
HIGH DIMENSIONAL MODELREPRESENTATIONS (HDMR):CONCEPTS AND APPLICATIONSGenyuan Li, Sheng-Wei Wang and Herschel RabitzyDepartment of Chemistry, Princeton UniversityPrinceton, New Jersey 08544AbstractA general set of quantitative model assessment and analysis tools,termed High Dimensional Model Representations (HDMR), have beenintroduced recently for improving the e�ciency of deducing high di-mensional input-output system behavior. HDMR techniques are basedon optimization and projection operator theory, which can dramati-cally reduce the sampling e�ort for learning the input-output behaviorof high dimensional systems (i.e., a reduction of e�ort from exponen-tial scaling to only polynomic complexity). HDMR can be appliedfor di�erent purposes: construction of a computational model directlyfrom lab/�eld data, creating an e�cient fully equivalent operationalmodel for an existing mathematical model, identi�cation of key modelvariables, global uncertainly assessments, e�cient quantitative riskassessment, etc. In one domain of applications signi�cant computa-tional enhancements have been observed in certain atmospheric modelcalculations.The performance of long-term simulations with high resolution 3-D globalchemistry-transport models (3-D GCTMs) is central to revealing the e�ectsof natural and human-induced changes of trace constituents in the tropo-sphere. A major di�culty in executing GCTMs for long-term and multi-scenario simulations arises from the computational burden of the chemicalyAuthor to whom correspondence should be addressed1



kinetics calculations involved. The kinetics can consume as much as 90% ofthe total CPU time in simulations employing detailed non-methane hydro-carbon chemistry. This computational burden arises from the chemical rateequations involving many species and being sti�, such that they require theuse of elaborate numerical integration schemes (e.g., the Gear-type implicitsolvers). Furthermore, typical 3-D GCTM simulations can call on a kineticpackage� 109 times / year. Even the best advanced numerical algorithms areextremely expensive for solving the kinetic equations directly within the 3-Dmodels. This situation will become even more severe as additional chemicalspecies and reactions are included to make the models more comprehensiveand realistic.In order to circumvent this computational di�culty, parameterized poly-nomial expansions or interpolative look-up tables have been introduced to�t the results by solving the chemistry rate equations \o�-line". The �tsmay then be employed for the chemical kinetics component of the 3-D cal-culations [1, 2, 3, 4, 5, 6]. Spivakovsky et al. [3] used high-order polynomialsto express the input-output chemical kinetic response through least squares�tting. Tur�anyi [4] extended the approach of Spivakovsky et al. by express-ing the chemical kinetic input-output relation as an expansion in orthogo-nal polynomials. Klonecki and Levy [5, 7] used standard high-dimensionallook-up tables to perform chemical kinetic calculations of CO-CH4-NOx-H2Ochemistry in 3-D GCTM ozone simulations. One major problem associatedwith these approaches is that without the possibility of simpli�cation, thenumber of times the chemistry rate equations need to be solved to obtain the�ts grows exponentially with respect to the dimension of the system (i.e., thenumber of chemical species). This comment may be understood from con-sideration of the e�ort required to deduce the chemical kinetic input-outputmapping by sampling with s points for each of the n input variables (e.g., ini-tial chemical species concentrations) corresponding to a computational costscaling of � sn. Realistically, one may expect s to be approximately 10 �20 and n to be 10 � 102 or larger in typical chemical systems. Furthermore,the evaluation of a new point by interpolation in an n-dimensional space forn� 10 would be di�cult with a standard interpolative look-up table. There-fore, these traditional approaches would be prohibitive in high-dimensionalchemical systems such as non-methane hydrocarbon chemistry.A general set of quantitative model assessment and analysis tools, termedHigh Dimensional Model Representations (HDMR), have been introducedrecently for improving the e�ciency of deducing high dimensional input-2



output (IO) system behavior, and then can be used to relieve the compu-tational burden of 3-D GCTMs. HDMR is an expansion in terms of corre-lated functions with increasing dimension which capture the chemical kineticinput-output relationships. In this fashion the original high-dimensional in-terpolation problem is broken into a set of low-dimensional pieces whichmay be e�ciently handled. HDMR can be used to directly calculate outputspecies concentrations and related chemical properties at a given reactiontime based on the initial input species concentrations. There are many at-tractive features of HDMR including: (a) operations that only involve veryrapid and stable algebraic manipulations, (b) accuracy comparable to con-ventional chemistry solvers, while attaining very signi�cant computationalsavings, and (c) full variable coverage for high-dimensional systems.HDMR can be applied for di�erent purposes. For instance, construction ofa computational model directly from lab/�eld data, creating an e�cient fullyequivalent operational model for existing mathematical model, identi�cationof key model variables, global uncertainly assessments, e�cient quantitativerisk assessment, etc. In one domain of applications signi�cant computationalenhancements have been observed in certain atmospheric model calculations.1 Theoretical Basis of HDMRMany problems in science and engineering reduce to the need for �nding ane�ciently constructed map of the relationship between sets of high dimen-sional input and output system variables. The system may be described bya mathematical model (e.g., typically a set of di�erential equations), wherethe input variables might be speci�ed initial and boundary conditions, pa-rameters as well as functions residing in the model, and the output variableswould be the solutions to the model or a functional of it. The IO behaviormay also be based on observations in the laboratory or �eld where a math-ematical model cannot readily be constructed for the system. In this casethe system is simply considered as a black box. The inputs consist of themeasured laboratory or �eld (control) variables and the output(s) is the ob-served system response. Regardless of the circumstances, the input is oftenvery high dimensional with many variables even if the output is only a singlequantity. We refer to the input variables collectively as x = (x1; x2; : : : ; xn)with n � 102 � 103 or more, and the output as f(x). For simplicity in theremainder of the paper and without loss of generality, we shall refer to the3



system as a model regardless of whether it involves modeling, laboratoryexperiments or �eld studies.A general set of HDMR mathematical analysis tools have been introducedfor improving the e�ciency of deducing high dimensional IO system behav-ior [8, 9, 10, 11, 12, 13]. Since the in
uence of the predictor variables onthe response variable can be independent and/or cooperative, it is naturalto express the output f(x) as a hierarchical correlated function expansion interms of the input variables as follows:f(x) = f0 + nXi=1 fi(xi) + X1�i<j�n fij(xi; xj) + X1�i<j<k�n fijk(xi; xj; xk)+ � � � + f12:::n(x1; x2; : : : ; xn): (1)Here f0 denotes the mean value of f(x) over the entire domain 
 of x. The�rst order (l = 1) function fi(xi) represents the e�ect of input variable xiacting independently, although generally nonlinearly, upon the output f(x).The second order (l = 2) function fij(xi; xj) describes the cooperative e�ectsof the input variables xi and xj upon the output f(x). The higher-order termsre
ect the cooperative e�ects of increasing numbers of input variables actingtogether to in
uence the output f(x). The last term f12:::n(x1; x2; : : : ; xn)gives any residual dependence of all the input variables locked together in acooperative way to in
uence the output f(x).The basic conjecture underlying HDMR is that the component functionsin Eq. (1) arising in typical real problems will not likely exhibit high orderl cooperativity among the input variables such that the signi�cant terms inthe HDMR expansion are expected to satisfy the relation: l� n for n� 1.Experience shows that an HDMR expression to 2nd orderf(x) � f0 + nXi=1 fi(xi) + X1�i<j�n fij(xi; xj) (2)often provides a satisfactory description of f(x) for many high dimensionalsystems. Broad evidence from statistics supports this conjecture where itis rarely found that more than input variable covariance (i.e., variable paircooperativity) arises to a signi�cant degree. HDMR attempts to exploit thisobservation to e�ciently determine high dimensional input-output systemmapping. The presence of only low order variable cooperativity does notnecessarily imply a small set of signi�cant variables nor does it limit thenonlinear nature of the input-output relationship.4



1.1 Determination of HDMR Component FunctionsThis valuable property of inputs cooperativity for high dimensional systemsmay be utilized only if the proper formulas of the HDMR component func-tions can be found. The critical feature of HDMR expansion is that its com-ponent functions f0, fi(xi); fij(xi; xj); � � � are optimal choices tailored to agiven f(x) over the entire desired domain 
 of x such that the high or-der terms in the expansion are negligible. A particular component functionfi1i2:::il(xi1 ; xi2 ; : : : ; xil) (l = 0; 1; : : : ; n � 1 with f0 corresponds to l = 0) ofHDMR expansion is obtained by an optimization procedure that minimizesthe functionalminfi1i2:::il Z
wi1i2:::il(x̂;u)hf(u)� f0 � nXi=1 fi(ui)� X1�i<j�n fij(ui; uj)� � � �� Xi1i2:::il fi1i2:::il(ui1; ui2; : : : ; uil)i2du (3)under a suitable speci�ed condition which guarantees all the component func-tions to be determined step by step. Here, x̂ = (xi1 ; xi2 ; : : : ; xil), du =du1du2 � � �dun, and wi1i2:::il(x̂;u) may be considered as a weight function.Di�erent weight functions will produce distinct, but formally equivalentHDMR expansions, all of the same structure as Eq. (1). There are two com-monly used HDMR expansions: Cut- and RS(Random Sampling)-HDMRwhich are two extreme cases of di�erent HDMR expansions. Cut-HDMR de-pends on the value of f(x) at a speci�ed reference point �x while RS-HDMRdepends on the average value of f(x) over the whole domain 
.1. Cut-HDMRWhen ordered sampling for output f(x) at chosen points of x is pos-sible (e.g., for lab data with controlled values of x), then a Cut-HDMRexpansion can be constructed. For Cut-HDMR, �rst a reference point �x =(�x1; �x2; � � � ; �xn) is selected in the domain 
. The optimal component func-tions of Cut-HDMR in Eq. (1) possess the following structure:f0 = f(�x); (4)fi(xi) = f(xi; �xi)� f0; (5)fij(xi; xj) = f(xi; xj; �xij)� fi � fj � f0; (6)� � � � � �5



where (xi; �xi) = (�x1; : : : ; �xi�1; xi; �xi+1; : : : ; �xn);(xi; xj; �xij) = (�x1; : : : ; �xi�1; xi; �xi+1; : : : ; �xj�1; xj; �xj+1; : : : ; �xn):The last term f12:::n(x1; x2; : : : ; xn) is determined by the di�erence betweenf(x) and all other component functions in Eq. (1).The above formulas can be readily obtained simply by substituting (xi1 ; xi2 ,: : : ; xil; �xi1i2:::il) with di�erent sets of fi1; i2; : : : ; ilg � f1; 2; : : : ; ng for x onthe both sides of Eq. (1) and using the speci�ed condition: a componentfunction of Cut-HDMR vanishes when any of its own variables takes thevalue of the corresponding element in �x, i.e.,fi1i2:::il(xi1 ; xi2 ; : : : ; xil)jxs=�xs = 0; s 2 fi1; i2; : : : ; ilg (7)which de�nes an orthogonal relation between two di�erent component func-tions of Cut-HDMR asfi1i2:::il(xi1 ; xi2 ; : : : ; xil)fj1j2:::jk(xj1 ; xj2; : : : ; xjk)jxs=�xs = 0: (8)s 2 fi1; i2; : : : ; ilg[fj1; j2; : : : ; jkgThe Cut-HDMR component functions fi(xi); fij(xi; xj); � � � are typicallyprovided numerically at discrete values of the input variables xi, xj; � � � pro-ducing from the resultant output function f(x) for employment of the R.H.S.of Eqs. (4)-(6). Notice that the Cut-HDMR component functions are de�nedalong some cut lines, planes, subvolumes, etc. across the reference point �xin 
. This is the name Cut-HDMR coming from.Since all the component functions are obtained by minimization proce-dures, they are optimal choices for a given output f(x), and thus only loworder terms of Cut-HDMR expansion are needed to give a good approxima-tion for f(x). Numerical data tables can be constructed for these compo-nent functions, and the values of f(x) for an arbitrary point x are deter-mined from these tables by performing only low dimensional interpolationover fi(xi); fij(xi; xj); � � �. If each input variable takes s values, the requiredmodel runs to construct the fi(xi), fij(xi; xj) : : : tables are1 + ns+ n(n� 1)s22 + � � � ;6



which are only polynomial functions of n and s. As only low dimensionaltables are necessary, the saving of sampling for large n is signi�cant com-pared to traditional sn sampling. Thus, Cut-HDMR renders the originalexponential di�culty to a problem of only polynomic complexity.2. RS-HDMRFor RS-HDMR, the component functions are determined through an aver-aging processes on a set of randomly sampled points over the entire domain
, and this procedure is likely to be most appropriate for generating anHDMR from lab/�eld data.For RS-HDMR, we �rst rescale variables xi such that 0 � xi � 1 for alli. The output function f(x) is then de�ned in the unit hypercube Kn =f(x1; x2; : : : ; xn)j0 � xi � 1; i = 1; 2; : : : ; ng. The component functions ofRS-HDMR possess the following forms:f0 = ZKn f(x)dx; (9)fi(xi) = ZKn�1 f(x)dxi � f0; (10)fij(xi; xj) = ZKn�2 f(x)dxij � fi(xi)� fj(xj)� f0; (11)� � � � � �where dxi and dxij are just the product dx1dx2 � � �dxn without dxi anddxi; dxj, respectively. Similarly, the last term f12:::n(x1; x2; : : : ; xn) is deter-mined from the di�erence between f(x) and all other component functionsin Eq. (1).Considering that the domain 
 is a unit hypercube, f0 is actually theaverage value of f(x) over the whole domain in contrast with f0 of Cut-HDMR which is the value of f(x) at the speci�ed single reference point �x.All the above formulas can be readily obtained simply by integratingthe both sides of Eq. (1) with respect to di�erent sets of input variablesfxi1 ; xi2 ; : : : ; xilg (l = n; n� 1; : : : ; 1), and using the speci�ed condition: theintegral of a component function of RS-HDMR with respect to any of its ownvariables is zero, i.e.,Z 10 fi1i2:::il(xi1 ; xi2 ; : : : ; xil)dxs = 0; s 2 fi1; i2; : : : ; ilg (12)7



which de�nes the orthogonal relation between two di�erent RS-HDMR com-ponent functions asZKn fi1i2:::il(xi1 ; xi2 ; : : : ; xil)fj1j2:::jk(xj1; xj2 ; : : : ; xjk)dx = 0: (13)fi1; i2; : : : ; ilg 6= fj1; j2; : : : ; jkgEvaluations of the high dimensional integrals in RS-HDMR expansionmay be carried out by Monte Carlo random sampling integration since itis the most viable algorithm for this purpose [14], and this is the nameRS(Random Sampling)-HDMR coming from.According to the above formulas one can see that all the componentfunctions of Cut- and RS-HDMR expansions can be directly constructedfrom the values of output f(x) either at some ordered or randomly generatedpoints of x, which makes the construction of f0, fi(xi),fij(xi; xj), : : : simpleand straight forward.1.2 Projector Theory for HDMRTo have a better understanding of the concepts of HDMR expansions, it maybe viewed from another perspective. The component functions of HDMR canbe obtained through application of a suitably de�ned set of linear operators}0; }i (i = 1; 2; : : : ; n), }ij (1 � i < j � n); : : ::}0 f(x) = f0; (14)}i f(x) = fi(xi); (15)}ij f(x) = fij(xi; xj); (16)� � � :It has been proven that all the operators for Cut- and RS-HDMR expansionsare commutative projection operators and they are mutually orthogonal toone another, i.e., they obey1. Idempotency:}2i1i2:::il = }i1i2:::il ; fi1; i2; : : : ; ilg � f1; 2; : : : ; ng (17)where 0 � l � n, and }0 corresponds to l = 0.8



2. Orthogonality:}i1i2:::il}j1j2:::jk = 0: fi1; i2; : : : ; ilg 6= fj1; j2; : : : ; jkg (18)3. Resolution of the identity:nXl=0 Xi1i2:::il }i1i2:::il = 1; (19)where 1 denotes the identity operation.The projectors act on a linear space F composed of all n-variable func-tions f(x). Each projector }t provides an approximation }tf(x) for f(x),and has its range �t which is a subspace of the linear space F . Any functionf(x) 2 �t is invariant upon the action of }t, i.e.,}tf(x) = f(x); 8f(x) 2 �t: (20)This implies that upon the action of }t there is no error for any functionf(x) 2 �t. The larger the range �t is, the better approximation }t produces.Two projectors }i and }j are mutually orthogonal if}i}j = }j}i = 0: (21)This is equivalent to �i \ �j = 0: (22)A sum of two mutually orthogonal projectors }i+}j is also a projector whoserange is �i+�j which is larger than anyone of �i and �j. Therefore, }i+}jhas a better accuracy than any single }i and }j.Any set of commutative projectors generate a distributive lattice whoseelements are obtained by all possible combinations (Boolean addition andmultiplication) of the projectors in the set. In particular, the lattice has aunique maximal projector M which provides the algebraically best approxi-mation to all n-variable functions f(x) in F [15]. The range of the maximalprojector M for the lattice generated by mutually commutative projectorsf}1; }2; : : : ; }sg is the union of all the ranges �t, i.e.�M = �1 [ �2 [ � � � [ �s: (23)9



When the projectors are mutually orthogonal, the maximal projector is sim-ply their sum M = sXi=1 }s; (24)and the range �M is Psi=1 �i. As more orthogonal projectors are retained inthe set, the resultant approximation obtained by its maximal projector Mbecomes better.For instance, if we choose the subset S1 = f}0; }i (i = 1; 2; : : : ; n)g ofthe above mutually orthogonal projectors to generate a lattice, its maximalprojector is simply the sum of all these projectors:M1 = }0 + nXi=1 }i; (25)and the best approximation of f(x) by the projectors in this lattice isf(x) �M1 f(x) = }0 f(x) + nXi=1 }i f(x)= f0 + nXi=1 fi(xi); (26)which is the �rst order HDMR approximation for f(x). Similarly, for thesubset S2 = f}0; }i (i = 1; 2; : : : ; n); }ij (1 � i < j � n)g, the best approxi-mation of f(x) is given byf(x) �M2 f(x) = }0 f(x) + nXi=1 }i f(x) + X1�i<j�n}ij f(x)= f0 + nXi=1 fi(xi) + X1�i<j�n fij(xi; xj); (27)which is the second order HDMR approximation for f(x), and so on.As S1 is a subset of S2, and M2 is the maximal projector in the latticegenerated by S2, then M2 is better than M1, i.e., the second order approxi-mation of HDMR is better than the �rst order one. General speaking, higherorder HDMR approximations are never worse than lower order HDMR ap-proximations even through they may not improve much in some cases. Thisimplies that adding a new orthogonal projector into a sum of orthogonal pro-jectors always produces a new projector with a better accuracy no matter10



how better it is. Finally, as the sum of all projectors of HDMR expansion isthe identity, the full HDMR expansion is exactly equal to f(x).It can be also proven that the range for projector }0+}i is any constantand any function of variable xi, and the range for }0+Pni=1 }i is any constantand any linear combination of functions with one variable xi (i = 1; 2; : : : ; n).Similarly, the range for projector }0+Pni=1 }i+P1�i<j�n }ij is any constantand any linear combination of functions with one or two variables xi; xj (1 �i < j � n). As f(xi; �xi) is a one variable function, it is invariant to projector}0 +Pni=1 }i, i.e., there is no error for 1st order Cut-HDMR approximationof f(x) whenever the point x is located on a cut line across the referencepoint �x in 
. Similarly, f(xi; xj; �xij) is a two variable function, and thusthere is no error for 2nd order Cut-HDMR approximation of f(x) wheneverthe point x is located on any cut line or plane across the reference point �x in
. In summary, there is no error for lth order Cut-HDMR approximation off(x) whenever the point x is located on any k (k � l)-dimensional subvolumeacross the reference point �x in 
.1.3 The Properties of HDMR ExpansionsThe following properties of HDMR are important for its application in dif-ferent scienti�c problems.1.3.1 Fast convergence of HDMR expansionsAs mentioned above, HDMR expansions converge fast. This property can bedemonstrated below. Suppose an output f(x) de�ned in a unit hypercube ofx can be expanded as a convergent Taylor series at reference point �x, i.e.,f(x) = f(�x)+ nXi=1 @f(�x)@xi (xi��xi)+ nXi;j=1 12! @2f(�x)@xi@xj (xi��xi)(xj��xj)+� � � : (28)Then the component functions f0, fi(xi), fij(xi; xj); � � � in Cut-HDMR givenby Eqs. (4)-(6) have clear mathematical meaning. As shown above, f0 =f(�x). Since fi(xi) = f(xi; �xi) � f(�x), substituting (xi; �xi) for x and sub-tracting f(�x) from the both sides of Eq. (1) gives fi(xi). As all the termscontaining xj(j 6= i) vanish, the �rst order component function fi(xi) is thesum of all the Taylor series terms which contain and only contain variable xi.Similarly, the second order component function fij(xi; xj) is the sum of allthe Taylor series terms which contain and only contain variables xi and xj,11



etc. Thus, the in�nite number of terms in the Taylor series are partitionedinto �nite di�erent groups and each group corresponds to one Cut-HDMRcomponent function. Or we say in other way that each component function ofCut-HDMR is composed of an in�nite sub-class of the full multi-dimensionalTaylor series. Therefore, any truncated Cut-HDMR expansion gives a betterapproximation of f(x) than any truncated Taylor series because the latteronly contains a �nite number of terms of Taylor series. Furthermore, con-sidering that 0 � xi � 1 (i = 1; 2; : : : ; n) and (xi � �xi) < 1, the high orderCut-HDMR component functions are usually smaller than low order onesbecause the high order component functions are composed of the productQls=1(xis � �xis)ks with larger l. This may not be a strict proof in mathemat-ics, but it gives us some idea why Cut-HDMR expansion converges fast.Moreover, the sub-classes of Taylor series corresponding to di�erent com-ponent functions of Cut-HDMR do not overlap one another, which is the basisfor the orthogonal relation between two Cut-HDMR component functions.Other HDMR expansions possess the same property as Cut-HDMR be-cause a one-to-one relationship between two di�erent HDMR expansions canbe established. Thus, if Cut-HDMR converges at certain order, so do theother HDMR expansions.1.3.2 Invariance of conservation laws for HDMR approximationsIf a set of outputs ff (1)(x), f (2)(x),: : :, f (s)(x)g obey a set of linear-superpositionconservation laws, their HDMR approximations at any order also obey theseconservation laws, i.e., ifsXi=1wkif (i)(x) = ck; k = 1; 2; : : : ; m (29)where wki and ck are two sets of constants, thensXi=1wkihMlf (i)(x)i = ck; k = 1; 2; : : : ; m; l = 0; 1; : : : ; n (30)here Ml = }0 + nXi=1 }i + � � �+ Xi1i2:::il }i1i2:::il ; (31)andMlf (i)(x) denotes the l-th order HDMR approximation for f (i)(x). Thisproperty can be proven by applying operatorMl to the both sides of Eq. (29)12



and using the identityMlc = c; c being a constant. (32)The invariance of conservation laws is very useful for the application ofHDMR in physics, chemistry and other scienti�c disciplines where conserva-tion laws (e.g., mass, energy, momentum conservations, etc.) are important.1.3.3 Decomposition of variance by RS-HDMRUsing the orthogonality property of RS-HDMR component functions it canbe proven that the total variance �2�f of f(x) caused by all input variablesmay be decomposed into di�erent kinds of its input contributions: due tothe xi independent action �2i , the xi and xj pair correlated action �2ij, etc.�2�f = ZKnhf(x)� �fi2dx = ZKnhf(x)� f0i2dx= ZKnh nXi=1 fi(xi) + X1�i<j�n fij(xi; xj) + � � �i2dx= nXi=1 Z 10 f 2i (xi)dxi + X1�i<j�n Z 10 Z 10 f 2ij(xi; xj)dxidxj + � � �= nXi=1 �2i + X1�i<j�n�2ij + � � � ; (33)where �f is the mean value of f(x) over the whole domain 
. This propertyis useful for global uncertainty analysis because the above decompositionis valid over the whole domain. According to the magnitudes of �2i , �2ij,etc., it is easy to �nd out how the output uncertainty is in
uenced by theinput uncertainties, which are the key input variables and what kinds ofcooperativities exist.1.4 Approximate and Advanced HDMR1.4.1 Approximate formulas for RS-HDMR component functionsThe direct determination of the component functions of RS-HDMR at di�er-ent values of xi; xj; : : : by Monte Carlo integration requires a huge amount ofrandom sampling. For instance, di�erent Monte Carlo random samples for13



f(xi; �xi) at di�erent �xed values of xi are needed to determine fi(xi) [16].To reduce sampling e�ort, the RS-HDMR component functions may be ap-proximated analytically and numerically.1. Analytical approximationThe RS-HDMR component functions may be approximated by someknown functions, like orthogonal polynomials, spline functions, or even sim-ply polynomial functions. For example,fi(xi) � kXr=1�rPr(xi); (34)fij(xi; xj) � lXr=1 lXs=1 �rsPrs(xi; xj); (35)where �r, �rs are constant coe�cients, and Pr(xi), Prs(xi; xj) are one andtwo variable orthogonal polynomials, respectively. Our task is to determineall the constant coe�cients. Using the orthogonality property of orthogonalpolynomials, the coe�cients are given by�r = RKn f(x)pr(xi)dxR 10 p2r(xi)dxi ; (36)�rs = RKn f(x)prs(xi; xj)dxR 10 R 10 p2rs(xi; xj)dxidxj : (37)As no restriction is posed on the values of the elements of x for f(x) in theabove integrals, only one set of random samples for f(x) are necessary todetermine all the coe�cients, and consequently all the component functionsof RS-HDMR. The sampling e�ort is then dramatically reduced.2. Numerical approximationThe RS-HDMR component functions may be also approximated numer-ically by using kernel smoothers. For instance, the �rst and second orderRS-HDMR component functions are given byfi(xi) � ZKn f(u)k� jxi � uij� �du� f0 (38)fij(xi; xj) � ZKn f(u)hk� jxi � uij�1 �k� jxj � ujj�2 �idu� fi(xi)� fj(xj)� f0; (39)14



where �, �1 and �2 are window-widths, and k(t) is certain kernel function.One example of kernel smoothers is given below [17]:k(t) = ( 34(1� t2); for jtj � 1;0; otherwise. (40)Similarly, as no restriction is posed on the values of the elements of x for f(x)in the above integrals, only one set of random samples for f(x) are necessaryto determine all the component functions of RS-HDMR at di�erent values ofthe elements of x. The sampling e�ort is also dramatically reduced.1.4.2 Monomial preconditioning Cut-HDMRAs argued earlier, very often the high order HDMR terms are small therebymaking low (usually, �rst and second) order HDMR approximations satis-factory for practical purposes. However, in some cases the �rst or secondorder HDMR approximations may not provide desired accuracy, and higherorder HDMR approximations might have to be considered. For Cut-HDMRthe higher order terms demand a polynomially increasing number of datasamples and possibly large computer storage. If the higher order compo-nent functions of Cut-HDMR can be approximately represented in a similarfashion as those for the zeroth, �rst and second order component functions,then higher order approximations of Cut-HDMR can be included withoutdramatically increasing the number of experiments or model runs as well asreducing computer storage requirements. One way to realize this idea is torepresent a high order Cut-HDMR component function as products of loworder Cut-HDMR component functions and some known functions of the re-mained input variables. For instance, a third order Cut-HDMR componentfunction can be approximated asfijk(xi; xj; xk) � 'ijk(xi; xj; xk) �f0 + 'jk(xj; xk) �fi(xi) + 'ik(xi; xk) �fj(xj)+ 'ij(xi; xj) �fk(xk) + 'k(xk) �fij(xi; xj) + 'j(xj) �fik(xi; xk)+ 'i(xi) �fjk(xj; xk); (41)where 'i(xi); 'j(xj); : : : ; 'ijk(xi; xj; xk) are some known functions (e.g., theproducts of monomial (xi � bi), (xj � bj) and (xk � bk)), and �f0, �fi(xi), : : :,�fjk(xj; xk) are similar to the zeroth, �rst and second order Cut-HDMR com-ponent functions. Thus, the 3-dimensional numerical table for fijk(xi; xj; xk)is replaced by some 1- and 2-dimensional numerical tables. The saving is15



large especially for high order component functions. Using projector the-ory, an approach named as monomial preconditioning Cut-HDMR has beendeveloped for this purpose [18].1.4.3 Multiple Cut-HDMRThe basic principles of HDMRmay be extended to more general cases. Multi-ple Cut-HDMR is one of these extensions where several lth order Cut-HDMRexpansions at di�erent reference points a(1); a(2), : : : ; a(m) are constructed,and f(x) is approximately represented not by one but by all m Cut-HDMRexpansions:f(x) � mXk=1wk(x)hf (k)0 + nXi=1 f (k)i (xi) + � � �+ Xi1i2:::il f (k)i1i2:::il(xi1 ; : : : ; xil)i: (42)The coe�cients wk(x) possess the propertieswk(x) = 8>>><>>>: 1; if x is on any cut subvolumeof kth point expansion,0; if x is on any cut subvolumeof other points expansions, (43)mXk=1wk(x) = 1: (44)The properties of the coe�cients wk(x) imply that all other Cut-HDMR ex-pansions vanish except one when x is located on any cut line, plane or higherdimensional (� l) subvolumes through that reference point, and then themultiple Cut-HDMR expansion reduces to single point Cut-HDMR expan-sion. As mentioned above, lth order Cut-HDMR approximation does nothave error when x is located on these subvolumes. When m Cut-HDMR ex-pansions are used to construct a multiple Cut-HDMR expansion, the no errorregion is m times of that for a single reference point Cut-HDMR expansion.Therefore, the accuracy will be improved.Di�erent ways may be used to de�ne wk(x). For example, the metricdistances �i1i2:::ilk from point x to an l-dimensional subvolume with variablesfxi1 ; xi2 ; : : : ; xilg across reference point a(k) (k = 1; 2; : : : ; m)�i1i2:::ilk (x) = h nXi=1i62fi1;i2;:::;ilg [xi � ai(k)]2 i 12 fi1; i2; : : : ; ilg � f1; 2; : : : ; ng(45)16



can be used to de�ne �wk(x) = mYs=1s6=k Yi1i2:::il �i1i2:::ils (x); (46)wk(x) = �wk(x)mXs=1 �ws(x) : (47)It can be readily proven that the de�ned wk(x) satis�es the required prop-erties if di�erent reference points a(k) do not share any coordinate. Whena(k)s do have the same values for some elements, modi�ed de�nitions forwk(x) may be used.1.4.4 HDMR with discrete input variablesHDMR can treat continuous as well as discrete input variables. The notionof inherently discrete variables refers to those that are naturally discrete orsampled in that fashion (e.g., socio-economic variables such as residences,families, ethnicities, occupations, income and age levels, etc.) A potentiallyserious di�culty in treating inherently discrete data arises since there is oftenno a priori means to order the input data. Without some identi�ed rationalordering, the output f(x) will likely appear as random over the domain
, and this behavior would prevent an e�cient use of coarse sampling forinterpolation. A good ordering of the input variables is de�ned as one thatproduces well-behaved \smooth" property variations f(x) over the domain
. A rational ordering of the variables can be found, based on the �rst orderHDMR component functions fi(xi). The observed output due to the discretevalues of each input variable may be used to produce a monotonic outputvariation with respect to a suitable ordering of the input variables. It is thennatural to expect that the remaining behavior over the second, or possiblythird, order HDMR output surfaces will be regular, if not monotonic. Thisvariable ordering is crucial to make feasible the physical interpretation of thediscrete input variables, and to allow ready use of the HDMR formulations.The discrete input variable capabilities of HDMR have been successfullytested recently with analogous problems involving protein mutations wherethe discrete variables are the amino acid residues.17



1.4.5 Functional HDMRIf inputs for a system consist of a set of functions, i.e., the input vectorx(t) = (x1(t); x2(t); : : : ; xn(t)), then the system output becomes a func-tional. One approach to this functional mapping problem is to assume thata discretization of the following form is validxi(t) = NiXk=1 cik�k(t); (48)where f�k(t)g is a family of orthogonal functions. Then any \functional"becomes a \function" of the parameters cik and then the HDMR formulascan be applied to it. This approach has been successfully implemented for anatmospheric radiative heating problem where the inputs consisted of speciesand temperature pro�les as functions of altitude.1.5 Applications of HDMR1.5.1 Construction of observation-based models directly fromlab/�eld dataAn important application of HDMR is to model construction from lab/�elddata. In many cases where a large amount of experimental or �eld dataare available, the mathematical model to treat these data cannot be readilyconstructed due to the complexity and uncomplete knowledge of the system.The models people used to describe the system are often so poor that theycan neither reproduce the measured data nor provide reasonable predictionof the system behavior.For such systems the HDMR technologies are powerful tools for modelconstruction either by Cut-HDMR if ordered sampling is possible or by RS-HDMR when the available data can be considered as produced randomly.After HDMR expansion given by Eq. (1) has been constructed, the accu-rate reproduction of the measured data and the reasonable prediction of theoutput f(x) for a given input x can be obtained.The HDMR expansion serves as a mathematical model, with speci�c ad-vantages over those generated by mechanistic or conventional statistical ap-proaches: 1) it does not rely on any constraining physical, chemical andother theoretical assumptions. Its accuracy only depends on the quantityand quality of the data. This is especially useful when we do not have a18



thorough understanding of the system; 2) it can also be used for statisticalanalysis of its own quality, thereby placing quantitative 
ags on the resultantpredictions, to indicate whether additional measurements are needed; 3) itmay be improved continuously without discarding the original learned termsby simply adding more new terms into the expansion when the informationabout new input variables is identi�ed; 4) it can provide a better understand-ing of the physical content of the system such that a mechanistic model maybe properly constructed/re�ned.1.5.2 Construction of a fully equivalent operational modelAn intriguing application of HDMR is to model or its component replace-ment by highly e�cient equivalent forms. This operation takes advantageof the fact that complex models are typically broken into various submod-els (e.g., involving chemistry, mechanical coupling, mass transport, etc.).The submodels of an overall model are often treated by numerical split-ting techniques, thus isolating them for e�cient replacement with equivalentHDMRs. The HDMR expansions for these submodels are constructed fromo�-line submodel runs. After the component functions fi(xi), fij(xi; xj); : : :for a submodel are obtained, they may be reused as a basis to predict out-put behavior at any other point x in the desired region 
 called upon byadditional execution of the submodel. The HDMR expansion obtained inthis way corresponds to a fully equivalent operational model (FEOM) whichcould replace the original submodels. This logic will be most appreciate formodel components that involve very large numbers of computational oper-ations which are repeated many times in executing the overall model (e.g.,chemistry in a chemistry-transport model). The computational saving usinga FEOM can be dramatic. Preliminary applications to atmospheric modelinglead to a computational saving by a factor of � 103 [11, 12].This replacement can even be applied to an entire model. A FEOM for atransport-biochemical model to simulate the bioremediation of trace metalsand/or radionuclides in soil and groundwater systems was constructed [19].1.5.3 Global uncertainty assessment and identi�cation of key vari-ables and their interrelationshipAs mentioned in Sec. 1.3.3, the individual component functions of RS-HDMRexpansion have a direct statistical correlation interpretation, that permits the19



output variance �2�f to be decomposed into its input variable contributions �2i ,�2ij, etc.The information gained from this decomposition can be most valuable forattaining a physical understanding of the origins of output uncertainty. Sinceno restriction are placed on the form of HDMR component functions, a fullyglobal uncertainty assessments can be achieved. The computational savingsand the thoroughness of the sampling arise from HDMR decomposition intoa set of low dimensional functions which can be exhaustively sampled. Fur-thermore, we have already commented that the HDMR component functionshave a unique correlation function interpretation. Combing the decompo-sition property of the total variance �2�f into its subcomponents �2i and �2ijetc., it is feasible to identify which model input variables are important andhow they interrelate with each other. The resultant information will providesuggestions for modi�cation of the model and additional laboratory or �eldstudies to best improve the quality of the model.1.5.4 E�cient quantitative risk assessmentsFor a quantitative risk assessment it is generally necessary to reconsider theoriginal set of input variables and split them into two components (x1; x2; : : : ; xs;y1; y2; : : : ; yr; s + r = n) where the set fxig will be referred to as scenariovariables under human control (e.g., industrial emissions, etc.) and the setfyjg corresponds to all other model variables (e.g., chemical rates, transportcoe�cients, unidenti�ed factors, etc.) which are present and subject to somedegree of uncertainty. Typically, risk is associated with identifying whetherthe output f(x;y) exceeds (or goes below) a critical value fc. The risk isde�ned as the probability P (f > fc) for this event to occur while simultane-ously taking into account the uncertainty amongst the model input variablesfyjg. Thus the risk is de�ned asR = Z H[f(x;y)� fc]dxdy (49)and the variance of the risk is�2R = Z H[f(x;y)� fc]H[f(u;y)� fc]dudxdy �R2; (50)here H(z) is a Heaviside functionH(z) = � 1; z � 0;0; z < 0. (51)20



The probability distribution for fyjg is folded into the transformation of thevariables to form a unit hypercube. We may take special advantage of theHDMR expansions in evaluating risk, and variance around the risk, in a quan-titative fashion. These tasks are facilitated by the ability to rapidly evaluatef(x;y) from Eq. (1) and thorough the full coverage of the space fx;yg thatthis permits. In addition, it will be possible to determine the portion ofthe scenario variables (x1; x2; : : : ; xs) which contribute independently or in acorrelated fashion to the risk. The analysis will not only provide the risk R,but also a quality assurance on the risk through its variance �2R due to themodel variables fyjg and their uncertainty.2 Illustrations of HDMR ApplicationsSome examples of HDMR applications related to atmospheric modeling aregiven below.2.1 Atmospheric Radiation TransportThe radiation transport component of atmospheric modeling codes is typi-cally a major contributor to the overall execution time. FEOMs were con-structed as a high speed replacement for traditional transport modules. Theinput information to the FEOM test was the atmospheric water vapor andtemperature pro�les as a function of altitude as well as the surface tem-perature and albedo. The FEOM operates by identifying how these lattervariables impact the heating rate as a function of altitude. The FEOM wasshown to be better than 97% accurate over a broad input variable range,while simultaneously being approximately 103 times faster than traditionalradiation transport module it replaced [12].2.2 Atmospheric Chemistry ModelingA major portion of the computational e�ort in simulations by 3-D chemistry-transport models is consumed in chemical kinetics calculations which repeat-edly solve coupled ordinary di�erential equations. To relieve this computa-tional burden, the HDMR techniques can be used to create a high-speedFEOM for chemical kinetics calculations. The initial development of FEOMatmospheric modeling was successfully tested in a photochemical box-model21



study of 46 input variables where the FEOM technique produced accuratechemical species concentrations, while being orders of magnitude faster thana conventional sti� equation solver [11].A preliminary FEOM has also been successfully tested in 3-D globalchemistry-transport model (GCTM) ozone simulations for CO-CH4-NOx-H2O chemistry [20], where the dynamic ranges of the chemical species con-centrations are far broader than in the above study. The FEOMs were con-structed for all GCTM model levels, all 12 months of the year, every 10degrees of latitude, for two types of surface albedo, and for the entire rangeof tropospheric values of H2O, CO, NOx and O3. The resultant FEOMs werethen used to predict the chemical ozone production and destruction ratesbased on the mixing ratios of the four tracers (O3, NOx, CO and H2O) ineach of the tropospheric grid boxes during GCTM ozone simulations. Theresults show that the predicted ozone production and destruction rates usingthe FEOMs were more accurate than those obtained by traditional 4-wayinterpolative look-up tables. Furthermore, the simulated global ozone �eldsusing FEOMs in the GCTM ozone simulation are closer to the observationsfrom ozonesonde data than those obtained by the traditional 4-way inter-polative look-up tables (see Figure 1).2.3 Uncertainty Analysis of Bioremediation ModelingRS-HDMR has been successfully applied to analyze the results of a mathe-matical model for identifying relevant variables in simulating bioremediationof trace metals/radionuclides in groundwater [19]. The challenge in heavymetal bioremediation modeling is to meaningfully represent the e�ects of bio-geochemistry on the speciation and transport of trace metals/radionuclides ingroundwater system. Due to signi�cant uncertainties present in the rates ofthe relevant biogeochemical reactions, it is essential to quantify the contribu-tions of these input variable uncertainties upon the model output uncertaintyand also identity the key biogeochemical variables and their interrelation-ships. Twenty input variables, including eight oxidation rates of electronacceptors and twelve second order chemical reaction rates were selected toperform nonlinear HDMR uncertainty assessments for several model outputsincluding the total precipitation, accumulated 
ux and concentration of ra-dionuclides.An uncertainty assessment based on the HDMR methodology was con-ducted by performing selected model simulations with randomly generated22
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Figure 1: Percentage deviation from the exact solution of the ozone netchemical tendency (production - destruction) predicted by (a) the 4-way look-up table (b) the FEOM approximation in the surface level during February.The FEOM results are overall more reliable.points in the twenty dimensional input-variable space. Thee resultant modeloutputs and associated random inputs were used to construct the componentfunctions of the RS-HDMR expansion. Consequently, the total variance ofmodel outputs was decomposed into its input variable contributions accord-ing to Eq.(33). By only performing a few hundred model simulations, wewere able to satisfactorily identify the key variables from the 1st order (in-dependent) variances �i, which accounted for most variation in the model23



outputs. Also, the relative order of the 2nd order covariances was obtained.Moreover, from the functional behavior of the 1st- and 2nd-order componentfunctions for the key variables, we are able to reveal the nonlinear relation-ships between model inputs and outputs (see Figure 2).
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Figure 2: The functional behavior of typical 1st (left) and 2nd order (right)HDMR component functions from bioremediation where xi and xj are rateconstants in the model.3 ConclusionsA general set of quantitative model assessment and analysis tools, termedHigh Dimensional Model Representations (HDMR), have been introducedand successfully applied to relieve the computational burden of 3-D globalchemistry-transport model simulations.HDMR can be applied for other purposes, like construction of a com-putational model directly from lab/�eld data, identi�cation of key modelvariables, global uncertainly assessments, and e�cient quantitative risk as-sessment, etc.HDMR techniques are quite generic in many areas involving experimen-tation, plant operations, and modeling. Essentially the same methodologybeing developed for these chemical applications may be transferable to evenbroader classes of problems of equal signi�cance in other domains. The di-verse applications of HDMR can, in turn, stimulate further development ofthe primary chemical/physical applications.24
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