Kashyap Mukkamala

Hands-On Data
Structures and
Algorithms with

JavaScript

Write efficient code that is highly performant, scalable,
and easily testable using JavaScript

LI Packb

Hands-On Data Structures and
Algorithms with JavaScript

Write efficient code that is highly performant, scalable, and
easily testable using JavaScript

Kashyap Mukkamala

BIRMINGHAM - MUMBAI

Hands-On Data Structures and Algorithms
with JavaScript

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Larissa Pinto

Content Development Editor: Arun Nadar
Technical Editor: Leena Patil

Copy Editor: Dhanya Baburaj

Project Coordinator: Sheejal Shah
Proofreader: Safis Editing

Indexers: Aishwarya Gangawane
Graphics: Jason Monteiro

Production Coordinator: Deepika Naik

First published: January 2018
Production reference: 1250118

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-855-8

www.packtpub.com

Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Kashyap Mukkamala has been a JavaScript enthusiast since he first started working with it
back in 2011. Apart from his fun side projects using IoT devices (Arduino, LeapMotion, and
AR Drones) and mobile applications (PhoneGap, Ionic, and NativeScript), his corporate
experience has been focused around building scalable web SPAs for Fortune 100 companies.
Over the past few years, Kashyap has also been a JavaScript instructor for his company and
has trained a few hundred students.

I would like to thank my wife, parents, and colleagues at Egen Solutions who have
provided me with their support and motivation to write this book. I would also like to
thank the amazing team at Packt Publishing who put in a lot of effort behind the scenes to
mold this book into its final form.

About the reviewer

Todd Zebert is a full stack web developer, currently at Miles.

He has been a technical reviewer for a number of books and videos, is a frequent presenter
at conferences on JavaScript, Drupal, and related technologies, and has a technology blog
on Medium.

Todd has a diverse background in technology including infrastructure, network
engineering, PM, and IT leadership. He started in web development with the original
Mosaic browser.

Todd is an entrepreneur and part of the LA startup community. He's a believer in
volunteering, open source, Maker/STEM/STEAM, and contributing back.

I'd like to thank the JavaScript community, especially the Node and Angular communities,
and also the Drupal community.

Finally, I'd like to thank my teen son, Alec, with whom I get to share an interest in

technology and science with, while doing Maker-ish things together, with microcontrollers
and other electronics.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Table of Contents

Preface 1
Chapter 1: Building Stacks for Application State Management 6
Prerequisites 7
Terminology 7
API 7
Don't we have arrays for this? 8
Creating a stack 9
Implementing stack methods 9
Testing the stack 12
Using the stack 12
Use cases 13
Creating an Angular application 13
Installing Angular CLI 14

Creating an app using the CLI 14

Creating a stack 15
Creating a custom back button for a web application 18
Setting up the application and its routing 18
Detecting application state changes 21

Laying out the Ul 22
Navigating between states 24

Final application logic 24
Building part of a basic JavaScript syntax parser and evaluator 27
Building a basic web worker 27

Laying out the Ul 28

Basic web worker communication 29
Enabling web worker communications 30
Transforming input to machine-understandable expression 31
Converting infix to postfix expressions 36
Evaluating postfix expressions 37
Summary 39
Chapter 2: Creating Queues for In-Order Executions 40
Types of queue 41
Implementing APls 41
Creating a queue 41
A simple queue 42
Testing the queue 43

Table of Contents

Priority Queue 44
Testing a priority queue 45

Use cases for queues 48
Creating a Node.js application 48
Starting the Node.js server 50
Creating a chat endpoint 50
Implementing logging using priority queues 56
Comparing performance 60
Running benchmark tests 65
Summary 69
Chapter 3: Using Sets and Maps for Faster Applications 70
Exploring the origin of sets and maps 70
Analyzing set and map types 71
How weak is WeakMap? 72
Memory management 72

API differences 74
Sets versus WeakSets 74
Understanding WeakSets 75
The API difference 76
Use cases 76
Creating an Angular application 76
Creating custom keyboard shortcuts for your application 77
Creating an Angular application 78
Creating states with keymap 80
Activity tracking and analytics for web applications 86
Creating the Angular application 87
Performance comparison 97
Sets and Arrays 98
Maps and Obijects 100
Summary 101
Chapter 4: Using Trees for Faster Lookup and Modifications 102
Creating an Angular application 102
Creating a typeahead lookup 103
Creating a trie tree 105
Implementing the add() method 106
The friends' example 107
Implementing the search() method 108

Retaining remainders at nodes
The final form

110
113

[ii]

Table of Contents

Creating a credit card approval predictor 115
ID3 algorithm 116
Calculating target entropy 117
Calculating branch entropy 118

The final information gain per branch 119
Coding the ID3 algorithm 121
Generating training dataset 121
Generating the decision tree 126
Predicting outcome of sample inputs 132
Visualization of the tree and output 133
Summary 140
Chapter 5: Simplify Complex Applications Using Graphs 141
Types of graphs 142
Use cases 145
Creating a Node.js web server 146
Creating a reference generator for a job portal 147
Creating a bidirectional graph 148
Generating a pseudocode for the shortest path generation 150
Implementing the shortest path generation 151

Creating a web server 156

Running the reference generator 157
Creating a friend recommendation system for social media 158
Understanding PageRank algorithm 159
Understanding Personalized PageRank (PPR) Algorithm 160
Pseudocode for personalized PageRank 162
Creating a web server 163
Implementing Personalized PageRank 164

Results and analysis 167
Summary 170
Chapter 6: Exploring Types of Algorithms 171
Creating a Node.js application 172
Use cases 172
Using recursion to serialize data 172
Pseudocode 173
Serializing data 173

Using Dijkstra to determine the shortest path 175
Pseudo code 176
Implementing Dijkstra's algorithm 177

Using BFS to determine relationships 181
Pseudo code 185
Implementing BFS 186

Using dynamic programming to build a financial planner 191

[iii]

Table of Contents

Pseudo code 193
Implementing the dynamic programming algorithm 194

Using a greedy algorithm to build a travel itinerary 199
Understanding spanning trees 201

Pseudo code 201
Implementing a minimum spanning tree using a greedy algorithm 202

Using branch and bound algorithm to create a custom shopping list 206
Understanding branch and bound algorithm 208
Implementing branch and bound algorithm 210

When not to use brute-force algorithm 216
Brute-force Fibonacci generator 217
Recursive Fibonacci generator 218
Memoized Fibonacci generator 218
Summary 219
Chapter 7: Sorting and Its Applications 220
Types of sorting algorithms 221
Use cases of different sorting algorithms 221
Creating an Express server 222
Mocking library books data 223
Insertionsort API 224
What is Insertionsort 224

Pseudo code 224
Implementing Insertionsort API 225
Mergesort API 228
What is Mergesort 228

Pseudo code 229
Implementing Mergesort API 229
Quicksort API 231
What is Quicksort 232

Pseudo code 232
Implementing the Quicksort API 232

Lomuto Partition Scheme 234

Hoare Partition Scheme 236
Performance comparison 238
Summary 240
Chapter 8: Big O Notation, Space, and Time Complexity 241
Terminology 241
Asymptotic Notations 243
Big-O notation 244

Omega notation 245

Theta Notation 247

Recap 247

[iv]

Table of Contents

Examples of time complexity 248
Constant time 248
Logarithmic time 248
Linear time 249
Quadratic time 250
Polynomial time 250

Polynomial time complexity classes 251
Recursion and additive complexity 252

Space complexity and Auxiliary space 253

Examples of Space complexity 254

Constant space 254

Linear space 254

Summary 255

Chapter 9: Micro-Optimizations and Memory Management 256

Best practices 256

Best practices for HTML 257
Declaring the correct DOCTYPE 257
Adding the correct meta-information to the page 257
Dropping unnecessary attributes 258
Making your app mobile ready 258
Loading style sheets in the <head> 258
Avoiding inline styles 259
Using semantic markup 259
Using Accessible Rich Internet Applications (ARIA) attributes 260
Loading scripts at the end 260

CSS best practices 261
Avoiding inline styles 261
Do not use limportant 261
Arranging styles within a class alphabetically 261
Defining the media queries in an ascending order 262

Best practices for JavaScript 263
Avoiding polluting the global scope 263
Using 'use strict' 263
Strict checking (== vs === 263
Using ternary operators and Boolean || or && 263
Modularization of code 264
Avoiding pyramid of doom 264
Keeping DOM access to a minimum 265
Validating all data 265
Do not reinvent the wheel 265

HTML optimizations 266
DOM structuring 266
Prefetching and preloading resources 266

[v]

Table of Contents

<link rel=prefetch > 267

<link rel=preload > 268

Layout and layering of HTML 268
The HTML layout 269

HTML layers 277

CSS optimizations 282
Coding practices 282
Using smaller values for common ENUM 282

Using shorthand properties 283
Avoiding complex CSS selectors 284
Understanding the browser 285
Avoiding repaint and reflow 285

Critical rendering path (CRP) 286
JavaScript optimizations 289
Truthy/falsy comparisons 289
Looping optimizations 291
The conditional function call 291
Image and font optimizations 293
Garbage collection in JavaScript 295
Mark and sweep algorithm 296
Garbage collection and V8 297
Avoiding memory leaks 297
Assigning variables to global scope 298
Removing DOM elements and references 298
Closures edge case 299
Summary 304
What's next? 305
Other Books You May Enjoy 306
Index 309

[vil

Preface

The main focus of this book is employing data structures and algorithms in real-world web
applications using JavaScript.

With JavaScript making its way onto the server side and with Single Page Application
(SPA) frameworks taking over the client side, a lot, if not all, of the business logic, is being
ported over to the client side. This makes it crucial to employ hand-crafted data structures
and algorithms that are tailor-made for a given use case.

For example, when working on data visualizations such as charts, graphs, and 3D or 4D
models, there might be tens or even hundreds of thousands of complex objects being served
from the server, sometimes in near real time. There are more ways than one in which this
data can be handled and that is what we will be exploring, with real-world examples.

Who this book is for

This book is for anyone who has an interest in and basic knowledge of HTML, CSS, and
JavaScript. We will also be using Node.js, Express, and Angular to create some of the web
apps and APIs that leverage our data structures.

What this book covers

Chapter 1, Building Stacks for Application State Management, introduces building and using
stacks for things such as a custom back button for an application and a syntax parser and
evaluator for an online IDE.

Chapter 2, Creating Queues for In-Order Executions, demonstrates using queues and their
variants to create a messaging service capable of handling message failures. Then, we
perform a quick comparison of the different types of queues.

Chapter 3, Using Sets and Maps for Faster Applications, use sets, and maps to create keyboard
shortcuts to navigate between your application states. Then, we create a custom application
tracker for recording the analytics information of a web application. We conclude the
chapter with a performance comparison of sets and maps with arrays and objects.

Preface

Chapter 4, Using Trees for Faster Lookup and Modifications, leverages tree data structures to
form a typeahead component. Then, we create a credit card approval predictor to determine
whether or not a credit card application would be accepted based on historical data.

Chapter 5, Simplify Complex Applications Using Graphs, discusses graphs with examples such
as creating a reference generator for a job portal and a friend recommendation system on a
social media website.

Chapter 6, Exploring Types of Algorithms, explores some of the most important algorithms,
such as Dijkstra's, knapsack 1/0, greedy algorithms, and so on.

Chapter 7, Sorting and its Applications, explores merge sort, insertion sort, and quick sort
with examples. Then, we run a performance comparison on them.

Chapter 8, Big O notation, Space, and Time Complexity, discusses the notations denoting
complexities and then, moves on to discuss what space and time complexities are and how
they impact our application.

Chapter 9, Micro-optimizations and Memory Management, explores the best practices for
HTML, CSS, JavaScript and then, moves on to discuss some of the internal workings of
Google Chrome and how we can leverage it to render our applications better and more
quickly.

To get the most out of this book

e Basic knowledge of JavaScript, HTML, and CSS
Have Node.js installed (https://nodejs.org/en/download/)

Install WebStorm IDE (https://www.jetbrains.com/webstorm/download) Or
similar

A next-generation browser such as Google Chrome (https://www.google.com/
chrome/browser/desktop/)

Familiarity with Angular 2.0 or greater is a plus but is not required

The screenshots in this book are taken on a macOS. There would be little
difference (if any) for users of any other OS. The code samples, however, would
run without any discrepancies irrespective of the OS. Anywhere we have
CMD/cmd/command specified, please use CTRL/ctrl/control key on the
windows counterpart. If you see return, please use Enter and if you see the
term terminal/Terminal please use its equivalent command prompt on
windows.

[2]

Preface

e In this book, the code base is built incrementally as the topic progresses. So, when
you compare the beginning of a code sample with the code base in GitHub, be
aware that the GitHub code is the final form of the topic or the example that you
are referring to.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub. com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

LN e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Practical-JavaScript-Data-Structures—-and-Algorithms. We also
have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this

book. You can download it here:
https://www.packtpub.com/sites/default/files/downloads/

HandsOnDataStructuresandAlgorithmswithJavaScript_ColorImages.pdf.

[31]

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The native array operations have varying time complexities. Let's

take Array.prototype.splice and Array.prototype.push.”

A block of code is set as follows:

class Stack {
constructor () A
}

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

var express = require ('express');

var app = express();

var data = require('./books.json');
var Insertion = require('./sort/insertion');

Any command-line input or output is written as follows:
ng new back-button

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"When the user clicks on the back button, we will navigate to the previous state of the
application from the stack."

Warnings or important notes appear like this.

Tips and tricks appear like this.

[4]

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[5]

Building Stacks for Application
State Management

Stacks are one of the most common data structures that one can think of. They are
ubiquitous in both personal and professional setups. Stacks are a last in first out (LIFO)
data structure, that provides some common operations, such as push, pop, peek, clear, and
size.

In most object-oriented programming (OOP) languages, you would find the stack data
structure built-in. JavaScript, on the other hand, was originally designed for the web; it does
not have stacks baked into it, yet. However, don't let that stop you. Creating a stacks using
JS is fairly easy, and this is further simplified by the use of the latest version of JavaScript.

In this chapter, our goal is to understand the importance of stack in the new-age web and
their role in simplifying ever-evolving applications. Let's explore the following aspects of
the stack:

e A theoretical understanding of the stack
e Its API and implementation
e Use cases in real-world web

Before we start building a stack, let's take a look at some of the methods that we want our
stack to have so that the behavior matches our requirements. Having to create the API on
our own is a blessing in disguise. You never have to rely on someone else's library getting it
right or even worry about any missing functionality. You can add what you need and not
worry about performance and memory management until you need to.

Building Stacks for Application State Management Chapter 1

Prerequisites

The following are the requirements for the following chapter:

¢ A basic understanding of JavaScript

¢ A computer with Node.js installed (downloadable
from https://nodejs.org/en/download/)

The code sample for the code shown in this chapter can be found
at https://github.com/NgSculptor/examples.

Terminology

Throughout the chapter, we will use the following terminology specific to Stacks, so let's get
to know more about it:

e Top: Indicates the top of the stack
¢ Base: Indicates the bottom of the stack

API

This is the tricky part, as it is very hard to predict ahead of time what kinds of method your
application will require. Therefore, it's usually a good idea to start off with whatever is the
norm and then make changes as your applications demand. Going by that, you would end
up with an API that looks something like this:

e Push: Pushes an item to the top of the stack

Pop: Removes an item from the top of the stack
Peek: Shows the last item pushed into the stack
Clear: Empties the stack

Size: Gets the current size of the stack

[71]

Building Stacks for Application State Management Chapter 1

Don't we have arrays for this?

From what we have seen so far, you might wonder why one would need a stack in the first
place. It's very similar to an array, and we can perform all of these operations on an array.
Then, what is the real purpose of having a stack?

The reasons for preferring a stack over an array are multifold:

¢ Using stacks gives a more semantic meaning to your application. Consider this
analogy where you have a backpack (an array) and wallet (a stack). Can you put
money in both the backpack and wallet? Most certainly; however, when you look
at a backpack, you have no clue as to what you may find inside it, but when you
look at a wallet, you have a very good idea that it contains money. What kind of
money it holds (that is, the data type), such as Dollars, INR, and Pounds, is,
however, still not known (supported, unless you take support from TypeScript).

¢ Native array operations have varying time complexities. Let's take
Array.prototype.splice and Array.prototype.push, for example. Splice
has a worst-case time complexity of O(n), as it has to search through all the index
and readjust it when an element is spliced out of the array. Push has a worst case
complexity of O(n) when the memory buffer is full but is amortized O(1). Stacks
avoid elements being accessed directly and internally rely on a WweakMap (),
which is memory efficient as you will see shortly.

[81]

Building Stacks for Application State Management Chapter 1

Creating a stack

Now that we know when and why we would want to use a stack, let's move on to
implementing one. As discussed in the preceding section, we will use a WeakMap () for our
implementation. You can use any native data type for your implementation, but there are
certain reasons why WeakMap () would be a strong contender. WeakMap () retains a weak
reference to the keys that it holds. This means that once you are no longer referring to that
particular key, it gets garbage-collected along with the value. However, weakMap () come
with its own downsides: keys can only be nonprimitives and are not enumerable, that is,
you cannot get a list of all the keys, as they are dependent on the garbage collector.
However, in our case, we are more concerned with the values that our WeakMap () holds
rather than keys and their internal memory management.

Implementing stack methods

Implementing a stack is a rather easy task. We will follow a series of steps, where we will
use the ES6 syntax, as follows:

1. Define a constructor:

class Stack {
constructor () A
}

}

2. Create a WeakMap () to store the stack items:

const sKey = {};
const items = new WeakMap();

class Stack {
constructor () A
items.set (sKey, [])
}
}

3. Implement the methods described in the preceding API in the Stack class:

const sKey = {};
const items = new WeakMap();

class Stack {
constructor () A

[91]

Building Stacks for Application State Management Chapter 1

items.set (sKey, []);

push (element) {
let stack = items.get (sKey);
stack.push (element);

pop () {
let stack = items.get (sKey)
return stack.pop ()

peek () |
let stack = items.get (sKey);
return stack[stack.length - 1];

clear () |

items.set (sKey, [1);
}
size () A

return items.get (sKey) .length;
}

5. So, the final implementation of the Stack will look as follows:

var Stack = (() => {
const sKey = {};
const items = new WeakMap () ;

class Stack {

constructor () A
items.set (sKey, [1);

push (element) {
let stack = items.get (sKey);
stack.push (element) ;

pop () {
let stack = items.get (sKey);
return stack.pop();

[10]

Building Stacks for Application State Management Chapter 1

}

peek () |
let stack = items.get (sKey);
return stack[stack.length - 1];

}

clear () |

items.set (sKey, [1);
}
size () A

return items.get (sKey) .length;
}
}

return Stack;

NN

This is an overarching implementation of a JavaScript stack, which by no means is
comprehensive and can be changed based on the application's requirements. However, let's
go through some of the principles employed in this implementation.

We have used a WeakMap () here, which as explained in the preceding paragraph, helps
with internal memory management based on the reference to the stack items.

Another important thing to notice is that we have wrapped the stack class inside an IIFE,
so the constants items and sKey are available to the stack class internally but are not
exposed to the outside world. This is a well-known and debated feature of the current

JS Class implementation, which does not allow class-level variables to be declared. TC39
essentially designed the ES6 Class in such a way that it should only define and declare its
members, which are prototype methods in ES5. Also, since adding variables to prototypes is
not the norm, the ability to create class-level variables has not been provided. However, one
can still do the following:

constructor () |
this.sKey = {};
this.items = new WeakMap() ;
this.items.set (sKey, [1);

}

However, this would make the items accessible also from outside our Stack methods,
which is something that we want to avoid.

[11]

Building Stacks for Application State Management Chapter 1

Testing the stack

To test the Stack we have just created, let's instantiate a new stack and call out each of the
methods and take a look at how they present us with data:

var stack = new Stack();
stack.push (10);
stack.push (20);

console.log(stack.items); // prints undefined -> cannot be accessed
directly

console.log(stack.size()); // prints 2
console.log(stack.peek()); // prints 20
console.log(stack.pop()); // prints 20
console.log(stack.size()); // prints 1
stack.clear();
console.log(stack.size()); // prints 0

When we run the above script we see the logs as specified in the comments above. As
expected, the stack provides what appears to be the expected output at each stage of the
operations.

Using the stack

To use the stack class created previously, you would have to make a minor change to
allow the stack to be used based on the environment in which you are planning to use it.
Making this change generic is fairly straightforward; that way, you do not need to worry
about multiple environments to support and can avoid repetitive code in each application:

// BAMD
if (typeof define === 'function' && define.amd) {
define (function () { return Stack; 1});

// NodeJS/CommondJS
} else if (typeof exports === 'object') {

if (typeof module === 'object' && typeof module.exports ===

[12]

Building Stacks for Application State Management Chapter 1

'object') {

exports = module.exports = Stack;

}

// Browser
} else {

window.Stack = Stack;

}

Once we add this logic to the stack, it is multi-environment ready. For the purpose of
simplicity and brevity, we will not add it everywhere we see the stack; however, in general,
it's a good thing to have in your code.

If your technology stack comprises ES5, then you need to transpile the
preceding stack code to ES5. This is not a problem, as there are a plethora
of options available online to transpile code from ES6 to ES5.

Use cases

Now that we have implemented a Stack class, let's take a look at how we can employ this
in some web development challenges.

Creating an Angular application

To explore some practical applications of the stack in web development, we will create an
Angular application first and use it as a base application, which we will use for subsequent
use cases.

Starting off with the latest version of Angular is pretty straightforward. All you need as a
prerequisite is to have Node.js preinstalled in your system. To test whether you have
Node js installed on your machine, go to the Terminal on the Mac or the command prompt
on Windows and type the following command:

node -v

[13]

Building Stacks for Application State Management Chapter 1

That should show you the version of Node.js that is installed. If you have something like the
following:

node: command not found
This means that you do not have Node.js installed on your machine.

Once you have Node.js set up on your machine, you get access to npm, also known as the
node package manager command-line tool, which can be used to set up global
dependencies. Using the npm command, we will install the Angular CLI tool, which
provides us with many Angular utility methods, including—but not limited to—creating a
new project.

Installing Angular CLI

To install the Angular CLI in your Terminal, run the following command:

npm install -g @angular/cli

That should install the Angular CLI globally and give you access to the ng command to
create new projects.

To test it, you can run the following command, which should show you a list of features
available for use:

ng

Creating an app using the CLI

Now, let's create the Angular application. We will create a new application for each
example for the sake of clarity. You can club them into the same application if you feel
comfortable. To create an Angular application using the CLI, run the following command in
the Terminal:

ng new <project-—-name>

Replace project-name with the name of your project; if everything goes well, you should
see something similar on your Terminal:

installing ng

create .editorconfig

create README.md

create src/app/app.component.css

[14]

Building Stacks for Application State Management Chapter 1

create src/app/app.component.html
create src/app/app.component.spec.ts
create src/app/app.component.ts

create src/app/app.module.ts

create src/assets/.gitkeep

create src/environments/environment.prod.ts
create src/environments/environment.ts
create src/favicon.ico

create src/index.html

create src/main.ts

create src/polyfills.ts

create src/styles.css

create src/test.ts

create src/tsconfig.app.json

create src/tsconfig.spec.json

create src/typings.d.ts

create .angular-cli.json

create e2e/app.e2e-spec.ts

create e2e/app.po.ts

create e2e/tsconfig.e2e.json

create .gitignore

create karma.conf.js

create package.json

create protractor.conf.js

create tsconfig.json

create tslint.json

Installing packages for tooling via npm.
Installed packages for tooling via npm.
Project 'project—-name' successfully created.

If you run into any issues, ensure that you have angular-cli installed as described earlier.

Before we write any code for this application, let's import the stack that we earlier created
into the project. Since this is a helper component, I would like to group it along with other
helper methods under the utils directory in the root of the application.

Creating a stack

Since the code for an Angular application is now in TypeScript, we can further optimize the
stack that we created. Using TypeScript makes the code more readable thanks to the
private variables that can be created in a TypeScript class.

[15]

Building Stacks for Application State Management Chapter 1

So, our TypeScript-optimized code would look something like the following:

export class Stack {

private wmkey = {};
private items = new WeakMap();
constructor () {

this.items.set (this.wmkey, []);

push (element) {
let stack = this.items.get (this.wmkey);
stack.push (element) ;

pop () |
let stack = this.items.get (this.wmkey);
return stack.pop();

peek () A
let stack = this.items.get (this.wmkey);
return stack[stack.length - 17];

clear () A
this.items.set (this.wmkey, []);

size () A
return this.items.get (this.wmkey) .length;

[16]

Building Stacks for Application State Management

Chapter 1

To use the stack created previously, you can simply import the stack into any component

and then use it. You can see in the following screenshot that as we made the

WeakMap () and the key private members of the Stack class, they are no longer accessible

from outside the class:

LCoNOOULSE WN P

[1s stackts x [i% app.component.ts x

import { Component } from '@angular/core’;
import {Stack} from "./utils/stack";

@Component ({
selector: 'app-root’,
templateUrl: './app.component.html’,
styleUrls: ['./app.component.css']
)
export class AppComponent {
title = 'app works!';

constructor(private stack: Stack) {
this. stack.|

} m clear ()

b m peek ()
m pop ()
m push (element)
m size()
P constructor Object (back-button node_modules)
P constructor Object (back-button node_modules)
P constructor Object (back-button node_modules)
) constructor Object (lib.d.ts)
m hasOwnProperty ([PropertyKey] v)

hacNuinDranar+ul [IDranarv+ullan]

"J, and ~1 will move caret down and up in the edltor >>

undefined

undefined

Function
Function
Function
Function

boolean

hanlaan

T

Public methods accessible from the Stack class

[17]

Building Stacks for Application State Management Chapter 1

Creating a custom back button for a web
application

These days, web applications are all about user experience, with flat design and small
payloads. Everyone wants their application to be quick and compact. Using the clunky
browser back button is slowly becoming a thing of the past. To create a custom Back button
for our application, we will need to first create an Angular application from the previously
installed ng cli client, as follows:

ng new back-button

Setting up the application and its routing

Now that we have the base code set up, let's list the steps for us to build an app that will
enable us to create a custom Back button in a browser:

1. Creating states for the application.

2. Recording when the state of the application changes.
3. Detecting a click on our custom Back button.

4. Updating the list of the states that are being tracked.

Let's quickly add a few states to the application, which are also
known as routes in Angular. All SPA frameworks have some form of routing module,
which you can use to set up a few routes for your application.

[18]

Building Stacks for Application State Management

Chapter 1

Once we have the routes and the routing set up, we will end up with a directory structure,

as follows:

i typings.d.ts

[back-button ~/Documents/Projects/book-

Me2e
1 node_modules library root
src
C1app
[pages
[Jabout
[#% about.component.ts
[#% about.routing.ts
[dashboard
[dashboard.component.ts
[#% dashboard.routing.ts
[1home
[% home.component.ts
[% home.routing.ts
[profile
[% profile.component.ts
[#% profile.routing.ts
[utils

[stack.ts
& app.component.css
[] app.component.html
[% app.component.spec.ts
[# app.component.ts
[% app.module.ts
[#% app.routing.ts
[Fassets
1 environments
[i] favicon.ico
[6] index.html
[main.ts
[% polyfills.ts
& styles.css
[% test.ts
5o tsconfig.app.json
ko tsconfig.spec.json

™ P
sk .angular-cli.json
[2) .editorconfig

5 .gitignore

Directory structure after adding routes

[19]

Building Stacks for Application State Management Chapter 1

Now let's set up the navigation in such a way that we can switch between the routes. To set
up routing in an Angular application, you will need to create the component to which you
want to route and the declaration of that particular route. So, for instance, your

home . component . ts would look as follows:

import { Component } from '@angular/core';

@Component ({
selector: 'home',
template: 'home page'
})

export class HomeComponent {
}

The home . routing.ts file would be as follows:
import { HomeComponent } from './home.component';

export const HomeRoutes = [

{ path: 'home', component: HomeComponent 1},
17

export const HomeComponents = [
HomeComponent

1;

We can set up a similar configuration for as many routes as needed, and once it's set up, we
will create an app-level file for application routing and inject all the routes and the
navigatableComponents in that file so that we don't have to touch our main module over
and over.

So, your file app . rout ing. ts would look like the following;:

import { Routes } from 'Qangular/router';

import {AboutComponents, AboutRoutes} from "./pages/about/about.routing";
import {DashboardComponents, DashboardRoutes} from
"./pages/dashboard/dashboard.routing";

import {HomeComponents, HomeRoutes} from "./pages/home/home.routing";
import {ProfileComponents, ProfileRoutes} from
"./pages/profile/profile.routing";

export const routes: Routes = |
{
path: '',
redirectTo: '/home',
pathMatch: 'full'

[20]

Building Stacks for Application State Management Chapter 1

}I
.AboutRoutes,
.DashboardRoutes,
.HomeRoutes,
.ProfileRoutes

export const navigatableComponents = [
.AboutComponents,
.DashboardComponents,
.HomeComponents,
.ProfileComponents

1
You will note that we are doing something particularly interesting here:

{
path: '',
redirectTo: '/home',
pathMatch: 'full'

}

This is Angular’s way of setting default route redirects, so that, when the app loads, it's
taken directly to the /home path, and we no longer have to set up the redirects manually.

Detecting application state changes

To detect a state change, we can, luckily, use the Angular router's change event and take
actions based on that. So, import the Router module in your app . component .ts and then
use that to detect any state change:

import { Router, NavigationEnd } from '@angular/router';
import { Stack } from './utils/stack';

constructor (private stack: Stack, private router: Router) {

// subscribe to the routers event
this.router.events.subscribe ((val) => {

// determine of router is telling us that it has ended
transition
if (val instanceof NavigationEnd) {

[21]

Building Stacks for Application State Management Chapter 1

// state change done, add to stack
this.stack.push(val);

}) i
}

Any action that the user takes that results in a state change is now being saved into our
stack, and we can move on to designing our layout and the back button that transitions the
states.

Laying out the Ul

We will use angular-material to style the app, as it is quick and reliable. To install
angular-material, run the following command:

npm install --save Qangular/material @angular/animations Q@angular/cdk

Once angular-material is saved into the application, we can use the Button component
provided to create the Ul necessary, which will be fairly straightforward. First, import the
MatButtonModule that we want to use for this view and then inject the module as the
dependency in your main AppModule.

The final form of app.module.ts would be as follows:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { HttpModule } from '@angular/http';

import { BrowserAnimationsModule } from '@angular/platform-—
browser/animations';
import { MatButtonModule } from 'Qangular/material';

import { AppComponent } from './app.component';

import { RouterModule } from "@angular/router";

import { routes, navigatableComponents } from "./app.routing";
import { Stack } from "./utils/stack";

// main angular module
@NgModule ({
declarations: [
AppComponent,

// our components are imported here in the main module
...navigatableComponents

1y

[22]

Building Stacks for Application State Management

Chapter 1

1)

imports: [
BrowserModule,
FormsModule,
HttpModule,

// our routes are used here

RouterModule. forRoot (routes),

BrowserAnimationsModule,

// material module
MatButtonModule

]I

providers: [
Stack

]I

bootstrap: [AppComponent]

export class AppModule { }

We will place four buttons at the top to switch between the four states that we have created

and then display these states in the router-outlet directive provided by

Angular followed by the back button. After all this is done, we will get the following result:

<nav>

<button mat-button
routerLink="/about"
routerLinkActive="active">
About
</button>
<button mat-button
routerLink="/dashboard"
routerLinkActive="active">
Dashboard
</button>
<button mat-button
routerLink="/home"
routerLinkActive="active">
Home
</button>
<button mat-button
routerLink="/profile"
routerLinkActive="active">
Profile
</button>

</nav>

<router-outlet></router-outlet>

[23]

Building Stacks for Application State Management Chapter 1

<footer>
<button mat-fab (click)="goBack ()" >Back</button>

</footer>

Navigating between states

To add logic to the back button from here on is relatively simpler. When the user clicks on
the Back button, we will navigate to the previous state of the application from the stack. If
the stack was empty when the user clicks the Back button, meaning that the user is at the
starting state, then we set it back into the stack because we do the pop () operation to

determine the current state of the stack.

goBack () {
let current = this.stack.pop();
let prev = this.stack.peek();

if (prev) {
this.stack.pop();

// angular provides nice little method to
// transition between the states using just the url if needed.
this.router.navigateByUrl (prev.urlAfterRedirects);

} else {
this.stack.push (current);

}
}

Note here that we are using urlAfterRedirects instead of plain url. This is because we
do not care about all the hops a particular URL made before reaching its final form, so we
can skip all the redirected paths that it encountered earlier and send the user directly to the
final URL after the redirects. All we need is the final state to which we need to navigate our
user because that's where they were before navigating to the current state.

Final application logic

So, now our application is ready to go. We have added the logic to stack the states that are
being navigated to and we also have the logic for when the user hits the Back button. When
we put all this logic together in our app . component . ts, we have the following:

import {Component, ViewEncapsulation} from 'Qangular/core';
import {Router, NavigationEnd} from '@angular/router';
import {Stack} from "./utils/stack";

[24]

Building Stacks for Application State Management Chapter 1

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.scss', './theme.scss'],
encapsulation: ViewEncapsulation.None
})
export class AppComponent {
constructor (private stack: Stack, private router: Router) {
this.router.events.subscribe ((val) => {
if(val instanceof NavigationEnd) {
this.stack.push(val);

)i

goBack () {
let current = this.stack.pop();
let prev = this.stack.peek();

if (prev) {
this.stack.pop();

this.router.navigateByUrl (prev.urlAfterRedirects);
} else {

this.stack.push (current);

We also have some supplementary stylesheets used in the application. These are obvious
based on your application and the overall branding of your product; in this case, we are
going with something very simple.

For the AppComponent styling, we can add component-specific styles
in app.component .scss:

.active {
color: red !important;

}

For the overall theme of the application, we add styles to the theme. scss file:

@import '~@angular/material/theming’;
// Plus imports for other components in your app.

// Include the common styles for Angular Material. We include this here so
that you only

[25]

Building Stacks for Application State Management Chapter 1

// have to load a single css file for Angular Material in your app.
// Be sure that you only ever include this mixin once!
@include mat-core();

// Define the palettes for your theme using the Material Design palettes
available in palette.scss

// (imported above). For each palette, you can optionally specify a
default, lighter, and darker

// hue.

Scandy-app-primary: mat-palette ($Smat-indigo) ;

$candy-app-accent: mat-palette (S$Smat-pink, A200, A100, A400);

// The warn palette is optional (defaults to red).
$candy-app-warn: mat-palette ($Smat-red);

// Create the theme object (a Sass map containing all of the palettes).
Scandy—-app-theme: mat-light-theme ($Scandy—-app-primary, S$candy—-app-accent,
Scandy-app-warn) ;

// Include theme styles for core and each component used in your app.
// Alternatively, you can import and @include the theme mixins for each
component

// that you are using.

@include angular-material-theme ($Scandy—-app-theme) ;

This preceding theme file is taken from the Angular material design documentation and can
be changed as per your application's color scheme.

Once we are ready with all our changes, we can run our application by running the
following command from the root folder of our application:

ng serve

That should spin up the application, which can be accessed at http://localhost:4200.

& C' @ localhost:4200/home
About Dashboard Home Profile
home page

[26]

Building Stacks for Application State Management Chapter 1

From the preceding screenshot, we can see that the application is up-and-running, and we
can navigate between the different states using the Back button we just created.

Building part of a basic JavaScript syntax parser
and evaluator

The main intent of this application is to show concurrent usage of multiple stacks in a
computation-heavy environment. We are going to parse and evaluate expressions and
generate their results without having to use the evil eval.

For example, if you want to build your own plnkr. co or something similar, you would be
required to take steps in a similar direction before understanding more complex parsers and
lexers, which are employed in a full-scale online editor.

We will use a similar base project to the one described earlier. To create a new application
with angular-cli we will be using the CLI tool we installed earlier. To create the app run the
following command in the Terminal:

ng new parser

Building a basic web worker

Once we have the app created and instantiated, we will create the worker. js file first
using the following commands from the root of your app:

cd src/app
mkdir utils
touch worker. js

This will generate the utils folder and the worker. js file in it.
Note the following two things here:

e Itis a simple JS file and not a TypeScript file, even though the entire application is
in TypeScript

e Itis called worker. js, which means that we will be creating a web worker for
the parsing and evaluation that we are about to perform

[27]

Building Stacks for Application State Management Chapter 1

Web workers are used to simulate the concept of multithreading in JavaScript, which is
usually not the case. Also, since this thread runs in isolation, there is no way for us to
provide dependencies to that. This works out very well for us because our main app is only
going to accept the user's input and provide it to the worker on every key stroke while it's
the responsibility of the worker to evaluate this expression and return the result or the error
if necessary.

Since this is an external file and not a standard Angular file, we will have to load it up as an
external script so that our application can use it subsequently. To do so, open your
.angular-cli.json file and update the scripts option to look as follows:

"scripts": [
"app/utils/worker.js"
1,

Now, we will be able to use the injected worker, as follows:

this.worker = new Worker ('scripts.bundle.js');

First, we will add the necessary changes to the app . component . ts file so that it can
interact with worker. js as needed.

Laying out the Ul

We will use angular-material once more as described in the preceding example. So, install
and use the components as you see fit to style your application's Ul:

npm install --save Qangular/material @angular/animations Q@Rangular/cdk

We will use MatGridListModule to create our application's UI. After importing it in the
main module, we can create the template as follows:

<mat-grid-list cols="2" rowHeight="2:1">

<mat-grid-tile>

<textarea (keyup)="codeChange ()" [(ngModel)]="code"></textarea>
</mat-grid-tile>
<mat-grid-tile>

<div>

Result: {{result}}

</div>

</mat-grid-tile>

[28]

Building Stacks for Application State Management Chapter 1

</mat-grid-list>

We are laying down two tiles; the first one contains the textarea to write the code and the
second one displays the result generated.

We have bound the input area with ngModel, which is going to provide the two-way
binding that we need between our view and the component. Further, we leverage the
keyup event to trigger the method called codeChange (), which will be responsible for
passing our expression into the worker.

The implementation of the codeChange () method will be relatively easy.

Basic web worker communication

As the component loads, we will want to set up the worker so that it is not something that
we have to repeat several times. So, imagine if there were a way in which you can set up
something conditionally and perform an action only when you want it to. In our case, you
can add it to the constructor or to any of the lifecycle hooks that denote what phase the
component is in such as OnInit, OnContentlnit, OnviewInit and so on, which are
provided by Angular as follows:

this.worker = new Worker ('scripts.bundle.js');

this.worker.addEventListener ('message', (e) => {
this.result = e.data;
)i

Once initialized, we then use the addEventListener () method to listen for any new
messages—that is, results coming from our worker.

Any time the code is changed, we simply pass that data to the worker that we have now set
up. The implementation for this looks as follows:

codeChange () {
this.worker.postMessage (this.code);

}

As you can note, the main application component is intentionally lean. We are leveraging
workers for the sole reason that CPU-intensive operations can be kept away from the main
thread. In this case, we can move all the logic including the validations into the worker,
which is exactly what we have done.

[29]

Building Stacks for Application State Management Chapter 1

Enabling web worker communications

Now that the app component is set and ready to send messages, the worker needs to be
enabled to receive the messages from the main thread. To do that, add the following code to

your worker. js file:

init () ;
function init ()
self.addEventListener ('message', function(e) {
var code = e.data;
if (typeof code !== 'string' || code.match(/.*[a-zA-Z]+.*/qg)) {
respond ('Error! Cannot evaluate complex expressions yet. Please
try
again later');
} else {

respond (evaluate (convert (code))) ;

P
}

As you can see, we added the capability of listening for any message that might be sent to
the worker and then the worker simply takes that data and applies some basic validation on
it before trying to evaluate and return any value for the expression. In our validation, we
simply rejected any characters that are alphabetic because we want our users to only
provide valid numbers and operators.

Now, start your application using the following command:

npm start

You should see the app come up at localhost:4200. Now, simply enter any code to test
your application; for example, enter the following:

var a = 100;

[30]

Building Stacks for Application State Management Chapter 1

You would see the following error pop up on the screen:

var a = 100; Result: Error! Cannot evaluate complex
expressions yet. Please try again later

Now, let's get a detailed understanding of the algorithm that is in play. The algorithm will
be split into two parts: parsing and evaluation. A step-by-step breakdown of the algorithm
would be as follows:

1. Converting input expression to a machine-understandable expression.
2. Evaluating the post £ix expression.
3. Returning the expression's value to the parent component.

Transforming input to machine-understandable
expression

The input (anything that the user types) will be an expression in the infix notation, which is
human-readable. Consider this for example:

(1L + 1) * 2

However, this is not something that we can evaluate as it is, so we convert it into a post fix
notation or reverse polish notation.

[31]

Building Stacks for Application State Management Chapter 1

To convert an infix to a post £i1x notation is something that takes a little getting used to.
What we have is a watered-down version of that algorithm in Wikipedia, as follows:

1. Take the input expression (also known as, the infix expression) and tokenize it,
that is, split it.

2. Evaluate each token iteratively, as follows:

1. Add the token to the output string (also known as the post fix
notation) if the encountered character is a number

2. Ifitis (thatis, an opening parenthesis, add it to the output string.

3. Ifitis) thatis, a closed parenthesis, pop all the operators as far as the
previous opening parenthesis into the output string.

4. If the character is an operator, thatis, *, ~, +, -, /, and , then check the
precedence of the operator first before popping it out of the stack.

3. Pop all remaining operators in the tokenized list.

4. Return the resultant output string or the post fix notation.

Before we translate this into some code, let's briefly talk about the precedence and
associativity of the operators, which is something that we need to predefine so that we can
use it while we are converting the infix expression to post fix.

Precedence, as the name suggests, determines the priority of that particular operator
whereas associativity dictates whether the expression is evaluated from left to right or vice
versa in the absence of a parenthesis. Going by that, since we are only supporting simple
operators, let's create a map of operators, their priority, and associativity:

var operators = {

LLIANS | I

{
priority: 4,

associativity:

{
priority: 3,

associativity:

{
priority: 3,

associativity:

{
priority: 2,

associativity:

{

n rtl"

"ltr"

"ltr"

"ltr"

// right to left

// left to right

[32]

Building Stacks for Application State Management Chapter 1

priority: 2,
associativity: "ltzr"

bi

Now, going by the algorithm, the first step is to tokenize the input string. Consider the
following example:

(1L + 1) * 2

It would be converted as follows:
["(", "1"’ ll+", "1", ")", "*", "2"]

To achieve this, we basically remove all extra spaces, replace all white spaces with empty
strings, and split the remaining string on any of the *, », +, -, / operators and remove any
occurrences of an empty string.

Since there is no easy way to remove all empty strings "" from an array, we can use a small
utility method called clean, which we can create in the same file.

This can be translated into code as follows:

function clean(arr) {
return arr.filter (function(a) {
return a !== "";

}) i
}

So, the final expression becomes as follows:

expr = clean (expr.trim().replace(/\s+/g, "").split (/ ([\+\=*\/*"\N(\)1)/));

Now that we have the input string split, we are ready to analyze each of the tokens to
determine what type it is and take action accordingly to add it to the post fix notation
output string. This is Step 2 of the preceding algorithm, and we will use a Stack to make our
code more readable. Let's include the stack into our worker, as it cannot access the outside
world. We simply convert our stack to ES5 code, which would look as follows:

var Stack = (function () {
var wmkey = {};
var items = new WeakMap();
items.set (wmkey, []1);

function Stack () { }
Stack.prototype.push = function (element) {

[33]

Building Stacks for Application State Management

Chapter 1

var stack = items.get (wmkey);
stack.push (element) ;
bi

Stack.prototype.pop = function () A

var stack = items.get (wmkey);
return stack.pop();

bi

Stack.prototype.peek = function
var stack = items.get (wmkey) ;

0

return stack[stack.length - 1];

bi

Stack.prototype.clear = function
items.set (wmkey, []);

bi

Stack.prototype.size = function

0

()

return items.get (wmkey) .length;

bi
return Stack;

PO

{

{

{

As you can see, the methods are attached to the prototype and voila we have our stack

ready.

Now, let's consume this stack in the infix to postfix conversion. Before we do the

conversion, we will want to check that the user-entered input is valid, that is, we want to
check that the parentheses are balanced. We will be using the simple isBalanced ()
method as described in the following code, and if it is not balanced we will return an error:

function isBalanced(postfix) {
var count = 0;
postfix.forEach (function (op) |
if (op === ")") {
count++
} else if (op === '(') {
count —-
}
}) i

return count === (;

[34]

Building Stacks for Application State Management Chapter 1

We are going to need the stack to hold the operators that we are encountering so that we
can rearrange them in the post fix string based on their priority and associativity.
The first thing we will need to do is check whether the token encountered is a number; if it
is, then we append it to the post fix result:

expr.forEach (function (exp) {
if (!isNaN (parseFloat (exp))) |
postfix += exp + " ";
}
}) i

Then, we check whether the encountered token is an open bracket, and if it is, then we push
it to the operators' stack waiting for the closing bracket. Once the closing bracket is
encountered, we group everything (operators and numbers) in between and pop into the
postfix output, as follows:

expr.forEach (function (exp) {

if (!isNaN (parseFloat (exp))) {
postfix += exp + " ";

} else if(exp === "(") {
ops.push (exp) ;

} else if(exp === ")") {
while (ops.peek () !== "(") {

postfix += ops.pop() + " ";
}
ops.pop();

}) i

The last (and a slightly complex) step is to determine whether the token is one of *, *, +, -,
/, and then we check the associativity of the current operator first. When it's left to
right, we check to make sure that the priority of the current operator is less than or equal to
the priority of the previous operator. When it's right to left, we check whether the priority of
the current operator is strictly less than the priority of the previous operator. If any of these
conditions are satisfied, we pop the operators until the conditions fail, append them to the
postfix output string, and then add the current operator to the operators' stack for the
next iteration.

The reason why we do a strict check for a right to left but not for a left to right
associativity is that we have multiple operators of that associativity with the same
priority.

After this, if any other operators are remaining, we then add them to the post fix output
string.

[35]

Building Stacks for Application State Management Chapter 1

Converting infix to postfix expressions

Putting together all the code discussed above, the final code for converting the infix
expression to post £ix looks like the following;:

function convert (expr) {

var postfix = "";
var ops = new Stack();
var operators = {

"/\": {
priority: 4,
associativity: "rtl"
Hy
"*": {
priority: 3,
associativity: "ltr"
o
"/u: {
priority: 3,
associativity: "ltzr"
o

"+": {
priority: 2,
associativity: "ltr"
}V
m_m. {
priority: 2,
associativity: "ltzr"
}
i
expr = clean (expr.trim().replace(/\s+/g, "").split (/ ([\+\-

NN/ANNN)Y D))

if (!isBalanced(expr) {
return 'error';

}

expr.forEach (function (exp) {
if (!isNaN (parseFloat (exp))) A

postfix += exp + " ";
} else if(exp === "(") {
ops.push (exp) ;
} else if(exp === ")") {
while (ops.peek () !== "(") {
postfix += ops.pop() + " ";

[36]

Building Stacks for Application State Management

Chapter 1

}

ops.pop () ;
} else if ("*"+-/".indexOf (exp) !== -1) {
var currOp = exp;
var prevOp = ops.peek();
while ("**+-/".indexOf (prevOp) !== -1 &&

((operators[currOp].associativity === "ltz"
<= operators|[prevOp].priority) || (operators|[currOp]
"rel"
{
postfix += ops.pop() + " ";
prevOp ops.peek () ;

}
ops.push (currOp) ;

H)i

while (ops.size() > 0) {
postfix += ops.pop() + " ";

}

return postfix;

}

&& operators|[currOp] .priority
.associativity ===
&& operators|[currOp] .priority < operators|[prevOp].priority)))

This converts the infix operator provided into the post fix notation.

Evaluating postfix expressions

From here on, executing this post fix notation is fairly easy. The algorithm is relatively
straightforward; you pop out each of the operators onto a final result stack. If the operator
is one of *, », +, -, /, then evaluate it accordingly; otherwise, keep appending it to the

output string:

function evaluate (postfix) {
var resultStack new Stack () ;

postfix = clean(postfix.trim() .split (" "));
postfix.forEach (function (op) A
if (!isNaN (parseFloat (op))) A
resultStack.push (op) ;
} else {

resultStack.pop();
resultStack.pop();
getParseMethod (vall);
getParseMethod (val2);

var vall

var val2
var parseMethodA
var parseMethodB
if (op === "+") {
resultStack.push (parseMethodA (vall)
} else if(op === "-") {
resultStack.push (parseMethodB (val?2)

+ parseMethodB(val2));

— parseMethodA (vall));

[37]

Building Stacks for Application State Management Chapter 1

} else if(op === "*") {

resultStack.push (parseMethodA (vall) * parseMethodB (val2));
} else if(op === "/") {

resultStack.push (parseMethodB(val2) / parseMethodA (vall));
} else if(op === n/\n) {

resultStack.push (Math.pow (parseMethodB (val2),
parseMethodA (vall)));

}
}) i

if (resultStack.size() > 1) {
return "error";

} else {
return resultStack.pop();

}

Here, we use some helper methods such as getParseMethod () to determine whether we
are dealing with an integer or float so that we do not round any number unnecessarily.

Now, all we need to do is to instruct our worker to return the data result that it has just
calculated. This is done in the same way as the error message that we return, so our init ()
method changes as follows:

function init () {
self.addEventListener ('message', function(e) {
var code = e.data;

if (code.match (/.*[a-zA-Z]+.*/qg)) {
respond ('Error! Cannot evaluate complex expressions yet. Please
try
again later');
} else {
respond (evaluate (convert (code))) ;

}) i

[38]

Building Stacks for Application State Management Chapter 1

Summary

There we have it, real-world web examples using stacks. The important thing to note in
both examples is that the majority of the logic as expected does not revolve around the data
structure itself. It is a supplementary component, that greatly simplifies access and protects
your data from unintentional code smells and bugs.

In this chapter, we covered the basics of why we need a specific stack data structure instead
of in-built arrays, simplifying our code using the said data structure, and noted the
applications of the data structure. This is just the exciting beginning, and there is a lot more
to come.

In the next chapter, we will explore the queues data structure along the same lines and
analyze some additional performance metrics to check whether it's worth the hassle to build
and/or use custom data structures.

[39]

