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industrial technology advances

The artificial intelligence renaissance: deep
learning and the road to human-Level
machine intelligence

kar-han tan1 and boon pang lim2

In this paper we look at recent advances in artificial intelligence. Decades in the making, a confluence of several factors in the
past few years has culminated in a string of breakthroughs in many longstanding research challenges. A number of problems
that were considered too challenging just a few years ago can now be solved convincingly by deep neural networks. Although
deep learning appears to be reducing the algorithmic problem solving to a matter of data collection and labeling, we believe that
many insights learned from ‘pre-Deep Learning’ works still apply and will be more valuable than ever in guiding the design of
novel neural network architectures.
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I . I NTRODUCT ION

It is rare for technology advancements to induce passionate
debate among some of the most distinguished thinkers of
our time, but recent development in artificial intelligence
(AI) has led renowned physicist Stephen Hawking [1] to
ponder ‘. . .the rise of powerful AI will be either the best,
or the worst thing, ever to happen to humanity. We do not
yet know which.’, and billionaire industrialist ElonMusk [2]
has called AI ‘a fundamental existential risk for human
civilization’. The central concern is that at the rate AI is
advancing, one day it will cross a threshold [3] and humans
may forever lose the ability to control AI. This can have sig-
nificant consequences as the critical support infrastructure
of human society, including power grids, air traffic control,
and perhaps the autonomous transports of the future, are
increasingly being infused with AI (Fig. 1). Even in a more
benign version of the future where AI plays the role of the
tireless servant, human workers may be displaced by AI-
powered robots in such a large scale that it creates a new
‘useless class’ in society [4].
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I I . OR IG INS

John McCarthy is widely credited with coining the
term ‘Artificial Intelligence’ in his 1955 proposal for the
DartmouthWorkshop [5], although the first artificial neuron
described in 1943 [6] and early work on speech recogni-
tion in 1952 [7] predated the workshop. Work on computer
vision started a decade later, circa 1966 [8], using vidisector
video camera tubes. Despite the intense effort and funding
poured into the development of AI, the problem proved to
be challenging and for many years the advances made by
researcherswere unable tomatch the hype, resulting in peri-
ods of disillusionment and reduced funding known as the
AI Winters.

Fast forward to the year 2017. AI-powered machines are
outperforming human beings at diagnosing skin cancer [9]
and at the ancient game of Go [10]. Newer cars have enough
autonomous navigation smarts, such thatmore adventurous
drivers are letting go of their steering wheels while their cars
cruise under computer control [11]. It is safe to say that the
AI Winter is over. In fact, the recent explosion of advances
in AI are changing the way many problems are solved to
the extent that one can say the world is experiencing a
Renaissance in AI.

In this paper, we take a look at the inner working
of the representative deep neural network (DNN) archi-
tectures and highlight a number of recent advancements,
and conclude with a discussion of open challenges and
opportunities.
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Fig. 1. The ability to create intelligent beings has long been a subject of endless
fascination. With deep learning and the latest computers, we are coming close
to achieving the dream of AI. (Image: ‘Homunculus in the vial’ by Franz Xaver
Simm, 1899).

I I I . NEURAL NETWORKS AND DEEP
LEARN ING

In the year 2012, an artificial neural network (ANN)
AlexNet [12], named after its creator Alex Krizhevsky, beat
all competitors by a large margin in the IMAGENET [13]
visual object recognition competition. Remarkably, it was
the only entry employing an ANN that year, and in sub-
sequent years virtually all submissions were ANN-based.
A few years later in 2015, ANN-based solutions surpassed
human performance in visual object recognition. AlexNet
is without a doubt the landmark event that ignited the AI
Renaissance and may be considered the first time that the
three main ingredients of modern Deep Learning [14] came
together: a massive training data set that was the IMA-
GENET training set, a software framework for training
which took advantage of graphics processing units (GPUs)

for hardware acceleration, and a deep convolutional neural
network design.

A) Artificial neurons
An artificial neuron generally performs the following com-
putation:

y = A

(∑
i

wi xi + b

)

where y is the output, xi are the inputs to the neuron,wi are
the weights applied to each input, b is a bias term, and A()

is a non-linear activation function. In the earliest form, the
inputs and outputs are binary [6], with a step function for
activation. The Perceptron [15] accepted continuous inputs
and its learning algorithm guarantees convergence on lin-
early separable data sets. By constructing multiple layers of
perceptrons where the outputs of one layer is input to all
perceptron units in the next layer, such a feed forward neural
network can learn more complex mappings.

B) Convolutional neural networks (CNN) :
AlexNet and VGGNet
While early ANNs are attempts at approximating biologi-
cal neural nets, they were primarily implemented on digital
computers, and algorithmic techniques which were able
to execute efficiently on digital computers started inspir-
ing new neural network designs. CNNs [16] are one such
class of network architectures. Drawing upon advances in
image and signal processing, CNNs introduce layers where
neurons have a limited receptive field (the kernel) and the
weights are shared across a set of neurons that collectively
compute a sliding window operation across the input layer
(Fig. 2). At the i-th row and j -th column of the two-
dimensional (2D) input field, the output of the correspond-
ing neuron is

S(i , j) =
∑

m

∑
n

I (i − m, j − n)K (m, n)

where I is the input layer and K is them × n kernel. In this
case, the number of weights for this convolutional neuron

Fig. 2. A Convolution layer uses a shared set of weights for a set of neurons, effectively applying the same neuron across the input in a sliding window fashion.
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the artificial intelligence renaissance 3

is m × n, and for an input layer of size w × h, it computes
an output feature map of about the same size. If a layer has
c convolutional neurons, then it generates a c-channel out-
put featuremap.Additional parameters such as padding (for
where the sliding window starts and ends at the input layer
boundaries) and stride (the step size at which the sliding
window moves across the input layer) can be changed to
configure the output layer size. CNNs bring a number of key
benefits:

(i) Size. Compared with a fully-connected multi-layer per-
ceptron, where the number of weights in a network is
the product of the input and output sizes, the number
of weights for a convolutional neuron is determined by
the size of the kernel. For example, a 1000-input, 1000-
output layer would require 1 000 000 weights while a
convolutional layer would just require m × n weights
for each kernel. If a layer specifies 128 3 × 3 convolu-
tional kernels, the number of weights is 1152. As a result,
CNNs with similarly sized layers typically require orders
of magnitude less space for storage.

(ii) Faster Execution. As a result of the smaller network
size, CNNs can run faster on digital computers by taking
advantage of faster memories higher up the hierarchy.
For example, when computing a convolutional layer,
weights which are heavily reused can be placed in high-
speed cache memory. Since fast memory tends to be
smaller than slow memory, smaller sized networks are
better able to fit.

(iii) Training Speed. During the training of DNN, often par-
allel computation is utilized to increase throughput and
decrease training time. The most commonly used data
parallelism hasmultiple copies of the same network eval-
uated on a number of different processors, which can
be on the same machine or distributed across multiple
machines. In each cycle the processors need to syn-
chronize their networks, and smaller networks can be
transmitted faster, reducing the amount of processor idle
time.

(iV) Flexibility. Since the output of each convolutional layer
is generated in a sliding window fashion, the sizes of the
layer input and output can be changed while keeping the
layer weights constant. This means that if a neural net-
work is fully convolutional, it can take inputs of arbitrary
sizes during and after training.

In AlexNet, two different convolutional filter sizes were
used: 11 × 11 and 3 × 3. CNN architecture is refined
in VGGNet [17] to use only 3 × 3 filters. The 3 × 3
kernel is the smallest possible kernel with a sense of
up/down/left/right/center. Using a smaller, standard-sized
kernel brings more of the aforementioned computational
benefits. To account for the loss in receptive field size
going from 11 × 11 to 3 × 3, the designers of VGGNet
increased the number of convolutional layers, effectively
creating a vertical stack of convolutional layers, similar to
how the different levels in a laplacian pyramid [18] cor-
respond to increasing large receptive fields. Fig. 3 shows

Fig. 3. The VGG-19 network [17], which uses only five types of layers. All con-
volution layers use 3 × 3 kernels and all max pool layers use 2 × 2 kernels. 19
counts only the convolution and fully connected layers. Due to the presence of
fully connected layers, VGG-19 is not fully convolutional and therefore, will only
be able to accept 224 × 224 × 3 inputs without retraining.

the overall architecture for the VGG-19 network. As shown
in the figure, it uses only five different kinds of lay-
ers: convolutional, rectified linear activation unit (ReLU),
max-pooling, fully connected, and softmax. For complete-
ness, we briefly review the layers used in the 19-layer
VGGNet.
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C) ReLU activation
We saw that early artificial neurons used non-linear activa-
tion like the step function. The most widely used activation
function today is the ReLU:

g (z) = max{0, z}

[12] demonstrated that CNNs with ReLUs converge sev-
eral times faster than an equivalent networks with tanh
neurons. Parametric ReLU (PReLU) is a variant allows a
non-zero response for negative input:

g (z) = max{0, z} − α max{0, −z}

D) Max pooling-layers
The max-pooling layers apply a sliding window over the
input, similar to convolution layers, except each neuron
outputs the maximum value in each respective window.

MaxPool(i , j) = MAX∀m,n I (i − m, j − n)

Intuitively, max-pooling layers introduce spatial transla-
tion invariance to the network. Also similar to convolution
layers, max pooling at multiple levels in a deep network
introduce increasing amounts of translation invariance.

E) Fully connected layers
Fully connected layers consist of perceptron-like neurons
that have real-valued inputs and output, where each neu-
ron’s input is connected to all elements of the previous layer.
These are often the layers in a deep neural net with the
largest amount of weights. For example, in the VGG-19 net-
work, there are 4096 × 4096 = over 16 million weights just
between the first two fully connected layers.

The last fully connected layer in VGG-19 has 1000 neu-
rons, corresponding to the 1000 object classes to be recog-
nized in the IMAGENET challenge. The input to the last
fully connected layer can thus be considered a 4096-element
feature vector that encodes information needed to recog-
nize objects and often can serve as a rich abstract descriptor
useful in many tasks.

F) Softmax
If the output from the final 1000-neuron fully connected
layer in VGG-19 can be considered a set of confidence val-
ues for each object class given the input image, the softmax
layer which computes

softmax(zi ) = exp(zi )∑
j exp(z j )

where zi is the output from a neuron in the previous layer.
Softmax serves to apply ‘contrast enhancement’ and nor-
malization to ensure the output is a probability distribution
that sums to 1.

G) Training a DNN
After the network architecture is defined, it needs to be
trained in order to assign values to the tunable parameters
in the layers. Networks can easily have tens of millions of
parameters that need to be individually tuned in order to
produce optimal results for each data set, which in turn can
consist of millions of images, hundreds of hours of audio
recordings, for example. The most commonly used tech-
nique for tuning these parameters to fit labeled data sets, or
training neural networks, is the Stochastic Gradient Descent
(SGD) method.

Figure 4 shows the steps in SGD. In each iteration, a set of
training samples is randomly selected along with the labels
for each sample that correspond to the correct answer that
the neural network should produce. For each (data, label)
pair we need to find the direction in which to modify each
parameter so that the error between the network output and
label is minimized. This can be done by differentiating the
error or loss function with respect to the weights, to obtain
the error gradient

∇wt J = ∂ J t

∂wt
,

where J represents the error. The weights can then be
updated using

w′ = w − η∇w J

where η > 0 is an appropriate learning rate, that controls
the amount of adjustment, aswe adjust theweights along the
direction of greatest reduction in error. The gradient can be
computed using the Backpropagation [19] algorithm, which
consists of two steps in each iteration:

(i) Forward Propagation (Fig. 4(2)) Where the output of
each layer i is computed using output from previous
layers and the current set of weights.

yi = fi (wi , yi−1)

(ii) Backward Propagation (Fig. 4(5)) The error or loss
function J is computed from the output from the final
layer and the corresponding label or ground truth for the
training data. Since J is computed from a function of

Fig. 4. How to train a DNN with SGD and backpropagation.
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the artificial intelligence renaissance 5

wN , the weights from the final layer N , the gradient for
updating wN can be computed directly:

∇wN J = ∂ J

∂wN

and gradients for weights wi in each layer i can be
computed recursively using the chain rule:

∇wi J = ∂ J

∂wi+1

∂wi+1

∂wi
= ∇wi+1 J

∂wi+1

∂wi

H) Vanishing gradients and residual
connections
While the basic idea of backpropagation has remained
unchanged for several decades, it was not until recently
that researchers have successfully trained truly DNN with
many layers. Aside from the availability of powerful com-
puters, techniques have also been proposed that address the
so-called vanishing or exploding gradient problems, where
the gradients computed by backpropagation become very
small or very large, causing convergence to stall or to intro-
duce unstably large swings in the update steps. Solutions
proposed to address this challenge include batch normal-
ization [20] which reduces covariate shifts in intermediate
layer outputs and the use of ReLU non-linear activation,
which does not saturate with large input values (unlike for
example, the sigmoid activation function). The most dra-
matic improvement perhaps came with the introduction of
residual connections in ResNet [21]. Residual connections,
as illustrated in Fig. 5, are the links that skip pass a num-
ber of layers such that if the original block of layers is
represented by

y = f (x)

then the residual connection turns the output into

y = f (x) + x

which of course requires the input x and the output f (x) to
have the same dimensions in order that a tensor addition is

Fig. 5. Direct connections enables training of deeper models.

possible. In [21], it was reported that very DNN with 1000
layers was successfully trained. The winner of the ILSVRC
2015 classification task was a 152 layer network. Remarkably,
even though it was 8x deeper than VGG nets the computa-
tional complexity is lower. Densenet [22] (Fig. 5) adds even
more residual connections that skip through more blocks.
Intuitively, the main benefit of residual connections can be
thought of as allowing the error signal to flow throughmore
layers during backward propagation.

I) Recurrent neural networks
Many real-world applications involve signals that are tem-
poral in nature – for example the acoustic speech signal
varies spectrally over time; in natural language, words form
sentences, and their ordering can drastically alter mean-
ing to convey different semantics. Some of these types of
dependencies can occur over very long spans of time [23].
By analogy – IIR filters can more compactly describe filter
responses that would otherwise take thousands of samples
in the impulse response to effectively model [24] – thus
so-called recurrent neural networks can provide far greater
modeling power compared with purely feed-forward net-
works, as they are able to capture information and learn
from a much longer context [25, 26].

Figure 6 shows how recurrent links work for a single
neuron. A recurrent network simply has links such as to
cause the network graph to become cyclic.While in the past,
other networks with more ad-hoc or amorphous topologies
have been proposed, most recent RNN incarnations do not
really have recurrent links across layers. Many algorithms
have been proposed for training RNNs, the most popu-
lar might be backpropagation in time (BPTT) [27], which
‘unrolls’ recurrent links so that the network can be approx-
imated by a larger, fully feedforward network. Thereafter,

Fig. 6. Recurrent connnections in a single neuron recurrent neural network
(from [25]).
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Fig. 7. Unrolling recurrent links through time with the BPTT algorithm
(from [25]).

the network can be trained using variants of SGD – this is
illustrated in Fig. 7. The difficulty with training such net-
works is, similar to the problem of depth, error signals are
prone to either blowup or vanish exponentially as they prop-
agate backwards through time. Consequently, the updated
gradient explode or vanish, leading to unstable training and
the inability of the recurrent networks to model long-span
dependencies [28].

Long short-term memory (LSTM) [29] cells were pro-
posed to tackle the vanishing gradient problem in BPTT,
and they work by enforcing constant error flow during
backpropagation. This is done by introducing gating mech-
anisms around amemory element that tracks the cell’s inner
state – an input-gate controls the amount of information
flow to the memory cell, an output-gate controls the infor-
mation flow from the memory cell to the next layer, and a
forget gate controls information flow between cell memory
from the previous to the current time state. This is illus-
trated in Fig. 8. Common variants of the LSTM cell may
include using different combinations of either including or
excluding the input, output, and forget gates or introducing

Fig. 8. An LSTM cell helps to enforce constant error flow in BPTT. (from [30]).

so-called peephole connections which are, for all practi-
cal purposes, residual connections that bypass the gating
mechanism [30].

A further refinement of LSTMs integrates information
from past and previous time frames by stacking a back-
ward LSTM layer on top of a forward LSTM layer. In this
case, the backward LSTM is identical to the usual, for-
ward LSTM, except that recurrent links use inputs from
frames in the future as opposed from frames in the past.
Today, bi-directional LSTMs are a staple [31, 32] of acous-
tic modeling. They have been used in conjunction with
the connectionist temporal classification (CTC) loss func-
tion to obtain the best known speech recognition results
on continuous telephony conversational speech [33]. Recent
work has also shown that the [34] forget gate activations
in trained recurrent acoustic neural nets such as correlate
very well with phoneme boundaries in speech activation –
this validates many approaches to speech recognition and
other sequencemodeling problems which involve recurrent
networks.

J) Hardware acceleration
Fast computers have always enablednewadvances, although
often not in the domain the computers were originally
designed for. The same can be said of GPUs that are
fueling most development in deep learning and AI. As
name implies, Graphics Processing Units were originally
designed for rendering 3D scenes consisting of large collec-
tions of texture-mapped triangles. As the sophistication of
rendering pipelines grew, GPUs became increasingly pro-
grammable, with little programs called shaders that allowed
highly customized effects in lighting, geometry, and raster-
ization. Researchers and engineers gradually started to use
GPUs to accelerate non-graphics computation, giving rise
to General-purpose GPU (GPGPU) techniques [35]. Early
GPGPU programming essentially expressed algorithms in
terms of Computer Graphics commands, whichmeant hav-
ing to work within the limitations of an API that was
not designed for general purpose computation. Eventu-
ally, compilers designed for expressing parallel computa-
tion on GPUs appeared [36], and evolved into widely-used
libraries like CUDA [37] and OpenCL [38]. Today GPUs
are commonly used as SIMD parallel computers power-
ing deep learning, cryptocurrencies, and molecular simu-
lations.

Today another class of new computation devices and
processing units is emerging: the AI accelerator. The
best known example is Google’s Tensor Processing Unit
(TPU) [39], which was motivated by the realization that if
all of their users started using voice recognition cloud ser-
vices for 3min a day, Google would have to double their
data center capacity. The first version of the TPU is essen-
tially designed to accelerate matrix multiply-add operations
on matrices and tensors.

Figure 9 shows a taxonomy of computational hardware
devices broadly grouped by power consumption (Horizon-
tal axis) and raw computational ability (Vertical axis). The
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the artificial intelligence renaissance 7

Fig. 9. A taxonomy of hardware platforms for AI.

left-hand column represents the devices consuming hun-
dreds of Watts, typically deployed in cloud data center
servers anddesktop computers. In the lower left-handquad-
rant are the traditional CPUs that perform tens of billions of
operations (Gigaops). GPUs sitting in the upper left-hand
quadrant are equally, perhaps even more power hungry,
but are capable of delivering computational power in the
Teraops range. On the right-hand side we have the devices
that consume less power, and are often used in battery-
operated systems. In the lower right-hand quadrant are the
energy efficient devices available today, typically in the form
of Digital Signal Processors (DSPs). In each quadrant, we
also listed a representative problem solved by computers in
each class. CPUs which powered Deep Blue, were able to
defeat Gary Kasparov, the world champion in International
Chess, with 11 Gigaops.AlphaGo needed GPUs and TPUs to
outplay Ke Jie, the world champion inGo, with an estimated
100 Teraops. DSPs consuming around 1Wwere able to bring
to life an aerial drone that is able to respond to hand ges-
ture commands and take selfies [40]. The upper right-hand
quadrant is where AI accelerators will be, delivering 10 s
of Teraops while consuming 10W or less. We believe these
AI accelerators [41] (Fig. 11) will be instrumental in realiz-
ing self-driving cars and ushering in the age of Intelligent
Internet of Things (I 2oT ).

I V . APPL ICAT IONS

With the recent advancements in deep learning and AI,
many longstanding problems can now be solved reliably
and are finally fit for deployment in real-world applications.
These advances seem to reduce the many traditional AI
problems into a matter of data collection and labeling - yet
simply treating the neural network as a black box is not
enough. For example, there may be several choices for the
type of label or type of feature input to the network, or some
underlying meaning to the semantic function of interme-
diate layers - this is better guided by some understanding
of classical literature. We review a number of these rep-
resentative examples of success in the AI Renaissance and
point out where careful integration of classical ideas have
considerably boosted performance or aided understanding.

A) Object recognition
Perhaps the best illustration of what deep neural nets can do
is object recognition. As the central problem in the IMA-
GENET challenge [13], it has inspired AlexNet [12], the
network that originally sparked the AI Renaissance, fol-
lowed by VGG [17] and ResNet [21], as the AI community
converges around very DNN. Fig. 10 shows an object recog-
nition demonstration powered by a VGG network running
on NovuMind’s AI Processor prototype.

Networks trained to classify IMAGENET images often
can also be used to provide the initial set of weights for
networks that are meant for other purposes, and have been
shown to converge faster thanwhen initializedwith random
numbers.

Due to the comprehensiveness of the IMAGENET data
set, neural networks trained with this data set to a high
degree of accuracy on the object recognition task can be
considered to have learned to extract features that are useful
in other visual tasks. For example, if we look at the output
of the second-to-last fully connected layer in the VGG net-
work, it is an abstract descriptor for the input image and
for example one way to determine if two images are simi-
lar would be to compute the VGG feature vector for both
images and then finding the L 2 distance or dot product
between the two vectors [42].

B) Face recognition
One domain where the abstract feature vector approach has
been successfully applied is face recognition [43, 44]. Given

Fig. 10. Object recognition: A VGG network running on NovuMind’s AI pro-
cessor FPGA prototype performs real time object recognition. Upper left-hand
corner lists the top-5 recognition results.

Fig. 11. Face recognition on NovuMind’s AI processor FPGA prototype run-
ning in real time.
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8 kar-han tan and boon pang lim

Fig. 12. NovuMind Unconstrained Face recognition system identifies employees and visitors in real time.

Fig. 13. Object detection with convolutional neural networks. A network trained to detect and recognize traffic signs may have applications in autonomous driving.

a large enough set of face images labeled with the identi-
fication of the people whose faces appear in the images, a
neural network can be trained to extract a feature vector
descriptor of faces, and classification algorithms can work
with the vectors as points in a high-dimensional space. If
the data set captured sufficient variations in pose, lighting,
expression, etc., the resulting feature vector will accord-
ingly be invariant to these factors to a large extent. Coupled
with face detection capabilities, it is now possible to build
face recognition systems that are capable of recognizing
faces under fully unconstrained settings (Fig. 12), without
the need of subjects to even be aware of the recognition
system.

C) Object detection
If we think of object recognition neural networks as
consisting of a deep convolutional feature extractor fol-
lowed by a feature vector classifier, object detection can
be performed by replacing the classifier by a stage that
estimates the spatial bounding boxes of objects of differ-
ent kinds in images [45, 46]. Object detectors have many

applications, including in autonomous driving (Fig. 13)
and face detectors are integral parts of face recognition
systems.

The ability to estimate body pose [47] directly from
monocular images is also a dramatic example of success for
DNN. Until recently, the only reliable way to track body
pose was with depth cameras that employed structured
light or time-of-flight sensors, which are limited mostly to
indoors or short-range settings.

D) Semantic segmentation
Segmentation is another long-standing problem in com-
puter vision that has been successfully addressed by
DNN segmentation [48], partly because the ability of DNN
to recognize many different kinds of objects has made it
tractable to pose the previously ill-posed ‘segmentation
problem’ as that of labeling pixels corresponding to the
physical objects in images. Since CNN feature maps tend
to be much lower in spatial resolution, deconvolution or
transposed convolution layers are used to generate higher
resolution segmentation maps.
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Fig. 14. Automatic colorizationwith aDNN[52]. (a) Inputmonochrome image.
(b) Output colorized image.

Instance aware segmentation [49] is a further refinement
of the problemwheremultiple occurrences of the same type
of object are separately segmented. One way to achieve this
is essentially to perform object detection, and then segment
within the bounding box of each detected object [50]. Seg-
mentation for specific purposes, like portraits [51] have also
been demonstrated.

E) Colorization
The ability to label each pixel in an image semantically by
its physical object class has also made it possible to design
deep networks that perform colorization [52], the problem
of generating a plausible color image from a monochrome
input image. Fig. 14 shows an example.

F) 3D depth
If a DNN can estimate the RGB color for each pixel in
an image, can it also estimate depth? Remarkably, it has
also been demonstrated that it is possible to generate a rea-
sonable depth map from a single monocular image [53]
(Fig. 15). While the depth map generated is not as good as
state of the art 3D reconstruction methods, it can already
be useful for human–computer interactions where having
absolute accurate depth is not critical, and can be refined
by image fusion [54, 55]. The monocular depth estima-
tion algorithm has also been shown to be a good initial

estimate in a SLAM algorithm [56], helping to overcome
challenges where scenes have large featureless regions like
interior walls in many office buildings.

G) Image synthesis
In addition to estimating quantities and recognizing object
classes, modern neural networks can also be designed and
trained to output images that are meant for human view-
ing. A very popular application is stylization, where an input
image is re-rendered to take on distinctive characteristics of
another [57, 58]. For example, one can re-render pictures of
friends, city scenes, or the house cat to look like paintings
by Vincent van Gogh, Piet Mondrian, or Pablo Picasso.

An interesting problem in training this kind of neural
network is how the error signals can be generated during
backpropagation: for a classification or estimation problem
it is straightforward for a human being to provide the right
answer, but how can labels for abstract or complex criteria
like whether an image looks like a van Gogh painting be
generated? One way to do it is with another neural network!
WithGenerative Adversarial Networks [59, 60], in the train-
ing stage, a discriminator network is appended to the end
of the generator network one is training. The discriminator
network takes as input the result of the generator network,
and decides whether the input satisfies the criterion, for
example whether the input image is a Picasso painting or
not. This discriminator network essentially turns the com-
plex criterion into a binary classification problem, and can
be trained with human-labeled data sets (say of Picasso
paintings labeled 1 and natural images labeled 0). Once the
generator network is trained to output images that consis-
tently passes the discriminator’s classifier, the discriminator
network can be discarded.

H) Reinforcement learning and tracking
Deep reinforcement learning is a method that trains a DNN
to learn to predict the next action for a system or algorithm
to take in order to achieve a longer-term goal. It was most
famously used to train the AlphaGo [10] program that
bested human world champions at the ancient board game.
In the Go example, each game has a sequence of moves by
both players leading up to the final outcome.Howgood each
move is for each player can be assigned based on the final
outcome, and the goodness for each step throughout the
game can be discounted based on how close to the end of
the game the move is. This way, the neural network can be
thought of as learning a strategy that incorporates consider-
ations for subsequent moves in addition to the immediate
configuration.

This approach of learning a strategy for taking actions
has also been applied to solving the problemof tracking [61],
where the decision for where to move the bounding box for
the object being tracked is formulated as a strategy to be
learned with reinforcement learning.

Reinforcement learning can also be used in other types
of problems involving turn-taking situations – such as in
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Fig. 15. Monocular depth estimation with a DNN. (Top) Input RGB image. (Bottom) Output depth map in grayscale and pseudo color.

generating dialogue for chatbots from the previous conver-
sation turns [62]. This can be effective in open-dialogue
scenarios like conversational chatbots, in which there may
not necessarily be a task that needs be completed through
the dialogue interaction.

I) Aerial drone control
Aerial drones are set to change the way packages (includ-
ing emergency medical supplies, rescue equipment, or
postal parcels) are being delivered, but indoor navigation
and obstacle avoidance especially in natural environments
remain a challenge. Flight control systems that incorporate
DNN that help drones stay on forest trails where there are
no lane markings have been demonstrated [63] and hold
the promise to enable drones to reach places that are not
possible to reach today.

J) Crossing domains
One of the most interesting class of neural network
advances recently have been algorithms that cross differ-
ent domains. Perhaps the most impressive results are the
captioning algorithms: generating a sentence that describes
the content of images or video [64, 65], and also algorithms
that take a sentence and synthesize a photorealistic image
that fits the textual description [66]. Extrapolating to the

far future, one can imagine systems where the scripts of
movies or TV programs are transmitted over the air, and the
actual audio-visual content is synthesized from the textual
script, customized for each household depending on who is
viewing the program.

K) Speech recognition
Similar to computer vision, deep learning has impacted
speech and language research in a big way. Up till recently,
accurate, human-level speech recognition performance in
all manners of adverse conditions was considered to be
an unattainable holy grail, with large gaps in performance
identified at the acoustic level [67, 68]. Today, the gap is
closing for some types of speech signals, for instance in rel-
atively clean, telephony conversations on provided topics
(i.e. switchboard) [69].

Neural networks for acoustic modeling were proposed
as early as 1989 in the form of time-delay neural networks
(TDNN [70]. It is, however, only recently that we have
seen good successes with these methods by using larger
datasets, more compute and better training algorithms.
Dong et al. [71], replaced the posterior probabilty estima-
tion component, formerly powered by Gaussian Mixture
Models (GMMs) with feed-forward, fully connected DNN,
and immediately saw a 15 to 20% relative improvement in
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accuracy. Some recent extensions of this used a combina-
tions of different types of neural networks - for instance a
sequence of Convolutional, LSTM, and feed forward Deep
neural network layers (CLDNN) [72], currently give the
best performance all around. Neural networks continue to
proliferate in all areas of speech and language processing,
including speech recognition [71], synthesis [73, 74], speech
enhancement and separation [75], machine translation [76],
and dialogue [77].

The classical ‘beads on a string’ model [78] of speech,
in which we assume that spoken utterances can be gener-
ated by a quasi-stationary stochastic process, naturally gave
rise to the use of Hidden Markov Models [79, 80]. This
approach is frame-synchronous and furthermore decou-
ples the speech recognition into two sub-problems, one of
classifying an incoming speech frame to a correct sound
class (the acoustic model), and modeling of transitions
from one sound to another as well as the likelihood of
word sequences in the language (the language model). This
framework has largely persisted as the dominant approach
until recently – however, we are starting to see novel deep-
learning architectures leapfrog and take over the traditional
approach. Several researchers have proposed point-process
models [81], articulatory models [82, 83], and landmark-
based speech recognition [84]. These methods consider
speech as a sequence of discrete events that do not neces-
sarily occur at regular time intervals – that is we now move
away from a frame synchronous approach to an acoustic
event based approach. These ideas have a stronger foun-
dation from speech science – it would seem plausible that
one does not need to attend to every part of the speech sig-
nal with equal significance, but rather just the key events –
such as release burst in plosives – in order to correctly
identify the uttered speech sound. CTC [32] and its loss
function is often used with recurrent neural nets. In the
CTC approach, a neural network tries to classify speech
sounds at each audio frame, but permit a ‘blank’ symbol to
be emitted at frames which may not significantly contribute
to the speech. In a sense, this is closer to an event detec-
tion sort of a framework, and can be thought of as breaking
away from the frame-synchronous approach. The CTC loss
function, optimizes the network to minimize the Leven-
sthein (minimum edit) distance between classifier output
sequence and the target transcription sequence. The CTC
loss function itself is a direct result of applying a fundamen-
tal understanding of how Baum–Welch (i.e. how classical
speech recognition) works, to improve the training pro-
cess for speech/acoustic neural networks. The later work,
demonstrated that the CTC loss function could be used
with character sequences as targets, paving the way for
so-called end-to-end speech recognition systems [31, 85],
which, unlike traditional approaches, require almost no
additional linguistic knowledge or resources beyond tran-
scribed audio and language. This approach almost com-
pletely cuts out the involvement of linguistics in modern
speech recognition training at the expense of requiring a
few orders of magnitude more data in order to achieve par-
ity in performance. This is a clear indication that careful

application of our understanding of linguistics and neuro-
science, can still have tremendous impact, and it is possible
that we have yet to fully realize how much further we can
push deep learning by appropriately incorporating domain
knowledge.

Even newer paradigms such as sequence-to-sequence
learning [86], completely forgo both frame-synchronous
and event-detection frameworks and simply treat the
speech recognition problem as a translation problem
between audio and actual text. Here, a neural network com-
prises an encoder sub-network that listens and encodes the
audio into an intermediate format, an interemediary net-
work that attends to what it thinks are important parts of
the encoding, and a decoder that decodes by spell-ing it back
into text. This so-called listen, attend, and spell (LAS)model
uses unique types ofDNN toperformeach task. The authors
were able to attain a word error rate of 10.3 on a voice
search task using a language model, not too far from the
best CLDNN systems at 8.0.

L) Speaker adaptation and normalization
Many interesting developments in speech recognition par-
tially result from ‘porting’ concepts from earlier frameworks
into deep learning. For example, discriminative training for
acoustic models, using either the minimum phone error
(MPE) or maximum mutual information (MMI) criterion
is one example [87]. The analogy for this in the hybrid-
DNN frameworkwould be state-levelMinimumBayes’ Risk
(s-MBR) [88], in which the neural network is trained with
a loss function that causes the correct frame-wise state
sequence to stand out over a competing background of
alternatives. Other classical methods have improved speech
recognition, but for which there is no strong analogy in neu-
ral network terms. Speaker adaptation, which deals with
rapidly adjusting a speaker independent acoustic model is
an example. While techniques such as maximum likelihood
linear regression (MLLR) [89], maximum a priori proba-
bility (MAP) adaptation [90], or eigenvoice [91] have been
shown to be very effective, there may not be clear, fully
neural network based analogues. For instance, techniques
such Learning Hidden Unit Contributions (LHUC) [92]
work directly on the weight matrices of the neural networks
instead of actually using a network layer to implement
the ideas. However, other methods such as i-vector-based
adaptation [93], summarizing speaker neural networks [94]
come close.

Another example is speaker adaptive training [95] which
is a paradigm that explicitly normalizes speaker variabil-
ity during the training process. The subspace GMM [96]
methods which try to explicitly factorize variabilities into
separate vectors, can be thought of as an extension of this.
Consequently, there is no real analogue for these, some
training approaches will in fact use feature-MLLR [97],
a popular classical speaker normalization method to pro-
duce features as inputs to the neural network. These ideas
actually run in direct opposition to current deep learn-
ing paradigms, which prefer to implicitly handle variability
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through aggressive data augmentation and expansion [98],
rather than explicitly handling variability. It is clear that
directly applying analogous concepts from earlier GMM
systems to DNN have yielded some simple but important
improvements to the core technology. Analogies for these
concepts to end to end systems or sequence approaches are
only starting to be explored at this point.

M) Speech signal processing
Even signal-processing in the front-end is not spared from
this relentlessmarch of deep learning. In [99], it was demon-
strated that a neural network can be trained to detect pitch
directly from raw audio samples. The best performing net-
work uses two layers – since the input to each neuron in the
first layer can be thought of as a direct implementation of
an FIR filter, taking the Fourier transform of the weights
gives us a frequency response map, and by sorting the
neurons in the first layer according to the peak frequency
response, it appears that the network is effectively tuning in
to various frequency peaks according to a frequency scale.
After sorting the order of neurons in the first layer by their
tuned peak frequency response, analysis of the second layer
suggests that a set of comb-like filter structures is being
learnt – this demonstrates the ability of the network to con-
verge to a structure almost identical to traditional pitch
tracking signal processing methods. In [100], the authors
showed that a frontend could be learnt that at least matched
the performance of more traditional signal-processing fea-
ture extractors such as Mel-Frequency spectra. Further-
more, they demonstrated that the neural network provided
complementary information to the spectral features. Other
examples of deep learning in the frontend include [101],
which use DNN to perform multichannel beamforming.
Neural networks can now solve some speech enhancement
problems as well as classical approaches, such as learning
of time-frequency masks in order to do speech separation
[75], or dereverberation [102]. The attractiveness of deep
learning here is that the computation becomes very sim-
ple, since now every stage of processing can be done by
neural networks. Even so, it still seems likely that clas-
sical methods still have much to contribute in terms of
guiding our search for better ANN-based techniques and
topologies.

N) Language modeling
Language modeling can be naively thought of as building
a model to predict the next word given the history of past
words in a sentence. It has key application in many areas of
speech and language processing, including speech recogni-
tion [103], machine translation [104], and natural language
understanding. Despite the many possible words choices
available in a language, say English, the next word choice
when predictingwords froma sentence fragment, is actually
quite limited once we consider previous context. Perplexity,
given by

P P L � 2H(X) = 2−∑X p(X)log2 p(X), (1)

measures this directly. Here X is a discrete random vari-
able that can assume one out of many possible words in a
vocabulary V , and we can treat the production of words in
a sentence as a random process. Often-times perplexity of
a language model can be estimated by first computing the
cross-entropy Ĥ(X) of the language model over a held out
test data set.

Recent advances using neural networks have allowed
very low-perplexity language models to be built. Both
LSTMs and GRUs have been shown to model language
very effectively. This is evidenced by recent works with the
Google Billion Word Benchmark, in which a combination
of RNN and Maximum Entropy (MaxEnt) models – key
results are reproduced in Fig. 16 – have demonstrated a dra-
matic reduction in word perplexity over n-gram approaches
[105]. The reduction in perplexity from over 237 (K-N
smoothed n-grams) to roughly 50, should really be con-
sidered an improvement of several orders of magnitude
considering the exponentiation in the perplexity equation,
and that is made possible by advances in deep recurrent
neural networks.

Large neural network language models still remain very
difficult to train – the best models have many more param-
eters compared with n-gram models and thus necessarily
require larger datasets for training. Some advances seek to
reduce the number of parameters required, either through
combining character-based RNNs [106, 107], or through
factorization of the weight matrices of the model [108].
Such models have reportedly reached perplexity of 23.7 on

Fig. 16. Comparison of n-gram and RNN-based language models.[105].
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the same billion-word benchmark set. RNNs also have the
drawback that the recurrent links create very tight tem-
poral dependencies, and thus make them difficult to par-
allelize effectively on commodity deep learning hardware
(i.e. GPUs). An alternative might be to use deep convolu-
tional networks – gated-CNNs have been shown to be able
to mimic very long span n-gram modeling (i.e. 13), that
tremendously lowers perplexity [109]. Typically, n-grams
language models require a lot memory to train and min-
imize, this gives more memory efficient way of building
language models.

Despite these advances, ensemble methods fusing con-
tributions from both RNN and n-gram models still give
tremendous improvement over purely neural models – one
of the best ensemble methods reported to date fuse skip
n-grams with RNNs [110]. This is evidence that despite
the tremendous improvements to language modeling made
possible via deep learning, we neither forget nor under-
estimate the remaining potential for classical methods to
contribute to the field. Perhaps, in this new era of artifi-
cial intelligence, in equalizing the playing field by providing
accessibility to simple-to-use deep learning frameworks,
domain knowledge is more valuable than ever.

O) Speech synthesis
Speech synthesis deals with the problem of vocalizing text.
Figure 17 shows an overview for a speech synthesis system.
The frontend preprocesses raw text to generate linguistic
features which drive a backend waveform generator.

Conventional methods prior to deep learning can be
categorized into a main few – articulatory synthesis based
on our understanding of human speech production [112],
formant synthesis [113] based on the source-filter model
of speech production, concatenative synthesis using unit
selection [114], and recently statistical parametric speech

synthesis [115]. Up till recent times, unit selection has dom-
inated as the most practical method for natural sounding
synthesis – but the discovery of wavenets [116] in 2016 dra-
matically changed the synthesis landscape – for the first
time a generative model of speech that works directly in
the time-domain instead of frequency domain has resulted
more natural sounding synthesized speech as opposed to
the best competing unit-selection approaches.

In [117], a neural network was trained to generate dis-
tinctive features from text, which are in turn used to drive a
formant synthesizer.

Wavenet is a generative model of audio waveforms [116]
built using CNNs. It can be used as part of the synthesis
backend. It directly models the conditional probability of
the next sample given previous samples, and is able to learn
a neural mapping that spans a long temporal context by
using an exponentially increasing stride across convolution
layers. This structure is shown in Fig. 18.

The time dilated structure of wavenet also lends itself
to an elegant caching-based optimization that allows the
network to be evaluated quickly [118].

Nontheless, synthesis systems still rely onmany disparate
components, which deep neural nets are starting to take
over individual parts of. Perhaps the most extreme example
of this are theDeepVoice andDeepVoice 2 systems [119, 120]
in which every single component is implemented as a neu-
ral network, some of which are separately pretrained with
linguistic data (Fig. 19).

Fully end-to-end synthesis using on attention-based
encoder-decoder sequence to sequence models were also
independently proposed in [121, 122]. These systems do not
rely on external linguistic knowledge, but at the same time it
reduces the synthesis problem back into a black box, mean-
ing engineering optimizations and bugfixes becomedifficult
to implement. As of now, we certainly have a long way to go
in applying deep learning to speech synthesis.

Fig. 17. Block diagram for text to speech synthesis systems. (from [111]) .

Fig. 18. Causal dilated CNNs used in WaveNet [116].
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Fig. 19. Neural network equivalents for the acoustic, duration, and pitch models in the DeepVoice systems (from [120]).

V . CHALLENGES

As we have seen, the scientific and engineering community
have made giant strides in advancing the state of AI. There
remains significant challenges that need sustained research
and development to address.

A) Understanding DNN
Perhaps one of the biggest source of skepticism for the
success of DNN is that there is relatively little theoretical
understanding of why they work, and as a result much of
the progress has relied heavily on empirical trial-and-error
experiments guided by intuition. Researchers have started
to study DNN from a more theoretical approach. One of
the intriguing studies [123] show that sufficiently DNN are
capable of learning randomly labeled, randomly generated
images, bring up questions on how DNN generalize, or
whether they simply remember and recall everything. The
Information Bottleneck [124] theory argues that forgetting
is just as important as remembering.

B) Optimizing training for recurrent
architectures
The ability to maximally utilize computing resources dur-
ing training directly impacts the scale of the possible solu-
tion space in multiple aspects. For convolutional networks,
researchers have successfully designed distributed algo-
rithms that take full advantage of large-scale hardware
setups, shortening the training of an IMAGENET neural
network from several weeks to an hour. Training recur-
rent and LSTM neural networks remain a much less effi-
cient process due to the need to expand the network in
time, significantly raising the complexity of the training
algorithm. Recently, researchers have stated to find ways to
remove recurrences altogether to solve problems involving
sequences, with promising, novel architectures [125].

C) Malicious attacks
Given a known neural network, researchers have shown
that it is possible to synthesize images that ‘trick’ the neural

network into erroneous responses. More worrisome is that
Adversarial examples [126] can be constructed such that if
the image is perturbed slightly the neural networkmight not
be able to classify it correctly even though the image looks
the same as before for human observer. This also suggests
that there is still significant brittleness in neural networks
that are still not fully understood, and it may be possible for
malicious parties to exploit this weakness.

D) Challenges in natural language processing
Many classical methods exist where there is no strong ana-
logue in neural network terms. For example in speech
recognition, speaker adaptation, and speaker adaptive
training [95] are classical methods that normalize speaker
variability. Currently there are no real analogues in neural
networks that can quickly adapt (less than a few seconds)
to the characteristics of the individual speaker. This itself is
an indication that deep learning still has much to learn and
follow from classical ideas.

Other challenging examples are problems in speech and
language in which there is no good economical source of
large volume data. They are naturally difficult for deep
learning, in which having large datasets is crucial to the
approach. One example is text normalization – this is neces-
sary precursor stage to synthesis, one example might be to
render orthographies of non-standard words such as 6ft,
into a word sequence representing how they should actually
be read out (e.g. six feet) [127]. This problem presents
a difficulty for deep learning, because firstly, the examples
from which to learn such normalizations are very sparse
in available large corpora. Second of all, problems such as
speech to text ormachine translation have natural economic
reasons for generating the data – for example, users will
pay for closed-captioning of videos, which generate human
transcripts of audio as a by-product – which are in turn
good labeled data for training speech recognizers. Unlike
these problems, there is no economic reason for generat-
ing labeled data for text normalization, except to train a
text normalization system itself. Other examples for such
problems include training speech recognizers and keyword
spotters for low-resource languages, in which notmore than
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a few hours of labeled speech can be reasonably obtained, or
for example for training speech recognizers for whispered
speech, inwhich there is no economic reason to record large
volumes of whispered speech except as part of a need to
train a quiet/soft-talking speech recognizer.

V I . IMPACT AND CONCLUS IONS

Beyond yielding good solutions tomany longstanding prob-
lems, the AI Renaissance is also accompanied, and certainly
helped, by a number of positive development in the global
scientific and engineering community.

(i) Statistical Testing. One big reason DNN results are
convincing is that they are typically trained and tested
on large, real-world data sets. It is now virtually a
requirement for all newly proposed algorithms and
methods to be tested on large data sets, clearly a pos-
itive development that introduces an additional degree
of rigor to the community.

(ii) Open Source. Another pervasive, positive develop-
ment is the open sharing of computer source code and
data sets, from comprehensive deep learning frame-
works like Tensorflow and Caffe to the implementa-
tion of algorithms and neural networks that accompany
technical reports. This facilitates full reproduction of
results reported in publications, and also accelerates
understanding of the algorithms since the source codes
provide implementation details that are not always
appropriate or even possible to fully describe in a tech-
nical paper. Open data sets have also made it possi-
ble for researchers to reproduce reported results, and
also using the data sets as benchmarks for comparing
algorithms.

(iii) Open Access. A different but equally important kind
of sharing is making technical papers available freely
in an Open Access fashion, with arXiv being the most
representative repository for scientific papers in the
deep learning and computer vision community. While
this has made it difficult to enforce anonymity rules
in traditional double-blind peer review, the positive is
that important results are quickly disseminated, often
months ahead of official publication at a conference or
journal. Free and open sharing of ideas clearly benefits
the scientific and engineering community.

(iv) Automated Algorithms Engineering. The training
and validation of neural networks with large data sets
can be thought of as highly automated software engi-
neering for algorithms, effectively allowing software to
be tested with much more comprehensive test cases
than previously possible with manual processes. This
also encourages engineers to incorporate more deep
learning into their algorithm pipeline, to take advan-
tage of automated testing at scale. The adoption of
automated testing even in research laboratories will
also accelerate the transfer of new algorithms from the
laboratory to production.

As encouraging as the AI Renaissance is, we believe that
we have only scratched the surface in what is possible.
As researchers and engineers learn to express the treasure
trove of insights and ideas accumulated over the past few
decades in the new language ofAI anddeep learning,wewill
see even harder problems being solved and new solutions
put into real-world applications, delivering on the promise
of AI.
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