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Abstract

A general set of quantitative model assessment and analysis tools,
termed High Dimensional Model Representations (HDMR), have been
introduced recently for improving the efficiency of deducing high di-
mensional input-output system behavior. HDMR techniques are based
on optimization and projection operator theory, which can dramati-
cally reduce the sampling effort for learning the input-output behavior
of high dimensional systems (i.e., a reduction of effort from exponen-
tial scaling to only polynomic complexity). HDMR can be applied
for different purposes: construction of a computational model directly
from lab/field data, creating an efficient fully equivalent operational
model for an existing mathematical model, identification of key model
variables, global uncertainly assessments, efficient quantitative risk
assessment, etc. In one domain of applications significant computa-
tional enhancements have been observed in certain atmospheric model
calculations.

The performance of long-term simulations with high resolution 3-D global
chemistry-transport models (3-D GCTMs) is central to revealing the effects
of natural and human-induced changes of trace constituents in the tropo-
sphere. A major difficulty in executing GCTMs for long-term and multi-
scenario simulations arises from the computational burden of the chemical
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kinetics calculations involved. The kinetics can consume as much as 90% of
the total CPU time in simulations employing detailed non-methane hydro-
carbon chemistry. This computational burden arises from the chemical rate
equations involving many species and being stiff, such that they require the
use of elaborate numerical integration schemes (e.g., the Gear-type implicit
solvers). Furthermore, typical 3-D GCTM simulations can call on a kinetic
package ~ 10° times / year. Even the best advanced numerical algorithms are
extremely expensive for solving the kinetic equations directly within the 3-D
models. This situation will become even more severe as additional chemical
species and reactions are included to make the models more comprehensive
and realistic.

In order to circumvent this computational difficulty, parameterized poly-
nomial expansions or interpolative look-up tables have been introduced to
fit the results by solving the chemistry rate equations “off-line”. The fits
may then be employed for the chemical kinetics component of the 3-D cal-
culations [1, 2, 3, 4, 5, 6]. Spivakovsky et al. [3] used high-order polynomials
to express the input-output chemical kinetic response through least squares
fitting. Turanyi [4] extended the approach of Spivakovsky et al. by express-
ing the chemical kinetic input-output relation as an expansion in orthogo-
nal polynomials. Klonecki and Levy [5, 7] used standard high-dimensional
look-up tables to perform chemical kinetic calculations of CO-CH4-NO,-H,0O
chemistry in 3-D GCTM ozone simulations. One major problem associated
with these approaches is that without the possibility of simplification, the
number of times the chemistry rate equations need to be solved to obtain the
fits grows exponentially with respect to the dimension of the system (i.e., the
number of chemical species). This comment may be understood from con-
sideration of the effort required to deduce the chemical kinetic input-output
mapping by sampling with s points for each of the n input variables (e.g., ini-
tial chemical species concentrations) corresponding to a computational cost
scaling of ~ s". Realistically, one may expect s to be approximately 10 ~
20 and n to be 10 ~ 10% or larger in typical chemical systems. Furthermore,
the evaluation of a new point by interpolation in an n-dimensional space for
n > 10 would be difficult with a standard interpolative look-up table. There-
fore, these traditional approaches would be prohibitive in high-dimensional
chemical systems such as non-methane hydrocarbon chemistry.

A general set of quantitative model assessment and analysis tools, termed
High Dimensional Model Representations (HDMR), have been introduced
recently for improving the efficiency of deducing high dimensional input-



output (I0) system behavior, and then can be used to relieve the compu-
tational burden of 3-D GCTMs. HDMR is an expansion in terms of corre-
lated functions with increasing dimension which capture the chemical kinetic
input-output relationships. In this fashion the original high-dimensional in-
terpolation problem is broken into a set of low-dimensional pieces which
may be efficiently handled. HDMR can be used to directly calculate output
species concentrations and related chemical properties at a given reaction
time based on the initial input species concentrations. There are many at-
tractive features of HDMR including: (a) operations that only involve very
rapid and stable algebraic manipulations, (b) accuracy comparable to con-
ventional chemistry solvers, while attaining very significant computational
savings, and (c) full variable coverage for high-dimensional systems.

HDMR can be applied for different purposes. For instance, construction of
a computational model directly from lab/field data, creating an efficient fully
equivalent operational model for existing mathematical model, identification
of key model variables, global uncertainly assessments, efficient quantitative
risk assessment, etc. In one domain of applications significant computational
enhancements have been observed in certain atmospheric model calculations.

1 Theoretical Basis of HDMR

Many problems in science and engineering reduce to the need for finding an
efficiently constructed map of the relationship between sets of high dimen-
sional input and output system variables. The system may be described by
a mathematical model (e.g., typically a set of differential equations), where
the input variables might be specified initial and boundary conditions, pa-
rameters as well as functions residing in the model, and the output variables
would be the solutions to the model or a functional of it. The 10 behavior
may also be based on observations in the laboratory or field where a math-
ematical model cannot readily be constructed for the system. In this case
the system is simply considered as a black box. The inputs consist of the
measured laboratory or field (control) variables and the output(s) is the ob-
served system response. Regardless of the circumstances, the input is often
very high dimensional with many variables even if the output is only a single
quantity. We refer to the input variables collectively as x = (z1, z9,. .., 2y)
with n ~ 10% — 10 or more, and the output as f(x). For simplicity in the
remainder of the paper and without loss of generality, we shall refer to the



system as a model regardless of whether it involves modeling, laboratory
experiments or field studies.

A general set of HDMR mathematical analysis tools have been introduced
for improving the efficiency of deducing high dimensional 10 system behav-
ior [8, 9, 10, 11, 12, 13]. Since the influence of the predictor variables on
the response variable can be independent and/or cooperative, it is natural
to express the output f(x) as a hierarchical correlated function expansion in
terms of the input variables as follows:

flx) = .f0+Zf¢(«’ri)+ Z fij(@i, ;) + Z fige (i, w5, 1)
i=1

1<i<j<n 1<i<j<k<n

+ - +f12...n(x1ax27"'7x”)‘ (1)

Here fy denotes the mean value of f(x) over the entire domain ) of x. The
first order (I = 1) function f;(z;) represents the effect of input variable x;
acting independently, although generally nonlinearly, upon the output f(x).
The second order (I = 2) function f;;(x;,z;) describes the cooperative effects
of the input variables z; and z; upon the output f(x). The higher-order terms
reflect the cooperative effects of increasing numbers of input variables acting
together to influence the output f(x). The last term fio (71,29, ..., 2,)
gives any residual dependence of all the input variables locked together in a
cooperative way to influence the output f(x).

The basic conjecture underlying HDMR is that the component functions
in Eq. (1) arising in typical real problems will not likely exhibit high order
[ cooperativity among the input variables such that the significant terms in
the HDMR expansion are expected to satisfy the relation: [ < n for n > 1.
Experience shows that an HDMR expression to 2nd order

n

f(x) = fo+ Zfz(xz) + Z fij(@i, ;) (2)

i=1 1<i<j<n

often provides a satisfactory description of f(x) for many high dimensional
systems. Broad evidence from statistics supports this conjecture where it
is rarely found that more than input variable covariance (i.e., variable pair
cooperativity) arises to a significant degree. HDMR attempts to exploit this
observation to efficiently determine high dimensional input-output system
mapping. The presence of only low order variable cooperativity does not
necessarily imply a small set of significant variables nor does it limit the
nonlinear nature of the input-output relationship.



1.1 Determination of HDMR Component Functions

This valuable property of inputs cooperativity for high dimensional systems
may be utilized only if the proper formulas of the HDMR component func-
tions can be found. The critical feature of HDMR expansion is that its com-
ponent functions fo, fi(x;), fij(zi, z;), - are optimal choices tailored to a
given f(x) over the entire desired domain ) of x such that the high or-
der terms in the expansion are negligible. A particular component function
fiviowiy (Tiys Tiyy -y xiy) (L=0,1,...,n — 1 with f, corresponds to [ = 0) of
HDMR expansion is obtained by an optimization procedure that minimizes
the functional

min /Qwiliz---iz (x,u) [f(u) — fo— Zfl(ul) — Z fij(ug, uj) — -

fivig..if 1<i<j<n

_ Z Jivigoiy (Wiyy Uigy oo s uil)rdu (3)

i1i..)

under a suitable specified condition which guarantees all the component func-
tions to be determined step by step. Here, X = (z;,2;,...,2;), du =
duyduy - - - duy,, and w;,;, (X, u) may be considered as a weight function.

Different weight functions will produce distinct, but formally equivalent
HDMR expansions, all of the same structure as Eq. (1). There are two com-
monly used HDMR expansions: Cut- and RS(Random Sampling)-HDMR
which are two extreme cases of different HDMR expansions. Cut-HDMR de-
pends on the value of f(x) at a specified reference point x while RS-HDMR
depends on the average value of f(x) over the whole domain €.

1. Cut-HDMR

When ordered sampling for output f(x) at chosen points of x is pos-
sible (e.g., for lab data with controlled values of x), then a Cut-HDMR
expansion can be constructed. For Cut-HDMR, first a reference point x =

(ZT1,Z9, -+, Ty,) is selected in the domain . The optimal component func-
tions of Cut-HDMR in Eq. (1) possess the following structure:
fo = [(x), (4)



where

_q _ _ _ _
(l‘i,X) = (1‘17"'al‘iflaxiaxi+la"'axn)a
_ i _ _ _ _ _ _
(J’,‘i,ZEj,X]) = xla"'inflax’i:xi-l-l:'"ijflaxjaxj-kla"'axn)-
The last term fio (21,29, ...,x,) is determined by the difference between

f(x) and all other component functions in Eq. (1).

The above formulas can be readily obtained simply by substituting (z;, , z;,
ey @y, X2 with different sets of {4y, 49, ...,4} C {1,2,...,n} for x on
the both sides of Eq. (1) and using the specified condition: a component
function of Cut-HDMR vanishes when any of its own variables takes the
value of the corresponding element in X, i.e.,

filig...il(l‘ilal‘iza'"7mil) Ts=Ts :07 S € {il,iQ,---,il} (7)

which defines an orthogonal relation between two different component func-
tions of Cut-HDMR as

Ts=Ts — O (8)

fi1i2---iz('ri15'ri2’ cee ’xil)fjle---jk (le,-TjQ, s ’mjk)

s € {iy,ig, ..., 0} U{jlaj?a"'ajk}

The Cut-HDMR component functions f;(z;), fij(z:, z;), - - are typically
provided numerically at discrete values of the input variables z;, z;,- - - pro-
ducing from the resultant output function f(x) for employment of the R.H.S.
of Egs. (4)-(6). Notice that the Cut-HDMR component functions are defined
along some cut lines, planes, subvolumes, etc. across the reference point x
in €2. This is the name Cut-HDMR, coming from.

Since all the component functions are obtained by minimization proce-
dures, they are optimal choices for a given output f(x), and thus only low
order terms of Cut-HDMR expansion are needed to give a good approxima-
tion for f(x). Numerical data tables can be constructed for these compo-
nent functions, and the values of f(x) for an arbitrary point x are deter-
mined from these tables by performing only low dimensional interpolation

over f;(x;), fij(xi, x;),---. If each input variable takes s values, the required
model runs to construct the f;(z;), fij(xi, x;) ... tables are
n(n —1)s?
1+ns+ B E— + -



which are only polynomial functions of n and s. As only low dimensional
tables are necessary, the saving of sampling for large n is significant com-
pared to traditional s" sampling. Thus, Cut-HDMR renders the original
exponential difficulty to a problem of only polynomic complexity.

2. RS-HDMR

For RS-HDMR, the component functions are determined through an aver-
aging processes on a set of randomly sampled points over the entire domain
2, and this procedure is likely to be most appropriate for generating an
HDMR from lab/field data.

For RS-HDMR, we first rescale variables x; such that 0 < z; < 1 for all
i. The output function f(x) is then defined in the unit hypercube K" =
{(x1,29,...,2,)]0 < 2; < 1,4 = 1,2,...,n}. The component functions of
RS-HDMR possess the following forms:

fo = [ fGoax )
filw) = [ fax — fo (10)
fij(@i,@;) = /anz F)Ax — fi(w;) — fi(;) — fo, (11)

where dx’ and dx¥ are just the product dz;dzs---dz, without dz; and
dx;, dz;, respectively. Similarly, the last term fio_, (21,2, . .., 2,) is deter-
mined from the difference between f(x) and all other component functions
in Eq. (1).

Considering that the domain €2 is a unit hypercube, f; is actually the
average value of f(x) over the whole domain in contrast with fo of Cut-
HDMR which is the value of f(x) at the specified single reference point x.

All the above formulas can be readily obtained simply by integrating
the both sides of Eq. (1) with respect to different sets of input variables
{i, wiy, ... x5} (l=mn,n—1,...,1), and using the specified condition: the
integral of a component function of RS-HDMR with respect to any of its own
variables is zero, i.e.,

1
/0 filig...il(l‘ilal‘iza'"al‘il>dl‘s :0, S € {il,ig,...,il} (12)



which defines the orthogonal relation between two different RS-HDMR com-
ponent functions as

/K" fi1i2...iz (xilixiQJ ERE xiz)fjlj2~~~jk (lea Loy - - ,Z‘jk)dX =0. (13)

{ilaiQJ"'ail} 7£ {jlaj?:"';jk}

Evaluations of the high dimensional integrals in RS-HDMR expansion
may be carried out by Monte Carlo random sampling integration since it
is the most viable algorithm for this purpose [14], and this is the name
RS(Random Sampling)-HDMR coming from.

According to the above formulas one can see that all the component
functions of Cut- and RS-HDMR expansions can be directly constructed
from the values of output f(x) either at some ordered or randomly generated
points of x, which makes the construction of fo, fi(;),fi;(xi, z;), ... simple
and straight forward.

1.2 Projector Theory for HDMR

To have a better understanding of the concepts of HDMR expansions, it may
be viewed from another perspective. The component functions of HDMR can
be obtained through application of a suitably defined set of linear operators

oo, (1=1,2,...,n), pi; (1 <i<j<mn),..:

oo f(x) = fo, (14)
pi f(x) = [filzi), (15)
g fx) = fij(-riaxj)a (16)

It has been proven that all the operators for Cut- and RS-HDMR expansions
are commutative projection operators and they are mutually orthogonal to
one another, i.e., they obey

1. Idempotency:

pz?lb...il = Qivis...iss {7:1,7:2,...,7:1} - {1,2,...,71,} (17)

where 0 < [ < n, and gq corresponds to [ = 0.



2. Orthogonality:
Riria...i; j1do.dr — 0. {ila i?a ) Zl} 7é {jl,jQ, ce a]k} (18)

3. Resolution of the identity:

Z Z ©irio.iy = 1, (19)

1=0 iiy..4

where 1 denotes the identity operation.

The projectors act on a linear space F composed of all n-variable func-
tions f(x). Each projector g, provides an approximation g, f(x) for f(x),
and has its range ®, which is a subspace of the linear space F. Any function
f(x) € ®; is invariant upon the action of g, i.e.,

puf(x) = f(x),  Vf(x) e (20)

This implies that upon the action of g; there is no error for any function
f(x) € ®;. The larger the range ®; is, the better approximation g, produces.
Two projectors g; and p; are mutually orthogonal if

Pip; = i = 0. (21)

This is equivalent to
o, Nd; =0. (22)

A sum of two mutually orthogonal projectors p;+ p; is also a projector whose
range is ®; + ®; which is larger than anyone of ®; and ®;. Therefore, p; + p;
has a better accuracy than any single p; and p;.

Any set of commutative projectors generate a distributive lattice whose
elements are obtained by all possible combinations (Boolean addition and
multiplication) of the projectors in the set. In particular, the lattice has a
unique mazimal projector M which provides the algebraically best approxi-
mation to all n-variable functions f(x) in F [15]. The range of the maximal
projector M for the lattice generated by mutually commutative projectors
{91, 92, ..., ps} is the union of all the ranges @y, i.e.

Sy =0, UDyU---UD,. (23)



When the projectors are mutually orthogonal, the maximal projector is sim-
ply their sum

M= p,, (24)
1=1

and the range ® 4 is >°7 | ®;. As more orthogonal projectors are retained in
the set, the resultant approximation obtained by its maximal projector M
becomes better.

For instance, if we choose the subset S = {pq,0: (1 = 1,2,...,n)} of
the above mutually orthogonal projectors to generate a lattice, its maximal
projector is simply the sum of all these projectors:

Ml = QU‘FZQZ; (25)

i=1
and the best approximation of f(x) by the projectors in this lattice is

n

fx)m Mif(x) = pof(x)+> pif(x)

i=1
= fo+ Y filwi), (26)
i=1
which is the first order HDMR approximation for f(x). Similarly, for the

subset Sy = {po, i (1 =1,2,...,n),0:;; (1 <i < j <n)}, the best approxi-
mation of f(x) is given by

OO M f() = o0 f(9+ D0l + 3 o f)

1<i<j<n

= fo+if¢($i)+ Z fij (@i, x5), (27)

1<i<j<n

which is the second order HDMR approximation for f(x), and so on.

As & is a subset of Sy, and M, is the maximal projector in the lattice
generated by Sy, then M, is better than My, i.e., the second order approxi-
mation of HDMR is better than the first order one. General speaking, higher
order HDMR approximations are never worse than lower order HDMR, ap-
proximations even through they may not improve much in some cases. This
implies that adding a new orthogonal projector into a sum of orthogonal pro-
jectors always produces a new projector with a better accuracy no matter

10



how better it is. Finally, as the sum of all projectors of HDMR expansion is
the identity, the full HDMR expansion is exactly equal to f(x).

It can be also proven that the range for projector g+ ¢; is any constant
and any function of variable z;, and the range for py+3_"" ; ¢; is any constant
and any linear combination of functions with one variable z; (i = 1,2,...,n).
Similarly, the range for projector oy + 37" ©; + > 1<icj<, ©ij 18 any constant
and any linear combination of functions with one or two variables z;, z; (1 <
i <j<mn). As f(x;,x") is a one variable function, it is invariant to projector
©o + X1 i, 1.e., there is no error for 1st order Cut-HDMR approximation
of f(x) whenever the point x is located on a cut line across the reference
point x in Q. Similarly, f(x;,z;,%7) is a two variable function, and thus
there is no error for 2nd order Cut-HDMR approximation of f(x) whenever
the point x is located on any cut line or plane across the reference point x in
Q). In summary, there is no error for /th order Cut-HDMR, approximation of
f(x) whenever the point x is located on any & (k < [)-dimensional subvolume
across the reference point x in €.

1.3 The Properties of HDMR Expansions

The following properties of HDMR are important for its application in dif-
ferent scientific problems.

1.3.1 Fast convergence of HDMR expansions

As mentioned above, HDMR expansions converge fast. This property can be
demonstrated below. Suppose an output f(x) defined in a unit hypercube of
x can be expanded as a convergent Taylor series at reference point X, i.e.,
NN " 19 (x)
) = Ry =

i=1

ij=1
Then the component functions fo, fi(x;), fij(zi,z;), - in Cut-HDMR given
by Eqgs. (4)-(6) have clear mathematical meaning. As shown above, f;, =
f(x). Since fi(z;) = f(z;,x") — f(x), substituting (z;,x") for x and sub-
tracting f(x) from the both sides of Eq. (1) gives f;(x;). As all the terms
containing x;(j # i) vanish, the first order component function f;(x;) is the
sum of all the Taylor series terms which contain and only contain variable x;.
Similarly, the second order component function f;;(z;, ;) is the sum of all
the Taylor series terms which contain and only contain variables x; and z;,

11



etc. Thus, the infinite number of terms in the Taylor series are partitioned
into finite different groups and each group corresponds to one Cut-HDMR
component function. Or we say in other way that each component function of
Cut-HDMR is composed of an infinite sub-class of the full multi-dimensional
Taylor series. Therefore, any truncated Cut-HDMR expansion gives a better
approximation of f(x) than any truncated Taylor series because the latter
only contains a finite number of terms of Taylor series. Furthermore, con-
sidering that 0 < z; < 1(i = 1,2,...,n) and (x; — &;) < 1, the high order
Cut-HDMR component functions are usually smaller than low order ones
because the high order component functions are composed of the product
! (2, — ;)% with larger I. This may not be a strict proof in mathemat-
ics, but it gives us some idea why Cut-HDMR expansion converges fast.

Moreover, the sub-classes of Taylor series corresponding to different com-
ponent functions of Cut-HDMR do not overlap one another, which is the basis
for the orthogonal relation between two Cut-HDMR, component functions.

Other HDMR expansions possess the same property as Cut-HDMR be-
cause a one-to-one relationship between two different HDMR expansions can
be established. Thus, if Cut-HDMR converges at certain order, so do the
other HDMR expansions.

1.3.2 Invariance of conservation laws for HDMR approximations

If a set of outputs { f(V(x), fP(x),..., f®)(x)} obey a set of linear-superposition
conservation laws, their HDMR approximations at any order also obey these
conservation laws, i.e., if

Zwkif(i)(x) = ¢, k=1,2,...,m (29)
i=1
where wy; and ¢, are two sets of constants, then
SwaMifOx)] =, k=12...m; 1=01,...n (30
i=1

here

Ml — pO + Z pz + e + Z pil’iQ...i” (31)

i=1 i1ig...)

and M, f)(x) denotes the I-th order HDMR approximation for £ (x). This
property can be proven by applying operator M, to the both sides of Eq. (29)

12



and using the identity
Mc =c, ¢ being a constant. (32)

The invariance of conservation laws is very useful for the application of
HDMR in physics, chemistry and other scientific disciplines where conserva-
tion laws (e.g., mass, energy, momentum conservations, etc.) are important.

1.3.3 Decomposition of variance by RS-HDMR

Using the orthogonality property of RS-HDMR component functions it can
be proven that the total variance O'J% of f(x) caused by all input variables
may be decomposed into different kinds of its input contributions: due to

the z; independent action o7, the x; and x; pair correlated action U?j,

etc.
ot = [ [fe = ax= [ [16x) - fo] dx

n

_ /Kn[;fi(xi)—i- 3 fij(xi,xj)jL,._rdx

1<i<j<n

n 1 1 rl
= > [ peadni+ X[ [ s eg)deda - -
=1 1SZ<]§TZ

= ;0‘34- Yo oh e, (33)

1<i<j<n

where f is the mean value of f(x) over the whole domain 2. This property
is useful for global uncertainty analysis because the above decomposition
is valid over the whole domain. According to the magnitudes of o7, o7,
etc., it is easy to find out how the output uncertainty is influenced by the
input uncertainties, which are the key input variables and what kinds of

cooperativities exist.

1.4 Approximate and Advanced HDMR
1.4.1 Approximate formulas for RS-HDMR component functions

The direct determination of the component functions of RS-HDMR at differ-
ent values of z;, 2, ... by Monte Carlo integration requires a huge amount of
random sampling. For instance, different Monte Carlo random samples for

13



f(x;,x") at different fixed values of z; are needed to determine f;(z;) [16].
To reduce sampling effort, the RS-HDMR component functions may be ap-
proximated analytically and numerically.

1. Analytical approximation

The RS-HDMR component functions may be approximated by some
known functions, like orthogonal polynomials, spline functions, or even sim-
ply polynomial functions. For example,

k
filz;) =~ ZO{TPT(.TZ'), (34)
/A
fij(xi;xj) ~ ZZﬁrsPrs(%;ffj); (35)

where o, 3, are constant coefficients, and P,(z;), P.s(z;, ;) are one and
two variable orthogonal polynomials, respectively. Our task is to determine
all the constant coefficients. Using the orthogonality property of orthogonal
polynomials, the coefficients are given by
_ Sk SX)pr (i) dx
a, = . , (36)
Jo b7 («Tz)dxz

Jicn f(X)prs (4, ;) dx
Jo Jo P2 (i, wj)daday’
As no restriction is posed on the values of the elements of x for f(x) in the
above integrals, only one set of random samples for f(x) are necessary to
determine all the coefficients, and consequently all the component functions
of RS-HDMR. The sampling effort is then dramatically reduced.

/BTS

(37)

2. Numerical approximation

The RS-HDMR component functions may be also approximated numer-
ically by using kernel smoothers. For instance, the first and second order
RS-HDMR component functions are given by

|fL"z' - Ui|

filws) =~ 'an(u)k( 5 )du — fo (38)

fij(wi,x;) =~ /nf(u)[k(x¢;u¢|)k(|xj;2w|)]du
= filw) = fi(x5) = fo, (39)
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where A, A; and A\, are window-widths, and k(t) is certain kernel function.
One example of kernel smoothers is given below [17]:

k(1) = {%(1 — %), for [t| < 1; (40)

0, otherwise.

Similarly, as no restriction is posed on the values of the elements of x for f(x)
in the above integrals, only one set of random samples for f(x) are necessary
to determine all the component functions of RS-HDMR at different values of
the elements of x. The sampling effort is also dramatically reduced.

1.4.2 Monomial preconditioning Cut-HDMR

As argued earlier, very often the high order HDMR terms are small thereby
making low (usually, first and second) order HDMR approximations satis-
factory for practical purposes. However, in some cases the first or second
order HDMR approximations may not provide desired accuracy, and higher
order HDMR approximations might have to be considered. For Cut-HDMR
the higher order terms demand a polynomially increasing number of data
samples and possibly large computer storage. If the higher order compo-
nent functions of Cut-HDMR can be approximately represented in a similar
fashion as those for the zeroth, first and second order component functions,
then higher order approximations of Cut-HDMR can be included without
dramatically increasing the number of experiments or model runs as well as
reducing computer storage requirements. One way to realize this idea is to
represent a high order Cut-HDMR component function as products of low
order Cut-HDMR component functions and some known functions of the re-
mained input variables. For instance, a third order Cut-HDMR component
function can be approximated as

fijk(fri, Zj, Tp) R %’jk(%’, xjaixk).fﬂ + %k(%;fk)fi(%) + ¢zk($z;fk)ﬂ($y)
+ Soij(miaffj)fk(mk) + @k(mk)fij(ffi, Ij) + @j(fﬂj)fik(ffi, T)
+ i) fir (x5, 21), (41)

where @;(z;), p;(z;),. .., ijk(zi, x;, ) are some known functions (e.g., the
products of monomial (x; — b;), (z; — b;) and (z — bx)), and fo, fi(z:), ...,
fix(z, x1) are similar to the zeroth, first and second order Cut-HDMR com-
ponent functions. Thus, the 3-dimensional numerical table for f;;x(z;, z;, xx)
is replaced by some 1- and 2-dimensional numerical tables. The saving is

15



large especially for high order component functions. Using projector the-
ory, an approach named as monomial preconditioning Cut-HDMR has been
developed for this purpose [18].

1.4.3 Multiple Cut-HDMR

The basic principles of HDMR may be extended to more general cases. Multi-
ple Cut-HDMR is one of these extensions where several [th order Cut-HDMR
expansions at different reference points a(1),a(2), ..., a(m) are constructed,
and f(x) is approximately represented not by one but by all m Cut-HDMR
expansions:

n

F) = w7+ @)+ S H )] (42)
k=1

i=1 gy
The coefficients wy(x) possess the properties

1, if x is on any cut subvolume
of kth point expansion
= e ’ 43
w (X) 0, if x is on any cut subvolume (43)

of other points expansions,
Z we(x) = 1. (44)
k=1

The properties of the coefficients wy(x) imply that all other Cut-HDMR ex-
pansions vanish except one when x is located on any cut line, plane or higher
dimensional (< [) subvolumes through that reference point, and then the
multiple Cut-HDMR expansion reduces to single point Cut-HDMR expan-
sion. As mentioned above, [th order Cut-HDMR approximation does not
have error when x is located on these subvolumes. When m Cut-HDMR, ex-
pansions are used to construct a multiple Cut-HDMR expansion, the no error
region is m times of that for a single reference point Cut-HDMR expansion.
Therefore, the accuracy will be improved.

Different ways may be used to define wi(x). For example, the metric
distances pi'™~" from point x to an I-dimensional subvolume with variables
{zi,, ®i,, ..., x;} across reference point a(k) (k=1,2,...,m)

P (x) = | Zn: [z — ai(k)]” F {1y, .. u} € {1,2,...,n}

i=1
ig{iq,ig, .0}

(45)
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can be used to define

o) = I IT o). (46)

s=1 il’iQ...il
s#k
Wi (x)

iws(x).

It can be readily proven that the defined wy(x) satisfies the required prop-
erties if different reference points a(k) do not share any coordinate. When
a(k)s do have the same values for some elements, modified definitions for
w(x) may be used.

1.4.4 HDMR with discrete input variables

HDMR can treat continuous as well as discrete input variables. The notion
of inherently discrete variables refers to those that are naturally discrete or
sampled in that fashion (e.g., socio-economic variables such as residences,
families, ethnicities, occupations, income and age levels, etc.) A potentially
serious difficulty in treating inherently discrete data arises since there is often
no a priori means to order the input data. Without some identified rational
ordering, the output f(x) will likely appear as random over the domain
(), and this behavior would prevent an efficient use of coarse sampling for
interpolation. A good ordering of the input variables is defined as one that
produces well-behaved “smooth” property variations f(x) over the domain
Q. A rational ordering of the variables can be found, based on the first order
HDMR component functions f;(z;). The observed output due to the discrete
values of each input variable may be used to produce a monotonic output
variation with respect to a suitable ordering of the input variables. It is then
natural to expect that the remaining behavior over the second, or possibly
third, order HDMR output surfaces will be regular, if not monotonic. This
variable ordering is crucial to make feasible the physical interpretation of the
discrete input variables, and to allow ready use of the HDMR formulations.
The discrete input variable capabilities of HDMR have been successfully
tested recently with analogous problems involving protein mutations where
the discrete variables are the amino acid residues.
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1.4.5 Functional HDMR

If inputs for a system consist of a set of functions, i.e., the input vector
x(t) = (z1(t),x2(t),..., z,(t)), then the system output becomes a func-
tional. One approach to this functional mapping problem is to assume that
a discretization of the following form is valid

z;(t) = i ik (1), (48)

where {¢x(t)} is a family of orthogonal functions. Then any “functional”
becomes a “function” of the parameters ¢;; and then the HDMR formulas
can be applied to it. This approach has been successfully implemented for an
atmospheric radiative heating problem where the inputs consisted of species
and temperature profiles as functions of altitude.

1.5 Applications of HDMR

1.5.1 Construction of observation-based models directly from
lab/field data

An important application of HDMR is to model construction from lab/field
data. In many cases where a large amount of experimental or field data
are available, the mathematical model to treat these data cannot be readily
constructed due to the complexity and uncomplete knowledge of the system.
The models people used to describe the system are often so poor that they
can neither reproduce the measured data nor provide reasonable prediction
of the system behavior.

For such systems the HDMR technologies are powerful tools for model
construction either by Cut-HDMR if ordered sampling is possible or by RS-
HDMR when the available data can be considered as produced randomly.
After HDMR expansion given by Eq. (1) has been constructed, the accu-
rate reproduction of the measured data and the reasonable prediction of the
output f(x) for a given input x can be obtained.

The HDMR expansion serves as a mathematical model, with specific ad-
vantages over those generated by mechanistic or conventional statistical ap-
proaches: 1) it does not rely on any constraining physical, chemical and
other theoretical assumptions. Its accuracy only depends on the quantity
and quality of the data. This is especially useful when we do not have a
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thorough understanding of the system; 2) it can also be used for statistical
analysis of its own quality, thereby placing quantitative flags on the resultant
predictions, to indicate whether additional measurements are needed; 3) it
may be improved continuously without discarding the original learned terms
by simply adding more new terms into the expansion when the information
about new input variables is identified; 4) it can provide a better understand-
ing of the physical content of the system such that a mechanistic model may
be properly constructed /refined.

1.5.2 Construction of a fully equivalent operational model

An intriguing application of HDMR is to model or its component replace-
ment by highly efficient equivalent forms. This operation takes advantage
of the fact that complex models are typically broken into various submod-
els (e.g., involving chemistry, mechanical coupling, mass transport, etc.).
The submodels of an overall model are often treated by numerical split-
ting techniques, thus isolating them for efficient replacement with equivalent
HDMRs. The HDMR expansions for these submodels are constructed from
off-line submodel runs. After the component functions f;(x;), fi;(zi, z;), ...
for a submodel are obtained, they may be reused as a basis to predict out-
put behavior at any other point x in the desired region €2 called upon by
additional execution of the submodel. The HDMR expansion obtained in
this way corresponds to a fully equivalent operational model (FEOM) which
could replace the original submodels. This logic will be most appreciate for
model components that involve very large numbers of computational oper-
ations which are repeated many times in executing the overall model (e.g.,
chemistry in a chemistry-transport model). The computational saving using
a FEOM can be dramatic. Preliminary applications to atmospheric modeling
lead to a computational saving by a factor of ~ 10% [11, 12].

This replacement can even be applied to an entire model. A FEOM for a
transport-biochemical model to simulate the bioremediation of trace metals
and/or radionuclides in soil and groundwater systems was constructed [19].

1.5.3 Global uncertainty assessment and identification of key vari-
ables and their interrelationship

As mentioned in Sec. 1.3.3, the individual component functions of RS-HDMR
expansion have a direct statistical correlation interpretation, that permits the
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7

output variance UJ% to be decomposed into its input variable contributions o

2 ete.
’ The information gained from this decomposition can be most valuable for
attaining a physical understanding of the origins of output uncertainty. Since
no restriction are placed on the form of HDMR component functions, a fully
global uncertainty assessments can be achieved. The computational savings
and the thoroughness of the sampling arise from HDMR. decomposition into
a set of low dimensional functions which can be exhaustively sampled. Fur-
thermore, we have already commented that the HDMR component functions
have a unique correlation function interpretation. Combing the decompo-
sition property of the total variance o2 into its subcomponents o? and U?j
etc., it is feasible to identify which model input variables are important and
how they interrelate with each other. The resultant information will provide
suggestions for modification of the model and additional laboratory or field

studies to best improve the quality of the model.

o

1.5.4 Efficient quantitative risk assessments

For a quantitative risk assessment it is generally necessary to reconsider the
original set of input variables and split them into two components (1, xs, . . ., Zs;
Y1,Y2, -, Yr; S+ 1 = n) where the set {x;} will be referred to as scenario
variables under human control (e.g., industrial emissions, etc.) and the set
{y,} corresponds to all other model variables (e.g., chemical rates, transport
coefficients, unidentified factors, etc.) which are present and subject to some
degree of uncertainty. Typically, risk is associated with identifying whether
the output f(x,y) exceeds (or goes below) a critical value f.. The risk is
defined as the probability P(f > f.) for this event to occur while simultane-
ously taking into account the uncertainty amongst the model input variables
{y;}. Thus the risk is defined as

R= [ H[f(xy)~ fldxdy (49)
and the variance of the risk is
ok = [HIf(xy) ~ fIHIf(uy) ~ fldudxdy — B, (50)
here H(z) is a Heaviside function
1, z>0;
H(Z):{o 2 < 0. (51)



The probability distribution for {y;} is folded into the transformation of the
variables to form a unit hypercube. We may take special advantage of the
HDMR expansions in evaluating risk, and variance around the risk, in a quan-
titative fashion. These tasks are facilitated by the ability to rapidly evaluate
f(x,y) from Eq. (1) and thorough the full coverage of the space {x,y} that
this permits. In addition, it will be possible to determine the portion of
the scenario variables (z1, s, ..., ) which contribute independently or in a
correlated fashion to the risk. The analysis will not only provide the risk R,
but also a quality assurance on the risk through its variance o% due to the
model variables {y,} and their uncertainty.

2 Illustrations of HDMR Applications

Some examples of HDMR, applications related to atmospheric modeling are
given below.

2.1 Atmospheric Radiation Transport

The radiation transport component of atmospheric modeling codes is typi-
cally a major contributor to the overall execution time. FEOMs were con-
structed as a high speed replacement for traditional transport modules. The
input information to the FEOM test was the atmospheric water vapor and
temperature profiles as a function of altitude as well as the surface tem-
perature and albedo. The FEOM operates by identifying how these latter
variables impact the heating rate as a function of altitude. The FEOM was
shown to be better than 97% accurate over a broad input variable range,
while simultaneously being approximately 10° times faster than traditional
radiation transport module it replaced [12].

2.2 Atmospheric Chemistry Modeling

A major portion of the computational effort in simulations by 3-D chemistry-
transport models is consumed in chemical kinetics calculations which repeat-
edly solve coupled ordinary differential equations. To relieve this computa-
tional burden, the HDMR techniques can be used to create a high-speed
FEOM for chemical kinetics calculations. The initial development of FEOM
atmospheric modeling was successfully tested in a photochemical box-model
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study of 46 input variables where the FEOM technique produced accurate
chemical species concentrations, while being orders of magnitude faster than
a conventional stiff equation solver [11].

A preliminary FEOM has also been successfully tested in 3-D global
chemistry-transport model (GCTM) ozone simulations for CO-CH4-NO,-
H,0 chemistry [20], where the dynamic ranges of the chemical species con-
centrations are far broader than in the above study. The FEOMs were con-
structed for all GCTM model levels, all 12 months of the year, every 10
degrees of latitude, for two types of surface albedo, and for the entire range
of tropospheric values of HyO, CO, NO, and O3. The resultant FEOMs were
then used to predict the chemical ozone production and destruction rates
based on the mixing ratios of the four tracers (O3, NO,, CO and H,O) in
each of the tropospheric grid boxes during GCTM ozone simulations. The
results show that the predicted ozone production and destruction rates using
the FEOMs were more accurate than those obtained by traditional 4-way
interpolative look-up tables. Furthermore, the simulated global ozone fields
using FEOMs in the GCTM ozone simulation are closer to the observations
from ozonesonde data than those obtained by the traditional 4-way inter-
polative look-up tables (see Figure 1).

2.3 Uncertainty Analysis of Bioremediation Modeling

RS-HDMR has been successfully applied to analyze the results of a mathe-
matical model for identifying relevant variables in simulating bioremediation
of trace metals/radionuclides in groundwater [19]. The challenge in heavy
metal bioremediation modeling is to meaningfully represent the effects of bio-
geochemistry on the speciation and transport of trace metals/radionuclides in
groundwater system. Due to significant uncertainties present in the rates of
the relevant biogeochemical reactions, it is essential to quantify the contribu-
tions of these input variable uncertainties upon the model output uncertainty
and also identity the key biogeochemical variables and their interrelation-
ships. Twenty input variables, including eight oxidation rates of electron
acceptors and twelve second order chemical reaction rates were selected to
perform nonlinear HDMR uncertainty assessments for several model outputs
including the total precipitation, accumulated flux and concentration of ra-
dionuclides.

An uncertainty assessment based on the HDMR methodology was con-
ducted by performing selected model simulations with randomly generated
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Figure 1: Percentage deviation from the exact solution of the ozone net
chemical tendency (production - destruction) predicted by (a) the 4-way look-
up table (b) the FEOM approximation in the surface level during February.
The FEOM results are overall more reliable.

points in the twenty dimensional input-variable space. Thee resultant model
outputs and associated random inputs were used to construct the component
functions of the RS-HDMR expansion. Consequently, the total variance of
model outputs was decomposed into its input variable contributions accord-
ing to Eq.(33). By only performing a few hundred model simulations, we
were able to satisfactorily identify the key variables from the 1st order (in-
dependent) variances o;, which accounted for most variation in the model
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outputs. Also, the relative order of the 2nd order covariances was obtained.
Moreover, from the functional behavior of the 1st- and 2nd-order component
functions for the key variables, we are able to reveal the nonlinear relation-
ships between model inputs and outputs (see Figure 2).
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Figure 2: The functional behavior of typical 1st (left) and 2nd order (right)
HDMR component functions from bioremediation where x; and x; are rate
constants in the model.

3 Conclusions

A general set of quantitative model assessment and analysis tools, termed
High Dimensional Model Representations (HDMR), have been introduced
and successfully applied to relieve the computational burden of 3-D global
chemistry-transport model simulations.

HDMR can be applied for other purposes, like construction of a com-
putational model directly from lab/field data, identification of key model
variables, global uncertainly assessments, and efficient quantitative risk as-
sessment, etc.

HDMR techniques are quite generic in many areas involving experimen-
tation, plant operations, and modeling. Essentially the same methodology
being developed for these chemical applications may be transferable to even
broader classes of problems of equal significance in other domains. The di-
verse applications of HDMR can, in turn, stimulate further development of
the primary chemical/physical applications.
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