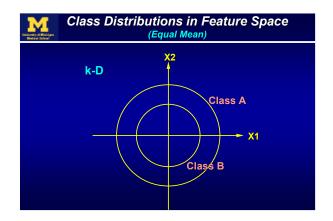


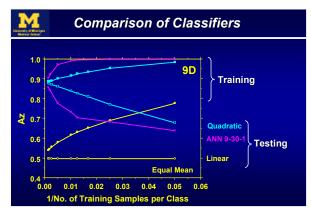












Summary - Sample Size Effects

- A classifier trained with a larger sample set has better generalization to unknown samples.
- If design sample set is small, a simpler classifier will provide better generalization.

Summary - Sample Size Effects

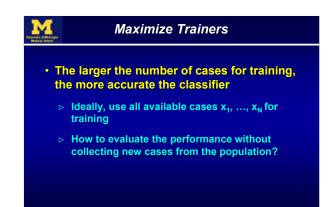
- Classification in certain feature spaces requires more complex classifiers such as neural networks or quadratic discriminant.
- When design sample set is small, overtraining of neural network will degrade generalizability.

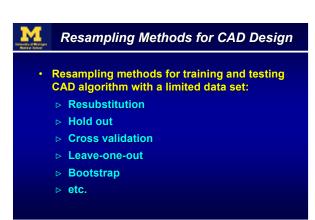
Ref. Chan HP, Sahiner B, Wagner RF, Petrick N. Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers. Med Phys. 1999; 26: 2654-2668.

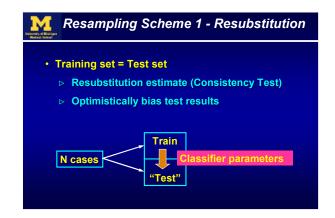
Resampling Methods: Evaluation of Classifier Performance with a Limited Data Set

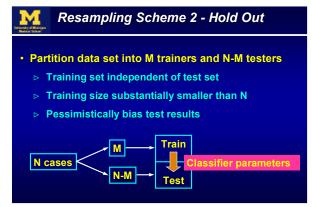
CAD Algorithm Design

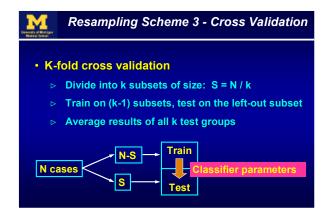
- Classifier design is straightforward if available samples with verified truth are unlimited
- Unfortunately, in the real world, especially in medical imaging, collecting data with ground truth is time consuming and costly
- Database is never large enough!

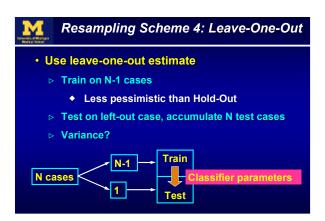


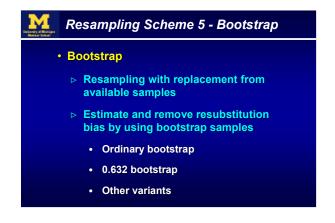


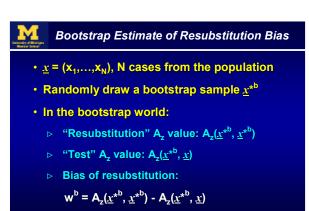












M Enterthy of Michiga Medical School

Bootstrap Estimate of Resubstitution Bias

- Repeat for B bootstrap samples
- Average the bias w^b over B replications
- Remove bias from true resubstitution A_z

$$\begin{array}{l} A_z(\underline{x},\underline{x}) - \frac{1}{B} \sum_{b=1}^{B} [A_z(\underline{x}^{*b},\underline{x}^{*b}) - A_z(\underline{x}^{*b},\underline{x})] \end{array}$$

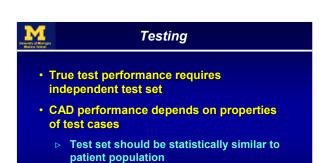
Resampling Methods

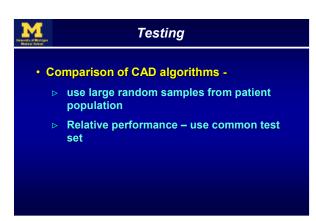
- · Bias:
 - **▶ Leave-one-out: Pessimistic**
 - **⊳** Bootstrap: Optimistic
- Variance:
 - ▷ In general, bootstrap has lower variance than leave-one-out
- Depend on feature space

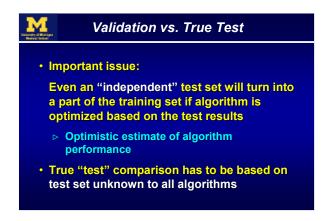
Evaluation of CAD System Performance and Comparison of CAD Systems

M Evaluation of CAD Algorithm Performance

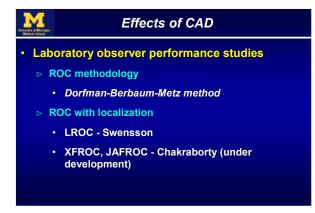
- CAD algorithm performance depends on
 - ▶ How well it was trained
 - ▶ How it was tested

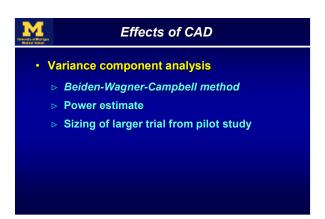


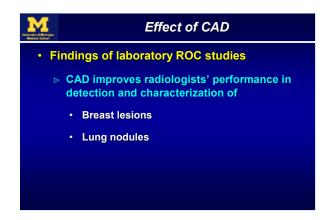


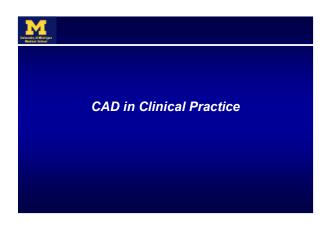




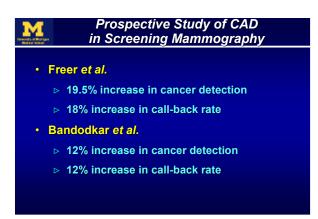


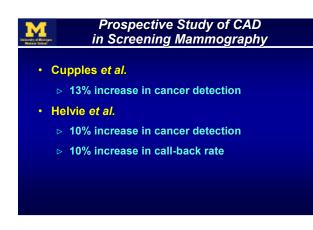


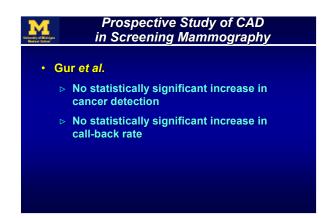




▶ FDA approvable letter in Nov. 2003







Effects of CAD in Clinical Practice

- CAD system does not need to be more accurate than radiologists to provide useful second opinion
 - ▷ Complementary to radiologists is more important

Effects of CAD in Clinical Practice

- CAD system designed as an aid to radiologists should not be misused as a primary reader
 - ▶ Loss of advantage of double-reading

Clinical Trial

- Outcome of CAD clinical trial can be affected by
 - ▶ Radiologists' vigilance in reading
 - ▶ Radiologists' interpretation of CAD marks
 - ► Study design
- Continued effort to study the effects of CAD in clinical settings needed to resolve differences in outcomes

Future Directions

