ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331498644

Hands-On Artificial Intelligence for IoT: Expert machine learning and deep
learning techniques for developing smarter [oT systems

Book - January 2019

CITATIONS READS
31 7,068
1 author:

Amita Kapoor
NePeur
75 PUBLICATIONS 488 CITATIONS

SEE PROFILE

All content following this page was uploaded by Amita Kapoor on 22 March 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/331498644_Hands-On_Artificial_Intelligence_for_IoT_Expert_machine_learning_and_deep_learning_techniques_for_developing_smarter_IoT_systems?enrichId=rgreq-277af4f83d0b49b095c979c02f783443-XXX&enrichSource=Y292ZXJQYWdlOzMzMTQ5ODY0NDtBUzo3MzkxMzA0MzQ2NTQyMDhAMTU1MzIzMzgzNjI2Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/331498644_Hands-On_Artificial_Intelligence_for_IoT_Expert_machine_learning_and_deep_learning_techniques_for_developing_smarter_IoT_systems?enrichId=rgreq-277af4f83d0b49b095c979c02f783443-XXX&enrichSource=Y292ZXJQYWdlOzMzMTQ5ODY0NDtBUzo3MzkxMzA0MzQ2NTQyMDhAMTU1MzIzMzgzNjI2Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-277af4f83d0b49b095c979c02f783443-XXX&enrichSource=Y292ZXJQYWdlOzMzMTQ5ODY0NDtBUzo3MzkxMzA0MzQ2NTQyMDhAMTU1MzIzMzgzNjI2Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amita-Kapoor?enrichId=rgreq-277af4f83d0b49b095c979c02f783443-XXX&enrichSource=Y292ZXJQYWdlOzMzMTQ5ODY0NDtBUzo3MzkxMzA0MzQ2NTQyMDhAMTU1MzIzMzgzNjI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amita-Kapoor?enrichId=rgreq-277af4f83d0b49b095c979c02f783443-XXX&enrichSource=Y292ZXJQYWdlOzMzMTQ5ODY0NDtBUzo3MzkxMzA0MzQ2NTQyMDhAMTU1MzIzMzgzNjI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amita-Kapoor?enrichId=rgreq-277af4f83d0b49b095c979c02f783443-XXX&enrichSource=Y292ZXJQYWdlOzMzMTQ5ODY0NDtBUzo3MzkxMzA0MzQ2NTQyMDhAMTU1MzIzMzgzNjI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amita-Kapoor?enrichId=rgreq-277af4f83d0b49b095c979c02f783443-XXX&enrichSource=Y292ZXJQYWdlOzMzMTQ5ODY0NDtBUzo3MzkxMzA0MzQ2NTQyMDhAMTU1MzIzMzgzNjI2Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Hands-On Artificial Intelligence
for loT

Expert machine learning and deep learning techniques for
developing smarter loT systems

Amita Kapoor

BIRMINGHAM - MUMBAI

Hands-On Artificial Intelligence for loT

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Nelson Morris

Content Development Editor: Karan Thakkar
Technical Editor: Adya Anand

Copy Editor: Safis Editing

Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Jisha Chirayil

Production Coordinator: Arvindkumar Gupta

First published: January 2019
Production reference: 1131015

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-606-7

www.packtpub.com

Dedication

To my friend and mentor Narotam Singh for being my gradient ascent in the dataset called life.
A part of my royalties will go to smilefoundation.org, a non-profit organization based in India
working on welfare projects on education, healthcare, livelihood, and the
empowerment of women in remote villages and slums across the different state of India.

— Amita Kapoor

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Amita Kapoor is an associate professor in the Department of Electronics, SRCASW,
University of Delhi, and has been actively teaching neural networks and artificial
intelligence for the last 20 years. She completed her master's in electronics in 1996 and her
PhD in 2011. During her PhD she was awarded the prestigious DAAD fellowship to pursue
part of her research at the Karlsruhe Institute of Technology, Karlsruhe, Germany. She was
awarded the Best Presentation Award at the Photonics 2008 international conference. She is
an active member of ACM, AAAI IEEE, and INNS. She has co-authored two books. She has
more than 40 publications in international journals and conferences. Her present research
areas include machine learning, artificial intelligence, deep reinforcement learning, and
robotics.

[would like to thank Prof Ajit Jaokar, University of Oxford; his IoT course was the
inspiration behind this book. Special thanks to Erin LeDell, Chief Machine Learning
Scientist at H2O.ai for her thoughtful suggestions. I would also like to thank Armando
Fandango, Narotam Singh, Ruben Olivas, and Hector Velarde for their input.

I am grateful for the support of my colleagues and students. Last but not least, I would like
to thank the entire Packt team, with a special mention to Tushar Gupta, Karan Thakkar,
and Adya Anand for their continuous motivation.

About the reviewers

Hector Duran Lopez Velarde received a B.Che.E. from UPAEP and an MSc in automation
and artificial intelligence from Tecnologico de Monterrey ITESM, Mexico, in 2000. He has
worked as a controls and automation engineer for companies such as Honeywell and
General Electric, among others. He also has participated in several research projects as a
technical lead. His experience in software development, process simulation, artificial
intelligence, and industrial automation has led him to the current development of
complete IoT solutions in the automotive, textile, and pharmaceutical industries. He is
currently working on a research center of IoT.

Huge thanks to my wife, Yaz, and to my children, Ivana and Hector, for all their support and
love.

Ruben Oliva Ramos is a computer engineer from Tecnologico of Leén Institute, with a
master's degree in computer and electronics systems engineering with a networking
specialization from the University of Salle Bajio. He has more than 5 years' experience of
developing web apps to control and monitor devices connected to Arduino and Raspberry
Pi, using web frameworks and cloud services to build IoT applications. He has authored
Raspberry Pi 3 Home Automation Projects, Internet of Things Programming with JavaScript,
Advanced Analytics with R and Tableau, and SciPy Recipes for Packt.

I would like to thank my savior and lord, Jesus Christ for giving me strength and courage
to pursue this project, to my dearest wife, Mayte, our two lovely sons, Ruben and Dario,
To my dear father (Ruben), my dearest mom (Rosalia), my brother (Juan Tomas), and my
sister (Rosalia) whom I love. I'm very grateful with Pack Publishing for giving the
opportunity to collaborate as an author and reviewer, to belong to this honest and
professional team.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface 1
Chapter 1: Principles and Foundations of loT and Al 7
What is loT 1017? 7
loT reference model 10

loT platforms 12

loT verticals 12
Big data and loT 14
Infusion of Al — data science in loT 15
Cross-industry standard process for data mining 17

Al platforms and loT platforms 18
Tools used in this book 20
TensorFlow 20
Keras 22
Datasets 22
Combined cycle power plant 22

Wine quality dataset 23

Air quality data 24
Summary 25
Chapter 2: Data Access and Distributed Processing for loT 26
TXT format 26
Using TXT files in Python 26
CSV format 28
Working with CSV files with the csv module 28
Working with CSV files with the pandas module 31
Working with CSV files with the NumPy module 32
XLSX format 33
Using OpenPyXI for XLSX files 34
Using pandas with XLSX files 35
Working with the JSON format 36
Using JSON files with the JSON module 36
JSON files with the pandas module 37
HDF5 format 37
Using HDF5 with PyTables 38
Using HDF5 with pandas 39
Using HDF5 with hSpy 40
SQL data 41
The SQLite database engine 41

The MySQL database engine 43

Table of Contents

NoSQL data
HDFS

Using hdfs3 with HDFS

Using PyArrow's filesystem interface for HDFS
Summary

Chapter 3: Machine Learning for loT
ML and loT
Learning paradigms
Prediction using linear regression
Electrical power output prediction using regression
Logistic regression for classification
Cross-entropy loss function
Classifying wine using logistic regressor
Classification using support vector machines
Maximum margin hyperplane
Kernel trick
Classifying wine using SVM
Naive Bayes
Gaussian Naive Bayes for wine quality
Decision trees
Decision trees in scikit
Decision trees in action
Ensemble learning
Voting classifier
Bagging and pasting
Improving your model - tips and tricks
Feature scaling to resolve uneven data scale
Overfitting
Regularization
Cross-validation
No Free Lunch theory
Hyperparameter tuning and grid search
Summary

Chapter 4: Deep Learning for loT
Deep learning 101
Deep learning—why now?
Artificial neuron
Modelling single neuron in TensorFlow
Multilayered perceptrons for regression and classification
Backpropagation algorithm
Energy output prediction using MLPs in TensorFlow
Wine quality classification using MLPs in TensorFlow
Convolutional neural networks

44
46
47
47
48

49
49
50
51
53
56
57
58
60
62
64
65
68
69
71
74
75
77
78
80
80
81
81

82
83
83
84

85
85
87
88
93
99
101
103
107
112

[ii]

Table of Contents

Different layers of CNN
The convolution layer
Pooling layer
Some popular CNN model
LeNet to recognize handwritten digits
Recurrent neural networks
Long short-term memory
Gated recurrent unit
Autoencoders
Denoising autoencoders
Variational autoencoders
Summary

Chapter 5: Genetic Algorithms for loT
Optimization
Deterministic and analytic methods
Gradient descent method
Newton-Raphson method
Natural optimization methods
Simulated annealing
Particle Swarm Optimization
Genetic algorithms
Introduction to genetic algorithms
The genetic algorithm
Crossover
Mutation
Pros and cons
Advantages
Disadvantages
Coding genetic algorithms using Distributed Evolutionary
Algorithms in Python
Guess the word
Genetic algorithm for CNN architecture
Genetic algorithm for LSTM optimization
Summary

Chapter 6: Reinforcement Learning for loT
Introduction
RL terminology
Deep reinforcement learning
Some successful applications
Simulated environments
OpenAl gym
Q-learning
Taxi drop-off using Q-tables
Q-Network
Taxi drop-off using Q-Network

112
112
117
119
120
126
129
133
134
136
137
137

139
139
141
142
143
145
145
146
146
147
149
151
153
154
154
154

155
155
162
170
173

175
175
177
180
182
183
183
187
190
193
194

[iii]

Table of Contents

DQN to play an Atari game
Double DQN
Duelling DQN
Policy gradients
Why policy gradients?
Pong using policy gradients
The actor-critic algorithm
Summary

Chapter 7: Generative Models for loT
Introduction
Generating images using VAEs
VAEs in TensorFlow
GANs
Implementing vanilla GAN in TensorFlow
Deep Convolutional GANs
Variants of GAN and its cool applications
Cycle GAN
Applications of GANs
Summary

Chapter 8: Distributed Al for loT
Introduction
Spark components and its working
Apache MLlIib
Regression in MLIib
Classification in MLlIib
Transfer learning using SparkDL
Introducing H20.ai
H20 AutoML
Regression in H20
Classification in H20
Summary

Chapter 9: Personal and Home loT
Personal loT
SuperShoes by MIT
Continuous glucose monitoring
Hypoglycemia prediction using CGM data
Heart monitor
Digital assistants
loT and smart homes
Human activity recognition
HAR using wearable sensors
HAR from videos
Smart lighting

197
207
207
209
210
210
216
218

219
219
220
223
229
231
236
242
242
246

246

248
248
249
251
251
257
260
266
266
267
274
277

278
278
279
280
281
285
288
289
290
290
296
297

[iv]

Table of Contents

Home surveillance
Summary

Chapter 10: Al for the Industrial loT
Introduction to Al-powered Industrial loT
Some interesting use cases
Predictive maintenance using Al
Predictive maintenance using Long Short-Term Memory
Predictive maintenance advantages and disadvantages
Electrical load forecasting in industry
STLF using LSTM
Summary

Chapter 11: Al for Smart Cities loT
Why we need smart cities?
Components of a smart city
Smart traffic management
Smart parking
Smart waste management
Smart policing
Smart lighting
Smart governance
Adapting loT for smart cities and the necessary steps
Cities with open data
Atlanta city Metropolitan Atlanta Rapid Transit Authority data
Chicago Array of Things data
Detecting crime using San Francisco crime data
Challenges and benefits
Summary

Chapter 12: Combining It All Together
Processing different types of data
Time series modeling
Preprocessing textual data
Data augmentation for images
Handling videos files
Audio files as input data
Computing in cloud
AWS
Google Cloud platform
Microsoft Azure
Summary

Index

299
299

301
301
303
304
305
318
318
319
323

324
324
326
327
328
329
330
330
331
331
333
333
334
335
339
339

340
340
340
349
351
355
357
361
361
362
362
362

363

[v]

Preface

The mission of this book is to enable the reader to build Al-enabled IoT applications. With
the surge in IoT devices, there are many applications that use data science and analytics to
utilize the terabyte of data generated. However, these applications do not address the
challenge of continually discovering patterns in IoT data. In this book, we cover the various
aspects of Al theory and implementation that the reader can utilize to make their IoT
solutions smarter by implementing Al techniques.

The reader starts by learning the basics of Al and IoT devices and how to read IoT data
from various sources and streams. Then we introduce various ways to implement Al with
examples in TensorFlow, scikit learn, and Keras. The topics covered include machine
learning, deep learning, genetic algorithms, reinforcement learning, and generative
adversarial networks. We also show the reader how to implement Al using distributed
technologies and on the cloud. Once the reader is familiar with Al techniques, then we
introduce various techniques for different kinds of data generated and consumed by IoT
devices, such as time series, images, audio, video, text, and speech.

After explaining various Al techniques on various kinds of IoT data, finally, we share some
case studies with the reader from the four major categories of IoT solutions: personal IoT,
home IoT, industrial IoT, and smart city IoT.

Who this book is for

The audience for this book is anyone who has a basic knowledge of developing IoT
applications and Python and wants to make their IoT applications smarter by applying Al
techniques. This audience may include the following people:

e JoT practitioners who already know how to build IoT systems, but now they
want to implement Al to make their IoT solution smart.

e Data science practitioners who have been building analytics with IoT platforms,
but now they want to transition from IoT analytics to IoT Al thus making their
IoT solutions smarter.

e Software engineers who want to develop Al-based solutions for smart IoT
devices.

Preface

e Embedded system engineers looking to bring smartness and intelligence to their
products.

What this book covers

Chapter 1, Principles and Foundations of IoT and Al, introduces the basic concepts IoT, Al,
and data science. We end the chapter with an introduction to the tools and datasets we will
be using in the book.

Chapter 2, Data Access and Distributed Processing for IoT, covers various methods of
accessing data from various data sources, such as files, databases, distributed data stores,
and streaming data.

Chapter 3, Machine Learning for IoT, covers the various aspects of machine learning, such as
supervised, unsupervised, and reinforcement learning for IoT. The chapter ends with tips
and tricks to improve your models' performance.

Chapter 4, Deep Learning for IoT, explores the various aspects of deep learning, such as
MLP, CNN, RNN, and autoencoders for IoT. It also introduces various frameworks for
deep learning.

Chapter 5, Genetic Algorithms for IoT, discusses optimization and different evolutionary
techniques employed for optimization with an emphasis on genetic algorithms.

Chapter 6, Reinforcement Learning for IoT, introduces the concepts of reinforcement learning,
such as policy gradients and Q-networks. We cover how to implement deep Q networks
using TensorFlow and learn some cool real-world problems where reinforcement learning
can be applied.

Chapter 7, Generative Models for IoT, introduces the concepts of adversarial and generative
learning. We cover how to implement GAN, DCGAN, and CycleGAN using TensorFlow,
and also look at their real-life applications.

Chapter 8, Distributed Al for IoT, covers how to leverage machine learning in distributed
mode for IoT applications.

Chapter 9, Personal and Home and IoT, goes over some exciting personal and home
applications of IoT.

Chapter 10, Al for Industrial IoT, explains how to apply the concepts learned in this book to
two case studies with industrial IoT data.

[2]

Preface

Chapter 11, Al for Smart Cities IoT, explains how to apply the concepts learned in this book
to IoT data generated from smart cities.

Chapter 12, Combining It All Together, covers how to pre-process textual, image, video, and
audio data before feeding it to models. It also introduces time series data.

To get the most out of this book

To get the most out of this book, download the examples code from the GitHub repository
and practice with the Jupyter Notebooks provided.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

= LN

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT. We
also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

[31]

Preface

http://www.packtpub.com/sites/default/files/downloads/9781788836067_ColorImages
.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This declares two placeholders with the names A and B; the arguments to

the t £.placeholder method specify that the placeholders are of the f10at 32 datatype.”

[4]

Preface

A block of code is set as follows:

Declare placeholders for the two matrices
A = tf.placeholder(tf.float32, None, name='A")
B = tf.placeholder(tf.float32, None, name='B')

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"At the bottom of the stack, we have the device layer, also called the perception layer."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

[5]

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

[6]

Principles and Foundations of
loT and Al

Congratulations on purchasing this book; it suggests that you're keenly interested in
keeping yourself updated with the recent advancements in technology. This book deals
with the three big trends in the current business scenario, Internet of Things (IoT), big
data, and Artificial Intelligence (AI). The exponential growth of the number of devices
connected to the internet and the exponential volume of data created by them necessitates
the use of the analytical and predictive techniques of Al and deep learning (DL). This book
specifically targets the third component, the various analytical and predictive methods or
models available in the field of Al for the big data generated by IoT.

This chapter will briefly introduce you to these three trends and will expand on how they're
interdependent. The data generated by IoT devices is uploaded to the cloud, hence you'll
also be introduced to the various IoT cloud platforms and the data services they offer.

This chapter will cover the following points:

e Knowing what's a thing in IoT, what devices constitute things, what're the
different IoT platforms, and what's an IoT vertical

e Knowing what's big data and understanding how the amount of data generated
by IoT lies in the range of big data

¢ Understanding how and why Al can be useful for making sense of the
voluminous data generated by IoT

e With the help of an illustration, understanding how IoT, big data, and Al
together can help shape a better world

e Learning about some of the tools that would be needed to perform the analysis

What is loT 101?

Principles and Foundations of IoT and Al Chapter 1

The term IoT was coined by Kevin Ashton in 1999. At that time, most of the data fed to
computers were generated by humans; he proposed that the best way would be for
computers to take data directly, without any intervention from humans. And so he
proposed things such as RFID and sensors, which will gather data, should be connected to
the network and feed directly to the computer.

You can read the complete article where Ashton talks about what he
means by IoT here: http://www.itrco.jp/libraries/RFIDjournal—-
That%20Internet%$200f%20Things%20Thing.pdf.

Today IoT, (also called the internet of everything and sometimes fog network), refers to a
wide range of things such as sensors, actuators, and smartphones connected to the internet.
These things can be anything: a person with a wearable device (or even mobile phone), an
RFID-tagged animal, or even our day-to-day devices such as a refrigerator, washing
machine, or even a coffee machine. These things can be physical things—that is, things that
exist in the physical world and can be sensed, actuated, and connected—or of the
information world (virtual thing)—that is, things that aren't tangibly present but exist as
information (data) and can be stored, processed, and accessed. These things necessarily
have the ability to communicate directly with the internet; optionally, they might have the
potentiality of sensing, actuation, data capture, data storage, and data processing.

The International Telecommunication Unit (ITU), a United Nations agency, defines IoT
as: a global infrastructure for the information society, enabling advanced services by interconnecting
(physical and virtual) things based on existing and evolving interoperable information and
communication technologies. You can learn more at https://www.itu.int/en/ITU-T/gsi/
iot/Pages/default.aspx.

The wide expanse of ICT already provided us with communication at any time or any
place, the IoT added a new dimension ANY THING communication:

[81]

Principles and Foundations of IoT and Al Chapter 1

ANY TIME

communication

) B.ay + At the computer
* Night
* On the move * Outdoor
* Indoor (away from the
computer)

ANY PLACE

communication

+ Between Computers
ANY THING * Thing to thing

communication * Human to thing

* Human to Human

New dimension introduced in IoT (adapted from b-ITU-T Y.2060 report)

It's predicted that IoT as technology will have a far-reaching impact on people and the
society we live in. To give you a glimpse of its far-reaching effects, consider the following
scenarios:

¢ You, like me, live in a high rise building and are very fond of plants. With lots of
effort and care, you've made a small indoor garden of your own using potted
plants. Your boss asks you to go for a week-long trip, and you're worried your
plants won't survive for a week without water. The IoT solution is to add soil
moisture sensors to your plants, connect them to the internet, and add actuators
to remotely switch on or off the water supply and artificial sunlight. Now, you
can be anywhere in the world, but your plants won't die, and you can check the
individual plant's soil moisture condition and water it as needed.

¢ You had a very tiring day at the office; you just want to go home and have

[91]

Principles and Foundations of IoT and Al Chapter 1

someone make you coffee, prepare your bed, and heat up water for a bath, but
sadly you're home alone. Not anymore; IoT can help. Your IoT-enabled home
assistant can prepare the right flavor coffee from the coffee machine, order your
smart water heater to switch on and maintain the water temperature exactly the
way you want, and ask your smart air conditioner to switch on and cool the
room.

The choices are limited only by your imagination. The two preceding scenarios correspond
to consumer IoT—the IoT with focus on consumer-oriented applications. There also exists a
large scope of Industry IoT (IIoT) where manufacturers and industries optimize processes
and implement remote monitoring capabilities to increase productivity and efficiency. In
this book, you'll find the hands-on experience with both IoT applications.

loT reference model

Just like the OSI reference model for the internet, IoT architecture is defined through six
layers: four horizontal layers and two vertical layers. The two vertical layers are
Management and Security and they're spread over all four horizontal layers, as seen in the
following diagram:

[10]

Principles and Foundations of IoT and Al

Chapter 1

Application
Layer

Service Layer

:
:
s

Network Layer

Device Layer

Applications Provided

Smart Smart
Farming City

Smart
Health

Database and Processing

=

Medium and Technology

_—>
@ @ =

Information
Processing

Ubiquitous
Computing

ToT layers

Device Layer: At the bottom of the stack, we have the device layer, also called the
perception layer. This layer contains the physical things needed to sense or control the
physical world and acquire data (perceive the physical world). The existing hardware such
as sensors, RFID, and actuators constitutes the perception layer.

Network Layer: This layer provides the networking support and transfer of data over
either wired or wireless network. The layer securely transmits the information from the
devices in the device layer to the information processing system. Both transmission
Medium and Technology are part of the networking layer. Examples include 3G, UMTS,

ZigBee, Bluetooth, Wi-Fi, and so on.

Service Layer: This layer is responsible for service management. It receives information

[11]

Principles and Foundations of IoT and Al Chapter 1

from the network layer, stores it into the database, processes that information, and can
make an automatic decision based on the results.

Application Layer: This layer manages the applications dependent upon the information
processed in the service layer. There's a wide range of applications that can be implemented
by IoT: smart cities, smart farming, and smart homes, to name a few.

loT platforms

Information from the network layer is often managed with the help of IoT platforms. Many
companies today provide IoT platform services, where they help not only with data but
also enable seamless integration with different hardware. Since it functions as a mediator
between the hardware and application layer, IoT platforms are also referred to as IoT
middleware and are part of the service layer in the IoT reference stack. IoT platforms
provide the ability to connect and communicate with things from anywhere in the world. In
this book, we'll briefly cover some popular IoT platforms such as the Google Cloud
Platform, Azure IoT, Amazon AWS IoT, Predix, and H20.

You can select which IoT platform is best for you based on the following criteria:

e Scalability: Addition and deletion of new devices to the existing IoT network
should be possible

 Ease of use: The system should be perfectly working and delivering all its
specifications with minimum intervention

e Third party integration: Heterogeneous devices and protocols should be able to
inter-network with each other

e Deployment options: It should be workable on a broad variety of hardware
devices and software platforms

e Data security: The security of data and devices is ensured

loT verticals

A vertical market is a market in which vendors offer goods and services specific to an
industry, trade, profession, or other groups of customers with specialized needs. IoT
enables the possibility of many such verticals, and some of the top IoT verticals are as
follows:

e Smart building: Buildings with IoT technologies can help in not only reducing
the consumption of resources but also improving the satisfaction of the humans
living or working in them. The buildings have smart sensors that not only

[12]

Principles and Foundations of IoT and Al Chapter 1

monitors resource consumption but can also proactively detect residents' needs.
Data is collected via these smart devices and sensors to remotely monitor a
property's (buildings) energy, security, landscaping, HVAC, lighting, and so on.
The data is then used to predict actions, which can be automated according to
events and hence efficiency can be optimized, saving time, resources, and cost.

e Smart agriculture: IoT can enable local and commercial farming to be more
environmentally friendly, cost-effective, and production efficient. Sensors placed
through the farm can help in automating the process of irrigation. It's predicted
that smart agricultural practices will enable a manifold increase in productivity
and hence food resources.

e Smart city: A smart city can be a city with smart parking, a smart mass transit
system, and so on. A smart city has the capability to address traffic, public safety,
energy management, and more for both its government and citizens. By using
advanced IoT technologies, it can optimize the usage of the city infrastructure
and quality of life for its citizens.

e Connected healthcare: IoT enables critical business and patient monitoring
decisions to be made remotely and in real time. Individuals carry medical sensors
to monitor body parameters such as heartbeat, body temperature, glucose level,
and so on. The wearable sensors such as accelerometers and gyroscopes can be
used to monitor a person's daily activity.

We'll be covering some of them as a case study in this book. The content of this book is
focused on the information processing and applications being implemented by IoT and so
we'll not be going into details of the devices, architecture, and protocols involved in IoT
reference stacks any further.

The interested reader can refer to the following references to know more
about the IoT architecture and different protocols:

e Da Xu, Li, Wu He, and Shancang Li. Internet of things in
industries: A survey. IEEE Transactions on industrial informatics
10.4 (2014): 2233-2243.

e Khan, Rafiullah, et al. Future internet: The internet of things
architecture, Possible Applications and Key Challenges. Frontiers of
Information Technology (FIT), 2012 10th International
Conference on. IEEE, 2012.

e This website provides an overview of the protocols involved in
IoT:
https://www.postscapes.com/internet-of-things-
protocols/.

[13]

Principles and Foundations of IoT and Al Chapter 1

Big data and loT

IoT has connected things never previously connected to the internet, such as car engines,
resulting in the generation of a large amount of continuous data streams. The following
screenshot shows explorative data by IHS of the number of connected devices in billions in
future years. Their estimate shows that the number of IoT devices will reach 75.44 billion by
2025:

Connected devices in billions

80 75.44

70
60
50
40
30
20

10

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Prediction about the growth of IoT devices by 2025

The full whitepaper, IoT platforms: enabling the Internet of Things, by IHS is
available as PDF at: https://cdn.ihs.com/www/pdf/enabling-IOT.pdf.

The reduction in the sensor cost, efficient power consumption techniques, a large range of
connectivity (infrared, NFC, Bluetooth, Wi-Fi, and so on), and the availability of cloud
platforms that support IoT deployment and development are the major reasons for this
pervasion of IoT in our homes, personal lives, and industry. This has also ignited
companies to think about providing new services and develop new business models. Some
examples include the following:

[14]

Principles and Foundations of IoT and Al Chapter 1

e Airbnb: It connects people so that they can rent out spare rooms and cottages to
one another, and it earns the commission.

e Uber: It connects cab drivers with the travelers. The location of the traveler is
used to assign them the nearest driver.

The amount of data generated in the process is both voluminous and complex, necessitating
in big data. Big data and IoT are almost made for each other; the two work in conjunction.

Things are continuously generating an enormous amount of data streams that provide their
statuses such as temperature, pollution level, geolocation, and proximity. The data
generated is in time series format and is autocorrelated. The task becomes challenging
because the data is dynamic in nature. Also, the data generated can be analyzed at the

edge (sensor or gateway) or cloud. Before sending the data to the cloud, some form of IoT
data transformation is performed. This may involve the following;:

e Temporal or spatial analysis

e Summarizing the data at the edge

e Aggregation of data

e Correlating data in multiple IoT streams

e Cleaning data

e Filling in the missing values

e Normalizing the data

e Transforming it into different formats acceptable to the cloud

At the edge, complex event processing (CEP) is used to combine data from multiple
sources and infer events or patterns.

The data is analyzed using stream analytics, for example, applying analytical tools to the
stream of data, but developing the insights and rules used externally in an offline mode.
The model is built offline and then applied to the stream of data generated. The data may
be handled in different manners:

e Atomic: Single data at a time is used
e Micro batching: Group of data per batch
e Windowing: Data within a time frame per batch

The stream analytics can be combined with the CEP to combine events over a time frame
and correlate patterns to detect special patterns (for example, anomaly or failure).

[15]

Principles and Foundations of IoT and Al Chapter 1

Infusion of Al — data science in loT

A very popular phrase among data scientists and machine learning engineers is “Al is the
new electricity” said by Prof Andrew Ng in NIPS 2017, we can expand it, If Al is the new
electricity, Data is the new coal, and IoT the new coal-mine.

IoT generates an enormous amount of data; presently, 90% of the data generated isn't even
captured, and out of the 10% that is captured, most is time-dependent and loses its value
within milliseconds. Manually monitoring this data continuously is both cumbersome and
expensive. This necessitates a way to intelligently analyze and gain insight from this data;
the tools and models of Al provide us with a way to do exactly this with minimum human
intervention. The major focus of this book will be on understanding the various AI models
and techniques that can be applied to IoT data. We'll be using both machine learning (ML)
and DL algorithms. The following screenshot explains the relationship between Artificial
Intelligence, Machine Learning, and Deep Learning;:

Artificial Intelligence

Emulate the intelligent Behaviour. Make machines do tasks,
human are good at.

Machine Learning

Uses Statistical techniques that enable machines to improve
performance with experience.

Deep Learning

Multiple (Deep) layers of
Neural Networks, that can be
trained to perform task like
speech and image recognition
by learning through vast
amounts of data.

AI, ML, and DL

[16]

Principles and Foundations of IoT and Al Chapter 1

By observing the behavior of multiple things, IoT with the help of big data and AI aims to
gain insight into the data and optimize underlying processes. This involves multiple
challenges:

e Storing real-time generated events
e Running analytical queries over stored events

e Performing analytics using AI/ML/DL techniques over the data to gain insights
and make predictions

Cross-industry standard process for data mining

For IoT problems, the most used data management (DM) methodology is cross-industry
standard process for data mining (CRISP-DM) proposed by Chapman et al. It's a process
model, which states the tasks that need to be carried out for successfully completing DM.
It's a vendor-independent methodology divided into six different phases, such as the
following:

Business understanding
Data understanding
Data preparation
Modelling

Evaluation

AENLE s

Deployment

Following diagram shows the different stages:

[17]

Principles and Foundations of IoT and Al Chapter 1

Business |—! Data

understanding +understanding

- { -

O\ [

\ preparation
’ Deployment Data] vy 1
3 " / Modeling

‘ Evaluation }-

Different stages in CRISP-DM

As we can seg, it's a continuous process model with data science and Al playing important
roles in steps 2-5.

The details about CRISP-DM and all its phases can be read in the

following:
Marbin, Oscar, Gonzalo Mariscal, and Javier Segovia. A data mining &

knowledge discovery process model. Data Mining and Knowledge Discovery in
Real Life Applications. InTech, 2009.

Al platforms and loT platforms

A large number of cloud platforms with both Al and IoT capabilities are available today.
These platforms provide the capability to integrate the sensors and devices and perform
analytics on the cloud. There exist more than 30 cloud platforms in the global market, each
targeting different IoT verticals and services. The following screenshot lists the various
services that Al/IoT platforms support:

[18]

Principles and Foundations of IoT and Al

Chapter 1

Application
Domains of IoT

Cloud
Platforms

.

o

\ /
\ y
\ /
\ /
\ y
\ /

- 4
\ /

\ 4
\ /

\ y
\)

A /

\ /

\
A /
\
X /
\ 4
\ /
\ y
\ y
\ /
g o
. o

Services that different Al/IoT platforms support

Let's briefly find out about some popular cloud platforms. In chapter 9, Personal and Home
10T, we'll learn how to use the most popular ones. Following is a list of some of the popular

Cloud platforms:

e IBM Watson IoT Platform: Hosted by IBM, the platform provides device

management; it uses MQTT protocol to connect with IoT devices and

[19]

Principles and Foundations of IoT and Al Chapter 1

applications. It provides real-time scalable connectivity. The data can be stored
for a period and accessed in real time. IBM Watson also provides Bluemix
Platform-as-a-Service (PaaS) for analytics and visualizations. We can write code
to build and manage applications that interact with the data and connected
devices. It supports Python along with C#, Java, and Node.js.

e Microsoft IoT-Azure IoT suite: It provides a collection of preconfigured
solutions built on Azure PaaS. It enables a reliable and secure bidirectional
communication between IoT devices and cloud. The preconfigured solutions
include data visualization, remote monitoring, and configuring rules and alarms
over live IoT telemetry. It also provides Azure Stream Analytics to process the
data in real time. The Azure Stream Analytics allows us to use Visual Studio. It
supports Python, Node.js, C, and Arduino, depending upon the IoT devices.

e Google Cloud IoT: The Google Cloud IoT provides a fully managed service for
securely connecting and managing IoT devices. It supports both MQTT and
HTTP protocols. It also provides bidirectional communication between IoT
devices and the cloud. It provides support for Go, PHP, Ruby, JS, .NET, Java,
Objective-C, and Python. It also has BigQuery, which allows users to perform
data analytics and visualization.

e Amazon AWS IoT: The Amazon AWS IoT allows IoT devices to communicate
via MQTT, HTTP, and WebSockets. It provides secure, bi-directional
communication between IoT devices and the cloud. It also has a rules engine that
can be used to integrate data with other AWS services and transform the data.
Rules can be defined that trigger the execution of user code in Java, Python, or
Node.js. AWS Lambda allows us to use our own custom trained models.

Tools used in this book

For the implementation of IoT-based services, we need to follow a bottom-up approach. For
each IoT vertical, we need to find the analytics and the data and, finally, implement it in
code.

Due to its availability in almost all Al and IoT platforms, Python will be used for coding in
this book. Along with Python, some helping libraries such as NumPy, pandas, SciPy, Keras,
and TensorFlow will be used to perform AI/ML analytics on the data. For visualization, we
would be using Matplotlib and Seaborn.

[20]

Principles and Foundations of IoT and Al Chapter 1

TensorFlow

TensorFlow is an open source software library developed by the Google Brain team; it has
functions and APIs for implementing deep neural networks. It works with Python, C++,
Java, R, and Go. It can be used to work on multiple platforms, CPU, GPU, mobile, and even
distributed. TensorFlow allows for model deployment and ease of use in production. The
optimizer in TensorFlow makes the task of training deep neural networks easier by
automatically calculating gradients and applying them to update weights and biases.

In TensorFlow, a program has two distinct components:

e Computation graph is a network of nodes and edges. Here all of the data,
variables, placeholders, and the computations to be performed are defined.
TensorFlow supports three types of data objects: constants, variables, and
placeholders.

e Execution graph actually computes the network using a Session object. Actual
calculations and transfer of information from one layer to another takes place in
the session object.

Let's see the code to perform matrix multiplication in TensorFlow. The whole code can be
accessed from the GitHub repository (https://github.com/PacktPublishing/Hands-On-
Artificial-Intelligence-for-IoT) filename, matrix_multiplication.ipynb:

import tensorflow as tf
import numpy as np

This part imports the TensorFlow module. Next, we define the computation graph. mat1
and mat 2 are two matrices we need to multiply:

A random matrix of size [3,5]

matl = np.random.rand(3,5)
A random matrix of size [5,2]
mat2 = np.random.rand (5, 2)

We declare two placeholders, A and B, so that we can pass their values at runtime. In the
computation graph, we declare all of the data and computation objects:

Declare placeholders for the two matrices
A = tf.placeholder (tf.float32, None, name='A')
B = tf.placeholder(tf.float32, None, name='B')

This declares two placeholders with the names 2 and B; the arguments to the
tf.placeholder method specify that the placeholders are of the f1oat 32 datatype. Since
the shape specified is None, we can feed it a tensor of any shape and an optional name for

[21]

Principles and Foundations of IoT and Al Chapter 1

the operation. Next, we define the operation to be performed using the matrix
multiplication method, t £ .matmul:

C = tf.matmul (A, B)

The execution graph is declared as a Session object, which is fed the two matrices, mat1
and mat 2, for the placeholders, A and B, respectively:

with tf.Session() as sess:
result = sess.run(C, feed_dict={A: matl, B:mat2})
print (result)

Keras

Keras is a high-level API that runs on top of TensorFlow. It allows for fast and easy
prototyping. It supports both convolutional and recurrent neural networks and even a
combination of the two. It can run on both CPU and GPU. The following code performs
matrix multiplication using Keras:

Import the libraries
import keras.backend as K
import numpy as np

Declare the data
A = np.random.rand (20, 500)
B = np.random.rand (500, 3000)

#Create Variable

x = K.variable (value=A)
y = K.variable (value=B)
z = K.dot (x,Vy)

print (K.eval (z))

Datasets

In the coming chapters, we'll be learning different DL models and ML methods. They all
work on data; while a large number of datasets are available to demonstrate how these
models work, in this book, we'll use datasets available freely through wireless sensors and
other IoT devices. Following are some of the datasets used in this book and their sources.

[22]

Principles and Foundations of IoT and Al Chapter 1

Combined cycle power plant

This dataset contains 9,568 data points collected from a combined cycle power plant
(CCPP) in a course of six years (2006-2011). CCPP uses two turbines to generate power, the
gas turbine and the steam turbine. There're three main components of the CCPP plant: gas
turbine, heat recovery system, and steam turbine. The dataset available at UCI ML (http://
archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant) was collected by Pinar
Tufekci from Namik Kemal University and Heysem Kaya from Bogazici University. The
data consists of four features determining the average ambient variables. The averages are
taken from various sensors located around the plant that record ambient variables per
second. The aim is to predict the net hourly electrical energy output. The data is available in
both x1s and ods format.

The features in the dataset are as follows:

¢ The Ambient Temperature (AT) is in the range 1.81°C and 37.11°C

The Ambient Pressure (AP) is in the range 992.89—1033.30 millibar
Relative Humidity (RH) is in the range 25.56% to 100.16%

Exhaust Vacuum (V) is in the range 25.36 to 81.56 cm Hg

Net hourly electrical energy output (PE) is in the range 420.26 to 495.76 MW

Further details about the data and the problem can be read from the
following:

e Pmar Tiifekci, Prediction of full load electrical power output of a
baseload operated combined cycle power plant using machine learning
methods, International Journal of Electrical Power & Energy

Systems, Volume 60, September 2014, Pages 126-140, ISSN
0142-0615.

e Heysem Kaya, Pinar Tiifekci, Sadik Fikret Giirgen: Local and
GlobalLearning Methods for Predicting Power of a Combined Gas &
Steam Turbine, Proceedings of the International Conference on
Emerging Trends in Computer and Electronics Engineering
ICETCEE 2012, pp. 13-18 (Mar. 2012, Dubai).

Wine quality dataset

Wineries around the world have to undergo wine certifications and quality assessments to
safeguard human health. The wine certification is performed with the help of
physicochemical analysis and sensory tests. With the advancement of technology, the

[23]

Principles and Foundations of IoT and Al Chapter 1

physicochemical analysis can be performed routinely via in-vitro equipment.

We use this dataset for classification examples in this book. The dataset can be downloaded
from the UCI-ML repository (https://archive.ics.uci.edu/ml/datasets/Wine+Quality).
The wine quality dataset contains results of physicochemical tests on different samples of
red and white wine. Each sample was further rated by an expert wine taster for quality on a
scale of 0—10.

The dataset contains in total 4,898 instances; it has in total 12 attributes. The 12 attributes
are as follows:

e Fixed acidity

e Volatile acidity

e (Citric acid

e Residual sugar

e Chlorides

e Free sulfur dioxide
e Total sulfur dioxide
e Density

° p}{

e Sulfates

e Alcohol

e Quality

The dataset is available in the csv format.

Details about the dataset can be read from this paper: Cortez, Paulo, et al.
Modeling wine preferences by data mining from physicochemical properties.
Decision Support Systems 47.4 (2009): 547-553 (https://repositorium.
sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf)

Air quality data

Air pollution poses a major environmental risk to human health. It's found that there exists
a correlation between improved air quality and amelioration of different health problems
such as respiratory infections, cardiovascular diseases, and lung cancer. The extensive
sensor networks throughout the world by Meteorological Organizations of the respective
country provide us with real-time air quality data. This data can be accessed through the
respective web APIs of these organizations.

[24]

Principles and Foundations of IoT and Al Chapter 1

In this book, we'll use the historical air quality data to train our network and predict the
mortality rate. The historical data for England is available freely at Kaggle (https://www.
kaggle.com/c/predict-impact-of-air-quality-on-death-rates), and the air quality data
consists of daily means of ozone (O3), Nitrogen dioxide (NO2), particulate matter with a
diameter less than or equal to 10 micrometers (PM10) and PM25 (2.5 micrometers or less),
and temperature. The mortality rate (number of deaths per 100,000 people) for England
region is obtained by the data provided by the UK Office for National Statistics.

Summary

In this chapter, we learned about IoT, big data, and Al This chapter introduced the
common terminologies used in IoT. We learned about the IoT architecture for data
management and data analysis. The enormous data generated by IoT devices necessitates
special ways to handle it.

We learned about how data science and Al can help in both analytics and prediction
generated by the many IoT devices. Various IoT platforms were briefly described in this
chapter, as were some popular IoT verticals. We also learned about special DL

libraries: TensorFlow and Keras. Finally, some of the datasets we'll be using throughout the
book were introduced.

The next chapter will cover how to access the datasets available in varied formats.

[25]

Data Access and Distributed
Processing for loT

Data is everywhere: images, speech, text, weather information, the speed of your car, your
last EMI, changing stock prices. With the integration of Internet of Things (IoT) systems,
the amount of data produced has increased many fold; an example is sensor readings,
which could be taken for room temperature, soil alkalinity, and more. This data is stored
and made available in various formats. In this chapter, we will learn how to read, save, and
process data in some popular formats. Specifically, you will do the following:

e Access data in TXT format

Read and write CSV-formatted data via the csv, pandas, and numpy modules
Access JSON data using JSON and pandas

Learn to work with the HDF5 format using PyTables, pandas, and h5py
Handle SQL databases using SQLite and MySQL

Handle NoSQL using MongoDB

Work with Hadoop's Distributed File System

TXT format

One of the simplest and common formats for storing data is the TXT format; many [oT
sensors log sensor readings with different timestamps in the simple .t xt file format.
Python provides inbuilt functions for creating, reading, and writing into TXT files.

We can access TXT files in Python itself without using any module; the data, in this case, is
of the string type, and you will need to transform it to other types to use it. Alternatively,
we can use NumPy or pandas.

Data Access and Distributed Processing for IoT Chapter 2

Using TXT files in Python

Python has inbuilt functions that read and write into TXT files. The complete functionality
is provided using four sets of functions: open (), read (), write (), and close (). As the
names suggest, they are used to open a file, read from a file, write into a file, and finally
close it. If you are dealing with string data (text), this is the best choice. In this section, we
will use Shakespeare plays in TXT form; the file can be downloaded from the MIT

site: https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.
txt.

We define the following variables to access the data:

data_folder = '../../data/Shakespeare'
data_file = 'alllines.txt'

The first step here is to open the file:

f = open(data_file)

Next, we read the whole file; we can use the read function, which will read the whole file
as one single string;:

contents = f.read()

This reads the whole file (consisting of 4,583,798 characters) into
the contents variable. Let's explore the contents of the contents variable, which will
print the first 1000 characters:

print (contents[:10007)

The preceding code will print the output as follows:

"ACT 1"

"SCENE I. London. The palace."

"Enter KING HENRY, LORD JOHN OF LANCASTER, the EARL of WESTMORELAND, SIR
WALTER BLUNT, and others"

"So shaken as we are, so wan with care,"

"Find we a time for frighted peace to pant,"

"And breathe short-winded accents of new broils"
"To be commenced in strands afar remote."

"No more the thirsty entrance of this soil"

"will daub her lips with her own children's blood,"
"Nor more will trenching war channel her fields,"
"Nor bruise her flowerets with the armed hoofs"

"Of hostile paces: those opposed eyes,"

"Which, like the meteors of a troubled heaven,"
"All of one nature, of one substance bred,"

[27]

Data Access and Distributed Processing for IoT Chapter 2

"Did lately meet in the intestine shock"

"And furious close of civil butchery"

"will now, in mutual well-beseeming ranks,"

"March all one way and be no more opposed"
"Against acquaintance, kindred and allies:"

"The edge of war, like an ill-sheathed knife,"

"No more will cut his master. Therefore, friends,"
"As far as to the sepulchre of Christ,"

"Whose

If the TXT files contain numeric data, it is better to use NumPy; if data is mixed, pandas is
the best choice.

CSV format

Comma-separated value (CSV) files are the most popular formats for storing tabular data
generated by IoT systems. Ina .csv file, the values of the records are stored in plain-text
rows, with each row containing the values of the fields separated by a separator. The
separator is a comma by default but can be configured to be any other character. In this
section, we will learn how to use data from CSV files with Python's csv, numpy, and
pandas modules. We will use the household_power_consumption data file. The file can
be downloaded from the following GitHub link: https://github.com/ahanse/
machlearning/blob/master/household_power_consumption.csv. To access the data files,
we define the following variables:

data_folder = '../../data/household_power_consumption'
data_file = 'household_power_consumption.csv'

Generally, to quickly read the data from CSV files, use the Python csv module; however, if
the data needs to be interpreted as a mix of date, text, and numeric data fields, it's better use
the pandas package. If the data is only numeric, NumPy is the most appropriate package.

Working with CSV files with the csv module

In Python, the csv module provides classes and methods for reading and writing CSV files.
The csv.reader method creates a reader object from which rows can be read iteratively.
Each time a row is read from the file, the reader object returns a list of fields. For example,
the following code demonstrates reading the data file and printing rows:

import csv
import os

[28]

Data Access and Distributed Processing for IoT Chapter 2

with open(os.path.join(data_folder,data_file),newline="'"') as csvfile:
csvreader = csv.reader (csvfile)
for row in csvreader:
print (row)

The rows are printed as a list of field values:

['date', 'time', 'global_active_power', 'global_reactive_power', 'voltage',
'global_intensity', 'sub_metering_ 1', 'sub_metering_2', 'sub_metering 3']

['0007-01-01", '00:00:00', '2.58', '0.136', '241.97', '10.6', '0', 'O,
'0'] ['0007-01-01', '00:01:00', '2.552', '0.1', '241.75', '10.4', '0', '0',
'0'] ['0007-01-01', '00:02:00', '2.55', '0.1', '241.64', '10.4', '0', '0',

‘O']

The csv.writer method returns an object that can be used to write rows to a file. As an

example, the following code writes the first 10 rows of the file to a temporary file and then
prints it:

read the file and write first ten rows

with open(os.path.join(data_folder, data_file), newline='"') as csvfile, \
open (os.path.join(data_folder, 'temp.csv'), 'w', newline='"') as
tempfile:
csvreader = csv.reader (csvfile)
csvwriter = csv.writer (tempfile)

for row, i in zip(csvreader, range (10)):
csvwriter.writerow (row)
read and print the newly written file
with open(os.path.join(data_folder, 'temp.csv'), newline='') as tempfile:
csvreader = csv.reader (tempfile)
for row in csvreader:
print (row)

The delimiter field and the quoting field characters are important attributes that you
can set while creating reader and writer objects.

By default, the delimiter field is , and the other delimiters are specified with the
delimiter argument to the reader or writer functions. For example, the following code
saves the file with | as delimiter:

read the file and write first ten rows with '|' delimiter
with open(os.path.join(data_folder, data_file), newline='"') as csvfile, \
open (os.path.join(data_folder, 'temp.csv'), 'w', newline='"') as
tempfile:
csvreader = csv.reader (csvfile)
csvwriter = csv.writer (tempfile, delimiter=']|")

for row, i in zip(csvreader, range (10)):
csvwriter.writerow (row)

[29]

Data Access and Distributed Processing for IoT Chapter 2

read and print the newly written file
with open(os.path.join(data_folder, 'temp.csv'), newline='') as tempfile:
csvreader = csv.reader (tempfile, delimiter=']|")
for row in csvreader:
print (row)

If you do not specify a delimiter character when the file is read, the rows will be read as
one field and printed as follows:

['0007-01-01100:00:0012.5810.136|241.97110.6|0]0|0"]

quotechar specifies a character with which to surround fields. The quot ing argument
specifies what kind of fields can be surrounded with quotechar. The quot ing argument
can have one of the following values:

e csv.QUOTE_ALL: All the fields are quoted

e csv.QUOTE_MINIMAL: Only fields containing special characters are quoted
e csv.QUOTE_NONNUMERIC: All non-numeric fields are quoted

e csv.QUOTE_NONE: None of the fields are quoted

As an example, let's print the temp file first:

0007-01-01100:00:0012.5810.1361241.97110.6101010
0007-01-01100:01:0012.552]10.11241.75[10.4|010]0
0007-01-01100:02:0012.55]0.11241.64110.4]0]010
0007-01-01100:03:0012.55/0.11241.71110.4]0]010
0007-01-01100:04:0012.55410.11241.98|10.4010]0
0007-01-01100:05:0012.5510.11241.83110.4]0]010
0007-01-01100:06:0012.53410.0961241.07(10.410]010
0007-01-01100:07:0012.484101241.29110.2|01]010
0007-01-01100:08:0012.468]0(241.23110.2|01]0]0

Now let's save it with all fields quoted:

read the file and write first ten rows with '|' delimiter, all quoting
and * as a quote charachetr.
with open(os.path.join(data_folder, data_file), newline='"') as csvfile, \
open('temp.csv', 'w', newline='') as tempfile:
csvreader = csv.reader (csvfile)
csvwriter = csv.writer (tempfile, delimiter=']|",

quotechar="'*"',quoting=csv.QUOTE_ALL)
for row, i in zip(csvreader, range (10)):
csvwriter.writerow (row)

The file gets saved with the specified quote character:

0007-01-01|*00:00:00*|*2.58* [*0.136*[*241.97*|*10.6*[*0*|*0*[*0*

[30]

Data Access and Distributed Processing for IoT Chapter 2

0007-01-01|*00:01:00*|*2.552* | *0.1*%|*241.75*|*10.4*|*0*|*0*|*0*
0007-01-01|*00:02:00* | *2.55* [*0.1*|*241.64*|*10.4*|*0*|*0*|*0*
0007-01-01|*00:03:00* | *2.55* [*0.1*|*241.71*[*10.4*|*0*|*0*|*0*
0007-01-01|*00:04:00*|*2.554* | *0.1*|*241.98*|*10.4*|*0*|*0*|*0*
0007-01-01|*00:05:00* | *2.55* [*0.1%|*241.83*|*10.4*|*0*|*0*|*0*
0007-01-01|*00:06:00*|*2.534*|*0.096*|*241.07*|*10.4*|*0*|*0*|*0*
0007-01-01[*00:07:00%|*2.484* [*0*|*241.29* | *10.2*|*0*[*0*|*0*
0007-01-01|*00:08:00*|*2.468* | *0* [*241.23*|*10.2*[*0*|*0*|[*0*

Remember to read the file with the same arguments; otherwise, the * quote character will
be treated as part of the field values and printed as follows:

['*0007-01-01*', '*00:00:00*"', '*2.58*', '*0.136*', '*241.97*', '*10.6*"',

'*O*" '*O*V, V*O*l]

Using the correct arguments with the reader object prints the following:

[rooo7-061-01', '00:00:00"', '2.58', '0.136', '241.97', '10.6', '0', '0',
|Ol]

Now let's see how we can read CSV files with pandas, another popular Python library.

Working with CSV files with the pandas module

In pandas, the read_csv () function returns a DataFrame after reading the CSV file:

df = pd.read_csv('temp.csv')
print (df)

The DataFrame is printed as follows:

date time global_active_power global_reactive_power
voltage \
0 0007-01-01 00:00:00 2.580 0.136
241.97
1 0007-01-01 00:01:00 2.552 0.100
241.75
2 0007-01-01 00:02:00 2.550 0.100
241.64
3 0007-01-01 00:03:00 2.550 0.100
241.71
4 0007-01-01 00:04:00 2.554 0.100
241.98
5 0007-01-01 00:05:00 2.550 0.100
241.83
6 0007-01-01 00:06:00 2.534 0.096
241.07

[31]

Data Access and Distributed Processing for IoT Chapter 2

7 0007-01-01 00:07:00 2.484 0.000
241.29
8 0007-01-01 00:08:00 2.468 0.000
241.23

global_intensity sub_metering_

O J o U W NP O

sub_metering_ sub_metering_
10.
10.
10.
10.
10.
10.
10.
10.
10.

NN B DD DO

1 2 3
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

We see in the preceding output that pandas automatically interpreted the date and time
columns as their respective data types. The pandas DataFrame can be saved to a CSV file
with the to_csv () function:

df.to_csv('templ.cvs')

pandas, when it comes to reading and writing CSV files, offers plenty of arguments. Some
of these are as follows, complete with how they're used:

e header: Defines the row number to be used as a header, or none if the file does
not contain any headers.

e sep: Defines the character that separates fields in rows. By default, the value of
sepissetto,.

e names: Defines column names for each column in the file.

e usecols: Defines columns that need to be extracted from the CSV file. Columns
that are not mentioned in this argument are not read.

e dtype: Defines the data types for columns in the DataFrame.

Many other available options are documented at the following
links: https://pandas.pydata.org/pandas—-docs/stable/generated/
pandas.read_csv.html and https://pandas.pydata.org/pandas-docs/

stable/generated/pandas.DataFrame.to_csv.html.

Now let's see how to read data from CSV files with the NumPy module.

[32]

Data Access and Distributed Processing for IoT Chapter 2

Working with CSV files with the NumPy module

The NumPy module provides two functions for reading values from CSV files:
np.loadtxt()andnp.genfromtxt(L

An example of np. loadtxt is as follows:

arr = np.loadtxt ('temp.csv', skiprows=1, usecols=(2,3), delimiter=',")
arr

The preceding code reads columns 3 and 4 from the file that we created earlier, and saves
them in a 9 x 2 array as follows:

array ([[2.58 ,
[2.552,
[2.55 ,
[2.55 ,
[2.554,
[2.55 ,
[2.534,
[2.484,
[2.468,

O O O OO O o o o

The np.loadtxt () function cannot handle CSV files with missing data. For instances
where data is missing, np.genfromtxt () can be used. Both of these functions offer many
more arguments; details can be found in the NumPy documentation. The preceding code
can be written using np.genfromtxt () as follows:

arr = np.genfromtxt ('temp.csv', skip_header=1, usecols=(2,3),
delimiter="',")

NumPy arrays produced as a result of applying Al to IoT data can be saved with
np.savetxt (). For example, the array we loaded previously can be saved as follows:

np.savetxt ('temp.csv', arr, delimiter=',"')

The np. savetxt () function also accepts various other useful arguments, such as the
format for saved fields and headers. Check the NumPy documentation for more details on
this function.

CSV is the most popular data format on IoT platforms and devices. In this section, we
learned how to read CSV data using three different packages in Python. Let's learn about
JSON, another popular format, in the next section.

[33]

Data Access and Distributed Processing for IoT Chapter 2

XLSX format

Excel, a component of the Microsoft Office pack, is one of the popular formats in which
data is stored and visualized. Since 2010, Office has supported the . x1sx format. We can
read XLSX files using the OpenPyXI and pandas functions.

Using OpenPyXI for XLSX files

OpenPyXl is a Python library for reading and writing Excel files. It is an open-source
project. A new workbook is created using the following command:

wb = Workbook ()

We can access the currently active sheet by using the following command:

ws = wb.active ()

To change the sheet name, use the title command:

ws.title = "Demo Name"

A single row can be added to the sheet using the append method:

ws.append ()

A new sheet can be created using the create_sheet () method. An individual cell in the
active sheet can be created using the column and row values:

Assigns the cell corresponding to
column A and row 10 a value of 5
ws.['A10'] = 5

#or

ws.cell (column=1, row=10, value=5)

A workbook can be saved using the save method. To load an existing workbook, we can
use the load_workbook method. The names of the different sheets in an Excel workbook
can be accessed using get_sheet_names ().

The following code creates an Excel workbook with three sheets and saves it; later it loads
the sheet and accesses a cell. The code can be accessed from GitHub at
OpenPyX1l_example.ipynb:

Creating and writing into xlsx file
from openpyxl import Workbook
from openpyxl.compat import range

[34]

Data Access and Distributed Processing for IoT Chapter 2

from openpyxl.utils import get_column_letter
wb = Workbook ()

dest_filename = 'empty_book.xlsx'
wsl = wb.active
wsl.title = "range names"

for row in range(l, 40):
wsl.append (range (0,100,5))
ws2 = wb.create_sheet (title="Pi")
ws2['F5'] = 2 * 3.14
ws2.cell (column=1, row=5, value= 3.14)
ws3 = wb.create_sheet (title="Data")
for row in range(l, 20):

for col in range(l, 15):

_ = ws3.cell (column=col, row=row, value="\
{0}".format (get_column_letter (col)))
print (ws3['A10'] .value)
wb.save (filename = dest_filename)

Reading from xlsx file

from openpyxl import load_workbook

wb = load_workbook (filename = 'empty_book.xlsx'")
sheet_ranges = wb|['range names']

print (wb.get_sheet_names())

print (sheet_ranges['D18'].value)

You can learn more about OpenPyXL from its documentation, available
at https://openpyxl.readthedocs.io/en/stable/.

Using pandas with XLSX files

We can load existing . x1sx files with the help of pandas. The read_excel method is used
to read Excel files as a DataFrame. This method uses an argument, sheet_name, which is

used to specify the sheet we want to load. The sheet name can be specified either as a string
or number starting from zero. The to_excel method can be used to write into an Excel file.

The following code reads an Excel file, manipulates it, and saves it. The code can be
accessed from GitHub at Pandas_x1lsx_example.ipynb:

import pandas as pd

df = pd.read_excel ("empty_book.x1lsx", sheet_name=0)
df.describe ()

result = df * 2

result.describe ()

[35]

Data Access and Distributed Processing for IoT Chapter 2

result.to_excel ("empty_book_modified.xlsx")

Working with the JSON format

JavaScript Object Notation (JSON) is another popular data format in IoT systems. In this
section, we will learn how to read JSON data with Python's JSON, NumPy, and pandas
packages.

For this section, we will use the zips. json file, which contains US ZIP codes with city
codes, geolocation details, and state codes. The file has JSON objects recorded in the
following format:

{ "_id" : "01001", "city" : "AGAWAM", "loc" : [-72.622739, 42.070206 1],
"pop" : 15338, "state"™ : "MA" }

Using JSON files with the JSON module

To load and decode JSON data, use the json.load () or json.loads () functions. As an
example, the following code reads the first 10 lines from the zips. json file and prints
them nicely:

import os

import Jjson
from pprint import pprint

with open(os.path.join(data_folder,data_file)) as json_file:
for line,i in zip(json_file, range (10)):
json_data = Jjson.loads (line)
pprint (json_data)

The objects are printed as follows:

{'_id': '01001",

'city': '"AGAWAM',

'loc': [-72.622739, 42.070206],
'pop': 15338,

'state': 'MA'}

The json.loads () function takes string objects as input while the
json.load () function takes file objects as input. Both functions decode the JSON object
and load it in the json_data file as a Python dictionary object.

The json.dumps () function takes an object and produces a JSON string, and the

[36]

https://www.researchgate.net/publication/331498644

