
Problems and  Solutions

Decidability and Complexity



Algorithm

Muhammad bin-Musa Al

Khwarismi (780-850)

•825 AD System of numbers “Algorithm or Algorizm”

 On Calculations with Hindu (sci Arabic) Numbers

(Latin Algoritmi de numero Indorum)

•830 AD Calculation by Transposition and Cancellation “Algebra”

 Hidab al-jebr wa’l-muqabala



Kinds of problems for which we 

seek solutions
 Decision

 is a >b ?    yes or no?

 is h true or is h false

 The binary digit is 1 or 0

 Function (Optimization problems can be a subset)

 Area = r2

 Shortest route that touches each node in a network exactly 

once. 

 Enumeration

 prime numbers between 10,000 and 10,500 ?



Kinds of problems

• By and large, we will focus only on decision 
problems.  

– Function problems and optimization problems can be 
re-formulated as decision problems

– We base our entire theory of complexity on decision 
problems

Note: decidability is not the same thing as a decision 
problem



Solutions

WHAT IS A SOLUTION TO A DECISION 
PROBLEM ?

• Concrete notion:

– Algorithm maps to {0,1}

• Abstract notion:

– Enter an accepting state and HALT



Solutions

• Can happen

– Problem is decidable

• Sometimes fast

• Sometimes after a very, very, very long time

• Can never happen a priori

– Problem is undecidable



Suppose the computer is working 

away on the problem  ….

Is there an oversight  program that can tell us 

whether

• our specific program is working on a 

solvable problem that takes a very long time 

to decide?

or……

• is the problem one that can never be 

decided, and the computer will never halt?



Answer may not be what you might expect……

There may be a program that can tell us that 

our specific program of interest will halt or 

not

BUT

There is no program that 

can tell us whether ANY 

program will halt or not



A proven undecidable problem

• The strategy is to design an oversight 

program that, given an input program, 

arrives at a contradiction.

• Because the answer is a contradiction, such 

a program cannot exist 

– The problem is therefore  undecidable

– This is called the Halting Problem, and the 

contradiction proved by Alan Turing



A proven undecidable problem

The idea of the proof is to feed output, 

reversed, back into the input
– Example

The barber shaves everyone who does not shave himself.  Who shaves the barber?

– Another example

This sentence is false 

– Another example

Message #1: Message #2 to follow

Message #2: Ignore Message #1 



The Halting Problem
…a bit more detail 

Does any program input to itself halt?

This requires a decision yes/no, if one can be made

It turns out that no decision can be made; the problem is undecidable

Let S be a program and let X be an input to S, where S is the most sophisticated 

design that is known (a Turing Machine)

If X halts on itself as input, then S loops,

Else  If X does not halt on itself, then S halts

Now…

Input S, instead of X, into S

Either

S halts, so the output of S is no halt, despite the assumption that it did halt

or

S does not halt, forcing S to halt, under the assumption that it did not   

The reversal razzle-dazzle



Decidable Problems



Complexity of a decidable 

problem/solution

Complexity is a measure of the number of 

elementary operations, say, additions,  to decide a 

decidable problem. 

• Complexity is usually stated not in ops, but in time

– The notation ‘big O’ () describes the order of time involved, 

i.e., its asymptotic behavior

• Complexity can be alternatively be expressed 

computational space

• Typically there is an upper and lower bound on 

complexity



Complexity

Let n be the size of the problem and k be a 

constant

• Polynomial (P) complexity   nk

– Super-polynomial: Worse than polynomial but not really exponential nlog n

• Exponential complexity  kn

– Super-exponential: worse than exponential  nn

Note, however, that there is a solution in finite time



Complexity

• Problems that require Polynomial time/space to 
solve are said to be tractable

– However there may be instances which, although the 
complexity is polynomial, require practically infinite 
time to solve 

• Problems that require exponential time/space to 
solve are said to be intractable

– However, they are decidable and can be decided in 
finite (albeit very long) time
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Computational Complexity-

Tractable problems
1. Find the sum of 2 numbers

2. Find the sum of 20 numbers

3. Find the sum of 37 trillion numbers

Same algorithm for all 3 instances, with linear 
complexity.  

Would use a DO-loop

Can build a more efficient algorithm for #1 (and 
perhaps #2), specific instances of the problem, 
but the solution for these specific instances is 
not reasonably generalizable



Complexity -Tractable Problems

Sometimes efficiency can reduce complexity

• Linear search (n)

• Binary search (log2n)

Efficiency can sometimes depend on the instance of the 
problem.

Extreme example: If the solution for the search of an ordered list of 16 integers 
happened to be 1, linear search would be one cycle, where binary search 
would take log2n or 4 cycles. On the other hand, suppose the answer is 11. 
The linear search would take 11 cycles, the binary search would take 4.

Sometimes if we know the character/scope of the 
solution set, we can better choose our algorithm



Complexity -Tractable Problems

Efficiency Improvement: another GREAT example 
is  the Fourier Transform

– Brute force solution (all frequencies, all data points) 
is (n2)

– Special instance (FastFourierTransform) of the 
problem where the number of data points is a power 
of 2: (log2n)

• NB that the solution is exact at the corresponding  
harmonics

Note that both solutions in this case are  polynomial, but when the 
FFT was developed in the era of slow computers, with large n, the 
gain was substantial. In this case we chose the algorithm based on 
the specific properties of the problem
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Proven intractable problems

• A proven intractable problem: Does a regular 
expression with exponentiation denote all strings over 
its alphabet?

– It has been PROVEN that the solution is exponential, and 
PROVEN that there is no polynomial solution. 

• Towers of Hanoi 
– Proven that solution is exponential (2n-1)

Very, very, very  few problems fall into this class 
of proven exponential complexity



Problems thought, without proof,  

to be intractable
• Many, many seemingly problems seem obviously 

exponential, and, as yet, they lack a polynomial 
solution and are solved in exponential time (still 
finite, by the way)

– In many problems, including a great many that we will 
study relating to Computational Molecular Biology, the 
problems appear to be exponential and as yet there has 
been no polynomial solution found. For example, it is 
not uncommon in optimizations to be looking at 
permutations  that are super-exponential      
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The Lingo of Complexity 

Consider this problem:

f=(AB) (-C  D) 

where f,A,B,C,D are Boolean variables. 

[The size of the problem is 4]

Is there an instance where f is true?

Trivia note:  Notice that the problem is expressed as the conjunction of disjunctive clauses (2, in this case). 

The is called the Conjunctive Normal Form.  The structure of this problem  is not relevant to the solution of 

this particular problem but is important in generalizing the problem. 



Complexity

• Given any specific instance (i.e., given 

specific T/F values for A,B,C,D), we can 

easily (sci in polynomial time) decide if f is 

true or false

• But if we are not given a specific instance, 

we would need to look at all 16 possibilities 

of A,B,C,D configurations, evaluating each 

instance in polynomial time.



Complexity

• Or, perhaps we could make a lucky guess! 

– If we guessed correctly, then the guess would 

be polynomial, the evaluation would be 

polynomial, and therefore the entire decision 

would be polynomial

• In computer-speak, the correct word for 

‘guess’ is ‘non determinism’



Complexity

But now suppose that the problem were

f=(AB) (-C  D) (-E)

[The size of the problem is now 5]

• Solution requires either enumeration of all 

values of independent variables (25) 

or 

• a lucky guess

Verifying the solution might take a little longer, 

but not much



Complexity
Extending the thought, suppose that the problem were 

f=(AB) (-C  D) (-E) (G) 

[The size of the problem is now 6]

In order to satisfy the requisite variables to obtain f=true,

– The solution requires either evaluation of all 64 permutations of independent 
variables (26) 

or 

– a lucky guess

The difficulty of this SATisfiability problem (SAT) appears to be 
exponential, since the  size of the problem is in the exponent of 2n

However, verifying the solution relates to how many variables, and grows as a 
polynomial (in this case, linear) function



Complexity
Suppose we did guess…

Let’s guess A=t,B=f,C=t,D=f,E=t,G=t

Wow!  A lucky guess, because instead of 
enumerating 64 choices, we got it right on one 
guess (although there are certainly other guesses 
that would have satisfied)

Q. How do we know it is a good guess (verify)?

A. Because we had to plug in the values for A,B,C,D,E,G and 
evaluate f

Q How long did that take?

A. Polynomial time to verify



So, our solution was 

• Non-deterministic (“N”) solution (i.e. a guess or prior 
knowledge)*

• Verifiable (not the same thing as solvable) in polynomial
(“P”) time

Thus we have a problem class “Nondeterministic 
Polynomial”, or NP”,  which has a nondeterministic 
proposed solution and which can be verified as a correct 
solution (or not)  in polynomial time

BUT we don’t know that the general solution can be found in 
polynomial time; right now it sure looks like it is 
exponential

In fact, we have no known algorithm to solve (complete 
solution) the SAT problem in polynomial time, although it 
is remotely possible, but highly unlikely, that one may 
exist.

*Can also mean modeled on a nondeterministic Turing machine, or, equivalently, computed by a nondeterministic algorithm



NP problems

• NonDeterministic* (after  original Turing 

Machine concept)  

• Verified in Polynomial time
– Does not necessarily mean solved, but rather a proposed solution checked 

(certificate)

Note that every NP problem is decidable.  This is a key concept.

*It has been suggested that the term VP (verifiable in polynomial time) might be more apt



A Fundamental Question

Remember P problems also fit the definition 

of NP, so….

– Is P is a proper subset (PNP)

or

– Can all problems in NP be solved in P time 

(P=NP)

• If that is the case, then other NP problems such as 

TSP, permutations, factorization, etc all must have 

efficient solutions. These solutions have never been 

found and do not likely exist



P and NP

NP

P NP

P
PNP

P=NP



One more new idea…

Polynomial Reduction
Think of a function that transforms one problem into 

another

If that transformation can turn the problem into, say, SAT,

and

if that transformation can do it in polynomial time

then

the transformation is called a polynomial reduction



Down the Rabbit Hole of 

Infelicitous Terminology…
Imagine a class of problems NPH that are at least as 

hard as NP problems. Some are decidable, some not

• If every problem in NP can be reduced to a problem 

xi such as, say, SAT, then {x} are in NPH

• Other problems, not necessarily in NP, are at least as 

hard as NP problems and would also belong in NPH, 

e.g. The Halting Problem  and other non decidable 

problems*

The problems in the set NPH are called NP-Hard

*e.g. SAT type problems using both universal and existential quantifiers



NP and NP-Hard

NP

NPH We know that there are 

problems here that do not 

exist in NP, but are at 

least as hard as NP 

problems

Every problem here is decidable 

and can be verified in polynomial 

time



Further down the Rabbit Hole

There are certain NP-Hard problems that also exist in NP.  They are 

decidable, verifiable in polynomial time and are a polynomial reduction 

of an NP problem.

These are said to be NP-Complete.

Restated, these NP-Complete problems are the intersection of NP and 

NP-Hard problems

In our diagram, NPC=NPNPH



NP-Complete

NP

NPH
We know that there are 

problems here that do not 

exist in NP, but are at 

least as hard as NP 

problems

Every problem here is decidable 

and can be verified in polynomial 

time



NP-Complete: Properties and 

Implications

• They are all decidable (since they are also 

in NP)

• Since they are also in NP, then any one can 

be related to another through polynomial 

reduction (Cook’s Theorem)



Cook’s Theorem
Any NP-complete problem, using a 

polynomial-time function, can be reduced to 

SAT.

Consequence: If any NP-complete problem 

can be shown to be in P, then all NP-complete 

problems are in P

Stephen Cook



SAT trivia
The canonical form for SAT problems is 3-SAT.  This form is called the Conjunctive 

Normal Form (CNF)  (AND’ing of clauses of OR’s) In 3-SAT there are exactly 3 

literals in each disjunctive clause
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Any SAT expression can be put into 3-SAT CNF in polynomial time using the rules 

of Boolean logic

Actually, Cook’s theorem more properly applies to 3-SAT, but 3-SAT is only a 

polynomial away from unrestricted SAT



NP-Complete problems

So, what are these NP Complete problems (problems 

which can be mapped into SAT or any other NP-

Complete problem in polynomial time)?

Here are a few:

• Map Coloring Problem

• Traveling Salesman Problem (TSP)

• Bin Packing Problem

• Knapsack problem

• Hamiltonian Graph Problem (generalization of TSP)

• Integer Factorization

• Smallest Superstring



Don’t forget about P!

NP

NPH

P

NP

NPH

P

Here is a scenario where PNP



But what if P=NP……?

NP

NPH

P

NP

NPH

P

Here is a scenario where P=NP

Then, every problem in 

NPC can the be solved 

in polynomial time!



Implications

We are still not sure if P=NP.  In fact, we are 

pretty sure is does not, but have no proof either 

way.

BUT…

Suppose P=NP.  Then, by Cook’s Theorem, not 

only is it possible to have an efficient solution to 

a problem in NP, it is possible to have an 

efficient solution to every problem in NP!  



Another word about Cook’s 

Theorem
If P=NP can be proven, and if the algorithm 

can be found, then the world as we know it 

changes!
Consider encryption. The most robust encryption scheme 

available is the Rivest-Shamir-Adelman algorithm. The RSA 

algorithm creates a public key using the product of two very 

large prime numbers.  The sender knows the factors, the 

hacker sees only the product.  The extreme difficulty  for the 

hacker to factor this product (Integer Factorization is NP-

complete) is the basis upon which secure messaging is 

possible.  If the public key can be factored, the security 

evaporates.



NP-complete problems and 

reality

So, what are we going to do when confronted 

with an NP-complete problem?

• If the instance is of small size, we may 

solve it

• We may seek an heuristic solution

euristikéineuristiko
to find            inventive



HEURISTICS

• An heuristic is an easy way to get an ‘answer’ to a hard 
problem.  In return, a price is paid:

– The solution may not be the best (e.g. greedy algorithm)

– It may not deliver all possible solutions

– The solution may be an approximation (e.g. simulated annealing)

• Sometimes heuristics solve sub-problems, or easy analogs 
that are not quite the same as the ‘real’ problem but can be 
easily solved



GreedyAlgorithm

Bin Packing

• First Fit (greedy)

• First fit descending (greedy but better)

• Full bin (greedy but better)





Heros

John Von Neuman

Alan Turing

Noam Chomsky


