
Problems and Solutions

Decidability and Complexity

Algorithm

Muhammad bin-Musa Al

Khwarismi (780-850)

•825 AD System of numbers “Algorithm or Algorizm”

 On Calculations with Hindu (sci Arabic) Numbers

(Latin Algoritmi de numero Indorum)

•830 AD Calculation by Transposition and Cancellation “Algebra”

 Hidab al-jebr wa’l-muqabala

Kinds of problems for which we

seek solutions
 Decision

 is a >b ? yes or no?

 is h true or is h false

 The binary digit is 1 or 0

 Function (Optimization problems can be a subset)

 Area = r2

 Shortest route that touches each node in a network exactly

once.

 Enumeration

 prime numbers between 10,000 and 10,500 ?

Kinds of problems

• By and large, we will focus only on decision
problems.

– Function problems and optimization problems can be
re-formulated as decision problems

– We base our entire theory of complexity on decision
problems

Note: decidability is not the same thing as a decision
problem

Solutions

WHAT IS A SOLUTION TO A DECISION
PROBLEM ?

• Concrete notion:

– Algorithm maps to {0,1}

• Abstract notion:

– Enter an accepting state and HALT

Solutions

• Can happen

– Problem is decidable

• Sometimes fast

• Sometimes after a very, very, very long time

• Can never happen a priori

– Problem is undecidable

Suppose the computer is working

away on the problem ….

Is there an oversight program that can tell us

whether

• our specific program is working on a

solvable problem that takes a very long time

to decide?

or……

• is the problem one that can never be

decided, and the computer will never halt?

Answer may not be what you might expect……

There may be a program that can tell us that

our specific program of interest will halt or

not

BUT

There is no program that

can tell us whether ANY

program will halt or not

A proven undecidable problem

• The strategy is to design an oversight

program that, given an input program,

arrives at a contradiction.

• Because the answer is a contradiction, such

a program cannot exist

– The problem is therefore undecidable

– This is called the Halting Problem, and the

contradiction proved by Alan Turing

A proven undecidable problem

The idea of the proof is to feed output,

reversed, back into the input
– Example

The barber shaves everyone who does not shave himself. Who shaves the barber?

– Another example

This sentence is false

– Another example

Message #1: Message #2 to follow

Message #2: Ignore Message #1

The Halting Problem
…a bit more detail

Does any program input to itself halt?

This requires a decision yes/no, if one can be made

It turns out that no decision can be made; the problem is undecidable

Let S be a program and let X be an input to S, where S is the most sophisticated

design that is known (a Turing Machine)

If X halts on itself as input, then S loops,

Else If X does not halt on itself, then S halts

Now…

Input S, instead of X, into S

Either

S halts, so the output of S is no halt, despite the assumption that it did halt

or

S does not halt, forcing S to halt, under the assumption that it did not

The reversal razzle-dazzle

Decidable Problems

Complexity of a decidable

problem/solution

Complexity is a measure of the number of

elementary operations, say, additions, to decide a

decidable problem.

• Complexity is usually stated not in ops, but in time

– The notation ‘big O’ () describes the order of time involved,

i.e., its asymptotic behavior

• Complexity can be alternatively be expressed

computational space

• Typically there is an upper and lower bound on

complexity

Complexity

Let n be the size of the problem and k be a

constant

• Polynomial (P) complexity nk

– Super-polynomial: Worse than polynomial but not really exponential nlog n

• Exponential complexity kn

– Super-exponential: worse than exponential nn

Note, however, that there is a solution in finite time

Complexity

• Problems that require Polynomial time/space to
solve are said to be tractable

– However there may be instances which, although the
complexity is polynomial, require practically infinite
time to solve

• Problems that require exponential time/space to
solve are said to be intractable

– However, they are decidable and can be decided in
finite (albeit very long) time

10101010a

Computational Complexity-

Tractable problems
1. Find the sum of 2 numbers

2. Find the sum of 20 numbers

3. Find the sum of 37 trillion numbers

Same algorithm for all 3 instances, with linear
complexity.

Would use a DO-loop

Can build a more efficient algorithm for #1 (and
perhaps #2), specific instances of the problem,
but the solution for these specific instances is
not reasonably generalizable

Complexity -Tractable Problems

Sometimes efficiency can reduce complexity

• Linear search (n)

• Binary search (log2n)

Efficiency can sometimes depend on the instance of the
problem.

Extreme example: If the solution for the search of an ordered list of 16 integers
happened to be 1, linear search would be one cycle, where binary search
would take log2n or 4 cycles. On the other hand, suppose the answer is 11.
The linear search would take 11 cycles, the binary search would take 4.

Sometimes if we know the character/scope of the
solution set, we can better choose our algorithm

Complexity -Tractable Problems

Efficiency Improvement: another GREAT example
is the Fourier Transform

– Brute force solution (all frequencies, all data points)
is (n2)

– Special instance (FastFourierTransform) of the
problem where the number of data points is a power
of 2: (log2n)

• NB that the solution is exact at the corresponding
harmonics

Note that both solutions in this case are polynomial, but when the
FFT was developed in the era of slow computers, with large n, the
gain was substantial. In this case we chose the algorithm based on
the specific properties of the problem

1
2

() () i tF f t e dt








 

Proven intractable problems

• A proven intractable problem: Does a regular
expression with exponentiation denote all strings over
its alphabet?

– It has been PROVEN that the solution is exponential, and
PROVEN that there is no polynomial solution.

• Towers of Hanoi
– Proven that solution is exponential (2n-1)

Very, very, very few problems fall into this class
of proven exponential complexity

Problems thought, without proof,

to be intractable
• Many, many seemingly problems seem obviously

exponential, and, as yet, they lack a polynomial
solution and are solved in exponential time (still
finite, by the way)

– In many problems, including a great many that we will
study relating to Computational Molecular Biology, the
problems appear to be exponential and as yet there has
been no polynomial solution found. For example, it is
not uncommon in optimizations to be looking at
permutations that are super-exponential

n
n

e

 
 
 

O

The Lingo of Complexity

Consider this problem:

f=(AB) (-C  D)

where f,A,B,C,D are Boolean variables.

[The size of the problem is 4]

Is there an instance where f is true?

Trivia note: Notice that the problem is expressed as the conjunction of disjunctive clauses (2, in this case).

The is called the Conjunctive Normal Form. The structure of this problem is not relevant to the solution of

this particular problem but is important in generalizing the problem.

Complexity

• Given any specific instance (i.e., given

specific T/F values for A,B,C,D), we can

easily (sci in polynomial time) decide if f is

true or false

• But if we are not given a specific instance,

we would need to look at all 16 possibilities

of A,B,C,D configurations, evaluating each

instance in polynomial time.

Complexity

• Or, perhaps we could make a lucky guess!

– If we guessed correctly, then the guess would

be polynomial, the evaluation would be

polynomial, and therefore the entire decision

would be polynomial

• In computer-speak, the correct word for

‘guess’ is ‘non determinism’

Complexity

But now suppose that the problem were

f=(AB) (-C  D) (-E)

[The size of the problem is now 5]

• Solution requires either enumeration of all

values of independent variables (25)

or

• a lucky guess

Verifying the solution might take a little longer,

but not much

Complexity
Extending the thought, suppose that the problem were

f=(AB) (-C  D) (-E) (G)

[The size of the problem is now 6]

In order to satisfy the requisite variables to obtain f=true,

– The solution requires either evaluation of all 64 permutations of independent
variables (26)

or

– a lucky guess

The difficulty of this SATisfiability problem (SAT) appears to be
exponential, since the size of the problem is in the exponent of 2n

However, verifying the solution relates to how many variables, and grows as a
polynomial (in this case, linear) function

Complexity
Suppose we did guess…

Let’s guess A=t,B=f,C=t,D=f,E=t,G=t

Wow! A lucky guess, because instead of
enumerating 64 choices, we got it right on one
guess (although there are certainly other guesses
that would have satisfied)

Q. How do we know it is a good guess (verify)?

A. Because we had to plug in the values for A,B,C,D,E,G and
evaluate f

Q How long did that take?

A. Polynomial time to verify

So, our solution was

• Non-deterministic (“N”) solution (i.e. a guess or prior
knowledge)*

• Verifiable (not the same thing as solvable) in polynomial
(“P”) time

Thus we have a problem class “Nondeterministic
Polynomial”, or NP”, which has a nondeterministic
proposed solution and which can be verified as a correct
solution (or not) in polynomial time

BUT we don’t know that the general solution can be found in
polynomial time; right now it sure looks like it is
exponential

In fact, we have no known algorithm to solve (complete
solution) the SAT problem in polynomial time, although it
is remotely possible, but highly unlikely, that one may
exist.

*Can also mean modeled on a nondeterministic Turing machine, or, equivalently, computed by a nondeterministic algorithm

NP problems

• NonDeterministic* (after original Turing

Machine concept)

• Verified in Polynomial time
– Does not necessarily mean solved, but rather a proposed solution checked

(certificate)

Note that every NP problem is decidable. This is a key concept.

*It has been suggested that the term VP (verifiable in polynomial time) might be more apt

A Fundamental Question

Remember P problems also fit the definition

of NP, so….

– Is P is a proper subset (PNP)

or

– Can all problems in NP be solved in P time

(P=NP)

• If that is the case, then other NP problems such as

TSP, permutations, factorization, etc all must have

efficient solutions. These solutions have never been

found and do not likely exist

P and NP

NP

P NP

P
PNP

P=NP

One more new idea…

Polynomial Reduction
Think of a function that transforms one problem into

another

If that transformation can turn the problem into, say, SAT,

and

if that transformation can do it in polynomial time

then

the transformation is called a polynomial reduction

Down the Rabbit Hole of

Infelicitous Terminology…
Imagine a class of problems NPH that are at least as

hard as NP problems. Some are decidable, some not

• If every problem in NP can be reduced to a problem

xi such as, say, SAT, then {x} are in NPH

• Other problems, not necessarily in NP, are at least as

hard as NP problems and would also belong in NPH,

e.g. The Halting Problem and other non decidable

problems*

The problems in the set NPH are called NP-Hard

*e.g. SAT type problems using both universal and existential quantifiers

NP and NP-Hard

NP

NPH We know that there are

problems here that do not

exist in NP, but are at

least as hard as NP

problems

Every problem here is decidable

and can be verified in polynomial

time

Further down the Rabbit Hole

There are certain NP-Hard problems that also exist in NP. They are

decidable, verifiable in polynomial time and are a polynomial reduction

of an NP problem.

These are said to be NP-Complete.

Restated, these NP-Complete problems are the intersection of NP and

NP-Hard problems

In our diagram, NPC=NPNPH

NP-Complete

NP

NPH
We know that there are

problems here that do not

exist in NP, but are at

least as hard as NP

problems

Every problem here is decidable

and can be verified in polynomial

time

NP-Complete: Properties and

Implications

• They are all decidable (since they are also

in NP)

• Since they are also in NP, then any one can

be related to another through polynomial

reduction (Cook’s Theorem)

Cook’s Theorem
Any NP-complete problem, using a

polynomial-time function, can be reduced to

SAT.

Consequence: If any NP-complete problem

can be shown to be in P, then all NP-complete

problems are in P

Stephen Cook

SAT trivia
The canonical form for SAT problems is 3-SAT. This form is called the Conjunctive

Normal Form (CNF) (AND’ing of clauses of OR’s) In 3-SAT there are exactly 3

literals in each disjunctive clause

1 1 1

2 2 2

3 3 3

()

()

()

.

.

()n n n

a b c

a b c

a b c

a b c

  

  

  

 

Any SAT expression can be put into 3-SAT CNF in polynomial time using the rules

of Boolean logic

Actually, Cook’s theorem more properly applies to 3-SAT, but 3-SAT is only a

polynomial away from unrestricted SAT

NP-Complete problems

So, what are these NP Complete problems (problems

which can be mapped into SAT or any other NP-

Complete problem in polynomial time)?

Here are a few:

• Map Coloring Problem

• Traveling Salesman Problem (TSP)

• Bin Packing Problem

• Knapsack problem

• Hamiltonian Graph Problem (generalization of TSP)

• Integer Factorization

• Smallest Superstring

Don’t forget about P!

NP

NPH

P

NP

NPH

P

Here is a scenario where PNP

But what if P=NP……?

NP

NPH

P

NP

NPH

P

Here is a scenario where P=NP

Then, every problem in

NPC can the be solved

in polynomial time!

Implications

We are still not sure if P=NP. In fact, we are

pretty sure is does not, but have no proof either

way.

BUT…

Suppose P=NP. Then, by Cook’s Theorem, not

only is it possible to have an efficient solution to

a problem in NP, it is possible to have an

efficient solution to every problem in NP!

Another word about Cook’s

Theorem
If P=NP can be proven, and if the algorithm

can be found, then the world as we know it

changes!
Consider encryption. The most robust encryption scheme

available is the Rivest-Shamir-Adelman algorithm. The RSA

algorithm creates a public key using the product of two very

large prime numbers. The sender knows the factors, the

hacker sees only the product. The extreme difficulty for the

hacker to factor this product (Integer Factorization is NP-

complete) is the basis upon which secure messaging is

possible. If the public key can be factored, the security

evaporates.

NP-complete problems and

reality

So, what are we going to do when confronted

with an NP-complete problem?

• If the instance is of small size, we may

solve it

• We may seek an heuristic solution

euristikéineuristiko
to find  inventive

HEURISTICS

• An heuristic is an easy way to get an ‘answer’ to a hard
problem. In return, a price is paid:

– The solution may not be the best (e.g. greedy algorithm)

– It may not deliver all possible solutions

– The solution may be an approximation (e.g. simulated annealing)

• Sometimes heuristics solve sub-problems, or easy analogs
that are not quite the same as the ‘real’ problem but can be
easily solved

GreedyAlgorithm

Bin Packing

• First Fit (greedy)

• First fit descending (greedy but better)

• Full bin (greedy but better)

Heros

John Von Neuman

Alan Turing

Noam Chomsky

