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Foreword to the Fi rst Edition 

J. J. Sakurai was always a very welcome guest here at CERN, for he was one of 
those rare theorists to whom the experimental facts are even more interesting than 
the theoretical game itself. Nevertheless, he delighted in theoretical physics and 
in its teaching, a subject on which he held strong opinions. He thought that much 
theoretical physics teaching was both too narrow and too remote from application:  
" . . .  we see a number of sophisticated, yet uneducated, theoreticians who are con
versant in the LSZ formalism of the Heisenberg field operators, but do not know 
why an excited atom radiates, or are ignorant of the quantum theoretic derivation 
of Rayleigh's law that accounts for the blueness of the sky." And he insisted that 
the student must be able to use what has been taught: "The reader who has read 
the book but cannot do the exercises has learned nothing." 

He put these principles to work in his fine book Advanced Quantum Mechanics 
( 1967) and in Invariance Principles and Elementary Particles ( 1964), both of 
which have been very much used in the CERN library. This new book, Modern 
Quantum Mechanics, should be used even more, by a larger and less specialized 
group. The book combines breadth of interest with a thorough practicality. Its 
readers will find here what they need to know, with a sustained and successful 
effort to make it intelligible. 

J. J. Sakurai's sudden death on November 1 ,  1 982 left this book unfinished. 
Reinhold Bertlmann and I helped Mrs. Sakurai sort out her husband's papers at 
CERN. Among them we found a rough, handwritten version of most of the book 
and a large collection of exercises. Though only three chapters had been com
pletely finished, it was clear that the bulk of the creative work had been done. It 
was also clear that much work remained to fill in gaps, polish the writing, and put 
the manuscript in order. 

That the book is now finished is due to the determination of N oriko Sakurai 
and the dedication of San Fu Tuan. Upon her husband's death, Mrs. Sakurai re
solved immediately that his last effort should not go to waste. With great courage 
and dignity she became the driving force behind the project, overcoming all ob
stacles and setting the high standards to be maintained. San Fu Tuan willingly 
gave his time and energy to the editing and completion of Sakurai's work. Per
haps only others close to the hectic field of high-energy theoretical physics can 
fully appreciate the sacrifice involved. 

For me personally, J. J. had long been far more than just a particularly dis
tinguished colleague. It saddens me that we will never again laugh together at 
physics and physicists and life in general, and that he will not see the success of 
his last work. But I am happy that it has been brought to fruition. 

John S. Bell 
CERN, Geneva 
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Preface to the Revised Edition 

Since 1989 the editor has enthusiastically pursued a revised edition of Modern 
Quantum Mechanics by his late great friend J. J. Sakurai, in order to extend this 
text's usefulness into the twenty-first century. Much consultation took place with 
the panel of Sakurai friends who helped with the original edition, but in particular 
with Professor Yasuo Hara of Tsukuba University and Professor Akio Sakurai of 
Kyoto Sangyo University in Japan. 

This book is intended for the first-year graduate student who has studied quan
tum mechanics at the junior or senior level. It does not provide an introduction 
to quantum mechanics for the beginner. The reader should have had some expe
rience in solving time-dependent and time-independent wave equations. A famil
iarity with the time evolution of the Gaussian wave packet in a force-free region is 
assumed, as is the ability to solve one-dimensional transmission-reflection prob
lems. Some of the general properties of the energy eigenfunctions and the energy 
eigenvalues should also be known to the student who uses this text. 

The major motivation for this project is to revise the main text. There are three 
important additions and/or changes to the revised edition, which otherwise pre
serves the original version unchanged. These include a reworking of certain por
tions of Section 5.2 on time-independent perturbation theory for the degenerate 
case, by Professor Kenneth Johnson of M.I.T., taking into account a subtle point 
that has not been properly treated by a number of texts on quantum mechanics 
in this country. Professor Roger Newton of lndiana University contributed refine
ments on lifetime broadening in Stark effect and additional explanations of phase 
shifts at resonances, the optical theorem, and the non-normalizable state. These 
appear as "remarks by the editor" or "editor's note" in the revised edition. Pro
fessor Thomas Fulton of the Johns Hopkins University reworked his Coulomb 
scattering contribution (Section 7. 13) ;  it now appears as a shorter text portion 
emphasizing the physics, with the mathematical details relegated to Appendix C. 

Though not a major part of the text, some additions were deemed necessary to 
take into account developments in quantum mechanics that have become promi
nent since November 1 ,  1982. To this end, two supplements are included at the 
end of the text. Supplement I is on adiabatic change and geometrical phase (pop
ularized by M. V. Berry since 1983) and is actually an English translation of the 
supplement on this subject written by Professor Akio Sakurai for the Japanese ver
sion of Modern Quantum Mechanics (copyright© Yoshioka-Shoten Publishing 
of Kyoto). Supplement II on non exponential decays was written by my colleague 
here, Professor Xerxes Tata, and read over by Professor E. C. G. Sudarshan of 
the University of Texas at Austin. Although nonexponential decays have a long 
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xii Preface to the Revised Edition 

history theoretically, experimental work on transition rates that tests such decays 
indirectly was done only in 1 990. Introduction of additional material is of course a 
subjective decision on the part of the editor; readers can judge its appropriateness 
for themselves. Thanks to Professor Akio Sakurai, the revised edition has been 
diligently searched to correct misprint errors of the first ten printings of the origi
nal edition. My colleague Professor Sandip Pakvasa provided me overall guidance 
and encouragement throughout this process of revision. 

In addition to the acknowledgments above, my former students Li Ping, Shi 
Xiaohong, and Yasunaga Suzuki provided the sounding board for ideas on the 
revised edition when taking may graduate quantum mechanics course at the Uni
versity of Hawaii during the spring of 1992. Suzuki provided the initial translation 
from Japanese of Supplement I as a course term paper. Dr. Andy Acker provided 
me with computer graphics assistance. The Department of Physics and Astron
omy, and particularly the High Energy Physics Group of the University of Hawaii 
at Manoa, again provided both the facilities and a conducive atmosphere for me to 
carry out my editorial task. Finally I wish to express my gratitude to physics (and 
sponsoring) senior editor Stuart Johnson and his editorial assistant Jennifer Dug
gan as well as senior production coordinator Amy Willcutt, of Addison-Wesley 
for their encouragement and optimism that the revised edition would indeed 
materialize. 

San Fu Tuan 
Honolulu, Hawaii 



Preface to the Second Edition 

Quantum mechanics fascinates me. It describes a wide variety of phenomena 
based on very few assumptions. It starts with a framework so unlike the differ
ential equations of classical physics, yet it contains classical physics within it. It 
provides quantitative predictions for many physical situations, and these predic
tions agree with experiments. In short, quantum mechanics is the ultimate basis, 
today, by which we understand the physical world. 

Thus, I was very pleased to be asked to write the next revised edition of Modern 
Quantum Mechanics, by J. J. Sakurai. I had taught this material out of this book 
for a few years and found myself very in tune with its presentation. Like many 
other instructors, however, I found some aspects of the book lacking and therefore 
introduced material from other books and from my own background and research. 
My hybrid class notes form the basis for the changes in this new edition. 

Of course, my original proposal was more ambitious than could be realized, 
and it still took much longer than I would have liked. So many excellent sugges
tions found their way to me through a number of reviewers, and I wish I had been 
able to incorporate all of them. I am pleased with the result, however, and I have 
tried hard to maintain the spirit of Sakurai's original manuscript. 

Chapter 1 is essentially unchanged. Some of the figures were updated, and 
reference is made to Chapter 8, where the relativistic origin of the Dirac magnetic 
moment is laid out. 

Material was added to Chapter 2. This includes a new section on elementary 
solutions including the free particle in three dimensions; the simple harmonic 
oscillator in the Schrodinger equation using generating functions; and the linear 
potential as a way of introducing Airy functions. The linear potential solution is 
used to feed into the discussion of the WKB approximation, and the eigenvalues 
are compared to an experiment measuring "bouncing neutrons." Also included 
is a brief discussion of neutrino oscillations as a demonstration of quantum
mechanical interference. 

Chapter 3 now includes solutions to Schrodinger's equation for central poten
tials. The general radial equation is presented and is applied to the free particle 
in three dimensions with application to the infinite spherical well. We solve the 
isotropic harmonic oscillator and discuss its application to the "nuclear poten
tial well." We also carry through the solution using the Coulomb potential with a 
discussion on degeneracy. Advanced mathematical techniques are emphasized. 

A subsection that has been added to Chapter 4 discusses the symmetry, known 
classically in terms of the Lenz vector, inherent in the Coulomb problem. This 
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XIV Preface to the Second Edition 

provides an introduction to SO( 4) as an extension of an earlier discussion in Chap
ter 3 on continuous symmetries. 

There are two additions to Chapter 5. First, there is a new introduction to 
Section 5.3 that applies perturbation theory to the hydrogen atom in the context of 
relativistic corrections to the kinetic energy. This, along with some modifications 
to the material on spin-orbit interactions, is helpful for comparisons when the 
Dirac equation is applied to the hydrogen atom at the end of the book. 

Second, a new section on Hamiltonians with "extreme" time dependences has 
been added. This includes a brief discussion of the sudden approximation and a 
longer discussion of the adiabatic approximation. The adiabatic approximation is 
then developed into a discussion of Berry's Phase, including a specific example 
(with experimental verification) in the spin ! system. Some material from the first 
supplement for the previous addition has found its way into this section. 

The end of the book contains the most significant revisions, including reversed 
ordering of the chapters on Scattering and Identical Particles. This is partly be
cause of a strong feeling on my part (and on the part of several reviewers) that the 
material on scattering needed particular attention. Also, at the suggestion of re
viewers, the reader is brought closer to the subject of quantum field theory, both as 
an extension of the material on identical particles to include second quantization, 
and with a new chapter on relativistic quantum mechanics. 

Thus, Chapter 6, which now covers scattering in quantum mechanics, has a 
nearly completely rewritten introduction. A time-dependent treatment is used to 
develop the subject. Furthermore, the sections on the scattering amplitude and 
Born approximation are rewritten to follow this new flow. This includes incor
porating what had been a short section on the optical theorem into the treatment 
of the scattering amplitude, before moving on to the Born approximation. The 
remaining sections have been edited, combined, and reworked, with some mate
rial removed, in an effort to keep what I, and the reviewers, felt were the most 
important pieces of physics from the last edition. 

Chapter 7 has two new sections that contain a significant expansion of the 
existing material on identical particles. (The section on Young tableaux has been 
removed.) Multi particle states are developed using second quantization, and two 
applications are given in some detail. One is the problem of an electron gas in the 
presence of a positively charged uniform background. The other is the canonical 
quantization of the electromagnetic field. 

The treatment of multiparticle quantum states is just one path toward the de
velopment of quantum field theory. The other path involves incorporating special 
relativity into quantum mechanics, and this is the subject of Chapter 8. The sub
ject is introduced, and the Klein-Gordon equation is taken about as far as I believe 
is reasonable. The Dirac equation is treated in some detail, in more or less stan
dard fashion. Finally, the Coulomb problem is solved for the Dirac equation, and 
some comments are offered on the transition to a relativistic quantum field theory. 

The Appendices are reorganzied. A new appendix on electromagnetic units is 
aimed at the typical student who uses S/ units as an undergraduate but is faced 
with Gaussian units in graduate school. 
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I am an experimental physicist, and I try to incorporate relevant experimental 
results in my teaching. Some of these have found their way into this edition, most 
often in terms of figures taken mainly from modem publications. 

• Figure 1 .6  demonstrates the use of a Stem-Gerlach apparatus to analyze the 
polarizaJion states of a beam of cesium atoms. 

• Spin rotation in terms of the high-precision measurement of g - 2 for the 
muon is shown in Figure 2. 1 .  

• Neutrino oscillations as observed b y  the KamLAND collaboration are 
shown in Figure 2.2. 

• A lovely experiment demonstrating the quantum energy levels of "bounc
ing neutrons," Figure 2.4, is included to emphasize agreement between the 
exact and WKB eigenvalues for the linear potential. 

• Figure 2. 10 showing gravitational phase shift appeared in the previous edi
tion. 

• I included Figure 3 .6, an old standard, to emphasize that the central
potential problems are very much applicable to the real world. 

• Although many measurements of parity violation have been carried out in 
the five decades since its discovery, Wu's original measurement, Figure 4.6, 
remains one of the clearest demonstrations. 

• Berry's Phase for spin 1 measured with ultra-cold neutrons, is demonstrated 
in Figure 5.6. 

• Figure 6.6 is a clear example of how one uses scattering data to interpret 
properties of the target. 

• Sometimes, carefully executed experiments point to some problem in the 
predictions, and Figure 7.2 shows what happens when exchange symmetry 
is not included. 

• Quantization of the electromagnetic field is demonstrated by data on the 
Casimir effect (Figure 7 .9) and in the observation of squeezed light (Fig
ure 7 . 10) .  

• Finally, some classic demonstrations of the need for relativistic quantum 
mechanics are shown. Carl Anderson's original discovery of the positron is 
shown in Figure 8 . 1 .  Modem information on details of the energy levels of 
the hydrogen atom is included in Figure 8.2. 

In addition, I have included a number of references to experimental work relevant 
to the discussion topic at hand. 

My thanks go out to so many people who have helped me with this project. Col
leagues in physics include John Cummings, Stuart Freedman, Joel Giedt, David 
Hertzog, Barry Holstein, Bob Jaffe, Joe Levinger, Alan Litke, Kam-Biu Luk, Bob 



XVI Preface to the Second Edition 

McKeown, Harry Nelson, Joe Paki, Murray Peshkin, Olivier Pfister, Mike Snow, 
John Townsend, San Fu Tuan, David Van Baak, Dirk Walecka, Tony Zee, and also 
the reviewers who saw the various drafts of the manuscript. At Addison-Wesley, 
I have been guided through this process by Adam Black, Katie Conley, Ashley 
Eklund, Deb Greco, Dyan Menezes, and Jim Smith. I am also indebted to John 
Rogosich and Carol Sawyer from Techsetters, Inc., for their technical expertise 
and advice. My apologies to those whose names have slipped my mind as I write 
this acknowledgment. 

In the end, it is my sincere hope that this new edition is true to Sakurai's 
original vision and has not been weakened significantly by my interloping. 

Jim Napolitano 
Troy, New York 



In Memoriam 

Jun John Sakurai was born in  1933 in Tokyo and came to the United States as 
a high school student in 1949. He studied at Harvard and at Cornell, where he 
received his Ph.D. in 1958. He was then appointed assistant professor of physics 
at the University of Chicago and became a full ·professor in 1964. He stayed at 
Chicago until 1970 when he moved to the University of California at Los Ange
les, where he remained until his death. During his lifetime he wrote 1 19 articles 
on theoretical physics of elementary particles as well as several books and mono
graphs on both quantum and particle theory. 

The discipline of theoretical physics has as its principal aim the formulation of 
theoretical descriptions of the physical world that are at once concise and compre
hensive. Because nature is subtle and complex, the pursuit of theoretical physics 
requires bold and enthusiastic ventures to the frontiers of newly discovered phe
nomena. This is an area in which Sakurai reigned supreme, with his uncanny 
physical insight and intuition and also his ability to explain these phenomena to 
the unsophisticated in illuminating physical terms. One has but to read his very 
lucid textbooks on Invariance Principles and Elementary Particles and Advanced 
Quantum Mechanics, or his reviews and summer school lectures, to appreciate 
this. Without exaggeration I could say that much of what I did understand in par
ticle physics came from these and from his articles and private tutoring. 

When Sakurai was still a graduate student, he proposed what is now known as 
the V-A theory of weak interactions, independently of (and simultaneously with) 
Richard Feynman, Murray Gell-Mann, Robert Marshak, and George Sudarshan. 
In 1960 he published in Annals of Physics a prophetic paper, probably his single 
most important one. It was concerned with the first serious attempt to construct 
a theory of strong interactions based on Abelian and non-Abelian (Yang-Mills) 
gauge invariance. This seminal work induced theorists to attempt an understand
ing of the mechanisms of mass generation for gauge (vector) fields, now recog
nized as the Higgs mechanism. Above all it stimulated the search for a realistic 
unification of forces under the gauge principle, since crowned with success in 
the celebrated Glashow-Weinberg-Salam unification of weak and electromagnetic 
forces. On the phenomenological side, Sakurai pursued and vigorously advocated 
the vector mesons dominance model of hadron dynamics. He was the first to dis
cuss the mixing of w and ¢ meson states. Indeed, he made numerous important 
contributions to particle physics phenomenology in a much more general sense, 
as his heart was always close to experimental activities. 

I knew Jun John for more than 25 years, and I had the greatest admiration not 
only for his immense powers as a theoretical physicist but also for the warmth 
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xviii In  Memoriam 

and generosity of his spirit. Though a graduate student himself at Cornell during 
1 957-1958, he took time from his own pioneering research in K-nucleon disper
sion relations to help me (via extensive correspondence) with my Ph.D. thesis on 
the same subject at Berkeley. Both Sandip Pakvasa and I were privileged to be 
associated with one of his last papers on weak couplings of heavy quarks, which 
displayed once more his infectious and intuitive style of doing physics. It is of 
course gratifying to us in retrospect that Jun John counted this paper among the 
score of his published works that he particularly enjoyed. 

The physics community suffered a great loss at Jun John Sakurai's death. The 
personal sense of loss is a severe one for me. Hence I am profoundly thankful 
for the opportunity to edit and complete his manuscript on Modern Quantum 
Mechanics for publication. In my faith no greater gift can be given me than an 
opportunity to show my respect and love for Jun John through meaningful service. 

San Fu Tuan 



CHAPTER 

1 Fundamental Concepts 

The revolutionary change in our understanding of microscopic phenomena that 
took place during the first 27 years of the twentieth century is unprecedented in 
the history of natural sciences. Not only did we witness severe limitations in the 
validity of classical physics, but we found the alternative theory that replaced the 
classical physical theories to be far broader in scope and far richer in its range of 
applicability. 

The most traditional way to begin a study of quantum mechanics is to follow 
the historical developments-Planck's radiation law, the Einstein-Debye theory of 
specific heats, the Bohr atom, de Broglie's matter waves, and so forth-together 
with careful analyses of some key experiments such as the Compton effect, the 
Franck-Hertz experiment, and the Davisson-Germer-Thompson experiment. In 
that way we may come to appreciate how the physicists in the first quarter of the 
twentieth century were forced to abandon, little by little, the cherished concepts 
of classical physics and how, despite earlier false starts and wrong turns, the great 
masters-Heisenberg, Schrodinger, and Dirac, among others-finally succeeded 
in formulating quantum mechanics as we know it today. 

However, we do not follow the historical approach in this book. Instead, we 
start with an example that illustrates, perhaps more than any other example, the 
inadequacy of classical concepts in a fundamental way. We hope that, exposing 
readers to a "shock treatment" at the onset will result in their becoming attuned 
to what we might call the "quantum-mechanical way of thinking" at a very early 
stage. 

This different approach is not merely an academic exercise. Our knowledge 
of the physical world comes from making assumptions about nature, formulating 
these assumptions into postulates, deriving predictions from those postulates, and 
testing such predictions against experiment. If experiment does not agree with 
the prediction, then, presumably, the original assumptions were incorrect. Our 
approach emphasizes the fundamental assumptions we make about nature, upon 
which we have come to base all of our physical laws, and which aim to accom
modate profoundly quantum-mechanical observations at the outset. 

1 .1 • THE STERN-GERLACH EXPERIMENT 

The example we concentrate on in this section is the Stern-Gerlach experiment, 
originally conceived by 0. Stern in 1921 and carried out in Frankfurt by him in 
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2 Chapter 1 Fundamental Concepts 

What was 
actually observed 

Inhomogeneous 
magnetic field 

Silver atoms 

FIGURE 1.1 The Stem-Gerlach experiment. 

collaboration with W. Gerlach in 1922. * This experiment illustrates in a dramatic 
manner the necessity for a radical departure from the concepts of classical me
chanics. In the subsequent sections the basic formalism of quantum mechanics is 
presented in a somewhat axiomatic manner but always with the example of the 
Stem-Gerlach experiment in the back of our minds. In a certain sense, a two-state 
system of the Stem-Gerlach type is the least classical, most quantum-mechanical 
system. A solid understanding of problems involving two-state systems will turn 
out to be rewarding to any serious student of quantum mechanics. It is for this 
reason that we refer repeatedly to two-state problems throughout this book. 

Description of the Experiment 

We now present a brief discussion of the Stem-Gerlach experiment, which is dis
cussed in almost every book on modern physics. t First, silver (Ag) atoms are 
heated in an oven. The oven has a small hole through which some of the silver 
atoms escape. As shown in Figure 1 . 1 ,  the beam goes through a collimator and 
is then subjected to an inhomogeneous magnetic field produced by a pair of pole 
pieces, one of which has a very sharp edge. 

We must now work out the effect of the magnetic field on the silver atoms. 
For our purpose the following oversimplified model of the silver atom suffices. 
The silver atom is made up of a nucleus and 47 electrons, where 46 out of the 47 
electrons can be visualized as forming a spherically symmetrical electron cloud 
with no net angular momentum. If we ignore the nuclear spin, which is irrelevant 
to our discussion, we see that the atom as a whole does have an angular momen
tum, which is due solely to the spin-intrinsic as opposed to orbital-angular 

*For an excellent historical discussion of the Stem-Gerlach experiment, see "Stem and Gerlach: 
How a Bad Cigar Helped Reorient Atomic Physics;' by Bretislav Friedrich and Dudley Her
schbach, Physics Today, December (2003) 53. 
tFor an elementary but enlightening discussion of the Stem-Gerlach experiment, see French and 
Taylor (1978), pp. 432-38. 



1 . 1 The Stern-Gerlach Experiment 3 

momentum of the single 47th (5s) electron. The 47 electrons are attached to the 
nucleus, which is "'--'2 x 105 times heavier than the electron; as a result, the heavy 
atom as a whole possesses a magnetic moment equal to the spin magnetic mo
ment of the 47th electron. In other words, the magnetic moment /L of the atom is 
proportional to the electron spin S, 

/Lex S, ( 1 . 1 . 1 )  

where the precise proportionality factor turns out to be e I mec ( e < 0 in this book) 
to an accuracy of about 0.2%. 

Because the interaction energy of the magnetic moment with the magnetic field 
is just -J.l• B, the z-component of the force experienced by the atom is given by 

a BBz Fz = -(/L. B)� /1-z -, 
az az 

( 1 . 1 .2) 

where we have ignored the components of B in directions other than the z
direction. Because the atom as a whole is very heavy, we expect that the classical 
concept of trajectory can be legitimately applied, a point that can be justified us
ing the Heisenberg uncertainty principle to be derived later. With the arrangement 
of Figure 1 . 1 , the fl-z > 0 (Sz < 0) atom experiences a downward force, while the 
fl-z < 0 (Sz > 0) atom experiences an upward force. The beam is then expected 
to get split according to the values of fl-z · In other words, the SG (Stern-Gerlach) 
apparatus "measures" the z-component of /L or, equivalently, the z-component of 
S up to a proportionality factor. 

The atoms in the oven are randomly oriented; there is no preferred direction 
for the orientation of J.l. If the electron were like a classical spinning object, we 
would expect all values of fl-z to be realized between IILI and -IILI· This would 
lead us to expect a continuous bundle of beams coming out of the SG apparatus, 
as indicated in Figure 1 . 1 ,  spread more or less evenly over the expected range. 
Instead, what we experimentally observe is more like the situation also shown 
in Figure 1 . 1 ,  where two "spots" are observed, corresponding to one "up" and 
one "down" orientation. In other words, the SG apparatus splits the original silver 
beam from the oven into two distinct components, a phenomenon referred to in 
the early days of quantum theory as "space quantization." To the extent that /L 
can be identified within a proportionality factor with the electron spin S, only two 
possible values of the z-component of S are observed to be possible: Sz up and Sz 
down, which we call Sz+ and Sz - .  The two possible values of Sz are multiples 
of some fundamental unit of angular momentum; numerically it turns out that 
Sz = h/2 and -h/2, where 

n = 1 .0546 X 10-2? erg-s 

= 6.5822 X w-16eV-s. 
( 1 . 1 .3) 

This "quantization" of the electron spin angular momentum* is the first important 
feature we deduce from the Stern-Gerlach experiment. 

*An understanding of the roots of this quantization lies in the application of relativity to quantum 
mechanics. See Section 8.2 of this book for a discussion. 
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(a) (b) 
FIGURE 1.2 (a) Classical physics prediction for results from the Stem-Gerlach exper
iment. The beam should have been spread out vertically, over a distance corresponding 
to the range of values of the magnetic moment times the cosine of the orientation angle. 
Stem and Gerlach, however, observed the result in (b), namely that only two orientations 
of the magnetic moment manifested themselves. These two orientations did not span the 
entire expected range. 

Figure 1 .2a shows the result one would have expected from the experiment. 
According to classical physics, the beam should have spread itself over a vertical 
distance corresponding to the (continuous) range of orientation of the magnetic 
moment. Instead, one observes Figure 1 b, which is completely at odds with classi
cal physics. The beam mysteriously splits itself into two parts, one corresponding 
to spin "up" and the other to spin "down." 

Of course, there is nothing sacred about the up-down direction or the z-axis. We 
could just as well have applied an inhomogeneous field in a horizontal direction, 
say in the x-direction, with the beam proceeding in the y-direction. In this manner 
we could have separated the beam from the oven into an Sx+ component and an 
Sx - component. 

Sequential Stern-Gerlach Experiments 

Let us now consider a sequential Stem-Gerlach experiment. By this we mean 
that the atomic beam goes through two or more SG apparatuses in sequence. The 
first arrangement we consider is relatively straightforward. We subject the beam 
coming out of the oven to the arrangement shown in Figure 1 .3a, where SGz 
stands for an apparatus with the inhomogeneous magnetic field in the z-direction, 
as usual. We then block the Sz- component coming out of the first SGz apparatus 
and let the remaining Sz+ component be subjected to another SGz apparatus. This 
time there is only one beam component coming out of the second apparatus-just 
the Sz+ component. This is perhaps not so surprising; after all, if the atom spins 
are up, they are expected to remain so, short of any external field that rotates the 
spins between the first and the second SGz apparatuses. 

A little more interesting is the arrangement shown in Figure 1 .3b. Here the 
first SG apparatus is the same as before, but the second one (SGX:) has an inhomo
geneous magnetic field in the x-direction. The Sz+ beam that enters the second 
apparatus (SGX:) is now split into two components, an Sx+ component and an 
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Sequential Stem-Gerlach experiments. 

Sx- component, with equal intensities. How can we explain this? Does it mean 
that 50% of the atoms in the Sz+ beam coming out of the first apparatus (SGz) 
are made up of atoms characterized by both Sz+ and Sx+, while the remaining 
50% have both Sz+ and Sx-? It turns out that such a picture runs into difficulty, 
as we will see below. 

We now consider a third step, the arrangement shown in Figure 1 .3c, which 
most dramatically illustrates the peculiarities of quantum-mechanical systems. 
This time we add to the arrangement of Figure 1 .3b yet a third apparatus, of 
the SGz type. It is observed experimentally that two components emerge from the 
third apparatus, not one; the emerging beams are seen to have both an Sz + compo
nent and an Sz- component. This is a complete surprise because after the atoms 
emerged from the first apparatus, we made sure that the Sz- component was com
pletely blocked. How is it possible that the Sz- component, which we thought, 
we eliminated earlier, reappears? The model in which the atoms entering the third 
apparatus are visualized to have both Sz+ and Sx+ is clearly unsatisfactory. 

This example is often used to illustrate that in quantum mechanics we cannot 
determine both Sz and Sx simultaneously. More precisely, we can say that the 
selection of the Sx + beam by the second apparatus (SGx) completely destroys 
any previous information about Sz . 

It is amusing to compare this situation with that of a spinning top in classical 
mechanics, where the angular momentum 

L=lw ( 1 . 1 .4) 

can be measured by determining the components of the angular-velocity vector w. By observing how fast the object is spinning in which direction, we can deter
mine Wx, Wy , and Wz simultaneously. The moment of inertia I is computable if we 
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know the mass density and the geometric shape of the spinning top, so there is no 
difficulty in specifying both Lz and Lx in this classical situation. 

It is to be clearly understood that the limitation we have encountered in deter
mining Sz and Sx is not due to the incompetence of the experimentalist. We cannot 
make the Sz - component out of the third apparatus in Figure 1 .3c disappear by 
improving the experimental techniques. The peculiarities of quantum mechanics 
are imposed upon us by the experiment itself. The limitation is, in fact, inherent 
in microscopic phenomena. 

Analogy with Polarization of Light 

Because this situation looks so novel, some analogy with a familiar classical situ
ation may be helpful here. To this end we now digress to consider the polarization 
of light waves. This analogy will help us develop a mathematical framework for 
formulating the postulates of quantum mechanics. 

Consider a monochromatic light wave propagating in the z-direction. A 
linearly polarized (or plane polarized) light with a polarization vector in the 
x-direction, which we call for short an x-polarized light, has a space-time
dependent electric field oscillating in the x-direction 

E = Eox cos(kz - wt). ( 1 . 1 .5) 

Likewise, we may consider a y-polarized light, also propagating in the z-direction, 

E = Eoy cos(kz - wt). ( 1 . 1 .6) 

Polarized light beams of type ( 1 . 1 .5) or ( 1 . 1 .6) can be obtained by letting an un
polarized light beam go through a Polaroid filter. We call a filter that selects only 
beams polarized in the x-direction an x-filter. An x-filter, of course, becomes a y
filter when rotated by 90° about the propagation (z) direction. It is well known that 
when we let a light beam go through an x-filter and subsequently let it impinge on 
a y-filter, no light beam comes out (provided, of course, that we are dealing with 
100% efficient Polaroids); see Figure 1 .4a. 

The situation is even more interesting if we insert between the x-filter and the 
y-filter yet another Polaroid that selects only a beam polarized in the direction
which we call the x' -direction-that makes an angle of 45° with the x-direction 
in the xy-plane; see Figure 1 .4b. This time, there is a light beam coming out of 
the y-filter despite the fact that right after the beam went through the x-filter it did 
not have any polarization component in the y-direction. In other words, once the 
x' -filter intervenes and selects the x' -polarized beam, it is immaterial whether the 
beam was previously x-polarized. The selection of the x' -polarized beam by the 
second Polaroid destroys any previous information on light polarization. Notice 
that this situation is quite analogous to the situation that we encountered earlier 
with the SG arrangement of Figure 1 .3b, provided that the following correspon
dence is made: 

Sz ± atoms*+ x-, y-polarized light 

Sx ± atoms*+ x' -, y' -polarized light, 

where the x'- and y' -axes are defined as in Figure 1 .5 .  

( 1 . 1 .7) 
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FIGURE 1.4 Light beams subjected to Polaroid filters. 
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FIGURE 1.5 Orientations of the x'- and y' -axes. 

X 

7 

Let us examine how we can quantitatively describe the behavior of 45°
polarized beams (x'- and y'-polarized beams) within the framework of classical 
electrodynamics. Using Figure 1 .5 we obtain 

Eox' cos(kz- wt) =Eo [ �x cos(kz - wt) + �y cos(kz - wt)J, 
Eoy' cos(kz - wt) =Eo [-�xcos(kz - wt) + �y cos(kz - wt) J. ( 1 . 1 .8) 
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In the triple-filter arrangement of Figure 1 .4b, the beam coming out of the first 
Polaroid is an x-polarized beam, which can be regarded as a linear combination 
of an x' -polarized beam and a y' -polarized beam. The second Polaroid selects 
the x' -polarized beam, which can in tum be regarded as a linear combination of 
an x-polarized and a y-polarized beam. And finally, the third Polaroid selects the 
y-polarized component. 

Applying correspondence ( 1 . 1 .7) from the sequential Stem-Gerlach experi
ment of Figure 1 .3c to the triple-filter experiment of Figure 1 .4b suggests that we 
might be able to represent the spin state of a silver atom by some kind of vector 
in a new kind of two-dimensional vector space, an abstract vector space not to be 
confused with the usual two-dimensional (xy) space. Just as x and y in ( 1 . 1 .8) are 
the base vectors used to decompose the polarization vector x' of the x' -polarized 
light, it is reasonable to represent the Sx+ state by a vector, which we call a ket in 
the Dirac notation to be developed fully in the next section. We denote this vector 
by I Sx ; +) and write it as a linear combination of two base vectors, I Sz ;+) and 
I Sz ; -) ,  which correspond to the Sz + and the Sz- states, respectively. So we may 
conjecture 

( 1 . 1 .9a) 

( 1 . 1 .9b) 

in analogy with ( 1 . 1 .8). Later we will show how to obtain these expressions using 
the general formalism of quantum mechanics. 

Thus the unblocked component coming out of the second (SGx) apparatus of 
Figure 1 .3c is to be regarded as a superposition of Sz+ and Sz- in the sense of 
( 1 . 1 .9a). It is for this reason that two components emerge from the third (SGz) 
apparatus. 

The next question of immediate concern is, How are we going to represent 
the Sy± states? Symmetry arguments suggest that if we observe an Sz± beam 
going in the x-direction and subject it to an SGy apparatus, the resulting situation 
will be very similar to the case where an Sz ± beam going in the y-direction is 
subjected to an SGx apparatus. The kets for Sy ± should then be regarded as a 
linear combination of I Sz ; ±) ,  but it appears from ( 1 . 1 .9) that we have already 
used up the available possibilities in writing I Sx ;±) .  How can our vector space 
formalism distinguish Sy ± states from Sx ± states? 

An analogy with polarized light again rescues us here. This time we consider 
a circularly polarized beam of light, which can be obtained by letting a linearly 
polarized light pass through a quarter-wave plate. When we pass such a circu
larly polarized light through an x-filter or a y-filter, we again obtain either an 
x-polarized beam or a y-polarized beam of equal intensity. Yet everybody knows 
that the circularly polarized light is totally different from the 45°-linearly polar
ized (x' -polarized or y' -polarized) light. 

Mathematically, how do we represent a circularly polarized light? A right cir
cularly polarized light is nothing more than a linear combination of an x-polarized 
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light and a y-polarized light, where the oscillation of the electric field for the y
polarized component is 90° out of phase with that of the x-polarized component:* 

E = Eo [�xcos(kz - wt) + �ycos (kz - wt + �)] . 

It is more elegant to use complex notation by introducing € as follows: 

Re(€) = Ej Eo . 
For a right circularly polarized light, we can then write 

€ = [-1-xei(kz-wt) + _i_yei (kz-wt) ] v'2 v'2 ' 
where we have used i = ein 12. 

(1.1.10) 

(1.1.11) 

(1.1.12) 

We can make the following analogy with the spin states of silver atoms: 

Sy + atom *+ right circularly polarized beam, 
(1.1.13) Sy - atom *+ left circularly polarized beam. 

Applying this analogy to (1.1.12), we see that if we are allowed to make the 
coefficients preceding base kets complex, there is no difficulty in accommodating 
the Sy± atoms in our vector space formalism: 

(1.1.14) 

which are obviously different from (1.1.9). We thus see that the two-dimensional 
vector space needed to describe the spin states of silver atoms must be a complex 
vector space; an arbitrary vector in the vector space is written as a linear combi
nation of the base vectors I Sz ; ±) with, in general, complex coefficients. The fact 
that the necessity of complex numbers is already apparent in such an elementary 
example is rather remarkable. 

The reader must have noted by this time that we have deliberately avoided 
talking about photons. In other words, we have completely ignored the quantum 
aspect of light; nowhere did we mention the polarization states of individual pho
tons. The analogy we worked out is between kets in an abstract vector space that 
describes the spin states of individual atoms with the polarization vectors of the 
classical electromagnetic field. Actually, we could have made the analogy even 
more vivid by introducing the photon concept and talking about the probability 
of finding a circularly polarized photon in a linearly polarized state, and so forth; 
however, that is not needed here. Without doing so, we have already accomplished 
the main goal of this section: to introduce the idea that quantum-mechanical states 
are to be represented by vectors in an abstract complex vector space. t 

*Unfortunately, there is no unanimity in the definition of right versus left circularly polarized 
light in the literature. 
tThe reader who is interested in grasping the basic concepts of quantum mechanics through a 
careful study of photon polarization may find Chapter 1 of Baym (1969) extremely illuminating. 
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FIGURE 1.6 A modem Stem-Gerlach apparatus, used to separate spin states of atomic 
cesium, taken from F. Lison et al., Phys. Rev. A 61 (1999) 013405. The apparatus is 
shown on the left, while the data show the nine different projections for the spin-four 
atom, (a) before and (b) after optical pumping is used to populate only extreme spin pro
jections. The spin quantum number F = 4 is a coupling between the outermost electron 
in the atom and the nuclear spin I = 7/2. 

Finally, before outlining the mathematical formalism of quantum mechanics, 
we remark that the physics of a Stem-Gerlach apparatus is of far more than simply 
academic interest. The ability to separate spin states of atoms has tremendous 
practical interest as well. Figure 1 .6 shows the use of the Stem-Gerlach technique 
to analyze the result of spin manipulation in an atomic beam of cesium atoms. 
The only stable isotope, 133Cs, of this alkali atom has a nuclear spin I = 7/2, 
and the experiment sorts out the F = 4 hyperfine magnetic substate, giving nine 
spin orientations. This is only one of many examples where this once mysterious 
effect is used for practical devices. Of course, all of these uses only go to firmly 
establish this effect, as well as the quantum-mechanical principles that we will 
now present and further develop . 

1 .2 • KETS, BRAS, AND OPERATORS 

In the preceding section we showed how analyses of the Stem-Gerlach experi
ment lead us to consider a complex vector space. In this and the following section 
we formulate the basic mathematics of vector spaces as used in quantum mechan
ics. Our notation throughout this book is the bra and ket notation developed by 
P. A. M. Dirac. The theory of linear vector spaces had, of course, been known to 
mathematicians prior to the birth of quantum mechanics, but Dirac's way of intro-
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ducing vector spaces has many advantages, especially from the physicist's point 
of view. 

Ket Space 

We consider a complex vector spacewhose dimensionality is specified according 
to the nature of a physical system under consideration. In Stem-Gerlach-type 
experiments where the only quantum-mechanical degree of freedom is the spin 
of an atom, the dimensionality is determined by the number of alternative paths 
the atoms can follow when subjected to a SG apparatus; in the case of the silver 
atoms of the previous section, the dimensionality is just two, corresponding to the 
two possible values Sz can assume.* Later, in Section 1 .6, we consider the case 
of continuous spectra-for example, the position (coordinate) or momentum of a 
particle-where the number of alternatives is nondenumerably infinite, in which 
case the vector space in question is known as a Hilbert space after D. Hilbert, 
who studied vector spaces in infinite dimensions. 

In quantum mechanics a physical state-for example, a silver atom with a 
definite spin orientation-is represented by a state vector in a complex vector 
space. Following Dirac, we call such a vector a ket and denote it by Ia) . This 
state ket is postulated to contain complete information about the physical state; 
everything we are allowed to ask about the state is contained in the ket. Two kets 
can be added: 

Ia) + 1,8 )  = ly ) .  ( 1 .2. 1 )  

The sum I Y )  i s  just another ket. If we multiply Ia ) by a complex number c , the 
resulting product c ia) is another ket. The number c can stand on the left or on the 
right of a ket; it makes no difference: 

c ia) = la)c . ( 1 .2.2) 

In the particular case where c is zero, the resulting ket is said to be a null ket. 
One of the physics postulates is that Ia ) and c ia) , with c i= 0, represent the 

same physical state. In other words, only the "direction" in vector space is of 
significance. Mathematicians may prefer to say that we are here dealing with rays 
rather than vectors. 

An observable, such as momentum and spin components, can be represented 
by an operator, such as A, in the vector space in question. Quite generally, an 
operator acts on a ketfrom the left, 

A ·  ( Ia)) = A la) , ( 1 .2.3) 

which is yet another ket. There will be more on multiplication operations later. 

*For many physical systems the dimension of the state space is denumerably infinite. Although 
we will usually indicate a finite number of dimensions, N, of the ket space, the results also hold 
for denumerably infinite dimensions. 
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In general, A I a) is not a constant times I a) . However, there are particular kets 
of importance, known as eigenkets of operator A, denoted by 

I a') ,  Ia") , la111) ,  • • •  ( 1 .2.4) 

with the property 

Ala') = a' Ia') , A Ia") = a" Ia"), . . .  ( 1 .2.5) 
where a', a", . . .  are just numbers. Notice that applying A to an eigenket just re
produces the same ket apart from a multiplicative number. The set of numbers 
{a', a", a"', . . .  } , more compactly denoted by {a'}, is called the set of eigenval
ues of operator A. When it becomes necessary to order eigenvalues in a specific 
manner, {a(l ) ,aC2) ,a(3) , . . .  } may be used in place of {a', a", a111 , • • •  } .  

The physical state corresponding to an eigenket is called an eigenstate. In 
the simplest case of spin � systems, the eigenvalue-eigenket relation (1 .2.5) is 
expressed as 

(1 .2.6) 

where I Sz ; ±) are eigenkets of operator Sz with eigenvalues ±h j2. Here we could 
have used just lh/2) for I Sz ;  +) in conformity with the notation Ia') , where an 
eigenket is labeled by its eigenvalue, but the notation I Sz ; ±) ,  already used in the 
previous section, is more convenient here because we also consider eigenkets of 
Sx : 

(1 .2.7) 
We remarked earlier that the dimensionality of the vector space is determined 

by the number of alternatives in Stem-Gerlach-type experiments. More formally, 
we are concerned with an N-dimensional vector space spanned by the N eigenkets 
of observable A. Any arbitrary ket Ia) can be written as 

Ia) = I.>a' la ') ,  (1 .2.8) 
a' 

with a', a", . . . up to a(N) , where Ca' is a complex coefficient. The question of the 
uniqueness of such an expansion will be postponed until we prove the orthogo
nality of eigenkets. 

Bra Space and Inner Products 

The vector space we have been dealing with is a ket space. We now introduce the 
notion of a bra space, a vector space "dual to" the ket space. We postulate that 
corresponding to every ket Ia) there exists a bra, denoted by (a l ,  in this dual, or 
bra, space. The bra space is spanned by eigenbras { (a' l } ,  which correspond to the 
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eigenkets { Ia ') } .  There is a one-to-one correspondence between a ket space and a 
bra space: 

DC la)++ (a l 
I ' , DC , ,  a ) , I a ) ,  . . .  ++(a J , (a J ,  . . .  

DC Ia) + i,B)++(a l + (,8 1 ,  

( 1 .2.9) 

where DC stands for dual correspondence. Roughly speaking, we can regard the 
bra space as some kind of mirror image of the ket space. 

The bra dual to c ia) is postulated to be c* (a l ,  not c (a l , which is a very impor
tant point. More generally, we have 

( 1 .2. 1 0) 

We now define the inner product of a bra and a ket. * The product is written 
as a bra standing on the left and a ket standing on the right; for example, 

(,B ia) = ( (,B i ) · ( ia)) . ( 1 .2. 1 1) 
bra(c)ket 

This product is, in general, a complex number. Notice that in forming an inner 
product, we always take one vector from the bra space and one vector from the 
ket space. 

We postulate two fundamental properties of inner products. First, 

(,B ia) = (a i,B) * . ( 1 .2. 12) 

In other words, (,B ia) and (a i,B) are complex conjugates of each other. Notice 
that even though the inner product is, in some sense, analogous to the familiar 
scalar product a · b, (,B ia) must be clearly distinguished from (ai,B) ;  the analogous 
distinction is not needed in real vector space because a · b is equal to b · a. Using 
( 1 .2. 12) we can immediately deduce that (a la) must be a real number. To prove 
this just let (,8 I --+ (a 1 .  

The second postulate on inner products is 

(a la) � 0, ( 1 .2. 1 3) 

where the equality sign holds only if Ia) is a null ket. This is sometimes known 
as the postulate of positive definite metric. From a physicist's point of view, this 
postulate is essential for the probabilistic interpretation of quantum mechanics, as 
will become apparent later. t 

*In the literature an inner product is often referred to as a scalar product because it is analogous to 
a ·  b in Euclidean space; in this book, however, we reserve the term scalar for a quantity invariant 
under rotations in the usual three-dimensional space. 
t Attempts to abandon this postulate led to physical theories with "indefinite metric." We shall not 
be concerned with such theories in this book. 
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Two kets Ia) and 1,8 )  are said to be orthogonal if 

(a i,B) = 0, (1 .2. 14) 

even though in the definition of the inner product, the bra (a l appears. The or
thogonality relation ( 1 .2. 14) also implies, via ( 1 .2 . 12), 

(,B ia) = 0. ( 1 .2. 15) 

Given a ket that is not a null ket, we can form a normalized ket I&) ,  where 

l&) = (�) la ) , (1 .2. 16) 

with the property 

(a la) = 1 .  ( 1 .2. 17) 

Quite generally, J(a la) is known as the norm of Ia) , analogous to the magnitude 
of vector -Jjl-:a = Ia I in Euclidean vector space. Because Ia) and c ia) represent 
the same physical state, we might as well require that the kets we use for physical 
states be normalized in the sense of ( 1 .2. 17). * 

Operators 

As we noted earlier, observables such as momentum and spin components are to 
be represented by operators that can act on kets. We can consider a more general 
class of operators that act on kets; they will be denoted by X, Y, and so forth, while 
A, B, and so on will be used for a restrictive class of operators that correspond to 
observables. 

An operator acts on a ket from the left side, 

X ·  ( Ia)) = X Ia) , ( 1 .2. 1 8) 

and the resulting product is another ket. Operators X and Y are said to be equal, 

X = Y, (1 .2. 19) 

if 

X la) = Y la) ( 1 .2.20) 

for an arbitrary ket in the ket space in question. Operator X is said to be the null 
operator if, for any arbitrary ket Ia) , we have 

X Ia) = 0. (1 .2.21) 

*For eigenkets of observables with continuous spectra, different normalization conventions will 
be used; see Section 1 .6. 
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Operators can be added; addition operations are commutative and associative: 

X + Y = Y + X, 

X +  (Y + Z) = (X +  Y) + Z.  

( 1 .2.21a) 

( 1 .2.21b) 

With the single exception of the time-reversal operator to be considered in Chapter 
4, the operators that appear in this book are all linear; that is, 

X(ca la) + c.s i,B)) = Ca X Ia) + c.sXI,B) .  ( 1 .2.22) 

An operator X always acts on a bra from the right side 

( (a l )  · X =  (a i X, ( 1 .2.23) 

and the resulting product is another bra. The ket X Ia) and the bra (a IX are, in 
general, not dual to each other. We define the symbol xt as 

X la)�(a iXt . ( 1 .2.24) 

The operator xt is called the Hermitian adjoint, or simply the adjoint, of X. An 
operator X is said to be Hermitian if 

X = Xt . ( 1 .2.25) 

Multiplication 

Operators X and Y can be multiplied. Multiplication operations are, in general, 
noncommutative; that is, 

XY =/= YX. 

Multiplication operations are, however, associative: 

X(YZ) = (XY)Z = XYZ. 

We also have 

X(Yia)) = (XY) Ia) = XY ia) ,  ( (,B I X)Y = (,B I (XY) = (,B I XY. 

Notice that 

(XY)t = ytxt 

because 

(1 .2.26) 

( 1 .2.27) 

( 1 .2.28) 

( 1 .2.29) 

( 1 .2.30) 

So far, we have considered the following products: (,B ia) , X Ia) ,  (a IX,  and XY. 
Are there other products we are allowed to form? Let us multiply 1,8 )  and (a l ,  in 
that order. The resulting product 

( I,B)) · ( (a l ) = I,B) (a l  ( 1 .2.3 1 )  
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is known as the outer product of 1,8)  and (a l .  We will emphasize in a moment 
that 1,8 )  (a I is to be regarded as an operator; hence it is fundamentally different 
from the inner product (,B ia) , which is just a number. 

There are also "illegal products." We have already mentioned that an operator 
must stand on the left of a ket or on the right of a bra. In other words, la)X 
and X (a I are examples of illegal products. They are neither kets, nor bras, nor 
operators; they are simply nonsensical. Products such as Ia) 1 ,8)  and (a I (,8 I are 
also illegal when Ia) and 1,8 ) ( (a l and (,8 1 )  are ket (bra) vectors belonging to the 
same ket (bra) space.* 

The Associative Axiom 

As is clear from (1 .2.27), multiplication operations among operators are associa
tive. Actually the associative property is postulated to hold quite generally as long 
as we are dealing with "legal" multiplications among kets, bras, and operators. 
Dirac calls this important postulate the associative axiom of multiplication. 

To illustrate the power of this axiom, let us first consider an outer product 
acting on a ket: 

( I,B ) (a l ) · l y ) .  (1 .2.32) 
Because of the associative axiom, we can regard this equally well as 

1,8 )  · ( (a l y ) ), (1 .2.33) 
where (a I y) is just a number. Thus the outer product acting on a ket is just another 
ket; in other words, I,B) (a l can be regarded as an operator. Because (1 .2.32) and 
(1 .2.33) are equal, we may as well omit the dots and let 1,8)  (a l y )  stand for the 
operator I,B ) (a l  acting on l y )  or, equivalently, the number (a l y )  multiplying 1,8) .  
(On the other hand, if ( 1 .2.33) i s  written as ( (a I y ) ) · I ,B ) , we cannot afford to omit 
the dot and brackets because the resulting expression would look illegal.) Notice 
that the operator I ,B) (a I rotates I y ) into the direction of I ,B ) . It is easy to see that if 

X = I,B) (a l ,  (1 .2.34) 
then 

xt = la) (,B I ,  (1 .2.35) 
which is left as an exercise. 

In a second important illustration of the associative axiom, we note that 

( (,B I ) · (XIa)) = ((,B IX) · ( Ia)) . 
bra ket bra ket 

(1 .2.36) 
*Later in the book we will encounter products like Ia) 1,8 ) ,  which are more appropriately written 
as Ia) 0 1,8) ,  but in such cases Ia) and 1,8)  always refer to kets from different vector spaces. For 
instance, the first ket belongs to the vector space for electron spin, the second ket to the vector 
space for electron orbital angular momentum; or the first ket lies in the vector space of particle 1 ,  
the second ket in the vector space of particle 2 ,  and s o  forth. 
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Because the two sides are equal, we might as well use the more compact notation 

(,B IX Ia) (1 .2.37) 
to stand for either side of (1 .2.36). Recall now that (a iXt is the bra that is dual to 
X la) ,  so 

(,B IX Ia) = (,B I · (X Ia)) 

= {( (a i Xt) · I.B ) }* 

= (a i Xt i.B)* , 

(1 .2.38) 

where, in addition to the associative axiom, we used the fundamental property of 
the inner product ( 1 .2 . 12). For a Hermitian X we have 

(,B I X Ia) = (a i X I,B)* . (1 .2.39) 

1 .3 .  BASE KETS AND MATRIX REPRESENTATIONS 

Eigenkets of an Observable 

Let us consider the eigenkets and eigenvalues of a Hermitian operator A. We use 
the symbol A, reserved earlier for an observable, because in quantum mechanics 
Hermitian operators of interest quite often turn out to be the operators representing 
some physical observables. 

We begin by stating an important theorem. 

Theorem 1.1. The eigenvalues of a Hermitian operator A are real; the eigenkets 
of A corresponding to different eigenvalues are orthogonal. 

Proof. First, recall that 

A la') = a' Ia') .  ( 1 .3 . 1) 
Because A is Hermitian, we also have 

(a" I A  = a"* (a'' l ,  ( 1 .3 .2) 
where a', a", . . .  are eigenvalues of A. If we multiply both sides of ( 1 .3 . 1 ) by (a" I 
on the left, multiply both sides of (1 .3 .2) by Ia') on the right, and subtract, we 
obtain 

(a' - a"*) (a"la') = 0. ( 1 .3 .3) 
Now a' and a" can be taken to be either the same or different. Let us first choose 
them to be the same; we then deduce the reality condition (the first half of the 
theorem) 

a' = a'* , (1 .3 .4) 
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where we have used the fact that Ia') is not a null ket. Let us now assume a' and a" 
to be different. Because of the just -proved reality condition, the difference a' - a"* 
that appears in ( 1 .3.3) is equal to a' - a", which cannot vanish, by assumption. 
The inner product (a" Ia') must then vanish: 

(a" Ia') = 0, (a' i= a"), 

which proves the orthogonality property (the second half of the theorem). 

( 1 .3.5) 

We expect on physical grounds that an observable has real eigenvalues, a point 
that will become clearer in the next section, where measurements in quantum 
mechanics will be discussed. The theorem just proved guarantees the reality of 
eigenvalues whenever the operator is Hermitian. That is why we talk about Her
mitian observables in quantum mechanics. 

It is conventional to normalize Ia') so that the { Ia') }  form a orthonormal set: 

(a" Ia') = 8a"a'· ( 1 .3 .6) 

We may logically ask, Is this set of eigenkets complete? Because we started our 
discussion by asserting that the whole ket space is spanned by the eigenkets of A, 
the eigenkets of A must form a complete set by construction of our ket space.* 

Eigenkets as Base Kets 

We have seen that the normalized eigenkets of A form a complete orthonormal 
set. An arbitrary ket in the ket space can be expanded in terms of the eigenkets 
of A. In other words, the eigenkets of A are to be used as base kets in much the 
same way as a set of mutually orthogonal unit vectors is used as base vectors in 
Euclidean space. 

Given an arbitrary ket Ia) in the ket space spanned by the eigenkets of A, let 
us attempt to expand it as follows: 

Ia) = I::Ca' l a') .  ( 1 .3.7) 
a' 

Multiplying (a" I on the left and using the orthonormality property ( 1 .3.6), we can 
immediately find the expansion coefficient, 

Ca' = (a' la) .  ( 1 .3.8) 

In other words, we have 

Ia) = L l a') (a' la) ,  ( 1 .3.9) 
a' 

*The astute reader, already familiar with wave mechanics, may point out that the completeness of 
eigenfunctions we use can be proved by applying the Sturm-Liouville theory to the Schrodinger 
wave equation. But to "derive" the SchrOdinger wave equation from our fundamental postulates, 
the completeness of the position eigenkets must be assumed. 
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which is analogous to an expansion of a vector V in (real) Euclidean space: 

( 1 .3 . 10) 

where {ei } form an orthogonal set of unit vectors. We now recall that the asso
ciative axiom of multiplication: la') (a' la) can be regarded either as the number 
(a' la) multiplying Ia') or, equivalently, as the operator la') (a' l  acting on Ia ) . Be
cause Ia) in ( 1 .3 .9) is an arbitrary ket, we must have 

_L ia') (a' l  = 1 ,  ( 1 .3 . 1 1) 
a' 

where the 1 on the right-hand side is to be understood as the identity operator. 
Equation ( 1 .3 . 1 1) is known as the completeness relation or closure. 

It is difficult to overestimate the usefulness of ( 1 .3 . 1 1) .  Given a chain of kets, 
operators, or bras multiplied in legal orders, we can insert, in any place at our 
convenience, the identity operator written in form ( 1 .3 . 1 1 ) .  Consider, for example, 
(a la) ; by inserting the identity operator between (a l and Ia ) , we obtain 

(a la) � (a l · ( � la') (a' l) · Ia) 
= Ll (a' la) l2 . 

a' 

( 1 .3. 12) 

This, incidentally, shows that if Ia) is normalized, then the expansion coefficients 
in ( 1 .3 .7) must satisfy 

L lea' 1 2 = L I (a' Ia) 12 = 1 .  
a' a' 

( 1 .3 . 1 3) 

Let us now look at la') (a' l  that appears in ( 1 .3. 1 1). Because this is an outer 
product, it must be an operator. Let it operate on Ia) : 

( la') (a' l ) · Ia) = la') (a' la) = Car la') . ( 1 .3 . 14) 

We see that la') (a' l  selects that portion of the ket Ia) parallel to Ia') , so la') (a' l  is 
known as the projection operator along the base ket Ia') and is denoted by A a' : 

Aa' = la') (a' l .  ( 1 .3 . 1 5) 

The completeness relation ( 1 .3 . 1 1 )  can now be written as 

LAar = 1 . ( 1 .3 . 16) 
a' 
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Matrix Representations 

Having specified the base kets, we now show how to represent an operator, say X, 
by a square matrix. First, using (1 .3 . 1 1) twice, we write the operator X as 

X =  LL ia") (a" IX Ia') (a' l .  ( 1 .3. 17) 
a" a' 

There are altogether N2 numbers of form (a" I X Ia'), where N is the dimensional
ity of the ket space. We may arrange them into an N x N square matrix such that 
the column and row indices appear as follows: 

(a" I X Ia' ) . 
row column 

Explicitly we may write the matrix as 

(a< l) I X la<2) ) 
(a<2) IX la(2) ) 

where the symbol ::::=:::: stands for "is represented by."* 
Using (1 .2.38), we can write 

(a" IX Ia') = (a' IXt la") * . 

( 1 . 3 . 18) 

( 1 .3 . 19) 

( 1 .3 .20) 

At last, the Hermitian adjoint operation, originally defined by (1 .2.24), has been 
related to the (perhaps more familiar) concept of complex conjugate transposed. 
If an operator B is Hermitian, we have 

(a" IB ia') = (a' I B ia")* . ( 1 .3.21) 

The way we arranged (a" IX Ia') into a square matrix is in conformity with the 
usual rule of matrix multiplication. To see this, just note that the matrix represen
tation of the operator relation 

Z = XY ( 1 .3 .22) 

reads 

(a" IZ ia') = (a" IXY ia') 
= L(a" IX Ia111) (a"' I Y ia') . ( 1 .3 .23) 

a"' 

Again, all we have done is to insert the identity operator, written in form ( 1 .3 . 1 1  ), 
between X and Y! 
*We do not use the equality sign here because the particular form of a matrix representation 
depends on the particular choice of base kets used. The operator is different from a representation 
of the operator just as the actor is different from a poster of the actor. 
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Let us now examine how the ket relation 

J y )  = X /a) 

21  

( 1 .3 .24) 

can be represented using our base kets. The expansion coefficients of I y ) can be 
obtained by multiplying (a' /  on the left: 

(a' J y )  = (a' /X Ja) 
= L (a1 /X /a11) (a" Ja) . ( 1 .3.25) 

a" 

But this can be seen as an application of the rule for multiplying a square matrix 
with a column matrix, once the expansion coefficients of Ja) and J y )  arrange 
themselves to form column matrices as follows: 

( 1 .3 .26) 

Likewise, given 

(y / = (a JX, ( 1 .3 .27) 

we can regard 

(y /a') =  L (a /a") (a" JX /a') .  ( 1 .3.28) 
a" 

So a bra is represented by a row matrix as follows: 

(y / � ( (y JaCl )) , (y JaC2) ) , ( y JaC3) ) , . . .  ) 
= ( (aC l) J y )* , (aC2) J y )* , (aC3) J y ) * , . . .  ). 

( 1 .3 .29) 

Note the appearance of complex conjugation when the elements of the column 
matrix are written as in (1 .3.29). The inner product (,8 /a) can be written as the 
product of the row matrix representing (,8 I with the column matrix representing 
/a) : 

(,8/a) = L(,B /a') (a' Ja) 

( 1 .3.30) 

If we multiply the row matrix representing (a I with the column matrix represent
ing / ,8 ) , then we obtain just the complex conjugate of the preceding expression, 
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which is consistent with the fundamental property of the inner product ( 1 .2. 12). 
Finally, the matrix representation of the outer product I f3)  (a I is easily seen to be 

(a (l ) \,8) (a (2) \a) * 

(a (2) I {3)  (a(2) I a) * ( 1 .3.3 1 )  

The matrix representation of an observable A becomes particularly simple if 
the eigenkets of A themselves are used as the base kets. First, we have 

A =  LLia") (a" IA ia' ) (a' l .  ( 1 .3.32) 
a" a' 

But the square matrix (a" I A la') is obviously diagonal, 

(a" I A la') =  (a' IA 1a')8a'a" = a'8a'a" , ( 1 .3.33) 

so 

A =  L.:a' la') (a' l 
a' 

( 1 .3 .34) 

Spin ! Systems 

It is here instructive to consider the special case of spin � systems. The base kets 
used are I Sz ; ±) ,  which we denote, for brevity, as I±) .  The simplest operator in 
the ket space spanned by I ±) is the identity operator, which, according to ( 1 .3. 1 1) ,  
can be written as 

1 = 1+) (+ 1  + 1 - ) ( - 1 .  

According to ( 1 .3 .34), we must be able to write Sz as 

Sz = (h/2) [( 1+) (+ 1 ) - ( 1 -) (- 1 )] .  

The eigenket -eigenvalue relation 

Sz l ±) = ±(h/2) 1 ±) 

immediately follows from the orthonormality property of 1±) .  
I t  is  also instructive to look at two other operators, 

s+ = h l +) (- 1 ,  s_ = tz l -) (+ 1 , 

( 1 .3.35) 

(1 .3 .36) 

( 1 .3 .37) 

( 1 .3.38) 

which are both seen to be non-Hermitian. The operator S+ , acting on the spin
down ket 1 -) ,  turns 1 -) into the spin-up ket I+) multiplied by 1i .  On the other 
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hand, the spin-up ket 1 +) ,  when acted upon by S+, becomes a null ket. So the 
physical interpretation of S+ is that it raises the spin component by one unit of 1i ;  if 
the spin component cannot be raised any further, we automatically get a null state. 
Likewise, s_ can be interpreted as an operator that lowers the spin component by 
one unit of 1i .  Later we will show that S± can be written as Sx ± i Sy . 

In constnictingthe matrix representations of the angular momentum operators, 
it is customary to label the column (row) indices in descending order of angular 
momentum components ; that is, the first entry corresponds to the maximum an
gular momentum component, the second to the next highest, and so forth. In our 
particular case of spin ! systems, we have 

. 1i ( 1 Sz = 2 0 
0 

- 1  

I +) � ( � ) , 1 -)  _:_ ( � ) , 
) , s+ � 1i ( � � ) , s_ � 1i ( � � ) . 

( 1 .3.39a) 

( 1 .3.39b) 

We will come back to these explicit expressions when we discuss the Pauli two
component formalism in Chapter 3 .  

1 .4 .  MEASUREMENTS, OBSERVABLES, AND THE UNCERTAINTY RELATIONS 

Measurements 

Having developed the mathematics of ket spaces, we are now in a position to 
discuss the quantum theory of measurement processes. This is not a particularly 
easy subject for beginners, so we first turn to the words of the great master, P. A. 
M. Dirac, for guidance (Dirac 1958, p. 36) :  "A measurement always causes the 
system to jump into an eigenstate of the dynamical variable that is being mea
sured." What does all this mean? We interpret Dirac's words as follows: Before 
a measurement of observable A is made, the system is assumed to be represented 
by some linear combination 

( 1 .4. 1) 
a' a' 

When the measurement is performed, the system is "thrown into" one of the 
eigenstates, say Ia') , of observable A. In other words, 

Ia ) A measurement Ia') . ( 1 .4.2) 

For example, a silver atom with an arbitrary spin orientation will change into 
either I Sz ; +) or I Sz ; -) when subjected to a SG apparatus of type SGz. Thus a 
measurement usually changes the state. The only exception is when the state is 
already in one of the eigenstates of the observable being measured, in which case 

Ia') A measurement I a') ( 1 .4.3) 
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with certainty, as will be discussed further. When the measurement causes Ia) 
to change into Ia'), it is said that A is measured to be a'. It is in this sense that 
the result of a measurement yields one of the eigenvalues of the observable being 
measured. 

Given ( 1 .4.1) ,  which is the state ket of a physical system before the measure
ment, we do not know in advance into which of the various Ia') 's the system will 
be thrown as the result of the measurement. We do postulate, however, that the 
probability for jumping into some particular Ia') is given by 

Probability for a' = l (a' la) l2 , ( 1 .4.4) 

provided that Ia) is normalized. 
Although we have been talking about a single physical system, to determine 

probability ( 1 .4.4) empirically, we must consider a great number of measurements 
performed on an ensemble-that is, a collection-of identically prepared physical 
systems, all characterized by the same ket Ia) .  Such an ensemble is known as 
a pure ensemble. (We will say more about ensembles in Chapter 3.) A beam 
of silver atoms that survive the first SGz apparatus of Figure 1 .3 with the Sz 
component blocked is an example of a pure ensemble because every member 
atom of the ensemble is characterized by I Sz ; +) . 

The probabilistic interpretation (1 .4.4) for the squared inner product I (a' Ia) 1 2 

is one of the fundamental postulates of quantum mechanics, so it cannot be 
proved. Let us note, however, that it makes good sense in extreme cases. Suppose 
the state ket is Ia') itself even before a measurement is made; then according to 
(1 .4.4), the probability for getting a'-or, more precisely, for being thrown into 
la')-as the result of the measurement is predicted to be 1 ,  which is just what 
we expect. By measuring A once again, we, of course, get Ia') only; quite gener
ally, repeated measurements of the same observable in succession yield the same 
result.* If, on the other hand, we are interested in the probability for the system 
initially characterized by Ia') to be thrown into some other eigenket Ia") with 
a" i= a', then (1 .4.4) gives zero because of the orthogonality between Ia') and 
Ia") . From the point of view of measurement theory, orthogonal kets correspond 
to mutually exclusive alternatives; for example, if a spin � system is in 1 Sz ; +) ,  it 
is not in I Sz ; -) with certainty. 

Quite generally, the probability for anything must be nonnegative. Further
more, the probabilities for the various alternative possibilities must add up to 
unity. Both of these expectations are met by our probability postulate ( 1 .4.4). 

We define the expectation value of A taken with respect to state Ia) as 

(A) = (a i A ia) .  ( 1 .4.5) 

To make sure that we are referring to state Ia) ,  the notation (A)a is sometimes 
used. Equation (1 .4.5) is a definition; however, it agrees with our intuitive notion 

*Here successive measurements must be carried out immediately afterward. This point will be
come clear when we discuss the time evolution of a state ket in Chapter 2. 
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Ia') 
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I a") w�a" -Fa' 

FIGURE 1.7 Selective measurement. 

of average measured value because it can be written as 

(A) = LL(a la" ) (a" IA ia') (a' la) 
a' a" 

a' 
a' 
t 

= I: 
measured value a' 

I (a' Ia) 1 2 
'-...-' 

probability for obtaining a' 
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( 1 .4.6) 

It is very important not to confuse eigenvalues with expectation values. For ex
ample, the expectation value of Sz for spin ! systems can assume any real value 
between -h/2 and +h/2, say 0.2731i; in contrast, the eigenvalue of Sz assumes 
only two values, h/2 and -h/2. 

To clarify further the meaning of measurements in quantum mechanics, we 
introduce the notion of a selective measurement, or filtration. In Section 1 . 1  we 
considered a Stem-Gerlach arrangement where we let only one of the spin compo
nents pass out of the apparatus while we completely blocked the other component. 
More generally, we imagine a measurement process with a device that selects only 
one of the eigenkets of A, say Ia') , and rejects all others ; see Figure 1 .7. This is 
what we mean by a selective measurement; it is also called filtration because only 
one of the A eigenkets filters through the ordeal. Mathematically we can say that 
such a selective measurement amounts to applying the projection operator Aa' to 
Ia) : 

Aa' la) = la') (a' la) . ( 1 .4.7) 

J. Schwinger has developed a formalism of quantum mechanics based on a 
thorough examination of selective measurements. He introduces a measurement 
symbol M(a') in the beginning, which is identical to Aa' or Ia') (a' I in our no
tation, and deduces a number of properties of M(a') (and also of M(b', a') that 
amount to lb') (a' I ) by studying the outcome of various Stem-Gerlach-type ex
periments. In this way he motivates the entire mathematics of kets, bras, and op
erators. In this book we do not follow Schwinger's path; the interested reader may 
consult Gottfried ( 1966). 

Spin ! Systems, Once Again 

Before proceeding with a general discussion of observables, we once again 
consider spin ! systems. This time we show that the results of sequential 
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Stem-Gerlach experiments, when combined with the postulates of quantum me
chanics discussed so far, are sufficient to determine not only the Sx,y eigenkets, 
I Sx ; ±} and I Sy ; ±} , but also the operators Sx and Sy themselves. 

First, we recall that when the Sx+ beam is subjected to an apparatus of type 
SGz, the beam splits into two components with equal intensities. This means that 
the probability for the Sx+ state to be thrown into I S2 ;  ±}, simply denoted as I ±} ,  . 1 h· h IS 2 eac , ence, 

( 1 .4.8) 

We can therefore construct the Sx+ ket as follows: 

( 1 .4.9) 

with 81 real. In writing (1 .4.9) we have used the fact that the overall phase (com
mon to both I +} and 1 -}) of a state ket is immaterial; the coefficient of I +} can 
be chosen to be real and positive by convention. The Sx- ket must be orthogo
nal to the Sx+ ket because the Sx+ alternative and Sx- alternative are mutually 
exclusive. This orthogonality requirement leads to 

. 1 1 i8 I Sx , -} = ,J21+} - ,J2e 1 1 -} ,  ( 1 .4. 10) 

where we have, again, chosen the coefficient of I+} to be real and positive by 
convention. We can now construct the operator Sx using ( 1 .3 .34) as follows: 

1i Sx = 2[( 1 Sx ; +} (Sx ; + l ) - ( ISx ;  -} (Sx ; - I)] 

= � [e-i8t ( l+} (- l ) + ei8t ( l- } (+ l )] . 
2 

( 1 .4. 1 1) 

Notice that the Sx we have constructed is Hermitian, just as it must be. A similar 
argument with Sx replaced by Sy leads to 

. 1 1 i8 I Sy , ±} = ,J21+} ± ..fie 2 1 -} ,  ( 1 .4. 1 2) 

( 1 .4. 13) 

Is there any way of determining 81 and 82? Actually there is one piece of infor
mation we have not yet used. Suppose we have a beam of spin ! atoms moving in 
the z-direction. We can consider a sequential Stem-Gerlach experiment with SGx 
followed by SGy. The results of such an experiment are completely analogous to 
the earlier case leading to ( 1 .4.8): 

( 1 .4. 14) 
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which is not surprising in view of the invariance of physical systems under rota
tions. Inserting ( 1 .4. 10) and (1 .4. 12) into ( 1 .4. 14), we obtain 

� 1 1 ± ei(oi-82) 1 = _1_ 
2 �· ( 1 .4.15) 

which is satisfied only if 

2 
( 1 .4. 16) 

We thus see that the matrix elements of Sx and Sy cannot all be real. If the Sx 
matrix elements are real, the Sy matrix elements must be purely imaginary (and 
vice versa). Just from this extremely simple example, the introduction of complex 
numbers is seen to be an essential feature in quantum mechanics. It is convenient 
to take the Sx matrix elements to be real* and set 81 = 0; if we were to choose 
81 = n ,  the positive x-axis would be oriented in the opposite direction. The second 
phase angle 82 must then be -n j2 or n j2. The fact that there is still an ambiguity 
of this kind is not surprising. We have not yet specified whether the coordinate 
system we are using is right-handed or left-handed; given the x- and z-axes, there 
is still a twofold ambiguity in the choice of the positive y-axis. Later we will 
discuss angular momentum as a generator of rotations using the right-handed co
ordinate system; it can then be shown that 82 = n /2 is the correct choice. 

To summarize, we have 

and 

1 1 I Sx ; ±) = � I+) ± �I-) , 
1 i I Sy ; ±) = � I+) ± �1-) , 

h Sx = 2 [( 1+) (- 1 ) + ( 1-) (+ 1 )] , 
h Sy = - [-i( l+) (- l) + i ( l-) (+ 1)] . 
2 

( 1 .4. 17a) 

( 1 .4 . 17b) 

( 1 .4. 18a) 

( 1 .4 . 18b) 

The Sx± and Sy± eigenkets given here are seen to be in agreement with our ear
lier guesses ( 1 . 1 .9) and ( 1 . 1 . 14) based on an analogy with linearly and circularly 
polarized light. (Note, in this comparison, that only the relative phase between 
the I +) and (- 1  components is of physical significance.) Furthermore, the non
Hermitian S± operators defined by ( 1 .3 .38) can now be written as 

( 1 .4. 1 9) 

*This can always be done by adjusting arbitrary phase factors in the definition of I+} and 1-} .  
This point will become clearer in  Chapter 3, where the behavior of  I±}  under rotations will be 
discussed. 
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The operators Sx and Sy, together with Sz given earlier, can be readily shown 
to satisfy the commutation relations 

and the anticommutation relations 

where the commutator [ , ] and the anticommutator { , } are defined by 

[A, B] = AB - BA, 
{A, B } = AB + BA. 

(1 .4.20) 

( 1 .4.21)  

( 1 .4.22a) 

( 1 .4.22b) 

(We make use of the totally antisymmetric symbol Eij k , which has the value + 1 
for E123 and any cyclic permutation of indices; - 1  for E213 and any cyclic per
mutation of indices; and 0 when any two indices are the same.) The commutation 
relations in ( 1 .4.20) will be recognized as the simplest realization of the angular
momentum commutation relations, whose significance will be discussed in detail 
in Chapter 3 .  In contrast, the anticommutation relations in ( 1 .4.2 1 )  turn out to be 
a special property of spin � systems. 

We can also define the operator S · S, or S2 for short, as follows: 

( 1 .4.23) 

Because of ( 1 .4.2 1), this operator turns out to be just a constant multiple of the 
identity operator 

(1 .4.24) 

We obviously have 

( 1 .4.25) 

As will be shown in Chapter 3, for spins higher than �, S2 is no longer a multiple 
of the identity operator; however, ( 1 .4.25) still holds. 

Compatible Observables 

Returning now to the general formalism, we will discuss compatible versus in
compatible observables. Observables A and B are defined to be compatible when 
the corresponding operators commute, 

[A, B] = 0, ( 1 .4.26) 

and to be incompatible when 

[A, B] "/= 0. ( 1 .4.27) 
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For example, S2 and Sz are compatible observables, whereas Sx and Sz are in
compatible observables. 

Let us first consider the case of compatible observables A and B. As usual, we 
assume that the ket space is spanned by the eigenkets of A. We may also regard the 
same ket space as being spanned by the eigenkets of B. We now ask, How are the 
A eigenkets related to the B eigenkets when A and B are compatible observables? · 

Before answering this question we must touch upon a very important point 
we have bypassed earlier-the concept of degeneracy. Suppose there are two (or 
more) linearly independent eigenkets of A having the same eigenvalue; then the 
eigenvalues of the two eigenkets are said to be degenerate. In such a case the no
tation Ia') that labels the eigenket by its eigenvalue alone does not give a complete 
description; furthermore, we may recall that our earlier theorem on the orthogo
nality of different eigenkets was proved under the assumption of no degeneracy. 
Even worse, the whole concept that the ket space is spanned by { I a') } appears to 
run into difficulty when the dimensionality of the ket space is larger than the num
ber of distinct eigenvalues of A. Fortunately, in practical applications in quantum 
mechanics, it is usually the case that in such a situation the eigenvalues of some 
other commuting observable, say B, can be used to label the degenerate eigenkets. 

Now we are ready to state an important theorem. 

Theorem 1.2. Suppose that A and B are compatible observables, and the eigen
values of A are nondegenerate. Then the matrix elements (a" I B I a') are all diag
onal. (Recall here that the matrix elements of A are already diagonal if { Ia') } are 
used as the base kets.) 

Proof The proof of this important theorem is extremely simple. Using the defi
nition (1 .4.26) of compatible observables, we observe that 

(a" l [A, B] Ia') = (a" - a') (a" IB Ia') = 0. ( 1 .4.28) 

Therefore, (a" IB Ia') must vanish unless a' = a", which proves our assertion. 

We can write the matrix elements of B as 

(a" I B ia') = 8a'a" (a' I B ia') .  ( 1 .4.29) 

So both A and B can be represented by diagonal matrices with the same set of 
base kets. Using ( 1 .3. 17) and (1 .4.29), we can write B as 

B = L Ia") (a" I B I a") (a" 1 . ( 1 .4.30) 
a" 

Suppose that this operator acts on an eigenket of A: 
B la') = L la") (a" IB ia") (a" la') = ((a' I B ia') ) la' ) . ( 1 .4.3 1)  

a" 
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But this is nothing other than the eigenvalue equation for the operator B with 
eigenvalue 

b' = (a' I B ia') .  ( 1 .4.32) 

The ket Ia') is therefore a simultaneous eigenket of A and B. Just to be impartial 
to both operators, we may use la', b') to characterize this simultaneous eigenket. 

We have seen that compatible observables have simultaneous eigenkets. Even 
though the proof given is for the case where the A eigenkets are nondegenerate, 
the statement holds even if there is an n-fold degeneracy. That is, 

A la'Ci) ) = a' la'Ci) ) for i = 1 ,  2, . . .  , n, ( 1 .4.33) 

where la'(i) ) are n mutually orthonormal eigenkets of A, all with the same eigen
value a'. To see this, all we need to do is construct appropriate linear combinations 
of la'(i)) that diagonalize the B operator by following the diagonalization proce
dure to be discussed in Section 1 .5 .  

A simultaneous eigenket of A and B, denoted by la', b') , has the property 

A ia', b') = a' ia', b') ,  
B la', b') = b' ia', b') .  

( 1 .4.34a) 

( 1 .4.34b) 

When there is no degeneracy, this notation is somewhat superfluous because it is 
clear from ( 1 .4.32) that if we specify a', we necessarily know the b' that appears in 
l a' ,b') . The notation ia', b') is much more powerful when there are degeneracies. 
A simple example may be used to illustrate this point. 

Even though a complete discussion of orbital angular momentum will not ap
pear in this book until Chapter 3 ,  the reader may be aware from his or her earlier 
training in elementary wave mechanics that the eigenvalues of L2 (orbital angu
lar momentum squared) and Lz (the z-component of orbital angular momentum) 
are 1i2l(l + 1)  and mzfi, respectively, with l an integer and mz = -l, -l + 1 ,  . . .  , 
+l. To characterize an orbital angular-momentum state completely, it is neces
sary to specify both l and mz . For example, if we just say l = 1 ,  the mz value can 
still be 0, + 1, or - 1 ;  if we just say mz = 1 ,  l can be 1 ,  2, 3, 4, and so on. Only 
by specifying both l and mz do we succeed in uniquely characterizing the orbital 
angular-momentum state in question. Quite often a collective index K' is used to 
stand for (a', b'), so that 

I K') = l a' , b') .  ( 1 .4.35) 

We can obviously generalize our considerations to a situation where there are 
several (more than two) mutually compatible observables, namely, 

[A, B] = [B, C] = [A, C] = · · · = 0. ( 1 .4.36) 

Assume that we have found a maximal set of commuting observables; that is, 
we cannot add any more observables to our list without violating (1 .4.36). The 
eigenvalues of individual operators A, B, C, . . . may have degeneracies, but if we 
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specify a combination (a', b', c', . . .  ), then the corresponding simultaneous eigen
ket of A, B,  C, . . .  is uniquely specified. We can again use a collective index K' to 
stand for (a', b', c', . . .  ). The orthonormality relation for 

I K'} = la', b', c', . . .  } ( 1 .4.37) 

reads 

(1 .4.38) 

and the completeness relation, or closure, can be written as 

L I K'} (K' I = LLL · · · la', b', c', . . .  } (a', b', c', . . .  1 = 1 .  ( 1 .4.39) 
K' a' b' c' 

We now consider measurements of A and B when they are compatible observ
ables. Suppose we measure A first and obtain result a'. Subsequently, we may 
measure B and get result b'. Finally we measure A again. It follows from our mea
surement formalism that the third measurement always gives a' with certainty; 
that is, the second (B) measurement does not destroy the previous information 
obtained in the first (A) measurement. This is rather obvious when the eigenval
ues of A are nondegenerate: 

Ia} 
Ameasurement 

la', b'} 
Bmeasurement 

la', b'} 
Ameasurement 

la',b'} . ( 1 .4.40) 

When there is degeneracy, the argument goes as follows: After the first (A) 
measurement, which yields a', the system is thrown into some linear combination 

n 

" c(i) Ia' b(i) )  � a' ' ' ( 1 .4.41)  

where n is  the degree of degeneracy and the kets Ia', b(i) }  all have the same eigen
value a' as far as operator A is concerned. The second (B) measurement may select 
just one of the terms in the linear combination ( 1 .4.41)-say, la', bU))-but the 
third (A) measurement applied to it still yields a'. Whether or not there is degener
acy, A measurements and B measurements do not interfere. The term compatible 
is indeed deemed appropriate. 

I ncompatible Observables 

We now tum to incompatible observables, which are more nontrivial. The first 
point to be emphasized is that incompatible observables do not have a complete 
set of simultaneous eigenkets. To show this, let us assume the converse to be true. 
There would then exist a set of simultaneous eigenkets with property ( 1.4.34a) 
and (1 .4.34b). Clearly, 

AB ia', b'} = Ab' la', b') = a'b' la', b'). ( 1 .4.42) 
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FIGURE 1.8 Sequential selective measurements. 

Likewise, 

BA /a', b') = Ba' /a', b') = a'b' /a', b') ;  ( 1 .4.43) 

hence, 

AB /a', b') = BA/a', b') ,  ( 1 .4.44) 

and thus [A, B] = 0 in contradiction to the assumption. So, in general, Ja', b') 
does not make sense for incompatible observables. There is, however, an interest
ing exception; it may happen that there exists a subspace of the ket space such that 
( 1 .4.44) holds for all elements of this subspace, even though A and B are incom
patible. An example from the theory of orbital angular momentum may be helpful 
here. Suppose we consider an l = 0 state (s-state). Even though Lx and Lz do not 
commute, this state is a simultaneous eigenstate of Lx and Lz (with eigenvalue 
zero for both operators). The subspace in this case is one-dimensional. 

We already encountered some of the peculiarities associated with incompati
ble observables when we discussed sequential Stern-Gerlach experiments in Sec
tion 1 . 1 .  We now give a more general discussion of experiments of that type. 
Consider the sequence of selective measurements shown in Figure 1 .8a. The first 
(A) filter selects some particular Ja') and rejects all others, the second (B) filter 
selects some particular I b') and rejects all others, and the third (C) filter selects 
some particular lc') and rejects all others. We are interested in the probability of 
obtaining J c') when the beam coming out of the first filter is normalized to unity. 
Because the probabilities are multiplicative, we obviously have 

(1 .4.45) 

Now let us sum over b' to consider the total probability for going through all 
possible b' routes. Operationally this means that we first record the probability of 
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obtaining c' with all but the first b' route blocked; then we repeat the procedure 
with all but the second b' blocked, and so on; then we sum the probabilities at the 
end and obtain 

( 1 .4.46) 
b' b' 

We now compare this with a different arrangement, where the B filter is absent 
(or not operative); see Figure 1 .8b. Clearly, the probability is just I (c' Ia') 12 , which 
can also be written as follows: 

l (c' la') l2 = / L(c' lb') (b' la') / 2 = LL(c' lb') (b' la') (a' lb") (b" l c') .  ( 1 .4.47) 
b' b' b" 

Notice that expressions ( 1 .4.46) and (1 .4.47) are different ! This is remarkable 
because in both cases the pure Ia') beam coming out of the first (A) filter can be 
regarded as being made up of the B eigenkets 

I a') = L lb') (b' la') , ( 1 .4.48) 
b' 

where the sum is over all possible values of b'. The crucial point to be noted is that 
the result coming out of the C filter depends on whether or not B measurements 
have actually been carried out. In the first case, we experimentally ascertain which 
of the B eigenvalues are actually realized; in the second case, we merely imagine 
Ia') to be built up of the various lb') 's in the sense of ( 1 .4.48). Put in another way, 
actually recording the probabilities of going through the various b' routes makes 
all the difference even though we sum over b' afterwards. Here lies the heart of 
quantum mechanics. 

Under what conditions do the two expressions become equal? It is left as an ex
ercise for the reader to show that for this to happen, in the absence of degeneracy, 
it is sufficient that 

[A, B] = O  or [B, C] = O. ( 1 .4.49) 

In other words, the peculiarity we have illustrated is characteristic of incompatible 
observables. 

The Uncertainty Relation 

The last topic to be discussed in this section is the uncertainty relation. Given an 
observable A, we define an operator 

LlA = A - (A) ,  ( 1 .4.50) 

where the expectation value is to be taken for a certain physical state under consid
eration. The expectation value of (LlA)2 is known as the dispersion of A. Because 
we have 

( 1 .4.5 1)  



34 Chapter 1 Fundamental Concepts 

the last line of ( 1 .4.5 1) may be taken as an alternative definition of dispersion. 
Sometimes the terms variance and mean square deviation are used for the same 
quantity. Clearly, the dispersion vanishes when the state in question is an eigen
state of A. Roughly speaking, the dispersion of an observable characterizes "fuzzi
ness." For example, for the Sz+ state of a spin i system, the dispersion of Sx can 
be computed to be 

( 1 .4.52) 

In contrast the dispersion ((LlSz)2) obviously vanishes for the Sz+ state. So, for 
the Sz+ state, Sz is "sharp"-a vanishing dispersion for Sz-whereas Sx is fuzzy. 

We now state the uncertainty relation, which is the generalization of the well
known x-p uncertainty relation to be discussed in Section 1 .6. Let A and B be 
observables. Then, for any state, we must have the following inequality: 

To prove this we first state three lemmas. 

Lemma 1.1. The Schwarz inequality 

which is analogous to 

in real Euclidian space. 

Proof. First note that 

( (a l + A.* (,B I ) · ( Ia) + A. I,B )) =::: 0, 

( 1 .4.53) 

( 1 .4.54) 

( 1 .4.55) 

( 1 .4.56) 

where A. can be any complex number. This inequality must hold when A. is set 
equal to - (,8 Ia) (,8 1,8) : 

(a la) (,B I,B) - l (a i,B) ) I2 =::: 0, ( 1 .4.57) 

which is the same as ( 1 .4.54). 

Lemma 1.2. The expectation value of a Hermitian operator is purely real. 

Proof. The proof is trivial-just use ( 1 .3.21). 

Lemma 1.3. The expectation value of an anti-Hermitian operator, defined by 
C = -ct, is purely imaginary. 
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Proof. The proof is trivial. 

Armed with these lemmas, we are in a position to prove the uncertainty relation 
( 1 .4.53). Using Lemma 1 with 

Ia) = �A I ) ,  
1 ,8 )  = �B i ) ,  ( 1 .4.58) 

where the blank ket I ) emphasizes the fact that our consideration may be applied 
to any ket, we obtain 

( 1 .4.59) 

where the Hermiticity of �A and �B has been used. To evaluate the right-hand 
side of ( 1 .4.59), we note 

( 1 .4.60) 

where the commutator [�A, �B] , which is equal to [A, B] , is clearly anti
Hermitian 

( [A, B])t = (AB - BA)t = BA - AB = - [A, B] . 
In contrast, the anticommutator {�A, �B} is obviously Hermitian, so 

1 1 (�A�B) = - ( [A, B] ) + - ( {�A. �B }) , 
2 purely imaginary 2 purely real 

( 1 .4.6 1)  

( 1 .4.62) 

where Lemmas 2 and 3 have been used. The right-hand side of ( 1 .4.59) now be
comes 

( 1 .4.63) 

The proof of ( 1 .4.53) is now complete because the omission of the second (the 
anticommutator) term of ( 1 .4.63) can only make the inequality relation stronger.* 

Applications of the uncertainty relation to spin ! systems will be left as exer
cises. We come back to this topic when we discuss the fundamental x-p commu
tation relation in Section 1 .6. 

1 .5 • CHANGE OF BASIS 

Transformation Operator 

Suppose we have two incompatible observables A and B. The ket space in question 
can be viewed as being spanned either by the set { Ia') } or by the set { lb') } .  For 

*In the literature most authors use �A for our J ((�A)2) ,  so the uncertainty relation is written as 
�A�B :=:: � I  ( [A, B]}  1 .  In this book, however, �A and �B are to be understood as operators [see 
( 1 .4.50)], not numbers. 
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example, for spin ! systems I S.:r±) may be used as our base kets; alternatively, 
I Sz ±) may be used as our base kets. The two different sets of base kets, of course, 
span the same ket space. We are interested in finding out how the two descriptions 
are related. Changing the set of base kets is referred to as a change of basis or 
a change of representation. The basis in which the base eigenkets are given by 
{ Ia') } is called the A representation or, sometimes, the A diagonal representation 
because the square matrix corresponding to A is diagonal in this basis. 

Our fundamental task is to construct a transformation operator that connects 
the old orthonormal set { Ia') } and the new orthonormal set { lb') } . To this end, we 
first show the following. 

Theorem 1.3. Given two sets of base kets, both satisfying orthonormality and 
completeness, there exists a unitary operator U such that 

( 1 .5 . 1 )  

By a unitary operator we mean an operator fulfilling the conditions 

utu =  1 ( 1 .5 .2) 

and 

uut = 1 .  ( 1 .5.3) 

Proof. We prove this theorem by explicit construction. We assert that the operator 

U = L lb(k) ) (a(k) I 
k 

will do the job, and we apply this U to la<O ) .  Clearly, 

is guaranteed by the orthonormality of { Ia') } . Furthermore, U is unitary: 

utu = L::l:: la<0) (b(l) lb(k) ) (a(k) l = l:: la(k) ) (a(k) l = 1 ,  
k l k 

( 1 .5.4) 

( 1 .5 .5) 

( 1 .5 .6) 

where we have used the orthonormality of { l b' ) } and the completeness of { Ia') } .  
We obtain relation ( 1 .5.3) in an analogous manner. 

Transformation Matrix 

It is instructive to study the matrix representation of the U operator in the old 
{ Ia') } basis. We have 

( 1 .5 .7) 
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which is obvious from (1 .5.5). In other words, the matrix elements of the U op
erator are built up of the inner products of old basis bras and new basis kets. We 
recall that the rotation matrix in three dimensions that changes one set of unit ba
sis vectors (x, Y, z) into another set (x',y', z') can be written as (Goldstein (2002), 
pp. 134-144, for example) 

( 1 .5.8) 

The square matrix made up of (a(k) I U l a(l) ) is referred to as the transformation 
matrix from the { Ia') } basis to the { lb')} basis. 

Given an arbitrary ket Ia) whose expansion coefficients (a' la) are known in 
the old basis, 

Ia) = L )a') (a' la) , ( 1 .5 .9) 
a' 

how can we obtain (b' la) , the expansion coefficients in the new basis? The answer 
is very simple: Just multiply (1 .5 .9) (with a' replaced by aCl) to avoid confusion) 
by (b(k) l :  

(b(k) Ia) = L (b(k) la(l) ) (a(l) Ia) = L (a(k) I Ut I a  (I) ) (a (I) Ia ) . ( 1 .5 . 10) 
l l 

In matrix notation, ( 1 .5 . 10) states that the column matrix for Ia) in the new basis 
can be obtained just by applying the square matrix ut to the column matrix in the 
old basis: 

(New) = (Ut)(old). ( 1 .5. 1 1 ) 

The relationships between the old matrix elements and the new matrix elements 
are also easy to obtain: 

(b(k) IX Ib(l) ) = L L (b(k) la(m)) (a(m) IX Ia(n) ) (a(n) lb(l) ) 
m n 

= L L (a(k) I Ut l a(m) ) (a(m) IX Ia(n) ) (a(n) I U la(l) ) .  
m n 

( 1 .5 . 12) 

This is simply the well-known formula for a similarity transformation in matrix 
algebra, 

x' = utx u .  ( 1 .5 . 13) 

The trace of an operator X is defined as the sum of diagonal elements: 

tr(X) = L(a' IX Ia' ) .  ( 1 .5 . 14) 
a' 
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Even though a particular set of base kets is used in the definition, tr(X) turns out 
to be independent of representation, as shown: 

L(a' \X \a1) = LLL(a' \b') (b1 \X \b11) (b11 \a') 
a' 

We can also prove 

Diagonalization 

a' b' b" 

= LL(b'' Jb') (b' \X \b") 
b' b" 

= L (b' \X \b') . 
b' 

tr(XY) = tr(Y X), 

tr(ut XU) = tr(X), 

tr( Ja') (a" l ) = Da1 a" , 

tr( \b') (a' \ ) = (a' \b') . 

( 1 .5 . 15) 

( 1 .5 . 16a) 

( 1 .5 . 16b) 

( 1 .5 . 16c) 

(1 .5. 16d) 

So far we have not discussed how to find the eigenvalues and eigenkets of an op
erator B whose matrix elements in the old { \ a') } basis are assumed to be known. 
This problem turns out to be equivalent to that of finding the unitary matrix that 
diagonalizes B. Even though the reader may already be familiar with the diago
nalization procedure in matrix algebra, it is worth working out this problem using 
the Dirac bra-ket notation. 

We are interested in obtaining the eigenvalue b' and the eigenket Jb') with the 
property 

B \b') = b' \b') . ( 1 .5 . 17) 

First, we rewrite this as 

L (a" \B \a') (a' \b') = b' (a" Jb' ) . ( 1 .5 . 18) 
a' 

When Jb') in ( 1 .5. 17) stands for the lth eigenket of operator B, we can write 
( 1 .5. 18) in matrix notation as follows: 

( 1 .5 . 19) 

with 

( 1 .5 .20a) 
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and 
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( 1 .5 .20b) 

where i, j, k run up to N, the dimensionality of the ket space. As we know from 
linear algebra, nontrivial solutions for C�l) are possible only if the characteristic 
equation 

det(B - A. 1) = 0 ( 1 .5 .21)  

is  satisfied. This is  an Nth-order algebraic equation for A., and the N roots obtained 
are to be identified with the various b(l) •s we are trying to determine. Knowing 
b(l) , we can solve for the corresponding C�l) 's up to an overall constant to be 
determined from the normalization condition. Comparing (1 .5.20b) with (1 .5.7), 
we see that the C�l) ,s are just the elements of the unitary matrix involved in the 
change of basis { Ia') } � { lb') } . 

For this procedure the Hermiticity of B is  important. For example, consider 
S+ defined by (1 .3 .38) or ( 1 .4. 19). This operator is obviously non-Hermitian. The 
corresponding matrix, which reads in the Sz basis as 

( 1 .5 .22) 

cannot be diagonalized by any unitary matrix. In Chapter 2 we will encounter 
eigenkets of a non-Hermitian operator in connection with a coherent state of a 
simple harmonic oscillator. Such eigenkets, however, are known not to form a 
complete orthonormal set, and the formalism we have developed in this section 
cannot be immediately applied. 

Unitary Equivalent Observables 

We conclude this section by discussing a remarkable theorem on the unitary trans
form of an observable. 

Theorem 1.4. Consider again two sets of orthonormal basis { Ia') } and { lb') } 
connected by the U operator (1 .5 .4) . Knowing U, we may construct a unitary 
transform of A, UAU-1 ; then A and UAU-1 are said to be unitary equivalent 
observables. The eigenvalue equation for A, 

( 1 .5.23) 

clearly implies that 

( 1 .5 .24) 

But this can be rewritten as 

( 1 .5 .25) 
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This deceptively simple result is quite profound. It tells us that the l b') 's are 
eigenkets of UA u- 1 with exactly the same eigenvalues as the A eigenvalues. In 
other words, unitary equivalent observables have identical spectra. 

The eigenket lb(l) ) ,  by definition, satisfies the relationship 

(1 .5.26) 

Comparing (1 .5 .25) and (1 .5 .26), we infer that B and UAU- 1 are simultaneously 
diagonalizable. A natural question is, Is UAu- 1 the same as B itself? The answer 
quite often is yes in cases of physical interest. Take, for example, Sx and Sz . They 
are related by a unitary operator, which, as we will discuss in Chapter 3, is actually 
the rotation operator around the y-axis by angle n j2. In this case Sx itself is the 
unitary transform of Sz . Because we know that Sx and Sz exhibit the same set 
of eigenvalues-namely, +h/2 and -h/2-we see that our theorem holds in this 
particular example. 

1 .6 .  POSITION, MOMENTUM, AND TRANSLATION 

Continuous Spectra 

The observables considered so far have all been assumed to exhibit discrete eigen
value spectra. In quantum mechanics, however, there are observables with con
tinuous eigenvalues. Take, for instance, pz , the z-component of momentum. In 
quantum mechanics this is again represented by a Hermitian operator. In contrast 
to Sz , however, the eigenvalues of Pz (in appropriate units) can assume any real 
value between -oo and oo. 

The rigorous mathematics of a vector space spanned by eigenkets that exhibit 
a continuous spectrum is rather treacherous. The dimensionality of such a space 
is obviously infinite. Fortunately, many of the results we worked out for a finite
dimensional vector space with discrete eigenvalues can immediately be gener
alized. In places where straightforward generalizations do not hold, we indicate 
danger signals. 

We start with the analogue of eigenvalue equation ( 1 .2.5), which, in the 
continuous-spectrum case, is written as 

� �� ') = (1() ,  ( 1 .6. 1)  

where � is  an operator and �' is  simply a number. The ket I�') is, in other words, 
an eigenket of operator � with eigenvalue �', just as Ia') is an eigenket of operator 
A with eigenvalue a'. 

In pursuing this analogy we replace the Kronecker symbol by Dirac's 8-
function-a discrete sum over the eigenvalues {a'} by an integral over the contin
uous variable �'-so 

(a' la") = 8a' a" -+ WW')  = 8(�1 - �"), ( 1 .6.2a) 

L la') (a' l = 1 -+  J d�' I�') W I = 1 ,  
a' 

( 1 .6.2b) 
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/a) = L /a') (a' ja ) ---+ /a) = J df /f) (�' /a) ,  
a' 

L i (a' /a) /2 = 1 ---+ J d�' / (f /a) /2 = 1 ,  
a' 

(,8 /a) = L (,8 /a') (a' /a) ---+ (,8 /a) = J d�' (,8 /f ) (�' /a) ,  
a' 
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( 1 .6.2c) 

( 1 .6.2d) 

( 1 .6.2e) 

( 1 .6.2f) 

Notice in particular how the completeness relation (1 .6.2b) is used to obtain 
( 1 .6.2c) and (1 .6.2e). 

Position Eigenkets and Position Measurements 

In Section 1 .4 we emphasized that a measurement in quantum mechanics is es
sentially a filtering process. To extend this idea to measurements of observables 
exhibiting continuous spectra, it is best to work with a specific example. To this 
end we consider the position (or coordinate) operator in one dimension. 

The eigenkets /x') of the position operator x satisfying 

x /x') = x' jx') ( 1 .6.3) 

are postulated to form a complete set. Here x' is just a number with the dimension 
of length 0.23 em, for example, whereas x is an operator. The state ket for an 
arbitrary physical state can be expanded in terms of { /x') } :  

/a) = i: dx' lx') (x' /a) .  ( 1 .6.4) 

We now consider a highly idealized selective measurement of the position ob
servable. Suppose we place a very tiny detector that clicks only when the particle 
is precisely at x' and nowhere else. Immediately after the detector clicks, we can 
say that the state in question is represented by jx') . In other words, when the de
tector clicks, ja) abruptly ')umps into" jx') in much the same way as an arbitrary 
spin state jumps into the Sz+ (or Sz -) state when subjected to an SG apparatus 
of the Sz type. 

In practice, the best the detector can do is to locate the particle within a narrow 
interval around x'. A realistic detector clicks when a particle is observed to be lo
cated within some narrow range (x' - D.  j2,x'  + D. /2). When a count is registered 
in such a detector, the state ket changes abruptly as follows: 

foo 
lx'+f:./2 

/a) = dx"/x") (x" /a)  measurement dx" /x") (x" /a) . 
-
oo 

x'-f:./2 
( 1 .6.5) 

Assuming that (x" /a) does not change appreciably within the narrow interval, the 
probability for the detector to click is given by 

(1 .6.6) 
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where we have written dx' for .6.. This is analogous to I (a' Ia) 12 for the probability 
for Ia) to be thrown into Ia') when A is measured. The probability of recording 
the particle somewhere between -oo and oo is given by 

( 1 .6.7) 

which is normalized to unity if Ia) is normalized: 

(a la) = 1 =} L: dx' (a lx') (x' la) = 1 .  ( 1 .6.8) 

The reader familiar with wave mechanics may have recognized by this time 
that (x' la) is the wave function for the physical state represented by Ia ) . We 
will say more about this identification of the expansion coefficient with the x
representation of the wave function in Section 1 .  7. 

The notion of a position eigenket can be extended to three dimensions. It is 
assumed in nonrelativistic quantum mechanics that the position eigenkets lx') are 
complete. The state ket for a particle with internal degrees of freedom, such as 
spin, ignored can therefore be expanded in terms of { lx') } as follows: 

Ia) = J d3x' lx') (x' la) , ( 1 .6.9) 

where x' stands for x', y', and z'; in other words, l x') is a simultaneous eigenket 
of the observables x, y, and z in the sense of Section 1 .4: 

lx') = lx', y' , z') ,  
x lx') = x' lx') ,  y lx') = l lx') ,  z lx') = z' lx') ,  

( 1 .6. 10a) 

( 1 .6. 10b) 

To be able to consider such a simultaneous eigenket at all, we are implicitly as
suming that the three components of the position vector can be measured simul
taneously to arbitrary degrees of accuracy; hence, we must have 

( 1 .6. 1 1) 

where X I ,  x2, and X3 stand for x, y, and z, respectively. 

Translation 

We now introduce the very important concept of translation, or spatial displace� 
ment. Suppose we start with a state that is well localized around x' . Let us con
sider an operation that changes this state into another well-localized state, this 
time around x' + dx', with everything else (for example, the spin direction) un
changed. Such an operation is defined to be an infinitesimal translation by dx', 
and the operator that does the job is denoted by fl,(dx') : 

fl,(dx') lx') = lx' + dx') , ( 1 .6. 1 2) 
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where a possible arbitrary phase factor is set to unity by convention. Notice that 
the right-hand side of (1 .6. 12) is again a position eigenket, but this time with 
eigenvalue x' + dx' . Obviously lx') is not an eigenket of the infinitesimal transla
tion operator. 

By expanding an arbitrary state ket Ia) in terms of the position eigenkets, we 
can examine the effect of infinitesimal translation on Ia) : 
Ia) ---+ 'if,(dx') la) = 'if,(dx') J d3x' lx') (x' la) = J d3x' lx' + dx') (x' la) . ( 1 .6. 13)  

We also write the right-hand side of (1 .6. 13)  as 

J d3x' lx' +dx') (x' la) = f d3x' lx') (x' - dx' la) ( 1 .6. 14) 

because the integration is over all space and x' is just an integration variable. 
This shows that the wave function of the translated state 'if,(dx') la) is obtained by 
substituting x' - dx' for x' in (x' la ) . 

There is  an equivalent approach to translation that i s  often treated in  the lit
erature. Instead of considering an infinitesimal translation of the physical system 
itself, we consider a change in the coordinate system being used such that the 
origin is shifted in the opposite direction, -dx'. Physically, in this alternative 
approach we are asking how the same state ket would look to another observer 
whose coordinate system is shifted by -dx'. In this book we try not to use this 
approach. Obviously it is important that we do not mix the two approaches! 

We now list the properties of the infinitesimal translation operator 'if,( -dx'). 
The first property we demand is the unitarity property imposed by probability 
conservation. It is reasonable to require that if the ket Ia) is normalized to unity, 
the translated ket 'if,(dx') la) also be normalized to unity, so 

( 1 .6. 15) 

This condition is guaranteed by demanding that the infinitesimal translation be 
unitary: 

( 1 .6. 16) 

Quite generally, the norm of a ket is preserved under unitary transformations. 
For the second property, suppose we consider two successive infinitesimal 
translations-first by dx' and subsequently by dx", where dx' and dx" need 
not be in the same direction. We expect the net result to be just a single translation 
operation by the vector sum dx' + dx", so we demand that 

'if,(dx")'if,(dx') = 'if,(dx' + dx"). ( 1 .6. 17) 

For the third property, suppose we consider a translation in the opposite direction; 
we expect the opposite-direction translation to be the same as the inverse of the 
original translation: 

( 1 .6. 1 8) 
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For the fourth property, we demand that as dx' --+ 0, the translation operation 
reduce to the identity operation 

lim ff,(dx') = 1 
dx'--+0 

( 1 .6 . 19) 

and that the difference between ff,(dx') and the identity operator be of first order 
in dx'. 

We now demonstrate that if we take the infinitesimal translation operator to be 

ff,(dx') = 1 - iK ·  dx', ( 1 .6.20) 

where the components of K, Kx , Ky , and Kz, are Hermitian operators, then 
all the properties listed are satisfied. The first property, the unitarity of f/,(dx'), is 
checked as follows: 

ff,t (dx')ff,(dx') = (1 + iKt · dx')( l - iK · dx') 
= 1 - i (K-Kt) · dx' + 0[(dx')2] ( 1 .6.21)  

:::::: 1 ' 

where terms of second order in dx' have been ignored for an infinitesimal trans
lation. The second property (1 .6. 17) can also be proved as follows: 

ff,(dx")ff,(dx') = ( 1 - iK ·  dx")( 1 - iK · dx') 
:::::: 1 - iK ·  (dx' +dx") 
= f/,(dx' + dx"). 

The third and fourth properties are obviously satisfied by ( 1 .6.20) . 

( 1 .6.22) 

Accepting ( 1 .  6. 20) to be the correct form for ff, ( dx'), we are in a position to de
rive an extremely fundamental relation between the K operator and the x operator. 
First, note that 

xf/,(dx') \x') = x \x' + dx') = (x' + dx') !x' + dx') ( 1 .6.23a) 

and 

ff,(dx')x \x') = x' f/,(dx') \x') = x' !x' + dx') ;  ( 1 .6.23b) 

hence, 

[ x, ff,(dx')] Jx') = dx' Jx' + dx') :::::: dx' Jx') ,  ( 1 .6.24) 

where the error made in approximating the last step of (1 .6.24) is of second or
der in dx'. Now Jx') can be any position eigenket, and the position eigenkets are 
known to form a complete set. We must therefore have an operator identity 

[ x, ff,(dx') J = dx', ( 1 .6.25) 

or 

-ixK ·  dx' + iK · dx'x = dx', ( 1 .6.26) 
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where, on the right-hand sides of (1 .6.25) and (1 .6.26), dx' is understood to be the 
number dx' multiplied by the identity operator in the ket space spanned by lx') . 
By choosing dx' in the direction of x j and forming the scalar product with Xi , we 
obtain 

(1 .6.27) 

where again 8ij is understood to be multiplied by the identity operator. 

Momentum as a Generator of Translation 

Equation ( 1 .6.27) is the fundamental commutation relation between the position 
operators x, y, z and the K operators Kx , Ky , Kz .  Remember that so far, the K 
operator is defined in terms of the infinitesimal translation operator by (1 .6.20). 
What is the physical significance we can attach to K? 

J. Schwinger, lecturing on quantum mechanics, once remarked, " . . .  for fun
damental properties we will borrow only names from classical physics." In the 
present case we would like to borrow from classical mechanics the notion that 
momentum is the generator of an infinitesimal translation. An infinitesimal trans
lation in classical mechanics can be regarded as a canonical transformation, 

Xnew = X = X+  dx, Pnew = P = p, ( 1 .6.28) 

obtainable from the generating function (Goldstein 2002, pp. 386 and 403) 

F(x,P) = X ·  P+p · dx, (1 .6.29) 

where p and P refer to the corresponding momenta. 
This equation has a striking similarity to the infinitesimal translation operator 

(1 .6.20) in quantum mechanics, particularly if we recall that x · P in ( 1 .6.29) is the 
generating function for the identity transformation (X = x, P = p ). We are there
fore led to speculate that the operator K is in some sense related to the momentum 
operator in quantum mechanics. 

Can the K operator be identified with the momentum operator itself? Unfortu
nately, the dimension is all wrong; the K operator has the dimension of 1 /length 
because K · dx' must be dimensionless. But it appears legitimate to set 

p K =--------------------------------

universal constant with the dimension of action 
(1 .6.30) 

From the fundamental postulates of quantum mechanics there is no way to deter
mine the actual numerical value of the universal constant. Rather, this constant is 
needed here because, historically, classical physics was developed before quan
tum mechanics using units convenient for describing macroscopic quantities-the 
circumference of the earth, the mass of 1 cc of water, the duration of a mean solar 
day, and so forth. Had microscopic physics been formulated before macroscopic 
physics, the physicists would have almost certainly chosen the basic units in such 
a way that the universal constant appearing in (1 .6.30) would be unity. 
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An analogy from electrostatics may be helpful here. The interaction energy 
between two particles of charge e separated at a distance r is proportional to e2 / r ; 
in unrationalized Gaussian units, the proportionality factor is just 1 ,  but in ratio
nalized mks units, which may be more convenient for electrical engineers, the 
proportionality factor is 1 j4nt:o. (See Appendix A.) 

The universal constant that appears in ( 1 .6.30) turns out to be the same as the 
constant 1i that appears in L. de Broglie's relation, written in 1924, 

2n p ;: = y;, ( 1 .6.3 1 ) 
where A i s  the wavelength of a "particle wave." In other words, the K operator is 
the quantum-mechanical operator that corresponds to the wave number-that is, 
2n times the reciprocal wavelength, usually denoted by k. With this identification, 
the infinitesimal translation operator '!f.(dx') reads 

'!f,(dx') = 1 - ip • dx' jh , (1 .6.32) 
where p is the momentum operator. The commutation relation ( 1 .6.27) now be
comes 

( 1 .6.33) 
The commutation relations ( 1 .6.33) imply, for example, that x and Px (but not 

x and py) are incompatible observables. It is therefore impossible to find simulta
neous eigenkets of x and Px . The general formalism of Section 1 .4 can be applied 
here to obtain the position-momentum uncertainty relation of W. Heisenberg: 

( 1 .6.34) 
Some applications of ( 1 .6.34) will appear in Section 1 .7 . 

So far we have concerned ourselves with infinitesimal translations. A finite 
translation-that is, a spatial displacement by a finite amount-can be obtained 
by successively compounding infinitesimal translations. Let us consider a finite 
translation in the x-direction by an amount D.x': 

'!].(D.x'x) Jx') = Jx' + D.x'x) . ( 1 .6.35) 
By compounding N infinitesimal translations, each of which is characterized by a 
spatial displacement D.x' j N in the x-direction, and letting N --+ oo, we obtain 

A • ( ipxb.x')N 
'!f.(D..x'x) = hm 1 ----N->;oo Nh ( ipxb.x') = exp -

1i 
. 

( 1 .6.36) 

Here exp( -ipxb.x' jh) is understood to be a function of the operator Px ; gener
ally, for any operator X we have 

x2 
exp(X) = 1 + X + - + · · · . 2 ! ( 1 .6.37) 
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FIGURE 1.9 Successive translations in different directions. 
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A fundamental property of translations is that successive translations in dif
ferent directions, say in the x- and y-directions, commute. We see this clearly in 
Figure 1 .9 ;  in shifting from A and B, it does not matter whether we go via C or 
via D. Mathematically, 

ff,(!].y'y)ff,(!].x'x) = ff,(!].x'x + !].y'y), 

ff,(!].x'x)ff,(!].y'y) = ff,(!].x'x + !].y'y). 
( 1 .6.38) 

This point is not so trivial as it may appear; we will show in Chapter 3 that ro
tations about different axes do not commute. Treating /).x' and !].y' up to second 
order, we obtain 

(1 .6.39) 

Because /).x' and !].y' are arbitrary, requirement ( 1 .6.38), or 

[fJ(!].y'y), ff,(!].x'x)] = o, ( 1 .6.40) 

immediately leads to 

( 1 .6.41)  

or, more generally, 

( 1 .6.42) 

This commutation relation is a direct consequence of the fact that translations in 
different directions commute. Whenever the generators of transformations com
mute, the corresponding group is said to be Abelian. The translation group in 
three dimensions is Abelian. 
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Equation (1 .6.42) implies that Px, py , and Pz are mutually compatible ob
servables. We can therefore conceive of a simultaneous eigenket of Px , py , pz, 
namely, 

(1 .6.43a) 

Px iP' } = P� lp'} , Py lp' } = P� lp'} , Pz lp' } = P� lp'} . (1 .6.43b) 

It is instructive to work out the effect of '!J,(dx') on such a momentum eigenket: ( ip dx') ( ip' dx') 'i],(dx') lp'} = 1 - � lp'} = 1 - � lp' } . ( 1 .6.44) 

We see that the momentum eigenket remains the same even though it suffers a 
slight phase change, so, unlike lx'} , lp'} is an eigenket of 'i],(dx'), which we antic
ipated because 

[p, '!J,(dx')] = 0. ( 1 .6.45) 

Notice, however, that the eigenvalue of 'i],(dx') is complex; we do not expect a real 
eigenvalue here because 'i],(dx'), though unitary, is not Hermitian. 

The Canonical Commutation Relations 

We summarize the commutator relations we inferred by studying the properties 
of translation: 

(1 .6.46) 

These relations form the cornerstone of quantum mechanics; in his book, P. A. 
M. Dirac calls them the "fundamental quantum conditions." More often they are 
known as the canonical commutation relations or the fundamental commuta
tion relations. 

Historically it was W. Heisenberg who, in 1925, showed that the combination 
rule for atomic transition lines known at that time could best be understood if one 
associated arrays of numbers obeying certain multiplication rules with these fre
quencies. Immediately afterward, M. Born and P. Jordan pointed out that Heisen
berg's multiplication rules are essentially those of matrix algebra, and a theory 
based on the matrix analogues of (1 .6.46) was developed; it is now known as 
matrix mechanics.* 

Also in 1925, P. A. M. Dirac observed that the various quantum-mechanical 
relations can be obtained from the corresponding classical relations just by re
placing classical Poisson brackets by commutators, as follows:  

] [ ' [ ' classical ----* i h (1 .6.47) 

*Appropriately, pq - qp = hj2ni is inscribed on the gravestone of M. Born in Gottingen. 
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where we may recall that the classical Poisson brackets are defined for functions 
of q's and p's as ( a A a B a A a B ) [A(q, p), B(q ,  p)]classical = L -a -a - -a -a · 

s qs Ps Ps qs 
( 1 .6.48) 

For example, in classical mechanics, we have 

( 1 .6.49) 

which in quantum mechanics turns into ( 1 .6.33). 
Dirac's rule ( 1 .6.47) is plausible because the classical Poisson brackets and 

quantum-mechanical commutators satisfy similar algebraic properties. In particu
lar, the following relations can be proved regardless of whether [ , ] is understood 
as a classical Poisson bracket or as a quantum-mechanical commutator: 

[A, A] = 0 

[A, B] = - [B ,  A] 

[A, c] = O  (c is just a number) 

[A + B, C] = [A, C] + [B, C] 

[A, BC] = [A, B] C + B [A, C] 

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0, 

( 1 .6.50a) 

( 1 .6.50b) 

( 1 .6.50c) 

( 1 .6.50d) 

( 1 .6.50e) 

( 1 .6.50f) 

where the last relation is known as the Jacobi identity.* However, there are im
portant differences. First, the dimension of the classical Poisson bracket differs 
from that of the quantum-mechanical commutator because of the differentiations 
with respect to q and p appearing in ( 1 .6.48). Second, the Poisson bracket of real 
functions of q's and p's is purely real, whereas the commutator of two Hermitian 
operators is anti-Hermitian (see Lemma 3 of Section 1 .4). To take care of these 
differences, the factor in is inserted in ( 1 .6.47). 

We have deliberately avoided exploiting Dirac's analogy in obtaining the 
canonical commutation relations. Our approach to the commutation relations is 
based solely on ( 1 )  the properties of translations and (2) the identification of 
the generator of translation with the momentum operator modulo, a universal 
constant with the dimension of action. We believe that this approach is more 
powerful because it can be generalized to situations where observables have no 
classical analogues. For example, the spin-angular-momentum components we 
encountered in Section 1 .4 have nothing to do with the p's and q's of classical 
mechanics; yet, as we will show in Chapter 3, the spin-angular-momentum com
mutation relations can be derived using the properties of rotations, just as we 
derived the canonical commutation relations using the properties of translations. 

*It is amusing that the Jacobi identity in quantum mechanics is much easier to prove than its 
classical analogue. 
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1 .7 • WAVE FUNCTIONS IN POSITION AND MOMENTUM SPACE 

Position-Space Wave Function 

In this section we present a systematic study of the properties of wave functions 
in both position and momentum space. For simplicity let us return to the one
dimensional case. The base kets used are the position kets satisfying 

x lx ') = x' lx') , ( 1 .7 . 1 )  

normalized in  such a way that the orthogonality condition reads 

(x" lx') = 8(x11 - x'). ( 1 .7.2) 

We have already remarked that the ket representing a physical state can be ex
panded in terms of lx') , 

Ia) = J dx' lx') (x' la) , ( 1 .7.3) 

and that the expansion coefficient (x' la) is interpreted in such a way that 

( 1 .7.4) 

is the probability for the particle to be found in a narrow interval dx' around x'. In 
our formalism the inner product (x' la) is what is usually referred to as the wave 
function 1/Ja(x') for state Ia) : 

(x' la) = 1/la (x'). ( 1 .7.5) 

In elementary wave mechanics the probabilistic interpretations for the expan
sion coefficient Ca' (= (a' la)) and for the wave function 1/Ja(x') (= (x' la)) are 
often presented as separate postulates. One of the major advantages of our for
malism, which was originated by Dirac, is that the two kinds of probabilistic in
terpretations are unified; 1/1 a (x') is an expansion coefficient [see ( 1 .  7 .3)] in much 
the same way as Ca' is. By following in the footsteps of Dirac, we come to appre
ciate the unity of quantum mechanics. 

Consider the inner product (fJ Ia) . Using the completeness of lx') , we have 

(fJ ia) = J dx' (fJ ix') (x' la) 

= J dx'1/JZ(x1)1/la(X1) , 
( 1 .7.6) 

so (fJ Ia) characterizes the overlap between the two wave functions. Note that we 
are not defining (fJ Ia) as the overlap integral; the identification of (fJ Ia) with the 
overlap integralfollows from our completeness postulate for lx') . The more gen
eral interpretation of (fJ ia) , independent of representations, is that it represents 
the probability amplitude for state Ia) to be found in state l fJ ) .  
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This time let us interpret the expansion 

Ia) = L )a') (a' ja) 
a' 

5 1  

( 1 .7.7) 

using the language of wave functions. We just multiply both sides of (1 .7.7) by 
the position eigenbra (x' l on the left. Thus 

(x' ja) = :l)x' ja') (a' ja) . ( 1 .7.8) 
a' 

In the usual notation of wave mechanics, this is recognized as 

1/Ja(x') = L Ca' Uat(X1) , 

a' 

where we have introduced an eigenfunction of operator A with eigenvalue a': 

Ua'(x') = (x' ja' ) . ( 1 .7.9) 

Let us now examine how (,B jA ja) can be written using the wave functions for 
ja) and I ,B ) .  Clearly, we have 

(,B jA ja) = j dx' j dx"(,B ix') (x' IA ix") (x" ia) 

= J dx' J dx"1/f�(x') (x' j A jx11) 1/fa (x11). 
( 1 .7 . 10) 

Therefore, to be able to evaluate (,B jA ja) ,  we must know the matrix element 
(x' l A jx") ,  which is, in general, a function of the two variables x' and x". 

An enormous simplification takes place if observable A is a function of the 
position operator x. In particular, consider 

2 A = x , ( 1 .7 . 1 1) 

which actually appears in the Hamiltonian for the simple harmonic oscillator 
problem to be discussed in Chapter 2. We have 

(x' ix2 ix") = ( (x' I ) ·  (x"2 ix")) = x'2 8(x' - x11), ( 1 .7 . 12) 

where we have used ( 1 .7 . 1 )  and (1 .7.2). The double integral ( 1 .7 . 10) is now re
duced to a single integral: 

(,B jx2 ja) = J dx' (,B ix')x'2 (x' ja)  

= J dx'1/f�(x')x'21/fa(x1). 
( 1 .7 . 13) 
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In general, 

(,B ! f(x) !a)  = J dx'1{1� (x')f(x')1/la(x'). ( 1 .7. 14) 

Note that the f(x) on the left-hand side of (1 .7 .14) is an operator, whereas the 
f(x') on the right-hand side is not an operator. 

Momentum Operator in the Position Basis 

We now examine how the momentum operator may look in the x-basis-that is, in 
the representation where the position eigenkets are used as base kets. Our starting 
point is the definition of momentum as the generator of infinitesimal translations: 

( iptlx') f 1 - -
fi
- !a) = dx' ;i(tlx') !x') (x' !a) 

= J dx' !x' + tlx') (x' !a) 

= J dx' !x') (x' - tlx' !a) 

= f dx' !x') ( (x' !a) - tlx' 
a:, (x' !a)) . 

Comparison of both sides yields 

or 

I a I (x ! p ia) = -ifi - (x !a) ,  
ax' 

( 1 .7 . 15) 

( 1 .7 . 16) 

( 1 .7 . 17) 

where we have used the orthogonality property (1 .7 .2). For the matrix elementp 
in the x-representation, we obtain 

(x' ! p !x") = -ifi �8(x' - x"). 
ax' 

From ( 1 .  7 . 16) we get a very important identity: 

(,B ! p !a) = f dx' (,B !x') ( -ifi 
a:, (x' !a)) 

= f dx'1{1� (x1) ( -ifi a
:,) 1/Ja (x'). 

( 1 .7 . 1 8) 

( 1 .7 . 19) 

In our formalism, ( 1. 7 . 19) is not a postulate; rather, it has been derived using 
the basic properties of momentum. By repeatedly applying ( 1. 7 . 17), we can also 
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obtain 

I n n an 
1 {x IP Ia) = (-iii) - {x Ia) ,  

axm 

Momentum-Space Wave Function 

53 

( 1 .7.20) 

(1 .7.21) 

So far we have worked exclusively in the x-basis. But there is actually a complete 
symmetry between x and p (apart from occasional minus signs) that we can infer 
from the canonical commutation relations. Let us now work in the p-basis-that 
is, in the momentum representation. 

For simplicity we continue working in one-space. The base eigenkets in the 
p-basis specify 

p ip') = p' ip') (1 .7.22) 
and 

(p' lp") = 8(p' - p"). ( 1 .7 .23) 
The momentum eigenkets { l p') } span the ket space in much the same way as the 
position eigenkets { lx') } .  An arbitrary state ket Ia) can therefore be expanded as 
follows: 

Ia) = J dp' lp') {p' la) . ( 1 .7.24) 
We can give a probabilistic interpretation for the expansion coefficient (p' la) ; the 
probability that a measurement of p gives eigenvalue p' within a narrow interval 
dp' is l (p' la) l2dp'. It is customary to call (p' la) the momentum-space wave 
function; the notation c/Ja (p') is often used: 

(p' la) = c/Ja (p'). ( 1 .7.25) 
If Ia) is normalized, we obtain 

J dp' {a ip') {p' ia) = J dp' l¢a(p') i2 = 1 .  (1 .7.26) 
Let us now establish the connection between the x-representation and the p

representation. We recall that in the case of the discrete spectra, the change of ba
sis from the old set { Ia') } to the new set { lb') } is characterized by the transforma
tion matrix ( 1 .5.7). Likewise, we expect that the desired information is contained 
in (x' I p'), which is a function of x' and p', usually called the transformation 
function from the x-representation to the p-representation. To derive the explicit 
form of (x' I p'), first recall ( 1 .  7 . 17); letting I a) be the momentum eigenket I p') , 
we obtain 

(x' l p lp') = -ili� {x' ip') 
ox' 

( 1 .7.27) 



54 Chapter 1 Fundamental Concepts 

or 

a p' (x' l p') = -in- (x' lp') .  ax' 
The solution to this differential equation for (x' I p') is ( ip'x') (x' I p') = N exp -n- , 

( 1 .7 .28) 

( 1 .7 .29) 

where N is the normalization constant to be determined in a moment. Even though 
the transformation function (x' l p') is a function of two variables, x' and p', we 
can temporarily regard it as a function of x' with p' fixed. It can then be viewed 
as the probability amplitude for the momentum eigenstate specified by p' to be 
found at position x'; in other words, it is just the wave function for the momentum 
eigenstate l p') , often referred to as the momentum eigenfunction (still in the x
space) . So (1 .7.29) simply says that the wave function of a momentum eigenstate 
is a plane wave. It is amusing that we have obtained this plane-wave solution 
without solving the Schrodinger equation (which we have not yet written down). 

To get the normalization constant N, let us first consider 

(x' lx") = J dp' (x' lp') (p' lx") .  ( 1 .7 .30) 

The left-hand side is just o(x' - x"); the right-hand side can be evaluated using 
the explicit form of (x' lp') : 

f 
[ ip'(x' - x") ] o(x' - x") = IN I2 dp' exp n 

= 2nh iN I28(x' - x"). 
( 1 .7 .3 1 )  

Choosing N to be purely real and positive by convention, we finally have 

1 ( ip'x') (x' lp') = � exp -- . 

v 2nn 1i ( 1 .7.32) 

We can now demonstrate how the position-space wave function is related to 
the momentum-space wave function. All we have to do is rewrite 

and 

as 

(x' la) = J dp' (x' lp') (p' la) 

(p' la) = J dx' (p' lx') (x' la) 

[ 1 
] f 

( ip'x') 1/ra(x') = .J2irfi dp' exp -n- c/Ja(p') 

( 1 .7.33a) 

( 1 .7 .33b) 

( 1 .7.34a) 
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and 

I I -[ p X I [ 1 J f ( . I I) 
<Pa(P ) = -J2ifh dx exp 1i 1/Ja (x ). 
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( 1 .7.34b) 

The pair of equations is just what one expects from Fourier's inversion theo
rem. Apparently the mathematics we have developed somehow "knows" Fourier's 
work on integral transforms. 

Gaussian Wave Packets 

It is instructive to look at a physical example to illustrate our basic formalism. 
We consider what is known as a Gaussian wave packet, whose x-space wave 
function is given by 

(x1 la) = [ 1 ,Jd] exp [ikx1 - x12
2 ] . n l/4 d 2d ( 1 .7.35) 

This is a plane wave with wave number k modulated by a Gaussian profile cen
tered on the origin. The probability of observing the particle vanishes very rapidly 
for lx1 1 > d; more quantitatively, the probability density l (x1 la) l2 has a Gaussian 
shape with width d. 

We now compute the expectation values of x, x2, p, and p2. The expectation 
value of x is clearly zero by symmetry: 

(x ) = i: dx1 (a lx1)X1 (X1 ia) = i: dx1 l (x1 la) i 2x1 = 0 . 

For x2 we obtain 

which leads to 

(x2) = i: dx1x12 i (x1 la) i2 
= (�d) i: dx1x12 exp [ -::2 ] 

d2 
2 ' 

( 1 .7 .36) 

( 1 .7.37) 

( 1 .7.38) 

for the dispersion of the position operator. The expectation values of p and p2 can 
also be computed as follows: 

( 1 .7.39a) 

( 1 .7.39b) 
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which is left as an exercise. The momentum dispersion is therefore given by 

(1 .7.40) 

Armed with ( 1 .7.38) and ( 1 .7 .40), we can check the Heisenberg uncertainty rela
tion ( 1 .6.34); in this case the uncertainty product is given by 

( 1 .7.41) 

independent of d, so for a Gaussian wave packet we actually have an equality 
relation rather than the more general inequality relation ( 1 .6.34). For this reason 
a Gaussian wave packet is often called a minimum uncertainty wave packet. 

We now go to momentum space. By a straightforward integration-just com
pleting the square in the exponent-we obtain 

( 1 ) ( 1 ) 100 (-ip'x' x'2 ) (p' \a) = � ,Jd dx' exp + ikx' - -2 v 2nh n 114 d -oo h 2d - J d [-(p' - hk)2d2 ] 
- ;:;:;;- exp 2 . hvn  2h 

( 1 .7 .42) 

This momentum-space wave function provides an alternative method for obtain
ing (p) and (p2) ,  which is also left as an exercise. 

The probability of finding the particle with momentum p' is Gaussian (in mo
mentum space) centered on hk, just as the probability of finding the particle at x' 
is Gaussian (in position space) centered on zero. Furthermore, the widths of the 
two Gaussians are inversely proportional to each other, which is just another way 
of expressing the constancy of the uncertainty product ((�x )2) (�p )2) explicitly 
computed in ( 1 .  7.41) . The wider the spread in the p-space, the narrower the spread 
in the x-space, and vice versa. 

As an extreme example, suppose we let d ---+ oo. The position-space wave 
function ( 1 .7.35) then becomes a plane wave extending over all space; the prob
ability of finding the particle is just constant, independent of x' . In contrast, the 
momentum-space wave function is 8-function-like and is sharply peaked at hk. In 
the opposite extreme, by letting d ---+ 0, we obtain a position-space wave function 
localized like the 8-function, but the momentum-space wave function ( 1 .7 .42) is 
just constant, independent of p'. 

We have seen that an extremely well localized (in the x-space) state is to be 
regarded as a superposition of momentum eigenstates with all possible values of 
momenta. Even those momentum eigenstates whose momenta are comparable to 
or exceed me must be included in the superposition. However, at such high values 
of momentum, a description based on nonrelativistic quantum mechanics is bound 
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to break down.* Despite this limitation, our formalism, based on the existence of 
the position eigenket lx') , has a wide domain of applicability. 

Generalization to Three Dimensions 

So far in this section we have worked exclusively in one-space for simplicity, 
but everything we have done can be generalized to three-space, if the necessary 
changes are made. The base kets to be used can be taken as either the position 
eigenkets satisfying 

x lx') = x' lx') 
or the momentum eigenkets satisfying 

pip') =  p' lp') .  
They obey the normalization conditions 

(xlx") = 83 (x' - x") 
and 

(pip") = 8\p' - p"), 
where 83 stands for the three-dimensional 8-function 

83 (x' - x") = 8(x' - x")8(y' - y")8(z' - z"). 

The completeness relations read 

and 

which can be used to expand an arbitrary state ket: 

Ia) = J d3x' lx') (x' la) , 

Ia) = J d3 p' lp') (p' la) . 

( 1 .7 .43) 

( 1 .7.44) 

( 1 .7.45a) 

( 1 .7.45b) 

( 1 .7 .46) 

( 1 .7.47a) 

( 1 .7 .47b) 

( 1 .7 .48a) 

( 1 .7 .48b) 

The expansion coefficients (x' la) and (p' la) are identified with the wave functions 
1/frx(x') and if>rx(P') in position and momentum space, respectively. 

*It turns out that the concept of a localized state in relativistic quantum mechanics is far more 
intricate because of the possibility of "negative energy states," or pair creation. See Chapter 8 of 
this book. 
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The momentum operator, when taken between 1.8} and Ia} , becomes 

The transformation function analogous to ( 1 .7.32) is 

so that 

and 

[ 1 J (ip' · x' ) (x' lp'} = 
(2n1i)3/2 exp -1i-

, 

, 3 , z p • x , [ 1 J I ( . ' ') 1/la(X ) = 
(ln1i)312 d p exp -1i - ¢a(P ) 

t 3 t  -lp • X  t [ 1 J I ( . ' ') ¢a(P ) = 
(ln1i)312 d x exp 

1i 1/Ja(x ). 

( 1 .7.49) 

( 1 .7 .50) 

( 1 .7.5 l a) 

( 1 .7.5 lb) 

It is interesting to check the dimension of the wave functions. In one
dimensional problems the normalization requirement ( 1 .6.8) implies that 1 (x' Ia} e 
has the dimension of inverse length, so the wave function itself must have the di
mension of (length)-112 . In contrast, the wave function in three-dimensional 
problems must have the dimension of (lengthr312 because I (x' la} 1 2 integrated 
over all spatial volume must be unity (dimensionless). 

Problems 

1.1 Prove 

[AB , C D] = -AC{D, B }  + A{C, B}D - C{D,A}B + {C,A}DB.  

1.2 Suppose a 2 x 2 matrix X (not necessarily Hermitian or unitary) is  written as 

X = ao + <r · a, 

where ao and a1,2,3 are numbers. 

(a) How are ao and ak (k = 1 , 2,3) related to tr(X) and tr(o-kX)? 

(b) Obtain ao and ak in terms of the matrix elements Xij . 

1.3 Show that the determinant of a 2 x 2 matrix <T • a is invariant under ( i<T . fi¢) ( -i<T . fi¢) 
<T • a --+ <r . a' = exp -

2
- <T • a exp 

2 
. 

Find a� in terms of ak when fi is in the positive z-direction, and interpret your result. 
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1.4 Using the rules ofbra-ket algebra, prove or evaluate the following: 
(a) tr(XY) = tr(Y X), where X and Y are operators. 
(b) (XY)t = yt xt, where X and Y are operators. 
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(c) exp[if(A)] =? in ket-bra form, where A is a Hermitian operator whose eigen
values are known. 

(d) La' i/J;,(x')lfra' (x"), where 1/ra'(x') = (x' la') . 

1.5 (a) Consider two kets Ia) and 1,8) . Suppose (a' la) , (a" la) ,  . . .  and (a' I,B) ,  
(a" I,B) ,  . . .  are all known, where Ia') ,  Ia") ,  . . .  form a complete set of base 
kets. Find the matrix representation of the operator Ia) (,8 I in that basis. 

(b) We now consider a spin ! system and let Ia) and 1,8) be lsz = 1ij2) and 
lsx = fi/2) , respectively. Write down explicitly the square matrix that corre
sponds to la) (,B I  in the usual (s2 diagonal) basis. 

1.6 Suppose l i )  and I J )  are eigenkets of some Hermitian operator A. Under what con
dition can we conclude that l i )  + I J )  is also an eigenket of A? Justify your answer. 

1.7 Consider a ket space spanned by the eigenkets { Ia') }  of a Hermitian operator A. 
There is no degeneracy. 
(a) Prove that 

is the null operator. 
(b) Explain the significance of 

fleA - a') 
a' 

(A - a") fl (a' - a") · 
a" =f a' 

(c) Illustrate (a) and (b) using A set equal to S2 of a spin ! system. 
1.8 Using the orthonormality of I+) and 1 -) ,  prove 

where 
1i 

[S; , SJ ]  � ; ,,,,hs, [S; , SJ } � ( h;) 8u . 

in 
Sx = 2( 1+) (- 1  + 1-) (+1), Sy = -(- 1+) (- 1  + 1 -) (+J), 2 

1i 
Sz = 2( 1+) (+ 1 - 1 -) (- 1) . 

1.9 Construct IS · ft; +) such that 

S · fiiS · fi; +) = (�) IS · fi; +),  

where ft is characterized by the angles shown in the accompanying figure. Express 
your answer as a linear combination of I+) and 1 -) . [Note: The answer is 
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But do not just verify that this answer satisfies the above eigenvalue equation. 
Rather, treat the problem as a straightforward eigenvalue problem. Also, do not use 
rotation operators, which we will introduce later in this book.] 

z 

i1 

y 

X 

1.10 The Hamiltonian operator for a two-state system is given by 

H = a(l l } ( 1 1 - 12) (21 + 1 1 ) (2 1  + 12) ( 1 1 ) ,  

where a is a number with the dimension of energy. Find the energy eigenvalues and 
the corresponding energy eigenkets (as linear combinations of 1 1 } and 1 2) ) .  

1.11 A two-state system is characterized by the Hamiltonian 

H = H1 1 l 1 )  ( 1 1  + H22 l2) (21 + H12 [ l l } (21 + 1 2) ( 1 1 ] ,  

where Hu , H22, and H12 are real numbers with the dimension of energy, and 1 1 ) 
and 12) are eigenkets of some observable ( =f.  H). Find the energy eigenkets and the 
corresponding energy eigenvalues. Make sure that your answer makes good sense 
for H12 = 0. (You need not solve this problem from scratch. The following fact 
may be used without proof: 

with l fi; +) given by 

1i 
(S · fi) lfi;+) = 2 1fi; +) ,  

where f3 and a are the polar and azimuthal angles, respectively, that characterize fi. 
The angles are defined in the figure following Problem 1 .9.) 

1.12 A spin � system is known to be in an eigenstate of S · fi with eigenvalue 1i j2, where 
fi is a unit vector lying in the xz-plane that makes an angle y with the positive 
z-axis. 
(a) Suppose Sx is measured. What is the probability of getting + 1ij2? 
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(b) Evaluate the dispersion in Sx-that is, 

(For your own peace of mind, check your answers for the special cases y = 0, 
rr: j2, and rr: .) 

1.13 A beam of spin ! atoms goes through a series of Stem-Gerlach-type measurements 
as follows: 
(a) The first measurement accepts Sz = li/2 atoms and rejects Sz = -li/2 atoms. 
(b) The second measurement accepts sn = li/2 atoms and rejects sn = -li/2 atoms, 

where sn is the eigenvalue of the operator S · ft, with ft making an angle f3 in 
the xz-plane with respect to the z-axis. 

(c) The third measurement accepts Sz = -li/2 atoms and rejects Sz = lij2 atoms. 
What is the intensity of the final Sz = -li/2 beam when the Sz = li/2 beam surviv
ing the first measurement is normalized to unity? How must we orient the second 
measuring apparatus if we are to maximize the intensity of the final Sz = -li/2 
beam? 

1.14 A certain observable in quantum mechanics has a 3 x 3 matrix representation as 
follows: 

1 ( 0 

.j2 � 
1 
0 
1 

(a) Find the normalized eigenvectors of this observable and the corresponding 
eigenvalues. Is there any degeneracy? 

(b) Give a physical example where all this is relevant. 
1.15 Let A and B be observables. Suppose the simultaneous eigenkets of A and B 

{ Ia' , b') }  form a complete orthonormal set of base kets. Can we always conclude 
that 

[A, B] = 0? 

If your answer is yes, prove the assertion. If your answer is no, give a counterex
ample. 

1.16 Two Hermitian operators anticommute: 

{A, B }  = AB + BA = 0. 

Is it possible to have a simultaneous (that is, common) eigenket of A and B? Prove 
or illustrate your assertion. 

1.17 Two observables A1  and A2, which do not involve time explicitly, are known not 
to commute, 

yet we also know that A1  and A2 both commute with the Hamiltonian: 

[A1 , H] = 0, [A2 , H] = 0. 
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Prove that the energy eigenstates are, in general, degenerate. Are there exceptions? 
As an example, you may think of the central-force problem H = p2 /2m +  V(r), 
with A1 --+ Lz, A2 --+ Lx. 

1.18 (a) The simplest way to derive the Schwarz inequality goes as follows. First, ob
serve 

( (a l  + A* (,B I ) · ( Ia) + AI,B)) 2: 0  

for any complex number A; then choose A in such a way that the preceding 
inequality reduces to the Schwarz inequality. 

(b) Show that the equality sign in the generalized uncertainty relation holds if the 
state in question satisfies 

LlAia) = ALlB ia) 

with A purely imaginary. 

(c) Explicit calculations using the usual rules of wave mechanics show that the 
wave function for a Gaussian wave packet given by 

satisfies the minimum uncertainty relation 

Prove that the requirement 

(x' I Llx la )  = (imaginary number) (x' ILlp la) 

is indeed satisfied for such a Gaussian wave packet, in agreement with (b). 
1.19 (a) Compute 

where the expectation value is taken for the S2+ state. Using your result, check 
the generalized uncertainty relation 

with A --+  Sx , B --+ Sy . 

(b) Check the uncertainty relation with A --+  Sx, B --+ Sy for the Sx+ state. 
1.20 Find the linear combination of I+) and 1- )  kets that maximizes the uncertainty 

product 

Verify explicitly that for the linear combination you found, the uncertainty relation 
for Sx and Sy is not violated. 
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1.21 Evaluate the x-p uncertainty product ( (�x )2 ) ( ( �p )2 ) for a one-dimensional particle 
confined between two rigid walls, 

V = { � for 0 < x < a, 
otherwise. 

Do this for both the ground and excited states. 
1.22 Estimate the rough order of magnitude of the length of time that an ice pick can be 

balanced on its point if the only limitation is that set by the Heisenberg uncertainty 
principle. Assume that the point is sharp and that the point and the surface on 
which it rests are hard. You may make approximations that do not alter the general 
order of magnitude of the result. Assume reasonable values for the dimensions and 
weight of the ice pick. Obtain an approximate numerical result and express it in 
seconds. 

1.23 Consider a three-dimensional ket space. If a certain set of orthonormal kets-say, 
1 1 ) ,  12) , and 13)-are used as the base kets, the operators A and B are represented 
by 

0 
-a 
0 

with a and b both real. 

0 
0 
ib 

(a) Obviously A exhibits a degenerate spectrum. Does B also exhibit a degenerate 
spectrum? 

(b) Show that A and B commute. 
(c) Find a new set of orthonormal kets that are simultaneous eigenkets of both A 

and B. Specify the eigenvalues of A and B for each of the three eigenkets. Does 
your specification of eigenvalues completely characterize each eigenket? 

1.24 (a) Prove that ( 1  / J2)(1 + i ax) acting on a two-component spinor can be regarded 
as the matrix representation of the rotation operator about the x-axis by angle 
-rr /2. (The minus sign signifies that the rotation is clockwise.) 

(b) Construct the matrix representation of Sz when the eigenkets of Sy are used as 
base vectors. 

1.25 Some authors define an operator to be real when every member of its matrix el
ements (b' IA ib") is real in some representation ({ lb') }  basis in this case). Is this 
concept representation independent? That is, do the matrix elements remain real 
even if some basis other than { lb' ) }  is used? Check your assertion using familiar 
operators such as Sy and Sz (see Problem 1 .24) or x and Px · 

1.26 Construct the transformation matrix that connects the Sz diagonal basis to the Sx 
diagonal basis. Show that your result is consistent with the general relation 

r 

1.27 (a) Suppose that f(A) is a function of a Hermitian operator A with the property 
Ala') =  a' Ia' ) .  Evaluate (b" I /(A) Ib' ) when the transformation matrix from the 
a' basis to the b' basis is known. 
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(b) Using the continuum analogue of the result obtained in (a), evaluate 

(p" I F(r) lp') .  

Simplify your expression as far as you can. Note that r is J x2 + y2 + z2, where 
x, y, and z are operators. 

1.28 (a) Let x and Px be the coordinate momentum and the linear momentum in one 
dimension. Evaluate the classical Poisson bracket 

[X, F (Px) ]classical ·  

(b) Let x and Px be the corresponding quantum-mechanical operators this time. 
Evaluate the commutator 

(c) Using the result obtained in (b), prove that ( ipxa) 1 exp -1i- lx ) ,  (x lx') = x' lx') )  

i s  an eigenstate of the coordinate operator x. What i s  the corresponding eigen
value? 

1.29 (a) On page 247, Gottfried (1966) states that 

can be "easily derived" from the fundamental commutation relations for all 
functions of F and G that can be expressed as power series in their arguments. 
Verify this statement. 

(b) Evaluate [x2 , p2] . Compare your result with the classical Poisson bracket 
[x2 , P2lciassical ·  

1.30 The translation operator for a finite (spatial) displacement is given by (-ip • l) !'fo(l) = exp -1i- , 

where p is the momentum operator. 

(a) Evaluate 

(b) Using (a) (or otherwise), demonstrate how the expectation value (x) changes 
under translation. 

1.31 In the main text we discussed the effect of !'fo(dx') on the position and momen
tum eigenkets and on a more general state ket Ia ) .  We can also study the behavior 
of expectation values (x) and (p) under infinitesimal translation. Using ( 1 .6.25), 
( 1 .6.45), and Ia) -+ !'fo(dx') la) only, prove (x) -+ (x) + dx' , (p) -+ (p) under in
finitesimal translation. 
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1.32 (a) Verify (1 .7.39a) and ( 1 .7.39b) for the expectation value of p and p2 from the 
Gaussian wave packet ( 1 .7.35). 

(b) Evaluate the expectation value of p and p2 using the momentum-space wave 
function ( 1 .7.42). 

1.33 (a) Prove the following: 
I a I 

i. (p [x [a} = ili- (p [a} , ap� 

ii. (,B [x [a} = J dp1¢13* (p1)ih�</Ja(P1), ap� 
where </Ja(P1) = (p1 [a} and ¢f3(p1) = (p1 [,8} are momentum-space wave func
tions. 

(b) What is the physical significance of 

(
ix S

) exp -
1i ' 

where x is the position operator and 8 is some number with the dimension of 
momentum? Justify your answer. 



CHAPTER 

2 Quantum Dynamics 

So far we have not discussed how physical systems change with time. This chap
ter is devoted exclusively to the dynamic development of state kets and/or ob
servables. In other words, we are concerned here with the quantum mechanical 
analogue of Newton's (or Lagrange's or Hamilton's) equations of motion. 

2.1 • TIME-EVOLUTION AND THE SCHRODINGER EQUATION 
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The first important point we should keep in mind is that time is just a parameter 
in quantum mechanics, not an operator. In particular, time is not an observable 
in the language of the previous chapter. It is nonsensical to talk about the time 
operator in the same sense as we talk about the position operator. Ironically, in the 
historical development of wave mechanics both L. de Broglie and E. Schrodinger 
were guided by a kind of covariant analogy between energy and time on the one 
hand and momentum and position (spatial coordinate) on the other. Yet when 
we now look at quantum mechanics in its finished form, there is no trace of a 
symmetrical treatment between time and space. The relativistic quantum theory 
of fields does treat the time and space coordinates on the same footing, but it does 
so only at the expense of demoting position from the status of being an observable 
to that of being just a parameter. 

Time-Evolution Operator 

Our basic concern in this section is, How does a state ket change with time? 
Suppose we have a physical system whose state ket at to is represented by Ia ) . At 
later times, we do not, in general, expect the system to remain in the same state 
Ia ) . Let us denote the ket corresponding to the state at some later time by 

la, to ; t ) , (t > to), (2. 1 . 1) 

where we have written a, to to remind ourselves that the system used to be in state 
Ia) at some earlier reference time to . Because time is assumed to be a continuous 
parameter, we expect 

lim Ia, to ; t) = Ia ) , 
t-Ho 

(2. 1 .2) 

and we may as well use a shorthand notation, 

la, to ; to) = la, to ) , (2. 1 .3) 
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for this. Our basic task is to study the time evolution of a state ket: 

I ) _ I ) time evolution 
I . ) a, to - a a, to , t  . 
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(2. 1 .4) 

To put it another way, we are interested in asking how the state ket changes under 
a time displacement to ---+ t . 

As in the case of translation, the two kets are related by an operator which we 
call the time-evolution operator 'U(t, to) : 

la , to ; t ) = 'U(t, to) la , to) . (2. 1 .5)  

What are some of the properties we would like to ascribe to the time-evolution 
operator? The first important property is the unitary requirement for 'U(t, to) that 
follows from probability conservation. Suppose that at to the state ket is expanded 
in terms of the eigenkets of some observable A:  

la, to ) = :L::Ca'(to) la') . (2. 1 .6) 
a' 

Likewise, at some later time, we have 

la , to ; t) = Z:::Ca'(t) la') .  (2. 1 .7) 
a' 

In general, we do not expect the modulus of the individual expansion coefficient 
to remain the same:* 

(2. 1 .8) 

For instance, consider a spin � system with its spin magnetic moment subjected 
to a uniform magnetic field in the z-direction. To be specific, suppose that at to 
the spin is in the positive x-direction; that is, the system is found in an eigenstate 
of Sx with eigenvalue 1i j2. As time goes on, the spin precesses in the .xy-plane, 
as will be quantitatively demonstrated later in this section. This means that the 
probability for observing Sx + is no longer unity at t > to; there is a finite prob
ability for observing Sx - as well. Yet the sum of the probabilities for Sx + and 
Sx - remains unity at all times. Generally, in the notation of (2. 1 .6) and (2. 1 .7), 
we must have 

(2. 1 .9) 
a' a' 

despite (2. 1 .8) for the individual expansion coefficients. Stated another way, if the 
state ket is initially normalized to unity, it must remain normalized to unity at all 
later times: 

(a, to la, to) = 1 => (a, to ; t la, to ; t) = 1 .  (2. 1 . 10) 

*We later show, however, that if the Hamiltonian commutes with A, then lca' (t)l is indeed equal 
to lcat (to) l .  
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As in the translation case, this property is guaranteed if the time-evolution opera
tor is taken to be unitary. For this reason we take unitarity, 

ut(t, to)'U(t, to) = 1 , (2. 1 . 1 1 ) 

to be one of the fundamental properties of the 'U operator. It is no coincidence 
that many authors regard unitarity as synonymous with probability conservation. 

Another feature we require of the 'U operator is the composition property: 

(2. 1 . 1 2) 

This equation says that if we are interested in obtaining time evolution from to to 
t2, then we can obtain the same result by considering time evolution first from to 
to t1 and then from t1 to t2-a reasonable requirement. Note that we read (2. 1 . 1 2) 
from right to left ! 

It also turns out to be advantageous to consider an infinitesimal time-evolution 
operator 'U(to + dt, to) : 

Ia, to ; to +dt) = 'U(to +dt, to) la, to ) . (2. 1 . 13) 

Because of continuity [see (2. 1 .2)] ,  the infinitesimal time-evolution operator must 
reduce to the identity operator as dt goes to zero, 

lim 'U(to +dt , to) = 1 ,  
dt---+0 

(2. 1 . 14) 

and, as in the translation case, we expect the difference between 'U(to + dt, to) and 
1 to be of first order in dt. 

We assert that all these requirements are satisfied by 

'U(to + dt, to) = 1 - iQdt, (2. 1 . 15) 

where Q is a Hermitian operator,* 

nt = n. (2. 1 . 16) 

With (2. 1 . 15) the infinitesimal time-displacement operator satisfies the composi
tion property 

'U(to + dt1 + dt2, to) = 'U(to + dt1 + dt2, to + dt1 )'U(to + dt1 , to); (2. 1 . 17) 

it differs from the identity operator by a term of order dt. The unitarity property 
can also be checked as follows: 

ut (to + dt, to)'U(to + dt, to) = (1 + i nt dt)( l - i Qdt) � 1 ,  (2. 1 . 18) 

to the extent that terms of order (dt)2 or higher can be ignored. 
The operator Q has the dimension of frequency or inverse time. Is there any 

familiar observable with the dimension of frequency? We recall that in the old 

*If the Q operator depends on time explicitly, then it must be evaluated at to . 
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quantum theory, angular frequency w is postulated to be related to energy by the 
Planck-Einstein relation 

E = 
h

w . (2. 1 . 1 9) 

Let us now borrow from classical mechanics the idea that the Hamiltonian is the 
generator of time evolution (Goldstein 2002, pp. 40 1-2). It is then natural to relate 
Q to the Hamiltonian operator H: 

H 
Q - -

1i
. 

To sum up, the infinitesimal time-evolution operator is written as 

iHdt 'U(to + dt, to) = 1 - -h- ,  

(2. 1 .20) 

(2. 1 .21) 
where H, the Hamiltonian operator, is  assumed to be Hermitian. The reader may 
ask whether the 1i introduced here is the same as the 1i that appears in the ex
pression for the translation operator ( 1 .6.32). This question can be answered by 
comparing the quantum-mechanical equation of motion we derive later with the 
classical equation of motion. It turns out that unless the two 1i 's are taken to be 
the same, we are unable to obtain a relation like 

dx p 

dt m 
as the classical limit of the corresponding quantum-mechanical relation. 

The Schrodinger Equation 

(2. 1 .22) 

We are now in a position to derive the fundamental differential equation for the 
time-evolution operator 'U(t, to) . We exploit the composition property of the time
evolution operator by letting t1 --+ t, t2 --+ t + dt in (2. 1 . 12): ( iH dt) 'U(t + dt, to) = 'U(t + dt, t)'U(t, to) = 1 - -fi- 'U(t, to), 

where the time difference t - to need not be infinitesimal. We have 

'U(t + dt, to) - 'U(t, to) = -i ( �) dt'U(t , to), 

which can be written in differential equation form: 

a ifi-'U(t, to) = H'U(t, to). at 

(2. 1 .23) 

(2. 1 .24) 

(2. 1 .25) 
This is the Schrodinger equation for the time-evolution operator. Everything 
that has to do with time development follows from this fundamental equation. 



70 Chapter 2 Quantum Dynamics 

Equation (2. 1 .25) immediately leads to the SchrOdinger equation for a state 
ket. Multiplying both sides of (2. 1 .25) by \a, to) on the right, we obtain 

a i h-'U(t, to) \a , to ) = H'U(t , to) \a, to ) . a t 
But \a, to) does not depend on t, so this is the same as 

a ih- \a, to ; t) = H \a, to ; t ) , at 
where (2. 1 .5) has been used. 

(2. 1 .26) 

(2. 1 .27) 

If we are given 'U(t, to) and, in addition, know how 'U(t, to) acts on the initial 
state ket \a , to) , it is not necessary to bother with the Schrodinger equation for the 
state ket (2. 1 .27). All we have to do is apply 'U(t, to) to \a , to) ;  in this manner we 
can obtain a state ket at any t. Our first task is therefore to derive formal solutions 
to the SchrOdinger equation for the time-evolution operator (2. 1 .25). There are 
three cases to be treated separately: 

Case 1 .  The Hamiltonian operator is independent of time. By this we mean 
that even when the parameter t is changed, the H operator remains unchanged. 
The Hamiltonian for a spin-magnetic moment interacting with a time-independent 
magnetic field is an example of this. The solution to (2. 1 .25) in such a case is given 
by 

[ -iH(t - to) ]  'U(t, to) = exp h . 

To prove this, let us expand the exponential as follows: 

[ -iH(t - to) ]  -iH(t - to) [(-i)2 J [H(t - to) ]2 
exp = 1 + + -- + . . · . h h 2 h 
Because the time derivative of this expansion is given by 

a [ -iH(t - to) ] -iH [ (-i )2 ] (H)2 
- exp = --+ -- 2 - (t - to) + . . .  at n n 2 n ' 

(2. 1 .28) 

(2. 1 .29) 

(2. 1 .30) 

expression (2. 1 .28) obviously satisfies differential equation (2. 1 .25). The bound
ary condition is also satisfied because as t -+ to , (2. 1 .28) reduces to the identity 
operator. An alternative way to obtain (2. 1 .28) is to compound successively in
finitesimal time-evolution operators just as we did to obtain (1 .6.36) for finite 
translation: 

1. [ (iHjh)(t - to) ]
N 

[ -iH(t - to) ] 
1m 1 - = exp . N-HXJ N h (2. 1 .3 1 ) 

Case 2 . The Hamiltonian operator H is time-dependent but the H's at different 
times commute. As an example, let us consider the spin-magnetic moment sub
jected to a magnetic field whose strength varies with time but whose direction is 
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always unchanged. The formal solution to (2. 1 .25) in this case is 

71 

(2. 1 .32) 

This can be proved in a similar way. We simply replace H(t - to) in (2. 1 .29) and 
(2. 1 . 30) by ft� dt' H(t'). 

Case 3 . The Hs at different times do not commute. Continuing with the ex
ample involving spin-magnetic moment, we suppose, this time, that the magnetic 
field direction also changes with time: at t = t1 in the x-direction, at t = t2 in the 
y-direction, and so forth. Because Sx and Sy do not commute, H(ti) and H(t2) , 
which go like S · B, do not commute either. The formal solution in such a situation 
is given by 

00 ( i )n 1t 1t1 1 tn-i 

'U(t, to) = 1 + L � dt1 dt2 · · · dtn H(tl )H(t2) · · · H(tn), 
n=l to to to 

(2. 1 .33) 
which is sometimes known as the Dyson series, after F. J. Dyson, who developed 
a perturbation expansion of this form in quantum field theory. We do not prove 
(2. 1 .33) now because the proof is very similar to the one presented in Chapter 5 
for the time-evolution operator in the interaction picture. 

In elementary applications, only case 1 is of practical interest. In the remaining 
part of this chapter we assume that the H operator is time-independent. We will 
encounter time-dependent Hamiltonians in Chapter 5. 
Energy Eigenkets 

To be able to evaluate the effect of the time-evolution operator (2. 1 .28) on a gen
eral initial ket Ia) ,  we must first know how it acts on the base kets used in expand
ing Ia) .  This is particularly straightforward if the base kets used are eigenkets of 
A such that 

[A, H] = 0; (2. 1 .34) 
then the eigenkets of A are also eigenkets of H, called energy eigenkets, whose 
eigenvalues are denoted by Ea' : 

(2. 1 .35) 
We can now expand the time-evolution operator in terms of Ia') (a' I . Taking to = 0 
for simplicity, we obtain (-iHt) '""' '""' 11 11 

(-iHt) 1 1 
exp -11 - = L..,. L..,. Ia ) (a l exp -11 - l a ) (a l 

a' a" 

'""' 1 
(-iEa't) 1 = L..,. la ) exp n (a I .  

a' 
(2. 1 .36) 
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The time-evolution operator written in this form enables us to solve any initial
value problem once the expansion of the initial ket in terms of { Ia') } is known. As 
an example, suppose that the initial ket expansion reads 

Ia , to = 0) = L la') (a' la) = L ea' I a') .  (2. 1 .37) 
a' a' 

We then have (-iHt) "'""" , , (-iEatt) la , to = O; t) = exp -
h

- la , to = O) = L..,.. Ia ) (a la) exp h 
. 

a' (2. 1 .38) 
In other words, the expansion coefficient changes with time as 

(2. 1 .39) 
with its modulus unchanged. Notice that the relative phases among various com
ponents do vary with time because the oscillation frequencies are different. 

A special case of interest is where the initial state happens to be one of { I a') } 
itself. We have 

Ia, to = 0) = I a') 
initially, and at a later time 

1 (-iEa't) la , to = O; t) = I a ) exp 
h 

, 

(2. 1 .40) 

(2. 1 .41) 
so if the system is initially a simultaneous eigenstate of A and H, it  remains so at 
all times. The most that can happen is the phase modulation, exp( -i Ea't jh). It 
is in this sense that an observable compatible with H [see (2. 1 .34)] is a constant 
of the motion. We will encounter this connection once again in a different form 
when we discuss the Heisenberg equation of motion. 

In the foregoing discussion the basic task in quantum dynamics is reduced to 
finding an observable that commutes with H and evaluating its eigenvalues. Once 
that is done, we expand the initial ket in terms of the eigenkets of that observ
able and just apply the time-evolution operator. This last step amounts merely to 
changing the phase of each expansion coefficient, as indicated by (2. 1 .39). 

Even though we worked out the case where there is just one observable A that 
commutes with H, our considerations can easily be generalized when there are 
several mutually compatible observables all also commuting with H: 

[A, B] = [B, C] = [A, C] = · · · = 0, 
[A,H] = [B , H] = [C, H] = · · · = 0. 

Using the collective index notation of Section 1 .4 [see (1 .4.37)] , we have (-iHt) "'""" , (-iEK t t) , 
exp -

h
- = � IK ) exp 

h (K I ,  
(2. 1 .42) 

(2. 1 .43) 
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where E K' is uniquely specified once a', b', c', . . .  are specified. It is therefore of 
fundamental importance to find a complete set of mutually compatible observ
ables that also commute with H. Once such a set is found, we express the initial 
ket as a superposition of the simultaneous eigenkets of A, B, C, . . .  and H. The final 
step is just to apply the time-evolution operator, written as (2. 1 .43) . In this manner 
we can solve the most general initial-value problem with a time-independent H. 

Time Dependence of Expectation Values 

It is instructive to study how the expectation value of an observable changes as a 
function of time. Suppose that at t = 0 the initial state is one of the eigenstates 
of an observable A that commutes with H, as in (2 . 1 .40) . We now look at the 
expectation value of some other observable B, which need not commute with A or 
with H. Because at a later time we have 

!a', to = O; t) = 'U(t, O) !a') 
for the state ket, (B ) is given by 

(B) =  ( (a' I 'Ut(t, O)) · B · ('U(t, O) Ia') ) 
1 ( i Ea't) (-iEa't) 1 = (a ! exp -fi- B exp 

1i 
! a ) 

= (a' !B !a') , 

(2. 1 .44) 

(2. 1 .45) 
which is independent oft. So the expectation value of an observable taken with 
respect to an energy eigenstate does not change with time. For this reason an 
energy eigenstate is often referred to as a stationary state. 

The situation is more interesting when the expectation value is taken with re
spect to a superposition of energy eigenstates, or a nonstationary state. Suppose 
that initially we have 

!a , to = 0) = I::Ca' la') . (2. 1 .46) 
a' 

We easily compute the expectation value of B to be ['""""' 1 ( i Ea't) ] ['""""' (-iEa"t) " ] (B) =  7 c�, (a l exp -fi- · B ·  7, ca" exp 
1i !a )  

'""""''""""' * 1 " [-i(Ea" - Ea')t ] = ��ca,ca" (a !B !a ) exp 
1i 

. 
a' a" 

(2. 1 .47) 

So this time the expectation value consists of oscillating terms whose angular 
frequencies are determined by N. Bohr's frequency condition 

Wa"a' = 1i 
(2. 1 .48) 
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Spin Precession 

It is appropriate to treat an example here. We consider an extremely simple system 
that, however, illustrates the basic formalism we have developed. 

We start with a Hamiltonian of a spin 1 system with magnetic moment 
ehj2mec subjected to an external magnetic field B: 

H = - (-e ) s ·B mec (2. 1 .49) 

(e < 0 for the electron). Furthermore, we take B to be a static, uniform magnetic 
field in the z-direction. We can then write H as 

(2. 1 .50) 

Because Sz and H differ just by a multiplicative constant, they obviously com
mute. The Sz eigenstates are also energy eigenstates, and the corresponding en
ergy eigenvalues are 

(2. 1 . 5 1 ) 

It i s  convenient to define w in  such a way that the difference in the two energy 
eigenvalues is hw: 

l e i B  
(J) = --- . mec 

We can then rewrite the H operator simply as 

H = WSz . 

(2. 1 .52) 

(2. 1 .53) 
All the information on time development is contained in the time-evolution 

operator 

( -iwSz t) 'U(t, O) = exp 11 • (2. 1 .54) 

We apply this to the initial state. The base kets we must use in expanding the initial 
ket are obviously the Sz eigenkets, I+) and 1 -) ,  which are also energy eigenkets. 
Suppose that at t = 0 the system is characterized by 

Upon applying (2. 1 .54), we see that the state ket at some later time is 

( -iwt ) (+iwt ) 
la , to = O; t) = c+ exp -2- l+) + e- exp -2- 1- ) ,  

(2. 1 .55) 

(2. 1 .56) 
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where we have used 

H /±) = ( ±�w) /±) . 
75 

(2. 1 .57) 

Specifically, let us suppose that the initial ket /a) represents the spin-up (or, 
more precisely, Sz +) state I +) , which means that 

c+ = 1 ,  c_ = 0. (2. 1 .58) 

At a later time, (2. 1 .56) tells us that it is still in the spin-up state, which is no 
surprise because this is a stationary state. 

Next, let us suppose that initially the system is in the Sx+ state. Comparing 
( 1 .4. 17 a) with (2. 1 .55), we see that 

(2. 1 .59) 

It is straightforward to work out the probabilities for the system to be found in the 
Sx± state at some later time t: 

/ (Sx ± /a, to = O; t) / 2 = / [ (�) (+ / ± (�) (- /] . [ (�) exp ( -�wt) /+) 
( 1 ) (+iwt ) J /2 + y'2 exp -

2
- / - ) 

1 1 ( -iwt ) 1 (+iwt) 12 = 2 exp -
2

- ± 2 exp -
2

-

2 wt = COS -
2 

for Sx+. and (2. 1 .60a) 

2 wt = Sln - for Sx-
2 

(2. 1 .60b) 

Even though the spin is initially in the positive x-direction, the magnetic field in 
the z-direction causes it to rotate; as a result, we obtain a finite probability for 
finding Sx- at some later time. The sum of the two probabilities is seen to be 
unity at all times, in agreement with the unitarity property of the time-evolution 
operator. 

Using ( 1 .4.6), we can write the expectation value of Sx as 

(Sx ) = ( �) cos2 ( �t) + ( �n) sin2 ( �) 
= (�) coswt, (2. 1 .6 1 )  

so this quantity oscillates with an angular frequency corresponding to the differ
ence of the two energy eigenvalues divided by n , in agreement with our general 
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formula (2. 1 .47). Similar exercises with Sy and S2 show that 

(Sy ) = (�) sinwt (2. 1 .62a) 

and 

(2. 1 .62b) 
Physically this means that the spin precesses in the .xy-plane. We will comment 
further on spin precession when we discuss rotation operators in Chapter 3 . 

Experimentally, spin precession is well established. In fact, it is used as a tool 
for other investigations of fundamental quantum-mechanical phenomena. For ex
ample, the form of the Hamiltonian (2. 1 .49) can be derived for point-like par
ticles, such as electrons or muons, that obey the Dirac equation, for which the 
gyromagnetic ratio g = 2. (See Section 8.2.) However, higher-order corrections 
from quantum field theory predict a small but precisely calculable deviation from 
this, and it is a high priority to produce competitively precise measurements of 
g - 2. 

Such an experiment has been recently completed. See G. W. Bennett et al., 
Phys. Rev. D 73 (2006) 072003. Muons are injected into a "storage ring" designed 
so that their spins will precess in lock step with their momentum vector only 
if g = 2. Consequently, observation of their precession measures g - 2 directly, 
facilitating a very precise result. Figure 2. 1 shows the experimenters' observation 
of the muon spin rotation over more than one hundred periods. They determine 

10 
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FIGURE 2.1 Observations of the precession of muon spin by G. W. Bennett et al. ,  
Phys. Rev. D 73 (2006) 072003. Data points are wrapped around every 100 f.LS.  The size 
of the signal decreases with time because the muons decay. 
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a value for g - 2 to a precision smaller than one part per million, which agrees 
reasonably well with the theoretical value. 

Neutrino Oscil lations 

A lovely example of quantum-mechanical dynamics leading to interference in 
a two-state system, based on current physics research, is provided by the phe
nomenon known as neutrino oscillations. 

Neutrinos are elementary particles with no charge and very small mass, much 
smaller than that of an electron. They are known to occur in nature in three distinct 
"flavors," although for this discussion it suffices to consider only two of them. 
These two flavors are identified by their interactions, which may be either with 
electrons, in which case we write Ve , or with muons, that is vf-t . These are in fact 
eigenstates of a Hamiltonian that controls those interactions. 

On the other hand, it is possible (and, in fact, is now known to be true) that neu
trinos have some other interactions, in which case their energy eigenvalues cor
respond to states that have a well-defined mass. These "mass eigenstates" would 
have eigenvalues EI and E2, say, corresponding to masses m I and m2, and might 
be denoted as l vi )  and l v2) .  The "flavor eigenstates" are related to these through 
a simple unitary transformation, specified by some mixing angle () ,  as follows: 

l ve) = cos () l vi ) - sin () l v2) 

I vf-t) = sin() I VI ) + cos() I v2) 

(2. 1 .63a) 

(2. 1 .63b) 

If the mixing angle were zero, then I Ve ) and I vf-t) would respectively be the same 
as I VI ) and I v2) .  However, we know of no reason why this should be the case. 
Indeed, there is no strong theoretical bias for any particular value of (), and it is a 
free parameter that, today, can be determined only through experiment. 

Neutrino oscillation is the phenomenon by which we can measure the mixing 
angle. Suppose we prepare, at time t = 0, a momentum eigenstate of one flavor of 
neutrino, say I Ve ) . Then according to (2. 1 .63a), the two different mass eigenstate 
components will evolve with different frequencies and therefore develop a relative 
phase difference. If the difference in the masses is small enough, then this phase 
difference can build up over a macroscopic distance. In fact, by measuring the 
interference as a function of difference, one can observe oscillations with a period 
that depends on the difference of masses, and an amplitude that depends on the 
mixing angle. 

It is straightforward (see Problem 2.4 at the end of this chapter) to use (2. 1 .63) 
along with (2. 1 .28) and our quantum-mechanical postulates, and find a measur
able quantity that exhibits neutrino oscillations. In this case, the Hamiltonian is 
just that for a free particle, but we need to take some care. Neutrinos are very 
low mass, so they are highly relativistic for any practical experimental conditions. 
Therefore, for a fixed momentum p, the energy eigenvalue for a neutrino of mass 
m is given to an extremely good approximation as 

(2. 1 .64) 
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FIGURE 2.2 Neutrino oscillations as observed by the KamLAND experiment, taken 
from S. Abe et al., Phys. Rev. Lett. 100 (2008) 221 803. The oscillations as a function of 
L j E demonstrate interference between different mass eigenstates of neutrinos. 

If we next allow our state I Ve) to evolve, and then at some later time t ask what is 
the probability that it still appears as a l ve ) (as opposed to a l v/L ) ), we find 

(2. 1 .65) 

where !::'!..m2 = mt - m� , L = ct is the flight distance of the neutrino, and E = pc 
is the nominal neutrino energy. 

The oscillations predicted by (2. 1 .65) have been dramatically observed by the 
KamLAND experiment. See Figure 2.2. Neutrinos from a series of nuclear re
actors are detected at a distance of "' 150 km, and the rate is compared to that 
expected from reactor power and properties. The curve is not a perfect sine wave 
because the reactors are not all at the same distance from the detector. 

Correlation Amplitude and the Energy-Time Uncertainty Relation 

We conclude this section by asking how state kets at different times are correlated 
with each other. Suppose the initial state ket at t = 0 of a physical system is given 
by Ia) . With time it changes into Ia, to = O; t ) , which we obtain by applying the 
time-evolution operator. We are concerned with the extent to which the state ket 
at a later time t is similar to the state ket at t = 0; we therefore construct the inner 
product between the two state kets at different times: 

C(t) = (a la, to = O; t) 
= (a i'U(t, O) Ia) , (2. 1 .66) 
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which is known as the correlation amplitude. The modulus of C(t) provides 
a quantitative measure of the "resemblance" between the state kets at different 
times. 

As an extreme example, consider the very special case where the initial ket Ja) 
is an eigenket of H; we then have 

1 1 (-iEa't) C(t) = (a Ia , to = O; t) = exp 
1i 

, (2. 1 .67) 
so the modulus of the correlation amplitude is unity at all times-which is not 
surprising for a stationary state. In the more general situation where the initial ket 
is represented by a superposition of { I a') } , as in (2. 1 .37), we have (� t )  [� (-iEa"t) ] C(t) = 7 c�, (a I "7 Ca" exp 

1i 
I a") 

� 2 (-iEa't) = � lca' l exp 
1i 

. 
a 

(2. 1 .68) 

As we sum over many terms with oscillating time dependence of different fre
quencies, a strong cancellation is possible for moderately large values of t. We 
expect the correlation amplitude that starts with unity at t = 0 to decrease in mag
nitude with time. 

To estimate (2. 1 .68) in a more concrete manner, let us suppose that the state 
ket can be regarded as a superposition of so many energy eigenkets with simi
lar energies that we can regard them as exhibiting essentially a quasi-continuous 
spectrum. It is then legitimate to replace the sum by the integral 

L --+ 
f dEp(E), 

a' 
Ca' --+ g(E) I , 

E-::::.Ea' 
(2. 1 .69) 

where p(E) characterizes the density of energy eigenstates. Expression (2. 1 .68) 
now becomes 

f (-iEt) C(t) = dE ig(E) I2p(E) exp -fi - , (2. 1 .70) 
subject to the normalization condition 

f dE ig(E) 12p(E) = 1 .  (2. 1 .7 1 ) 

In a realistic physical situation, l g(E) 12p(E) may be peaked around E = Eo with 
width !).E. Writing (2. 1 .70) as (-iEot) f [-i(E - Eo)t ] C(t) = exp -fi - dE lg(E) 12 p(E) exp 

1i 
, (2. 1 .72) 

we see that as t becomes large, the integrand oscillates very rapidly unless the 
energy interval I E  - Eo I is small compared with 1i It . If the interval for which 
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I E - Eo I ::::::: lift holds is much narrower than �E-the width of lg(E) I2p(E)-we 
get essentially no contribution to C(t) because of strong cancellations. The char
acteristic time at which the modulus of the correlation amplitude starts becoming 
appreciably different from 1 is given by 

(2. 1 .73) 

Even though this equation is obtained for a superposition state with a quasi
continuous energy spectrum, it also makes sense for a two-level system; in the 
spin-precession problem considered earlier, the state ket, which is initially I Sx+ ) ,  
starts losing its identity after "' 1 /w = fij(E+ - E_), as i s  evident from (2. 1 .60). 

To summarize, as a result of time evolution the state ket of a physical sys
tem ceases to retain its original form after a time interval of order fi/ �E. In the 
literature this point is often said to illustrate the time-energy uncertainty relation 

�t�E ::::::: fi .  (2. 1 .74) 

However, this time-energy uncertainty relation is of a very different nature from 
the uncertainty relation between two incompatible observables discussed in Sec
tion 1 .4. In Chapter 5 we will come back to (2. 1 .74) in connection with time
dependent perturbation theory. 

2.2 . THE SCHRODINGER VERSUS THE HEISENBERG PICTURE 

Unitary Operators 

In the previous section we introduced the concept of time development by consid
ering the time-evolution operator that affects state kets; this approach to quantum 
dynamics is known as the Schrodinger picture. There is another formulation of 
quantum dynamics where observables, rather than state kets, vary with time; this 
second approach is known as the Heisenberg picture. Before discussing the dif
ferences between the two approaches in detail, we digress to make some general 
comments on unitary operators. 

Unitary operators are used for many different purposes in quantum mechan
ics. In this book we introduced (Section 1 .5) an operator satisfying the unitarity 
property. In that section we were concerned with the question of how the base 
kets in one representation are related to those in some other representations. The 
state kets themselves are assumed not to change as we switch to a different set of 
base kets, even though the numerical values of the expansion coefficients for Ia) 
are, of course, different in different representations. Subsequently we introduced 
two unitary operators that actually change the state kets, the translation operator 
of Section 1 .6 and the time-evolution operator of Section 2. 1 .  We have 

Ia) --+ V Ia) , (2.2 . 1 )  

where U may stand for T(dx) or 'U(t, to) . Here V Ia) i s  the state ket corresponding 
to a physical system that actually has undergone translation or time evolution. 
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It is important to keep in mind that under a unitary transformation that changes 
the state kets, the inner product of a state bra and a state ket remains unchanged: 

(2.2.2) 

Using the fact that these transformations affect the state kets but not operators, we 
can infer how (f3 1 X I a) must change: 

(2.2.3) 

We now make a very simple mathematical observation that follows from the as
sociative axiom of multiplication: 

(2.2.4) 

Is there any physics in this observation? This mathematical identity suggests two 
approaches to unitary transformations: 

Approach 1 :  
Ia) --+ U la) , with operators unchanged. 

Approach 2: 
X --+ ut XU, with state kets unchanged. 

(2.2.5a) 

(2.2.5b) 

In classical physics we do not introduce state kets, yet we talk about translation, 
time evolution, and the like. This is possible because these operations actually 
change quantities such as x and L, which are observables of classical mechanics. 
We therefore conjecture that a closer connection with classical physics may be 
established if we follow approach 2. 

A simple example may be helpful here. We go back to the infinitesimal transla
tion operator T (dx'). The formalism presented in Section 1 .6 is based on approach 
1 ;  T (dx') affects the state kets, not the position operator: 

Ia) --+ ( 1 -
ip

�
dx'}a) , 

X -+  X .  

In contrast, if we follow approach 2,  we obtain 

Ia) --+ Ia) , 
x --+ ( 1 + ip �

dx') x ( 1 _ -=ip_�_dx_' ) 
= x +  (k) [p · dx', x] 
= x+dx'. 

(2.2.6) 

(2.2.7) 

We leave it as an exercise for the reader to show that both approaches lead to the 
same result for the expectation value of x: 

(x) --+ (x) + (dx') . (2.2.8) 
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State Kets and Observables in the Schrodinger and the Heisenberg Pictures 

We now return to the time-evolution operator 'U(t, to). In the previous section 
we examined how state kets evolve with time. This means that we were following 
approach 1 ,  which is known as the Schrodinger picture when it is applied to time 
evolution. Alternatively, we may follow approach 2, known as the Heisenberg 
picture when applied to time evolution. 

In the Schrodinger picture the operators corresponding to observables such as 
x, py , and Sz are fixed in time, while state kets vary with time, as indicated in the 
previous section. In contrast, in the Heisenberg picture the operators correspond
ing to observables vary with time; the state kets are fixed-frozen, so to speak-at 
what they were at to . It is convenient to set to in 'U(t, to) to zero for simplicity and 
work with 'U(t), which is defined by (-iHt) 'U(t, to = 0) = 'U(t) = exp -li - . (2.2.9) 

Motivated by (2.2.5b) of approach 2, we define the Heisenberg picture observable 
by 

(2.2. 10) 

where the superscripts H and S stand for Heisenberg and Schrodinger, re
spectively. At t = 0, the Heisenberg picture observable and the corresponding 
Schrodinger picture observable coincide: 

(2.2. 1 1 ) 

The state kets also coincide between the two pictures at t = 0; at later t the 
Heisenberg-picture state ket is frozen at what it was at t = 0: 

Ia, to = O; t)H = Ia, to = 0) , (2.2. 12) 

independent of t. This is in dramatic contrast with the Schrodinger-picture state 
ket, 

Ia, to = O; t )s = 'U(t) Ja, to = 0). (2.2. 13) 

The expectation value (A) is obviously the same in both pictures: 

= H (a, to = O; t lA(H)(t) Ja, to = O; t)H . (2.2. 14) 

The Heisenberg Equation of Motion 

We now derive the fundamental equation of motion in the Heisenberg picture. 
Assuming that A (S) does not depend explicitly on time, which is the case in most 
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physical situations of interest, we obtain [by differentiating (2.2. 1 0)] 
dA(H) = a ut A(S)U + UtA(S) a U 

dt at  at  
= -� ut HU Ut A(S)U + � ut A(S)uut HU 

ih ih  

= � [A(H) ut HU] 
i h  ' ' 

where we have used [see (2. 1 .25)] 
a u  1 
at = 

ih HU, 

a ut 1 - = - - UtH.  at  i h  
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(2.2. 15) 

(2.2. 16a) 

(2.2. 16b) 
Because H was originally introduced in the SchrOdinger picture, we may be 
tempted to define 

(2.2. 17) 
in accordance with (2.2. 10). But in elementary applications where U is given by 
(2.2.9), U and H obviously commute; as a result, 

uts u  = H, 
so it i s  all right to write (2.2. 15) as 

dA(H) = � [A(H) s] . dt i h  ' 

(2.2. 1 8) 

(2.2. 1 9) 
This equation is known as the Heisenberg equation of motion. Notice that we 
have derived it using the properties of the time-evolution operator and the defining 
equation for A (H) . 

It is instructive to compare (2.2. 19) with the classical equation of motion in 
Poisson bracket form. In classical physics, for a function A of q's and p's that 
does not involve time explicitly, we have (Goldstein 2002, pp. 396-97) 

dA - = [A,  Hlciassical · dt (2.2.20) 
Again, we see that Dirac's quantization rule ( 1 .6.47) leads to the correct equation 
in quantum mechanics. Indeed, historically (2.2. 19) was first written by P. A. M. 
Dirac, who-with his characteristic modesty-called it the Heisenberg equation 
of motion. It is worth noting, however, that (2.2. 1 9) makes sense whether or not 
A (H) has a classical analogue. For example, the spin operator in the Heisenberg 
picture satisfies 

(H) dSi = � [s�H) s] dt ih l ' ' (2.2.21 ) 
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which can be used to discuss spin precession, but this equation has no classical 
counterpart because Sz cannot be written as a function of q's and p's. Rather than 
insisting on Dirac's rule, ( 1 .6.47), we may argue that for quantities possessing 
classical counterparts, the correct classical equation can be obtained from the cor
responding quantum-mechanical equation via the ansatz, 

: �] ---+ [ ,  ] classical · 
(2.2.22) 

Classical mechanics can be derived from quantum mechanics, but the opposite is 
not true.* 

Free Particles; Ehrenfest's Theorem 

Whether we work in the Schrodinger picture or in the Heisenberg picture, to be 
able to use the equations of motion we must first learn how to construct the appro
priate Hamiltonian operator. For a physical system with classical analogues, we 
assume the Hamiltonian to be of the same form as in classical physics; we merely 
replace the classical Xi 's and Pi 's by the corresponding operators in quantum me
chanics. With this assumption we can reproduce the correct classical equations in 
the classical limit. Whenever an ambiguity arises because of noncommuting ob
servables, we attempt to resolve it by requiring H to be Hermitian; for instance, we 
write the quantum-mechanical analogue of the classical productxp as 1 (x p + px ). 
When the physical system in question has no classical analogues, we can only 
guess the structure of the Hamiltonian operator. We try various forms until we get 
the Hamiltonian that leads to results agreeing with empirical observation. 

In practical applications it is often necessary to evaluate the commutator of Xi 
(or Pi) with functions of x j and p j. To this end the following formulas are useful: 

and 

aG 
[Pi , G(x)] = -in-, 

a xi 

(2.2.23a) 

(2.2.23b) 

where F and G are functions that can be expanded in powers of p j 's and x j 's, 
respectively. We can easily prove both formulas by repeatedly applying (1 .6.50e). 

We are now in a position to apply the Heisenberg equation of motion to a free 
particle of mass m. The Hamiltonian is taken to be of the same form as in classical 
mechanics: 

(2.2.24) 

*In this book we follow the following order: the Schrodinger picture --+ the Heisenberg picture 
--+ classical. For an enlightening treatment of the same subject in the opposite order, classical --+ 
the Heisenberg picture --+ the Schrodinger picture, see Finkelstein (1973), pp. 68-70 and 109. 
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We look at the observables Pi and Xi , which are understood to be the momen
tum and the position operator in the Heisenberg picture even though we omit the 
superscript (H). Because Pi commutes with any function of p j 's, we have 

(2.2.25) 

Thus for a free particle, the momentum operator is a constant of the motion, which 
means that Pi(t) is the same as Pi (O) at all times. Quite generally, it is evident from 
the Heisenberg equation of motion (2.2. 19) that whenever A (H) commutes with 
the Hamiltonian, A (H) is a constant of the motion. Next, 

dxi _ _!__ [x · H] _ _!__ _1_ i1i _!__ (� 2) 
dt - i1i  1 ' - i1i 2m ()pi � Pj 

j = l 

Pi Pi (O) 
m m 

where we have taken advantage of (2.2.23a), so we have the solution 

(2.2.26) 

(2.2.27) 

which is reminiscent of the classical trajectory equation for a uniform rectilinear 
motion. It is important to note that even though we have 

(2.2.28) 

at equal times, the commutator of the Xi 's at different times does not vanish; 
specifically, 

(2.2.29) 

Applying the uncertainty relation ( 1 .4.53) to this commutator, we obtain 

(2.2.30) 

Among other things, this relation implies that even if the particle is well localized 
at t = 0, its position becomes more and more uncertain with time, a conclusion 
that can also be obtained by studying the time-evolution behavior of free-particle 
wave packets in wave mechanics. 

We now add a potential V(x) to our earlier free-particle Hamiltonian: 

p2 
H = - +  V(x). 

2m 
(2.2.3 1 )  
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Here V(x) is to be understood as a function of the x-, y-, and z-operators. Using 
(2.2.23b) this time, we obtain 

dpi 1 a 
- = :- [Pi , V(x)] = - - V(x). dt lli axi 

On the other hand, we see that 

Pi 

m 

(2.2.32) 

(2.2.33) 

still holds because Xi commutes with the newly added term V(x). We can use the 
Heisenberg equation of motion once again to deduce 

d2xi = ;._ [dxi , H] = ;._ [Pi , H ] 
dt2 z li  dt z li  m 

1 dpi 
m dt (2.2.34) 

Combining this with (2.2.32), we finally obtain in vectorial form 

(2.2.35) 

This is the quantum-mechanical analogue of Newton's second law. By taking the 
expectation values of both sides with respect to a Heisenberg state ket that does 
not move with time, we obtain 

d2 d(p) m- (x) = - = - (VV(x)) .  dt2 dt (2.2.36) 

This is known as the Ehrenfest theorem after P. Ehrenfest, who derived it in 
1927 using the formalism of wave mechanics. When the theorem is written in 
this expectation form, its validity is independent of whether we are using the 
Heisenberg or the Schrodinger picture; after all, the expectation values are the 
same in the two pictures. In contrast, the operator form (2.2.35) is meaningful 
only if we understand x and p to be Heisenberg-picture operators. 

We note that in (2.2.36) the /i's have completely disappeared. It is therefore 
not surprising that the center of a wave packet moves like a classical particle 
subjected to V(x) . 

Base Kets and Transition Amplitudes 

So far we have avoided asking how the base kets evolve with time. A common 
misconception is that as time goes on, all kets move in the Schrodinger picture 
and are stationary in the Heisenberg picture. This is not the case, as we will make 
clear shortly. The important point is to distinguish the behavior of state kets from 
that of base kets. 
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We started our discussion of ket spaces in Section 1 .2 by remarking that the 
eigenkets of observables are to be used as base kets. What happens to the defining 
eigenvalue equation 

A la') = a' Ia' ) (2.2.37) 
with time? In the SchrOdinger picture, A does not change, so the base kets, ob
tained as the solutions to this eigenvalue equation at t = 0, for instance, must re
main unchanged. Unlike state kets, the base kets do not change in the Schrodinger 
picture. 

The whole situation is very different in the Heisenberg picture, where the 
eigenvalue equation we must study is for the time-dependent operator 

A (H\t) = ut A(O)'U. (2.2.38) 
From (2.2.37) evaluated at t = 0, when the two pictures coincide, we deduce 

(2.2.39) 
which implies an eigenvalue equation for A (H) : 

(2.2.40) 
If we continue to maintain the view that the eigenkets of observables form the 
base kets, then {'Ut Ia') } must be used as the base kets in the Heisenberg picture. 
As time goes on, the Heisenberg-picture base kets, denoted by la', t)H , move as 
follows: 

(2.2.41) 
Because of the appearance of ut rather than 'U in (2.2.41 ), the Heisenberg-picture 
base kets are seen to rotate oppositely when compared with the Schrodinger
picture state kets; specifically, Ia', t) H satisfies the "wrong-sign Schrodinger equa
tion" 

a ' ' ifi- la , t)H = -H ia , t )H . at (2.2.42) 
As for the eigenvalues themselves, we see from (2.2.40) that they are un

changed with time. This is consistent with the theorem on unitary equivalent ob
servables discussed in Section 1 .5 . Notice also the following expansion for A (H)(t) 
in terms of the base kets and bras of the Heisenberg picture: 

A(H) (t) = L l a' , t )Ha' H (a', t l  (2.2.43) 
a' 

= L 'Ut la')a' (a' I 'U  
a' 
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which shows that everything is quite consistent, provided that the Heisenberg base 
kets change as in (2.2.41) .  

We see that the expansion coefficients of a state ket in terms of base kets are 
the same in both pictures: 

Ca' (t) = (a' l · ('U ia, to = 0)) (the Schrodinger picture) (2.2.44a) 
'-.,-' '-v-' 

base bra stateket 

Ca' (t) = ( (a' l 'U) · Ia, to = 0) (the Heisenberg picture). 
'-.,--' '-.--' 
base bra state ket 

(2.2.44b) 

Pictorially, we may say that the cosine of the angle between the state ket and the 
base ket is the same whether we rotate the state ket counterclockwise or the base 
ket clockwise. These considerations apply equally well to base kets that exhibit a 
continuous spectrum; in particular, the wave function (x' Ia) can be regarded either 
as ( 1 )  the inner product of the stationary position eigenbra with the moving state 
ket (the Schrodinger picture) or as (2) the inner product of the moving position 
eigenbra with the stationary state ket (the Heisenberg picture) . We will discuss 
the time dependence of the wave function in Section 2.4, where we will derive the 
celebrated wave equation of Schrodinger. 

To illustrate further the equivalence between the two pictures, we study transi
tion amplitudes, which will play a fundamental role in Section 2.6. Suppose there 
is a physical system prepared at t = 0 to be in an eigenstate of observable A with 
eigenvalue a'. At some later time t we may ask, What is the probability amplitude, 
known as the transition amplitude, for the system to be found in an eigenstate 
of observable B with eigenvalue b'? Here A and B can be the same or different. In 
the Schrodinger picture the state ket at t is given by 'Uia') , whereas the base kets 
Ia') and l b') do not vary with time; so we have 

(b' l · ('U ia')) 
'-.,-' '-.,--' 

base bra state ket 

(2.2.45) 

for this transition amplitude. In contrast, in the Heisenberg picture the state ket 
is stationary-that is, it remains as Ia') at all times-but the base kets evolve 
oppositely. So the transition amplitude is 

( (b' l 'U) · Ia') . 
'-.,--' '-.,-' 
base bra state ket 

(2.2.46) 

Obviously (2.2.45) and (2.2.46) are the same. They can both be written as 

(b' l 'U(t, 0) Ia') . (2.2.47) 

In some loose sense, this is the transition amplitude for "going" from state Ia') to 
state l b' ) . 

To conclude this section, let us summarize the differences between the 
SchrOdinger picture and the Heisenberg picture. Table 2. 1 provides such a sum
mary. 
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TABLE 2.1 The SchrOdinger Picture versus the Heisenberg Picture 

Schrodinger picture 
State ket Moving: (2. 1 .5), (2. 1 .27) 
Observable Stationary 

Heisenberg picture 
Stationary 
Moving: (2.2 . 10) , (2.2 . 19) 
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Base ket Stationary Moving oppositely: (2.2.41) , (2.2.42) 

2.3 • SIMPLE HARMONIC OSCILLATOR 

The simple harmonic oscillator is one of the most important problems in quantum 
mechanics. It not only illustrates many of the basic concepts and methods of quan
tum mechanics but also has much practical value. Essentially any potential well 
can be approximated by a simple harmonic oscillator, so it describes phenomena 
from molecular vibrations to nuclear structure. Moreover, because the Hamilto
nian is basically the sum of squares of two canonically conjugate variables, it is 
also an important starting point for much of quantum field theory. 

Energy Eigenkets and Energy Eigenvalues 

We begin our discussion with Dirac's elegant operator method, which is based on 
the earlier work of M. Born and N. Wiener, to obtain the energy eigenkets and 
energy eigenvalues of the simple harmonic oscillator. The basic Hamiltonian is 

p2 mw2x2 H = -+ 2 2m (2.3. 1) 

where w is  the angular frequency of the classical oscillator related to the spring 
constant k in Hooke's law via w = ,.jk[iii. The operators x and p are, of course, 
Hermitian. It is convenient to define two non-Hermitian operators, 

fniW ( ip ) a = y 2h x +  mw , at = fmW (x - .!1!_) , '/ 2-h  mw (2.3.2) 

which are known as the annihilation operator and the creation operator, re
spectively, for reasons that will become evident shortly. Using the canonical com
mutation relations, we readily obtain 

[a , at] = (2�) (-i [x ,p] + i [p,x]) = 1 . 
We also define the number operator 

N = ata, 
which is  obviously Hermitian. It i s  straightforward to show that 

at a = (mw) (x2 + L) + (_!_) [x, p] 2n m2w2 2n 
H 1 
nw 2 '  

(2.3.3) 

(2.3.4) 

(2.3.5) 
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so we have an important relation between the number operator and the Hamilto
nian operator: 

(2.3 .6) 

Because H is just a linear function of N, N can be diagonalized simultaneously 
with H. We denote an energy eigenket of N by its eigenvalue n, so 

Nln) = n ln ) . (2.3.7) 

We will later show that n must be a nonnegative integer. Because of (2.3.6) we 
also have 

H ln) = (n + !) nwln ) , (2.3 .8) 

which means that the energy eigenvalues are given by 

(2.3.9) 

To appreciate the physical significance of a, a
t
, and N, let us first note that 

[N,a] = [a 
t
a ,a] = a  

t
[a, a] + [a 

t
, a]a = -a, (2.3. 10) 

where we have used (2.3.3). Likewise, we can derive 

(2.3 . 1 1) 

As a result, we have 

(2.3 . 12a) 

and 

Na ln) = ([N, a] +aN) In) = (n - l)a ln) .  (2.3 . 12b) 

These relations imply that a 
t
ln)(a ln)) is also an eigenket of N with eigenvalue in

creased (decreased) by one. Because the increase (decrease) of n by one amounts 
to the creation (annihilation) of one quantum unit of energy hw, the term creation 
operator (annihilation operator) for a

t 
(a) is deemed appropriate. 

Equation (2.3. 12b) implies that a ln) and In - 1) are the same up to a multi
plicative constant. We write 

a ln) = cln - 1) ,  (2.3. 13) 

where c is a numerical constant to be determined from the requirement that both 
In) and I n - 1 )  be normalized. First, note that 

(2.3. 14) 
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We can evaluate the left-hand side of (2.3. 14) by noting that at a is just the number 
operator, so 

Taking c to be real and positive by convention, we finally obtain 

a ln) = �In - 1 ) .  
Similarly, it is easy to show that 

(2.3 . 15) 

(2.3 . 1 6) 

(2.3 . 17) 
Suppose that we keep on applying the annihilation operator a to both sides of 

(2.3 . 1 6) : 
a2 1n) = Jn(n - 1) 1n - 2), 
a3 1n) = Jn(n - 1)(n - 2)1n - 3) , (2.3 . 1 8) 

We can obtain numerical operator eigenkets with smaller and smaller n until the 
sequence terminates, which is bound to happen whenever we start with a positive 
integer n. One may argue that if we start with a noninteger n, the sequence will 
not terminate, leading to eigenkets with a negative value of n. But we also have 
the positivity requirement for the norm of a In ) : 

n = (n iN in) = ( (n la t) · (a ln)) � 0, (2.3 . 1 9) 
which implies that n can never be negative! So we conclude that the sequence must 
terminate with n = 0 and that the allowed values of n are nonnegative integers. 

Because the smallest possible value of n is zero, the ground state of the har
monic oscillator has 

1 Eo = 2ruu. (2.3 .20) 
We can now successively apply the creation operator at to the ground state 1 0) . 
Using (2.3 . 17), we obtain 

l 1 ) = at l0) , 
12) = (�) 1 1 )  = [ c:;rJ 10) , 
1 3 ) = (�}2) = [�}o), (2.3 .21) 
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In this way we have succeeded in constructing simultaneous eigenkets of N 
and H with energy eigenvalues 

En = ( n + n fuv (n = 0, 1 , 2, 3 , . . .  ) . (2.3 .22) 

From (2.3 . 16), (2.3. 17), and the orthonormality requirement for { in ) } , we ob
tain the matrix elements 

Using these together with 

� t p = iy 2(-a+a ), 
we derive the matrix elements of the x and p operators : 

1 ·Jmhw r.: c-;--; (n !p in) = l -2-( - v  non',n-1 + V n + 18n',n+I ) . 

(2.3 .23) 

(2.3 .24) 

(2.3 .25a) 

(2.3 .25b) 
Notice that neither x nor p is diagonal in the N-representation we are using. This 
is not surprising because x and p, like a and at , do not commute with N. 

The operator method can also be used to obtain the energy eigenfunctions in 
position space. Let us start with the ground state defined by 

a !O) = 0, 

which, in the x-representation, reads 

(x' la !O) = (iii"W(x' l (x + ip ) 10) = 0. y 2h mw 

(2.3 .26) 

(2.3.27) 
Recalling ( 1. 7 . 17), we can regard this as a differential equation for the ground
state wave function (x' IO) : 

(x' +x5 d
:
'
) (x' !O) = 0, (2.3 .28) 

where we have introduced 

xo = fh, v �  (2.3.29) 
which sets the length scale of the oscillator. We see that the normalized solution 
to (2.3 .28) is 

(2.3 .30) 
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We can also obtain the energy eigenfunctions for excited states by evaluating 

(x1 1 1 )  = (x1 la t iO) = ( �xo) (x1 - x5 d�1) (x1 1 0) , 
I _ (-1 ) 1 t 2 _ ( 1 ) ( 1 ) 2 ( I 2 d ) 2 I (x 12) - -J2 (x l (a ) 10) - J2T J2xO x - x0 dx1 (x 10), . . .  , 

(2.3 .31)  
In general, we obtain 

1 ( 1 ) ( 1 ) ( 1 2 d ) n [ 1 (x1) 2] (x In) = ;rr l /45nn"f x;+l /2 x - xo dxl exp -2 xo . (2.3.32) 

It is instructive to look at the expectation values of x2 and p2 for the ground 
state. First, note that 

(2.3 .33) 

When we take the expectation value of x2, only the last term in (2.3.33) yields a 
nonvanishing contribution: 

Likewise, 

2 hmw (p ) - - 2 
. 

(2.3 .34) 

(2.3 .35) 

It follows that the expectation values of the kinetic and the potential energies are, 
respectively, 

( p2 ) = hw = (H) 
and 

2m 4 2 
(2.3.36) 

as expected from the virial theorem. From (2.3 .25a) and (2.3 .25b), it follows that 

(x ) = (p) = 0, (2.3 .37) 

which also holds for the excited states. We therefore have 

(2.3 .38) 

and we see that the uncertainty relation is satisfied in the minimum uncertainty 
product form: 

(2.3.39) 
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This is not surprising because the ground-state wave function has a Gaussian 
shape. In contrast, the uncertainty products for the excited states are larger: 

(2.3 .40) 

as the reader may easily verify. 

Time Development of the Osci llator 

So far we have not discussed the time evolution of oscillator state kets or of ob
servables such as x and p. Everything we have done is supposed to hold at some 
instant of time, say at t = 0; the operators x, p, a, and at are to be regarded either 
as Schrodinger-picture operators (at all t) or as Heisenberg-picture operators at 
t = 0. In the remaining part of this section, we work exclusively in the Heisen
berg picture, which means that x, p, a, and at are all time-dependent even though 
we do not explicitly write x(H)(t), and so forth. 

The Heisenberg equations of motion for p and x are, from (2.2.32) and (2.2.33), 

and 

dp 2 - = -mw x dt 

dx p 
dt m 

(2.3.4la) 

(2.3.4lb) 

This pair of coupled differential equations is equivalent to two uncoupled differ
ential equations for a and at, namely, 

and 

da fiilW ( p . ) . 
dt = V 2h m - zwx = - l wa 

dat - = iwat dt ' 
whose solutions are 

a(t) = a(O)exp( -iwt) and at (t) = at (O) exp(iwt). 

(2.3 .42a) 

(2.3.42b) 

(2.3 .43) 

Incidentally, these relations explicitly show that N and H are time-independent 
operators even in the Heisenberg picture, as they must be. In terms of x and p, we 
can rewrite (2.3 .43) as 

ip(t) [p(O) J x(t) +-- = x(O) exp(-i w t) + i  - exp(-i w t) , mw mw 
ip(t) [p(O) J x(t) - -- = x(O) exp(i wt) - i - exp(i wt) . mw mw 

(2.3 .44) 
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Equating the Hermitian and anti-Hermitian parts of both sides separately, we de
duce [p(O) J . 

x(t) = x(O) coswt + 
mw 

sm wt  (2.3 .45a) 

and 

p(t) = -mwx(O) sinwt + p(O) coswt. (2.3 .45b) 

These look the same as the classical equations of motion. We see that the x and p 
operators "oscillate" just like their classical analogues. 

For pedagogical reasons, we now present an alternative derivation of (2.3 .45a). 
Instead of solving the Heisenberg equation of motion, we attempt to evaluate 

( i Ht) (-iHt) 
x(t) = exp h x(O) exp -

h
- . (2.3 .46) 

To this end we record a very useful formula: 

( i2A.2 ) 
exp(i GA.)A exp(-iGA.) = A +  i"A [G, A] + 2! [G, [G, A]] ( in "An ) 

+ · · · +  � [G, [G, [G, . . .  [G, A]]] . . .  ] + . . .  
, 

(2.3 .47) 

where G is a Hermitian operator and A. is a real parameter. We leave the proof 
of this formula, which is known as the Baker-Hausdorff lemma, as an exercise. 
Applying this formula to (2.3 .46), we obtain 

( iHt) (-iHt) 
exp T x(O) exp -

h
-( i t) ( i2t2 ) 

= x(O) + h [H ,x(O)] + 
2 11i2 [H, [H, x(O)]] + . . . . 

(2.3 .48) 

Each term on the right-hand side can be reduced to either x or p by repeatedly 
using 

[H,x(O)] = 
-ihp(O) 

(2.3 .49a) 
m 

and 

[H, p(O)] = i1imw2x(O). (2.3 .49b) 
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Thus 

(2.3 .50) 

[p(O) ] . = x (O)cos wt + mw 
sm wt, 

in agreement with (2.3 .45a). 
From (2.3 .45a) and (2.3 .45b), one may be tempted to conclude that (x ) and (p) 

always oscillate with angular frequency w. However, this inference is not correct. 
Take any energy eigenstate characterized by a definite value of n; the expectation 
value (n lx(t) ln) vanishes because the operators x(O) and p(O) change n by ± 1 ,  
and I n )  and I n ± 1 )  are orthogonal. This point i s  also obvious from our earlier 
conclusion (see Section 2 . 1 )  that the expectation value of an observable taken 
with respect to a stationary state does not vary with time. To observe oscillations 
reminiscent of the classical oscillator, we must look at a superposition of energy 
eigenstates such as 

Ia) = co l O) + CI 1 1 ) .  (2.3.5 1)  

The expectation value of x(t) taken with respect to (2.3.5 1)  does oscillate, as the 
reader may readily verify. 

We have seen that an energy eigenstate does not behave like the classical 
oscillator-in the sense of oscillating expectation values for x and p-no matter 
how large n may be. We may logically ask, How can we construct a superposition 
of energy eigenstates that most closely imitates the classical oscillator? In wave
function language, we want a wave packet that bounces back and forth without 
spreading in shape. It turns out that a coherent state defined by the eigenvalue 
equation for the non-Hermitian annihilation operator a, 

a lA.) = A. lA.) , (2.3 .52) 

with, in general, a complex eigenvalue A. does the desired job. The coherent state 
has many other remarkable properties: 

1 .  When it is expressed as a superposition of energy (or N) eigenstates, 

00 

l A.) = L f(n) ln) , (2.3.53) 
n =O 

the distribution of l f(n) l2 with respect to n is of the Poisson type about 
some mean value ii :  

l f(n) l2 = (:�) exp(-ii). (2.3 .54) 
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2. It can be obtained by translating the oscillator ground state by some finite 
distance. 

3 . It satisfies the minimum uncertainty product relation at all times. 

A systematic study of coherent states, pioneered by R. Glauber, is very rewarding; 
the reader is urged to work out Problem 2. 19 on this subject at the end of this 
chapter.* 

2.4 . SCHRODINGER'S WAVE EQUATION 

The Time-Dependent Wave Equation 

We now turn to the SchrOdingerpicture and examine the time evolution of Ia, to ; t) 
in the x-representation. In other words, our task is to study the behavior of the 
wave function 

'tfr(x1, t) = (x1 la, to ; t) (2.4. 1 )  
as a function of time, where la, to ; t) is a state ket in the Schrodinger picture at 
time t, and (x1 1 is a time-independent position eigenbra with eigenvalue x1• The 
Hamiltonian operator is taken to be 

p2 H = - + V(x). 2m (2.4.2) 
The potential V(x) is a Hermitian operator; it is also local in the sense that in the 
x-representation we have 

(x" I V  (x) lx1) = V (x1)o\x1 - x"), (2.4.3) 
where V(x1) is a real function of x1• Later in this book we will consider more
complicated Hamiltonians-a time-dependent potential V(x, t) ; a nonlocal but 
separable potential where the right-hand side of (2.4.3) is replaced by VI (x")v2(X1) ; 
a momentum-dependent interaction of the form p ·A + A · p, where A is the vector 
potential in electrodynamics, and so on. 

We now derive Schrodinger's time-dependent wave equation. We first write the 
Schrodinger equation for a state ket (2. 1 .27) in the x-representation: 

· a I I l li- (x la, to ; t ) = (x IH ia, to ; t) ,  a t (2.4.4) 
where we have used the fact that the position eigenbras in the Schrodinger picture 
do not change with time. Using (1 .7.20), we can write the kinetic-energy contri
bution to the right-hand side of (2.4.4) as 

(x' I�: I a,l<J; t} = - ( �) V'2 (x' la , to ; t) (2.4.5) 

*For applications to laser physics, see Sargent, Scully, and Lamb ( 1974) and Loudon (2000). See 
also the discussion on squeezed light at the end of Section 7.6 of this book. 
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As for V(x), we simply use 

(x' j V(x) = (x' j V(x'), 
where V (x') is no longer an operator. Combining everything, we deduce 

ifi- (x' la, to ; t) = - - V'2 (x' la, to ; t) + V(x') (x' la, to ; t ) , a ( fi2 ) at 2m 

(2.4.6) 

(2.4.7) 

which we recognize to be the celebrated time-dependent wave equation of E. 
Schrodinger, usually written as 

ifi-1/f(x', t) = - - V'21/f(x', t) + V(x')l/f(x', t) . a ( ti2 ) at 2m (2.4.8) 

The quantum mechanics based on wave equation (2.4.8) is known as wave me
chanics. This equation is, in fact, the starting point of many textbooks on quantum 
mechanics. In our formalism, however, this is just the Schrodinger equation for a 
state ket written explicitly in the x-basis when the Hamiltonian operator is taken 
to be (2.4.2). 
The Time-Independent Wave Equation 

We now derive the partial differential equation satisfied by energy eigenfunctions. 
We showed in Section 2. 1 that the time dependence of a stationary state is given 
by exp( -i Ea't jfi ). This enables us to write its wave function as 

(-iEa't) (x' la', to ; t ) = (x' la') exp 
1i 

, (2.4.9) 

where it is understood that initially the system is prepared in a simultaneous eigen
state of A and H with eigenvalues a' and Ea' , respectively. Let us now substitute 
(2.4.9) into the time-dependent Schrodinger equation (2.4.7). We are then led to 

- ( ��) V'2 (x' la') + V(x') (x' la') = Ea' (x' l a' ) . (2.4. 10) 

This partial differential equation is satisfied by the energy eigenfunction (x' la') 
with energy eigenvalue Ea' · Actually, in wave mechanics where the Hamiltonian 
operator is given as a function of x and p, as in (2.4.2), it is not necessary to refer 
explicitly to observable A that commutes with H, because we can always choose A 
to be that function of the observables x and p that coincides with H itself. We may 
therefore omit reference to a' and simply write (2.4. 10) as the partial differential 
equation to be satisfied by the energy eigenfunction UE(x'): 

(2.4. 1 1) 
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This is the time-independent wave equation of E. Schrodinger-announced in 
the first of four monumental papers, all written in the first half of 1926-that laid 
the foundations of wave mechanics. In the same paper he immediately applied 
(2.4. 1 1) to derive the energy spectrum of the hydrogen atom. 

To solve (2.4. 1 1 ) some boundary condition has to be imposed. Suppose we 
seek a solution to (2.4. 1 1) with 

E < lim V (x'), 
lx' l---700 

(2.4. 12) 

where the inequality relation is to hold for Jx' J --+ oo in any direction. The appro
priate boundary condition to be used in this case is 

UE(x') --+  0 as Jx' J --+  oo. (2.4. 13) 

Physically this means that the particle is bound or confined within a finite region 
of space. We know from the theory of partial differential equations that (2.4. 1 1) 
subject to boundary condition (2.4. 13) allows nontrivial solutions only for a dis-

. crete set of values of E. It is in this sense that the time-independent Schrodinger 
equation (2.4. 1 1) yields the quantization of energy levels.* Once the partial dif
ferential equation (2.4. 1 1) is written, the problem of finding the energy levels of 
microscopic physical systems is as straightforward as that of finding the char
acteristic frequencies of vibrating strings or membranes. In both cases we solve 
boundary-value problems in mathematical physics. 

A short digression on the history of quantum mechanics is in order here. The 
fact that exactly soluble eigenvalue problems in the theory of partial differential 
equations can also be treated using matrix methods was already known to math
ematicians in the first quarter of the twentieth century. Furthermore, theoretical 
physicists like M. Born frequently consulted great mathematicians of the day
D. Hilbert and H. Weyl, in particular. Yet when matrix mechanics was born in 
the summer of 1925, it did not immediately occur to the theoretical physicists 
or the mathematicians to reformulate it using the language of partial differential 
equations. Six months after Heisenberg's pioneering paper, wave mechanics was 
proposed by Schrodinger. However, a close inspection of his papers shows that 
he was not at all influenced by the earlier works of Heisenberg, Born, and Jordan. 
Instead, the train of reasoning that led Schrodinger to formulate wave mechanics 
has its roots in W. R. Hamilton's analogy between optics and mechanics, on which 
we will comment later, and in the particle-wave hypothesis ofL. de Broglie. Once 
wave mechanics was formulated, many people, including Schrodinger himself, 
showed the equivalence between wave mechanics and matrix mechanics. 

It is assumed that the reader of this book has some experience in solving the 
time-dependent and time-independent wave equations. He or she should be fa
miliar with the time evolution of a Gaussian wave packet in a force-free region; 
should be able to solve one-dimensional transmission-reflection problems involv
ing a rectangular potential barrier, and the like; should have seen derived some 

*Schrodinger's paper that announced (2.4. 1 1 ) is appropriately entitled Quantisierung als Eigen
wertproblem (Quantization as an Eigenvalue Problem). 
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simple solutions of the time-independent wave equation-a particle in a box, a 
particle in a square well, the simple harmonic oscillator, the hydrogen atom, and 
so on; and should also be familiar with some general properties of the energy 
eigenfunctions and energy eigenvalues, such as ( 1 ) the fact that the energy levels 
exhibit a discrete or continuous spectrum depending on whether or not (2.4. 1 2) 
is satisfied and (2) the property that the energy eigenfunction in one dimension is 
sinusoidal or damped depending on whether E - V (x') is positive or negative. 

In this book, we do not thoroughly cover these more elementary topics and so
lutions. Some of these (for example, the harmonic oscillator and hydrogen atom) 
are pursued, but at a mathematical level somewhat higher than what is usually 
seen in undergraduate courses. In any case, a brief summary of elementary solu
tions to Schrodinger's equations is presented in Appendix B.  

I nterpretations of the Wave Function 

We now tum to discussions of the physical interpretations of the wave function. 
In Section 1 .7 we commented on the probabilistic interpretation of l o/ 12 that fol
lows from the fact that (x' la, to ; t) is to be regarded as an expansion coefficient of 
Ia, to ; t) in terms of the position eigenkets { lx') }. The quantity p(x', t) defined by 

p(x', t) = 1 1fr(x', t) l 2 = l (x' la, to ; t ) 1 2 (2.4. 14) 

is therefore regarded as the probability density in wave mechanics. Specifically, 
when we use a detector that ascertains the presence of the particle within a small 
volume element d3x' around x', the probability of recording a positive result at 
time t is given by p(x', t)d3 x' . 

In the remainder of this section we use x for x' because the position operator 
will not appear. Using Schrodinger's time-dependent wave equation, it is straight
forward to derive the continuity equation 

ap . - + V· J = 0, at (2.4. 15) 

where p(x, t) stands for 1 1/r 1 2 as before, and j(x, t), known as the probability flux, 
is given by 

j(x, t) = - ( �:) [ 1/r*V 1fr - (V 1/r*)'ljr] 

= ( �) Im( 1/r*V 1jr ). 
(2.4. 1 6) 

The reality of the potential V (or the Hermiticity of the V operator) has played 
a crucial role in our obtaining this result. Conversely, a complex potential can 
phenomenologically account for the disappearance of a particle; such a potential 
is often used for nuclear reactions where incident particles get absorbed by nuclei. 
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We may intuitively expect that the probability flux j is related to momentum. 
This is indeed the case for j integrated over all space. From (2.4. 16) we obtain 

J d3xj(x,t) = (�t , (2.4. 17) 
where (p) t is the expectation value of the momentum operator at time t. 

Equation (2.4. 15) is reminiscent of the continuity equation in fluid dynamics 
that characterizes a hydrodynamic flow of a fluid in a source-free, sink-free region. 
Indeed, historically Schrodinger was first led to interpret 1 1/f 1 2 as the actual matter 
density, or e 1 1/f 1 2 as the actual electric charge density. If we adopt such a view, we 
are led to face some bizarre consequences. 

A typical argument for a position measurement might go as follows. An atomic 
electron is to be regarded as a continuous distribution of matter filling up a finite 
region of space around the nucleus; yet, when a measurement is made to make 
sure that the electron is at some particular point, this continuous distribution of 
matter suddenly shrinks to a point-like particle with no spatial extension. The 
more satisfactory statistical interpretation of 1 1/f 1 2 as the probability density was 
first given by M. Born. 

To understand the physical significance of the wave function, let us write it as 

� [ i S(x, t) J 1/f(x, t) = v p�x, tJexp 
1i 

, (2.4. 1 8) 
with S real and p > 0, which can always be done for any complex function of x and 
t. The meaning of p has already been given. What is the physical interpretation of 
S? Noting 

1/f*V'I/f = FPV(FP) + (*) pV S, 
we can write the probability flux as [see (2.4. 16)] 

• pVS J = -. 
m 

(2.4. 19) 

(2.4.20) 
We now see that there is more to the wave function than the fact that 1 1/f l2 is the 
probability density; the gradient of the phase S contains a vital piece of infor
mation. From (2.4.20) we see that the spatial variation of the phase of the wave 
function characterizes the probability flux; the stronger the phase variation, the 
more intense the flux. The direction of j at some point x is seen to be normal to 
the surface of a constant phase that goes through that point. In the particularly 
simple example of a plane wave (a momentum eigenfunction), 

( ip · x i Et) 1/f(x, t) ex: exp -h- -h , (2.4.21) 
where p stands for the eigenvalue of the momentum operator. All this is  evident 
because 

VS = p. (2.4.22) 
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More generally, it is tempting to regard V S j m as some kind of "velocity," 

VS "v" = - , m 
and to write the continuity equation (2.4. 15) as 

ap + v .  (p "v") = 0, at 

(2.4.23) 

(2.4.24) 

just as in fluid dynamics. However, we would like to caution the reader against 
too literal an interpretation of j as p times the velocity defined at every point in 
space, because a simultaneous precision measurement of position and velocity 
would necessarily violate the uncertainty principle. 

The Classical Limit 

We now discuss the classical limit of wave mechanics. First, we substitute 1/r 
written in form (2.4. 18) into both sides of the time-dependent wave equation. 
Straightforward differentiations lead to 

- (;:) 
x [ V2.JP+ (�) (V .jP) · (VS) - (1i12) .JP\VSJ 2 + (*) .JPV2S J +.JPV 

(2.4.25) 
So far everything has been exact. Let us suppose now that 1i can, in some sense, be 
regarded as a small quantity. The precise physical meaning of this approximation, 
to which we will come back later, is not evident now, but let us assume 

(2.4.26) 
and so forth. We can then collect terms in (2.4.25) that do not explicitly contain 1i 
to obtain a nonlinear partial differential equation for S: 

1 aS(x, t) -\VS(x, t) \ 2 + V(x) + = 0. 2m at (2.4.27) 

We recognize this to be the Hamilton-Jacobi equation in classical mechanics, 
first written in 1 836, where S(x, t) stands for Hamilton's principal function. So, not 
surprisingly, in the 1i -+  0 limit, classical mechanics is contained in Schrodinger's 
wave mechanics. We have a semiclassical interpretation of the phase of the wave 
function: 1i times the phase is equal to Hamilton's principal function, provided 
that 1i can be regarded as a small quantity. 



2 .5 Elementary Sol utions to Schrodinger's Wave Equation 1 03 

Let us now look at a stationary state with time dependence exp( -i Et fh ). This 
time dependence is anticipated from the fact that for a classical system with a 
constant Hamiltonian, Hamilton's principal function S is separable: 

S(x , t) = W(x) - Et, (2.4.28) 

where W(x) is called Hamilton's characteristic function (Goldstein 2002, 
pp. 440-44 ). As time goes on, a surface of a constant S advances in much the same 
way as a surface of a constant phase in wave optics-a "wave front"-advances. 
The momentum in the classical Hamilton-Jacobi theory is given by 

Pclass = V S = VW, (2.4.29) 

which is consistent with our earlier identification of V Sf m with some kind of 
velocity. In classical mechanics the velocity vector is tangential to the particle 
trajectory, and as a result we can trace the trajectory by following continuously the 
direction of the velocity vector. The particle trajectory is like a ray in geometric 
optics because the V S that traces the trajectory is normal to the wave front defined 
by a constant S. In this sense, geometrical optics is to wave optics what classical 
mechanics is to wave mechanics. 

One might wonder, in hindsight, why this optical-mechanical analogy was not 
fully exploited in the nineteenth century. The reason is that there was no moti
vation for regarding Hamilton's principal function as the phase of some traveling 
wave; the wave nature of a material particle did not become apparent until the 
1920s. Besides, the basic unit of action h, which must enter into (2.4. 18) for di
mensional reasons, was missing in the physics of the nineteenth century. 

2.5 • ELEMENTARY SOLUTIONS TO SCH RODINGER'S 
WAVE EQUATION 

It is both instructive and useful to look at some relatively elementary solutions 
to (2.4. 1 1 ) for particular choices of the potential-energy function V(x). In this 
section we choose some examples that illustrate contemporary physics and/or will 
be useful in later chapters of this textbook. 

Free Particle in  Three Dimensions 

The case V(x) = 0 has fundamental significance. We will consider the solution 
to Schrodinger's equation here in three dimensions using Cartesian coordinates. 
The solution in spherical coordinates will be left until our treatment of angular 
momentum is presented in the next chapter. Equation (2.4. 1 1 ) becomes 

Define a vector k where 

2 2mE 
V U£(X) = -p;2U£(X). (2.5 . 1 )  

(2.5.2) 
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that is, p = hk. Differential equation (2.5 . 1 )  is easily solved using the technique 
known as "separation of variables." Writing 

U£(X) = Ux(x)uy(y)uz(Z) , (2.5 .3) 
we arrive at 

(2.5 .4) 

This leads to individual plane-wave solutions uw(w) = cweikww for w = x, y ,z . 
Note that one gets the same energy E for values ±kw . 

Collecting these solutions and combining the normalization constants, we ob
tain 

(2.5.5) 
The normalization constant C presents the usual difficulties, which are generally 
handled by using a 8-function normalization condition. It is convenient in many 
cases, however, to use a "big box" normalization, where all space is contained 
within a cube of side length L.  We impose periodic boundary conditions on the 
box and thereby obtain a finite normalization constant C. For any real calculation, 
we simply let the size L --+ oo at the end of the calculation. 

Imposing the condition ux (x + L) = ux (x), we have kxL = 2nnx , where nx is 
an integer. That is, 

(2.5 .6) 
and the normalization criterion becomes 

(2.5 .7) 

in which case C = 1jL312 and 

1 ik•X U£(X) = 
£3/2 e . (2.5 .8) 

The energy eigenvalue is 

(2.5.9) 

The sixfold degeneracy we mentioned earlier corresponds to the six combinations 
of (±nx ,±ny, ±nz), but the degeneracy can actually be much larger since, in 
some cases, there are various combinations of nx , ny , and nz that can give the 
same E. In fact, in the (realistic) limit where L is very large, there can be a large 
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number of states N that have an energy between E and E + dE. This "density 
of states" dN IdE is an important quantity for calculations of processes that in
clude free particles. See, for example, the discussion of the photoelectric effect in 
Section 5.8 . 

To calculate the density of states, imagine a spherical shell in k space with 
radius lk l == 2n I nil L and thickness d lkl = 2nd ln ll L. All states within this 
shell have energy E = 1i2k2 12m . The number of states dN within this shell is 
4nn2dln l . Therefore, 

dN 4nn2d ln l 4n ( L )2 L 
dE = 1i2 1k ld lk llm = hlm 2n lkl 2n 

m3f2E lf2L3 
-J'in 2Ji 3 . (2.5. 10) 

In a typical "real" calculation, the density of states will be multiplied by some 
probability that involves u1(x)uE(x). In this case, the factors of L3 will cancel 
explicitly, so the limit L --+ oo is trivial. This "big box" normalization also yields 
the correct answer for the probability flux. Rewriting (2.4.21) with this normal
ization, we have 

1 ( ip · x i Et ) 1/f(x, t) = L3f2 exp -li- - h ' (2.5 . 1 1) 

in which case we find 

1i lik 1 
j(x, t) = m Im(l/f*Vl/f) = -;;; L3 = vp, (2.5 . 1 2) 

where p = 1 I L 3 is indeed the probability density. 

The Simple Harmonic Oscillator 

In Section 2.3 we saw an elegant solution for the case V(x) = mu}x2 12 that 
yielded the energy eigenvalues, eigenstates, and wave functions. Here, we demon
strate a different approach that solves the differential equation 

1i2 d2 1 
- - -2 uE(x) + -muix2uE(x) = EuE(x). 2m dx 2 

(2.5. 1 3) 

Our approach will introduce the concept of generating functions, a generally use
ful technique that arises in many treatments of differential eigenvalue problems. 

First, transform (2.5. 1 3) using the dimensionless position y = xlxo, where 
xo = Jn I mw. Also introduce a dimensionless energy variable s = 2E lliw. The 
differential equation we need to solve therefore becomes 

d2 
-2 u(y) + (s - y2)u(y) = 0. dy (2.5. 14) 

For y --+ ±oo, the solution must tend to zero; otherwise the wave function 
will not be normalizable and hence unphysical. The differential equation 
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w" (y) - y2w(y) = 0 has solutions w(y) ex exp(±y2 /2), so we have to choose the 
minus sign. We then "remove" the asymptotic behavior of the wave function by 
writing 

where the function h(y) satisfies the differential equation 

d2h dh - - 2y- + (8 - 1)h(y) = 0. dy2 dy 

(2.5 . 15) 

(2.5 . 16) 

To this point, we have followed the traditional solution of the simple harmonic 
oscillator as found in many textbooks. Typically, one would now look for a se
ries solution for h(y) and discover that a normalizable solution is possible only 
if the series terminates. (In fact, we use this approach for the three-dimensional 
isotropic harmonic oscillator in this book. See Section 3.7.) One forces this ter
mination by imposing the condition that 8 - 1 be an even, nonnegative integer 
2n, n = 0, 1 ,  2, . . . .  The solutions are then written using the resulting polynomials 
hn (y). Of course, 8 - 1 = 2n is equivalent to E = (n + Dnw, the quantization 
relation (2.3 .22). 

Let us take a different approach. Consider the "Hermite polynomials" Hn(x) 
defined by the "generating function" g(x, t) through 

(2.5 . 17a) 

(2.5 . 17b) 

Some properties of the Hn(x) are immediately obvious. For example, Ho(x) = 1 .  
Also, because 

(2.5 . 1 8) 

it is clear that Hn(O) = 0 if n is odd, since this series involves only even powers 
of t .  On the other hand, if we restrict ourselves to even values of n, we have 

-tz 
oo ( - 1  )<n/2) n oo ( - 1  )(n/2) n !  g(o t )  - e - � t - � tn ' - - � (n/2) ! - � (n/2) ! n !  (2.5 . 19) 

and so Hn(O) = (-l)nf2n ! /(n/2) ! .  Also, since g(-x , t) reverses the sign only on 
terms with odd powers of t , Hn( -x) = (-1 )n Hn(x). 

We can take derivatives of g(x, t) to build the Hermite polynomials using re
cursion relations between them and their derivatives. The trick is that we can 
differentiate the analytic form of the generating function (2.5 . 17a) or the series 
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form (2.5 . 17b) and then compare results. For example, if we take the derivative 
using (2.5. 17a), then 

ag 00 tn+l 00 tn+l 
- = 2tg(x, t) = L 2Hn(x)- = L 2(n + 1 )Hn(X) , ax n !  (n + 1) !  n=O n=O 

(2.5 .20) 

where we insert the series definition of the generating function after taking the 
derivative. On the other hand, we can take the derivative of (2.5 . 17b) directly, in 
which case 

00 ag I fn 
- = "H (x)-. ax � n n !  n=O 

Comparing (2.5 .20) and (2.5 .21) shows that 

H�(x) = 2nHn-l (X) . 
This is  enough information for us build the Hermite polynomials: 

Ho(x) = 1 
so H{(x) = 2, therefore H1 (x) = 2x 

so H�(x) = 8x , therefore H2(x) = 4x2 - 2 
so H�(x) = 24x2 - 12, therefore H3(x) = 8x3 - 12x 

(2.5.21) 

(2.5.22) 

So far, this is just a curious mathematical exercise. To see why it is relevant to 
the simple harmonic oscillator, consider the derivative of the generating function 
with respect to t .  If we start with (2.5 .17a), then 

ag at = -2tg(x , t) + 2xg(x, t) 
oo tn+l oo tn 

= - "2Hn(x)- + "2xHn(x)-� n !  � n !  n=O n=O 
oo tn oo tn 

= - "2nHn- l (X)- + "2xHn(x)- . � n !  � n !  n=O n=O 
Or, if we differentiate (2.5 . 17b), then we have 

ag 00 tn- 1 00 tn 
- = "nHn(x)- = "Hn+l (x)- . at � n !  � n !  n=O n=O 

Comparing (2.5.23) and (2.5 .24) gives us the recursion relation 

Hn+l (x) = 2xHn(x) - 2nHn-l(X), 

(2.5 .23) 

(2.5 .24) 

(2.5.25) 
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which we combine with (2.5.22) to find 

H�'(x) = 2n · 2(n - 1)Hn-2(x) 

= 2n [2xHn-I(X) - Hn(x)] 

= 2xH�(x) - 2nHn(x). 

In other words, the Hermite polynomials satisfy the differential equation 

H�'(x) - 2xH�(x) + 2nHn(x) = 0, 

(2.5 .26) 

(2.5.27) 

where n is a nonnegative integer. This, however, is the same as the Schrodinger 
equation written as (2.5. 16) since s - 1 = 2n. That is, the wave functions for the 
simple harmonic oscillator are given by 

(2.5.28) 

up to some normalization constant en . This constant can be determined from the 
orthogonality relationship 

(2.5.29) 

which is easily proved using the generating function. See Problem 2.21 at the end 
of this chapter. 

Generating functions have a usefulness that far outreaches our limited appli
cation here. Among other things, many of the orthogonal polynomials that arise 
from solving the Schrodinger equation for different potentials can be derived from 
generating functions. See, for example, Problem 3.22 in Chapter 3. The interested 
reader is encouraged to pursue this further from any one of the many excellent 
texts on mathematical physics. 

The Linear Potential 

Perhaps the first potential-energy function, with bound states, to come to mind is 
the linear potential, namely 

V(x) = k !x ! , (2.5 .30) 

where k is an arbitrary positive constant. Given a total energy E, this potential 
has a classical turning point at a value x = a, where E = ka . This point will be 
important for understanding the quantum behavior of a particle of mass m bound 
by this potential. 
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The Schrodinger equation becomes 

1 09 

(2.5.3 1 )  

It is easiest to deal with the absolute value by restricting our attention to x ::: 0 .  We 
can do this because V (-x) = V (x ), so there are two types of solutions, namely 
UE( -x) = ±uE(x). In either case, we need uE(x) to tend toward zero as x -+  oo. 
If UE( -x) = -uE(x), then we need U£(0) = 0.  On the other hand, if UE( -x) = 
+uE(x), then we have u�(O) = 0, because UE(E) - UE( -E) = 0, even for E -+ 0. 
(As we will discuss in Chapter 4, we refer to these solutions as "odd" and "even" 
parity.) 

Once again, we write the differential equation in terms of dimensionless vari
ables, based on appropriate scales for length and energy. In this case, the dimen
sionless length scale is xo = (1i2 lmk) 113 and the dimensionless energy scale is 
Eo = kxo = (1i2 k2 I m) 113 . Defining y = xI xo and 8 = E I Eo enables us to rewrite 
(2.5 .3 1 )  as 

y ::: 0. (2.5.32) 

Notice that y = 8 when x = E 1 k -that is, the classical turning point x = a. In fact, 
when we define a translated position variable z = 2 11\y - 8), (2.5 .32) becomes 

(2.5.33) 

This is the Airy equation, and the solution is the Airy function Ai(z) plotted in 
Figure 2.3. The Airy function has a peculiar behavior, oscillatory for negative 
values of the argument and decreasing rapidly toward zero for positive values. Of 
course, this is exactly the behavior we expect for the wave function, since z = 0 
is the classical turning point. 

-0.5 

-10 0 
z 

FIGURE 2.3 The Airy function. 
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Note that the boundary conditions at x = 0 translate into zeros for either Ai' (z) 
or Ai(z), where z = -2113s . In other words, the zeros of the Airy function or its 
derivative determine the quantized energies. One finds that 

Ai'(z) = O  

Ai(z) = 0 

for z = - 1 .019, - 3.249, - 4.820, . .  . 

for z = -2.338, - 4.088, - 5.521 ,  . .  . 

(even), (2.5 .34) 

(odd) . (2.5.35) 

For example, the ground-state energy is E = ( 1 .019 j2113)(1i2k2 j m)113 . 
The quantum-theoretical treatment of the linear potential may appear to have 

little to do with the real world. It turns out, however, that a potential of type 
(2.5 .30) is actually of practical interest in studying the energy spectrum of a quark
antiquark bound system called quarkonium. In this case, the x in (2.5 .30) is re
placed by the quark-antiquark separation distance r. This constant k is empirically 
estimated to be in the neighborhood of 

1 GeV/fm :::: 1 .6 x 105 N, (2.5.36) 

which corresponds to a gravitational force of about 16 tons. 
Indeed, another real-world example of the linear potential is the "bouncing 

ball." One interprets (2.5 .30) as the potential energy of a ball of mass m at a height 
x above the floor, and k = mg, where g is the local acceleration due to gravity. Of 
course, this is the potential energy only for x :=::: 0 as there is an infinite potential 
barrier that causes the ball to "bounce." Quantum-mechanically, this means that 
only the odd parity solutions (2.5.35) are allowed. 

The bouncing ball happens to be one of those rare cases where quantum
mechanical effects can be observed macroscopically. The trick is to have a very 
low-mass "ball," which has been achieved with neutrons by a group* working 
at the Institut Laue-Langevin (ILL) in Grenoble, France. For neutrons with m = 
1 .68 X 10-2? kg, the characteristic length scale is XQ = (Ji2 jm2g)1f3 = 7.40 JLm. 
The "allowed heights" to which a neutron can bounce are (2.338j2113)xo = 
14 JLm, (4.088j2113)xo = 24 JLm, (5.521 j2113)xo = 32 JLm, and so on. These are 
small (but measurable with precision mechanical devices) and very low-energy 
(aka "ultracold") neutrons. The experimenters' results are shown in Figure 2.4. 
Plotted is the detected neutron rate as a function of the height of a slit that allows 
neutrons to pass only if they exceed this height. No neutrons are observed unless 
the height is at least � 14 JLm, and clear breaks are observed at � 24 JLm and 
� 32 JLm, in excellent agreement with the predictions of quantum mechanics. 

The WKB (Semiclassical) Approximation 

Having solved the problem of a linear potential, it is worthwhile to introduce an 
important approximation technique known as the WKB solution, after G. Wentzel, 
A. Kramers, and L. Brillouin. t This technique is based on making use of regions 

*See V. V. Nesvizhevsky et al., Phys. Rev. D 67 (2003) 102002, and V. V. Nesvizhevsky et al., 
Eur. Phys. J. C 40 (2005) 4792005. 
t A similar technique was used earlier by H. Jeffreys; this solution is referred to as the JWKB 
solution in some English books. 
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FIGURE 2.4 Experimental observation of the quantum-mechanical states of a bounc
ing neutron, from V. V. Nesvizhevsky et al. ,  Phys. Rev. D 67 (2003) 102002. The solid 
curve is a fit to the data based on classical physics. Note that the vertical scale is loga
rithmic. 

where the wavelength is much shorter than the typical distance over which the 
potential energy varies. Such is never the case near classical turning points, but 
this is where the linear potential solution can be used to join the solutions on either 
side of them. 

Again restricting ourselves to one dimension, we write Schrodinger's wave 
equation as 

Define the quantities 

[2 ] 1/2 
k(x) = 

h� (E - V(x)) 

[2m ] 1/2 
k(x) = -iK(x) = -i fzZ(V(x) - E) 

and so (2.5 .37) becomes 

for E > V(x) 

for E <  V(x), 

d2UE 2 --2 + [k(x)] UE(X) = 0. dx 

(2.5.37) 

and (2.5 .38a) 

(2.5.38b) 

(2.5.39) 

Now, if V (x) were not changing with x ,  then k(x) would be a constant, and u(x) ex 
exp(±ikx) would solve (2.5.39). Consequently, if we assume that V(x) varies 
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only "slowly" with x, then we are tempted to try a solution of the form 

U£(X) = exp [iW(x)j1i J .  (2.5 .40) 

(The reason for including the 1i will become apparent at the end of this section, 
when we discuss the physical interpretation of the WKB approximation.) In this 
case, (2.5 .39) becomes 

d2W (dW) 2 
i1i--2 - - + 1i2 [k(x)]2 = 0, 

dx dx 
(2.5.4 1 )  

which is completely equivalent to Schrodinger's equation, although rewritten in 
what appears to be a nasty form. However, we consider a solution to this equation 
under the condition that 

1i I d2W I I dW 12 
dx2 « dx 

(2.5 .42) 

This quantifies our notion of a "slowly varying" potential V (x ) , and we will return 
soon to the physical significance of this condition. 

Forging ahead for now, we use the condition (2.5 .42) with our differential 
equation (2.5.41 )  to write a lowest-order approximation for W(x), namely 

WMx) = ±1ik(x), 

leading to a first-order approximation for W(x), based on (d;1 ) 2 
= 1i2 [k(x)]2 + i1iWQ'(x) 

= 1i2 [k(x)]2 ± i1i2k' (x ), 

where the second term in (2.5 .44) is much smaller than the first, so that 

!X 1 /2 
W(x) � W1 (x) = ±1i dx' [k2(x') ± ik'(x')] 

� ±1i dx'k(x1) 1 ± - � !X [ i k1( 1) J 2 k (x') 

= ±1i Jx dx'k(x') + �1i ln [k(x )] . 

(2.5.43) 

(2.5 .44) 

(2.5 .45) 

The WKB approximation for the wave function is given by (2.5 .40) and the first
order approximation for (2.5 .45) for W(x ) , namely 

UE(x) � exp [i W(x)j1i J = 
1 

112 
exp [±i Jx dx'k(x')] . 

[k(x)] 
(2.5 .46) 

Note that this specifies a choice of two solutions (±) in either the region where 
E > V(x), with k(x) from (2.5.38a), or the region where E < V(x), with k(x) 
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FIGURE 2.5 Schematic diagram for behavior of wave function u E (x) in potential well 
V(x) with turning points XI and x2 . Note the similarity to Figure 2.3 near the turning 
points. 

from (2.5 .38b). Joining these two solutions across the classical turning point is 
the next task. 

We do not discuss this joining procedure in detail, because it is discussed in 
many places (Schiff 1968, pp. 268-76, or Merzbacher 1998, Chapter 7, for exam
ple). Instead, we content ourselves with presenting the results of such an analysis 
for a potential well, schematically shown in Figure 2.5, with two turning points, x1 
and x2. The wave function must behave like (2.5 .46), with k(x) given by (2.5.38a) 
in region II and by (2.5 .38b) in regions I and III. The solutions in the neighbor
hood of the turning points, shown as a dashed line in Figure 2.5, are given by Airy 
functions, because we assume a linear approximation to the potential in these re
gions. Note that the asymptotic dependences of the Airy function* are 

Ai(z) --+ -
1
-z- 1 14 exp (- �z312) z --+ +oo 

2..jir 3 

Ai(z) --+ -
1
- lz l - 1/4 cos (� l z l 3/2 - n ) z --+ -oo _.jir 3 4 

(2.5 .47a) 

(2.5 .47b) 

For connecting regions I and II, the correct linear combination of the two solu
tions (2.5 .46) is determined by choosing the integration constants in such a way 
that 

{ [V(x) � E]114 } exp [- (k) 1x1 
dx' J2m [V(x') - E]

] 

--+ { 2 
114 } cos [(.!.) 1x 

dx'J2m [E - V(x')] -
77: ] · 

[E - V(x)] 1i x1 4 

(2.5.48) 

*There is actually a second Airy function, Bi(z), which is very similar to Ai(z) but is singular at 
the origin. It is relevant to this discussion, but we are glossing over the details. 
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Likewise, from region III into region II we have 

{ 1 
114 } exp [- (�) 1x dx' )2m [V(x') - E]] [V(x) - E] n 

x2 

--+ { 2 
114 } - cos [- (�) 1x2 dx' )2m [E - V(x')] + n J . [E - V(x)] 1i x 4 

(2.5 .49) 

Of course, we must obtain the same form for the wave function in region II, re
gardless of which turning point is analyzed. This implies that the arguments of 
the cosine in (2.5 .48) and (2.5.49) must differ at most by an integer multiple of n [not of 2n , because the signs of both sides of (2.5 .49) can be reversed] . In this 
way we obtain a very interesting consistency condition: 

1X2 

Xl 
dx.j2m [E - V(x)] = (n + i) nn (n = 0, 1 , 2, 3, . . .  ) . (2.5.50) 

Apart from the difference between n + � and n, this equation is simply the quan
tization condition of the old quantum theory that A. Sommerfeld and W. Wilson 
originally wrote in 1915 as 

fpdq = nh, (2.5 .5 1) 

where h is Planck's h, not Dirac's h, and the integral is  evaluated over one whole 
period of classical motion, from x1 to x2 and back. 

Equation (2.5 .50) can be used to obtain approximate expressions for the en
ergy levels of a particle confined in a potential well. As an example, we consider 
the energy spectrum of a ball bouncing up and down over a hard surface, the 
"bouncing neutrons" discussed earlier in this section, namely 

V _ {mgx, forx > 0 
- oo, forx < 0, (2.5.52) 

where x stands for the height of the ball measured from the hard surface. One 
might be tempted to use (2.5.50) directly with 

XI = 0, 
E X2 = -, mg (2.5.53) 

which are the classical turning points of this problem. We note, however, that 
(2.5 .50) was derived under the assumption that the WKB wave function "leaks 
into" the x < XI region, while in our problem the wave function must strictly 
vanish for x ::; x1 = 0. A much more satisfactory approach to this problem is 
to consider the odd-parity solutions-those guaranteed to vanish at x = 0-of a 
modified problem defined by 

V(x) = mg lx l  (-oo < x < oo) (2.5 .54) 
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whose turning points are 

E E 
Xr = --, X2 = -. 

mg mg 

1 1 5  

(2.5.55) 

The energy spectrum of the odd-parity states for this modified problem must 
clearly be the same as that of the original problem. The quantization condition 
then becomes 

1E/mg 
dx.j2m(E - mg lx l ) =  (nodd + 1-) nn (nodd = 1 , 3, 5, . . .  ) -E/mg 

or, equivalently, 

{Ejmg 
Jo 

dx.j2m(E - mgx) = (n - !) nfi (n = 1 , 2, 3, 4, . . .  ). 

This integral is elementary, and we obtain 

for the quantized energy levels of the bouncing ball. 

(2.5 .56) 

(2.5.57) 

(2.5.58) 

Table 2.2 compares the WKB approximation to the exact solution, using ze
ros of the Airy function, for the first 10  energy levels. We see that agreement is 
excellent even for small values of n and is essentially exact for n :::::: 10. 

Before concluding, let us return to the interpretation of the condition (2.5.42). 
It is exact in the case 1i -+ 0, which suggests a connection between the WKB 
approximation and the classical limit. In fact, when we use (2.5.40), the time
dependent wave function becomes 

ljl(x, t) ex uE (x)exp( -i Et jfi) = exp (i W(x )/fi - i Et jfi) . (2.5.59) 

TABLE 2.2 The Quantized Energies of a Bouncing Ball in Units of (mg21i2 /2)113 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

WKB 

2.320 
4.082 
5.5 17  
6.784 
7.942 
9.021 

10.039 
1 1 .008 
1 1 .935 
12.828 

Exact 

2.338 
4.088 
5.521 
6.787 
7.944 
9.023 

10.040 
1 1 .009 
1 1 .936 
12.829 
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Comparing this to (2.4. 18) and (2.4.28), we see that W(x) corresponds directly 
to Hamilton's characteristic function. Indeed, condition (2.5 .42) is the same as 
(2.4.26), the condition for reaching the classical limit. For these reasons, the WKB 
approximation is frequently referred to as a "semiclassical" approximation. 

We also note that condition (2.5 .42) is equivalent to l k' (x) I « lk2(x) 1 .  In terms 
of the de Broglie wavelength divided by 2n, this condition amounts to 

1i 2 [E - V(x)] 
k =  « . ,J2m [E - V(x)] ldVjdx l (2.5 .60) 

In other words, J.. must be small compared with the characteristic distance over 
which the potential varies appreciably. Roughly speaking, the potential must be 
essentially constant over many wavelengths. Thus we see that the semiclassical 
picture is reliable in the short-wavelength limit. 

2.6 . PROPAGATORS AND FEYNMAN PATH INTEGRALS 

Propagators in Wave Mechanics 

In Section 2.1 we showed how the most general time-evolution problem with a 
time-independent Hamiltonian can be solved once we expand the initial ket in 
terms of the eigenkets of an observable that commutes with H. Let us translate 
this statement into the language of wave mechanics. We start with [ -iH(t - to) ] la , to ; t) = exp 

1i Ia, to) 

'"""' , [ -i Ea'(t - to) ] 
= � l a ) (a' la , to) exp 1i . 

a 
Multiplying both sides by (x' I on the left, we have , '"""' [ -i Ea'(t - to) J (x la, to ; t ) = � (x' la') (a' la, to) exp 

1i 
, 

a 
which is of the form 

with 

, '"""' 1 [ -i Ea'(t - to) J 1/f(x , t) = � ca'(to)ua'(x ) exp 
1i 

, 
a 

Uat (X1) = (x' la') 

(2.6. 1 ) 

(2.6.2) 

(2.6.3) 

(2.6.4) 
standing for the eigenfunction of operator A with eigenvalue a'. Note also that 

(a' la, to) = J d3x' (a' lx') (x' la, to ) , (2.6.5) 
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which we recognize as the usual rule in wave mechanics for getting the expansion 
coefficients of the initial state: 

Ca' (to) = J d3x'u�, (x1)1jf(x', to). (2.6.6) 

All this should be straightforward and familiar. Now (2.6.2) together with 
(2.6.5) can also be visualized as some kind of integral operator acting on the 
initial wave function to yield the final wave function: 

'lj!(x" , t) = j d3x' K(x", t ;x' , to)'lj!(x' , to). (2 .6.7) 

Here the kernel of the integral operator, known as the propagator in wave me
chanics, is given by 

'""' [ -i Ea'(t - to) J K(x", t ; x' , to) = L...,. (x" la') (a' lx') exp h . 
a' 

(2.6.8) 

In any given problem the propagator depends only on the potential and is inde
pendent of the initial wave function. It can be constructed once the energy eigen
functions and their eigenvalues are given. 

Clearly, the time evolution of the wave function is completely predicted if 
K (x", t ;  x' , to) is known and 'lj!(x', to) is given initially. In this sense SchrOdinger' s 
wave mechanics is a perfectly causal theory. The time development of a wave 
function subjected to some potential is as "deterministic" as anything else in clas
sical mechanics provided that the system is left undisturbed. The only peculiar 
feature, if any, is that when a measurement intervenes, the wave function changes 
abruptly, in an uncontrollable way, into one of the eigenfunctions of the observ
able being measured. 

There are two properties of the propagator worth recording here. First, for 
t > to, K(x", t ; x' , to) satisfies Schrodinger's time-dependent wave equation in 
the variables x" and t, with x' and to fixed. This is evident from (2.6.8) be
cause (x" la') exp[ -i Ea'(t - to)/h] ,  being the wave function corresponding to 
'U(t, to) la') , satisfies the wave equation. Second, 

lim K(x", t ; x', to) = 83 (x" - x'), 
t-Ho (2.6.9) 

which is also obvious; as t ---+ to, because of the completeness of { Ia') }, sum 
(2.6.8) just reduces to (x" lx') . 

Because of these two properties, the propagator (2.6.8), regarded as a function 
of x", is simply the wave function at t of a particle that was localized precisely 
at x' at some earlier time to . Indeed, this interpretation follows, perhaps more 
elegantly, from noting that (2.6.8) can also be written as [ -iH(t - to) ] K(x", t ; x', to) = (x" l exp h l x') ,  (2.6. 10) 
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where the time-evolution operator acting on lx') is just the state ket at t of a system 
that was localized precisely at x' at time to ( < t). If we wish to solve a more 
general problem where the initial wave function extends over a finite region of 
space, all we have to do is multiply 1/f(x' , to) by the propagator K(x" , t ;x', to) and 
integrate over all space (that is, over x'). In this manner we can add the various 
contributions from different positions (x'). This situation is analogous to one in 
electrostatics; if we wish to find the electrostatic potential due to a general charge 
distribution p(x'), we first solve the point-charge problem, multiply the point
charge solution by the charge distribution, and integrate: 

¢(x) = f d3 x' p(x') . lx - x' l (2.6. 1 1) 
The reader familiar with the theory of the Green's functions must have recog
nized by this time that the propagator is simply the Green's function for the time
dependent wave equation satisfying 

[- ( �:) V"2 + V(x") - it.:, ] K(x", t ; x' , to) = -il\83 (x" - x')!(t - to) 
(2.6 . 12) 

with the boundary condition 

K(x", t ; x' , to) = 0, fort < to . (2.6 . 13) 
The delta function 8(t - to) is needed on the right-hand side of (2.6. 12) because K 
varies discontinuously at t = to. 

The particular form of the propagator is, of course, dependent on the particular 
potential to which the particle is subjected. Consider, as an example, a free particle 
in one dimension. The obvious observable that commutes with H is momentum; 
I p') is a simultaneous eigenket of the operators p and H: 

p ip') =  p' lp') H lp') = (�:) l p' ) . (2.6. 14) 

The momentum eigenfunction is just the transformation function of Section 1 .  7 
[see ( 1 .7 .32)] which is of the plane-wave form. Combining everything, we have 

K( " t· , t ) - (-1-) joo d , [ ip(x" - x') 
_ ip'2(t - to) ] x , ,x , o - 2n1i -oo p exp 1i 2m1i . (2.6. 15) 

The integral can be evaluated by completing the square in the exponent. Here we 
simply record the result: 

K(x", t ;x' , to) = m [ im(x" - x')2 ] exp . 2ni1i(t - to) 21i(t - to) (2.6. 16) 
This expression may be used, for example, to study how a Gaussian wave packet 
spreads out as a function of time. 
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For the simple harmonic oscillator, where the wave function of an energy 
eigenstate is given by 

(-iEnt) ( 1 ) (mw)
1/4 (-mwx2) 

Un(x) exp -fi- = 
2nf2-Jnf nfi exp 

21i 

the propagator is given by 

K(x", t ;x', to) = mw [{ imw } 
2nifi sin[w(t - to)] 

exp 
21i sin[w(t - to)] 

x {x"2 + x'2) cos[w(t - to)] - 2x"x'}] . 

One way to prove this is to use 

(2.6 . 18) 

(2.6. 19) 

which is found in books on special functions (Morse and Feshbach 1953, p. 786). 
It can also be obtained using the a, at operator method (Saxon 1968, pp. 144-
45) or, alternatively, the path-integral method to be described later. Notice that 
(2.6 . 18) is a periodic function of t with angular frequency w, the classical oscil
lator frequency. This means, among other things, that a particle initially localized 
precisely at x' will return to its original position with certainty at 2n I w ( 4n I w, 
and so forth) later. 

Certain space and time integrals derivable from K(x", t ;x', to) are of consider
able interest. Without loss of generality, we set to = 0 in the following. The first 
integral we consider is obtained by setting x" = x' and integrating over all space. 
We have 

G(t) = j d3x' K(x', t ;x' , O) 

f 
3 "' (-iE 't ) = d x' L...,.. I (x' la') l 2 exp fi

a 
a' 

L (-iEa't) 
= exp . 

1i a' 

(2.6.20) 

This result is anticipated; recalling (2.6 . 1  0), we observe that setting x' = x" and 
integrating are equivalent to taking the trace of the time-evolution operator in 
the x-representation. But the trace is independent of representations; it can be 



1 20 Chapter 2 Quantum Dynamics 

evaluated more readily using the { Ia'}} basis where the time-evolution operator 
is diagonal, which immediately leads to the last line of (2.6.20). Now we see 
that (2.6.20) is just the "sum over states," reminiscent of the partition function 
in statistical mechanics. In fact, if we analytically continue in the t-variable and 
make t purely imaginary, with f3 defined by 

(2.6.2 1 )  

real and positive, we can identify (2.6.20) with the partition function itself: 

Z = l: exp(-f3Ea'). (2.6.22) 
a' 

For this reason some of the techniques encountered in studying propagators in 
quantum mechanics are also useful in statistical mechanics. 

Next, let us consider the Laplace-Fourier transform of G(t): 

G(E) = -i 100 dtG(t) exp(i Et/h)jh 

= -i {oo dt :L: exp(-i Ea'tjh) exp(i Etjh)jh. fo a' 

(2.6.23) 

The integrand here oscillates indefinitely. But we can make the integral meaning
ful by letting E acquire a small positive imaginary part: 

E --+ E + is . 
We then obtain, in  the limit s --+ 0, 

- � 1 
G(E) = � . 

' E - Ea' a 

(2.6.24) 

(2.6.25) 

Observe now that the complete energy spectrum is exhibited as simple poles of 
G(E) in the complex £-plane. If we wish to know the energy spectrum of a phys
ical system, it is sufficient to study the analytic properties of G(E). 

Propagator as a Transition Amplitude 

To gain further insight into the physical meaning of the propagator, we wish to 
relate it to the concept of transition amplitudes introduced in Section 2.2. But first, 
recall that the wave function, which is the inner product of the fixed position bra 
(x' I with the moving state ket I a, to ; t } ,  can also be regarded as the inner product of 
the Heisenberg-picture position bra (x', t l ,  which moves "oppositely" with time, 
with the Heisenberg-picture state ket Ia, to} ,  which is fixed in time. Likewise, the 
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propagator can also be written as 

'"""' If 1 1 1 [-iEat(t - to) J K(x", t ;x' , to) = � (x Ia ) (a lx ) exp 
1i a 

= � (x" l exp ( -i
h
H t) I a') (a' l exp ( i �to) l x') 

a 
= (x", t lx', to ) , 
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(2.6.26) 

where lx' , to) and (x", t l  are to be understood as an eigenket and an eigenbra of 
the position operator in the Heisenberg picture. In Section 2. 1 we showed that 
(b', t la'), in the Heisenberg-picture notation, is the probability amplitude for a 
system originally prepared to be an eigenstate of A with eigenvalue a' at some 
initial time to = 0 to be found at a later time t in an eigenstate of B with eigenvalue 
b', and we called it the transition amplitude for going from state Ia') to state lb') . 
Because there is nothing special about the choice of to-only the time difference 
t - to is relevant-we can identify (x", t lx', to) as the probability amplitude for the 
particle prepared at to with position eigenvalue x' to be found at a later time t at 
x". Roughly speaking, (x", t l x' , to) is the amplitude for the particle to go from a 
space-time point (x', to) to another space-time point (x", t), so the term transition 
amplitude for this expression is quite appropriate. This interpretation is, of course, 
in complete accord with the interpretation we gave earlier for K(x", t ;x' , to). 

Yet another way to interpret (x", t l x' , to) is as follows. As we emphasized 
earlier, lx' , to) is the position eigenket at to with the eigenvalue x' in the Heisen
berg picture. Because at any given time the Heisenberg-picture eigenkets of an 
observable can be chosen as base kets, we can regard (x", t l x' , to) as the transfor
mation function that connects the two sets of base kets at different times. So in the 
Heisenberg picture, time evolution can be viewed as a unitary transformation, in 
the sense of changing bases, that connects one set of base kets formed by { I  x', to) }  
to another formed by { lx", t ) } . This is reminiscent of classical physics, in which 
the time development of a classical dynamic variable such as x(t) is viewed as 
a canonical (or contact) transformation generated by the classical Hamiltonian 
(Goldstein 2002, pp. 401-2). 

It turns out to be convenient to use a notation that treats the space and time 
coordinates more symmetrically. To this end we write (x", t" lx', t') in place of 
(x", t lx', to) .  Because at any given time the position kets in the Heisenberg picture 
form a complete set, it is legitimate to insert the identity operator written as 

J d3x" lx", t") (x", t" l = 1 (2.6.27) 

at any place we desire. For example, consider the time evolution from t' to t"'; by 
dividing the time interval (t', t"') into two parts, (t', t") and (t", t"'), we have 

(x"', t"' lx', t' ) = J d3x" (x"', t"' lx", t") (x", t" lx', t' ) , 
(t"' > t" > t'). (2.6.28) 
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We call this the composition property of the transition amplitude.* Clearly, we 
can divide the time interval into as many smaller subintervals as we wish. We 
have 

(x"", t"" lx', t') = J d3x111 J d3x" (x"", t"" lx111, t111) (x111, t111 lx", t") 
x (x", t" lx', t') , (t"" > t111 > t" > t'), (2.6.29) 

and so on. If we somehow guess the form of (x", t" lx', t') for an infinitesimal time 
interval (between t' and t" = t' + dt), we should be able to obtain the amplitude 
(x", t" lx', t') for a finite time interval by compounding the appropriate transition 
amplitudes for infinitesimal time intervals in a manner analogous to (2.6.29). This 
kind of reasoning leads to an independent formulation of quantum mechanics that 
R. P. Feynman published in 1948, to which we now tum our attention. 

Path Integrals as the Sum Over Paths 

Without loss of generality we restrict ourselves to one-dimensional problems. 
Also, we avoid awkward expressions like 

X1111 X111 Ntimes 
by using notation such as x N . With this notation we consider the transition am
plitude for a particle going from the initial space-time point (x1 , t1 ) to the final 
space-time point (x N , tN ) . The entire time interval between t1 and tN is divided 
into N - 1 equal parts: 

(tN - tl ) t · - t ·-1 = llt = . 1 1 (N - 1) 

Exploiting the composition property, we obtain 

(2.6.30) 

(2.6.3 1 )  

To visualize this pictorially, we consider a space-time plane, as shown in Fig
ure 2.6. The initial and final space-time points are fixed to be (x1 , t1 ) and (x N , tN ) , 
respectively. For each time segment, say between tn-1 and tn , we are instructed to 
consider the transition amplitude to go from (Xn- l , tn-1 ) to (xn . tn) ; we then inte
grate over x2,X3 , . . .  ,XN-1 · This means that we must sum over all possible paths 
in the space-time plane with the end points fixed. 

Before proceeding further, it is profitable to review here how paths appear in 
classical mechanics. Suppose we have a particle subjected to a force field deriv-

*The analogue of (2.6.28) in probability theory is known as the Chapman-Kolmogoroff equation, 
and in diffusion theory as the Smoluchowsky equation. 
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FIGURE 2.6 Paths in the xt-plane. 

able from a potential V(x). The classical Lagrangian is written as 

mx2 
LclassicaJ(X ,i) = 2 - V(x). 
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X 

(2.6.32) 

Given this Lagrangian with the end points (xi , ti )  and (x N,  tN) specified, we do 
not consider just any path joining (XI ,  ti ) and (x N,  tN) in classical mechanics. On 
the contrary, there exists a unique path that corresponds to the actual motion of 
the classical particle. For example, given 

(2.6.33) 

where h may stand for the height of the Leaning Tower of Pisa, the classical path 
in the xt-plane can only be 

(2.6.34) 

More generally, according to Hamilton's principle, the unique path is that which 
minimizes the action, defined as the time integral of the classical Lagrangian: 

1t2 8 dtLclassicaJ(X ,X) = 0, 
tr 

(2.6.35) 

from which Lagrange's equation of motion can be obtained. 

Feynman's Formulation 

The basic difference between classical mechanics and quantum mechanics should 
now be apparent. In classical mechanics a definite path in the xt-plane is asso
ciated with the particle's motion; in contrast, in quantum mechanics all possible 
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paths must play roles, including those that do not bear any resemblance to the 
classical path. Yet we must somehow be able to reproduce classical mechanics in 
a smooth manner in the limit h ----* 0. How are we to accomplish this? 

As a young graduate student at Princeton University, R. P. Feynman tried to 
attack this problem. In looking for a possible clue, he was said to be intrigued by a 
mysterious remark in Dirac's book that, in our notation, amounts to the following 
statement: 

[ · 1t2 dtLciassicaJ(X ,i) ] exp z 
fJ h 

Feynman attempted to make sense out of this remark. Is "corresponds to" the same 
thing as "is equal to" or "is proportional to"? In so doing he was led to formulate 
a space-time approach to quantum mechanics based on path integrals. 

In Feynman's formulation the classical action plays a very important role. For 
compactness, we introduce a new notation: 

ltn S(n, n - 1 ) = dtLclassical(x ,i). 
tn-1 

(2.6.36) 

Because Lc1assical is a function of x and .X, S(n, n- 1 ) is defined only after a definite 
path is specified along which the integration is to be carried out. So even though 
the path dependence is not explicit in this notation, it is understood that we are 
considering a particular path in evaluating the integral. Imagine now that we are 
following some prescribed path. We concentrate our attention on a small segment 
along that path, say between (Xn- J , tn-!)  and (xn , tn) .  According to Dirac, we are 
instructed to associate exp[iS(n ,n - 1 )/h] with that segment. Going along the 
definite path we are set to follow, we successively multiply expressions of this 
type to obtain 

nN [ i S(n,n - 1 ) ] [( i ) � ] [ i S(N, 1 ) ] 
n=2 

exp 
h 

= exp h � S(n, n - 1) = exp h . 
(2.6.37) 

This does not yet give (xN , tN lx1 , t1 ) ;  rather, this equation is the contribution to 
(xN, tN lx1 , t1 ) arising from the particular path we have considered. We must still 
integrate over x2, X3 , . . .  , x N - 1 · At the same time, exploiting the composition prop
erty, we let the time interval between tn- 1  and tn be infinitesimally small. Thus 
our candidate expression for (xN , tN lx1 , t1 )  may be written, in some loose sense, 
as 

(2.6.38) 

where the sum is to be taken over an innumerably infinite set of paths ! 
Before presenting a more precise formulation, let us see whether considera

tions along this line make sense in the classical limit. As h ----* 0, the exponential 
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FIGURE 2.7 Paths important in the 1i � 0 limit. 
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in (2.6.38) oscillates very violently, so there is a tendency for cancellation among 
various contributions from neighboring paths. This is because exp[i S jti] for some 
definite path and exp[i S jti] for a slightly different path have very different phases 
as a consequence of the smallness of 1i .  So most paths do not contribute when 1i 
is regarded as a small quantity. However, there is an important exception. 

Suppose that we consider a path that satisfies 

8S(N, 1) = 0, (2.6.39) 

where the change in S is due to a slight deformation of the path with the end 
points fixed. This is precisely the classical path by virtue of Hamilton's principle. 
We denote the S that satisfies (2.6.39) by Smin· We now attempt to deform the 
path a little bit from the classical path. The resulting S is still equal to Smin to 
first order in deformation. This means that the phase of exp[i S jti] does not vary 
very much as we deviate slightly from the classical path even if 1i is small. As a 
result, as long as we stay near the classical path, constructive interference between 
neighboring paths is possible. In the 1i � 0 limit, the major contributions must 
then arise from a very narrow strip (or a tube in higher dimensions) containing the 
classical path, as shown in Figure 2. 7. Our (or Feynman' s) guess based on Dirac's 
mysterious remark makes good sense because the classical path gets singled out 
in the 1i � 0 limit. To formulate Feynman's conjecture more precisely, let us go 
back to (xn , tn /Xn-1 , ln- 1 ) ,  where the time difference tn - tn-1 is assumed to be 
infinitesimally small. We write [ 1 J [ iS(n, n - 1)] (xn , tn /Xn-1 , tn- 1 ) = w(tlt) exp 

1i ' (2.6.40) 

where we evaluate S(n,n - 1) in a moment in the tlt � 0 limit. Notice that we 
have inserted a weight factor, 1/w(llt), which is assumed to depend only on the 
time interval tn - tn-1 and not on V(x). That such a factor is needed is clear 
from dimensional considerations; according to the way we normalized our posi
tion eigenkets, (xn , tn /Xn-1 , tn- 1 ) must have the dimension of 1 /length. 
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We now look at the exponential in (2.6.40). Our task is to evaluate the D..t --+ 0 
limit of S(n, n - 1) . Because the time interval is so small, it is legitimate to make a 
straight-line approximation to the path joining (Xn- 1 , tn-1 ) and (xn , tn) as follows: 

S(n ,n - 1) = L:, dt [ m;2 - V(x)] 
= ""

{
G) [ (Xn �:·-'>] ' - vex· +;n-I l) } (2.6.41)  

As an example, we consider specifically the free-particle case, V = 0.  Equation 
(2.6.40) now becomes 

(2.6.42) 

We see that the exponent appearing here is identical to the one in the expression 
for the free-particle propagator (2.6. 16). The reader may work out a similar com
parison for the simple harmonic oscillator. 

We remarked earlier that the weight factor 1/w(/J..t) appearing in (2.6.40) is 
assumed to be independent of V (x ), so we may as well evaluate it for the free 
particle. Noting the orthonormality, in the sense of 8-function, of Heisenberg
picture position eigenkets at equal times, 

we obtain 

where we have used 

and 

1 (Til w(D..t) = y � · 

100 ( im�2 ) J2ni1i!J..t 
d� exp -- = 

-oo 21i!J..t m 
. � (im�2 ) hm ex -- = 8  . 

llt-+0 2ni1i!J..t p 21i!J..t (�) 

(2.6.43) 

(2.6.44) 

(2.6.45a) 

(2.6.45b) 

This weight factor is, of course, anticipated from the expression for the free
particle propagator (2.6. 16). 

To summarize, as !J..t --+ 0, we are led to 

(2.6.46) 
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The final expression for the transition amplitude with tN - t1 finite is 

(xN , tN IX! , t! ) = lim � ( ) (N-1)/2 
N-+oo 2nlli!lt 

f f f n
N [ i S(n ,n - 1) ] 

X dXN-1 dXN-2 · · · dx2 exp fi , 
n=2 
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(2.6.47) 

where the N --+ oo limit is taken with XN and tN fixed. It is customary here to 
define a new kind of multidimensional (in fact, infinite-dimensional) integral op
erator 

1XN ( m ) (N- 1)/2! 
f f D[x(t)] = lim . dxN-1 dXN-2 · · · dx2 

x1 N-+oo 2n 11illt 
(2.6.48) 

and write (2.6.47) as 

1XN [ ltN L . ( " ) ] . claSSICal X, X (xN , tN IX! , t! ) = D [x (t)] exp 1 dt . 
X[ t1 fi (2.6.49) 

This expression is known as Feynman's path integral. Its meaning as the sum 
over all possible paths should be apparent from (2.6.47). 

Our steps leading to (2.6.49) are not meant to be a derivation. Rather, we (fol
lowing Feynman) have attempted a new formulation of quantum mechanics based 
on the concept of paths, motivated by Dirac's mysterious remark. The only ideas 
we borrowed from the conventional form of quantum mechanics are ( 1 ) the su
perposition principle (used in summing the contributions from various alternative 
paths), (2) the composition property of the transition amplitude, and (3) classical 
correspondence in the 1i --+ 0 limit. 

Even though we obtained the same result as the conventional theory for the 
free-particle case, it is now obvious, from what we have done so far, that Feyn
man's formulation is completely equivalent to Schrodinger's wave mechanics. 
We conclude this section by proving that Feynman's expression for (x N , fN lx1 , t1 )  
indeed satisfies Schrodinger's time-dependent wave equation in the variables 
x N, fN , just as the propagator defined by (2.6.8) does. 

We start with 

100 {;!§; [ ( im) (XN - XN-! )2 i V flt ] = dXN-1 exp - ----oo 2nili!lt 21i !lt 1i 
X (XN-l , tN-l iX! , tl ) ,  

(2 .6.50) 
where we have assumed fN - fN-1 to be infinitesimal. Introducing 

(2.6.51 ) 
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and letting XN -+ x and tN -+ t + b..t, we obtain 

As is evident from (2.6.45b ), in the limit b..t -+ 0, the major contribution to this 
integral comes from the � :::: 0 region. It is therefore legitimate to expand (x -
� , t \x 1 , t1 }  in powers of � .  We also expand (x , t + b..t \xl . tl } and exp( -i V b..t jn) in 
powers of b..t, so 

(2.6.53) 

where we have dropped a term linear in � because it vanishes when integrated 
with respect to � .  The (x , t \x 1 , t1 } term on the left-hand side just matches the 
leading term on the right-hand side because of (2.6.45a). Collecting terms that are 
first-order in b..t, we obtain 

where we have used 

loo ( im�2 ) (inb..t ) 3
!2 

dH2 exp -- = 5  -- , 
-00 2nb..t m 

(2.6.54) 

(2.6.55) 

obtained by differentiating (2.6.45a) with respect to b..t. In this manner we see 
that (x, t \x1 ,  t1 } satisfies Schrodinger's time-dependent wave equation: 

(2.6.56) 

Thus we can conclude that (x , t \xl , tl } constructed according to Feynman's pre
scription is the same as the propagator in Schrodinger's wave mechanics. 

Feynman's space-time approach based on path integrals is not too convenient 
for attacking practical problems in nonrelativistic quantum mechanics. Even for 
the simple harmonic oscillator, it is rather cumbersome to evaluate explicitly the 
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relevant path integral.* However, his approach is extremely gratifying from a con
ceptual point of view. By imposing a certain set of sensible requirements on a 
physical theory, we are inevitably led to a formalism equivalent to the usual for
mulation of quantum mechanics. It makes us wonder whether it is at all possible 
to construct a sensible alternative theory that is equally successful in accounting 
for microscopic phenomena. 

Methods based on path integrals have been found to be very powerful in other 
branches of modern physics, such as quantum field theory and statistical mechan
ics. In this book the path-integral method will appear again when we discuss the 
Aharonov-Bohm effect. t 

2.7 • POTENTIALS AND GAUGE TRANSFORMATIONS 

Constant Potentials 

In classical mechanics it is well known that the zero point of the potential energy 
is of no physical significance. The time development of dynamic variables such as 
x(t) and L(t) is independent of whether we use V (x) or V (x) + Vo with Vo constant 
both in space and time. The force that appears in Newton's second law depends 
only on the gradient of the potential; an additive constant is clearly irrelevant. 
What is the analogous situation in quantum mechanics? 

We look at the time evolution of a Schrodinger-picture state ket subjec� some 
potential. Let ja, to ; t ) be a state ket in the presence of V(x), and let ja, to ; t) be 
the corresponding state ket appropriate for 

V(x) = V(x) + Vo. (2.7 . 1 ) 
To be precise, let's agree that the initial conditions are such that both kets coincide 
with ja) at t = t0 . If they represent the same physical situation, this can always 
be done by a suitable choice of the phase. Recalling that the state ket at t can be 
obtained by applying the time-evolution operator 'U(t, to) to the state ket at to, we 
obtain 

� [ ( p2 ) (t - to) J ja, to ; t) = exp -i lm + V(x) + Vo 
1i 

ja) 

[ -i Vo(t - to) ] = exp 
1i 

ja, to ; t ) .  
(2.7.2) 

In other words, the ket computed under the influence of V has a time dependence 
different only by a phase factor exp[ -i Vo(t - to)/fi] . For stationary states, this 
means that if the time dependence computed with V(x) is exp[ -i E(t - to)/fi], 
*The reader is challenged to solve the simple harmonic oscillator problem using the Feynman 
path-integral method in Problem 2.34 of this chapter. 
tThe reader who is interested in the fundamentals and applications of path integrals may consult 
Feynman and Hibbs ( 1965) and also Zee (2010). 
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then the corresponding time dependence computed with V(x)+ Vo is exp[ -i(E + 
Vo)(t - to)/h] . In other words, the use of V in place of V just amounts to the 
following change: 

E ---+ E + Vo, (2.7.3) 
which the reader probably guessed immediately. Observable effects such as the 
time evolution of expectation values of (x) and (S) always depend on energy dif
ferences [see (2. 1 .47)] ; the Bohr frequencies that characterize the sinusoidal time 
dependence of expectation values are the same whether we use V (x) or V (x) + Vo. 
In general, there can be no difference in the expectation values of observables if 
every state ket in the world is multiplied by a common factor exp[ -i Vo(t - to)/li] . 

Trivial as it may seem, we see here the first example of a class of transfor
mations known as gauge transformations. The change in our convention for the 
zero-point energy of the potential 

V (x) ---+ V (x) + Vo 
must be accompanied by a change in the state ket 

[ -iVo(t - to) ] I a, to ; t) ---+ exp 1i I a, to ; t) . 

Of course, this change implies the following change in the wave function: 

[ -i Vo(t - to) ] ljr(x', t) ---+ exp 1i ljr(x', t). 

(2.7.4) 

(2.7 .5) 

(2.7.6) 
Next we consider Vo that is spatially uniform but dependent on time. We then 
easily see that the analogue of (2.7.5) is 

la, to ; t ) ---+ exp [ -i it dt' Vo�t') ] la, to ; t ) .  (2.7.7) 

Physically, the use of V(x) + Vo(t) in place of V(x) simply means that we are 
choosing a new zero point of the energy scale at each instant of time. 

Even though the choice of the absolute scale of the potential is arbitrary, poten
tial differences are of nontrivial physical significance and, in fact, can be detected 
in a very striking way. To illustrate this point, let us consider the arrangement 
shown in Figure 2.8. A beam of charged particles is split into two parts, each of 
which enters a metallic cage. If we so desire, we can maintain a finite potential dif
ference between the two cages by turning on a switch, as shown. A particle in the 
beam can be visualized as a wave packet whose dimension is much smaller than 
the dimension of the cage. Suppose we switch on the potential difference only 
after the wave packets enter the cages and switch it off before the wave packets 
leave the cages. The particle in the cage experiences no force because inside the 
cage the potential is spatially uniform; hence no electric field is present. Now let 
us recombine the two beam components in such a way that they meet in the inter
ference region of Figure 2. 8. Because of the existence of the potential, each beam 
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FIGURE 2.8 Quantum-mechanical interference to detect a potential difference. 

component suffers a phase change, as indicated by (2.7.7). As a result, there is 
an observable interference term in the beam intensity in the interference region, 
namely, 

COS((/>I - (/J2), sin(¢1 - (/Jl), (2.7.8) 

where 

(2.7.9) 

So despite the fact that the particle experiences no force, there is an observable 
effect that depends on whether V2(t) - V1 (t) has been applied. Notice that this ef
fect is purely quantum-mechanical; in the limit 1i --+ 0, the interesting interference 
effect gets washed out because the oscillation of the cosine becomes infinitely 
rapid.* 

Gravity in Quantum Mechanics 

There is an experiment that exhibits in a striking manner how a gravitational effect 
appears in quantum mechanics. Before describing it, we first comment on the 
role of gravity in both classical and quantum mechanics. Consider the classical 
equation of motion for a purely falling body: 

mX. = -m V <I>grav = -mgz. (2.7. 10) 

The mass term drops out, so in the absence of air resistance, a feather and a stone 
would behave in the same way-a la Galileo-under the influence of gravity. 
This is, of course, a direct consequence of the equality of the gravitational and 
the inertial masses. Because the mass does not appear in the equation of a particle 
trajectory, gravity in classical mechanics is often said to be a purely geometric 
theory. 

*This gedanken experiment is the Minkowski-rotated form of the Aharonov-Bohm experiment to 
be discussed later in this section. 
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The situation is rather different in quantum mechanics. In the wave-mechanical 
formulation, the analogue of (2.7 . 10) is 

[ ( 1i2 ) 2 J . oo/ - 2m V +m<l>grav o/ = z hat. (2.7. 1 1 ) 

The mass no longer cancels; instead it appears in the combination hjm, so in a 
problem where 1i appears, m is also expected to appear. We can see this point also 
using the Feynman path-integral formulation of a falling body based on [ ( 1 · 2  ) ] m . tn 2mx -mgz 

(Xn , tn 1Xn- 1 , ln- 1 ) =  �exp l l dt , v �  tn-1 1i 
(tn - tn-1 = !:lt --+ 0). 

(2.7 . 12) 

Here again we see that m appears in the combination m jh. This is in sharp contrast 
with Hamilton's classical approach based on 1 t2 (mx.2 ) 8 

t1 
dt 2-mgz = 0, (2.7 . 13) 

where m can be eliminated in the very beginning. 
Starting with the Schrodinger equation (2. 7. 1 1  ), we may derive the Ehrenfest 

theorem 

d2 -(x) = -gz. dt2 (2.7 . 14) 

However, 1i does not appear here, nor does m. To see a nontrivial quantum
mechanical effect of gravity, we must study effects in which 1i appears explicitly
and consequently where we expect the mass to appear-in contrast with purely 
gravitational phenomena in classical mechanics. 

Until l975, there had been no direct experiment that established the presence 
of the m<l>grav term in (2.7 . 1 1) .  To be sure, a free fall of an elementary particle 
had been observed, but the classical equation of motion-or the Ehrenfest theo
rem (2.7. 14), where 1i does not appear-sufficed to account for this. The famous 
"weight of photon" experiment of V. Pound and collaborators did not test gravity 
in the quantum domain either, because they measured a frequency shift where 1i 
does not explicitly appear. 

On the microscopic scale, gravitational forces are too weak to be readily ob
servable. To appreciate the difficulty involved in seeing gravity in bound-state 
problems, let us consider the ground state of an electron and a neutron bound 
by gravitational forces. This is the gravitational analogue of the hydrogen atom, 
where an electron and a proton are bound by Coulomb forces. At the same dis
tance, the gravitational force between the electron and the neutron is weaker than 
the Coulomb force between the electron and the proton by a factor of "' 2 x 1039. 
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FIGURE 2.9 Experiment to detect gravity-induced quantum interference. 

The Bohr radius involved here can be obtained simply: 

(2.7. 1 5) 

where G N is Newton's gravitational constant. If we substitute numbers in the 
equation, the Bohr radius of this gravitationally bound system turns out to be 
"' 103 1 , or "' 1013 light years, which is larger than the estimated radius of the 
universe by a few orders of magnitude ! 

We now discuss a remarkable phenomenon known as gravity-induced quan
tum interference. A nearly monoenergetic beam of particles-in practice, ther
mal neutrons-is split into two parts and then brought together as shown in 
Figure 2.9. In actual experiments the neutron beam is split and bent by silicon 
crystals, but the details of this beautiful art of neutron interferometry do not 
concern us here. Because the wave packet can be assumed to be much smaller 
than the macroscopic dimension of the loop formed by the two alternative paths, 
we can apply the concept of a classical trajectory. Let us first suppose that path 
A --+ B --+ D and path A --+ C --+ D lie in a horizontal plane. Because the abso
lute zero of the potential due to gravity is of no significance, we can set V = 0 for 
any phenomenon that takes place in this plane; in other words, it is legitimate to 
ignore gravity altogether. The situation is very different if the plane formed by the 
two alternative paths is rotated around segment AC by 8 . This time the potential 
at level BD is higher than that at level AC by mgl2 sino, which means that the 
state ket associated with path BD "rotates faster." This leads to a gravity-induced 
phase difference between the amplitudes for the two wave packets arriving at D. 
Actually there is also a gravity-induced phase change associated with AB and also 
with CD, but the effects cancel as we compare the two alternative paths. The net 
result is that the wave packet arriving at D via path ABD suffers a phase change 

[ -imngl2 (sino)T J exp 
1i 

(2.7. 16) 
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relative to that of the wave packet arriving at D via path ACD, where T is the time 
spent for the wave packet to go from B to D (or from A to C) and m n , the neutron 
mass. We can control this phase difference by rotating the plane of Figure 2.9; 8 
can change from 0 to n j2, or from 0 to -n /2. Expressing the time spent T, or 
l1 / Vwavepacket, in terms of k, the de Broglie wavelength of the neutron, we obtain 
the following expression for the phase difference: 

(m�gl1 l2k sin 8) 
¢ABD - ¢ACD = -

1i2 (2.7 . 17) 

In this manner we predict an observable interference effect that depends on angle 
8, which is reminiscent of fringes in Michelson-type interferometers in optics. 

An alternative, more wave-mechanical way to understand (2. 7 . 17) follows. Be
cause we are concerned with a time-independent potential, the sum of the kinetic 
energy and the potential energy is constant: 

p2 
- + mgz = E. 
2m 

(2.7. 18) 

The difference in height between level BD and level A C implies a slight difference 
in p, or k.  As a result, there is an accumulation of phase differences due to the 
k difference. It is left as an exercise to show that this wave-mechanical approach 
also leads to result (2. 7 . 17). 

What is interesting about expression (2. 7 . 17) is that its magnitude is neither 
too small nor too large; it is just right for this interesting effect to be detected 
with thermal neutrons traveling through paths of "table-top" dimensions. For 
A. =  1.42 A (comparable to interatomic spacing in silicon) and /1 /2 = 10cm2, we 
obtain 55.6 for m�gl1l2kj1i2. As we rotate the loop plane gradually by 90° , we 
predict the intensity in the interference region to exhibit a series of maxima and 
minima; quantitatively we should see 55.6j2n � 9 oscillations. It is extraordi
nary that such an effect has indeed been observed experimentally; see Figure 2. 1 0, 
which is from a 197 5 experiment of R. Colella, A. Overhauser, and S. A. Werner. 
The phase shift due to gravity is seen to be verified to well within 1%. 

We emphasize that this effect is purely quantum-mechanical because as 1i -+ 0, 
the interference pattern gets washed out. The gravitational potential has been 
shown to enter into the Schrodinger equation just as expected. This experiment 
also shows that gravity is not purely geometric at the quantum level because the 
effect depends on (mj1i)2 .* 

Gauge Transformations in Electromagnetism 

Let us now turn to potentials that appear in electromagnetism. We consider an 
electric and a magnetic field derivable from the time-independent scalar and vee-

*However, this does not imply that the equivalence principle is unimportant in understanding 
an effect of this sort. If the gravitational mass (mgrav) and inertial mass (minert) were unequal, 

(m jn )2 would have to be replaced by mgravminert!n2. The fact that we could correctly predict the 
interference pattern without making a distinction between mgrav and minert shows some support 
for the equivalence principle at the quantum level. 
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FIGURE 2.10 Dependence of gravity-induced phase on angle of rotation 8. From 
R. Colella, A. W. Overhauser, and S. A. Werner, Phys. Rev. Lett. 34 (1975) 1472. 

tor potential, ¢(x) and A(x): 
E = -V¢, B = V x A. (2.7 . 19) 

The Hamiltonian for a particle of electric charge e (e < 0 for the electron) sub
jected to the electromagnetic field is taken from classical physics to be 

1 ( eA) 2 
H = - p- - +e¢. 2m c (2.7.20) 

In quantum mechanics ¢ and A are understood to be functions of the position 
operator x of the charged particle. Because p and A do not commute, some care 
is needed in interpreting (2.7 .20). The safest procedure is to write 

eA 2 e e 2 
2 ( ) 2 

p - � -+ p - (�) (p · A+A · p) + (�) A .  

In this form the Hamiltonian is obviously Hermitian. 

(2.7.21) 

To study the dynamics of a charged particle subjected to ¢ and A, let us first 
proceed in the Heisenberg picture. We can evaluate the time derivative of x in a 
straightforward manner as 

[xi , H] (Pi - eAifc) 
in m (2.7.22) 
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which shows that the operator p, defined in this book to be the generator of trans
lation, is not the same as m d xj d t. Quite often p is called canonical momentum, 
as distinguished from kinematical (or mechanical) momentum, denoted by IT :  

Even though we have 

dx eA f1 = m - = p - - . dt c (2.7.23) 

(2.7.24) 

for canonical momentum, the analogous commutator does not vanish for mechan
ical momentum. Instead we have 

as the reader may easily verify. Rewriting the Hamiltonian as 

rr2 
H = - + e¢ 

2m 

(2.7.25) 

(2.7.26) 

and using the fundamental commutation relation, we can derive the quantum
mechanical version of the Lorentz force, namely, 

(2.7.27) 

This then is Ehrenfest's theorem, written in the Heisenberg picture, for the 
charged particle in the presence of E and B. 

We now study Schrodinger's wave equation with ¢ and A. Our first task is to 
sandwich H between (x1 1 and Ia, to ; t ) . The only term with which we have to be 
careful is 

[ eA(x) J 2 
(x1 1 p - -c - Ia, to ; t) 

[ • 
1 

eA(x1) ] 
1 
[ eA(x) J = -z nV - -c- (x I p - -c - Ia ,  to ; t) 

[ . 1 
eA(x1) ] [ • 

1 
eA(x1) ] 

1 = -znV - -c- · -znV - -c- (x Ia , to ; t ) . 
(2.7.28) 

It is important to emphasize that the first V1 in the last line can differentiate both 
(x1 la,  to ; t) and A(x1). Combining everything, we have 

1 [ . 1 
eA(x1) ] [ • 

1 
eA(x1) ] 

1 
2m 

-z nV - -c- · -z nV - -c- (x Ia, to ; t) 
+ e¢(x1) (x1 la, to ; t) = in� (x1 la, to; t) . at 

(2.7.29) 
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From this expression we readily obtain the continuity equation 

ap + v'. j = o, at  
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(2.7.30) 

where p is 1 1fr i2 as before, with (x' Ja, to ; t) written as ljr, but for the probability 
flux j we have 

j = (:) lm(lfr* V'lfr) - (;c) Al o/ 12 , (2.7.3 1 )  

which is just what we expect from the substitution 

(2.7.32) 

Writing the wave function of ..Ji5 exp(i Sjfi) [see (2.4. 1 8)] ,  we obtain an alterna
tive form for j, namely, 

(2.7.33) 

which is to be compared with (2.4.20). We will find this form to be convenient 
in discussing superconductivity, flux quantization, and so on. We also note that 
the space integral of j is the expectation value of kinematical momentum (not 
canonical momentum) apart from ljm: 

f d3x'j = 
(p -�A/c) 

= (0)/m. (2.7.34) 

We are now in a position to discuss the subject of gauge transformations in 
electromagnetism. First, consider 

A ---+ A, (2.7.35) 

with A. constant-that is, independent of x and t. Both E and B obviously remain 
unchanged. This transformation just amounts to a change in the zero point of the 
energy scale, a possibility treated in the beginning of this section; we just replace 
V by e¢ . We have already discussed the accompanying change needed for the 
state ket [see (2.7.5)] , so we do not dwell on this transformation any further. 

Much more interesting is the transformation 

¢ ---+ ¢, A ---+ A+ VA, (2.7.36) 

where A is a function of x. The static electromagnetic fields E and B are un
changed under (2.7.36). Both (2.7.35) and (2.7.36) are special cases of 

l oA ¢ ---+ ¢ - �at' A ---+ A+ VA,  (2.7.37) 
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which leave E and B, given by 

1 aA E = -V¢ - --, c at B = V  x A, (2.7.38) 

unchanged, but in the following we do not consider time-dependent fields and 
potentials. In the remaining part of this section the term gauge transformation 
refers to (2.7.36). 

In classical physics, observable effects such as the trajectory of a charged par
ticle are independent of the gauge used-that is, of the particular choice of A we 
happen to adopt. Consider a charged particle in a uniform magnetic field in the 
z-direction 

B = Bz. 

This magnetic field may be derived from 

-By Ax = -- , 
2 

or also from 

Ax = -By, 

Bx Ay = T, 

Ay = O, 
The second form is obtained from the first by (Bxy) 

A � A - V  l ,  

(2.7.39) 

(2.7 .40) 

(2.7.41)  

(2.7.42) 

which is indeed of the form of (2.7.36). Regardless of which A we may use, 
the trajectory of the charged particle with a given set of initial conditions is the 
same; it is just a helix-a uniform circular motion when projected in the xy-plane, 
superposed with a uniform rectilinear motion in the z-direction. Yet if we look at 
Px and py, the results are very different. For one thing, Px is a constant of the 
motion when (2.7.41 )  is used but not when (2.7 .40) is used. 

Recall Hamilton's equations of motion: 

aH 
ax

, 
dpy 
dt 

aH 
ay 

, . . . .  (2.7.43) 

In general, the canonical momentum p is not a gauge-invariant quantity; its nu
merical value depends on the particular gauge used, even when we are referring to 
the same physical situation. In contrast, the kinematic momentum TI, or mdxjdt, 
that traces the trajectory of the particle is a gauge-invariant quantity, as one may 
explicitly verify. Because p and mdxjdt are related via (2.7.23), p must change 
to compensate for the change in A given by (2.7.42). 

We now return to quantum mechanics. We believe that it is reasonable to de
mand that the expectation values in quantum mechanics behave in a manner sim
ilar to the corresponding classical quantities under gauge transformations, so (x) 
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and (IT) are not to change under gauge transformations, whereas (p) is expected 
to change. 

Let us denote by Ja) the state ket in the presence of A; the state ket for the 
same physical situation when 

A = A+VA (2.7.44) 

is used in place of A is denoted by J& ) . Here A, as well as A, is a function of the 
position operator x. Our basic requirements are 

(aJx Ja) = (& JxJ&) (2.7.45a) 

and 

(2.7 .45b) 

In addition, we require, as usual, the norm of the state ket to be preserved: 

(a Ja) = (& J&) .  
We must construct an operator g, that relates J&) to Ja) : 

J&) = fj,Ja) . 
Invariance properties (2.7.45a) and (2.7.45b) are guaranteed if 

g,txg, = x 
and 

We assert that 

g,t p - - - - fJ. = p - - . ( eA eVA) eA 
c c c 

g, = exp 
[ ie��x)] 

(2.7.46) 

(2.7.47) 

(2.7.48a) 

(2.7.48b) 

(2.7.49) 

will do the job. First, g, is unitary, so (2.7.46) is all right. Second, (2.7.48a) is 
obviously satisfied because x commutes with any function of x. As for (2. 7 .48b ), 
just note that 

exp (-�:A) p exp c:�) = exp (-�:A) [p, exp c:�) J +p  

= - exp ( -�:A) inV [exp c:�) J +p  

where we have used (2.2.23b). 

eVA 
= p+--, c 

(2.7 .50) 
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The invariance of quantum mechanics under gauge transformations can also 
be demonstrated by looking directly at the Schrodinger equation. Let !a, to ; t) be 
a solution to the Schrodinger equation in the presence of A: 

[ (p - eAje)2 J . a 
.....::::......----'---- + ecp !a, to ; t) = z h- !a, to ; t ) . 

2m at 
The corresponding solution in the presence of A must satisfy 

[ (p - eAje - eVAje)2 J ------ . a -----
------- + ec/J !a, to ; t) = z h- !a, to; t ) . 

2m at 
We see that if the new ket is  taken to be 

------ ( ieA ) !a, to ; t) = exp 
he 

!a, to ; t) 

(2.7.5 1 )  

(2.7 .52) 

(2.7.53) 

in accordance with (2.7.49), then the new Schrodinger equation (2.7 .52) will be 
satisfied; all we have to note is that 

(-ieA) ( eA eV A) 2 ( i eA) ( eA) 2 
exp p;;;- p - � - -

e
- exp 

he 
= p - � , (2.7 .54) 

which follows from applying (2.7 .50) twice. 
Equation (2.7 .53) also implies that the corresponding wave equations are re

lated via 

- [ ieA(x') ] 
1jf(x', t) = exp 

he 
1/t(x', t), (2.7.55) 

where V (x') is now a real function of the position vector eigenvalue x'. This can, 
of course, be verified also by directly substituting (2.7 .55) into SchrOdinger's 
wave equation with A replaced by A + VA.  In terms of p and S, we see that 
p is unchanged but S is modified as follows: 

eA 
S --+ S + -. 

e 
(2.7.56) 

This is highly satisfactory because we see that the probability flux given by 
(2.7 .33) is then gauge invariant. 

To summarize, when vector potentials in different gauges are used for the same 
physical situation, the corresponding state kets (or wave functions) must neces
sarily be different. However, only a simple change is needed; we can go from a 
gauge specified by A to another specified by A + V A  by merely multiplying the 
old ket (the old wave function) by exp[ieA(x)jhe] (exp[ieA(x')jhc]). The canon
ical momentum, defined as the generator of translation, is manifestly gauge de
pendent in the sense that its expectation value depends on the particular gauge 
chosen, whereas the kinematic momentum and the probability flux are gauge 
invariant. 
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The reader may wonder why invariance under (2.7.49) is called gauge invari
ance. This word is the translation of the German Eichinvarianz, where Eich means 
"gauge." (There is a historical anecdote that goes with the origin of this term. Read 
on.) 

Consider some function of position at x: F(x). At a neighboring point we ob
viously have 

F(x + dx) :::: F(x) + (V F) · dx. (2.7.57) 

But suppose we apply a scale change as we go from x to x + dx as follows: 

1 /atx ---;)- [1 + :I: (x) · dx] /at x+dx· (2.7.58) 

We must then rescale F(x) as follows: 

F(x + dx) /rescaled :::: F(x) + [(V + :I:)F] • dx. (2.7.59) 

instead of (2.7.57). The combination V + 1: is similar to the gauge-invariant com
bination 

(2.7 .60) 

encountered in (2.7.32) except for the absence of i. Historically, H. Weyl unsuc
cessfully attempted to construct a geometric theory of electromagnetism based on 
Eichinvarianz by identifying the scale function :I: (x) in (2.7 .58) and (2.7.59) with 
the vector potential A itself. With the birth of quantum mechanics, V. Pock and F. 
London realized the importance of the gauge-invariant combination (2.7 .60), and 
they recalled Weyl's earlier work by comparing 1: with i times A. We are stuck 
with the term gauge invariance even though the quantum-mechanical analogue of 
(2.7 .58), 

1 latx ---;)-
[

1 - ( i e ) A · dx
] I , he at x+dx 

(2.7.6 1 )  

would actually correspond to "phase change" rather than to "scale change." 

The Aharonov-Bohm Effect 

The use of vector potential in quantum mechanics has many far-reaching conse
quences, some of which we are now ready to discuss. We start with a relatively 
innocuous-looking problem. 

Consider a hollow cylindrical shell, as shown in Figure 2. 1 1 a. We assume that 
a particle of charge e can be completely confined to the interior of the shell with 
rigid walls. The wave function is required to vanish on the inner (p = Pa)  and outer 
(p = Pb) walls, as well as at the top and bottom. It is a straightforward boundary
value problem in mathematical physics to obtain the energy eigenvalues. 

Let us now consider a modified arrangement where the cylindrical shell en
closes a uniform magnetic field, as shown in Figure 2. 1 1  b. Specifically, you may 



1 42 Chapter 2 Quantum Dynamics 

I I i 
I I L I I 

1 I I - - - - -..... I I ,., ' 
I I I ) 
' I ' 

..... _ _ _ _ _  .,. .,  .... _ _ _ _ _  .,. .,  

t t t t 
(a) (b) 

FIGURE 2.11 Hollow cylindrical shell (a) without a magnetic field, (b) with a uniform 
magnetic field. 

imagine fitting a very long solenoid into the hole in the middle in such a way that 
no magnetic field leaks into the region p 2: Pa . The boundary conditions for the 
wave function are taken to be the same as before; the walls are assumed to be just 
as rigid. Intuitively, we may conjecture that the energy spectrum is unchanged 
because the region with B "I 0 is completely inaccessible to the charged particle 
trapped inside the shell. However, quantum mechanics tells us that this conjecture 
is not correct. 

Even though the magnetic field vanishes in the interior, the vector potential A is 
nonvanishing there; using Stokes's theorem, we can infer that the vector potential 
needed to produce the magnetic field B (= Bz) is 

A =  
( ��) �, (2.7.62) 

where � is the unit vector in the direction of increasing azimuthal angle. In at
tempting to solve the Schrodinger equation to find the energy eigenvalues for this 
new problem, we need only to replace the gradient V by V - (i e j'lic )A; we can 
accomplish this in cylindrical coordinates by replacing the partial derivative with 
respect to ¢ as follows: 

� --+ � - (!!!_) Bp� . 
a¢ a¢ he 2 ' (2.7.63) 

recall the expression for gradient in cylindrical coordinates: 

(2.7.64) 
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The replacement (2.7.63) results in an observable change in the energy spectrum, 
as the reader may verify explicitly. This is quite remarkable because the particle 
never "touches" the magnetic field; the Lorentz force the particle experiences is 
identically zero in this problem, yet the energy levels depend on whether or not 
the magnetic field is finite in the hole region inaccessible to the particle. 

The problem we have just treated is the bound-state version of what is com
monly referred to as the Aharonov-Bohm effect.* We are now in a position to 
discuss the original form of the Aharonov-Bohm effect itself. Consider a particle 
of charge e going above or below a very long impenetrable cylinder, as shown in 
Figure 2 . 12. Inside the cylinder is a magnetic field parallel to the cylinder axis, 
taken to be normal to the plane of Figure 2.12 . So the particle paths above and be
low enclose a magnetic flux. Our object is to study how the probability of finding 
the particle in the interference region B depends on the magnetic flux. 

Even though this problem can be attacked by comparing the solutions to the 
Schrodinger equation in the presence and absence of B, for pedagogical reasons 
we prefer to use the Feynman path-integral method. Let x1 and XN be typical 
points in source region A and interference region B, respectively. We recall from 
classical mechanics that the Lagrangian in the presence of the magnetic field can 
be obtained from that in the absence of the magnetic field, denoted by L���ssical' 
as follows: 

(O) _ m dx ---+ L (0) :_ dx . A ( )2 

L classical - 2 d t classical + 
C d t · (2.7 .65) 

The corresponding change in the action for some definite path segment going 
from (Xn-1 , tn-1 ) to (Xn , tn) is then given by 

sC0)(n, n - 1) ---+ sC0\n, n - 1) + - dt - • A. e i.tn (dx) 
C tn-1 dt 

But this last integral can be written as 

- dt - · A = - A · ds, e i. tn (dx) e 1xn 

C tn- 1 dt C Xn-1 

(2.7.66) 

(2.7.67) 

*After a 1959 paper by Y. Aharonov and D. Bohm. Essentially the same effect was discussed 10 
years earlier by W. Ehrenberg and R. E. Siday. 
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where ds is the differential line element along the path segment, so when we 
consider the entire contribution from XI to XN ,  we have the following change: n [ i sco)(n, n - 1) ] {n [ isC0)(n, n - 1) ] } ( ie 1xN A d ) exp ---+ exp exp - · s . fi fi fie x1 

(2.7.68) 

All this is for a particular path, such as going above the cylinder. We must still sum 
over all possible paths, which may appear to be a formidable task. Fortunately, 
we know from the theory of electromagnetism that the line integral J A ·  ds is 
independent of paths; that is, it is dependent only on the end points, as long as 
the loop formed by a pair of different paths does not enclose a magnetic flux. 
As a result, the contributions due to A -=f. 0 to all paths going above the cylinder 
are given by a common phase factor; similarly, the contributions from all paths 
going below the cylinder are multiplied by another common phase factor. In the 
path-integral notation we have, for the entire transition amplitude, 

1 [ iS(0)(N 1) ] 1 [ i S(0)(N 1) ] .D[x(t)] exp ' + .D[x(t)] exp ' 
above fi below fi 
1 [ i S(O)(N 1) ] { [( ie ) 1XN ] } ---+ .D [x(t)] exp ' exp - A · ds 

above fi fie X] above 

1 [ i S(O)(N 1) ] { [( ie ) 1XN ] } + .D[x(t)] exp ' exp - A · ds . 
below fi fie x1 below 

(2.7.69) 

The probability for finding the particle in the interference region B depends on 
the modulus squared of the entire transition amplitude and hence on the phase 
difference between the contribution from the paths going above and below. The 
phase difference due to the presence of B is just 

- A · ds - - A · ds - - A · ds [( e ) 1XN ] [( e ) 1XN ] ( e ) f fie XI above fie XI below 
- fie 
= (:c)¢B , 

(2.7.70) 

where ¢ B stands for the magnetic flux inside the impenetrable cylinder. This 
means that as we change the magnetic field strength, there is a sinusoidal compo
nent in the probability for observing the particle in region B with a period given 
by a fundamental unit of magnetic flux, namely, 

2nfic -- = 4. 135 x 10-
7 gauss-cm2 . l e i (2.7 .7 1 )  

We emphasize that the interference effect discussed here i s  purely quantum
mechanical. Classically, the motion of a charged particle is determined solely by 
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Newton's second law supplemented by the force law of Lorentz. Here, as in the 
previous bound-state problem, the particle can never enter the region in which 
B is finite; the Lorentz force is identically zero in all regions where the particle 
wave function is finite. Yet there is a striking interference pattern that depends on 
the presence or absence of a magnetic field inside the impenetrable cylinder. This 
point has led some people to conclude that in quantum mechanics it is A rather 
than B that is fundamental. It is to be noted, however, that the observable effects 
in both examples depend only on <I> B ,  which is directly expressible in terms of 
B. Experiments to verify the Aharonov-Bohm effect have been performed using 
a thin magnetized iron filament called a whisker.* 
Magnetic Monopole 

We conclude this section with one of the most remarkable predictions of quantum 
physics, which has yet to be verified experimentally. An astute student of clas
sical electrodynamics may be struck by the fact that there is a strong symmetry 
between E and B, yet a magnetic charge--commonly referred to as a magnetic 
monopole-analogous to electric charge is peculiarly absent in Maxwell's equa
tions. The source of a magnetic field observed in nature is either a moving electric 
charge or a static magnetic dipole, never a static magnetic charge. Instead of 

V · B  = 4npM (2.7.72) 

analogous to 

V · E = 4np, (2.7.73) 

V · B actually vanishes in the usual way of writing Maxwell's equations. Quantum 
mechanics does not predict that a magnetic monopole must exist. However, it 
unambiguously requires that if a magnetic monopole is ever found in nature, the 
magnitude of magnetic charge must be quantized in terms of e, n ,  and c, as we 
now demonstrate. 

Suppose there is a point magnetic monopole, situated at the origin, of strength 
eM analogous to a point electric charge. The static magnetic field is then given by 

(eM ) A B = 72" r. (2.7.74) 

At first sight it may appear that the magnetic field (2. 7. 7 4) can be derived from 

A =  
[eM (1 -

. 
cose) J :�.. . 'f' (2.7.75) 

r sm e  

Recall the expression for curl in spherical coordinates: 

[ 1 a aAe J v x A =  r --- (A<J> sine) - -
r sine ae acp 

A 1 [ 1 aAr a J A 1 [ a aAr J + e - -. - -- - -(rA<J>) + f/J- -(rAe) - - . 
r sme a¢> ar r ar ae 

(2.7.76) 

*One such recent experiment is that of A. Tonomura et al., Phys. Rev. Lett. 48 ( 1982) 1443. 
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But vector potential (2.7.75) has one difficulty-it is singular on the negative z
axis (() = :n:). In fact, it turns out to be impossible to construct a singularity-free 
potential valid everywhere for this problem. To see this we first note "Gauss's 
law" 

1 B · du = 4:n:eM 
closed surface 

(2.7.77) 

for any surface boundary enclosing the origin at which the magnetic monopole is 
located. On the other hand, if A were nonsingular, we would have 

V · (V x A) = O  
everywhere; hence, 

1 B · du =J V · (V x A)d3x = 0, 
closed surface volume inside 

in contradiction with (2.7.77). 

(2.7.78) 

(2.7.79) 

However, one might argue that because the vector potential is just a device 
for obtaining B, we need not insist on having a single expression for A valid 
everywhere. Suppose we construct a pair of potentials, 

A(I) = [eM( l �cos fJ) ] (b, (() < :n: - 8) 
r sm () (2.7.80a) 

A(II) = _ [eM(1 �cos fJ) J {b, (() 
> 8) , 

r sm () (2.7.80b) 

such that the potential A (I) can be used everywhere except inside the cone de
fined by () = :n: - 8 around the negative z-axis; likewise, the potential A (II) can 
be used everywhere except inside the cone () = 8 around the positive z-axis; see 
Figure 2. 13 . Together they lead to the correct expression for B everywhere.* 
Consider now what happens in the overlap region 8 < () < :n: - 8, where we 

may use either A (I) or A (II) . Because the two potentials lead to the same magnetic 
field, they must be related to each other by a gauge transformation. To find A 
appropriate for this problem, we first note that 

A(II) -A(I) = - ( 2�M ) (b. r sm () 
Recalling the expression for gradient in spherical coordinates, 

()A A 1 ()A A 1 ()A VA =  r- +0-- +4>----, ar r ()() r sin () a¢ 

(2.7 .81 ) 

(2.7.82) 

*An alternative approach to this problem uses A (I) everywhere, but taking special care of the 
string of singularities, known as a Dirac string, along the negative z-axis. 
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FIGURE 2.13 Regions of validity for the potentials A (I) and A (II) . 

we deduce that 

will do the job. 
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(2.7.83) 

Next, we consider the wave function of an electrically charged particle of 
charge e subjected to magnetic field (2.7.74). As we emphasized earlier, the par
ticular form of the wave function depends on the particular gauge used. In the 
overlap region where we may use either A (I) or A (II), the corresponding wave 
functions are, according to (2.7.55), related to each other by 

(II) (-2ieeM¢ ) (I) 1/f = exp 1/f . he (2.7 .84) 

Wave functions 1/f(I) and 1/f(II) must each be single-valued because once we choose 
particular gauge, the expansion of the state ket in terms of the position eigenkets 
must be unique. After all, as we have repeatedly emphasized, the wave function is 
simply an expansion coefficient for the state ket in terms of the position eigenkets. 

Let us now examine the behavior of wave function 1/f(II) on the equator e = n j2 
with some definite radius r, which is a constant. If we increase the azimuthal angle 
¢ along the equator and go around once, say from ¢ = 0 to ¢ = 2n , then 1/f(II) , 
as well as 1/f(I) , must return to its original value because each is single-valued. 
According to (2.7.84), this is possible only if 

2eeM -- = ±N he ' N = 0, ±1 , ±2, . . . .  (2.7.85) 
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So we arrive at a very far-reaching conclusion: The magnetic charges must be 
quantized in units of 

he ( 137) 
21e l ::: 2 l e i . (2.7.86) 

The smallest magnetic charge possible is 1ic/2 1e l ,  where e is the electronic 
charge. It is amusing that once a magnetic monopole is assumed to exist, we 
can use (2.7. 85) backward, so to speak, to explain why the electric charges are 
quantized-for example, why the proton charge cannot be 0.999972 times l e i .* 

We repeat once again that quantum mechanics does not require magnetic 
monopoles to exist. However, it unambiguously predicts that a magnetic charge, 
if it is ever found in nature, must be quantized in units of 1ic/2 1e l .  The quanti
zation of magnetic charges in quantum mechanics was first shown in 193 1 by 
P. A. M. Dirac. The derivation given here is due to T. T. Wu and C. N. Yang. A 
different solution, which connects the Dirac quantization condition to the quan
tization of angular momentum, is discussed by H. J. Lipkin, W. I. Weisberger, 
and M. Peshkin in Annals of Physics 53 ( 1969) 203. Finally, we will revisit this 
subject again in Section 5.6 when we discuss Berry's Phase in conjunction with 
the adiabatic approximation. 

Problems 

2.1 Consider the spin-precession problem discussed in the text. It can also be solved in 
the Heisenberg picture. Using the Hamiltonian 

write the Heisenberg equations of motion for the time-dependent operators Sx(t), 
Sy(t), and Sz(t). Solve them to obtain Sx,y,z as functions of time. 

2.2 Look again at the Hamiltonian of Chapter 1 ,  Problem 1 . 1 1 .  Suppose the typist made 
an error and wrote H as 

H = Hl 1 1 1 ) ( 1 1 + H22 12) (21 + H12 1 1 ) (21 . 

What principle is now violated? Illustrate your point explicitly by attempting to 
solve the most general time-dependent problem using an illegal Hamiltonian of 
this kind. (You may assume H1 1  = Hn = 0 for simplicity.) 

2.3 An electron is subject to a uniform, time-independent magnetic field of strength B 
in the positive z-direction. At t = 0 the electron is known to be in an eigenstate of 
S • fi with eigenvalue 1i j2, where fi is a unit vector, lying in the xz-plane, that makes 
an angle f3 with the z-axis. 

*Empirically, the equality in magnitude between the electron charge and the proton charge is 
established to an accuracy of four parts in 1019 . 
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(a) Obtain the probability for finding the electron in the Sx = fi/2 state as a function 

of time. 
(b) Find the expectation value of Sx as a function of time. 

(c) For your own peace of mind, show that your answers make good sense in the 
extreme cases (i) f3 -+ 0 and (ii) f3 -+ rc /2. 

2.4 Derive the neutrino oscillation probability (2. 1 .65) and use it, along with the data 
in Figure 2.2, to estimate the values of !lm2c4 (in units of eV2) and e .  

2.5 Let x(t) be the coordinate operator for a free particle in one dimension in the 
Heisenberg picture. Evaluate 

[x(t) ,x(O)]. 

2.6 Consider a particle in one dimension whose Hamiltonian is given by 

p2 H = -+ V(x). 
2m 

By calculating [[H,x],x], prove 

�I (a" lx Ia') 1 2(Ea' - Ea") = !f._, � 2m a' 

where Ia'} is an energy eigenket with eigenvalue Ea' . 
2.7 Consider a particle in three dimensions whose Hamiltonian is given by 

p2 H = -+  V(x). 
2m 

By calculating [x • p, H], obtain 

d (p2 ) -(x ·p) = - - (x ·VV} .  dt m 

In order for us to identify the preceding relation with the quantum-mechanical ana
logue of the virial theorem, it is essential that the left-hand side vanish. Under what 
condition would this happen? 

2.8 Consider a free-particle wave packet in one dimension. At t = 0 it satisfies the 
minimum uncertainty relation 

In addition, we know 

(x} = (p} = O  (t = O). 

Using the Heisenberg picture, obtain ((llx?} t as a function of t(t :::: 0) when 
((!lx)2}t=O is given. (Hint: Take advantage of the property of the minimum un
certainty wave packet you worked out in Chapter 1 ,  Problem 1 . 1 8.) 
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2.9 Let Ia') and Ia") be eigenstates of a Hermitian operator A with eigenvalues a' and 
a", respectively (a' =/= a"). The Hamiltonian operator is given by 

H = l a') 8 (a" l + la") 8 (a' l ,  

where 8 is just a real number. 

(a) Clearly, Ia' ) and Ia") are not eigenstates of the Hamiltonian. Write down the 
eigenstates of the Hamiltonian. What are their energy eigenvalues? 

(b) Suppose the system is known to be in state I a') at t = 0. Write down the state 
vector in the SchrOdinger picture for t > 0. 

(c) What is the probability for finding the system in Ia") for t > 0 if the system is 
known to be in state Ia' ) at t = 0? 

(d) Can you think of a physical situation corresponding to this problem? 

2.10 A box containing a particle is divided into a right and a left compartment by a 
thin partition. If the particle is known to be on the right (left) side with certainty, 
the state is represented by the position eigenket I R) ( IL )  ), where we have neglected 
spatial variations within each half of the box. The most general state vector can 
then be written as 

Ia) = I R) (R ia)  + IL ) (L ia) ,  

where (R ia)  and (L ia)  can be regarded as "wave functions." The particle can tun
nel through the partition; this tunneling effect is characterized by the Hamiltonian 

H = L'l( IL) (R I  + I R) (L I) ,  

where L'l is a real number with the dimension of energy. 

(a) Find the normalized energy eigenkets. What are the corresponding energy 
eigenvalues? 

(b) In the SchrOdinger picture the base kets IR )  and IL )  are fixed, and the state 
vector moves with time. Suppose the system is represented by Ia) as given 
above at t = 0. Find the state vector Ia, to = O;t )  for t > 0 by applying the 
appropriate time-evolution operator to Ia) . 

(c) Suppose that at t = 0 the particle is on the right side with certainty. What is the 
probability for observing the particle on the left side as a function of time? 

(d) Write down the coupled SchrOdinger equations for the wave functions (R ia , to = 
O;t )  and (L ia , to = O; t) . Show that the solutions to the coupled Schrodinger 
equations are just what you expect from (b). 

(e) Suppose the printer made an error and wrote H as 

H = L'l iL ) (R I .  

By explicitly solving the most general time-evolution problem with this Hamil
tonian, show that probability conservation is violated. 

2.11 Using the one-dimensional simple harmonic oscillator as an example, illustrate the 
difference between the Heisenberg picture and the Schrodinger picture. Discuss in 
particular how (a) the dynamic variables x and p and (b) the most general state 
vector evolve with time in each of the two pictures. 
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2.12 Consider a particle subject to a one-dimensional simple harmonic oscillator poten
tial. Suppose that at t = 0 the state vector is given by (-ipa) 

exp -n- 10) , 

where p is the momentum operator and a is some number with dimension of length. 
Using the Heisenberg picture, evaluate the expectation value (x) for t ::=:: 0. 

2.13 (a) Write down the wave function (in coordinate space) for the state specified in 
Problem 2.12 at t = 0. You may use 

(b) Obtain a simple expression for the probability that the state is found in the 
ground state at t = 0. Does this probability change for t > 0? 

2.14 Consider a one-dimensional simple harmonic oscillator. 

(a) Using 

a } _ fmW (x ± .!..!!._) 
at - V 2fi mw ' 

a in) } {Jnln - 1 )  
a t in) = Jn+lin + 1 ) ,  

evaluate (m lx ln ) , (m lp ln ) , (m l {x , p} ln ) , (m lx2 1n ) , and (m lp2 1n ) . 
(b) Check that the virial theorem holds for the expectation values of the kinetic 

energy and the potential energy taken with respect to an energy eigenstate. 

2.15 (a) Using 

prove 

(one dimension), 

. a (p' lx la ) = z fi- (p' la) . ap' 

(b) Consider a one-dimensional simple harmonic oscillator. Starting with the 
SchrOdinger equation for the state vector, derive the SchrOdinger equation 
for the momentum-space wave function. (Make sure to distinguish the oper
ator p from the eigenvalue p'.) Can you guess the energy eigenfunctions in 
momentum space? 

2.16 Consider a function, known as the correlation function, defined by 

C(t) = (x(t)x(O)), 

where x(t) is the position operator in the Heisenberg picture. Evaluate the correla
tion function explicitly for the ground state of a one-dimensional simple harmonic 
oscillator. 



1 52 Chapter 2 Quantum Dynamics 

2.17 Consider again a one-dimensional simple harmonic oscillator. Do the following 
algebraically-that is, without using wave functions. 

(a) Construct a linear combination of \0) and \ 1 ) such that (x) is as large as possi
ble. 

(b) Suppose the oscillator is in the state constructed in (a) at t = 0. What is the state 
vector for t >  0 in the SchrOdinger picture? Evaluate the expectation value (x) 
as a function of time for t > 0, using (i) the Schrodinger picture and (ii) the 
Heisenberg picture. 

(c) Evaluate ( ( b.x )2) as a function of time using either picture. 

2.18 Show that for the one-dimensional simple harmonic oscillator, 

(0\eikx \0) = exp[ -k2 (O\x2 \0) /2], 

where x is the position operator. 
2.19 A coherent state of a one-dimensional simple harmonic oscillator is defined to be 

an eigenstate of the (non-Hermitian) annihilation operator a: 

a \A) = A\A) , 

where A is, in general, a complex number. 

(a) Prove that 

is a normalized coherent state. 

(b) Prove the minimum uncertainty relation for such a state. 

(c) Write \A) as 

00 

\A) = Lf(n) \n ) . 
n=O 

Show that the distribution of \ f(n) \2 with respect to n is of the Poisson form. 
Find the most probable value of n, and hence of E. 

(d) Show that a coherent state can also be obtained by applying the translation 
(finite-displacement) operator e-iplfn (where p is the momentum operator and 
l is the displacement distance) to the ground state. (See also Gottfried 1966, 
262-64.) 

2.20 Let 

where a± and al are the annihilation and creation operators of two independent 
simple harmonic oscillators satisfying the usual simple harmonic oscillator com
mutation relations. Prove 
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2.21 Derive the normalization constant en in (2.5.28) by deriving the orthogonality rela
tionship (2.5.29) using generating functions. Start by working out the integral 

100 
2 

I =  -oo g(x, t)g(x,s)e-x dx, 

and then consider the integral again with the generating functions in terms of series 
with Hermite polynomials. 

2.22 Consider a particle of mass m subject to a one-dimensional potential of the follow
ing form: 

(a) What is the ground-state energy? 

for x > 0 

for x < 0. 

(b) What is the expectation value (x2) for the ground state? 

2.23 A particle in one dimension is trapped between two rigid walls: 

V(x) = {0
• 00, 

for 0 < x < L 
for x < O,x > L.  

At t = 0 it is known to be  exactly at x = L/2 with certainty. What are the relative 
probabilities for the particle to be found in various energy eigenstates? Write down 
the wave function for t � 0. (You need not worry about absolute normalization, 
convergence, and other mathematical subtleties.) 

2.24 Consider a particle in one dimension bound to a fixed center by a 8-function poten
tial of the form 

V(x) = -vo8(x), (vo real and positive). 

Find the wave function and the binding energy of the ground state. Are there excited 
bound states? 

2.25 A particle of mass m in one dimension is bound to a fixed center by an attractive 
8-function potential: 

V(x) = -A.8(x), (A. > 0). 

At t = 0, the potential is suddenly switched off (that is, V = 0 for t > 0). Find the 
wave function for t > 0. (Be quantitative! But you need not attempt to evaluate an 
integral that may appear.) 

2.26 A particle in one dimension ( -oo < x < oo) is subjected to a constant force deriv
able from 

v = Ax,  (A. > 0). 

(a) Is the energy spectrum continuous or discrete? Write down an approximate 
expression for the energy eigenfunction specified by E. Also sketch it crudely. 
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(b) Discuss briefly what changes are needed if V is replaced by 

v = A. lx l -

2.27 Derive an expression for the density of free-particle states in two dimensions, nor
malized with periodic boundary conditions inside a box of side length L. Your 
answer should be written as a function of k (or E) times dEd¢, where ¢ is the polar 
angle that characterizes the momentum direction in two dimensions. 

2.28 Consider an electron confined to the interior of a hollow cylindrical shell whose 
axis coincides with the z-axis. The wave function is required to vanish on the inner 
and outer walls, p = Pa and Pb, and also at the top and bottom, z = 0 and L. 
(a) Find the energy eigenfunctions. (Do not bother with normalization.) Show that 

the energy eigenvalues are given by 

Elm• � ( 2�.) [ k;, +G)'] (I � 1 , 2, 3, . . .  , m � 0, 1 , 2, . . .  ), 

where kmn is the nth root of the transcendental equation 

(b) Repeat the same problem when there is a uniform magnetic field B = Bz for 
0 < p < Pa · Note that the energy eigenvalues are influenced by the magnetic 
field even though the electron never "touches" the magnetic field. 

(c) Compare, in particular, the ground state of the B = 0 problem with that of 
the B =f. 0 problem. Show that if we require the ground-state energy to be 
unchanged in the presence of B, we obtain "flux quantization" 

2 27iNhc 
lipa B = , (N = 0, ± 1, ±2, . . .  ). 

e 

2.29 Consider a particle moving in one dimension under the influence of a potential 
V(x). Suppose its wave function can be written as exp[i S(x , t)jh] . Prove that S(x , t) 
satisfies the classical Hamilton-Jacobi equation to the extent that h can be regarded 
as small in some sense. Show how one may obtain the correct wave function for 
a plane wave by starting with the solution of the classical Hamilton-Jacobi equa
tion with V (x) set equal to zero. Why do we get the exact wave function in this 
particular case? 

2.30 Using spherical coordinates, obtain an expression for j for the ground and excited 
states of the hydrogen atom. Show, in particular, that for mz =f. 0 states, there is a 
circulating flux in the sense that j is in the direction of increasing or decreasing ¢, 
depending on whether mz is positive or negative. 

2.31 Derive (2.6. 16) and obtain the three-dimensional generalization of (2.6. 16). 

2.32 Define the partition function as 

Z = J d3x' K(x' , t ;x' ,O) i.a=it/l h 
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as in (2.6.20)-(2.6.22). Show that the ground-state energy is obtained by taking 

({3 --+ 00 ). 

Illustrate this for a particle in a one-dimensional box. 

2.33 The propagator in momentum space analogous to (2.6.26) is given by (p" , t lp' , to ) .  
Derive an explicit expression for (p", t !p', to) for the free-particle case. 

2.34 (a) Write down an expression for the classical action for a simple harmonic oscil
lator for a finite time interval. 

(b) Construct (xn , tn /Xn-1 ,  tn- 1 )  for a simple harmonic oscillator using Feynman 's 
prescription for tn - tn-1  = /::it small. Keeping only terms up to order (/::it f, 
show that i t  is  in complete agreement with the t- to --+ 0 limit of the propagator 
given by (2.6.26). 

2.35 State the Schwinger action principle (see Finkelstein 1973, p. 155). Obtain the 
solution for (x2t2 !x1 t1 } by integrating the Schwinger principle and compare it with 
the corresponding Feynman expression for (x2t2 /x1 t1 } .  Describe the classical limits 
of these two expressions. 

2.36 Show that the wave-mechanical approach to the gravity-induced problem discussed 
in Section 2.7 also leads to phase-difference expression (2.7. 17). 

2.37 (a) Verify (2.7.25) and (2.7.27). 

(b) Verify continuity equation (2. 7 .30) with j given by (2. 7.3 1 ). 

2.38 Consider the Hamiltonian of a spinless particle of charge e. In the presence of a 
static magnetic field, the interaction terms can be generated by 

eA 
Poperator --+ Poperator - -, 

c 

where A is the appropriate vector potential. Suppose, for simplicity, that the mag
netic field B is uniform in the positive z-direction. Prove that the above prescription 
indeed leads to the correct expression for the interaction of the orbital magnetic 
moment (ej2mc)L with the magnetic field B. Show that there is also an extra term 
proportional to B2(x2 + y2), and comment briefly on its physical significance. 

2.39 An electron moves in the presence of a uniform magnetic field in the z-direction 
(B = Bz). 

(a) Evaluate 

where 

eAx 
Dx = Px - -- , 

c 
eAy Dy = py - - · 

c 

(b) By comparing the Hamiltonian and the commutation relation obtained in 
(a) with those of the one-dimensional oscillator problem, show how we can 
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immediately write the energy eigenvalues as 

Ek n = 1i
2k2 

+
( /eB /1i ) (n + �) . 

' 2m me 2 

where 1ik is the continuous eigenvalue of the Pz operator and n is a nonnegative 
integer including zero. 

2.40 Consider the neutron interferometer. 

p = h!A. 
:::·. · .. . . Interference region � .. 

Prove that the difference in the magnetic fields that produce two successive maxima 
in the counting rates is given by 

4n1ic D.B = ---- , 
/e /gnA.l 

where gn(= - 1 .91)  is the neutron magnetic moment in units of -e1ij2mnc. (If 
you had solved this problem in 1967, you could have published your solution in 
Physical Review Letters !) 



CHAPTER 

3 Theory of Angular Momentum 

This chapter is concerned with a systematic treatment of angular momentum 
and related topics. The importance of angular momentum in modern physics can 
hardly be overemphasized. A thorough understanding of angular momentum is es
sential in molecular, atomic, and nuclear spectroscopy; angular-momentum con
siderations play an important role in scattering and collision problems, as well as 
in bound-state problems. Furthermore, angular-momentum concepts have impor
tant generalizations-isospin in nuclear physics, SU(3), SU(2)®U(l ) in particle 
physics, and so forth. 

3.1 • ROTATIONS AND ANGULAR-MOMENTUM COMMUTATION 
RELATIONS 

Finite versus Infinitesimal Rotations 

We recall from elementary physics that rotations about the same axis commute, 
whereas rotations about different axes do not. For instance, a 30° rotation about 
the z-axis followed by a 60° rotation about the same z-axis is obviously equivalent 
to a 60° rotation followed by a 30° rotation, both about the same axis. However, let 
us consider a 90° rotation about the z-axis, denoted by Rz(n /2), followed by a 90° 
rotation about the x-axis, denoted by Rx(n /2); compare this with a 90° rotation 
about the x-axis followed by a 90° rotation about the z-axis. The net results are 
different, as we can see from Figure 3 . 1 .  

Our first basic task i s  to work out quantitatively the manner in  which rotations 
about different axes fail to commute. To this end, we first recall how to represent 
rotations in three dimensions by 3 x 3 real, orthogonal matrices. Consider a vector 
V with components Vx , Vy,  and Vz .  When we rotate, the three components become 
some other set of numbers, v;, v;, and v; . The old and new components are 
related via a 3 x 3 orthogonal matrix R: 

(3. 1 . 1a) 

(3 . 1 . lb) 
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FIGURE 3.1 Example to illustrate the noncommutativity of finite rotations. 

where the superscript T stands for a transpose of a matrix. It is a property of 
orthogonal matrices that 

J y2 + y2 + y2 = J V'2 + V'2 + V'2 
X y Z X Y Z (3 . 1 .2) 

is automatically satisfied. 
To be definite, we consider a rotation about the z-axis by angle ¢. The conven

tion we follow throughout this book is that a rotation operation affects a physical 
system itself, as in Figure 3. 1 ,  while the coordinate axes remain unchanged. The 
angle ¢ is taken to be positive when the rotation in question is counterclockwise 
in the .xy-plane, as viewed from the positive z-side. If we associate a right-handed 
screw with such a rotation, a positive ¢ rotation around the z-axis means that the 
screw is advancing in the positive z-direction. With this convention, we easily 
verify that 

- sin¢ 0) 
co�¢ � . (3. 1 .3) 

Had we adopted a different convention, in which a physical system remained fixed 
but the coordinate axes rotated, this same matrix with a positive ¢ would have rep
resented a clockwise rotation of the x- and y-axes, when viewed from the positive 
z-side. It is obviously important not to mix the two conventions ! Some authors 
distinguish the two approaches by using the term "active rotations" for physical 
systems rotated and "passive rotations" for coordinate axes rotated. 
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We are particularly interested in an infinitesimal form of Rz : 

82 
0 1 - - -8 

2 
Rz(8) = 82 8 1 - - 0 

2 
0 0 1 

where terms of order 83 and higher are ignored. Likewise, we have 

Rx(e) � r: 0 0 
82 

1 - - -e ) 
2 

82 8 1 - 2 

and 
82 

1 - -
2 

0 8 
Ry(8) = 0 1 0 

-8 0 
82 

1 - -
2 
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(3 . 1 .4) 

(3 . 1 .5a) 

(3 . 1 .5b) 

which may be read from (3 . 1 .4) by cyclic permutations of x, y, z-that is, x -+  y,  
y -+ z, z -+ x .  Compare now the effect of a y-axis rotation followed by an x-axis 
rotation with that of an x-axis rotation followed by a y-axis rotation. Elementary 
matrix manipulations lead to 

82 
1 - - 0 8 

2 
Rx(8)Ry(8) = 82 82 

1 - - -8 (3 . 1 .6a) 
2 

-8 8 1 - 82 

and 
82 82 1 - - 8 
2 

82 Ry(8)Rx(8) = 0 1 - - -8 
2 

(3 . 1 .6b) 

-8 8 1 - 82 

From (3 . 1 .6a) and (3 . 1 .6b) we have the first important result: Infinitesimal ro
tations about different axes do commute if terms of order 82 and higher are ig
nored.* The second and even more important result concerns the manner in which 

*There is a familiar example of this in elementary mechanics. The angular-velocity vector w 
that characterizes an infinitesimal change in rotation angle during an infinitesimal time interval 
follows the usual rule of vector addition, including commutativity of vector addition. However, 
we cannot ascribe a vectorial property to a finite angular change. 
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rotations about different axes fail to commute when terms of order s2 are kept: 

Rx(s)Ry(s) - Ry(s)Rx(s) �) (3 . 1 .7) 

where all terms of order higher than s2 have been ignored throughout this deriva
tion. We also have 

1 = Rany(O), (3 . 1 .8) 

where any stands for any rotation axis. Thus the final result can be written as 

(3 . 1 .9) 

This is an example of the commutation relations between rotation operations 
about different axes, which we will use later in deducing the angular-momentum 
commutation relations in quantum mechanics. 

I nfinitesimal Rotations in Quantum Mechanics 

So far we have not used quantum-mechanical concepts. The matrix R is just a 
3 x 3 orthogonal matrix acting on a vector V written in column matrix form. We 
must now understand how to characterize rotations in quantum mechanics. 

Because rotations affect physical systems, the state ket corresponding to a ro
tated system is expected to look different from the state ket corresponding to the 
original unrotated system. Given a rotation operation R, characterized by a 3 x 3 
orthogonal matrix R, we associate an operator :D(R) in the appropriate ket space 
such that 

la)R = :D(R) Ia) , (3 . 1 . 10) 

where Ia) R and Ia) stand for the kets of the rotated and original system, respec
tively.* Note that the 3 x 3 orthogonal matrix R acts on a column matrix made 
up of the three components of a classical vector, while the operator :D(R) acts 
on state vectors in ket space. The matrix representation of :D(R), which we will 
study in great detail in the subsequent sections, depends on the dimensionality N 
of the particular ket space in question. For N = 2, which is appropriate for de
scribing a spin � system with no other degrees of freedom, :D(R) is represented 
by a 2 x 2 matrix; for a spin 1 system, the appropriate representation is a 3 x 3 
unitary matrix, and so on. 

To construct the rotation operator :D(R), it is again fruitful to examine first 
its properties under an infinitesimal rotation. We can almost guess how we must 
proceed by analogy. In both translations and time evolution, which we studied in 

*The symbol 9J stems from the German word Drehung, meaning "rotation." 
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Sections 1 .  6 and 2. 1 ,  respectively, the appropriate infinitesimal operators could be 
written as 

U5 = 1 - iG8 
with a Hermitian operator G. Specifically, 

G ---+ Px 8 ---+ dx' fi ' 

(3 . 1 . 1 1) 

(3 . 1 . 12) 
for an infinitesimal translation by a displacement dx' in the x-direction, and 

H G ---+ - 8 ---+ dt fi ' (3. 1 . 13) 
for an infinitesimal time evolution with time displacement dt. We know from clas
sical mechanics that angular momentum is the generator of rotation in much the 
same way as momentum and Hamiltonian are the generators of translation and 
time evolution, respectively. We therefore define the angular-momentum operator 
Jk in such a way that the operator for an infinitesimal rotation around the kth axis 
by angle d¢ can be obtained by letting 

A G ---+ - 8 ---+ d"' fi ' 'P (3. 1 . 14) 
in (3. 1 . 1 1) . With Jk taken to be Hermitian, the infinitesimal-rotation operator is 
guaranteed to be unitary and reduces to the identity operator in the limit d¢ ---+ 0. 
More generally, we have 

(J . ii) /D(ii,d¢) = 1 - i h d¢ (3 . 1 . 15) 
for a rotation about the direction characterized by a unit vector ii by an infinitesi
mal angle d ¢. 

We stress that in this book we do not define the angular-momentum operator to 
be x x p. This is important because spin angular momentum, to which our general 
formalism also applies, has nothing to do with Xi and p j .  Put in another way, in 
classical mechanics one can prove that the angular momentum defined to be x x p 
is the generator of a rotation; in contrast, in quantum mechanics we define J such 
that the operator for an infinitesimal rotation takes from (3 . 1 . 15). 

A finite rotation can be obtained by compounding successively infinitesimal 
rotations about the same axis. For instance, if we are interested in a finite rotation 
about the z-axis by angle ¢, we consider 

(3. 1 . 16) 
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In order to obtain the angular-momentum commutation relations, we need one 
more concept. As we remarked earlier, for every rotation R represented by a 3 x 3 
orthogonal matrix R, there exists a rotation operator :D(R) in the appropriate ket 
space. We further postulate that :D(R) has the same group properties as R: 

Identity: R · 1 = R => :D(R) · 1 = :D(R) 
Closure: R1R2 = R3 => :D(RI ):D(R2) = :D(R3) 

Inverses: RR-1 = 1 => :D(R):D-1 (R) = 1 

R-1 R = 1 => :D-1 (R):D(R) = 1 
Associativity : R1 (R2R3) = (R1 R2)R3 = R1 R2R3 

=> :D(RI ) [:D(R2):D(R3)] 
= [:D(R1 ):D(R2)]:D(R3) 
= :D(R1 ):D(R2):D(R3) . 

(3. 1 . 17a) 

(3 . 1 . 1 7b) 

(3 . 1 . 17c) 

(3 . 1 . 17d) 

Let us now return to the fundamental commutation relations for rotation op
erations (3 . 1 .9) written in terms of the R matrices. Its rotation operator analogue 
would read (

1 _ 
i lx8 

_ 
f}82) (

1 -
i ly8 

_ 
lff82 ) 

1i 21i2 1i 21i2 

_ 
(

1 -
i ly8 

_ 
lff82 ) (

1 -
i lx8 

_ 
f}82 ) = 1 _ 

i lz82 
- 1 . 1i 21i2 1i 21i2 1i 

(3. 1 . 1 8) 

Terms of order 8 automatically drop out. Equating terms of order 82 on both sides 
of (3 . 1 . 1 8), we obtain 

(3 . 1 . 19) 

Repeating this kind of argument with rotations about other axes, we obtain 

(3 . 1 .20) 
known as the fundamental commutation relations of angular momentum. 

In general, when the generators of infinitesimal transformations do not com
mute, the corresponding group of operations is said to be non-Abelian. Because 
of (3 . 1 .20), the rotation group in three dimensions is non-Abelian. In contrast, the 
translation group in three dimensions is Abelian because Pi and p j commute even 
with i =J j .  

We emphasize that in obtaining the commutation relations (3 . 1 .20), we have 
used the following two concepts: 

1 .  h is the generator of rotation about the kth axis. 
2. Rotations about different axes fail to commute. 
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It is no exaggeration to say that commutation relations (3 . 1 .20) summarize in a 
compact manner all the basic properties of rotations in three dimensions. 

3.2 • SPIN ! SYSTEMS AND F INITE ROTATIONS 

Rotation Operator for Spin ! 
The lowest number, N, of dimensions in which the angular-momentum commu
tation relations (3 . 1 .20) are realized is N = 2. The reader has already checked, in 
Problem 1 .8 of Chapter 1 ,  that the operators defined by 

Sx = (�) {( J+) (- J ) + ( I- } (+ J)} , 
Sy = 

c;) {-( J+) (- J) + ( J- ) (+ J)} , Sz = (�) {( J+) (+J) - ( J -) (- J)} 
(3.2. 1 )  

satisfy commutation relations (3. 1 .20) with Jk replaced b y  Sk . It is not a pri
ori obvious that nature takes advantage of the lowest-dimensional realization of 
(3 . 1 .20), but numerous experiments-from atomic spectroscopy to nuclear mag
netic resonance-suffice to convince us that this is in fact the case. 

Consider a rotation by a finite angle ¢ about the z-axis. If the ket of a spin ! 
system before rotation is given by Ja) , the ket after rotation is given by 

(3.2.2) 

with (-iSz¢) :Dz (</J) = exp -h- . 
(3.2.3) 

To see that this operator really rotates the physical system, let us look at its effect 
on (Sx } . Under rotation this expectation value changes as follows: 

(3 .2.4) 

We must therefore compute ( iSz¢) (-iSz¢) exp -h- Sx exp -h- . (3.2.5) 

For pedagogical reasons we evaluate this in two different ways. 
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Derivation 1: Here we use the specific form of Sx given by (3.2. 1) . We then 
obtain, for (3.2.5), 

(�) exp cs�¢ ) {( 1+) (- \ ) + ( \-) (+J )} exp ( -i:z¢ ) 
= (�) (ei¢/2 1+) ( - l ei¢/2 + e-i¢/2 1 -) (+ le-i¢/2) (3.2.6) 
= � [{( I +) (- I ) + ( I -) (+ I )} cos¢ + i { ( I+) (- I ) - ( I -) (+ I)}  sin¢] 

= Sx cos ¢ - Sy sin¢. 

Derivation 2: Alternatively, we may use formula (2.3 .47) to evaluate (3.2.5): ( iSz¢) (- iSz¢) ( i¢) exp -1i- Sx exp -1i- = Sx + h � 
inSy 

= Sx [ 1 -�� + · · · J - Sy [ ¢ - �� + · · · J 
= Sx cos ¢ - Sy sin¢. 

(3 .2.7) 
Notice that in derivation 2 we used only the commutation relations for Si , so this 
method can be generalized to rotations of systems with angular momentum higher 
than � -

For spin � , both methods give 

(Sx ) --+ R (a iSx lah = (Sx ) cos ¢ - (Sy ) sin¢, (3.2.8) 
where the expectation value without subscripts is understood to be taken with 
respect to the (old) unrotated system. Similarly, 

(Sy ) --+ (Sy )  cos ¢ + (Sx ) sin¢. (3 .2.9) 
As for the expectation value of Sz , there is no change because Sz commutes with 
Dz(¢ ) : 

(3.2. 10) 
Relations (3.2.8), (3 .2.9), and (3.2. 10) are quite reasonable. They show that ro
tation operator (3.2.3), when applied to the state ket, does rotate the expectation 
value of S around the z-axis by angle ¢. In other words, the expectation value of 
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the spin operator behaves as though it were a classical vector under rotation: 

(Sk ) ---+ LRkz (Sz ) ,  (3.2. 1 1) 
l 

where Rkz are the elements of the 3 x 3 orthogonal matrix R that specifies the 
rotation in question. It should be clear from our derivation 2 that this property is 
not restricted to the spin operator of spin � systems. In general, we have 

( Jk) ---+ LRkz (Jz } (3.2. 12) 
l 

under rotation, where Jk are the generators of rotations satisfying the angular
momentum commutation relations (3. 1 .20). Later we will show that relations of 
this kind can be further generalized to any vector operator. 

So far everything has been as expected. But now, be prepared for a surprise ! 
We examine the effect of rotation operator (3.2.3) on a general ket, 

Ia) = l+) (+la) + 1- ) (- la) , (3.2. 13)  

a little more closely. We see that 

(3.2. 14) 

The appearance of the half-angle ¢/2 here has an extremely interesting conse
quence. 

Let us consider a rotation by 2n . We then have 

la)Rz (2n) ---+ - Ia) . (3 .2. 15) 

So the ket for the 360° rotated state differs from the original ket by a minus sign. 
We would need a 720° ( ¢ = 4n) rotation to get back to the same ket with a plus 
sign. Notice that this minus sign disappears for the expectation value ofS, because 
S is sandwiched by Ia) and (a l ,  both of which change sign. Will this minus sign 
ever be observable? We will give the answer to this interesting question after we 
discuss spin precession once again. 

Spin Precession Revisited 

We now treat the problem of spin precession, already discussed in Section 2. 1 ,  
from a new point of view. We recall that the basic Hamiltonian of the problem is 
given by 

where 

H = - (-
e
-) 

S · B = wSz , 
mec 

l e i B 
(j) = -- . 

mec 

(3.2 . 16) 

(3 .2. 17) 
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The time-evolution operator based on this Hamiltonian is given by 

(-iHt ) (-iSz(J)t ) 
'U(t ,O) = exp -h- = exp 1i 

. (3.2. 18) 

Comparing this equation with (3 .2.3 ), we see that the time-evolution operator here 
is precisely the same as the rotation operator in (3.2.3) with ¢ set equal to (J)t. In 
this manner we see immediately why this Hamiltonian causes spin precession. 
Paraphrasing (3.2.8), (3 .2.9), and (3 .2. 10), we obtain 

(Sx )t = (Sx )t=O COS (J)t - (Sy ) t=o sin (J)t, 
(Sy ) t = (Sy ) t=O COS(J)t + (Sx )t=O sin (J)t, 

(Sz } t = (Sz ) t=O · 
After t = 2n I (J), the spin returns to its original direction. 

(3.2. 19a) 

(3.2. 19b) 

(3.2. 19c) 

This set of equations can be used to discuss the spin precession of a muon, 
an electron-like particle that is, however, 210  times as heavy. The muon magnetic 
moment can be determined from other experiments-for example, the hyperfine 
splitting in muonium, a bound state of a positive muon and an electron-to be 
e1il2mlkc , just as expected from Dirac's relativistic theory of spin ! particles. 
(We will here neglect very small corrections that arise from quantum field theory 
effects). Knowing the magnetic moment, we can predict the angular frequency 
of precession. So (3.2. 19) can be, and in fact has been, checked experimentally. 
(See Figure 2. 1 .) In practice, as the external magnetic field causes spin precession, 
the spin direction is analyzed by taking advantage of the fact that electrons from 
muon decay tend to be emitted preferentially in the direction opposite to the muon 
spin. 

Let us now look at the time evolution of the state ket itself. Assuming that the 
initial (t = 0) ket is given by (3.2. 13), we obtain, after time t, 

la, to = O; t) = e-iwt/2 1+) (+1a) + e+iwt/2 1 -) (- la) . (3.2.20) 

Expression (3.2.20) acquires a minus sign at t = 2n I (J), and we must wait until 
t = 4ni(J) to get back to the original state ket with the same sign. To sum up, the 
period for the state ket is twice as long as the period for spin precession: 

2n 
!'precession = - , 

(J) 
4n 

istateket = - . (J) 

Neutron Interferometry Experiment to Study 21r Rotations 

(3.2.21a) 

(3.2.2 lb) 

We now describe an experiment performed to detect the minus sign in (3.2. 15). 
Quite clearly, if every state ket in the universe is multiplied by a minus sign, there 
will be no observable effect. The only way to detect the predicted minus sign 
is to make a comparison between an unrotated state and a rotated state. As in 
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FIGURE 3.2 Experiment to study the predicted minus sign under a 2n rotation. 

gravity-induced quantum interference, discussed in Section 2.7, we rely on the 
art of neutron interferometry to verify this extraordinary prediction of quantum 
mechanics. 

A nearly monoenergetic beam of thermal neutrons is split into two parts-path 
A and path B; see Figure 3.2. Path A always goes through a magnetic-field-free 
region; in contrast, path B enters a small region where a static magnetic field is 
present. As a result, the neutron state ket going via path B suffers a phase change 
e'F i wT 12 , where Tis the time spent in the B i= 0 region and w is the spin-precession 
frequency 

gneB W = -- , (gn :=::: - 1 .9 1 )  mpc (3.2.22) 

for the neutron with a magnetic moment of gnenj2mpc. as we can see if we 
compare this with (3 .2 . 17), which is appropriate for the electron with magnetic 
moment en j2mec. When path A and path B meet again in the interference region 
of Figure 3 .2, the amplitude of the neutron arriving via path B is 

(3.2.23) 
while the amplitude of the neutron arriving via path A is CI , independent of B. 
So the intensity observable in the interference region must exhibit a sinusoidal 
variation (=f wT ) 

cos -2- + 8  ' (3.2.24) 

where 8 is the phase difference between CI and c2 (B = 0). In practice, T, the 
time spent in the B i= 0 region, is fixed but the precession frequency w is varied 
by changing the strength of the magnetic field. The intensity in the interference 
region as a function of B is predicted to have a sinusoidal variation. If we call �B 
the difference in B needed to produce successive maxima, we can easily show that 

where l is the path length. 

4nnc �B - -- egn't..l '  (3.2.25) 
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In deriving this formula we used the fact that a 4n rotation is needed for the 
state ket to return to the original ket with the same sign, as required by our formal
ism. If, on the other hand, our description of spin ! systems were incorrect and 
the ket were to return to its original ket with the same sign under a 2n rotation, 
the predicted value for L:l.B would be just one-half of (3 .2.25). 

Two different groups have conclusively demonstrated experimentally that pre
diction (3.2.25) is correct to an accuracy of a fraction of a percent.* This is an
other triumph of quantum mechanics. The nontrivial prediction (3.2. 15) has been 
experimentally established in a direct manner. 

Pauli Two-Component Formalism 

Manipulations with the state kets of spin ! systems can be conveniently carried 
out using the two-component spinor formalism introduced by W. Pauli in 1926. 
In Section 1 .3 we learned how a ket (bra) can be represented by a column (row) 
matrix; all we have to do is arrange the expansion coefficients in terms of a certain 
specified set of base kets into a column (row) matrix. In the spin ! case we have 

\ +) � (6) = X+ 
(+ \ � ( 1 , 0) = x! 

\ -) � (�) = X-

(- \  � co, 1 )  = x! 
(3 .2.26) 

for the base kets and bras and 

\a) = \+) (+\a) + \-) (- \a) � c�:�o (3 .2.27a) 

and 

(a \ = (a \+) (+\ + (a \-) (- \  � ( (a \+) , (a \- )) (3 .2.27b) 

for an arbitrary state ket and the corresponding state bra. Column matrix (3.2.27a) 
is referred to as a two-component spinor and is written as 

= ( (+ \a)) = (c+) X (- \a) c_ 

where c+ and c_ are, in general, complex numbers. For x t we have 

x t = ((a \+) ,  (a \-)) = (c�, c:':_) . 

(3.2.28) 

(3.2.29) 

The matrix elements (±\ Sk i+) and (± \Sk \ -) ,  apart from h/2, are to be set 
equal to those of 2 x 2 matrices O'k , known as the Pauli matrices. We identify 

(3.2.30) 

*H. Rauch et al., Phys. Lett. 54A (1975) 425; S. A. Werner et al., Phys. Rev. Lett. 35 (1975) 1053. 
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We can now write the expectation value (Sk ) in terms of X and ak :  

L (a la') (a' I Sk Ia") (a" Ia )  
a'=+,- a"=+,-
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(3.2.3 1 )  

where the usual rule of matrix multiplication i s  used in the last line. Explicitly, we 
see from (3 .2. 1) ,  together with (3 .2.30), that 

al = (� �) . a2 = (� -�) . a3 = (� -�) . 
where the subscripts 1 ,  2, and 3 refer to x, y ,  and z , respectively. 

We record some properties of the Pauli matrices. First, 

ajOj + ajai = 0, fori f. j ,  

(3.2.32) 

(3.2.33a) 

(3 .2.33b) 

where the right-hand side of (3.2.33a) is to be understood as the 2 x 2 identity 
matrix. These two relations are, of course, equivalent to the anticommutation re
lations 

(3 .2.34) 

We also have the commutation relations 

(3.2.35) 

which we see to be the explicit 2 x 2 matrix realizations of the angular-momentum 
commutation relations (3 . 1 .20). Combining (3.2.34) and (3.2.35), we can obtain 

Notice also that 

at - a· i - z , 
det(ai) = - 1 ,  

Tr(ai) = 0. 

(3 .2.36) 

(3.2.37a) 

(3.2.37b) 

(3.2.37c) 

We now consider u · a, where a is a vector in three dimensions. This is actually 
to be understood as a 2 x 2 matrix. Thus 

(3.2.38) 
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There is also a very important identity, 

(u · a) (u ·  b) = a ·  b+ iu · (a x b). (3.2.39) 

To prove this all we need are the anticommutation and commutation relations, 
(3.2.34) and (3.2.35), respectively: 

L:a-jaj L:a-kbk = I:  I: (� {O"j ,O"k} + � [O"j , O"k]) ajbk j k j k 
= LL(8jk + iBjkWl) ajbk j k 
= a ·b+ iu · (a x b). 

If the components of a are real, we have 

(a · a)2 = la l2, 
where Ia I is the magnitude of the vector a. 
Rotations in the Two-Component Formalism 

(3.2.40) 

(3 .2.41 )  

Let us  now study the 2 x 2 matrix representation of the rotation operator !>(:fi, <P ) .  
We have 

Using 

(-iS · :fi¢ ) . (-iu · :fi<P ) exp h = exp 
2 

. 

(<r · :fi)n = A 

{ 1 for n even, 
<T • n for n odd, 

which follows from (3.2.41 ), we can write 

(-iu· :fi<P) _ 
[ (u · :fi)2 (¢)2 (u · :fi)4 (¢)4 ] 

exp - 1 - - + - - · · · 

2 2 !  2 4 !  2 [ <P (u · :fi)3 (¢) 3 ] - i  (<r · :fi)2 -
3 !  2 + · · ·  

= 1 cos ( �) - i u · :fi sin ( �) . 
Explicitly, in 2 x 2 form we have 

(3.2.42) 

(3.2.43) 

(3 .2.44) 

(-iu· :fi<P) - ( cos (�) - inz sin (�) (-inx - ny) sin (�) ) 
exp - . 

2 (-inx + ny) sin (�) cos (�) + inz sin (�) 
(3 .2.45) 
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Just as the operator exp(-iS • fi</Jjli) acts on a state ket Ja) , the 2 x 2 matrix 
exp( - i u ·  fi</>/2) acts on a two-component spinor x . Under rotations we change 
X as follows: ( -i <T. fi¢) 

X �  exp 2 X ·  (3 .2.46) 

On the other hand, the O"k 's themselves are to remain unchanged under rotations. 
So strictly speaking, despite its appearance, u is not to be regarded as a vector; 
rather, it is x tux that obeys the transformation property of a vector: 

X t O"k X � L Rkt X t 0"[ X 0 

l 

An explicit proof of this may be given using 

and so on, which is the 2 x 2 matrix analogue of (3.2.6). 

(3 .2.47) 

(3.2.48) 

In discussing a 2:rr rotation using the ket formalism, we have seen that a spin 
! ket Ia) goes into - Ia) . The 2 x 2 analogue of this statement is ( -iO"· fi¢) I exp = - 1 , 2 ¢= 2:rr 

which is evident from (3.2.44). 

for any fi, (3.2.49) 

As an instructive application of rotation matrix (3.2.45), let us see how we can 
construct an eigenspinor of u · fi with eigenvalue + 1 , where fi is a unit vector in 
some specified direction. Our object is to construct x satisfying 

u ·  fix = x . (3.2.50) 
In other words, we look for the two-component column matrix representation of 
IS · fi; +) defined by 

S · fi lS · fi; +) = (�) iS ·  fi; +) . (3.2.5 1) 

Actually this can be solved as a straightforward eigenvalue problem (see Prob
lem 1 .9 in Chapter 1 ), but here we present an alternative method based on rotation 
matrix (3.2.45). 

Let the polar and the azimuthal angles that characterize fi be fJ and a, respec
tively. We start with (6) , the two-component spinor that represents the spin-up 
state. Given this, we first rotate about the y-axis by angle {3 ;  we subsequently ro
tate by angle a about the z-axis. We see that the desired spin state is then ob
tained; see Figure 3 .3 . In the Pauli spinor language, this sequence of operations 
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FIGURE 3.3 Construction of u · fi  eigenspinor. 

First 

is equivalent to applying exp(-ia2f3/2) to (6 ) followed by an application of 
exp( -ia3aj2). The net result is 

x = [cos ( �) - i CJ3 sin ( �) J [cos ( �) - i a2 sin ( �) J ( �) 
= 
cos ('f) � i sin (I) 

= 
(cos ( 4) e-1•12) 

, 
sin ( �) eza/2 

0 ) (cos ( �) - sin ( �) ) 1 

cos ( �) + i sin ( �) sin ( �) cos ( �) ( 0) 
(3.2.52) 

which is in complete agreement with Problem 1 .9 of Chapter 1 if we realize that a 
phase common to both the upper and the lower components is devoid of physical 
significance. 

3.3 • S0(3), SU(2), AND EULER ROTATIONS 

Orthogonal Group 

We will now study a little more systematically the group properties of the opera
tions with which we have been concerned in the previous two sections. 

The most elementary approach to rotations is based on specifying the axis of 
rotation and the angle of rotation. It is clear that we need three real numbers to 
characterize a general rotation: the polar and the azimuthal angles of the unit vee-
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tor ft taken in the direction of the rotation axis and the rotation angle ¢ itself. 
Equivalently, the same rotation can be specified by the three Cartesian compo
nents of the vector ft¢. However, these ways of characterizing rotation are not so 
convenient from the point of view of studying the group properties of rotations. 
For one thing, unless ¢ is infinitesimal or ft is always in the same direction, we 
cannot add vectors of the form ft¢ to characterize a succession of rotations. It is 
much easier to work with a 3 x 3 orthogonal matrix R because the effect of suc
cessive rotations can be obtained just by multiplying the appropriate orthogonal 
matrices. 

How many independent parameters are there in a 3 x 3 orthogonal matrix? A 
real 3 x 3 matrix has 9 entries, but we have the orthogonality constraint 

(3 .3 . 1 )  

This corresponds to 6 independent equations because the product RRT , being the 
same as RT R, is a symmetrical matrix with 6 independent entries. As a result, 
there are 3 (that is, 9-6) independent numbers in R, the same number we previ
ously obtained by a more elementary method. 

The set of all multiplication operations with orthogonal matrices forms a 
group. By this we mean that the following four requirements are satisfied. 

1 .  The product of any two orthogonal matrices is another orthogonal matrix, 
which is satisfied because 

(3.3 .2) 

2. The associative law holds: 

(3 .3.3) 

3 .  The identity matrix !-physically corresponding to no rotation-defined 
by 

R l = l R = R  (3.3 .4) 

is a member of the class of all orthogonal matrices. 
4. The inverse matrix R-1-physically corresponding to rotation in the oppo

site sense-defined by 

(3.3.5) 

is also a member. 

This group has the name S0(3), where S stands for special, 0 stands for orthog
onal, and 3 stands for three dimensions. Note that only rotational operations are 
considered here, so we have S0(3) rather than 0(3) (which can include the inver
sion operation to be discussed later in Chapter 4). 
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Unitary Unimodular Group 

In the previous section we learned yet another way to characterize an arbitrary 
rotation-that is, to look at the 2 x 2 matrix (3.2.45) that acts on the two
component spin or x .  Clearly, (3.2.45) is unitary. As a result, for the c+ and c_, 
defined in (3.2.28), 

(3.3 .6) 
is left invariant. Furthermore, matrix (3.2.45) is unimodular; that is, its determi
nant is 1 , as will be shown explicitly below. 

We can write the most general unitary unimodular matrix as 

where a and b are complex numbers satisfying the unimodular condition 

We can easily establish the unitary property of (3 .3 .7) as follows: 

t (a* -b) (a b ) U(a ,b) U(a ,b) = b* a -b* a* = 1 , 

(3 .3 .7) 

(3 .3 .8) 

(3.3.9) 
We can readily see that the 2 x 2 matrix (3 .2.45) that characterizes a rotation 

of a spin � system can be written as U (a, b). Comparing (3.2.45) with (3.3 .7), we 
identify 

Re(a) = cos 
( �) , lm(a) = -n2sin 

( �) , 
Re(b) = -nysin 

( �) , lm(b) = -nxsin 
( �) , (3 .3. 10) 

from which the unimodular property of (3 .3 .8) is immediate. Conversely, it is clear 
that the most general unitary unimodular matrix of form (3 .3 .7) can be interpreted 
as representing a rotation. 

The two complex numbers a and b are known as Cayley-Klein parameters. 
Historically, the connection between a unitary unimodular matrix and a rotation 
was known long before the birth of quantum mechanics. In fact, the Cayley-Klein 
parameters were used to characterize complicated motions of gyroscopes in rigid
body kinematics. 

Without appealing to the interpretations of unitary unimodular matrices in 
terms of rotations, we can directly check the group properties of multiplication 
operations with unitary unimodular matrices. Note in particular that 

where the unimodular condition for the product matrix is 

l a1a2 - b1b; l2 + la 1b2 + a;b1 l2 = 1 .  

(3 .3 . 1 1) 

(3.3. 12) 
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For the inverse of U we have 

u-1 (a, b) = U(a*, -b). 
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(3 .3 . 1 3) 

This group is known as SU(2), where S stands for special, U for unitary, and 2 
for dimensionality 2. In contrast, the group defined by multiplication operations 
with general 2 x 2 unitary matrices (not necessarily constrained to be unimodular) 
is known as U(2). The most general unitary matrix in two dimensions has four 
independent parameters and can be written as eiY (with y real) times a unitary 
unimodular matrix: 

U iy ( a = e  -b* 
SU(2) is called a subgroup of U(2). 

y* = y . (3.3 . 14) 

Because we can characterize rotations using both the S0(3) language and the 
SU(2) language, we may be tempted to conclude that the groups S0(3) and SU(2) 
are isomorphic-that is, that there is a one-to-one correspondence between an 
element of S0(3) and an element of SU(2). This inference is not correct. Consider 
a rotation by 2n and another one by 4n . In the S0(3) language the matrices 
representing a 2n rotation and a 4n rotation are both 3 x 3 identity matrices; 
however, in the SU(2) language the corresponding matrices are - 1  times the 2 x 2 
identity matrix and the identity matrix itself, respectively. More generally, U(a, b) 
and U(-a, -b) both correspond to a single 3 x 3 matrix in the S0(3) language. 
The correspondence therefore is two-to-one; for a given R, the corresponding U is 
double-valued. One can say, however, that the two groups are locally isomorphic. 

Euler Rotations 

From classical mechanics the reader may be familiar with the fact that an arbi
trary rotation of a rigid body can be accomplished in three steps known as Euler 
rotations. The Euler rotation language, specified by three Euler angles, provides 
yet another way to characterize the most general rotation in three dimensions. 

The three steps of Euler rotations are as follows. First, rotate the rigid body 
counterclockwise (as seen from the positive z-side) about the z-axis by angle a. 
Imagine now that there is a body y-axis embedded, so to speak, in the rigid body 
such that before the z-axis rotation is carried out, the body y-axis coincides with 
the usual y-axis, referred to as the space-fixed y-axis. Obviously, after the rotation 
about the z-axis, the body y-axis no longer coincides with the space-fixed y-axis; 
let us call the former the y' -axis. To see how all this may appear for a thin disk, 
refer to Figure 3 .4a. We now perform a second rotation, this time about the y'
axis by angle fJ. As a result, the body z-axis no longer points in the space-fixed 
z-axis direction. We call the body-fixed z-axis after the second rotation the z' -axis; 
see Figure 3 .4b. The third and final rotation is about the z' -axis by angle y .  The 
body y-axis now becomes the y" -axis of Figure 3 .4c. In terms of 3 x 3 orthogonal 
matrices, the product of the three operations can be written as 

(3.3 . 15) 
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FIGURE 3.4 Euler rotations. 
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A cautionary remark is in order here. Most textbooks in classical mechanics 
prefer to perform the second rotation (the middle rotation) about the body x-axis 
rather than about the body y-axis [see, for example, Goldstein (2002)] . This con
vention is to be avoided in quantum mechanics for a reason that will become 
apparent in a moment. 

In (3.3 . 15) there appear Ry' and Rz' •  which are matrices for rotations about 
body axes. This approach to Euler rotations is rather inconvenient in quantum 
mechanics because we earlier obtained simple expressions for the space-fixed 
(unprimed) axis components of the S operator, but not for the body-axis com
ponents. It is therefore desirable to express the body-axis rotations we considered 
in terms of space-fixed axis rotations. Fortunately there is a very simple relation: 

(3.3 . 16) 

The meaning of the right-hand side is as follows. First, bring the body y-axis of 
Figure 3 .4a (that is, the y' -axis) back to the original fixed-space y-direction by 
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rotating clockwise (as seen from the positive z-side) about the z-axis by angle 
a ;  then rotate about the y-axis by angle f3 .  Finally, return the body y-axis to the 
direction of the y' -axis by rotating about the fixed-space z-axis (not about the z'
axis ! )  by angle a. Equation (3.3 . 16) tells us that the net effect of these rotations is 
a single rotation about the y' -axis by angle f3 .  

To prove this assertion, let u s  look more closely at the effect of both sides 
of (3 .3. 16) on the circular disc of Figure 3 .4a. Clearly, the orientation of the 
body y-axis is unchanged in both cases-namely, in the y' -direction. Further
more, the orientation of the final body z-axis is the same whether we apply Ry' (fJ) 
or Rz(a)Ry({3)K;1 (a). In both cases the final body z-axis makes a polar angle f3 
with the fixed z-axis (the same as the initial z-axis), and its azimuthal angle, as 
measured in the fixed-coordinate system, is just a. In other words, the final body 
z-axis is the same as the z' -axis of Figure 3 .4b. Similarly, we can prove 

Rz'(Y) = Ry' (f3)Rz(Y )R;,1 ({3). 

Using (3 .3. 16) and (3 .3 . 17), we can now rewrite (3 .3. 15). We obtain 

Rz' (y)Ry'(f3)Rz(a) = Ry'(f3)Rz(y)R;,1 ({3)Ry'(f3)Rz(a) 
= Rz(a)Ry({3)R;1 (a)Rz(y)Rz(a) 
= Rz(a)Ry({3)Rz(y), 

(3 .3 . 17) 

(3 .3 . 1 8) 

where in the final step we used the fact that Rz(Y) and Rz(a) commute. To sum-
marize, 

R(a,{3 ,  y) = Rz(a)Ry({3)Rz(y), (3.3 . 19) 

where all three matrices on the right-hand side refer to fixed-axis rotations. 
Now let us apply this set of operations to spin ! systems in quantum mechan

ics. Corresponding to the product of orthogonal matrices in (3.3 . 1 9), there exists 
a product of rotation operators in the ket space of the spin ! system under consid
eration: 

The 2 x 2 matrix representation of this product is 

exp ( -i;3a) exp ( -i;2{3) exp ( -i;3Y ) 
= 
(e-ia/2 0 ) (cos(f3/2) - sin(f3/2)) (e-iY/2 0 ) 
0 eia/2 sin(f3 /2) cos(f3 /2) 0 eiY 12 

__ 

(e-
. 
i(a+y)/2 cos(f3 /2) -

.
e-i(a-y)/2 sin(f3 /2)) ' 

e1(a-y )/2 sin(f3 /2) e1(a+y )/2 cos(f3 /2) 

(3 .3.20) 

(3 .3 .2 1 )  

where (3 .2.44) was used. This matrix i s  clearly of the unitary unimodular form. 
Conversely, the most general 2x2 unitary unimodular matrix can be written in 
this Euler angle form. 
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Notice that the matrix elements of the second (middle) rotation exp( -iay¢/2) 
are purely real. This would not have been the case had we chosen to rotate about 
the x-axis rather than the y-axis, as done in most textbooks in classical mechanics. 
In quantum mechanics it pays to stick to our convention because we prefer the ma
trix elements of the second rotation, which is the only rotation matrix containing 
off-diagonal elements, to be purely real.* 

The 2 x 2 matrix in (3.3 .21) is called the j = ! irreducible representation of the 
. . (1/2) 

rotatiOn operator /D(a, {3, y ) . Its matnx elements are denoted by /Dm'm (a, {3, Y ) . 
In terms of the angular-momentum operators, we have 

9J�/;/(a,f3 ,  y) = (j = � ,m' lexp ( -i:za ) (3 .3 .22) 
x exp ( -i:y{J ) exp ( -i:zY ) I j = � ,m) . 

In Section 3 .5 we will extensively study higher j-analogues of (3 .3 .21) . 

3.4 . DENSITY OPERATORS AND PURE VERSUS MIXED ENSEMBLES 

Polarized Versus Unpolarized Beams 

The formalism of quantum mechanics developed so far makes statistical pre
dictions on an ensemble-that is, a collection-of identically prepared physical 
systems. More precisely, in such an ensemble all members are supposed to be 
characterized by the same state ket Ia) . A good example of this is a beam of sil
ver atoms coming out of an SG filtering apparatus. Every atom in the beam has 
its spin pointing in the same direction-namely, the direction determined by the 
inhomogeneity of the magnetic field of the filtering apparatus. We have not yet 
discussed how to describe quantum-mechanically an ensemble of physical sys
tems for which some, say 60%, are characterized by Ia ) ,  and the remaining 40% 
are characterized by some other ket 1{3 ) .  

To illustrate vividly the incompleteness of  the formalism developed so  far, let 
us consider silver atoms coming directly out of a hot oven, yet to be subjected to 
a filtering apparatus of the Stem-Gerlach type. On symmetry grounds we expect 
that such atoms have random spin orientations; in other words, there should be no 
preferred direction associated with such an ensemble of atoms. According to the 
formalism developed so far, the most general state ket of a spin ! system is given 
by 

(3 .4. 1 ) 
Is this equation capable of describing a collection of atoms with random spin 
orientations? The answer is clearly no; (3.4. 1 ) characterizes a state ket whose 

*This, of course, depends on our convention that the matrix elements of Sy (or, more generally, 
ly) are taken to be purely imaginary. 
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spin is pointing in some definite direction, namely, in the direction of ft, whose 
polar and azimuthal angles, fJ and a, respectively, are obtained by solving 

see (3.2.52). 

c+ cos({J /2) . 
c_ eia sin({J /2) ' (3.4.2) 

To cope with a situation of this kind we introduce the concept of fractional 
population, or probability weight. An ensemble of silver atoms with completely 
random spin orientation can be viewed as a collection of silver atoms in which 
50% of the members of the ensemble are characterized by I +) and the remaining 
50% by 1 -) .  We specify such an ensemble by assigning 

w+ = 0.5, w_ = 0.5, (3.4.3) 
where w+ and w_ are the fractional population for spin-up and -down, respec
tively. Because there is no preferred direction for such a beam, it is reasonable to 
expect that this same ensemble can be regarded equally well as a 50-50 mixture of 
I S  x ;  +) and I S  x ; -) .  The mathematical formalism needed to accomplish this will 
appear shortly. 

It is very important to note that we are simply introducing two real numbers 
w+ and w_. There is no information on the relative phase between the spin-up 
and the spin-down kets. Quite often we refer to such a situation as an incoher
ent mixture of spin-up and spin-down states. What we are doing here is to be 
clearly distinguished from what we did with a coherent linear superposition-for 
example, 

(3.4.4) 

where the phase relation between I +) and 1 -) contains vital information on the 
spin orientation in the .xy-plane, in this case in the positive x-direction. In general, 
we should not confuse w+ and w_ with l c+ l 2 and l c_ l2 . The probability concept 
associated with w+ and w_ is much closer to that encountered in classical proba
bility theory. The situation encountered in dealing with silver atoms directly from 
the hot oven may be compared with that of a graduating class in which 50% of the 
graduating seniors are male, the remaining 50% female. When we pick a student 
at random, the probability that the particular student is male (or female) is 0.5. 
Whoever heard of a student referred to as a coherent linear superposition of male 
and female with a particular phase relation? 

The beam of silver atoms coming directly out of the oven is an example of a 
completely random ensemble; the beam is said to be unpolarized because there 
is no preferred direction for spin orientation. In contrast, the beam that has gone 
through a selective Stern-Gerlach-type measurement is an example of a pure en
semble; the beam is said to be polarized because all members of the ensemble 
are characterized by a single common ket that describes a state with spin point
ing in some definite direction. To appreciate the difference between a completely 
random ensemble and a pure ensemble, let us consider a rotatable SG apparatus 
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where we can vary the direction of the inhomogeneous B just by rotating the appa
ratus. When a completely unpolarized beam directly out of the oven is subjected 
to such an apparatus, we always obtain two emerging beams of equal intensity, 
no matter what the orientation of the apparatus may be. In contrast, if a polarized 
beam is subjected to such an apparatus, the relative intensities of the two emerging 
beams vary as the apparatus is rotated. For some particular orientation, the ratio 
of the intensities actually becomes 1 to 0. In fact, the formalism we developed in 
Chapter 1 tells us that the relative intensities are simply cos2((3 /2) and sin2((3 /2), 
where (3 is the angle between the spin direction of the atoms and the direction of 
the inhomogeneous magnetic field in the SG apparatus. 

A complete random ensemble and a pure ensemble can be regarded as the 
extremes of what is known as a mixed ensemble. In a mixed ensemble a certain 
fraction-for example, 70%-of the members are characterized by a state ket 
Ia) , the remaining 30% by 1 (3 ) .  In such a case the beam is said to be partially 
polarized. Here Ia) and 1/3)  need not even be orthogonal; we can, for example, 
have 70% with spin in the positive x-direction and 30% with spin in the negative 
z-direction. * 
Ensemble Averages and the Density Operator 

We now present the density operator formalism, pioneered by J. von Neumann in 
1 927, that quantitatively describes physical situations with mixed as well as pure 
ensembles. Our general discussion here is not restricted to spin i systems, but for 
illustrative purposes we return repeatedly to spin i systems. 

A pure ensemble is by definition a collection of physical systems such that ev
ery member is characterized by the same ket Ia) . In contrast, in a mixed ensemble, 
a fraction of the members with relative population w1 are characterized by la(l) ) ;  
some other fraction with relative population w2, by la(2) ) ;  and so on. Roughly 
speaking, a mixed ensemble can be viewed as a mixture of pure ensembles, just 
as the name suggests. The fractional populations are constrained to satisfy the 
normalization condition 

(3 .4.5) 

As we mentioned previously, la(1 )) and la(2) ) need not be orthogonal. Further
more, the number of terms in the i sum of (3.4.5) need not coincide with the 
dimensionality N of the ket space; it can easily exceed N. For example, for spin 1 
systems with N = 2, we may consider 40% with spin in the positive z-direction, 
30% with spin in the positive x-direction, and the remaining 30% with spin in the 
negative y-direction. 

Suppose we make a measurement on a mixed ensemble of some observable 
A. We may ask what is the average measured value of A when a large number of 
measurements are carried out. The answer is given by the ensemble average of 

*In the literature, what we call pure and mixed ensembles are often referred to as pure and mixed 
states. In this book, however, we use state to mean a physical system described by a definite state 
ket Ia ) .  
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A, which is defined by 

= LLWi l (a' la<i) ) l2a', 
i a' 
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(3.4.6) 

where I a') is an eigenket of A. Recall that (a<i) lA la(i) ) is the usual quantum
mechanical expectation value of A taken with respect to state la(i) ) .  Equation 
(3.4.6) tells us that these expectation values must further be weighted by the 
corresponding fracti�nal populations Wi . Notice how probabilistic concepts enter 
twice: first in l (a ' la(1) ) 12 for the quantum-mechanical probability for state la<i) ) 
to be found in an A eigenstate Ia' ) , second in the probability factor Wi for finding 
in the ensemble a quantum-mechanical state characterized by la<i) ) .* 

We can now rewrite ensemble average (3.4.6) using a more general basis, 
{ lb') } :  

b' b" 

= LL (Lwi (b" la(i) ) (a<i) lb')) (b' IA ib"). 
b' b" i 

(3.4.7) 

The number of terms in the sum of the b' (b") is just the dimensionality of the ket 
space, whereas the number of terms in the sum of the i depends on how the mixed 
ensemble is viewed as a mixture of pure ensembles. Notice that in this form, the 
basic property of the ensemble that does not depend on the particular observable 
A is factored out. This motivates us to define the density operator p as follows: 

(3.4.8) 

The elements of the corresponding density matrix have the following form: 

(3 .4.9) 

The density operator contains all the physically significant information we can 
possibly obtain about the ensemble in question. Returning to (3.4.7), we see that 
the ensemble average can be written as 

[A] = LL(b" lp lb') (b' IA ib") 
b' b" (3.4. 10) 

= tr(pA) . 
*Quite often in the literature, the ensemble average is also called the expectation value. How
ever, in this book, the term expectation value is reserved for the average measured value when 
measurements are carried out on a pure ensemble. 
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Because the trace is independent of representations, tr(pA) can be evaluated using 
any convenient basis. As a result, (3.4. 10) is an extremely powerful relation. 

There are two properties of the density operator worth recording. First, the den
sity operator is Hermitian, as is evident from (3.4.8). Second, the density operator 
satisfies the normalization condition 

tr(p) = LLWi (b' jaCi) ) (aCi) jb') 
b' 

(3 .4. 1 1) 

= 1 . 
Because of the Hermiticity and the normalization condition, for spin ! systems 
with dimensionality 2 the density operator, or the corresponding density matrix, is 
characterized by three independent real parameters. Four real numbers character
ize a 2 x 2 Hermitian matrix. However, only three are independent because of the 
normalization condition. The three numbers needed are [Sx] , [Sy ] , and [Sz ] ; the 
reader may verify that knowledge of these three ensemble averages is sufficient 
to reconstruct the density operator. The manner in which a mixed ensemble is 
formed can be rather involved. We may mix pure ensembles characterized by all 
kinds of jaCi) ) 's with appropriate Wi 's; yet for spin ! systems, three real numbers 
completely characterize the ensemble in question. This strongly suggests that a 
mixed ensemble can be decomposed into pure ensembles in many different ways. 
A problem to illustrate this point appears at the end of this chapter. 

A pure ensemble is specified by Wi = 1 for some jaCi) )-with i = n, for 
instance-and Wi = 0 for all other conceivable state kets, so the corresponding 
density operator is written as 

(3 .4. 12) 
with no summation. Clearly, the density operator for a pure ensemble is idempo
tent; that is, 

(3 .4. 13) 
or, equivalently, 

p(p - 1) = 0. (3 .4. 14) 
Thus, for a pure ensemble only, we have 

(3.4. 15) 
in addition to (3.4. 1 1) . The eigenvalues of the density operator for a pure ensem
ble are zero or one, as can be seen by inserting a complete set of base kets that 
diagonalize the Hermitian operator p between p and (p - 1) of (3.4. 14). When 



3 .4 Density Operators and Pure Versus Mixed Ensembles 1 83 

diagonalized, the density matrix for a pure ensemble must therefore look like 

0 0 
0 

0 
p � 1 

0 (diagonal form) (3 .4. 16) 
0 

0 

0 0 
It can be shown that tr(p2) is maximal when the ensemble is pure; for a mixed 
ensemble, tr(p2) is a positive number less than 1 .  

Given a density operator, let us see how we can construct the corresponding 
density matrix in some specified basis. To this end we first recall that 

la) (a l = LLib') (b' la) (a lb") (b" l .  (3.4. 17) 
b' b" 

This shows that we can form the square matrix corresponding to laCi) ) (aCi) 1 by 
combining, in the sense of outer product, the column matrix formed by (b' laCi) ) 
with the row matrix formed by (aCi) lb"), which, of course, is equal to (b" laCi) ) * . 
The final step is to sum such square matrices with weighting factors Wi , as indi
cated in (3.4.8). The final form agrees with (3 .4.9), as expected. 

It is instructive to study several examples, all referring to spin � systems. 

Example 3.1. A completely polarized beam with Sz+: 

p = 1+) (+ 1 ° (�) ( 1 , 0) 
= (� �) 

Example 3.2. A completely polarized beam with Sx±: 
p = I Sx ; ±) (Sx ; ± l = (�) ( I+) ± 1 - ) ) (�) ( (+ I ±  (- 1 )  

0 ( � ±� ) ±� � 
The ensembles of Examples 3 . 1 and 3.2 are both pure. 

(3 .4. 1 8) 

(3 .4. 19) 
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Example 3.3. An unpolarized beam. This can be regarded as an incoherent mix
ture of a spin-up ensemble and a spin-down ensemble with equal weights (50% 
each) : 

p = (�) 1+) (+ 1 + (�) 1 -) (- 1  
(3.4.20) 

which is just the identity matrix divided by 2. As we remarked earlier, the same 
ensemble can also be regarded as an incoherent mixture of an Sx+ ensemble and 
an Sx - ensemble with equal weights. It is gratifying that our formalism automat
ically satisfies the expectation 

(� 0) = 1 (� 
1 2 1 
2 2 

-�) 1 ' 
2 

(3.4.21) 

where we see from Example 3 .2 that the two terms on the right-hand side are the 
density matrices for pure ensemble with Sx+ and Sx - ·  Because p in this case is 
just the identity operator divided by 2 (the dimensionality), we have 

tr(pSx)  = tr(pSy) = tr(pSz)  = 0, (3.4.22) 
where we used the fact that Sk is traceless. Thus, for the ensemble average of S, 
we have 

[S] = 0. (3 .4.23) 
This is reasonable because there should be no preferred spin direction in a com
pletely random ensemble of spin � systems. 

Example 3.4. As an example of a partially polarized beam, let us consider a 
75-25 mixture of two pure ensembles, one with Sz+ and the other with Sx+: 

w(Sz+) = 0.75, w(Sx +) = 0.25. 
The corresponding p can be represented by 

from which follows 

0 
3 c p =4 0 

= (; 
h 

[Sx] = g' 

0 1 2 ( ' o) + 
• 1 

D ·  
[Sy ]  = 0, 

(3.4.24) 

(3.4.25) 

(3.4.26) 
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We leave as an exercise for the reader the task of showing that this ensemble can 
be decomposed in ways other than (3.4.24) . 

Time Evolution of Ensembles 

How does the density operator p change as a function of time? Let us suppose 
that at some time to the density operator is given by 

(3 .4.27) 

If the ensemble is to be left undisturbed, we cannot change the fractional popula
tion Wi . So the change in p is governed solely by the time evolution of state ket 
la(i) ) :  

(3 .4.28) 

From the fact that la(i) , to ; t) satisfies the Schrodinger equation, we obtain 

itz � = Lwi(H ia<i) , to ; t ) (a<i) , to ; t l - la<i) , to ; t ) (a<i) , to ; t iH) 
i 

= -[p,H] . 
(3 .4.29) 

This looks like the Heisenberg equation of motion except that the sign is wrong ! 
This is not disturbing because p is not a dynamic observable in the Heisenberg 
picture. On the contrary, p is built up of SchrOdinger-picture state kets and state 
bras that evolve in time according to the Schrodinger equation. 

It is amusing that (3.4.29) can be regarded as the quantum-mechanical ana
logue of Liouville's theorem in classical statistical mechanics, 

a Pclassical 
a t = -[Pciassical, H] classical. (3.4.30) 

where Pclassical stands for the density of representative points in phase space.* 
Thus the name density operator for the p appearing in (3.4.29) is indeed ap
propriate. The classical analogue of (3.4. 10) for the ensemble average of some 
observable A is given by 

A _ J PciassicaiA(q , p)drq,p 
average - J 

' Pclassicaldr q,p 
where dr q,p stands for a volume element in phase space. 

(3.4.31 )  

*Remember, a pure classical state i s  one represented by a single moving point in phase space 
(q1 , . . .  , qf .PJ , . . .  , pf) at each instant of time. A classical statistical state, on the other hand, 
is described by our nonnegative density function Pc!assical(ql , . . . , qf , pJ , . . .  , p f , t) such that the 
probability that a system is found in the interval dq1 , . . .  , dp f at time t is Pc!assicaldql ,  . . .  ,dp f . 
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Continuum Generalizations 

So far we have considered density operators in ket space where the base kets are 
labeled by the discrete-eigenvalues of some observable. The concept of density 
matrix can be generalized to cases where the base kets used are labeled by con
tinuous eigenvalues. In particular, let us consider the ket space spanned by the 
position eigenkets lx') . The analogue of (3 .4. 10) is given by 

[A] = J d3x' J d3x" (x" lp lx') (x' I A 1x") .  

The density matrix here is actually a function of x' and x", namely, 

(x" I p lx') � (x'' I ( � w; la(i) ) (ai'l I) lx') 
= L Wi'�fri(x")'l/ft(x'), 

(3.4.32) 

(3.4.33) 

where 1/fi is the wave function corresponding to the state ket laCi) ) . Notice that 
the diagonal element (that is, x' = x") of this is just the weighted sum of the 
probability densities. Once again, the term density matrix is indeed appropriate. 

In continuum cases, too, it is important to keep in mind that the same mixed 
ensemble can be decomposed in different ways into pure ensembles. For instance, 
it is possible to regard a "realistic" beam of particles either as a mixture of plane
wave states (monoenergetic free-particle states) or as a mixture of wave-packet 
states. 

Quantum Statistical Mechanics 

We conclude this section with a brief discussion on the connection between the 
density operator formalism and statistical mechanics. Let us first record some 
properties of completely random and of pure ensembles. The density matrix of a 
completely random ensemble looks like 

0 

(3 .4.34) 
1 

1 
1 

in any representation [compare Example 3.3 with (3 .4.20)] . This follows from the 
fact that all states corresponding to the base kets with respect to which the den
sity matrix is written are equally populated. In contrast, in the basis where p is 
diagonalized, we have (3 .4. 16) for the matrix representation of the density oper
ator for a pure ensemble. The two diagonal matrices (3.4.34) and (3 .4. 16), both 
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satisfying the normalization requirement (3.4. 1 1), cannot look more different. It 
would be desirable if we could somehow construct a quantity that characterizes 
this dramatic difference. 

Thus we define a quantity called a by 

a =  -tr(p lnp). (3.4.35) 
The logarithm of the operator p may appear rather formidable, but the meaning 
of (3.4.35) is quite unambiguous if we use the basis in which p is diagonal: 

" (diag) I (diag) a = - � pkk n pkk · (3.4.36) 
k 

Because each element Pk�
iag) is a real number between 0 and 1 ,  a is necessarily 

positive semidefinite. For a completely random ensemble (3 .4.34), we have 

N 1 ( 1 )  
a = - I: - In - = ln N. 

k=l N N 

In contrast, for a pure ensemble (3.4. 16), we have 

where we have used 

for each term in (3 .4.36). 

( diag) O I ( diag) O Pkk = or npkk = 

(3 .4.37) 

(3.4.38) 

(3.4.39) 

We now argue that physically, a can be regarded as a quantitative measure of 
disorder. A pure ensemble is an ensemble with a maximum amount of order be
cause all members are characterized by the same quantum-mechanical state ket; 
it may be likened to marching soldiers in a well-regimented army. According to 
(3 .4.38), a vanishes for such an ensemble. At the other extreme, a completely ran
dom ensemble, in which all quantum-mechanical states are equally likely, may be 
likened to drunken soldiers wandering around in random directions. According to 
(3.4.37), a is large; indeed, we will show later that In N is the maximum possible 
value for a �ubject to the normalization condition 

(3.4.40) 

In thermodynamics we learn that a quantity called entropy measures disorder. It 
turns out that our a is related to the entropy per constituent member, denoted by 
S, of the ensemble via 

S = k a ,  (3.4.41) 
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where k is a universal constant identifiable with the Boltzmann constant. In 
fact, (3.4.41) may be taken as the definition of entropy in quantum statistical 
mechanics. 

We now show how the density operator p can be obtained for an ensemble 
in thermal equilibrium. The basic assumption we make is that nature tends to 
maximize a subject to the constraint that the ensemble average of the Hamiltonian 
has a certain prescribed value. To justify this assumption would involve us in a 
delicate discussion of how equilibrium is established as a result of interactions 
with the environment, which is beyond the scope of this book. In any case, once 
thermal equilibrium is established, we expect 

ap = 0. at (3.4.42) 

Because of (3.4.29), this means that p and H can be simultaneously diagonalized. 
So the kets used in writing (3.4.36) may be taken to be energy eigenkets. With 
this choice, Pkk stands for the fractional population for an energy eigenstate with 
energy eigenvalue Ek . 

Let us maximize a by requiring that 

8a = 0. (3.4.43) 
However, we must take into account the constraint that the ensemble average of 
H has a certain prescribed value. In the language of statistical mechanics, [H] is 
identified with the internal energy per constituent, denoted by U: 

[H] = tr(pH) = U.  (3.4.44) 
In addition, we should not forget the normalization constraint (3.4.40). So our 
basic task is to require (3.4.43) subject to the constraints 

and 

8 [H] = LOPkkEk = 0 
k 

8(trp) = L 8Pkk = 0. 
k 

(3.4.45a) 

(3.4.45b) 

We can most readily accomplish this by using Lagrange multipliers. We obtain 

L 0Pkk [(lnpkk + 1) + f3Ek + y] = 0, 
k 

which for an arbitrary variation is possible only if 

Pkk = exp( -f3Ek - y - 1) . 

(3 .4.46) 

(3.4.47) 
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The constant y can be eliminated using the normalization condition (3 .4.40), and 
our final result is 

Pkk = N 
L exp(-.B Ez) 

l 

(3.4.48) 

which directly gives the fractional population for an energy eigenstate with eigen
value Ek. It is to be understood throughout that the sum is over distinct energy 
eigenstates; if there is degeneracy, we must sum over states with the same energy 
eigenvalue. 

The density matrix element (3.4.48) is appropriate for what is known in sta
tistical mechanics as a canonical ensemble. Had we attempted to maximize a 
without the internal-energy constraint (3 .4.45a), we would have obtained instead 

1 
Pkk = 

N
, (independent ofk), (3.4.49) 

which is the density matrix element appropriate for a completely random ensem
ble. Comparing (3.4.48) with (3 .4.49), we infer that a completely random ensem
ble can be regarded as the .B --+ 0 limit (physically the high-temperature limit) of 
a canonical ensemble. 

We recognize the denominator of (3.4.48) as the partition function 

(3 .4.50) 

in statistical mechanics. It can also be written as 

(3 .4.5 1 )  

Knowing Pkk given in the energy basis, we can write the density operator as 

e-f3H 
P = -z · (3.4.52) 

This is the most basic equation from which everything follows. We can immedi
ately evaluate the ensemble average of any observable A:  

tr(e-f3H A) 
[A] = --

Z 

[ � (A)k exp(-fJEk)] 
N 
L exp( -.BEk) 
k 

(3 .4.53) 
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In particular, for the internal energy per constituent we obtain 

[ *E, exp(-fi£,)] 
U = --N,-,------

L exp(-f3Ek) 
k 

a 
= - a{3 (ln Z), 

a formula well known to every student of statistical mechanics. 
The parameter f3 is related to the temperature T as follows: 

1 
f3 = kT ' 

(3.4.54) 

(3.4.55) 
where k is the Boltzmann constant. It is instructive to convince ourselves of this 
identification by comparing the ensemble average [H] of simple harmonic oscil
lators with the kT expected for the internal energy in the classical limit, which 
is left as an exercise. We have already commented that in the high-temperature 
limit, a canonical ensemble becomes a completely random ensemble in which all 
energy eigenstates are equally populated. In the opposite low-temperature limit 
({3 --+ oo), (3.4.48) tells us that a canonical ensemble becomes a pure ensemble 
where only the ground state is populated. 

As a simple illustrative example, consider a canonical ensemble made up of 
spin ! systems, each with a magnetic moment eh j2mec subjected to a uniform 
magnetic field in the z-direction. The Hamiltonian relevant to this problem has 
already been given [see (3.2. 16)]. Because H and Sz commute, the density matrix 
for this canonical ensemble is diagonal in the Sz basis. Thus 

(3 .4.56) 
where the partition function is just 

z = e-f31iwj2 + ef31iw/2
. (3.4.57) 

From this we compute 

[Sx]  = [Sy]  = 0, [Sz] = - (�) tanh (f3�w) . (3.4.58) 

The ensemble average of the magnetic-moment component is just efmec times 
[Sz] .  The paramagnetic susceptibility x may be computed from 

(3.4.59) 
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In this way we arrive at Brillouin's formula for X : 

X = ( l e l h ) tanh (f3hw) . 
2mecB 2 
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(3 .4.60) 

Up to now our discussion of angular momentum has been confined exclusively 
to spin � systems with dimensionality N = 2. In this and subsequent sections, 
we study more-general angular-momentum states. To this end we first work out 
the eigenvalues and eigenkets of J2 and lz and derive the expressions for matrix 
elements of angular-momentum operators, first presented in a 1926 paper by M. 
Born, W. Heisenberg, and P. Jordan. 

Commutation Relations and the ladder Operators 

Everything we will do follows from the angular-momentum commutation rela
tions (3 . 1 .20), where we may recall that li is defined as the generator of infinites
imal rotation. The first important property we derive from the basic commutation 
relations is the existence of a new operator J2, defined by 

(3 .5 . 1 )  

that commutes with every one of h :  

(3.5 .2) 

To prove this, let us look at the k = 3 case: 

[lxlx + lyly + lzlz , lz] = lx [lx , lz] + [lx, lzJJx + ly[ly , lz] + [ly , lz] ly 
= lx ( -ihly) + ( -ihly)lx + ly(ihlx) + (ihlx)ly 
= 0. 

(3.5.3) 
The proofs for the cases where k = 1 and 2 follow by cyclic permutation ( 1  ---+ 
2 ---+ 3 ---+ 1) of the indices. Because lx , ly, and lz do not commute with each 
other, we can choose only one of them to be the observable to be diagonalized 
simultaneously with J2. By convention we choose lz for this purpose. 

We now look for the simultaneous eigenkets of J2 and lz . We denote the eigen
values of J2 and lz by a and b, respectively: 

lz la ,b) = a la, b) . 
(3.5 .4a) 

(3.5 .4b) 

To determine the allowed values for a and b, it is convenient to work with the 
non-Hermitian operators 

(3.5.5) 
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which are called the ladder operators, rather than with Jx and Jy . They satisfy 
the commutation relations 

and 

[Jz , 1±] = ±h1±, 
which can easily be obtained from (3 . 1 .20). Note also that 

[J2, 1±] = 0, 

which is an obvious consequence of (3.5 .2). 

(3.5 .6a) 

(3.5 .6b) 

(3.5.7) 

What is the physical meaning of 1±? To answer this, we examine how 1z acts 
on 1± la ,b) :  

1zU± Ia,b)) = ([1z, 1±] + 1±1z) la, b) 
= (b ± h)(1± la ,b)) , (3.5.8) 

where we have used (3.5.6b). In other words, if we apply 1+(]_) to a 1z eigenket, 
the resulting ket is still a 1z eigenket except that its eigenvalue is now increased 
(decreased) by one unit of h . So now we see why 1±, which step one step up 
(down) on the "ladder" of 1z eigenvalues, are known as the ladder operators. 

We now digress to recall that the commutation relations in (3.5 .6b) are remi
niscent of some commutation relations we encountered in the earlier chapters. In 
discussing the translation operator T (1), we had 

and in discussing the simple harmonic oscillator, we had 

[N, a t] = at , [N,a] = -a. 

(3.5 .9) 

(3.5 . 10) 

We see that both (3.5.9) and (3 .5 . 10) have a structure similar to (3.5 .6b). The 
physical interpretation of the translation operator is that it changes the eigenvalue 
of the position operator x by I in much the same way as the ladder operator 1 + 
changes the eigenvalue of 1z by one unit of h. Likewise, the oscillator creation 
operator at increases the eigenvalue of the number operator N by unity. 

Even though 1± changes the eigenvalue of 1z by one unit of h, it does not 
change the eigenvalue of J2 : 

J2(1± la ,b) ) = 1±J2 Ia ,b) 
= a(J± Ia ,b) ), (3 .5. 1 1 ) 

where we have used (3.5 .7). To summarize, 1± la, b) are simultaneous eigenkets 
of J2 and 1z with eigenvalues a and b ± h. We may write 

1± 1a ,b) = e± la, b ± h) ,  (3.5 . 12) 

where the proportionality constant c± will be determined later from the normal
ization requirement of the angular-momentum eigenkets. 
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We now have the machinery needed to construct angular-momentum eigenkets 
and to study their eigenvalue spectrum. Suppose we apply J+ successively, say n 
times, to a simultaneous eigenket of J2 and lz . We then obtain another eigenket 
of J2 and lz with the lz eigenvalue increased by nh, while its J2 eigenvalue is 
unchanged. However, this process cannot go on indefinitely. It turns out that there 
exists an upper limit to b (the lz eigenvalue) for a given a (the J2 eigenvalue): 

To prove this assertion we first note that 

J2 - fj = !U+L + LJ+) 
= !U+Jt + I! I+)· 

Now J+J! and 1!1+ must have nonnegative expectation values because 

thus 

(3.5 . 13) 

(3.5 . 14) 

(3 .5 . 15) 

(3.5 . 1 6) 
which, in turn, implies (3.5 . 1 3) . It therefore follows that there must be a bmax such 
that 

(3.5 . 17) 
Stated another way, the eigenvalue of b cannot be increased beyond bmax · Now 
(3 .5 . 17) also implies 

Ll+ la ,bmax) = 0. (3.5 . 18) 
But 

]_]+ = f} + lff - i (Jylx - lxly) 
= J2 - Jz2 - hlz . (3.5 . 19) 

So 

(J2 - 1}' - hlz) la ,bmax) = 0. (3 .5.20) 
Because Ia , bmax) itself is not a null ket, this relationship is possible only if 

a - b�ax - bmaxh = 0 (3.5 .21) 
or 

a =  bmax(bmax + h). (3.5.22) 
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In a similar manner, we argue from (3 .5. 13) that there must also exist a brnin 
such that 

'- la ,brnin} = 0. 
By writing J+ '- as 

J+ l- = J2 - Jz
2 + h lz 

in analogy with (3.5 . 19), we conclude that 

By comparing (3.5.22) with (3.5 .25), we infer that 

with bmax positive, and that the allowed values of b lie within 

(3.5 .23) 

(3 .5.24) 

(3.5.25) 

(3.5 .26) 

(3.5 .27) 
Clearly, we must be able to reach Ia , bmax} by applying J+ successively to Ia , brnin} 
a finite number of times. We must therefore have 

where n is some integer. As a result, we get 

nh 
bmax = 2' 

(3.5 .28) 

(3 .5.29) 
It is more conventional to work withj, defined to be bmaxfh, instead of with bmax. 
so that 

(3 .5.30) 
The maximum value of the J2 eigenvalue is jh, where j is either an integer or a 
half-integer. Equation (3 .5.22) implies that the eigenvalue of J2 is given by 

(3.5 .3 1 ) 
Let us  also define m such that 

b = mh . (3.5 .32) 
If j is an integer, all m values are integers; if j is a half-integer, all m values are 
half-integers. The allowed m-values for a givenj are 

m = -j , j + l , . . .  , j - l , j .  (3 .5.33) 
2j+ 1 states 
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Instead of J a,b ) , it is more convenient to denote a simultaneous eigenket of J2 
and lz by 1 j, m) . The basic eigenvalue equations now read 

(3.5.34a) 
and 

lz l j , m) = mhlj ,m), (3 .5 .34b) 
withj either an integer or a half-integer and m given by (3 .5 .33) . It is very impor
tant to recall here that we have used only the commutation relations (3 . 1 .20) to ob
tain these results. The quantization of angular momentum, manifested in (3 .5.34), 
is a direct consequence of the angular-momentum commutation relations, which, 
in tum, follow from the properties of rotations, together with the definition of Jk 
as the generator of rotation. 

Matrix Elements of Angular-Momentum Operators 

Let us work out the matrix elements of the various angular-momentum operators. 
Assuming J j ,m ) to be normalized, we obviously have, from (3 .5 .34), 

and 
(j ' ,m' J lz J j ,m ) = mhO j' jOm'm · 

To obtain the matrix elements of 1±, we first consider 

(j ,m J I!J+ Jj ,m ) = (j ,m J (J2 - Jz2 - hlz ) J j ,m ) 
= h2[j(j + 1 ) - m2 -m]. 

(3 .5.35a) 

(3 .5 .35b) 

(3.5 .36) 

Now J+ lj ,m) must be the same as J j ,m + 1 ) (normalized) up to a multiplicative 
constant [see (3.5 . 1 2)] . Thus 

l+ J j ,m) = cjmU ,m + 1 ) .  
Comparison with (3.5 .36) leads to 

J c}m 12 = h2[j (j + 1) - m(m + 1)] 
= h2(j - m)(j +m  + 1). 

(3 .5 .37) 

(3 .5 .38) 

Thus we have determined c T up to an arbitrary phase factor. It is customary to Jm 
choose cjm to be real and positive, so 

J+ J j,m ) = JU -m)(j +m + 1)h Jj ,m + 1 ) . (3.5.39) 
Similarly, we can derive 

J_ J j ,m ) = Ju +m)(j - m  + 1)h Jj ,m - 1 ) .  (3.5 .40) 
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Finally, we determine the matrix elements of 1± to be 

(J', m' I 1± IJ,m) = JCJ �m)(j ±m + 1 )1i8j 'j 8m',m±l · 

Representations of the Rotation Operator 

(3.5.41) 

Having obtained the matrix elements of 1z and 1±, we are now in a position to 
study the matrix elements of the rotation operator D( R). If a rotation R is specified 
by fi. and ¢, we can define its matrix elements by 

(") ( -iJ . fi.¢) Dnf,m (R) = (j , m' l exp h ij ,m) . (3.5 .42) 

These matrix elements are sometimes called Wigner functions after E. P. Wigner, 
who made pioneering contributions to the group-theoretical properties of rotations 
in quantum mechanics. Notice here that the samej-value appears in the ket and bra 
of (3.5 .42); we need not consider matrix elements of D(R) between states with 
differentj-values because they all vanish trivially. This is because D(R) Ij ,m) is 
still an eigenket of J2 with the same eigenvalue j (j + 1)h2: 

J29J(R) i j ,m) = 9J(R)J2 i j ,m) 
= j(j + 1)h2 [9J(R) Ij ,m) ] , (3.5.43) 

which follows directly from the fact that J2 commutes with 1k (hence with any 
function of 1k). Simply stated, rotations cannot change the j-value, which is an 
eminently sensible result. 

Often in the literature, the (2j + 1 )  x (2j + 1 )  matrix formed by 9)(�) (R) is m m  
referred to as the (2 j + 1 )-dimensional irreducible representation of the rotation 
operator D(R). This means that the matrix that corresponds to an arbitrary rota
tion operator in ket space not necessarily characterized by a single j-value can, 
with a suitable choice of basis, be brought to block-diagonal form: 
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where each shaded square is a (2j + 1) x (2j + 1) square matrix formed by D�,� 
with some definite value of j. Furthermore, each square matrix itself cannot be 
broken into smaller blocks 

k 
- 2j + 1 -----i� 

1 
2j + 1 

1 
(3.5 .45) 

with any choice of basis. 
The rotation matrices characterized by definite j form a group. First, the iden

tity is a member because the rotation matrix corresponding to no rotation ( cp = 0) 
is the (2j + 1) x (2j + 1) identity matrix. Second, the inverse is also a member; 
we simply reverse the rotation angle cp --+ -cp without changing the rotation axis 
ft. Third, the product of any two members is also a member; explicitly, we have 

(3.5 .46) 
m' 

where the product R1 R2 represents a single rotation. We also note that the rotation 
matrix is unitary because the corresponding rotation operator is unitary; explicitly, 
we have 

(3.5 .47) 
To appreciate the physical significance of the rotation matrix, let us start with 

a state represented by I j ,  m) .  We now rotate it: 

l j , m) --+ D(R) I j ,m) .  (3.5 .48) 
Even though this rotation operation does not change j, we generally obtain states 
with m-values other than the original m. To find the amplitude for being found in 
I j ,  m') ,  we simply expand the rotated state as follows: 

D(R) I j , m) = L l j , m') (j , m' I D(R) I j , m) 
m' (3.5 .49) 
m' 

where, in using the completeness relation, we took advantage of the fact that 
D(R) connects only states with the same j. So the matrix element D�,� (R) is 
simply the amplitude for the rotated state to be found in I j, m') when the original 
unrotated state is given by I j ,  m) .  
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In Section 3.3 we saw how Euler angles may be used to characterize the most 
general rotation. We now consider the matrix realization of (3.3.20) for an arbi
trary j (not necessarily ! ) :  (") (-i lza ) (-i ly/3 ) (-i lzY ) . 

D,!,m(a,f3 , y) = {j,m' jexp -h- exp h exp -h- \ J , m) 

· I • ( -i ly/3) • 

= e-z (m a+my ) (J , m' jexp h \ J , m) . 

(3.5.50) 
Notice that the only nontrivial part is the middle rotation about the y-axis, which 
mixes different m-values. It is convenient to define a new matrix d(j)(f3) as 

(j) _ . I (-i fy/3 ) . dm'm (f3) = {J , m  \ exp h \ J ,m) .  (3.5 .51) 

Finally, let us turn to some examples. The j = � case has already been worked 
out in Section 3.3. See the middle matrix of (3 .3.21), 

(3 .5.52) 

The next simplest case is j = 1, which we consider in some detail. Clearly, we 
must first obtain the 3 x 3 matrix representation of ly . Because 

J
- (J+ - L) y - 2i 

from the defining equation (3.5.5) for 1±, we can use (3 .5.41) to obtain 

m = 1  m = O m = - 1 

J?=l) 
= (�) (�i --Jli -�i) m' = 1 

0 m' = O. -Jli m' = -1 

(3.5.53) 

(3.5.54) 

Our next task is to work out the Taylor expansion of exp(-ily/3/h). Unlike the 
· 1 [J(j=l)]2 . . d d f 1 d J(j=l) H . .  case J = 2 ,  y Is zn epen ent o an y . ow ever, It Is easy to work 

out: 

Consequently, for j = 1 only, it is legitimate to replace (-i ly/3 ) (ly )2 ( ] ) 
exp h --+ 1 - h ( 1 - cosf3) - i ; sinf3,  

(3 .5.55) 

(3.5 .56) 
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as the reader may verify in detail. Explicitly, we have 

( �) ( 1  + cos ,B) - (Jz) sin,B (�) ( 1 - cos,B) 

d(l )(,B) = (Jz) sin,B cos,B - ( Jz) sin,B (3.5 .57) 

( �) (1 - cos ,B) (Jz) sin,B (�) (1 + cos,B) 

Clearly, this method becomes time-consuming for large j. Other, much easier 
methods are possible, but we will not pursue them in this book. 

3.6 . ORBITAL ANGULAR MOMENTUM 

We introduced the concept of angular momentum by defining it to be the gen
erator of an infinitesimal rotation. There is another way to approach the subject 
of angular momentum when spin-angular momentum is zero or can be ignored. 
The angular momentum J for a single particle is then the same as orbital angular 
momentum, which is defined as 

L = x x p. (3.6. 1 )  

In this section we explore the connection between the two approaches. 

Orbital Angular Momentum as Rotation Generator 

We first note that the orbital angular-momentum operator defined as (3.6 . 1 ) satis
fies the angular-momentum commutation relations 

(3.6.2) 

by virtue of the commutation relations among the components of x and p. This 
can easily be proved as follows: 

Next we let 

[Lx , Ly] = [YPz - zpy, ZPx - Xpz] 
= [ypz, ZPx] + [zpy, Xpz] 
= YPx[pz , Z] + PyX [Z , pz] 
= itz(xpy - YPx) 
= ihLz 

1 - i ( 8:) Lz = 1 - i ( 8:) (xpy - YPx) 

(3.6.3) 

(3.6.4) 

act on an arbitrary position eigenket lx', y', z') to examine whether it can be inter
preted as the infinitesimal rotation operator about the z-axis by angle 8¢. Using 
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the fact that momentum is the generator of translation, we obtain [see (1 .6.32)] 

[ 1 - i ( 8:) Lz J lx1, y1, z1) = [ 1 - i ( �) ( 8cpx1) + i ( �x) ( 8cpy1) J lx1, y1, Z1) 
= lx1 - y 18cp, y 1 +x18cp, z1 ) . 

(3.6.5) 
This is precisely what we expect if Lz generates an infinitesimal rotation about the 
z-axis. So we have demonstrated that if p generates translation, then L generates 
rotation. 

Suppose the wave function for an arbitrary physical state of a spinless par
ticle is given by (x1 , y1 , Z1 Ia) . After an infinitesimal rotation about the z-axis is 
performed, the wave function for the rotated state is 

(x1 , y1, z' l [ 1 - i ( 8:) Lz }a) = (x1 + y18cp, y1 - x18cp, z1 la ) . 
It is actually more transparent to change the coordinate basis: 

(x1, y1, Z1 Ia) ---+ (r, 8, ¢ 1a) . 
For the rotated state we have, according to (3.6.6), 

(r, 8 ,¢ 1  [ 1 - i ( 8:) Lz] Ia) = (r ,e , ¢ - 8¢1a) 
a = (r, 8 ,¢ 1a) - 8¢ a¢ (r ,8 ,¢ la ) . 

Because (r, e , ¢ I  i s  an arbitrary position eigenket, we can identify 

(x1 1 Lz la) = -ih� (x1 la) , a¢ 

(3.6.6) 

(3 .6.7) 

(3.6.8) 

(3.6.9) 
which is a well-known result from wave mechanics. Even though this relation can 
also be obtained just as easily using the position representation of the momentum 
operator, the derivation given here emphasizes the role of Lz as the generator of 
rotation. 

We next consider a rotation about the x-axis by angle 8¢x . In analogy with 
(3 .6.6), we have 

(x1 , y1 , z' l [ 1 - i ( 8:x ) Lx] Ia) = (x1 , y1 + z18¢x , Z1 - y18¢x la) . (3.6. 10) 

By expressing x1, y1, and z1 in spherical coordinates, we can show that 

Likewise, 

(x I Lx la) = -ih - sin¢- - cot8 cos¢- (x Ia) . I ( a a ) I 
ae a¢ 

(x1 1 Ly Ia) = -in (cos¢ a
a
e - cote sin¢ a

:) (x1 la) . 

(3.6. 1 1) 

(3.6. 12) 
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Using (3.6. 1 1) and (3.6. 12), for the ladder operator L± defined as in (3.5 .5), we 
have 

(x' I L± Ia) = -i1ie±i</J (±i _!_ - cote�) (x' la) . ae a¢ 

Finally, it is possible to write (x' IL2 1a) using 
L2 = L;+ (�) (L+L- + L_L+), 

(3.6.9), and (3.6 . 13), as follows: 

, 2 2 [ 1 a2 1 a ( a ) J , (x IL Ia) = -1i ----+ -.-- sine- (x Ia) . sin2 e a¢2 sme ae ae 

(3 .6 .13) 

(3.6. 14) 

(3.6. 15) 

Apart from 1/r2, we recognize the differential operator that appears here to be 
just the angular part of the Laplacian in spherical coordinates. 

It is instructive to establish this connection between the L 2 operator and the 
angular part of the Laplacian in another way by looking directly at the kinetic
energy operator. We first record an important operator identity, 

(3.6. 16) 
where x2 is understood to be the operator x • x, just as p2 stands for the operator 
p · p. The proof of this is straightforward: 

L2 = L BijkXiPjl�lmkXlPm 
ijlmk 

= L(Oi[Ojm - OimOj[)XiPjXlPm 
ijlm 

= L [ou8jmXi (XtPj - i1i8jt)Pm - OimOj[XiPj (PmXl + i1i8zm)] (3 .6. 17) 
ijlm 

= x2p2 - i1ix ·p -L OimOjt [XiPm(XtPj - i1i8jt) + i1i8tmXiPj] 
ijlm 

= x2p2 - (x ·p)2 + i1ix ·p. 
Before taking the preceding expression between (x' l and Ia), first note that 

(x' lx ·pia) = x' • ( -i1i V' (x' Ia)) 

Likewise, 

a ' = -i1ir- (x Ia) . ar 

( a2 a ) = -1i2 r2-2 (x' la) + r- (x' la) . 
ar ar 

(3.6. 18) 

(3.6. 19) 
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Thus 

In terms of the kinetic energy p2 j2m, we have 

(3.6.20) 

= - - -- (x Ia} + -- (x Ia} -- (x IL Ia} . ( n2 ) ( 02 I 2 0 I 1 1 2 ) 
2m or2 r or 1i2r2 

(3.6.21) 
The first two terms in the last line are just the radial part of the Laplacian acting 
on (x1 I a} .  The last term must then be the angular part of the Laplacian acting on 
(x1 la} , in complete agreement with (3.6. 15). 
Spherical Harmonics 

Consider a spinless particle subjected to a spherical symmetrical potential. The 
wave equation is known to be separable in spherical coordinates, and the energy 
eigenfunctions can be written as 

(x1 ln , l ,m} = Rnz (r)Yt(B, ¢), (3.6.22) 
where the position vector x1 is specified by the spherical coordinates r, 8, and 
¢, and n stands for some quantum number other than l and m-for example, the 
radial quantum number for bound-state problems or the energy for a free-particle 
spherical wave. As will be made clearer in Section 3 . 1 1 ,  this form can be regarded 
as a direct consequence of the rotational invariance of the problem. When the 
Hamiltonian is spherically symmetrical, H commutes with Lz and L2, and the 
energy eigenkets are expected to be eigenkets ofL2 and Lz also. Because Lk with 
k = 1 ,  2, 3 satisfy the angular-momentum commutation relations, the eigenvalues 
of L2 and Lz are expected to be l(l + 1 )1i2 , and mh = [ -lh, ( -l + 1 )1i, . . .  , (l -
1 )1i, l1i] . 

Because the angular dependence is common to all problems with spherical 
symmetry, we can isolate it and consider 

(fi l l ,m} = Yt(B , ¢) = Yt(n), (3 .6.23) 

where we have defined a direction eigenket lfi} . From this point of view, Yt ( 8,  ¢) 
is the amplitude for a state characterized by l, m to be found in the direction fi 
specified by 8 and ¢ .  

Suppose we have relations involving orbital angular-momentumeigenkets. We 
can immediately write the corresponding relations involving the spherical har
monics. For example, take the eigenvalue equation 

Lz l l ,m} = mh l l ,m} .  (3.6.24) 
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Multiplying (ft l on the left and using (3.6.9), we obtain 

-ih_i_(ftll ,m) = mh (ft l l ,m) . act> 
We recognize this equation to be 

-ih aacf> Yt(e ,cf>) = mhYt(e ,Q>), 
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(3.6.25) 

(3.6.26) 

which implies that the cf>-dependence Yt(B , cf>) must behave like eim</J .  Likewise, 
corresponding to 

we have [see (3.6. 15)] 
[ 1 a ( a ) 1 a2 J -. -- sin()- +----+l(l + 1) ym = O  Sill () a() a() sin2 () acf>2 l ' 

(3 .6.27) 

(3.6.28) 

which is simply the partial differential equation satisfied by Yt itself. The orthog
onality relation 

leads to 

(l' ,m' l l ,m) = 8u'8mm' 

12:rr 1 1 m'* m dcf> d(cosB)Y1, (B, cf>)Yz (B,cf>) = 8u'8mm' • 0 -1 

(3.6.29) 

(3.6.30) 

where we have used the completeness relation for the direction eigenkets, 

J dQn lfi) (ft l = 1 .  (3.6.3 1) 

To obtain the Yt themselves, we may start with the m = l case. We have 

which, because of (3.6. 13), leads to 

-ihei<P [i _i_ - cote _i_J (:fill l) = 0. 
()() ()cf> 

, 

(3.6.32) 

(3.6.33) 

Remembering that the cf>-dependence must behave like eil<P ,  we can easily show 
that this partial differential equation is satisfied by 

(fi ll, l) = Yf (() , cf>) = czeil<P sin1 () ,  (3.6.34) 
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where cz is the normalization constant determined from (3.6.30) to be* 

Starting with (3.6.34) we can use 

[(21 + 1)(21) !] 
4n 

(ft iL- I l ,m) (ft l l ,m - 1 )  = J(l + m)(l - m + 1 )1i 

(3 .6.35) 

= e-1'�-' -- + i cote- (ftl l ,m) 1 ."' ( a a ) 
J(l +m)(l - m + l) ae a¢ 

(3.6.36) 
successively to obtain all Yt with l fixed. Because this is done in many textbooks 
on elementary quantum mechanics, (for example, Townsend 2000), we will not 
work out the details here. The result for m � 0 is 

(2/ + 1 )  (l +m) ! im</> 1 dl-m 
( . e)2l (3 6 37) e -- 1 stn , . . 4n (l - m) !  sinm e d(cose) -m 

and we define Y1-m by 

(3 .6.38) 
Regardless of whether m is positive or negative, the e -dependent part of Yt ( e , ¢) 
is [sine] lm l times a polynomial in case with a highest power of l - lm l .  Form = 0, 
we obtain 

0 f!lil + l Y1 (e , ¢) = - - Pz(cos e). 4n (3.6.39) 
From the point of view of the angular-momentum commutation relations alone, 

it might not appear obvious why l cannot be a half-integer. It turns out that several 
arguments can be advanced against half-integer !-values. First, for half-integer l, 
and hence for half-integer m, the wave function would acquire a minus sign, 

eim(2rr) = - l ,  (3.6.40) 
under a 2n rotation. As a result, the wave function would not be single-valued; we 
pointed out in Section 2.4 that the wave function must be single-valued because 
of the requirement that the expansion of a state ket in terms of position eigenkets 
be unique. We can prove that if L, defined to be x x p, is to be identified as the 
generator of rotation, then the wave function must acquire a plus sign under a 2n 
*Normalization condition (3.6.30), of course, does not determine the phase of cz . The factor ( -li 
is  inserted so  that when we use the L_ operator successively to reach the state m = 0,  we obtain yp with the same sign as the Legendre polynomial Pz (cos8) whose phase is fixed by Pz( l )  = 1 
[see (3.6.39)] . 
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rotation. This follows from the fact that the wave function for a 2n-rotated state 
is the original wave function itself with no sign change: (-iLz21r ) (x' l exp 

1i 
Ia) = (x1 cos2n + y1 sin2n , y' cos2n - x ' sin2n , z' la) 

= (x' la) , 
(3 .6.41 ) 

where we have used the finite-angle version of (3 .6.6). Next, let us suppose 
Yt (e ,¢) with a half-integer l were possible. To be specific, we choose the sim-
plest case, l = m = 1- ·  According to (3.6.34) we would have 

Y I12ce -A) i¢/2 �e 112 
• 'P  = CI;2e v sm tt . 

From the property of L_ [see (3.6.36)] we would then obtain 

Y;j�12(e ,¢) = e-i¢ (- a
a
e + i cote a 

a
¢
) (CI;2ei¢12-Jsine) 

= -q;2e
-i¢/2 cote -&e. 

(3.6.42) 

(3.6.43) 

This expression is not permissible because it is singular at e = 0, n. What is 
worse, from the partial differential equation 

n iL- 1 - -- = -z1ie -z - - cot e- nl - --
( A 1 1 )  . -i¢ 

( . a a ) ( A 1 1 )  
2 '  2 a e  a ¢  2 ' 2 

= 0  

we directly obtain 

Y-I
/2 , -i¢!2 �e 112 

= c112
e v smtt, 

(3 .6.44) 

(3.6.45) 

in sharp contradiction with (3 .6.43). Finally, we know from the Sturm-Liouville 
theory of differential equations that the solutions of (3.6.28) with l integer form 
a complete set. An arbitrary function of e and ¢ can be expanded in terms of Yt 
with integer l and m only. For all these reasons it is futile to contemplate orbital 
angular momentum with half-integer !-values. 

Spherical Harmonics as Rotation Matrices 

We conclude this section on orbital angular momentum by discussing the spheri
cal harmonics from the point of view of the rotation matrices introduced in the 
last section. We can readily establish the desired connection between the two 
approaches by constructing the most general direction eigenket J:fi) by apply
ing appropriate rotation operators to Jz) ,  the direction eigenket in the positive 
z-direction. We wish to find :D(R) such that 

J:fi) = :D(R)Jz) .  (3.6.46) 
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We can rely on the technique used in constructing the eigenspinor of u · fi in 
Section 3.2. We first rotate about the y-axis by angle e, then around the z-axis by 
angle ¢; see Figure 3.3 with f3 � e, a � ¢. In the notation of Euler angles, we 
have 

:D(R) = :D(a = ¢, {3 = e ,  y = 0) . (3.6.47) 
Writing (3.6.46) as 

jfi) = L L :D(R) Jl ,m) (l ,m jz) . (3.6.48) 
m 

we see that jfi), when expanded in terms of j l ,m) ,  contains all possible !-values. 
However, when this equation is multiplied by (l ,m' l on the left, only one term in 
the !-sum contributes, namely, 

(l , m' jfi) = L :D�/m (a = </>, {3 = e ,  y = O) (l ,m jz) .  (3 .6.49) 
m 

Now (l, m jz) is just a number; in fact, it is precisely Yt* (e , </>) evaluated at e = 0 
with </> undetermined. At e = 0, Yt is known to vanish for m =I 0, which can 
also be seen directly from the fact that j z) is an eigenket of Lz (which equals 
xpy - YPx) with eigenvalue zero. So we can write 

(l,m jz) = Yt* ce = O, ¢undetermined)8m o 

Returning to (3.6.49), we have 

or 

m'* ! (2 1 + 1) (I) Y1 (e ,¢) = :D ,0(a = ¢, {3 = e ,  y = 0) 4n m 

(I) � m* :Dmo(a , {3, Y = 0) = V (2i+1) yl (e
' 
</>) 

e =fJ,if> =a 

Notice the m = 0 case, which is of particular importance: 

(3 .6.50) 

(3.6.5 1) 

(3.6.52) 

(3.6.53) 
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3.7 • SCHRODINGER'S EQUATION FOR CENTRAL POTENTIALS 

Problems described by Hamiltonians of the form 

p2 H =  - + V(r) 2m 
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(3 .7 . 1 ) 

are the basis for very many situations in the physical world. The fundamental 
importance of this Hamiltonian lies in the fact that it is spherically symmetri
cal. Classically, we expect orbital angular momentum to be conserved in such a 
system. This is also true quantum-mechanically, because it is easy to show that 

(3.7.2) 
and therefore 

[L, H] = [L2, H] = 0 (3.7.3) 
if H is given by (3.7. 1) . We refer to such problems as central-potential or central
force problems. Even if the Hamiltonian isn't strictly of this form, it is often the 
case that this is a good starting point when we consider approximation schemes 
that build on "small" corrections to central-potential problems. 

In this section we will discuss some general properties of eigenfunctions gen
erated by (3.7. 1 ) and a few representative central-potential problems. For more 
detail, the reader is referred to any number of excellent texts that explore such 
problems in greater depth. 

The Radial Equation 

Equation (3.7.3) makes it clear that we should search for energy eigenstates Ia) = 
IElm) where 

H IElm) = E IElm) ,  
L2 1 Elm) = l(l + 1 )1i2 1 Elm), 
Lz iElm) = mniElm) . 

(3.7.4) 
(3.7.5) 
(3.7.6) 

It is easiest to work in the coordinate representation and solve the appropriate 
differential equation for eigenfunctions in terms of a radial function REz (r) and 
spherical harmonics, as shown in (3.6.22). Combining (3 .7. 1) , (3 .7.4), and (3.7.5) 
with (3 .6.21) and (3.6.22), we arrive at the radial equation* 

[ 1i2 d ( d ) l(l + 1)1i2 ] ---2 - r2- + 2 + V(r) REz (r) = EREZ (r). 2mr dr dr 2mr (3 .7.7) 

*We apologize for using m to represent both "mass" and the quantum number for angular mo
mentum. However, in this section, it should be clear from the context which is which. 
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Depending on the specific form of V (r ), we may work with this equation or some 
variant of it to identify the radial part REt (r) of the eigenfunction and/or the en
ergy eigenvalues E. 

In fact, we can immediately gain some insight into the effects of angular mo
mentum on the eigenfunctions by making the substitution 

which reduces (3.7.7) to 

UEt(r) REt(r) = -- , r 

n2 d2UEl [ l(l + 1)h2 ] -2m dr2 + 2mr2 + V(r) UEt(r) = EuEt(r). 

(3.7.8) 

(3.7.9) 

Coupling this with the fact that the spherical harmonics are separately normalized, 
so that the overall normalization condition becomes 

1 = J r2dr R�1 (r)REt(r) = J dr u�1 (r)UEt(r), (3.7 . 10) 

we see that u El (r) can be interpreted as a wave function in one dimension for a 
particle moving in an "effective potential" l(l + 1)h2 Veff(r) = V(r) + 2mr2 . (3.7. 1 1 ) 

Equation (3.7. 1 1 ) demonstrates the existence of an "angular-momentum barrier" 
if l =!= 0, as shown in Figure 3.5. Quantum-mechanically, this means that the am
plitude (and therefore the probability) is small for locating the particle near the 
origin, except for s-states. As we will see later on, this fact has important physical 
consequences in atoms, for example. 

We can be more quantitative about this interpretation. Let us assume that the 
potential-energy function V (r) is not so singular so that limr---+0 r2 V (r) = 0. Then, 
for small values of r , (3.7.9) becomes 

d2UEt l(l + 1 )  -- = U£t (r) dr2 r2 (r --+ 0), (3.7. 12) 

which has the general solution u(r) = Arl+1 + Br-1. It is tempting to set B = 0 
out of hand, because 1 j r1 produces severe singularities as r --+ 0, especially for 
large l . However, there are better reasons for setting B = 0, reasons that are rooted 
in the foundations of quantum mechanics. 

Consider the probability flux given by (2.4. 16) .  This is a vector quantity whose 
radial component is 

• A • n I (·',* a ·'') 
]r = r • J  = - m 'f' - 'f' m ar 

h d = -REt (r)-d REt (r). m r (3.7 . 13) 
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FIGURE 3.5 The "effective potential" that governs the behavior of the "radial wave 
function" u El (r ) .  If the potential energy V (r) (shown as a dashed line) is not too singular 
at the origin, then there is an angular-momentum barrier for all states with l =j:. 0, which 
makes it very improbable for a particle to located near the origin. 

Now if RE1 (r) -+ r1 as r -+  0, then jr ex lr21-1 . Therefore, the probability "leak
ing" out of a small sphere centered around the origin is 4nr2 jr ex lr21+1 -+ 0 for 
all values of l , as it should be. 

However, if REz (r) -+ r-(l+l ) as r -+  0, then jr ex (l + l )r-21-3 , and the prob
ability emerging from the small sphere is 4nr2 jr ex (l + l )r-21- 1 -+ oo as r -+ 0, 
even for l = 0. Consequently, we must choose only u(r) ex rl+1 as a solution 
to (3. 7. 12) ; otherwise, we would violate our probabilistic interpretation of the 
quantum-mechanical amplitude. 

Therefore, we have 

as r -+  0. (3.7 . 14) 

This relation has profound consequences. First, it embodies the "angular
momentum barrier" shown in Figure 3.5, since the wave function goes to zero 
except for s-states. More practically, it means that the probability of finding, say, 
an electron in an atom in the region of the nucleus, goes like ( R j ao )21 , where 
R « ao is the size of the nucleus and ao is the Bohr radius. These concepts will 
become explicit when we come to the study of atomic structure. 

When considering bound states of potential-energy functions V (r) that tend to 
zero at large r, there is another form of the radial equation we can consider. For 
r -+  oo, (3.7.9) becomes 

r -+  oo, (3.7. 1 5) 

since E < 0 for bound states. The solution to this equation is simply UE(r) ex e-Kr . 
Also, it makes it clear that the dimensionless variable p = Kr would be useful to 
recast the radial equation. Consequently, we remove both the short-distance and 
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the long-distance behavior of the wave function and write 

where the function w(p) is "well behaved" and satisfies 

d2w + 2
( Z + l _ 1) dw + [ V 

_ 

2(
/
+ l) J w = O. 

dp2 p dp E p 

(3.7. 16) 

(3 .7. 17) 

(The manipulations that lead to this equation are left to the reader.) One then 
attacks the solution w(p) of (3.7. 17) for the particular function V(r = pjK). 

The Free Particle and the Infinite Spherical Wel l  

In Section 2.5 we saw the solution to the free-particle problem in three dimen
sions, using Cartesian coordinates. We can of course approach the same problem 
by exploiting spherical symmetry and angular momentum. Starting from (3.7.7), 
we write 

and p = kr (3.7 . 18) 

and arrive at the modified radial equation 

(3.7 . 19) 

This is a well-known differential equation whose solutions are called spherical 
Bessel functions jz(p) and nz (p), where 

1 [ 1 d J 1 ( sin p ) 
jz(p) = (-p) 

Pdp P ' 
z [ l d ] 1 (cosp ) nz(p) = -(-p) 
Pdp -P- . 

(3.7.20a) 

(3.7.20b) 

It is easy to show that as p -+  0, jz(p) -+ p1 and nz(p) -+ p-1-1 • Hence, jz(p) 
corresponds to (3.7. 14) and these are the only solutions we consider here.* It is 
also useful to point out that the spherical Bessel functions are defined over the 
entire complex plane, and it can be shown that 

1 1 1 . 
jz(z) = --:y ds ezzs Pz(s). 

2z _1 
(3 .7.21) 

*In a treatment of "hard sphere scattering" problems, the origin is  explicitly excluded, and the 
solutions nz (p) are also kept. The relative phase between the two solutions for a given l is called 
the phase shift. 
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The first few spherical Bessel functions are 

. sinp 
Jo(p) = - , 

p 
sinp cosp jr (p) = 7 - -p-, 

h(p) = [2_ - _!_] sinp -
3 cos p

. 
p3 p p2 

21 1 

(3.7.22) 

(3.7.23) 

(3.7.24) 

This result can be immediately applied to the case of a particle confined to 
an infinite spherical well, i.e., a potential-energy function V (r) = 0 within r < a, 
but with the wave function constrained to be zero at r = a . For any given value 
of l, this leads to the "quantization condition" jz(ka) = 0; that is, ka equals the 
set of zeros of the spherical Bessel function. For l = 0 these are obviously ka = 
n ,  2n , 3n , . . . .  For other values of l , computer programs are readily available that 
can compute the zeros. We find that 

1i2 [ 2 2 2 J Et=O = 2ma2 n , (2n) , (3n) , . . .  , 
1i2 [ 2 2 2 J Ez=1 = 2ma2 4.49 , 7 .73 , 10.90 , . . . , 
1i2 [ 2 2 2 J Et=2 = 2ma2 5 .84 , 8.96 , 12.25 , . . . . 

(3 .7 .25) 

(3.7.26) 

(3.7.27) 
It should be noted that this series of energy levels shows no degeneracies in l . 
Indeed, such degenerate energy levels are impossible, except for any accidental 
equality between zeros of spherical Bessel functions of different orders. 

The Isotropic Harmonic Osci llator 

Energy eigenvalues for the Hamiltonian 

(3.7.28) 

are straightforward to determine. Introducing dimensionless energy J... and radial 
coordinate p through 

1 E = -fiwJ... 2 
we transform (3.7.9) into 

and 

d2u l(l + 1) 
-2 - 2 u(p) + (J... - p2)u(p) = 0. dp p 

(3.7.29) 

(3.7.30) 
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It is again worthwhile to explicitly remove the behavior for large (and small) p,  

although we cannot use (3.7 . 16) because V(r) does not tend to zero for large r . 
Instead, we write 

(3 .7 .31) 
This yields the following differential equation for the function f(p ) : 

d2f df p-2 + 2[(1 + 1) - p2]- + [A. - (21 + 3)]pf(p) = 0. dp dp (3.7.32) 

We solve (3.7 .32) by writing f(p) as an infinite series, namely 
00 

j(p) = I>nPn · (3.7.33) 
n=O 

We insert this into the differential equation and set each term to zero by powers 
of p .  The only surviving term in p0 is 2(1 + 1)al , so 

(3.7.34) 
The terms proportional to p1 allow us to relate a2 to ao, which in turn can be set 
through the normalization condition. Continuing, (3 .7.32) becomes 

00 

L {(n + 2)(n + 1 )an+2 + 2(1 + 1)(n + 2)an+2 - 2nan + [A. - (21 + 3]an} pn+l = 0, 
n=2 (3.7.35) 
which leads, finally, to the recursion relation 

2n + 21 + 3  - A.  a 2 - a n+ - (n + 2)(n + 21+ 3) n · (3.7.36) 
Immediately we see that f(p) involves only even powers of p, since (3.7.34) and 
(3.7.36) imply that an = 0 for odd n. Also, as n --+  oo, we have 

an+2 2 1 -- --+ - = -, an n q (3.7.37) 
where q = n /2 includes both odd and even integers. Therefore, for large values 
of p, (3.7.33) becomes 

f(p) --+ constant x L :! (p2) q ex eP2 • 
q 

(3.7.38) 

In other words, u(p) from (3.7 .31) would grow exponentially for large p (and 
would therefore be unable to meet the normalization condition) unless the series 
terminates. Therefore, 

2n + 21 + 3 - A. = 0 (3.7.39) 
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for some even value of n = 2q , and the energy eigenvalues are 

Eqz = ( 2q + l + �) 1iw = ( N + �) 1iw 
21 3 

(3.7.40) 

for q = 0, 1 , 2, . . .  and l = 0, 1 , 2  . . .  , and N = 2q + l. One frequently refers to N 
as the "principal" quantum number. It can be shown that q counts the number of 
nodes in the radial function. 

Quite unlike the square well, the three-dimensional isotropic harmonic oscil
lator has degenerate energy eigenvalues in the l quantum number. There are three 
states (all l = 1 )  for N = 1 .  For N = 2 there are five states with l = 2, plus one 
state with q = 1 and l = 0, giving a total of six. Notice that for even (odd) values 
of N, only even (odd) values of l are allowed. Therefore, the parity of the wave 
function is even or odd with the value of N. 

These wave functions are popular basis states for calculations of various nat
ural phenomena, when the potential-energy function is a "well" of some finite 
size. One of the greatest successes of such an approach is the nuclear shell model, 
where individual protons and neutrons are pictured as moving independently in 
a potential-energy function generated by the cumulative effect of all nucleons in 
the nucleus. Figure 3.6 compares the energy levels observed in nuclei with those 
obtained for the isotropic harmonic oscillator and for the infinite spherical well. 

It is natural to label the eigenstates of the Hamiltonian (3.7.28) as lqlm) or 
I Nlm) .  However, this Hamiltonian may also be written as 

(3 .7.41 )  

where H; = aJ a; + � i s  an independent one-dimensional harmonic oscillator in 
direction i = x ,y , z. In this way, we would label the eigenstates l nx , ny ,nz) , and 
the energy eigenvalues are 

( 1 1 1 ) E = nx + 2 + nx + 2 + nx + 2 1iw 

= ( N + �) 1iw, (3.7.42) 

where, now, N = nx + ny + nz. It is simple to show numerically that for the first 
few energy levels, the degeneracy is the same regardless of which basis is used. It 
is an interesting exercise to show this in general-and also to derive the unitary 
transformation matrix (nx ,ny ,nz lqlm) that changes from one basis to the other. 
(See Problem 3.21 at the end of this chapter.) 

The Coulomb Potential 

Perhaps the most important potential-energy function in physics is 

Ze2 V(x) = - - , 
r 

(3.7.43) 
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FIGURE 3.6 Energy levels in the nuclear shell model, adapted from Haxel, Jensen, 
and Suess, Zeitschriftfor Physik 128 (1950) 295. Energy levels of the three-dimensional 
isotropic harmonic oscillator are on the left, followed by the infinite spherical well. Mod
ifications of the infinite square well, for finite walls and then for "rounded comers," 
follow. The rightmost plot of energy levels shows those obtained by including the inter
action between the nucleon spin and the orbital angular momentum. The final column 
indicates the total angular-momentum quantum number. 

where the constant Ze2 is obviously chosen so that (3.7.43) represents the poten
tial for a one-electron atom with atomic number Z.  In addition to Coulomb forces, 
and classical gravity, it is widely used in models applied to very many physical 
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systems.* We consider here the radial equation based on such a function and the 
resulting energy eigenvalues. 

The 1 j r potential satisfies all the requirements that led us to (3. 7 . 17). We there
fore search for solutions of the form (3.7. 16) by determining the function w(p). 
Making the definition 

Po = 
[ 2m J I /2 ze2 = [2mc2 ] I /2 Za, -E 1i -E 

(3.7 .44) 

where a = e2 /fie � 1 / 137 is the fine structure constant, (3 .7. 17) becomes 

d2w dw 
P dp2 

+ 2(! + 1 - p) 
dp 

+ [po - 2(l + 1)]w(p) = 0. (3.7.45) 

We could of course proceed to solve (3.7.45) using a series approach and derive 
a recursion relation for the coefficients, just as we did with (3.7.32). However, it 
turns out that the solution is in fact already well known. 

Equation (3.7 .45) can be written as Kummer's Equation: 

where 

d2F dF 
x-- + (c - x)- - aF = O, dx2 dx 

and 

X = 2p, 

c = 2(! + 1), 

2a = 2(1 + 1) - PO· 

(3.7.46) 

(3.7.47) 

The solution to (3.7.46) is called the Confluent Hypergeometric Function, which 
is written as the series 

and so 

a x  a(a + 1) x2 
F(a · cx) = 1 + -- + -+ . . .  ' ' c 1 !  c(c + 1) 2 ! ' 

w(p) = F (1 + 1 -� ; 2(1 + 1) ; 2p) . 
Note that for large p, we have 

" a(a + 1) . .  · (2p)N 
w(p) � � --

Large N 
c(c+ 1) . .  · N! 

� 
" (N j2)N (2p)N 

� 
" (p)N 

� eP . � NN N! � N! Large N Large N 

(3.7.48) 

(3.7 .49) 

*Indeed, 1 I r potential energy functions result from any quantum field theory in three spatial 
dimensions with massless intermediate exchange particles. See Chapter 1.6 in Zee (2010). 



2 1 6  Chapter 3 Theory of Angular Momentum 

Therefore, once again, (3. 7. 16) gives a radial wave function that would grow with
out bound unless the series (3.7.48) terminated. So, for some integer N, we must 
have a + N = 0 that leads to 

p0 = 2(N + l  + 1), 
where N = 0, 1 , 2  . .  . 

and 1 = 0, 1 , 2, . . .  . 

(3.7 .50) 

It is customary (and, as we shall soon see, instructive) to define the principal 
quantum number n as 

where 
n = N+ l + 1  = 1 , 2, 3, . . .  , 
l = 0, 1 , . . .  , n - l .  

(3 .7 .5 1 ) 

We point out that it is possible to solve the radial equation for the Coulomb prob
lem using the generating-function techniques described in Section 2.5. See Prob
lem 3.22 at the end of this chapter. 

Energy eigenvalues arise by combining (3.7.44) and (3.7 .50) in terms of the 
principal quantum number; that is, 

which leads to 

[ 2 2 ] 1/2 
Po = :� Za = 2n, 

1 Z2a2 z2 E = --mc2-- = -13 .6 eV-, 2 n2 n2 

(3.7 .52) 

(3.7.53) 

where the numerical result is for a one-electron atom-that is, mc2 = 5 1 1  ke V. 
Equation (3.7.53) is of course the familiar Balmer formula. 

It is time to make various points. First, there is a stark disagreement between 
the energy-level properties predicted by modern quantum mechanics, and those of 
the old Bohr model of the atom. The Bohr model had a one-to-one correspondence 
between angular-momentum eigenvalues l and principal quantum number n; in 
fact, the ground state corresponded to n = l = 1 .  We see instead that only l = 0 
is allowed for n = 1 and that different values of l are allowed for higher energy 
levels. 

Second, a natural length scale ao has emerged. Since p = Kr, where K = J -2mEj1i2 [see (3 .7 . 15)], we have 

where 

1 1i n n - = -- - = ao- , 
K mea Z Z 

1i 1i2 ao = -- = -mca me2 

(3.7 .54) 

(3.7 .55) 
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FIGURE 3.7 Radial wave functions for the Coulomb potential and principal quantum 
numbers n = 1 (left) and n = 2 (right). 

is called the Bohr radius. For an electron, ao = 0.53 x w-8 em = 0.53 A. This is 
indeed the typical size of an atom. 

Finally, the energy eigenvalues (3.7.53) demonstrate an interesting degeneracy. 
The eigenvalues depend only on n, and not on l or m. The level of degeneracy for 
a state l nlm) is therefore given by 

n- 1 
Degeneracy = L(2l + 1) = n2 . 

1=0 

(3.7.56) 

This degeneracy is in fact not accidental but, rather, reflects a subtle symmetry of 
the Coulomb potential. We will return to this question in Chapter 4. 

We can now write down the hydrogen atom wave functions explicitly. Going 
back to (3.6.22) and putting in the appropriate normalization factors, we have 

where 
1/fnzm (X) = (xlnlm) = Rnz (r)Yt(e ,<jJ), (3.7.57) 

R z(r) -
1 (2Zr )

z
e_zrjnao [( 2z )3 

(n + l) !  ] 1/2 
n - (2l + 1 ) !  nao nao 2n(n - l - 1) !  

x F(-n + l + 1 ; 2l + 2; 2Zrjnao) . (3.7.58) 
Figure 3.7 plots these radial wave functions for n = 1 and n = 2. As we have 
discussed, only the l = 0 wave functions are nonzero at the origin. Also note that 
there are n - 1 nodes in the wave function for l = 0 and no nodes for the wave 
function with l = n - 1 .  

3.8 . ADDITION OF  ANGULAR MOMENTA 

Angular-momentum addition has important applications in all areas of modern 
physics-from atomic spectroscopy to nuclear and particle collisions. Further
more, a study of angular-momentum addition provides an excellent opportunity 
to illustrate the concept of change of basis, which we discussed extensively in 
Chapter 1 .  
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Simple Examples of Angular-Momentum Addition 

Before studying a formal theory of angular-momentum addition, it is worth look
ing at two simple examples with which the reader may be familiar: ( 1 ) how to add 
orbital angular momentum and spin-angular momentum and (2) how to add the 
spin-angular momenta of two spin i particles. 

Previously we studied both spin i systems with all quantum-mechanical de
grees of freedom other than spin-such as position and momentum-ignored and 
quantum-mechanical particles with the space degrees of freedom (such as posi
tion and momentum) taken into account but the internal degrees of freedom (such 
as spin) ignored. A realistic description of a particle with spin must of course 
take into account both the space degree of freedom and the internal degrees of 
freedom. The base ket for a spin i particle may be visualized to be in the direct
product space of the infinite-dimensional ket space spanned by the position eigen
kets { l x') } and the two-dimensional spin space spanned by I+) and 1 -) .  Explicitly, 
we have for the base ket 

lx', ±) = lx') ® I ±) , (3 .8 . 1 ) 
where any operator in the space spanned by { lx') } commutes with any operator in 
the two-dimensional space spanned by I±) . 

The rotation operator still takes the form exp( -iJ · ft¢ jli) but J, the generator 
of rotations, is now made up of two parts, namely 

J = L+S. (3 .8 .2) 
It is actually more obvious to write (3.8.2) as 

J = L® 1 + 1 ®S, (3 .8 .3) 
where the 1 in L 0 1 stands for the identity operator in the spin space, and the 1 in 
1 ® S stands for the identity operator in the infinite-dimensional ket space spanned 
by the position eigenkets. Because L and S commute, we can write 

:D(R) = :0 (orb)(R) 0 :0 (spin)(R) = exp ( -i�· ft¢) 0 exp (-iS
h
· ft¢) . (3 .8.4) 

The wave function for a particle with spin is written as 

(x', ±la) = 1/l±(x'). (3 .8 .5) 
The two components 1/1 ± are often arranged in column matrix form as follows: 

(1/l+(x')) 
1/1 _(x') ' (3.8.6) 

where 1 1/1 ±(x') l 2  stands for the probability density for the particle to be found at x' 
with spin up and down, respectively. Instead of lx') as the base kets for the space 
part, we may use l n , l ,m) , which are eigenkets of L2 and Lz with eigenvalues 
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1i2l(l + 1) and mzh, respectively. For the spin part, I± }  are eigenkets of S2 and 
Sz with eigenvalues 31i2 /4 and ±h/2, respectively. However, as we will show 
later, we can also use base kets that are eigenkets of J2, lz , L2, and S2 . In other 
words, we can expand a state ket of a particle with spin in terms of simultaneous 
eigenkets of L2, S2, Lz, and Sz or in terms of simultaneous eigenkets of J2, lz , 
L2, and S2. We will study in detail how the two descriptions are related. 

As a second example, we study two spin � particles-say two electrons
with the orbital degree of freedom suppressed. The total spin operator is usually 
written as 

(3 .8.7) 
but again it is to be understood as 

(3 .8 .8) 
where the 1 in the first (second) term stands for the identity operator in the spin 
space of electron 2 (1) . We, of course, have 

(3 .8 .9) 
and so forth. Within the space of electron 1 (2), we have the usual commutation 
relations 

As a direct consequence of (3 .8.9) and (3 .8 . 10), we have 

and so on for the total spin operator. 
The eigenvalues of the various spin operators are denoted as follows: 

S2 = (S1 + S2)2 : s(s + 1)1i2 
Sz = S1z + S2z : mh 

(3.8. 10) 

(3 .8 . 1 1) 

(3 .8 . 12) 

Again, we can expand the ket corresponding to an arbitrary spin state of two 
electrons in terms of either the eigenkets of S2 and Sz or the eigenkets of S1z and 
S2z · The two possibilities are as follows: 

1 .  The {m 1 , m2} representation based on the eigenkets of S1z and S2z : 

I + +} ,  I + -} ,  1 - +}, and 1 - -} , 
where I + -} stands for m 1  = � , m2 = - � , and so  forth. 

(3 .8 . 1 3) 
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2. The { s, m} representation (or the triplet-singlet representation) based on the 
eigenkets of S2 and Sz : 

\s = 1 ,m = ±1 ,0) , \s = O,m = 0) , (3 .8. 14) 

where s = 1 (s = 0) is referred to as a spin triplet (spin singlet). 

Notice that in each set there are four base kets. The relationship between the 
two sets of base kets is as follows: 

I s = l ,m = 1) = I + +) , 

Is = l ,m = 0) = (�) ( 1 + -) + 1 - +)), 

Is = l ,m = - 1 )  = 1 - -) , 
Is = O m = 0) = (-

1 ) c l + -) - 1 - +)) . ' .Ji 

(3. 8 . 15a) 

(3.8. 15b) 

(3.8 .15c) 

(3 .8 .15d) 

The right-hand side of (3 .8 . 15a) tells us that we have both electrons with spin up; 
this situation can correspond only to s = 1 ,  m = 1 .  We can obtain (3 .8. 15b) from 
(3 .8 . 15a) by applying the ladder operator 

s_ = s1- + s2-
(3 .8. 16) = (Six - i Siy) + (S2x - iS2y) 

to both sides of (3.8 . 15a). In doing so we must remember that an electron 1 oper
ator like S 1- affects just the first entry of I + +), and so on. We can write 

as 

S- Is = l ,m = 1 )  = (S1- + S2-) l + +) (3 .8. 17) 

J ( 1  + 1 )(1 - 1 + 1 ) Is = 1 ,  m = 0) = J (! + �) ( � - � + 1) x I - +) 

+J(� + �) o - � + 1) 1 + -) . 
(3 .8. 18) 

which immediately leads to (3 .8. 15b). Likewise, we can obtain Is = 1 ,  m = - 1 )  
by applying (3 .8 . 16) once again to (3.8 . 15b). Finally, we can obtain (3.8. 15d) by 
requiring it to be orthogonal to the other three kets, in particular to (3 .8. 15b ). 

The coefficients that appear on the right-hand side of (3 .8 .15) are the simplest 
example of Clebsch-Gordan coefficients, which we will discuss further at a later 
time. They are simply the elements of the transformation matrix that connects the 
{m1 ,m2} basis to the {s ,m } basis. It is instructive to derive these coefficients in 
another way. Suppose we write the 4 x 4 matrix corresponding to 

s2 = sf + s� + 2s1 · s2 
(3 .8. 19) 
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using the (m 1 , m2) basis. The square matrix is  obviously not diagonal because an 
operator like S 1 + connects I - +) with I + +) . The unitary matrix that diagonalizes 
this matrix carries the lm 1 ,  m 2) base kets into the I s , m) base kets. The elements of 
this unitary matrix are precisely the Clebsch-Gordan coefficients for this problem. 
The reader is encouraged to work out all this in detail. 

Formal Theory of Angular-Momentum Addition 

Having gained some physical insight by considering simple examples, we are 
now in a position to study more systematically the formal theory of angular
momentum addition. Consider two angular-momentum operators J 1 and J2 in dif
ferent subspaces. The components of J 1 (J2) satisfy the usual angular-momentum 
commutation relations: 

(3 .8.20a) 
and 

(3.8.20b) 
However, we have 

[Jlk , hz] = 0 (3.8.21) 
between any pair of operators from different subspaces. 

The infinitesimal rotation operator that affects both subspace 1 and subspace 2 
is written as ( iJ1 · ft8</>) ( iJ2 · ft8</>) i (J1 ® 1 + 1 ®J2) • ft8</> 1 -

1i 
0 1 -

1i 
= 1 -

1i 
. (3.8.22) 

We define the total angular momentum by 

which is more commonly written as 

The finite-angle version of (3 .8 .22) is ( -iJ 1 . ft</>) ( -iJ2 . ft</>) 9)1 (R) ® j)2(R) = exp 
1i 

® exp 
1i 

. 

(3 .8 .23) 

(3 .8 .24) 

(3 .8.25) 

Notice the appearance of the same axis of rotation and the same angle of rotation. 
It is very important to note that the total J satisfies the angular-momentum 

commutation relations 

(3 .8 .26) 
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as a direct consequence of (3 .8.20) and (3.8.21). In other words, J is an angular 
momentum in the sense of Section 3 . 1 .  Physically this is reasonable because J 
is the generator for the entire system. Everything we learned in Section 3.5-for 
example, the eigenvalue spectrum of J2 and lz and the matrix elements of the 
ladder operators-also holds for the total J. 

As for the choice of base kets, we have two options. 
Option A: Simultaneous eigenkets of Jf , J� , liz ,  and hz· We denote these by 

! }lh;m1m2) . Obviously the four operators commute with each other. The defin
ing equations are 

Jf l }lh;m1m2) = }1 (}1 + 1 )1i2 ! }lh;mlm2) , 

1Iz l )lh;mlm2) = m11i !}lh;m 1m2) , 

J� l } lh;m 1m2) = h(h + 1 )1i2 ! }lh;mlm2) , 

hz lhh;m1m2) = m21i l} lh;m1m2) .  

(3 .8.27a) 

(3 .8.27b) 

(3 .8.27c) 

(3 .8.27d) 

Option B: Simultaneous eigenkets of J2, Jf , J� , and lz . First, note that this set 
of operators mutually commute. In particular, we have 

which can readily be seen by writing J2 as 

J2 = Jt +J� + 21Izhz + li+h- + li-h+· 

We use ! }l ,h; jm) to denote the base kets of option B :  

Jt ! }lh; jm) = }1 (}1 + 1 )1i2 ! }lh; jm) , 

J� lhh ;jm) = h(h + 1 )1i2 ! }lh ;jm), 

J2 ! }lh; jm) = j (j + 1 )1i2 !}lh; jm) , 

lz lhh; jm) = m1i !}lh; jm) . 

(3.8 .28) 

(3 .8 .29) 

(3.8.30a) 

(3.8.30b) 

(3 .8.30c) 

(3.8.30d) 

Quite often }1 , h are understood, and the base kets are written simply as I j, m ) .  
It is very important to note that even though 

(3 .8.3 1 )  

we have 

(3 .8 .32) 

as the reader may easily verify using (3 .8.29). This means that we cannot add J2 
to the set of operators of option A. Likewise, we cannot add liz and/or hz to the 
set of operators of option B.  We have two possible sets of base kets corresponding 
to the two maximal sets of mutually compatible observables we have constructed. 



3.8 Addition of Angular Momenta 223 

Let us consider the unitary transformation in the sense of Section 1 .5 that con
nects the two bases: 

/hh;jm) = LL ihh;m1m2) (hh;m1m2 /hh; jm) , (3.8.33) 
m1 m2 

where we have used 
LLihh;m1m2) (hh;m1m2 / = 1 (3 .8 .34) 
m1 m2 

and where the right-hand side is the identity operator in the ket space of given 
h and h· The elements of this transformation matrix (hh;m1m2 /hh; Jm) are 
Clebsch-Gordan coefficients. 

There are many important properties of Clebsch-Gordan coefficients that we 
are now ready to study. First, the coefficients vanish unless 

(3 .8.35) 
To prove this, first note that 

Uz - ftz - hz) / }Ih; jm) = 0. (3 .8 .36) 
Multiplying (hh;m 1m2 / on the left, we obtain 

(m - m1 - m2) (hh;m1m2 /hh; jm) = 0, (3 .8 .37) 
which proves our assertion. Admire the power of the Dirac notation !  It really pays 
to write the Clebsch-Gordan coefficients in Dirac's bracket form, as we have done. 

Second, the coefficients vanish unless 

lh - hi � j � h + h· (3 .8 .38) 
This property may appear obvious from the vector model of angular-momentum 
addition, where we visualize J to be the vectorial sum of J 1 and J2. However, it 
is worth checking this point by showing that if (3 .8.38) holds, then the dimen
sionality of the space spanned by { /hh;m 1m2) } is the same as that of the space 
spanned by { /hh;jm) } . For the (m 1 ,m2) way of counting, we obtain 

N = (2h + 1)(2h + 1 ) (3 .8.39) 
because for given h there are 2}1 + 1 possible values of m1 ; a similar statement 
is true for the other angular-momentum h· As for the (j , m) way of counting, we 
note that for eachj, there are 2j + 1 states, and according to (3 .8.38),} itself runs 
from h - h to h + h, where we have assumed, without loss of generality, that 
h � h· We therefore obtain 

h+h 
N = 

L (2} + 1) 
J=h-h 

= � [{2(}1 - h) +  1 }  + {2(j1 +h) +  1 }](2h + 1 ) 
= (2h + 1)(2h + 1 ) . 

(3 .8 .40) 
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Because both ways of counting give the same N-value, we see that (3.8.38) is 
quite consistent. * 

The Clebsch-Gordan coefficients form a unitary matrix. Furthermore, the ma
trix elements are taken to be real by convention. An immediate consequence 
of this is that the inverse coefficient (hh; jm lhh;mlm2) is the same as 
(hh;m1m2 lhh; jm) itself. A real unitary matrix is orthogonal, so we have 
the orthogonality condition 

L .. l�)hh;mlm2 1hh;jm) (hh;m�m; lhh; jm) = Dm1m� Dm2m; • (3 .8.41) 
j m 

which is obvious from the orthonormality of { lhh;m1m2) } together with the 
reality of the Clebsch-Gordan coefficients. Likewise, we also have 

LL(hh;mlm2 lhh; jm) (hh;mlm2 lhh;/m') = 8jj'Dmm' ·  (3 .8 .42) 
m1 mz 

As a special case of this, we may set j' = j , m' = m = m 1 + m2. We then obtain 

LL l (hh;mlm2 lhh; jm) l 2 = 1 , 
m1 mz 

which is just the normalization condition for I h h; j m) . 

(3.8.43) 

Some authors use somewhat different notations for the Clebsch-Gordan coeffi
cients. Instead of (hh;mlm2 1hh; jm) we sometimes see (hm1hm2 lhhjm) , 
C(hhj ;m1m2m), Chh(jm;m1m2), and so on. They can also be  written in terms 
of Wigner's 3-j symbol, which is occasionally found in the literature: 

(hh;mlm2 lhh; jm) = (- 1 )h-h+mJ2j + 1 ( h ml 
h 
m2 

_!
m ) . (3 .8.44) 

Recursion Relations for the Clebsch-Gordan Coefficients 

With h,h, and j fixed, the coefficients with different m1 and m2 are related to 
each other by recursion relations. We start with 

Using (3.5 .39) and (3.5 .40), we obtain (with m1 -+ m� ,m2 -+ m;) 
J(j ":fm)(j ±m + 1) 1hh; j, m ± 1 ) 

(3.8.45) 

= LL ( Jch ":f m�)(h ± m� + 1) lhh;m� ± 1 ,m;) 
m� m; (3 .8 .46) 
+J(h":f m;)(h± m; + 1) 1hh;m� ,m; ±  1 )) 

x (hh;m�m; lhh; jm) . 
* A  complete proof of (3.8.38) is given in Gottfried ( 1966), p .  215,  and also in Appendix C of this 
book. 
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Our next step is to multiply by (}I h; m 1m2 l on the left and use orthonormality, 
which means that nonvanishing contributions from the right-hand side are possi
ble only with 

(3 .8.47) 

for the first term and 

(3 .8.48) 

for the second term. In this manner we obtain the desired recursion relations: 

y'(j T m)(j ± m  + 1) (}Ih; m lm2 1 hh; j, m  ± 1 )  

= v'U1 T m 1 + 1 ) (}1 ± ml ) (j1 h; m 1  T 1 , m2 IJih; jm) 

+ v'(h T  m2 + 1 ) (h ± m2) (}Ih; m 1 , m2 T  1 1 }Ih; jm) .  

(3 .8.49) 

It is important to note that because the 1± operators have shifted the m-values, 
the nonvanishing condition (3 .8 .35) for the Clebsch-Gordan coefficients has now 
become [when applied to (3 .8.49)] 

(3.8.50) 

We can appreciate the significance of the recursion relations by looking at 
(3 .8.49) in an m 1m2-plane. The J+ recursion relation (upper sign) tells us that the 
coefficient at (m1 , m2) is related to the coefficients at (m1 - 1 , m2) and (m1 , m2 -
1),  as shown in Figure 3 .8a. Likewise, the L recursion relation (lower sign) re
lates the three coefficients whose m 1 , m2 values are given in Figure 3 .8b. 

(ml - 1, mz) LHS 
RHS�;,-----------i (ml, mz) 

' I ' I ', J+ I ' I 
', I ' I ', I 

' I ' I ', I 
' I RHs'• (m1, m2 - 1) 

(a) J+ relation 

(m1, m2 + 1) 
RHS "-, 

' ' ' ' ' ' ' ' ' ' 
]_ ', 

' ' ' ' LHS .._ _ _ _ _ _ _ _ _ _ _ _ _  :_ RHS 
(m1, m2) (m1 + 1, m2) 

(b) ]_ relation 

FIGURE 3.8 m 1m2-plane showing the Clebsch-Gordan coefficients related by the re
cursion relations (3.8.49). 
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mz =h I 
I 
I I 
I I I I 

_ _ _ _ _ _ _  _j _ _ _ _ _ _ _  _ I I I I I I I 

mz = -h 

(a) 

• 

A 
• 

• 

• 

• 

D t'- - - - - M 
1 �, 1· I ', Forbidden! !  
I "�  + I  .... .... I I . � I . ', 
I J_ � I J_ ' "• ' E �  B- - - - - -'x 

� . I I � 1+ I I � 
I . �, I 
I J_ "� I 

F• - - - - -� C 

(b) 
FIGURE 3.9 Use of the recursion relations to obtain the Clebsch-Gordan coefficients. 

Recursion relations (3.8.49), together with normalization condition (3.8.43), 
almost uniquely determine all Clebsch-Gordan coefficients.* (We say "almost 
uniquely" because certain sign conventions have yet to be specified.) Our strat
egy is as follows. We go back to the m 1m2-plane, again for fixed h , h, and j ,  and 
plot the boundary of the allowed region determined by 

(3 .8.5 1) 
(see Figure 3.9a). We may start with the upper right-hand comer, denoted by A. 
Because we work near A at the start, a more detailed "map" is in order; see Fig
ure 3.9b. We apply the ]_ recursion relation (3 .8.49) (lower sign), with (m 1 , m2 + 
1) corresponding to A. Observe now that the recursion relation connects A with 
only B because the site corresponding to (m 1 + 1 , m2) is forbidden by m 1 ::::; h .  As 
a result, we can obtain the Clebsch-Gordan coefficient of B in terms of the coeffi
cient of A. Next, we form a J+ triangle made up of A, B, and D. This enables us to 
obtain the coefficient of D once the coefficient of A is specified. We can continue 
in this fashion: Knowing B and D, we can get to E; knowing B and E we can get 
to C, and so on. With enough patience we can obtain the Clebsch-Gordan coef
ficient of every site in terms of the coefficient of the starting site, A. For overall 
normalization we use (3.8.43). The final overall sign is fixed by convention. (See 
the following example.) 

As an important practical example, we consider the problem of adding the 
orbital and spin-angular momenta of a single spin � particle. We have 

h = l (integer), m 1 = mz, 

h = s = � , m2 = ms = ±� . 
(3.8.52) 

*More-detailed discussion of Clebsch-Gordan and Racah coefficients, recoupling, and the like is 
given in Edmonds ( 1960), for instance. 
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FIGURE 3.10 Recursion relations used to obtain the Clebsch-Gordan coefficients for 
ji = l and h = s = � .  

The allowed values of  j are given by 

j = l ± �. l > 0; (3.8.53) 
so for each l there are two possible j-values. For example, for l = 1 (p state) we 
get, in spectroscopic notation, P3!2 and P1/2• where the subscript refers to j. The 
m 1m2-plane, or better the mzms-plane, of this problem is particularly simple. The 
allowed sites form only two rows: the upper row for ms = � and the lower row for 

ms = - � ; see Figure 3 . 10. Specifically, we work out the case j = l + � · Because 

ms cannot exceed � , we can use the J _ recursion in such a way that we always 

stay in the upper row (m2 = ms = �), while the mz-value changes by one unit 

each time we consider a new ]_ triangle. Suppressing jr = l, h = � , in writing 
the Clebsch-Gordan coefficient, we obtain from (3.7.49) (lower sign) 

J (z + � + m + 1) (z + � - m
) ( m - � , � IZ + � , m) 

= 
J (z + m + �) (z - m -

�) ( m + � , � I Z + � , m + 1) , 

where we have used 

1 m 1 = mz = m - 2 , 

In this way we can move horizontally by one unit: 

_
Z +

_
m

_
+
�� (m + !} Jz + ! ,m + 1 ) . 

l + m + 2 2 2 2 

(3 .8.54) 

(3.8.55) 

(3.8 .56) 

We can in tum express (m + �. � I I + � . m + 1) in terms of (m + �. � II + � . 
m + 2), and so forth. Clearly, this procedure can be continued until mz reaches l, 
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the maximum possible value: 

J m - � � \ z + � m) = \ 2 '  2 1  2 '  
l + m + �  
l +m + i  

l + m + � ( 3 1 \ 1 ) m + -, - l + - ,m + 2  l + m+ �  2 2 2 

l + m + i  
l +m + �  

x (m + � ! \ z + !  m + 3 ) 2 ' 2 2 '  

l +m + �  
l +m + �  

l +m + ! ( 1 1 1 1 ) l - l  - l -2l + 1 ' 2  + 2 '  + 2 . (3. 8.57) 

Consider the angular-momentum configuration in which mz and ms are both 
maximal-that is, l and ! , respectively. The total m = mz + ms is l + ! , which is 
possible only for j = l + !  and not for j = l - ! · So !mz = l,ms = ! )  must be 
equal to I j = l + ! , m = l + ! ) , up to a phase factor. We take this phase factor to 
be real and positive by convention. With this choice we have 

Returning to (3.8.57), we finally obtain 

(m - ! ! \ z + !  m ) = 2 ' 2 2 '  
l + m + !  
2l + 1 

(3 .8 .58) 

(3.8.59) 

But this is only about one-fourth of the story. We must still determine the value 
of the question marks that appear in the following: 

+ ? \mz = m + !  m = _!) 2 '  s 2 ' \ j = l - � ,m) =? \mz = m - � ,ms = �) +? l mz = m + � ,ms = -�) · 

(3 .8.60) 
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We note that the transformation matrix with fixed m from the (mt, ms) basis to the 
(j, m) basis is, because of orthogonality, expected to have the form ( cosa sma ) 

- sina cos a  · (3.8 .61) 

Comparison with (3.8.60) shows that cosa is (3 .8.59) itself, so we can readily 
determine sina up to a sign ambiguity: 

. 2 (1 + m + �) (1 - m + �) 
sm a = 1 - = ------'-(21 + 1) (21 + 1) (3 .8 .62) 

We claim that {mt = m + � .ms = - �U  = I + � ,m) must be positive because 
all j = I + � states are reachable by applying the J_ operator successively to J j  = 
I +  � ,  m = I+ � ) , and the matrix elements of J_ are always positive by convention. 
So the 2 x 2 transformation matrix (3 .8 .61) can be only 

l + m + � 
21 + 1 

1 - m + � 
21 + 1 

l + m + � 
21 + 1 

We define spin-angular functions in two-component form as follows: 

J'-[±1/2 m I ± m + -21 m-1/2 'Ill - , = ± y (() "") (/> 21 + 1  1 • '+' X+ 

(3 .8.63) 

(3.8.64) 

They are, by construction, simultaneous eigenfunctions of L 2, S2, J2, and Jz . 
They are also eigenfunctions of L · S, but L · S, being just 

(3 .8.65) 
is not independent. Indeed, its eigenvalue can easily be computed as follows: 1 11i2 ( 1i 2) [j (j + 1) - I  u + 1) - �] = T 2 4 (l + 1)1i2 

2 

forj = I + � . 
(3.8 .66) 

forj = I - � · 
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Clebsch-Gordan Coefficients and Rotation Matrices 

Angular-momentum addition may be discussed from the point of view of rotation 
matrices. Consider the rotation operator 9)CM(R) in the ket space spanned by the 
angular-momentum eigenkets with eigenvalue h - Likewise, consider 9)(h)(R). 
The product 9)Ch) ® 9)(jz) is reducible in the sense that after suitable choice of 
base kets, its matrix representation can take the following form: 

0 

(h + h - 1) 
:D 

(h + h - 2) 
:D 

In the notation of group theory, this is written as 

0 

....
.... ....

.... .... .... .....-----. 

(3 .8 .67) 

(3.8.68) 

In terms of the elements of rotation matrices, we have an important expansion 
known as the Clebsch-Gordan series: 

where the j-sum runs from I h - hI to h + h . The proof of this equation follows. 
First, note that the left-hand side of (3 . 8.69) is the same as 

(3.8 .70) 
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But the same matrix element is  also computable by inserting a complete set of 
states in the (j , m) basis. Thus 

= L L L L (hh;m rm2Urh;jm) (hh;jm i/D(R) Ihh;/m') 
j m j' m' 

= L L L L (hh;mrm2 lhh; jm)/D��, (R)ojj' 
j m j' m' 

(3 .8.7 1) 

which is  just the right-hand side of (3 .8.69). 
As an interesting application of (3 .8 .69), we derive an important formula for an 

integral involving three spherical harmonics. First, recall the connection between 
/D�� and Yt* given by (3 .6 .52) . Letting h --+ l r , h--+ h,m� --+ O,m;--+ 0 (hence 
m' --+ 0) in (3 .8.69), we obtain, after complex conjugation, 

(3 .8.72) 

We multiply both sides by Yt* ( f:), ¢) and integrate over solid angles. The sum
mations drop out because of the orthogonality of spherical harmonics, and we are 
left with 

f dQ Yt* (8 ,¢)Yz7I (B , ¢)Yz�2 (8 , ¢) 
(2lr + 1)(2!2 + 1) 
----- (fih; OOilr l2 ; lO) (lrh ;m rm2 ll rh; lm) .  4n(2l + 1 )  

(3.8.73) 

The square root factor times the first Clebsch-Gordan coefficient is independent of 
orientations-that is, of m 1 and m2. The second Clebsch-Gordan coefficient is the 
one appropriate for adding lr and l2 to obtain to tal l .  Equation (3 .8. 73) turns out to 
be a special case of the Wigner-Eckart theorem to be derived in Section 3 . 1 1 .  This 
formula is extremely useful in evaluating multi pole matrix elements in atomic and 
nuclear spectroscopy. 
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3.9 . SCHWINGER'S OSCILLATOR MODEL OF ANGULAR MOMENTUM 

Angular Momentum and Uncoupled Oscillators 

There exists a very interesting connection between the algebra of angular momen
tum and the algebra of two independent (that is, uncoupled) oscillators, which was 
worked out in J. Schwinger's notes. See Biedenharn and Van Dam ( 1965), p. 229. 
Let us consider two simple harmonic oscillators, which we call the plus type and 
the minus type . We have the annihilation and creation operators, denoted by a+ 
and at for the plus-type oscillator; likewise, we have a_ and a! for the minus
type oscillators. We also define the number operators N+ and N_ as follows:  

(3 .9 . 1 )  

We assume that the usual commutation relations among a, at , and N hold for 
oscillators of the same type (see Section 2.3). 

[a+, at] = 1 ,  

[N+ ,a+] = -a+, 
t - t [N+,a+] - a+, 

[a-, a!] = 1 ,  

[N_ ,a_] = -a_, 

t t [N_ ,a_] = a_ . 

(3.9.2a) 

(3.9.2b) 

(3.9.2c) 

However, we assume that any pair of operators between different oscillators com
mute: 

(3.9.3) 

and so forth. So it is in this sense that we say the two oscillators are uncoupled. 
Because N+ and N_ commute by virtue of (3.9.3), we can build up simulta

neous eigenkets of N+ and N_ with eigenvalues n+ and n_ ,  respectively. So we 
have the following eigenvalue equations for N ±: 

(3.9.4) 

In complete analogy with (2.3 . 16) and (2.3 . 17), the creation and annihilation op
erators, al and a±, act on ln+, n-) as follows: 

at ln+ ,n-) = Jn+ + l in+ + l , n-) ,  a! Jn+,n-) = Jn_ + l ln+,n- + 1 ) ,  

(3.9.5a) 

a+ ln+,n-) = Jn+ln+ - l , n_) , a_ Jn+,n- )  = .JlLin+,n- - 1 ) .  (3.9.5b) 

We can obtain the most general eigenkets of N+ and N_ by applying at and a! 
successively to the vacuum ket defined by 

a+ JO, O) = 0, a_ JO, O) = 0. (3.9.6) 
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In this way we obtain 

Next, we define 

and 
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(3.9.7) 

(3.9.8a) 

(3 .9.8b) 

We can readily prove that these operators satisfy the angular-momentum commu
tation relations of the usual form 

For example, we prove (3.9.9) as follows: 

Defining the total N to be 

we can also prove 

= n2atca!a_ + l )a+ - n2a!cata+ + l )a_ 

= n2(ata+ - a!a_) = 2h lz .  

which is left as an exercise. 

(3 .9 .9a) 

(3.9.9b) 

(3 .9.10) 

(3.9. 1 1) 

(3 .9 . 12) 

What are the physical interpretations of all this? We associate spin up (m = !) 
with one quantum unit of the plus-type oscillator and spin down (m = -!) with 
one �uantum unit of the minus-type oscillator. If you like, you may imagine one 
spin 2 "particle" with spin up (down) with each quantum unit of the plus- (minus-) 
type oscillator. The eigenvalues n+ and n_ are just the number of spins up and 
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spins down, respectively. The meaning of 1+ is that it destroys one unit of spin 
down with the z-component of spin-angular momentum -1ij2 and creates one 
unit of spin up with the z-component of spin-angular momentum +1ij2; the z
component of angular momentum is therefore increased by 1i. Likewise ]_ de
stroys one unit of spin up and creates one unit of spin down; the z-component of 
angular momentum is therefore decreased by 1i. As for the 1z operator, it simply 
counts 1ij2 times the difference of n+ and n_, just the z-component of the total 
angular momentum. With (3.9 .5) at our disposal, we can easily examine how 1± 
and 1z act on ln+ ,n-) as follows:  

1+ in+, n- )  = nata- ln+, n-) = Jn_(n+ + l )1i in+ + l , n_ - 1 ) ,  (3.9. 13a) 

1-ln+,n-) = na!a+ in+,n-) = Jn+(n_ + l )1i in+ - l , n_ + 1 ) ,  (3 .9 . 13b) 

1z ln+,n-) = (i) (N+ - N_) in+,n-) = (�) (n+, -n_)1i ln+,n-) . 
(3 .9. 13c) 

Notice that in all these operations, the sum n+ + n-, which corresponds to the 
total number of spin i particles, remains unchanged. 

Observe now that (3.9 . 13a), (3.9. 13b), and (3 .9. 13c) reduce to the familiar ex
pressions for the 1± and 1z operators we derived in Section 3.5, provided that we 
substitute 

n+ --+ j +m, n_ --+ j - m. 
The square root factors in (3 .9. 1 3a) and (3 .9 . 1 3b) change to 

Jn_(n+ + l) --+  J(j - m)(j + m+ l), 
Jn+(n- + 1 ) --+ J(j + m )(j - m + 1 ), 

(3.9. 14) 

(3 .9. 15) 

which are exactly the square root factors appearing in (3.5 .39) and (3 .5.41) .  
Notice also that the eigenvalue of the J2 operator defined by (3. 9 . 12) changes 

as follows:  

(3.9. 16) 

All this may not be too surprising because we have already proved that the 
1± and J2 operators we constructed out of the oscillator operators satisfy the 
usual angular-momentum commutation relations. But it is instructive to see in an 
explicit manner the connection between the oscillator matrix elements and the 
angular-momentum matrix elements. In any case, it is now natural to use 

(n+ - n-) m = ----
2 

(3 .9 . 17) 

in place of n+ and n_ to characterize simultaneous eigenkets of J2 and 1z . Ac
cording to (3 .9. 13a) the action of 1+ changes n+ into n+ + 1 and n_ into n_ - 1, 
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which means thatj is unchanged and m goes into m + 1. Likewise, we see that the 
J_ operator that changes n+ into n+ - 1  and n_ into n+ - 1 lowers m by one unit 
without changing j . We can now write as (3.9.7) for the most general N+ , N_ 
eigenket 

(3.9. 1 8) 

where we have used \0) for the vacuum ket, earlier denoted by 10, 0) . 
A special case of (3.9. 1 8) is of interest. Let us set m = j ,  which physically 

means that the eigenvalue of lz is as large as possible for a givenj . We have 

(3.9. 19) 

We can imagine this state to be built up of 2j spin ! particles with their spins all 
pointing in the positive z-direction. 

In general, we note that a complicated object of high j can be visualized as 
being made up of primitive spin ! particles, j + m of them with spin up and the 
remaining j - m of them with spin down. This picture is extremely convenient 
even though we obviously cannot always regard an object of angular momentumj 
literally as a composite system of spin ! particles. All we are saying is that as far 
as the transformation properties under rotations are concerned, we can visualize 
any object of angular momentumj as a composite system of 2j spin ! particles 
formed in the manner indicated by (3.9. 1 8). 

From the point of view of angular-momentum addition developed in the pre
vious section, we can add the spins of 2j spin ! particles to obtain states with 
angular momentumj, j - 1 , j - 2, . . . .  As a simple example, we can add the spin
angular momenta of two spin ! particles to obtain a total angular momentum of 
zero as well as one. In Schwinger's oscillator scheme, however, we obtain only 
states with angular momentum j when we start with 2j spin ! particles. In the 
language of permutation symmetry to be developed in Chapter 7, only totally 
symmetrical states are constructed by this method. The primitive spin ! particles 
appearing here are actually bosons ! This method is quite adequate if our purpose 
is to examine the properties under rotations of states characterized by j and m 
without asking how such states are built up initially. 

The reader who is familiar with isospin in nuclear and particle physics may 
note that what we are doing here provides a new insight into the isospin (or iso
topic spin) formalism. The operator J+ that destroys one unit of the minus type 
and creates one unit of the plus type is completely analogous to the isospin lad
der operator T+ (sometimes denoted by h) that annihilates a neutron (isospin 
down) and creates a proton (isospin up), thus raising the z-component of isospin 
by one unit. In contrast, lz is analogous to Tz, which simply counts the difference 
between the number of protons and the number of neutrons in nuclei. 
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Explicit Formula for Rotation Matrices 

Schwinger's scheme can be used to derive, in a very simple way, a closed formula 
for rotation matrices that E. P. Wigner first obtained using a similar (but not iden
tical) method. We apply the rotation operator 9J(R ) to \j ,m ) , written as (3 .9. 1 8). 
In the Euler angle notation, the only nontrivial rotation is the second one about 
the y-axis, so we direct our attention to (-i ly{3 ) 9J(R) = 9J(a,f3, y) la=y=O = exp 1i . (3.9.20) 

We have 

ro R . - [9J(R)at9J-l (R)]j+m [9J(R)a!9J-l (R)]J-m ro R 0 aU ( ) I ; ,m) - J(j + m)!(j _ m) ! aU ( ) I  ) .  (3.9.21) 

Now, 9J(R ) acting on !0) just reproduces !0) because, by virtue of (3 .9.6), only 
the leading term, 1 ,  in the expansion of exponential (3.9.20) contributes. So 

Thus we may use formula (2.3 .47). Letting 

- J  G ----+ __ Y A. ----+ f3 1i 
' 

(3.9.22) 

(3 .9.23) 
in (2.3 .47), we realize that we must look at various commutators, namely 

(3.9.24) 

and so forth. Clearly, we always obtain either at or a! . Collecting terms, we get 

9J(R)at9J-1 (R) = at cos 
(%) +a! sin 

(%) . (3.9.25) 
Likewise, 

9J(R)a!9J-1 (R) = a! cos 
(%) - at sin 

( %) . (3.9.26) 
Actually this result is not surprising. After all, the basic spin-up state is supposed 
to transform as 

at !0) ----+ cos 
(%) at !0) + sin 

(%) a! !0) (3 .9 .27) 
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under a rotation about the y-axis. Substituting (3 .9.25) and (3.9.26) into (3 .9.21)  
and recalling the binomial theorem 

we obtain 

N N!xN-kyk (x + y) = L (N - k) !k ! ' k 

/D(a - 0 f3 - 01 · m) - "" (j +m) !(j - m) !  - ' , y - 1 . - L L  ( ' + - k) lk l( · - - !) Il l  k l 1 m . · 1  m . . 
[at cos(/3 j2)]j+m-k [a! sin(/3 j2)]k x �---���(1�. +�m�) !�(17. _==m�)'! ----

(3 .9.28) 

x [-at sin(/3 j2)]j -m-l [a! cos(/3 /2)]1 10) . 
(3.9.29) 

We may compare (3.9.29) with 

/D(a = 0, {3, y = O) I j ,m) = L lj ,m')d�,�(/3) 
m' 

= "d(j/ ({3) (at)j+m' (a!)j-m' 
10) .  L m m .Jc . + ') I ( . - ') I m' 1 m . 1 m . 

(3 .9.30) 

We can obtain an explicit form for d�,� ({3) by equating the coefficients of powers 

of at in (3.9.29) and (3.9.30). Specifically, we want to compare at raised to 
j + m' in (3.9.30) with at raised to 2j - k - l, so we identify 

l = j - k - m'. (3.9.31 )  

We are seeking dm'm (/3) with m' fixed. The k-sum and the !-sum in  (3.9.29) are 
not independent of each other; we eliminate l in favor of k by taking advantage of 
(3.9.31 ). As for the powers of a!, we note that a! raised to j - m' in (3.9.30) au
tomatically matches with a! raised to k + l in (3.9.29) when (3.9.31 )  is imposed. 
The last step is to identify the exponents of cos(/3 /2), sin(/3 /2), and ( - 1  ), which 
are, respectively, 

j +m  - k+ l  = 2j - 2k+m -m', 
k +  j - m  - l  = 2k - m  +m', 

j -m  - l  = k -m+m', 

(3.9.32a) 

(3.9.32b) 

(3.9.32c) 
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where we have used (3.9.3 1)  to eliminate l. In this way we obtain Wigner's for

mula for d�,�(/3) : 

ij) - "' - 1  k-m+m' J(j + m)!(j - m) ! (j + m') ! (j - m') ! m'm(f3) - �( ) (j + m - k) !k ! (j - k - m') !(k - m + m') !  k ( [3 )2j-2k+m-m' ( . f3)2k-m+m' 
x cos - sm -

2 2 ' (3.9.33) 

where we take the sum over k whenever none of the arguments of factorials in the 
denominator are negative. 

3.1 0 .  SPIN CORRELATION MEASUREMENTS AND BELL'S INEQUALITY 

Correlations in Spin-Singlet States 

The simplest example of angular-momentum addition we encountered in Sec
tion 3 .8 was concerned with a composite system made up of spin ! particles. In 
this section we use such a system to illustrate one of the most astonishing conse
quences of quantum mechanics. 

Consider a two-electron system in a spin-singlet state-that is, with a total spin 
of zero. We have already seen that the state ket can be written as [see (3 .8 .15d)] 

I spin singlet) = 
( �) ( iz+;z-) - lz-; z+)), (3 . 10. 1 )  

where we have explicitly indicated the quantization direction. Recall that i z+; z-) 
means that electron 1 i s  in  the spin-up state and electron 2 is  in  the spin-down 
state. The same is true for i z-; z+) . 

Suppose we make a measurement on the spin component of one of the elec
trons. Clearly, there is a 50-50 chance of getting either up or down because the 
composite system may be in i z+ ;z-) or iz- ; z+) with equal probabilities. But if 
one of the components is shown to be in the spin-up state, the other is necessarily 
in the spin-down state, and vice versa. When the spin component of electron 1 is 
shown to be up, the measurement apparatus has selected the first term, iz+; z-) 
of (3 . 10. 1) ;  a subsequent measurement of the spin component of electron 2 must 
ascertain that the state ket of the composite system is given by iz+; z-) . 

It is remarkable that this kind of correlation can persist even if the two parti
cles are well separated and have ceased to interact, provided that as they fly apart, 
there is no change in their spin states. This is certainly the case for a J = 0 sys
tem disintegrating spontaneously into two spin ! particles with no relative orbital 
angular momentum, because angular-momentum conservation must hold in the 
disintegration process. One example of this is a rare decay of the rJ meson (mass 
549 MeV/c2) into a muon pair 

(3. 10.2) 
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FIGURE 3.11 Spin correlation in a spin-singlet state. 

which, unfortunately, has a branching ratio of only approximately 6 x 1 o-6. More 
realistically, in proton-proton scattering at low kinetic energies, the Pauli princi
ple to be discussed in Chapter 7 forces the interacting protons to be in 1 So (orbital 
angular momentum 0, spin-singlet state), and the spin states of the scattered pro
tons must be correlated in the manner indicated by (3 . 10. 1 ) even after they get 
separated by a macroscopic distance. 

To be more pictorial, we consider a system of two spin i particles moving in 
opposite directions, as in Figure 3 . 1 1 . Observer A specializes in measuring Sz of 
particle 1 (flying to the right), while observer B specializes in measuring Sz of 
particle 2 (flying to the left). To be specific, let us assume that observer A finds Sz 
to be positive for particle 1 .  Then he or she can predict, even before B performs 
any measurement, the outcome of B's measurement with certainty: B must find 
Sz to be negative for particle 2. On the other hand, if A makes no measurement, 
B has a 50-50 chance of getting Sz+ or Sz- .  

This by itself might not be so peculiar. One may say, "It is just like an urn 
known to contain one black ball and one white ball. When we blindly pick one of 
them, there is a 50-50 chance of getting black or white. But if the first ball we pick 
is black, then we can predict with certainty that the second ball will be white." 

It turns out that this analogy is too simple. The actual quantum-mechanical 
situation is far more sophisticated than that ! This is because observers may choose 
to measure Sx in place of Sz . The same pair of "quantum-mechanical balls" can 
be analyzed either in terms of black and white or in terms of blue and red! 

Recall now that for a single spin i system, the Sx eigenkets and Sz eigenkets 
are related as follows: 

lx±) = (�) ( lz+) ± lz-)), lz±) = (�) ( lx+) ± lx-)). (3. 10.3) 

Returning now to our composite system, we can rewrite spin-singlet ket (3 . 10. 1 ) 
by choosing the x-direction as the axis of  quantization: 

l spin singlet) = (�) ( lx- ;x+) - lx+;x-)). (3 . 10.4) 

Apart from the overall sign, which in any case is a matter of convention, we could 
have guessed this form directly from (3 . 10. 1 ) because spin-singlet states have 
no preferred direction in space. Let us now suppose that observer A can choose 
to measure Sz or Sx of particle 1 by changing the orientation of his or her spin 
analyzer, while observer B always specializes in measuring Sx of particle 2. If A 
determines Sz of particle 1 to be positive, B clearly has a 50-50 chance for getting 
Sx+ or Sx-; even though Sz of particle 2 is known to be negative with certainty, 
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TABLE 3.1 Spin-correlation Measurements 

Spin component A's result Spin component B's result 
measured by A measured by B 

z + z 
z X + 
X z 
X z + 
z + X 
X + X 
z + X + 
X X + 
z z + 
z X 
X + z + 
X + z 

its Sx is completely undetermined. On the other hand, let us suppose that A also 
chooses to measure Sx . If observer A determines Sx of particle 1 to be positive, 
then without fail, observer B will measure Sx of particle 2 to be negative. Finally, 
if A chooses to make no measurement, B,  of course, will have a 50-50 chance of 
getting Sx+ or Sx -· To sum up: 

1 .  If A measures Sz and B measures Sx , there is a completely random correla
tion between the two measurements. 

2. If A measures Sx and B measures Sx , there is a 100% (opposite sign) cor
relation between the two measurements. 

3. If A makes no measurement, B 's measurements show random results. 

Table 3 . 1 shows all possible results of such measurements when B and A are al
lowed to choose to measure Sx or Sz . These considerations show that the outcome 
of B's measurement appears to depend on what kind of measurement A decides 
to perform: an Sx measurement, an Sz measurement, or no measurement. Notice 
again that A and B can be miles apart with no possibility of communication or 
mutual interaction. Observer A can decide how to orient his or her spin-analyzer 
apparatus long after the two particles have separated. It is as though particle 2 
"knows" which spin component of particle 1 is being measured. 

The orthodox quantum-mechanical interpretation of this situation is as fol
lows. A measurement is a selection (or filtration) process. When Sz of particle 1 
is measured to be positive, then component Jz+; z-) is selected. A subsequent 
measurement of the other particle's Sz merely ascertains that the system is still in 
I z+; z-) .  We must accept that a measurement on what appears to be a part of the 
system is to be regarded as a measurement on the whole system. 
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Many physicists have felt uncomfortable with the preceding orthodox interpreta
tion of spin-correlation measurements. Their feelings are typified in the following 
frequently quoted remarks by A. Einstein, which we call Einstein's locality prin
ciple: "But on one supposition we should, in my opinion, absolutely hold fast: The 
real factual situation of the system S2 is independent of what is done with the sys
tem St , which is spatially separated from the former." Because this problem was 
first discussed in a 1935 paper of A. Einstein, B .  Podolsky, and N. Rosen, it is 
sometimes known as the Einstein-Podolsky-Rosen paradox.* 

Some have argued that the difficulties encountered here are inherent in the 
probabilistic interpretations of quantum mechanics and that the dynamic behavior 
at the microscopic level appears probabilistic only because some yet unknown 
parameters-so-called hidden variables-have not been specified. It is not our 
purpose here to discuss various alternatives to quantum mechanics based on 
hidden-variable or other considerations. Rather, let us ask, Do such theories make 
predictions different from those of quantum mechanics? Until 1964, it could be 
thought that the alternative theories could be concocted in such a way that they 
would give no predictions, other than the usual quantum-mechanical predictions, 
that could be verified experimentally. The whole debate would have belonged to 
the realm of metaphysics rather than physics. It was then pointed out by J. S .  
Bell that the alternative theories based on Einstein's locality principle actually 
predict a testable inequality relation among the observables of spin-correlation 
experiments that disagrees with the predictions of quantum mechanics. 

We derive Bell's inequality within the framework of a simple model, conceived 
by E. P. Wigner, that incorporates the essential features of the various alternative 
theories. Proponents of this model agree that it is impossible to determine Sx and 
Sz simultaneously. However, when we have a large number of spin ! particles, we 
assign a certain fraction of them to have the following property: 

If Sz is measured, we obtain a plus sign with certainty. 

If Sx is measured, we obtain a minus sign with certainty. 

A particle satisfying this property is said to belong to type (z+,x-). Notice that 
we are not asserting that we can simultaneously measure Sz and Sx to be + and 
- , respectively. When we measure Sz , we do not measure Sx , and vice versa. 
We are assigning definite values of spin components in more than one direction 
with the understanding that only one or the other of the components can actually 
be measured. Even though this approach is fundamentally different from that of 
quantum mechanics, the quantum-mechanical predictions for Sz and Sx measure
ments performed on the spin-up (Sz+) state are reproduced, provided that there 
are as many particles belonging to type (z+, x+) as to type (z+,x-). 

Let us now examine how this model can account for the results of spin
correlation measurements made on composite spin-singlet systems. Clearly, for a 

*To be historically accurate, the original Einstein-Podolsky-Rosen paper dealt with measure
ments of x and p. The use of composite spin ! systems to illustrate the Einstein-Podolsky-Rosen 
paradox started with D. Bohm. 
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particular pair, there must be a perfect matching between particle 1 and particle 
2 to ensure zero total angular momentum: If particle 1 is of type (z+,x-), then 
particle 2 must belong to type (z-,x+), and so forth. The results of correlation 
measurements, such as in Table 3. 1 ,  can be reproduced if particle 1 and particle 2 
are matched as follows: 

Particle 1 Particle 2 
(z+,x-) B (z-,x+), 
(z+,x+) B (z-,x-), 
(z-, x+) *+ (z+,x-), 
(z-,x-) *+ (z+,x+) 

(3. 10.5a) 

(3 . 10.5b) 

(3 . 10.5c) 

(3 . 10.5d) 

with equal populations-that is, 25% each. A very important assumption is im
plied here. Suppose a particular pair belongs to type (3 . 10.5a) and observer A 
decides to measure S2 of particle 1 ;  then he or she necessarily obtains a plus sign, 
regardless of whether B decides to measure S2 or Sx . It is in this sense that Ein
stein's locality principle is incorporated in this model: A's result is predetermined 
independently of B's  choice of what to measure. 

In the examples considered so far, this model has been successful in reproduc
ing the predictions of quantum mechanics. We now consider more-complicated 
situations where the model leads to predictions different from the usual quantum
mechanical predictions. This time we start with three unit vectors a, b, and c 
that are, in general, not mutually orthogonal. We imagine that one of the parti
cles belongs to some definite type, say (a-, b+, c+ ), which means that if S · a  is 
measured, we obtain a minus sign with certainty; if S · b is measured, we obtain 
a plus sign with certainty; if S • c is measured, we obtain a plus sign with cer
tainty. Again, there must be a perfect matching in the sense that the other particle 
necessarily belongs to type (a+, b-, c-) to ensure zero total angular momentum. 
In any given event, the particle pair in question must be a member of one of the 
eight types shown in Table 3 .2. These eight possibilities are mutually exclusive 
and disjoint. The population of each type is indicated in the first column. 

TABLE 3.2 Spin-component Matching in the 
Alternative Theories 

Population Particle 1 

N1 (a+, 6+, c+) 
N2 (a+,b+, c-) 
N3 (a+,b-, c+) 
N4 (a+,b-, c-) 
Ns (a-, b+, c+) 
N6 (a-,b+, c-) 
N7 (a-,6-, c+) 
Ns (a- ,6-, c-) 

Particle 2 

(a-,6-, c-) 
(a-,6-, c+) 
(a-,b+, c-) 
(a-,b+, c+) 
(a+, b-, c-) 
(a+,b-, c+) 
(a+,b+, c-) 
(a+,b+, c+) 
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Let us suppose that observer A finds S1 • a to be plus and observer B finds 
S2 • b to be plus also. It is clear from Table 3.2 that the pair belong to either type 
3 or type 4, so the number of particle pairs for which this situation is realized is 
N3 + N4. Because Ni is positive semidefinite, we must have inequality relations 
like 

(3 . 10.6) 

Let P(a+; b+) be the probability that, in a random selection, observer A measures 
S1 • a to be plus, observer B measures S2 • b to be plus, and so on. 

Clearly, we have 

(3 . 10.7) 

In a similar manner, we obtain 

(3 . 10.8) 

The positivity condition (3 . 10.6) now becomes 

P(a+;b+) � P(a+; c+) +  P(c+; b+). (3. 10.9) 

This is Bell's inequality, which follows from Einstein's locality principle. 

Quantum Mechanics and Bell's Inequality 

We now return to the world of quantum mechanics. In quantum mechanics we 
do not talk about a certain fraction of particle pairs, say N3 j L� Ni , belonging to 
type 3 .  Instead, we characterize all spin-singlet systems by the same ket (3 . 10. 1) ;  
in the language of Section 3 .4 we are concerned here with a pure ensemble. Using 
this ket and the rules of quantum mechanics we have developed, we can unam
biguously calculate each of the three terms in inequality (3 . 10.9). 

We first evaluate P(a+; b+ ) .  Suppose observer A finds S1 • a to be posi
tive; because of the 100% (opposite sign) correlation we discussed earlier, B 's 
measurement of S2 • a will yield a minus sign with certainty. But to calculate 
P(a+; b+) we must consider a new quantization axis b that makes an angle ()ab 
with a; see Figure 3 . 12. According to the formalism of Section 3.2, the proba
bility that the S2 • b measurement yields + when particle 2 is known to be in an 
eigenket of s2 . a with negative eigenvalue is given by 

2 [ (n - eab) ] . 2 (()ab) COS 
2 

= Sill 2 . 
As a result, we obtain 

A A ( 1 ) o 2 (()ab ) P(a+;b+) = l Sill 2 , 

(3 . 10. 10) 

(3 . 10. 1 1) 
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FIGURE 3.12 Evaluation of P(a+; b+ ). 

where the factor � arises from the probability of initially obtaining sl . a with +. 
Using (3 . 10. 1 1) and its generalization to the other two terms of (3 . 10.9), we can 
write Bell's inequality as 

. 2 (()ab ) . 2 (()ac ) . 2 (()cb ) sm T � sm 2 + sm 2 . (3 . 10. 12) 

We now show that inequality (3 . 10. 12) is not always possible from a geometric 
point of view. For simplicity let us choose a, 6, and c to lie in a plane, and let c 
bisect the two directions defined by a and 6: 

Bab = 2() , Bac = 8cb = () . 

Inequality (3 . 10. 12) is then violated for 

n 
0 < () < - . 

2 

For example, take () = n j4; we then obtain 

0.500 � 0.292 ?? 

(3 . 10. 13) 

(3. 10. 14) 

(3 . 10. 15) 

So the quantum-mechanical predictions are not compatible with Bell's inequal
ity. There is a real observable-in the sense of being experimentally verifiable
difference between quantum mechanics and the alternative theories satisfying 
Einstein's locality principle. 

Several experiments have been performed to test Bell's inequality. For a recent 
review, see "Bell's Inequality Test: More Ideal Than Ever" by A. Aspect, Nature 
398 ( 1999) 1 89.  In one of the experiments, spin correlations between the final 
protons in low-energy proton-proton scattering were measured. All the other ex
periments measured photon-polarization correlations between a pair of photons 
in a cascade transition of an excited atom (Ca, Hg, . . .  ), 

(j = O) �(j = 1 ) �(j = 0), (3. 10. 1 6) 
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or in the decay of a positronium (an e+ e- bound state in 1 So);  studying photon
polarization correlations should be just as good in view of the analogy developed 
in Section 1 . 1 :  

Sz+ --+  8 in the x-direction, (3 . 10. 17a) 

Sz - --+ 8 in the y-direction, (3 . 10. 17b) 

Sx + --+  8 in the 45° diagonal direction, (3 . 10. 17c) 

Sx - --+ 8 in the 1 35° diagonal direction. (3 . 10. 17d) 

The results of all recent precision experiments have conclusively established that 
Bell's inequality was violated, in one case by more than nine standard deviations. 
Furthermore, in all these experiments the inequality relation was violated in such 
a way that the quantum-mechanical predictions were fulfilled within error limits. 
In this controversy, quantum mechanics has triumphed with flying colors. 

The fact that the quantum-mechanical predictions have been verified does not 
mean that the whole subject is now a triviality. Despite the experimental verdict, 
we may still feel psychologically uncomfortable about many aspects of measure
ments of this kind. Consider in particular the following point: Right after observer 
A performs a measurement on particle 1 ,  how does particle 2-which may, in 
principle, be many light years away from particle 1-get to "know" how to ori
ent its spin so that the remarkable correlations apparent in Table 3 . 1  are realized? 
In one of the experiments to test Bell's  inequality (performed by A. Aspect and 
collaborators), the analyzer settings were changed so rapidly that A's decision 
what to measure could not be made until it was too late for any kind of influence, 
traveling more slowly than light, to reach B .  

We conclude this section by  showing that despite these peculiarities we can
not use spin-correlation measurements to transmit any useful information be
tween two macroscopically separated points. In particular, superluminal (faster 
than light) communications are impossible. 

Suppose A and B both agree in advance to measure Sz ; then, without asking 
A, B knows precisely what A is getting. But this does not mean that A and B 
are communicating; B just observes a random sequence of positive and negative 
signs. There is obviously no useful information contained in it. B verifies the 
remarkable correlations predicted by quantum mechanics only after he or she gets 
together with A and compares the notes (or computer sheets). 

It might be thought that A and B can communicate if one of them suddenly 
changes the orientation of his or her to measure analyzing apparatus. Let us sup
pose that A agrees initially to measure Sz , and to measure B, Sx . The results of A's 
measurements are completely uncorrelated with the results of B's measurements, 
so there is no information transferred. But then, suppose A suddenly breaks his 
or her promise and, without telling B, starts measuring Sx . There are now com
plete correlations between A's results and B 's results. However, B has no way of 
inferring that A has changed the orientation of his or her analyzer. B continues to 
see just a random sequence of +' s and - 's by looking at his or her own notebook 
only. So again, there is no information transferred. 
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3.1 1 • TENSOR OPERATORS 

Vector Operator 

We have been using notations such as x, p, S, and L, but as yet we have not 
systematically discussed their rotational properties. They are vector operators, 
but what are their properties under rotations? In this section we give a precise 
quantum-mechanical definition of vector operators based on their commutation 
relations with the angular-momentum operator. We then generalize to tensor op
erators with more-complicated transformation properties and derive an important 
theorem on the matrix elements of vector and tensor operators. 

We all know that a vector in classical physics is a quantity with three com
ponents that transforms by definition like Vi --+ L: j Rij Vj under a rotation. It is 
reasonable to demand that the expectation value of a vector operator V in quan
tum mechanics be transformed like a classical vector under rotation. Specifically, 
as the state ket is changed under rotation according to 

Ia) --+ D(R) Ia) , 
the expectation value of V is  assumed to change as follows: 

(a ! Vi Ia) --+ (a iDt (R)ViD(R) Ia) = LRij (a j Vj Ia) . j 
This must be true for an arbitrary ket Ia ) . Therefore, 

,vt(R)ViD(R) = LRij Vj j 

(3 . 1 1 . 1) 

(3 . 1 1 .2) 

(3 . 1 1 .3) 

must hold as an operator equation, where Rij is the 3 x 3 matrix that corresponds 
to rotation R. 

Let us now consider a specific case, an infinitesimal rotation. When the rotation 
is infinitesimal, we have 

We can now write (3 . 1 1 .3) as 

Vr + i� [Vi ,J • ft] = LRij (ft; .s)Vj . 
j 

In particular, for ft along the z-axis, we have 

(3 . 1 1 .4) 

(3 . 1 1 .5) 

(3. 1 1 .6) 
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so 

i = 1 :  (3 . 1 1 .7a) 

i = 2: 
E Vy + in [Vy, lz] = sVx + Vy (3. 1 1 .7b) 

i = 3 :  
E 

Vz + in [Vz, lz] = Vz .  (3 . 1 1 .7c) 

This means that V must satisfy the commutation relations 

(3. 1 1 .8) 

Clearly, the behavior of V under a finite rotation is completely determined by 
the preceding commutation relations; we just apply the by-now-familiar formula 
(2.3 .47) to 

(iJ · ¢ ) (-i J ·¢ ) 
exp T V; exp n

1 
. (3 . 1 1 .9) 

We simply need to calculate 

(3. 1 1 . 10) 

Multiple commutators keep on giving back to us V; or Vk (k =!= i ,  j), as in spin case 
(3 .2.7). 

We can use (3 . 1 1 .8) as the defining property of a vector operator. Notice that 
the angular-momentum commutation relations are a special case of (3 . 1 1 .8) in 
which we let V; --* J; , Vk --* lk . Other special cases are [y, Lz] = i nx , [x, Lz] = 
-iny, [px, Lz ] = -inpy , and [py ,Lz] = inpx ; these can be proved explicitly. 

Cartesian Tensors versus Irreducible Tensors 

In classical physics it is customary to define a tensor T;jk . . . by generalizing V; ""* 
� j Rij Vj as follows: 

Tijk . . .  --* L L L · · · R;;' Rjj' · · · T;'j'k' . . . 
i' j' k' 

(3 . 1 1 . 1 1) 

under a rotation specified by the 3 x 3 orthogonal matrix R. The number of indices 
is called the rank of a tensor. Such a tensor is known as a Cartesian tensor. 

The simplest example of a Cartesian tensor of rank 2 is a dyadic formed out 
of two vectors U and V. One simply takes a Cartesian component of U and a 
Cartesian component of V and puts them together: 

(3. 1 1 . 12) 

Notice that we have nine components altogether. They obviously transform like 
(3 . 1 1 . 1 1) under rotation. 
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The trouble with a Cartesian tensor like (3 . 1 1 . 12) is that it is reducible-that 
is, it can be decomposed into objects that transform differently under rotations. 
Specifically, for the dyadic in (3. 1 1 . 12) we have 

U ·V (Ui Vj - Uj Vi) 
(
Ui Vj + UjVi U ·V

8· ·
) (3 1 l 13) ui Vj = -3- 8ij + 2 

+ 2 
--3- !] • • • 

The first term on the right-hand side, U • V, is a scalar product invariant under 
rotation. The second is an antisymmetric tensor that can be written as a vector 
product Sijk(U x V)k ·  There are altogether 3 independent components. The last 
is a 3 x 3 symmetrical traceless tensor with 5 (= 6 - 1, where 1 comes from the 
traceless condition) independent components. The number of independent com
ponents checks: 

3 x 3 = 1 + 3 + 5 . (3. 1 1 . 14) 

We note that the numbers appearing on the right-hand side of (3 . 1 1 . 14) are pre
cisely the multiplicities of objects with angular momentum l = 0, l = 1, and l = 2, 
respectively. This suggests that the dyadic has been decomposed into tensors that 
can transform like spherical harmonics with l = 0, 1 , and 2. In fact, (3. 1 1 . 1 3) is 
the simplest nontrivial example to illustrate the reduction of a Cartesian tensor 
into irreducible spherical tensors. 

Before presenting the precise definition of a spherical tensor, we first give an 
example of a spherical tensor of rank k. Suppose we take a spherical harmonic 
Yt(e, ¢) . We have already seen that it can be written as Yt(n), where the orien
tation of fi. is characterized by e and ¢. We now replace fi. by some vector V. The 
result is that we have a spherical tensor of rank k (in place of l) with magnetic 
quantum number q (in place of m), namely 

(3 . 1 1 . 15) 

Specifically, in the case k = 1, we take spherical harmonics with l = 1 and replace 
(z/r) = (fi.)z by Vz , and so on. 

Yf = {3 
cose = 

{3 
� -+ Td1) = {3 

Vz, '/ 4;  V4; r  y 4;  
y±1 = {3 x ± iy -+ y(1) = {3 ( Vx ± iVy ) 
1 �v 4; v'lr ±1 v 4; � v'2 . 

Obviously, this can be generalized for higher k; for example, 

y±2 = {15(x ± iy)2 -+ T(2) = {15(Vx ± i V )2 . 2 V fu r2 ±2 V fu Y 

(3. 1 1 . 16) 

(3. 1 1 . 17) 

rJk) are irreducible, just as Y1(m) are. For this reason, working with spherical ten
sors is more satisfactory than working with Cartesian tensors. 
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To see the transformation of spherical tensors constructed in this manner, let 
us first review how Yt transform under rotations. First, we have, for the direction 
eigenket, 

\ft) --* .V(R)\ft) = \ ft') , (3 . 1 1 . 1 8) 

which defines the rotated eigenket 1ft' ) . We wish to examine how Yt(ft') = 
(ft' \ l ,m) would look in terms of Yt(ft). We can easily see this by starting with 

.V(R-1 ) \ l ,m) = L \Z ,m' ).V�?mcR-1 )  (3 . 1 1 . 19) 
m' 

and contracting with (ft \  on the left, using (3. 1 1 . 18) :  

YtCn') = L yt' (ft).v�?mcR-1 ). (3. 1 1 .20) 
m' 

If there is an operator that acts like Yt(V), it is then reasonable to expect 

.1) t (R)Yt(V).V(R) = L yt' (V).V��,(R), (3 . 1 1 .21)  
m' 

where we have used the unitarity of the rotation operator to rewrite .v(l? (R-1 ). m m  
All this work is just to motivate the definition of a spherical tensor. We now 

consider spherical tensors in quantum mechanics. Motivated by (3. 1 1 .2 1 )  we de
fine a spherical-tensor operator of rank k with (2k + 1) components as 

or, equivalently, 

k 
.1) t (R)T(k) .V(R) = � .V(k)* T(k) q L qq' q' 

q'=-k 

k 
.V(R)T//).vt(R) = L .v���(R)Ti�) . 

q'=-k 

(3 . 1 1 .22a) 

(3 . 1 1 .22b) 

This definition holds regardless of whether Tik) can be written as Yz'==�q (V); for 
example, ( U x + i U y )( Vx + i Vy) is the q = + 2 component of a spherical tensor of 
rank 2 even though, unlike (Vx + i Vy)2, it cannot be written as Y% (V). 

A more convenient definition of a spherical tensor is obtained by considering 
the infinitesimal form of (3 . 1 1 .22b), namely 

( 1 + i\ iie) T?) (1 - i\ fiE) � 
q
�

k 
T:�) (kq' l  ( 1 +  

iJ �fiE }kq) 

(3 . 1 1 .23) 
or 

[J . ft, rt)J = .z::= ri�) (kq' \J .  ft\kq ) .  (3. 1 1 .24) 
q' 
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By taking ft in the z- and the (:X± iy) directions and using the nonvanishing matrix 
elements of lz and l± [see (3.5.35b) and (3.5.41)] ,  we obtain 

and 

[J T(k)] = 1iq T(k) z , q q (3. 1 1 .25a) 

(3 . 1 1 .25b) 

These commutation relations can be considered as a definition of spherical tensors 
in place of (3 . 1 1 .22). 

Product of Tensors 

We have made much use of the language of Cartesian tensors. Indeed, we have 
used them to construct scalars, vectors, antisymmetric tensors, and traceless sym
metric tensors. For example, see (3 . 1 1 . 13). Of course, spherical-tensor language 
can also be used (Baym 1969, Chapter 17); for example, 

(O) -U · V (U+1 Y-1 + U-1 V+1 - Uo Vo) To = 
3 

= 
3 ' 

(1 ) (U X V)q Tq = 
i� ' 

Tl� = U±1 V±1 , 
T(2) _ U±1 Vo + Uo V±1 ±1 - � 

T.(2) _ U+1 V-1 + 2UoVo + U-1 V+1 0 - v'6 

(3 . 1 1 .26) 

where Uq(Vq) is the qth component of a spherical tensor of rank 1 ,  correspond
ing to vector U(V). The preceding transformation properties can be checked by 
comparing with Yt and remembering that U+1 = -(Ux + iUy)/�, U-1 = (Ux 
iUy)/�, Uo = Uz . A similar check can be made for V±1,0· For instance, 

o {f3z2 - r2 y - - - ----2 - 16n r2 ' 
where 3z2 - r2 can be written as 

2 2 2 [_ (x + iy) (x - iy) ] · z + � � ' 

hence, Yf is just a special case of Td2) for U = V = r. 
A more systematic way of forming tensor products goes as follows. We start 

by stating a theorem: 
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Theorem 3.1. Let X��� ) and Z��z) be irreducible spherical tensors of rank k1 and 
k2, respectively. Then 

rJk) = L L(k1k2; q1q2 \k1k2; kq)X��1) z��2) (3 . 1 1 .27) 
q, qz 

is a spherical (irreducible) tensor of rank k. 

Proof. We must show that under rotation, Tik) must transform according to 
(3 . 1 1 .22). 

/Dt(R)T//) /D(R) = L L (k1k2 ; q1q2 lk1k2 ;kq )  
X /D t (R)X��J ) /D(R)/D t (R)Z��z) /D(R) 

= .L.L.L.L<k1k2 ;q 1q2 lk1k2 ;kq) 
q ,  qz q; q� 

X x<�l ) /l)(�J )  (R-1 )Z(�z) /l)(�z) (R-1 ) q, q,q, qz qzqz 

= .L.L.L.L.L.L.L<k1k2 ;q1 q2 ik1k2 ;kq) 
k" q ,  qz q; q� q" q' 

X (k1k2 ;q� q� ik1k2 ;k" q') 
x (k1k2 ;q1q2 ik1k2 ;k" q")/D��;� cR-1 )X�i' ) z��z) , 

where we have used the Clebsch-Gordan series formula (3.8.69). The preceding 
expression becomes 

= L L L L L 8kk" 8qq" (k1k2 ; q� q� ik1k2 ;k" q')/D��;/, (R-1 )X�\' ) z��z), 
k" q; q� q" q' 

where we have used the orthogonality of Clebsch-Gordan coefficients (3 .8.42). 
Finally, this expression reduces to 

= L (LL(k1k2 ;q�q� ik1k2 ;kq')X�i' )z��z)) /D���(R-1 ) 
q' q; q� 

= � yCk) /D(k) (R-1 ) = � /D(k)* (R)T(k) . � q' q'q � qq' q' 
q' q' 

The foregoing shows how we can construct tensor operators of higher or lower 
ranks by multiplying two tensor operators. Furthermore, the manner in which 
we construct tensor products out of two tensors is completely analogous to the 
manner in which we construct an angular-momentum eigenstate by adding two 
angular momenta; exactly the same Clebsch-Gordan coefficients appear if we let 
k1,2 --+ h,2, q1,2 --+ m 1 ,2 · 
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Matrix Elements of Tensor Operators; the Wigner-Eckart Theorem 

In considering the interactions of an electromagnetic field with atoms and nuclei, 
it is often necessary to evaluate matrix elements of tensor operators with respect 
to angular-momentum eigenstates. Examples of this will be given in Chapter 5 .  
In general, it  is  a formidable dynamic task to calculate such matrix elements. 
However, there are certain properties of these matrix elements that follow purely 
from kinematic or geometric considerations, which we now discuss. 

First, there is a very simple m-selection rule: 

(a', j'm' I TJk) la, jm) = 0, unlessm' = q +m. (3 . 1 1 .28) 

Proof. Using (3. 1 1 .25a), we have 

(a', j 'm' l ([lz , TJk)J - liqTJk)) la , jm) = [Cm' - m)1i - 1iq] 
( I ·I I I T(k) I 0 ) 0 x a , J  m q a, Jm = , 

so 

( I • I ' I T(k) l 0 ) 0 1 I a , J  m q a ,Jm = , un essm = q +m. 

Another way to see this is  to note the transformation property of rJK) Ia, jm) 
under rotation, namely 

(3. 1 1 .29) 

If we now let JJ stand for a rotation operator around the z-axis, we get [see 
(3. 1 1 .22b) and (3. 1 . 1 6)] 

(3 . 1 1 .30) 

which is orthogonal to Ia', j' m') unless q + m = m'. 
We are going to prove one of the most important theorems in quantum me

chanics, the Wigner-Eckart theorem. 

Theorem 3.2. 
The Wigner-Eckart Theorem. The matrix elements of tensor operators with 
respect to angular-momentum eigenstates satisfy 

(a', j 'm' I Tq(k) la, jm) = (jk;mq ljk; j'm') (a' j)�·itj ) , 2j +  1 (3 . 1 1 . 3 1 )  

where the double-bar matrix element i s  independent of m and m', and q . 
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Before we present a proof of this theorem, let us look at its significance. First, 
we see that the matrix element is written as the product of two factors. The first 
factor is a Clebsch-Gordan coefficient for adding j and k to get j' . It depends 
only on the geometry-that is, on the way the system is oriented with respect to 
the z-axis. There is no reference whatsoever to the particular nature of the tensor 
operator. The second factor does depend on the dynamics; for instance, a may 
stand for the radial quantum number, and its evaluation may involve, for example, 
evaluation of radial integrals. On the other hand, it is completely independent of 
the magnetic quantum numbers m, m', and q, which specify the orientation of the 
physical system. To evaluate (a', j 'm' I TJk) la ,jm) with various combinations of 
m, m', and q' it is sufficient to know just one of them; all others can be related ge
ometrically because they are proportional to Clebsch-Gordan coefficients, which 
are known. The common proportionality factor is (a' j ' I I T(k) l laj ) ,  which makes 
no reference whatsoever to the geometric features. 

The selection rules for the tensor operator matrix element can be immediately 
read off from the selection rules for adding angular momentum. Indeed, from the 
requirement that the Clebsch-Gordan coefficient be nonvanishing, we immedi
ately obtain the m-selection rule (3. 1 1 .28) derived before and also the triangular 
relation 

u - k l  � j' � j + k. (3 . 1 1 .32) 

Now we prove the theorem. 

Proof. Using (3 . 1 1 .25b) we have 

(a', j 'm' I [J±, rik)] la, jm) = 1iy'(k + q)(k± q  + 1) < a', j 'm' 1 Ti�1 1a, jm) , 
(3 . 1 1 .33) 

or using (3.5 .39) and (3.5 .40) we have 

J(j' ±m')(j' + m' + 1 ) (a', j' ,m' + 1 1 Tik) ja, jm) 
= y'(j +m)(j ±m + 1)(a' , j 'm' 1 Tt) la, j ,m ± 1 ) (3 . 1 1 .34) 

+ y'(k + q)(k ± q + 1) (a' , j 'm' 1 Ti�1 ia, jm) . 
Compare this with the recursion relation for the Clebsch-Gordan coefficient 
(3 .8.49) . Note the striking similarity if we substitute j' --+ j ,  m' --+ m, j --+ h ,  
m --+ m 1 , k --+ h, and q --+ m2. Both recursion relations are of the form 
L j aij x j = 0; that is, they are first -order linear homogeneous equations with 
the same coefficients aij . Whenever we have 

I>ijXj = 0, I>ijYj = 0, 
j j 

(3 . 1 1 .35) 

we cannot solve for the x j (or y j) individually, but we can solve for the ratios, so 

Xj 
Xk 

Yj 
Yk 

(3 . 1 1 .36) 
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where c is a universal proportionality factor. Noting that (hh;m 1 ,m2 ± l lhh; jm) 
corresponds to (cl, j'm' IT��1 Ia ,jm) in the Clebsch-Gordan recursion relation 
(3.8.49), we see that 

(a', j 'm' IT��1 1a, jm) = (universal proportionality constant independent 

ofm, q , and m') (jk;mq ± l ljk; j'm') ,  (3 . 1 1 .37) 

which proves the theorem. 

Let us now look at two simple examples of the Wigner-Eckart theorem. 

Example 3.5. Tensor of rank 0-that is, scalar rJ0) = S. The matrix element of 
a scalar operator satisfies 

, . , , . (a'/ I I S I Iaj ) (a , ] m IS ia, Jm) = Djj'Dmm' J2j + 1 
(3 . 1 1 .38) 

because S acting on la, jm) is like adding an angular momentum of zero. Thus 
the scalar operator cannot change j , m-values. 

Example 3.6. Vector operator that in the spherical tensor language is a rank 1 
tensor. The spherical component of V can be written as Vq=±l ,o, so we have the 
selection rule 

A I ± 1  0 A • · I · { ± 1  u rn  = m -m = , uj = J - J = 0 . (3 . 1 1 .39) 

In addition, the 0 --+ 0 transition is forbidden. This selection rule is of fundamental 
importance in the theory of radiation; it is the dipole selection rule obtained in the 
long-wavelength limit of emitted photons. 

For j = j' the Wigner-Eckart theorem-when applied to the vector operator
takes a particularly simple form, often known as the projection theorem for ob
vious reasons. 

Theorem 3.3. 
The Projection Theorem. 

( , . ' I V: I . ) (a', jm iJ ·VIa, jm) ( . ' I J I . ) a , Jm q a, Jm = 2 Jm q Jm , h j(j + 1)  

where, analogous to our discussion after (3. 1 1 .26), we choose 

(3. 1 1 .40) 

(3 . 1 1 .41)  
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Proof. Noting (3 . 1 1 .26), we have 

(a' , jm iJ ·VIa, jm) = (a' , jm i(JoVo - l+I V_r - Lr V+r ) la ,jm) 
h 

= mh (a', jm i Vo la, jm) + ,J2J(j +m)(j - m + 1) 
x (a' , jm - 1 1 V-r la, jm} 

h - ,J2J(j - m)(j +m  + 1 )(a' , jm + 1 \ V+r ia, jm) 

= Cjm (a' j i iV I Iaj ) 
(3 . 1 1 .42) 

by the Wigner-Eckart theorem (3. 1 1 .3 1), where Cjm is independent of a, a', and 
V, and the matrix elements of Vo,±r are all proportional to the double-bar matrix 
element (sometimes also called the reduced matrix element). Furthermore, Cjm 
is independent of m because J · V is a scalar operator, so we may as well write it 
as c j . Because c j does not depend on V, (3 . 1 1 .42) holds even if we let V -:r J and 
a' -:r a;  that is, 

(a, jm iJ2 Ia, jm) = Cj (aj i iJ I Iaj } . 
Returning to the Wigner-Eckart theorem applied to Vq and lq , we have 

(a' , jm'l Vq la ,jm) 
(a, jm' l lq la, jm} 

(a' j i iV I Iaj ) 
(aj I IJ I Iaj }  

(3 . 1 1 .43) 

(3 . 1 1 .44) 

But we can write (a', jm iJ ·VIa, jm) j (a, jm iJ2 Ia, jm) for the right-hand side of 
(3 . 1 1 .44) by (3 . 1 1 .42) and (3. 1 1 .43). Moreover, the left-hand side of (3 . 1 1 .43) is 
just j(j + 1 )h2 . So 

( , . ' I V: I . } (a', jm iJ ·VIa, jm) ( . ' I J  I . } a , Jm q a, Jm = 2 Jm q Jm , h j(j + 1) 
which proves the projection theorem. 

We will give applications of the theorem in subsequent sections. 

Problems 

(3 . 1 1 .45) 

3.1 Find the eigenvalues and eigenvectors of u y = ( � �i ) . Suppose an electron 

is in the spin state ( � ) . If sy is measured, what is the probability of the result 

h/2? 

3.2 Find, by explicit construction using Pauli matrices, the eigenvalues for the Hamil-
tonian 

2JJ., 
H = - -S ·B 

1i 
for a spin � particle in the presence of a magnetic field B = Bxx +  Byy +  B/i. 
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3.3 Consider the 2 x 2 matrix defined by 

ao + io- · a  
U = . ' ao - z o- · a  

where ao is a real number and a is a three-dimensional vector with real components. 

(a) Prove that U is unitary and unimodular. 

(b) In general, a 2 x 2 unitary unimodular matrix represents a rotation in three 
dimensions. Find the axis and angle of rotation appropriate for U in terms of 
ao, a1 , a2, and a3 . 

3.4 The spin-dependent Hamiltonian of an electron-positron system in the presence of 
a uniform magnetic field in the z-direction can be written as 

H = Asce-) . see+) + ( :�) ( s�e-) - s�e+)) . 
Suppose the spin function of the system is given by x�-) x�+) . 
(a) Is this an eigenfunction of H in the limit A -+ 0, e B I me =I 0? If it is, what is 

the energy eigenvalue? If it is not, what is the expectation value of H? 

(b) Solve the same problem when e B I me -+ 0, A # 0. 

3.5 Consider a spin 1 particle. Evaluate the matrix elements of 

S2(S2 + 1i)(S2 - 1i) and Sx(Sx + li)(Sx - li). 

3.6 Let the Hamiltonian of a rigid body be 

H = � ( Kf + Ki + K� ) ' 2 h h h 
where K is the angular momentum in the body frame. From this expression obtain 
the Heisenberg equation of motion for K, and then find Euler's equation of motion 
in the correspondence limit. 

3.7 Let U = eiG3aeiG2f3eiG3y ,  where (a, /3, y) are the Eulerian angles. In order that U 
represent a rotation (a,/3 ,  y), what are the commutation rules that must be satisfied 
by the Gk? Relate G to the angular-momentum operators. 

3.8 What is the meaning of the following equation? 

u-l Ak U = L Rkz Az , 

where the three components of A are matrices. From this equation show that matrix 
elements (m !Ak !n) transform like vectors. 

3.9 Consider a sequence of Euler rotations represented by 

/l)C1/2l(a , {3, y) = exp ( -i;3a) exp ( -i;2{3 ) exp ( -i;3Y ) 
= 
( e-i(a+y)/2 cos � 

ei(a-y)/2 sin !!_ 
2 

-i(a-y)/2 · {3 ) -e sm -/32 . 
ei(a+y)/2 cos -2 
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Because of the group properties of rotations, we expect that this sequence of oper
ations is equivalent to a single rotation about some axis by an angle e .  Find e .  

3.10 (a) Consider a pure ensemble of identically prepared spin ! systems. Suppose the 
expectation values (Sx} and (Sz} and the sign of (Sy}  are known. Show how we 
may determine the state vector. Why is it unnecessary to know the magnitude 
of (Sy }?  

(b) Consider a mixed ensemble of spin � systems. Suppose the ensemble aver
ages [Sx] ,  [Sy], and [Sz] are all known. Show how we may construct the 2 x 2 

density matrix that characterizes the ensemble. 

3.11 (a) Prove that the time evolution of the density operator p (in the Schrodinger 
picture) is given by 

p(t) = 'U(t , to)p(to)'W(t , to). 

(b) Suppose we have a pure ensemble at t = 0. Prove that it cannot evolve into a 
mixed ensemble as long as the time evolution is governed by the Schrodinger 
equation. 

3.12 Consider an ensemble of spin 1 systems. The density matrix is now a 3 x 3 matrix. 
How many independent (real) parameters are needed to characterize the density 
matrix? What must we know in addition to [Sx], [Sy],  and [Sz] to characterize the 
ensemble completely? 

3.13 An angular-momentum eigenstate i j ,m = mmax = j}  is rotated by an infinitesimal 

angle £ about the y-axis. Without using the explicit form of the d(j/ function, m m  
obtain an expression for the probability for the new rotated state to be found in the 
original state up to terms of order £2. 

3.14 Show that the 3 x 3 matrices Gi(i = 1 ,  2, 3) whose elements are given by 

where j and k are the row and column indices, satisfy the angular-momentum com
mutation relations. What is the physical (or geometric) significance of the trans
formation matrix that connects Gi to the more usual 3 x 3 representations of the 
angular-momentum operator Ji with h taken to be diagonal? Relate your result to 

V � V + fio¢ x V  

under infinitesimal rotations. (Note: This problem may be helpful in understanding 
the photon spin.) 

3.15 (a) Let J be angular momentum. (It may stand for orbital L, spin S, or Jtotal·) Us
ing the fact that lx, ly , lzU± = lx ± i ly) satisfy the usual angular-momentum 
commutation relations, prove 

J2 = If + ]+]_ - 1i lz . 

(b) Using (a) (or otherwise), derive the "famous" expression for the coefficient c_ 
that appears in 
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3.16 Show that the orbital angular-momentum operator L commutes with both the op
erators p2 and x2 ; that is, prove (3.7.2). 

3.17 The wave function of a particle subjected to a spherically symmetrical potential 
V (r) is given by 

1/f(x) = (x + y + 3z)f(r). 

(a) Is 1/f an eigenfunction of L2? If so, what is the !-value? If not, what are the 
possible values of l that we may obtain when L2 is measured? 

(b) What are the probabilities for the particle to be found in various mz states? 

(c) Suppose it is known somehow that 1/f(x) is an energy eigenfunction with eigen
value E. Indicate how we may find V (r ).  

3.18 A particle in a spherically symmetrical potential is known to be in an eigenstate of 
L2 and Lz with eigenvalues 1i2l(l + 1)  and mli, respectively. Prove that the expec
tation values between l lm) states satisfy 

(Lx ) = (Ly) = 0, 

Interpret this result semiclassically. 

3.19 Suppose a half-integer !-value, say ! , were allowed for orbital angular momentum. 
From 

we may deduce, as usual, 

YIJ2,IJ2(() , ¢) ex ei¢/Z-Jiffie. 

Now try to construct Y!j2,-IJ2(() , ¢) by (a) applying £_ to YIJ2,IJ2(() , ¢); and (b) 
using L-YI/2,-IJ2(() ,cp) = 0. Show that the two procedures lead to contradictory 
results. (This gives an argument against half-integer !-values for orbital angular 
momentum.) 

3.20 Consider an orbital angular-momentum eigenstate I I = 2,m = 0) . Suppose this state 
is rotated by an angle fJ about the y-axis. Find the probability for the new state to 
be found in m = 0, ± 1 ,  and ±2. (The spherical harmonics for l = 0, 1 ,  and 2 given 
in Section B.5 in Appendix B may be useful.) 

3.21 The goal of this problem is to determine degenerate eigenstates of the three
dimensional isotropic harmonic oscillator written as eigenstates of L2 and Lz, in 
terms of the Cartesian eigenstates In x n y n z ) . 
(a) Show that the angular-momentum operators are given by 

Li = iliBiJkaJak 
L2 = 1i2 [ N(N + 1 ) - aZa!aJaJ J ,  

where summation is implied over repeated indices, BiJk is the totally antisym

metric symbol, and N = a} a J counts the total number of quanta. 
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(b) Use these relations to express the states /qlm) = 101m) , m = 0, ±1 ,  in terms 
of the three eigenstates /nxnynz} that are degenerate in energy. Write down the 
representation of your answer in coordinate space, and check that the angular 
and radial dependences are correct. 

(c) Repeat for /qlm) = /200) . 
(d) Repeat for /qlm) = /02m) , with m = 0, 1 ,  and 2. 

3.22 Follow these steps to show that solutions to Kummer's Equation (3.7.46) can be 
written in terms of Laguerre polynomials Ln (x ), which are defined according to a 
generating function as 

e-xtf(l-t) 00 tn 
g(x, t) = = " Ln(X) - ,  

1 - t � n !  n=O 

where 0 < t < 1 .  The discussion in Section 2.5 on generating functions for Hermite 
polynomials will be helpful. 

(a) Prove that Ln(O) = n !  and Lo(x) = 1 .  
(b) Differentiate g(x , t) with respect to x, show that 

L�(x) - nL�_1 (x) = -nLn-l (x), 

and find the first few Laguerre polynomials. 

(c) Differentiate g(x , t) with respect to t and show that 

Ln+l(X) - (2n + 1 - x)Ln(X) + n2 Ln-l (X) = 0. 

(d) Now show that Kummer's Equation is solved by deriving 

xL�(x) + (1 - x)L�(x) + nLn(x) = 0, 

and associate n with the principal quantum number for the hydrogen atom. 

3.23 What is the physical significance of the operators 

K+ = a�a� and K_ = a+a-

in Schwinger's scheme for angular momentum? Give the nonvanishing matrix ele
ments of K±. 

3.24 We are to add angular momenta }1 = 1 and }2 = 1 to form j = 2, 1 ,  and 0 states. 
Using either the ladder operator method or the recursion relation, express all (nine) 
{j ,m} eigenkets in terms of /}l}z ;m lmz). Write your answer as 

1 1 
/ j  = 1 ,m = 1 )  = 

J2
/+,0) -

J2
/0, +) ,  . . . , 

where + and 0 stand for m 1 ,2 = 1 ,  0, respectively. 

3.25 (a) Evaluate 

j 
L /d��, (fJ)/2m 

m=-j 

for any j (integer or half-integer); then check your answer for j = � .  
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(b) Prove, for any j, 

j 
. 1 1 

"' m2JdCJ,l (,8) \2 = -j(j + 1) sin2 ,8 + m12-(3 cos2 ,8 - 1). � m m  2 2 m=-j 
[Hint: This can be proved in many ways. You may, for instance, examine the 
rotational properties of 122 using the spherical (irreducible) tensor language.] 

3.26 (a) Consider a system with j = 1 .  Explicitly write 

(j = 1 , m' \ ly \} = 1 ,m) 

in 3 x 3 matrix form. 
(b) Show that for j = 1 only, it is legitimate to replace e-ilyfJ/Ii by 

1 - i ( �) sin,B - ( �) 2 (1 - cos ,B). 

(c) Using (b), prove 

d(J=l) (,B) = (�) sin ,B cos ,B 
( ( �) (1 + cos ,8) - ( �) sin ,8 

(�) (1 - cos ,B) (�) sin ,B 

G) o - cos ,s) ) 
- (�) sin ,B . 

(D o + cos ,s) 

3.27 Express the matrix element (a2.82Y2 l lf la1,81 Yl ) in terms of a series in 

3.28 Consider a system made up of two spin � particles. Observer A specializes in 
measuring the spin components of one of the particles (Slz , s1x and so on), while 
observer B measures the spin components of the other particle. Suppose the system 
is known to be in a spin-singlet state-that is, Stotal = 0. 
(a) What is the probability for observer A to obtain Slz = 1ij2 when observer B 

makes no measurement? Solve the same problem for s1x = 1ij2. 
(b) Observer B determines the spin of particle 2 to be in the S2z = 1i j2 state with 

certainty. What can we then conclude about the outcome of observer A's mea
surement (i) if A measures s12 ; (ii) if A measures s1x ? Justify your answer. 

3.29 Consider a spherical tensor of rank 1 (that is, a vector) 

(1) Vx ± i Vy v;Cl) _ V v±l = =f ./2 ' 0 - z · 

Using the expression for d(J=l) given in Problem 3.26, evaluate 

"'d(l) (,B)V(l) � qq' q' 
q' 

and show that your results are just what you expect from the transformation prop
erties of Vx,y,z under rotations about the y-axis. 
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3.30 (a) Construct a spherical tensor of rank 1 out of two different vectors U = (Ux , Uy , 
Uz) and V = (Vx, Vy, Vz). Explicitly write T�I[,0 in terms of Ux,y,z and Vx,y,z ·  

(b) Construct a spherical tensor of rank 2 out of two different vectors U and V. 
Write down explicitly Tl�.±l,O in terms of Ux,y,z and Vx,y,z · 

3.31 Consider a spinless particle bound to a fixed center by a central force potential. 
(a) Relate, as much as possible, the matrix elements 

I I I 1 · I I I (n , l  ,m I =F 
J2

(x ± zy) ln,l ,m) and (n , l  ,m lz ln , l ,m) 

using only the Wigner-Eckart theorem. Make sure to state under what condi
tions the matrix elements are nonvanishing. 

(b) Do the same problem using wave functions 1/r(x) = Rnz (r)Yt (() , ¢) . 
3.32 (a) Write xy, xz, and (x2 - y2) as components of a spherical (irreducible) tensor of 

rank 2. 
(b) The expectation value 

is known as the quadrupole moment. Evaluate 

e (a, j ,m1 l (x2 - i)la, j ,m = j) ,  

where m1 = j ,  j - I , j - 2, . . .  , in terms of Q and appropriate Clebsch-Gordan 
coefficients. 

3.33 A spin � nucleus situated at the origin is subjected to an external inhomogeneous 
electric field. The basic electric quadrupole interaction may by taken to be 

eQ  [( 32¢) 2 ( 32¢) 2 (32¢) 2] Hint = 
2s(s - 1)1i2 3x2 o 

Sx + 
3y2 o 

Sy + 
3z2 o Sz ' 

where ¢ is the electrostatic potential satisfying Laplace's equation, and the coordi
nate axes are chosen such that 

Show that the interaction energy can be written as 

A(3S; - S2) + B(S! + s_:), 

and express A and B in terms of (32¢ j3x2)o and so on. Determine the energy 
eigenkets (in terms of lm) ,  where m = ±!,  ±!)  and the corresponding energy 
eigenvalues. Is there any degeneracy? 



CHAPTER 

4 Symmetry in  Quantum 
Mechanics 

Having studied the theory of rotation in detail, we are in a position to discuss, 
in more general terms, the connection between symmetries, degeneracies, and 
conservation laws. We have deliberately postponed this very important topic until 
now so that we can discuss it using the rotation symmetry of Chapter 3 as an 
example. 

4.1 • SYMMETRIES, CONSERVATION LAWS, AND DEGENERACIES 
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Symmetries in Classical Physics 

We begin with an elementary review of the concepts of symmetry and conser
vation law in classical physics. In the Lagrangian formulation of quantum me
chanics, we start with the Lagrangian L, which is a function of a generalized 
coordinate qi and the corresponding generalized velocity qi . If L is unchanged 
under displacement, 

then we must have 

aL - - 0  aqi - · 

(4. 1 . 1 )  

(4. 1 .2) 

It then follows, by virtue of the Lagrange equation, djdt(3Lj3qi) - 3Lj3qi = 0, 
that 

dp · -� = 0  dt ' 
where the canonical momentum is defined as 

aL Pi = aq_i . 

(4. 1 .3) 

(4. 1 .4) 

So if L is unchanged under displacement (4. 1 . 1) ,  then we have a conserved quan
tity, the canonical momentum conjugate to qi . 

Likewise, in the Hamiltonian formulation based on H regarded as a function of 
qi and Pi , we have 

dp · -� = 0  dt (4. 1 .5) 
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there is an external electric or magnetic field, say in the z-direction. The rotational 
symmetry is now manifestly broken; as a result, the (2j + 1 )-fold degeneracy is 
no longer expected and states characterized by different m-values no longer have 
the same energy. We will examine how this splitting arises in Chapter 5 .  

S0(4) Symmetry in the Coulomb Potential 

A fine example of continuous symmetry in quantum mechanics is afforded by the 
hydrogen atom problem and the solution for the Coulomb potential. We carried 
out the solution to this problem in Section 3.7, where we discovered that the en
ergy eigenvalues in (3. 7 .53) show the striking degeneracy summarized in (3 . 7 .56). 
It would be even more striking if this degeneracy were just an accident, but in
deed, it is the result of an additional symmetry that is particular to the problem of 
bound states of 1 I r potentials. 

The classical problem of orbits in such potentials, the Kepler problem, was of 
course well studied long before quantum mechanics. The fact that the solution 
leads to elliptical orbits that are closed means that there should be some (vec
tor) constant of the motion that maintains the orientation of the major axis of the 
ellipse. We know that even a small deviation from a 1 I r potential leads to preces
sion of this axis, so we expect that the constant of the motion we seek is in fact 
particular to 1 I r potentials. 

Classically, this new constant of the motion is 

p x L  Ze2 
M = -- - -r 

m r (4. 1 . 1 9) 

where we refer to the notation used in Section 3 .7 .  This quantity is generally 
known as the Lenz vector or at times as the Runge-Lenz vector. Rather than be
labor the classical treatment here, we will move on to the quantum-mechanical 
treatment in terms of the symmetry responsible for this constant of the motion. 

This new symmetry, which is called S0(4), is completely analogous to the 
symmetry S0(3) studied in Section 3 .3 .  That is, S0(4) is the group of rotation 
operators in four spatial dimensions. Equivalently, it is the group of orthogonal 
4 x 4 matrices with unit determinant. Let us build up the properties of the sym
metry that leads to the Lenz vector as a constant of the motion, and then we will 
see that these properties are those we expect from S0(4). 

Our approach closely follows that given by Schiff ( 1968), pp. 235-39. We first 
need to modify (4. 1 . 1 9) to construct a Hermitian operator. For two Hermitian 
vector operators A and B, it is easy to show that (A x B) t = -B x A. Therefore, 
a Hermitian version of the Lenz vector is 

1 Ze2 
M =  - (p x L - L x p) - -r. 

2m r 
It can be shown that M commutes with the Hamiltonian 

p2 ze2 
H = - - -- ; 

2m r 

(4. 1 .20) 

(4. 1 .21 )  



266 Chapter 4 Symmetry in Quantum Mechanics 

that is, 

[M,H] = 0, (4. 1 .22) 

so indeed M is a (quantum-mechanical) constant of the motion. Other useful re
lations can be proved, namely 

L ·M = O = M ·L 

and Mz = �H (Lz + nz) + z2e4. 
(4. 1 .23) 

(4. 1 .24) 

In order to identify the symmetry responsible for this constant of the motion, it 
is instructive to review the algebra of the generators of this symmetry. We already 
know part of this algebra: 

(4. 1 .25) 

which we wrote earlier as (3.6.2) in a notation where repeated indices (k in this 
case) are automatically summed over components. One can also show that 

(4. 1 .26) 

which in fact establish M as a vector operator in the sense of (3 . 1 1 .8). Finally, it 
is possible to derive 

(4. 1 .27) 

To be sure, ( 4. 1 .25), ( 4. 1 .26), and ( 4. 1 .27) do not form a closed algebra, due to 
the presence of H in ( 4. 1 .27), and that makes it difficult to identify these operators 
as generators of a continuous symmetry. However, we can consider the problem 
of specific bound states. In this case, the vector space is truncated only to those 
that are eigenstates of H, with eigenvalue E < 0. In that case, we replace H with 
E in ( 4. 1 .27), and the algebra is closed. It is instructive to replace M with the 
scaled vector operator 

( m ) 1 /2 
N = -

2E 
M. 

In this case we have the closed algebra 

[Li , Lj ] = iht:ijkLko 
[M , Lj ] = iht:ijkNk , 
[ Ni , Nj ]  = iht:ijkLk . 

(4. 1 .28) 

(4. 1 .29a) 

(4. 1 .29b) 

(4. 1 .29c) 

So what is the symmetry operation generated by the operators L and N in 
( 4. 1 .29)? Although it is far from obvious, the answer is "rotation in four spatial 
dimensions." The first clue is in the number of generators, namely six, each of that 
should correspond to rotation about some axis. Think of a rotation as an operation 
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whenever 
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(4. 1 .6) 

So if the Hamiltonian does not explicitly depend on qi , which is another way of 
saying H has a symmetry under qi -+ qi + 8qi , we have a conserved quantity. 

Symmetry in Quantum Mechanics 

In quantum mechanics we have learned to associate a unitary operator, say -8, 
with an operation like translation or rotation. It has become customary to call -8 
a symmetry operator regardless of whether the physical system itself possesses 
the symmetry corresponding to -8. Further, we have learned that for symmetry op
erations that differ infinitesimally from the identity transformation, we can write 

it: -8 = 1 - - G 
1i ' (4. 1 .7) 

where G is the Hermitian generator of the symmetry operator in question. Let us 
now suppose that H is invariant under -8. We then have 

But this is equivalent to 

[G, H] = O. 

By virtue of the Heisenberg equation of motion, we have 

dG - = 0· dt ' 

(4. 1 .8) 

(4. 1 .9) 

(4. 1 . 10) 

hence, G is a constant of the motion. For instance, if H is invariant under transla
tion, then momentum is a constant of the motion; if H is invariant under rotation, 
then angular momentum is a constant of the motion. 

It is instructive to look at the connection between (4. 1 .9) and conservation of 
G from the point of view of an eigenket of G when G commutes with H. Suppose 
that at to, the system is in an eigenstate of G. Then the ket at a later time obtained 
by applying the time-evolution operator 

J g', to ; t ) = U(t, to) l g') (4. 1 . 1 1) 

is also an eigenket of G with the same eigenvalue g'. In other words, once a ket 
is a G eigenket, it is always a G eigenket with the same eigenvalue. The proof of 
this is extremely simple once we realize that (4. 1 .9) and (4. 1 . 10) also imply that 
G commutes with the time-evolution operator, namely 

G[U(t, to) Jg') ] = U(t, to)G Jg') = g'[U(t, to) Jg') ] .  (4. 1 . 12) 
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Degeneracies 

Let us now tum to the concept of degeneracies. Even though degeneracies may be 
discussed at the level of classical mechanics-for instance, in discussing closed 
(nonprecessing) orbits in the Kepler problem (Goldstein 2002)-this concept 
plays a far more important role in quantum mechanics. Let us suppose that 

[H, -8] = 0  (4. 1 . 13) 

for some symmetry operator, and In) is an energy eigenket with eigenvalue En . 
Then -8 1n) is also an energy eigenket with the same energy, because 

H(J in)) = -8H in) = En(-8 ln)) . (4. 1 . 14) 

Suppose In) and -8 1n) represent different states. Then these are two states with 
the same energy-that is, they are degenerate. Quite often -8 is characterized by 
continuous parameters, say .A, in which case all states of the form J(.A) In) have 
the same energy. 

We now consider rotation specifically. Suppose the Hamiltonian is rotationally 
invariant, so 

[D(R), H] = 0, (4. 1 . 15) 

which necessarily implies that 

[J, H] = 0, [J2, H] = 0. (4. 1 . 16) 

We can then form simultaneous eigenkets of H, J2, and lz , denoted by In ;  j ,  m) .  
The argument just given implies that all states of the form 

D(R) In ; j ,m) (4. 1 . 17) 

have the same energy. We saw in Chapter 3 that under rotation different m-values 
get mixed up. In general, D(R) In ; j ,m )  is a linear combination of 2j + 1 inde
pendent states. Explicitly, 

D(R) In ; j ,m) = L ln ; j ,m')D�,� (R), (4. 1 . 1 8) 
m' 

and by changing the continuous parameter that characterizes the rotation operator 
D(R), we can get different linear combinations of ln ; j  ,m' ) .  If all states of form 
D(R) In ; j , m) with arbitrary D(R) are to have the same energy, it is then essential 
that each of In ;  j ,  m) with different m must have the same energy. So the degener
acy here is (2j + 1)-fold, just equal to the number of possible m-values. This point 
is also evident from the fact that all states obtained by successively applying 1±, 
which commutes with H, to In ;  jm) have the same energy. 

As an application, consider an atomic electron whose potential is written as 
V (r) + V Ls(r )L · S. Because r and L · S are both rotationally invariant, we expect 
a (2j + 1)-fold degeneracy for each atomic level. On the other hand, suppose 
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that mixes two orthogonal axes. Then, the number of generators for rotations in n 
spatial dimensions should be the number of combinations of n things taken two 
at a time, namely n(n - 1)/2. Consequently, rotations in two dimensions require 
one generator-that is, Lz . Rotations in three dimensions require three generators, 
namely L, and four-dimensional rotations require six generators. 

It is harder to see that ( 4. 1 .29) is the appropriate algebra for this kind of rota
tion, but we proceed as follows. In three spatial dimensions, the orbital angular
momentum operator (3.6. 1) generates rotations. We saw this clearly in (3 .6.6), 
where an infinitesimal z-axis rotation on a state Ia} is represented in a rotated 
version of the lx , y ,z} basis. This was just a consequence of the momentum op
erator being the generator of translations in space. In fact, a combination like 
Lz = xpy - YPx indeed mixes the x-axis and y-axis, just as one would expect 
from the generator of rotations about the z-axis. 

To generalize this to four spatial dimensions, we first associate (x , y, z) and 
(px , py ,pz) with (x1 ,X2,x3) and (pi , P2, P3). We are led to rewrite the generators 
as L3 = L12 = XIP2 - x2p1 , L 1 = i23 ,  and L2 = i31 ·  If we then invent a new 
spatial dimension X4 and its conjugate momentum P4 (with the usual commutation 
relations), we can define 

L14 = XIP4 - X4Pl = Nl ' 

L24 = X2P4 - X4P2 = N2, 

L34 = X3P4 -X4P3 = N3 .  

(4. 1 .30a) 

(4. 1 .30b) 

(4. 1 .30c) 

It is easy to show that these operators Ni obey the algebra ( 4. 1 .29). For example, 

[N1 , L2] = [XIP4 - X4Pl ,X3Pl - XIP3] 

= P4[XI , pdx3 +x4[pi ,xi ]p3 

= i1i(X3P4 - X4P3) = i1iN3 .  (4. 1 .3 1) 

In other words, this is the algebra of four spatial dimensions. We will return to 
this notion in a moment, but for now we will press on with the degeneracies in the 
Coulomb potential that are implied by (4. 1 . 14) . 

Defining the operators 

I =  (L + N)/2, 

K := (L - N)/2, 

we easily can prove the following algebra: 

[Ii , /j ]  = i1i8ijkh, 
[Ki , Kj ] = ilicijkKk , 
[Ii , Kj ] = O. 

(4. 1 .32) 

(4. 1 .33) 

(4. 1 .34a) 

(4. 1 .34b) 

(4. 1 .34c) 

Therefore, these operators obey independent angular-momentum algebras. It 
is also evident that [1, H] = [K, H] = 0. Thus, these "angular momenta" are 
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conserved quantities, and we denote the eigenvalues of the operators 12 and K2 
by i (i + 1)h2 and k(k + 1)h2, respectively, with i , k  = 0, � .  1 ,  � • . . . .  

Because 12 -K2 = L ·N = 0 by (4. 1 .23) and (4. 1 .28), we must have i = k. On 
the other hand, the operator 

12 +K2 = � (L2 +N2) = � (L2 - �M2) 
leads, with (4. 1 .24), to the numerical relation 

Solving for E, we find 

2 1 ( 2 m 2 4) 2k(k + 1)h = l -h -
2E 

Z e . 

(4. 1 .35) 

(4. 1 .36) 

(4. 1 .37) 

This is the same as (3.7.53) with the principal quantum number n replaced by 
2k + 1. We now see that the degeneracy in the Coulomb problem arises from the 
two "rotational" symmetries represented by the operators I and K. The degree of 
degeneracy, in fact, is (2i + 1 )(2k + 1) = (2k + 1 )2 = n2 . This is exactly what we 
arrived at in (3.7.56), except it is now clear that the degeneracy is no accident. 

It is worth noting that we have just solved for the eigenvalues of the hydrogen 
atom without ever resorting to solving the Schrodinger equation. Instead, we ex
ploited the inherent symmetries to arrive at the same answer. This solution was 
apparently first carried out by Pauli. 

In the language of the theory of continuous groups, which we started to develop 
in Section 3 .3, we see that the algebra (4. 1 .29) corresponds to the group S0(4). 
Furthermore, rewriting this algebra as ( 4. 1 .34) shows that this can also be thought 
of as two independent groups SU(2)-that is, SU(2) x SU(2). Although it is not 
the purpose of this book to include an introduction to group theory, we will carry 
this a little further to show how one formally carries out rotations in n spatial 
dimensions-that is, the group SO(n). 

Generalizing the discussion in Section 3. 3, consider the group of n x n orthogo
nal matrices R that carry out rotations in n dimensions. They can be parameterized 
as ( n(n-1)/2 ) 

R = exp i L cf>q rq , 
q=l 

(4. 1 .38) 

where the rq are purely imaginary, antisymmetrical n x n matrices-that is, 
(rq )T = -rq-and the cf>q are generalized rotation angles. The antisymmetry 
condition ensures that R is orthogonal. The overall factor of i implies that the 
imaginary matrices rq are also Hermitian. 

The rq are obviously related to the generators of the rotation operator. In fact, 
it is their commutation relations that should be parroted by the commutation re
lations of these generators. Following along as in Section 3 . 1 ,  we compare the 
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action of performing an infinitesimal rotation first about axis q and then about 
axis p with the rotation carried out in reverse order. Then, 

(1 + i¢PrP) (1 + i¢qrq) - (1 + i¢qrq) (1 + i¢PrP) 
= -¢p¢q [ rP, rq] 

= 1 - (1 + i¢pq\q � Jf"r') , (4. 1 .39) 

where the last line of ( 4. 1 .39) recognizes that the result must be a second-order 
rotation about the two axes with some linear combination of generators. The f !'q 
are called structure constants for this group of rotations. This gives us the com
mutation relations 

[rP, rq] = i L ff'qrr . (4. 1 .40) 
r 

To go further, one would need to determine the structure constants J!'q , and we 
leave these details to textbooks devoted to group theory. It is not hard to show, 
however, that in three dimensions, J!'q = Spqr as expected. 

4.2 • DISCRETE SYMMETRIES, PARITY, OR SPACE INVERSION 

So far we have considered continuous symmetry operators-that is, operations 
that can be obtained by applying successively infinitesimal symmetry operations. 
Not all symmetry operations useful in quantum mechanics are necessarily of this 
form. In this chapter we consider three symmetry operations that can be consid
ered to be discrete, as opposed to continuous-parity, lattice translation, and time 
reversal. 

The first operation we consider is parity, or space inversion. The parity op
eration, as applied to transformation on the coordinate system, changes a right
handed (RH) system into a left-handed (LH) system, as shown in Figure 4. 1 .  
However, in this book we consider a transformation on state kets rather than on 
the coordinate system. Given Ja) , we consider a space-inverted state, which is 
assumed to be obtained by applying a unitary operator n known as the parity 
operator, as follows: 

Ja) --+ n Ja) . (4.2. 1 )  

We require the expectation value of x taken with respect to the space-inverted 
state to be opposite in sign. 

(4.2.2) 

a very reasonable requirement. This is accomplished if 
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X 

or 

RH z 

y 

LH 

/ / / / 

/ / / 

/ 
// New x 

/ 

New y - - - - - - - - -�----------I I I I I 
I 
1 New z  

FIGURE 4.1 Right-handed (RH) and left-handed (LH) systems. 

JrtXJr = -X 

XJr = -JrX, 

(4.2.3) 

(4.2.4) 

where we have used the fact that n is unitary. In other words, x and n must 
anticommute. 

How does an eigenket of the position operator transform under parity? We 
claim that 

n lx') = eio 1 - x') , (4.2.5) 

where ei8 is a phase factor (8 real). To prove this assertion, let us note that 

xn lx') = -nxlx') = (-x')n lx') . (4.2.6) 

This equation says that n lx') is an eigenket of x with eigenvalue -x', so it must 
be the same as a position eigenket I - x') up to a phase factor. 

It is customary to take ei8 = 1 by convention. Substituting this in ( 4.2.5), we 
have n2 1x') = l x') ; hence, n2 = 1-that is, we come back to the same state by 
applying n twice. We easily see from ( 4.2.5) that n is now not only unitary but 
also Hermitian: 

Jr -l = Jrt = Jr . (4.2.7) 

Its eigenvalue can be only + 1 or - 1 .  
What about the momentum operator? The momentum p is like mdxj dt, so it 

is natural to expect it to be odd under parity, like x. A more satisfactory argument 
considers the momentum operator as the generator of translation. Translation fol
lowed by parity is equivalent to parity followed by translation in the opposite 
direction, as can be seen in Figure 4.2, so 

n T (dx') = T ( -dx')n (4.2.8) 

Jr 1 - Jr = 1 + .....:..:._ __ 

( ip · dx') t ip · dx' 
1i 1i ' (4.2.9) 

! ! 
j 
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-dx' 

FIGURE 4.2 Translation followed by parity, and vice versa. 

from which follows 

{n ,p} = O  or ntpn = -p. 

271 

dx' 

(4.2. 10) 
We can now discuss the behavior of J under parity. First, for orbital angular 

momentum we clearly have 

[n ,L] = O  (4.2. 1 1) 
because 

L = x x p, (4.2 . 12) 
and both x and p are odd under parity. However, to show that this property also 
holds for spin, it is best to use the fact that J is the generator of rotation. For 3 x 3 
orthogonal matrices, we have 

R(parity) R(rotation) = R(rotation) R(parity)
, (4.2. 1 3) 

where explicitly (- 1 
R(parity) = 0 (4.2. 14) 

that is, the parity and rotation operations commute. In quantum mechanics, it is 
natural to postulate the corresponding relation for the unitary operators, so 

n !D(R) = !D(R)n, 
where !D(R) = 1 - iJ · ftsj1i. From (4.2. 15) it follows that 

[n,J] = O  or ntJn = J. 

(4.2. 15) 

(4.2. 1 6) 
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This, together with ( 4.2. 1 1  ), means that the spin operator S (leading to the total 
angular momentum J = L + S) also transforms in the same way as L. 

Under rotations, x and J transform in the same way, so they are both vectors, 
or spherical tensors, of rank 1 .  However, x (or p) is odd under parity [see (4.2.3) 
and (4.2. 10)], whereas J is even under parity [see (4.2. 16)] . Vectors that are odd 
under parity are called polar vectors, and vectors that are even under parity are 
called axial vectors, or pseudovectors. 

Let us now consider operators like S ·  x. Under rotations they transform like 
ordinary scalars, such as S · L or x · p. Yet under space inversion we have 

:rr -1 s .  x:rr = -S . X ' (4.2. 17) 

whereas for ordinary scalars we have 

:rr -l L · S:rr = L · S (4.2. 1 8) 

and so on. The operator S • X  is an example of a pseudoscalar. 

Wave Functions Under Parity 

Let us now look at the parity property of wave functions. First, let 1/f be the wave 
function of a spinless particle whose state ket is I a ) :  

1/f(x') = (x' la) . (4.2. 1 9) 

The wave function of the space-inverted state, represented by the state ket :rr Ia) , 
is 

(x' l:rr Ia) = ( -x' la) = 1/f( -x'). (4.2.20) 

Suppose Ia) is an eigenket of parity. We have already seen that the eigenvalue 
of parity must be ± 1 ,  so 

:rr la) = ± Ia) . (4.2.21) 

Let us look at its corresponding wave function, 

(x' l:rr la) = ± (x' la ) . (4.2.22) 

But we also have 

(x' l:rr la) = (-x' la) , (4.2.23) 

so the state Ia) is even or odd under parity, depending on whether the correspond
ing wave function satisfies 

1/f( -x') = ±1/f(x') {evenpa�ity, 
odd panty. 

(4.2.24) 
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Not all wave functions of physical interest have definite parities in the sense 
of (4.2.24). Consider, for instance, the momentum eigenket. The momentum op
erator anticommutes with the parity operator, so the momentum eigenket is not 
expected to be a parity eigenket. Indeed, it is easy to see that the plane wave, 
which is the wave function for a momentum eigenket, does not satisfy (4.2.24). 

An eigenket of orbital angular momentum is expected to be a parity eigenket 
because L and Jr commute [see (4.2. 1 1)] . To see how an eigenket of L2 and Lz 
behaves under parity, let us examine the properties of its wave function under 
space inversion, 

(x' Ja , lm) = Ra(r)Yt(e,¢). 
The transformation x' --+ -x' is accomplished by letting 

r --+  r 

Using the explicit form of 

c cos e --+ - cos e) 
(eim</> --+ ( -l )meim<f>). 

Ylm --(-1)m (21 + 1)(! - m) ! Pm ( e) im¢ 1 cos e 4n(l +m) !  
for positive m, with (3 .6.38), where 

P lml ( e) (-1)m+t (l + Jm J ) !  . - lm l e ( d ) t- lm l . 2t e 1 cos = sm sin , 2zl !  (l - Jm J ) !  d(cose) 

we can readily show that 

Yt --+ ( -1 )t Yt 
as e and ¢ are changed, as in (4.2.26). Therefore, we can conclude that 

n Ja, lm) = (-1i Ja, lm) . 

(4.2.25) 

(4.2.26) 

(4.2.27) 

(4.2.28) 

(4.2.29) 

(4.2.30) 
It is actually not necessary to look at Yt ; an easier way to obtain the same result 
is to work with m = 0 and note that L± ll ,m = O)(r = 0, 1 ,  . . .  , l) must have the 
same parity because ;r and (L±Y commute. 

Let us now look at the parity properties of energy eigenstates. We begin by 
stating a very important theorem. 

Theorem 4.1. Suppose 

[H,n] = O  (4.2.3 1 ) 
and J n )  is a nondegenerate eigenket of H with eigenvalue En : 

H Jn) = En ln) ; (4.2.32) 
then Jn) is also a parity eigenket. 
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Proof. We prove this theorem by first noting that 

1 
- ( 1  ± n) \n) 
2 

(4.2.33) 

is a parity eigenket with eigenvalues ±1 Gust use n2 = 1). But this is also an en
ergy eigenket with eigenvalue En. Furthermore, In) and (4.2.33) must represent 
the same state; otherwise, there would be two states with the same energy-a con
tradiction of our nondegenerate assumption. It therefore follows that in ( , which 
is the same as (4.2.33) up to a multiplicative constant, must be a parity eigenket 
with parity ±1 .  

As an example, let us  look at the simple harmonic oscillator. The ground state 
\0) has even parity because its wave function, being Gaussian, is even under x' ----+ 
-x'. The first excited state, 

(4.2.34) 

must have an odd parity because at is linear in x and p, which are both odd [see 
(2.3.2)]. In general, the parity of the nth excited state of the simple harmonic 
operator is given by ( - 1  )n . 

It is important to note that the nondegenerate assumption is essential here. 
For instance, consider the hydrogen atom in nonrelativistic quantum mechanics. 
As is well known, the energy eigenvalues depend only on the principal quantum 
number n (for example, 2p and 2s states are degenerate)-the Coulomb potential 
is obviously invariant under parity-yet an energy eigenket 

Cp \2p) + cs l 2s ) (4.2.35) 

is obviously not a parity eigenket. 
As another example, consider a momentum eigenket. Momentum anticom

mutes with parity, so-even though free-particle Hamiltonian H is invariant under 
parity-the momentum eigenket (though obviously an energy eigenket) is not a 
parity eigenket. Our theorem remains intact because we have here a degeneracy 
between lp') and 1 - p') , which have the same energy. In fact, we can easily con
struct linear combinations (1/ .J2)( \p') ± 1 - p') ), which are parity eigenkets with 
eigenvalues ± 1 .  In terms of wave-function language, eiP'·x' fh does not have a def
inite parity, but cos p' · x' jh and sin p' · x' jh do. 

Symmetrical Double-Well Potential 

As an elementary but instructive example, we consider a symmetrical double-well 
potential; see Figure 4.3. The Hamiltonian is obviously invariant under parity. In 
fact, the two lowest-lying states are as shown in Figure 4.3, as we can see by 
working out the explicit solutions involving sine and cosine in classically allowed 
regions and sinh and cosh in the classically forbidden region. The solutions are 
matched where the potential is discontinuous; we call them the symmetrical state 
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FIGURE 4.3 The symmetrical double well with the two lowest-lying states /S} (sym
metrical) and / A} (antisymmetrical) shown. 

I S) and the antisymmetrical state lA ) . Of course, they are simultaneous eigen
kets of H and n .  Calculation also shows that 

(4.2.36) 

which we can infer from Figure 4.3 by noting that the wave function of the anti
symmetrical state has a greater curvature. The energy difference is very tiny if the 
middle barrier is high, a point we will discuss later. 

We can form 

IR ) = �(IS) + lA)) (4.2.37a) 

and 

I L) = �(IS) - lA)) . (4.2.37b) 

The wave functions of (4.2.37a) and (4.2.37b) are largely concentrated in the 
right-hand side and the left-hand side, respectively. They are obviously not parity 
eigenstates; in fact, under parity I R) and IL) are interchanged. Note that they are 
not energy eigenstates either. Indeed, they are typical examples of nonstationary 
states. To be precise, let us assume that the system is represented by I R) at t = 0. 
At a later time, we have 

I R, to = O; t) = � (e-iEst/n i S) + eiEAt/n iA)) 
(4.2.38) 

= �e-iEst/n (IS) + ei(EA-Es)t/n iA)) . 

At time t =  T /2 = 2n1ij2(EA - Es), the system is found in pure I L ) . At t = T , 
we are back to pure I R ) ,  and so forth. Thus, in general, we have an oscillation 
between IR ) and IL) with angular frequency 

(EA - Es) w = ----li (4.2.39) 
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FIGURE 4.4 The symmetrical double well with an infinitely high middle barrier. 

This oscillatory behavior can also be considered from the viewpoint of tunneling 
in quantum mechanics. A particle initially confined to the right-hand side can tun
nel through the classically forbidden region (the middle barrier) into the left-hand 
side, then back to the right-hand side, and so on. But now let the middle barrier 
become infinitely high; see Figure 4.4. The I S) and lA) states are now degenerate, 
so (4.2.37a) and (4.2.37b) are also energy eigenkets even though they are not par
ity eigenkets. Once the system is found in IR) ,  it remains so forever (oscillation 
time between I S) and I A) is now oo ). Because the middle barrier is infinitely high, 
there is no possibility for tunneling. Thus when there is degeneracy, the physically 
realizable energy eigenkets need not be parity eigenkets. We have a ground state 
that is asymmetrical despite the fact that the Hamiltonian itself is symmetrical 
under space inversion, so with degeneracy the symmetry of H is not necessarily 
obeyed by energy eigenstates I S) and lA) .  

This i s  a very simple example of broken symmetry and degeneracy. Nature 
is full of situations analogous to this. Consider a ferromagnet. The basic Hamil
tonian for iron atoms is rotationally invariant, but the ferromagnet clearly has a 
definite direction in space; hence, the (infinite) number of ground states is not 
rotationally invariant, since the spins are all aligned along some definite (but ar
bitrary) direction. 

A textbook example of a system that illustrates the actual importance of the 
symmetrical double well is an ammonia molecule, NH3 ; see Figure 4.5. We imag
ine that the three H atoms form the three corners of an equilateral triangle. The 
N atom can be up or down, where the directions up and down are defined be
cause the molecule is rotating around the axis as shown in Figure 4.5 . The up 
and down positions for the N atom are analogous to R and L of the double-well 
potential. The parity and energy eigenstates are superpositions of Figure 4.5a and 
Figure 4.5b in the sense of (4.2.37a) and (4.2.37b), respectively, and the energy 
difference between the simultaneous eigenstates of energy and parity correspond 
to an oscillation frequency of 24,000 MHz-a wavelength of about 1 em, which 
is in the microwave region. In fact, NH3 is of fundamental importance in maser 
physics. 

There are naturally occurring organic molecules, such as amino acids and 
sugar, which are of the R-type (or L-type) only. Such molecules that have defi-
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FIGURE 4.5 An ammonia molecule, NH3, where the three H atoms form the three 
corners of an equilateral triangle. 

nite handedness are called optical isomers. In many cases the oscillation time is 
practically infinite-on the order of 104 to 106 years-so R-type molecules re
main right-handed for all practical purposes. It is amusing that if we attempt to 
synthesize such organic molecules in the laboratory, we find equal mixtures of R 
and L. Why we have a preponderance of one type is nature's deepest mystery. Is 
it due to a genetic accident, like the spiral shell of a snail, or to the fact that our 
hearts are on the left-hand side?* 

Parity-Selection Rule 

Suppose Ja) and J,B) are parity eigenstates :  

(4.2.40a) 

and 

7r J,B) = 8f3 J,8) ,  (4.2.40b) 

where sa , Sf3 are the parity eigenvalues (±1) . We can show that 

(,BJxJa) = 0 (4.2.41 )  

*It has been suggested that parity violation in nuclear processes active during the formation of life 
may have contributed to this handedness. See W. A. Bonner, "Parity Violation and the Evolution 
of Biomolecular Homochirality," Chirality, 12 (2000) 1 14. 
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unless sa = -s13 . In other words, the parity-odd operator x connects states of 
opposite parity. The proof of this follows: 

(4.2.42) 

which is impossible for a finite nonzero (,B ix!a) unless Sa and Sf3 are opposite in 
sign. Perhaps the reader is familiar with this argument from 

J 1/f�xl/fadr = 0 (4.2.43) 

if 1frf3 and 1/fa have the same parity. This selection rule, first expressed by Wigner, 
is important in discussing radiative transitions between atomic states. As we will 
discuss in greater detail later, radiative transitions take place between states of 
opposite parity as a consequence of multipole expansion formalism. This rule 
was known phenomenologically from analysis of spectral lines, before the birth of 
quantum mechanics, as Laporte's rule. It was Wigner who showed that Laporte's 
rule is a consequence of the parity-selection rule. 

If the basic Hamiltonian H is invariant under parity, nondegenerate energy 
eigenstates [as a corollary of ( 4.2.43)] cannot possess a permanent electric dipole 
moment: 

(n !x !n) = 0. (4.2.44) 

This follows trivially from (4.2.43), because with the nondegenerate assumption, 
energy eigenstates are also parity eigenstates [see (4.2.32) and (4.2.33)]. For a 
degenerate state, it is perfectly all right to have an electric dipole moment. We 
will see an example of this when we discuss the linear Stark effect in Chapter 5.  

Our considerations can be generalized: Operators that are odd under parity, 
like p or S · x, have nonvanishing matrix elements only between states of opposite 
parity. In contrast, operators that are even under parity connect states of the same 
parity. 

Parity Nonconservation 

The basic Hamiltonian responsible for the so-called weak interaction of elemen
tary particles is not invariant under parity. In decay processes we can have final 
states that are superpositions of opposite parity states. Observable quantities like 
the angular distribution of decay products can depend on pseudoscalars such as 
(S) · p. It is remarkable that parity conservation was believed to be a sacred prin
ciple until 1956, when Lee and Yang speculated that parity is not conserved in 
weak interactions and proposed crucial experiments to test the validity of parity 
conservation. Subsequent experiments indeed showed that observable effects do 
depend on pseudoscalar quantities such as correlation between (S) and p. 

To this day, one of clearest demonstrations of parity nonconservation is the ex
periment that first revealed it. This result-see Wu, Ambler, et al. , Phys. Rev. 105 
( 1957) 1413 ,  shows a decay rate that depends on (S) • p. The decay observed is 
6°Co ---+60Ni + e- + Ve, where S is the spin of the 6°Co nucleus, and the momen
tum of the emitted e- is p. A sample of spin-polarized radioactive 6°Co nuclei is 
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FIGURE 4.6 Experimental demonstration of parity nonconservation. The key obser
vation, shown on the left, is that radioactive cobalt nuclei, oriented according to their 
nuclear spin, emit "beta rays" (i.e., electrons) preferentially in the opposite direction. 
The experiment data, shown on the right, shows how the "up/down" beta decay asymme
try (bottom panel) correlates perfectly with the signal that indicates the degree of nuclear 
polarization (upper panel). As time goes on, the sample warms up and the cobalt nuclei 
depolarize. (Right side data reprinted from Wu et al., Phys. Rev. 105 ( 1957) 1413.) 

prepared at low temperature, and the decay e- are detected in the direction par
allel or anti parallel to the spin, depending on the sign of the polarizing magnetic 
field. The polarization of the sample is monitored by observing the anisotropy of 
the y-rays in the decay of the excited 60Ni daughter nuclei, a parity-conserving 
effect. The results are shown in Figure 4.6. Over a period of several minutes, the 
sample warms up, and the ,8-decay asymmetry disappears at exactly the same rate 
as the y-ray anisotropy. 

Because parity is not conserved in weak interactions, nuclear and atomic states 
that were previously thought "pure" are, in fact, parity mixtures. These subtle 
effects have also been found experimentally. 
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4.3 . LATTICE TRANSLATION AS A DISCRETE SYMMETRY 

We now consider another kind of discrete symmetry operation, namely lat
tice translation. This subject has extremely important applications in solid-state 
physics. 

Consider a periodic potential in one dimension, where V (x ± a) = V (x ), as 
depicted in Figure 4.7. Realistically, we may consider the motion of an electron 
in a chain of regularly spaced positive ions. In general, the Hamiltonian is not 
invariant under a translation represented by r(l) with l arbitrary, where r(l) has 
the property (see Section 1 .6) 

r t (l)xr(l) = x + l , r(l) lx') = lx' + l) .  

However, when l coincides with the lattice spacing a, we do have 

r t (a)V(x)r(a) = V(x + a) = V(x) . 

(4.3 . 1) 

(4.3.2) 

Because the kinetic-energy part of the Hamiltonian H is invariant under the trans
lation with any displacement, the entire Hamiltonian satisfies 

rt(a)Hr(a) = H. (4.3.3) 

Because r(a) is unitary, we have, from (4.3.3), 

[H ,  r(a)] = 0, (4.3 .4) 

so the Hamiltonian and r(a) can be simultaneously diagonalized. Although r(a) 
is unitary, it is not Hermitian, so we expect the eigenvalue to be a complex number 
of modulus 1 .  

(a) 

) j\j \j \j \J ! \  I I 
� a  a a a �  

(b) 
FIGURE 4.7 (a) Periodic potential in one dimension with periodicity a. (b) The peri
odic potential when the barrier height between two adjacent lattice sites becomes infinite. 
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Before we determine the eigenkets and eigenvalues of r(a) and examine their 
physical significance, it is instructive to look at a special case of periodic potential 
when the barrier height between two adjacent lattice sites is made to go to infin
ity, as in Figure 4.7b. What is the ground state for the potential of Figure 4.7b? 
Clearly, a state in which the particle is completely localized in one of the lattice 
sites can be a candidate for the ground state. To be specific, let us assume that 
the particle is localized at the nth site and denote the corresponding ket by In) . 
This is an energy eigenket with energy eigenvalue Eo, namely H ln) = Eo ln) . lts 
wave function (x' ln) is finite only in the nth site. However, we note that a similar 
state localized at some other site also has the same energy Eo, so actually there 
are denumerably infinite ground states n, where n runs from -oo to +oo. 

Now In) is obviously not an eigenket of the lattice-translation operator, because 
when the lattice-translation operator is applied to it, we obtain In + 1 ) :  

r(a) ln) = In + 1 ) .  (4.3 .5) 

So despite the fact that r(a) commutes with H, !n)-which is an eigenket of H
is not an eigenket of r(a) . This is quite consistent with our earlier theorem on 
symmetry because we have an infinitefold degeneracy. When there is such degen
eracy, the symmetry of the world need not be the symmetry of energy eigenkets. 
Our task is to find a simultaneous eigenket of H and r(a). 

Here we may recall how we handled a somewhat similar situation with the 
symmetrical double-well potential of the previous section. We noted that even 
though neither I R) nor I L) is an eigenket of n ,  we could easily form a symmetrical 
and an antisymmetrical combination of ! R) and IL) that are parity eigenkets. The 
case is analogous here. Let us specifically form a linear combination 

00 

!e ) = L eine I n ) ,  (4.3 .6) 
n=-oo 

where e is a real parameter with -n :S e :S n .  We assert that !e )  is a simultaneous 
eigenket of H and r(a). That it is an H eigenket is obvious because In) is an 
energy eigenket with eigenvalue Eo, independent of n. To show that it is also an 
eigenket of the lattice-translation operator, we apply r(a) as follows: 

00 00 

r(a) le) = L eine l n + 1 ) = L ei(n- l)(J in) n=-oo n=-oo (4.3.7) 

Note that this simultaneous eigenket of H and r(a) is parameterized by a contin
uous parameter e .  Furthermore, the energy eigenvalue Eo is independent of e .  

Let u s  now return to the more realistic situation of Figure 4.7a, where the 
barrier between two adjacent lattice sites is not infinitely high. We can construct a 
localized ket In) just as before with the property r(a) ln) = In +  1 ) .  However, this 
time we expect that there is some leakage possible into neighboring lattice sites 
as a consequence of quantum-mechanical tunneling. In other words, the wave 
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function (x' ln) has a tail extending to sites other than the nth site. The diagonal 
elements of H in the { I n ) } basis are all equal because of translation invariance; 
that is, 

(n iH in) = Eo, (4.3.8) 

independent of n, as before. However, we suspect that H is not completely di
agonal in the { In ) } basis as a consequence of leakage. Now, suppose the barriers 
between adjacent sites are high (but not infinite). We then expect matrix elements 
of H between distant sites to be completely negligible. Let us assume that the 
only nondiagonal elements of importance connect immediate neighbors. That is, 

(n' IH in) # 0 only if n' = n or n' = n ± 1 . (4.3.9) 

In solid-state physics this assumption is known as the tight-binding approxima
tion. Let us define 

(n ± 1 1H in) = -/}.. (4.3 . 10) 

Clearly, !}. is again independent of n because of translation invariance of the 
Hamiltonian. To the extent that In) and In') are orthogonal when n # n', we obtain 

H ln) = Eo ln) - !}. In + 1 ) - !}. In - 1 ) .  (4.3. 1 1) 

Note that In) is no longer an energy eigenket. 
As we have done with the potential of Figure 4.7b, let us form a linear combi

nation 
00 

18 ) = L eine ln ) . (4 .3 . 12) 
n=-oo 

Clearly, 18 ) is an eigenket of translation operator r(a) because the steps in (4.3 .7) 
still hold. A natural question is, is I e ) an energy eigenket? To answer this question, 
we apply H: 

H l:>ine In) = Eo l::>ine In) - !}.  l:>ine In + 1 ) - !}. l:=eine In - 1 ) 
= Eo l:=eine In) - !}.  L(ein8-ie + ein8+i8 ) 1n) 
= (Eo - 2J}.cose) l:=eine In ) . 

(4.3 . 13) 

The big difference between this and the previous situation is that the energy eigen
value now depends on the continuous real parameter e. The degeneracy is lifted 
as !}. becomes finite, and we have a continuous distribution of energy eigenval
ues between Eo - 21}. and Eo + 21}.. See Figure 4.8, where we visualize how the 
energy levels start forming a continuous energy band as !}. is increased from zero. 

To see the physical meaning of the parameter e, let us study the wave function 
(x' l8 ) .  For the wave function of the lattice-translated state r(a) l8 ) , we obtain 

(x' l r (a) l8 ) = (x' - a le ) (4.3. 14) 
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FIGURE 4.8 Energy levels forming a continuous energy band as � is increased from 
zero. 

by letting r(a) act on (x' l .  But we can also let r(a) operate on 111 )  and use (4.3 .7). 
Thus 

(4.3 . 1 5) 

so 

(4.3. 16) 

We solve this equation by setting 

(4.3 . 17) 

with 11 = ka, where uk(x') is a periodic function with period a, as we can easily 
verify by explicit substitutions, namely 

(4.3 . 1 8) 

Thus we get the important condition known as Bloch's theorem: The wave func
tion of 111 ) ,  which is an eigenket of r(a), can be written as a plane wave eikx' times 
a periodic function with periodicity a .  Notice that the only fact we used was that 
111 )  is an eigenket of r (a) with eigenvalue e-ie [see (4.3 .7)] . In particular, the 
theorem holds even if the tight-binding approximation ( 4.3 .9) breaks down. 

We are now in a position to interpret our earlier result (4.3 . 13) for 111 )  given 
by ( 4.3. 12) .  We know that the wave function is a plane wave characterized by the 
propagation wave vector k modulated by a periodic function Uk(x') [see (4.3 . 17)] . 
As 11 varies from -n to n,  the wave vector k varies from -nja to nja . The 
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FIGURE 4.9 Dispersion curve for E(k) versus k in the Brillouin zone \k \  ::: n fa. 

energy eigenvalue E now depends on k as follows: 

E(k) = Eo - 26. coska. (4.3 . 19) 

Notice that this energy eigenvalue equation is independent of the detailed shape 
of the potential as long as the tight-binding approximation is valid. Note also 
that there is a cutoff in the wave vector k of the Bloch wave function (4.3 . 17) 
given by lk l = nja. Equation (4.3 . 19) defines a dispersion curve, as shown in 
Figure 4.9. As a result of tunneling, the denumerably infinitefold degeneracy is 
now completely lifted, and the allowed energy values form a continuous band 
between Eo - 26. and Eo + 26., known as the Brillouin zone. 

So far we have considered only one particle moving in a periodic potential. 
In a more realistic situation we must look at many electrons moving in such a 
potential. Actually, the electrons satisfy the Pauli exclusion principle, as we will 
discuss more systematically in Chapter 7, and they start filling the band. In this 
way, the main qualitative features of metals, semiconductors, and the like can 
be understood as a consequence of translation invariance supplemented by the 
exclusion principle. 

The reader may have noted the similarity between the symmetrical double
well problem of Section 4.2 and the periodic potential of this section. Comparing 
Figures 4.3 and 4.7, we note that they can be regarded as opposite extremes (two 
versus infinite) of potentials with a finite number of troughs. 

4.4 . THE TIME-REVERSAL DISCRETE SYMMETRY 

In this section we study another discrete symmetry operator, called time reversal. 
This is a difficult topic for the novice, partly because the term time reversal is a 
misnomer; it reminds us of science fiction. What we do in this section can be 
more appropriately characterized by the term reversal of motion. Indeed, that is 
the phrase used by E. Wigner, who formulated time reversal in a very fundamental 
paper written in 1932. 
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FIGURE 4.10 (a) Classical trajectory that stops at t = 0 and (b) reverses its motion 
Plt=O ---+ -Pit=O · 

For orientation purposes, let us look at classical mechanics. Suppose there is a 
trajectory of a particle subject to a certain force field; see Figure 4. 1 0. At t = 0, let 
the particle stop and reverse its motion: Plt=O ---+ -Pi t=O · The particle traverses 
backward along the same trajectory. If you run the motion picture of trajectory (a) 
backward as in (b), you may have a hard time telling whether this is the correct 
sequence. 

More formally, if x(t) is a solution to 

mx = -VV(x), (4.4. 1) 

then x( -t) is also a possible solution in the same force field derivable from V. 
It is, of course, important to note that we do not have a dissipative force here. A 
block sliding on a table decelerates (because of friction) and eventually stops . But 
have you ever seen a block on a table spontaneously start to move and accelerate? 

With a magnetic field you may be able to tell the difference. Imagine that you 
are taking the motion picture of a spiraling electron trajectory in a magnetic field. 
You may be able to tell whether the motion picture is run forward or backward by 
comparing the sense of rotation with the magnetic pole labeling N and S. How
ever, from a microscopic point of view, B is produced by moving charges via an 
electric current; if you could reverse the current that causes B, then the situation 
would be quite symmetrical. In terms of the picture shown in Figure 4. 1 1 ,  you 
may have figured out that N and S are mislabeled! Another, more formal way of 
saying all this is that the Maxwell equations, for example, 

V · E = 4np, 1 aE 4nj V x B - -- = -, 
c at c 

1 an V x E =  - - -, 
c a t  (4.4.2) 

and the Lorentz force equation F = e [E + ( 1/c)(v x B)] are invariant under t -+  
-t, provided that we also let 

E -+ E, B -+ -B, p -+ p, j -+ -j , v -+ -v. (4.4.3) 
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FIGURE 4.11 Electron trajectory between the north and south poles of a magnet. 

Let us now look at wave mechanics, where the basic equation of the Schrodinger 
wave equation is 

0 ()1jf ( h2 2 ) z h- = - - V + V 1/f .  at 2m (4.4.4) 

Suppose 1/f(x, t) is a solution. We can easily verify that 1/f(x, -t) is not a solution, 
because of the appearance of the first -order time derivative. However, 1/1* (x, -t) is 
a solution, as you may verify by complex conjugation of (4.4.4). It is instructive to 
convince ourselves of this point for an energy eigenstate-that is, by substituting 

(4.4.5) 

into the SchrOdinger equation (4.4.4). Thus we conjecture that time reversal must 
have something to do with complex conjugation. If at t = 0 the wave function is 
given by 

1/1 = (x la) ,  (4.4.6) 

then the wave function for the corresponding time-reversed state is given by 
(x I a) * . We will later show that this is indeed the case for the wave function of 
a spinless system. As an example, you may easily check this point for the wave 
function of a plane wave; see Problem 4.8 of this chapter. 
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Before we begin a systematic treatment of the time-reversal operator, some gen
eral remarks on symmetry operations are in order. Consider a symmetry operation 

Ia) ---+ I&) , 1,8) ---+ 1.8) .  (4.4.7) 

One may argue that it is natural to require the inner product (,B ia) to be 
preserved-that is, 

(4.4.8) 

Indeed, for symmetry operations such as rotations, translations, and even parity, 
this is indeed the case. If Ia) is rotated and I ,B) is also rotated in the same manner, 
(,8 Ia) is unchanged. Formally, this arises from the fact that for the symmetry oper
ations considered in the previous sections, the corresponding symmetry operator 
is unitary, so 

(,B ia) ---+ (,B I UtU ia) = (,B ia) .  (4.4.9) 

However, in discussing time reversal, we see that requirement ( 4.4.8) turns out 
to be too restrictive. Instead, we merely impose the weaker requirement that 

1 (.8 1&) 1 = I (,B ia) l .  (4.4. 10) 

Requirement ( 4.4.8) obviously satisfies ( 4.4. 10). But this is not the only way; 

(,8 1&) = (,B ia)* = (a i,B) (4.4. 1 1 ) 

works equally well. We pursue the latter possibility in this section because, from 
our earlier discussion based on the Schrodinger equation, we inferred that time 
reversal has something to do with complex conjugation. 

Definition The transformation 

Ia) ---+ I&) =  B la) , 1 ,8) ---+ 1.8) = B I,B) 
is said to be antiunitary if 

(,8 1&) = (,B ia)* , 
B(q Ia) + cz i,B) ) = ciB Ia) + c;e I ,B) .  

(4.4. 12) 

(4.4. 13a) 

(4.4. 13b) 

In such a case the operator e is an antiunitary operator. Relation (4.4. 13b) alone 
defines an antilinear operator. 

We now claim that an antiunitary operator can be written as 

B = UK, (4.4. 14) 
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where U is a unitary operator and K is the complex-conjugate operator that forms 
the complex conjugate of any coefficient that multiplies a ket (and stands on the 
right of K). Before checking (4.4. 13), let us examine the property of the K oper
ator. Suppose we have a ket multiplied by a complex number c. We then have 

Kc la) = c*K ia) . (4.4. 15) 

One may further ask, what happens if I a) is expanded in terms of base kets { I  a') } ? 
Under the action K, we have 

Ia) = I)a') (a' la)� la) = L (a' la) *K ia') 
a' a' 

(4.4. 16) 
= L (a' la)* la') . 

a' 

Notice that K acting on the base ket does not change the base ket. The explicit 
representation of Ia') is 

0 
0 

I a') = 0 
1 

(4.4. 17) 

0 

0 

and there is nothing to be changed by K. The reader may wonder, for instance, 
whether the Sy eigenkets for a spin ! system change under K. The answer is that 
if the Sz eigenkets are used as base kets, we must change the Sy eigenkets because 
the Sy eigenkets ( 1 . 1 . 14) undergo, under the action of K, 

K -1+) ± -z 1- ) � -1+) + -z 1- ) .  ( 1 . ) 1 . 

� � � � (4.4. 1 8) 

On the other hand, if the Sy eigenkets themselves are used as the base kets, we do 
not change the Sy eigenkets under the action of K. Thus the effect of K changes 
with the basis. As a result, the form of U in ( 4.4. 14) also depends on the particular 
representation (that is, on the choice of base kets) used. 

Returning to () =  UK and (4.4 . 13), let us first check property (4.4. 13b). We 
have 

()(q la) + c2 I,B) ) = UK(c1 la) + c2 I,B) ) 
= ctUK ia) + c�UK I,B) 
= c;e la) + c�e i,B) ,  (4.4. 1 9) 
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so (4.4. 13b) indeed holds. Before checking (4.4. 13a), we assert that it is always 
safer to work with the action of () on kets only. We can figure out how the bras 
change just by looking at the corresponding kets. In particular, it is not necessary 
to consider () acting on bras from the right, nor is it necessary to define () t . We 
have 

(} - '"" Ja )--+ Ja) = L..,.. (a' Ja)* UK Ja') 
a' 

= L (a' Ja)*U Ja') 
a' 

= L (a Ja')U Ja' ) . (4.4.20) 
a' 

As for ! ,B) ,  we have 

a' a' 

a" a' 
= L (a Ja') (a' J,B) = (a J,B) a' 
= (,B Ja)* ' (4.4.21) 

so this checks. (Recall the notion of "dual correspondence," or DC, from Sec
tion 1 .2.) 

In order for (4.4 . 10) to be satisfied, it is of physical interest to consider just two 
types of transformations-unitary and anti unitary. Other possibilities are related 
to either of the preceding via trivial phase changes. The proof of this assertion 
is actually very difficult and will not be discussed further here. See, however, 
Gottfried and Yan (2003), Section 7. 1 .  

Time-Reversal Operator 

We are finally in a position to present a formal theory of time reversal. Let us 
denote the time-reversal operator by 8, to be distinguished from () ,  a general 
antiunitary operator. Consider 

Ja) --+ 8 Ja) , (4.4.22) 

where 8 Ja) is the time-reversed state. More appropriately, 8 Ja) should be called 
the motion-reversed state. If Ja) is a momentum eigenstate J p') , we expect 8 Ja) to 
be I - p') up to a possible phase. Likewise, J is to be reversed under time reversal. 

We now deduce the fundamental property of the time-reversal operator by 
looking at the time evolution of the time-reversed state. Consider a physical sys
tem represented by a ket Ja) , say at t = 0. Then, at a slightly later time t = 8t, the 
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Momentum 
after reversal 

Momentum 
before reversal 

\ 

(a) 

Momentum 
after reversal 

Momentum 
before reversal 

� 

(b) 

FIGURE 4.12 Momentum before and after time reversal at time t = 0 and t = ±ot. 
system is found in 

ja, to = O; t = ot) = ( 1 -
i: 8t) ja ) , (4.4.23) 

where H is the Hamiltonian that characterizes the time evolution. Instead of the 
preceding equation, suppose we first apply 8, say at t = 0, and then let the system 
evolve under the influence of the Hamiltonian H. We then have, at ot, ( iH8t) 1 - -fi- E>ja) . (4.4.24a) 

If motion obeys symmetry under time reversal, we expect the preceding state ket 
to be the same as 

E> Ja, to = O; t = -ot) . (4.4.24b) 

That is, first consider a state ket at earlier time t = -ot, and then reverse p and J; 
see Figure 4. 12 . Mathematically, 

(4.4.25) 

If the preceding relation is to be true for any ket, we must have 

-iHE> l ) = E>iH I  ) ,  (4.4.26) 

where the blank ket I ) emphasizes that ( 4.4.26) is to be true for any ket. 



4.4 The Time-Reversal Discrete Symmetry 291 

We now argue that 8 cannot be unitary if the motion of time reversal is to 
make sense. Suppose 8 were unitary. It would then be legitimate to cancel the i's 
in ( 4.4.26), and we would have the operator equation 

-H8 = 8H. (4.4.27) 

Consider an energy eigenket In ) with energy eigenvalue En . The corresponding 
time-reversed state would be 8 1n) , and we would have, because of (4.4.27), 

H81n) = -8Hin) = (-En)8 1n ) . (4.4.28) 

This equation says that 81n ) is an eigenket of the Hamiltonian with energy 
eigenvalues -En . But this is nonsensical even in the very elementary case of 
a free particle. We know that the energy spectrum of the free particle is posi
tive semidefinite-from 0 to +oo. There is no state lower than a particle at rest 
(momentum eigenstate with momentum eigenvalue zero); the energy spectrum 
ranging from -oo to 0 would be completely unacceptable. We can also see this by 
looking at the structure of the free-particle Hamiltonian. We expect p to change 
sign but not p2 ; yet ( 4.4.27) would imply that 

2 2 
8-1R___8 =  -p 

2m 2m 
(4.4.29) 

All these arguments strongly suggest that if time reversal is to be a useful 
symmetry at all, we are not allowed to cancel the i's in (4.4.26); hence, 8 had 
better be antiunitary. In this case the right-hand side of (4.4.26) becomes 

8iH I ) = -i8H I ) (4.4.30) 

by antilinear property ( 4.4. 1 3b ). Now at last we can cancel the i's in ( 4.4.26). This 
leads finally, via (4.4.30), to 

8H = H8. (4.4.31 )  

Equation (4.4.3 1 )  expresses the fundamental property of the Hamiltonian under 
time reversal. With this equation the difficulties mentioned earlier [see (4.4.27) to 
(4.4.29)] are absent, and we obtain physically sensible results. From now on, we 
will always take 8 to be antiunitary. 

We mentioned earlier that it is best to avoid an antiunitary operator acting on 
bras from the right. Nevertheless, we may use 

CB I 8 1a) , (4.4.32) 

which is to be understood always as 

( (.8 1 ) · (8 1a)) (4.4.33) 

and never as 

( (.8 18) · 1a) .  (4.4.34) 
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In fact, we do not even attempt to define (/3 18. This is one place where the Dirac 
bra-ket notation is a little confusing. After all, that notation was invented to handle 
linear operators, not antilinear operators. 

With this cautionary remark, we are in a position to discuss the behavior of 
operators under time reversal. We continue to take the point of view that the 8 
operator is to act on kets 

I&) = 81a) , 1.8) = 8 1/3) , (4.4.35) 

yet it is often convenient to talk about operators-in particular, observables
which are odd or even under time reversal. We start with an important identity: 

(4.4.36) 

where 0 is a linear operator. This identity follows solely from the antiunitary 
nature of 8. To prove this let us define 

By dual correspondence we have 

Hence, 

DC I Y )#(/3 10 = (y l .  

(/3 1 0 la) = (y la) = (& 1 9 ) 
= (& 18 0t 1!3 ) = (& 18 0t 8-1 8 1/3) 
= (& 18 0t 8-1 1,8) , 

(4.4.37) 

(4.4.38) 

(4.4.39) 

which proves the identity. In particular, for Hermitian observables A, we get 

(4.4.40) 

We say that observables are even or odd under time reversal according to whether 
we have the upper or lower sign in 

8A8-1 = ±A. (4.4.41) 

Note that this equation, together with (4.4.40), gives a phase restriction on the 
matrix elements of A taken with respect to time-reversed states as follows: 

(f3 1A ia) = ± (,8 1A I&) * . (4.4.42) 

If 1/3 ) is identical to Ia ) , so that we are talking about expectation values, we have 

(a lA Ia) = ± (& lA I&) , (4.4.43) 

where (a lA I&) is the expectation value taken with respect to the time-reversed 
state. 
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As an example, let us look at the expectation value of p. It is reasonable to 
assume that the expectation value of p taken with respect to the time-reversed 
state will be of opposite sign. Thus 

(a lp /a) = - (a lp /&) , 
so we take p to be an odd operator, namely 

8p8-1 = -p. 
This implies that 

p8 1p') = -8p8-18 ip') 
= ( -p')8 ip' ) . 

(4.4.44) 

(4.4.45) 

(4.4.46) 

Equation (4.4.46) agrees with our earlier assertion that 8/p') is a momentum 
eigenket with eigenvalue -p'. It can be identified with 1 - p') itself with a suitable 
choice of phase. Likewise, we obtain 

8x8-1 = X  
8/x') = lx' ) (up to a phase) 

(4.4.47) 

from the (eminently reasonable) requirement 

(a jx ja) = (& lx l&) .  (4.4.48) 

We can now check the invariance of the fundamental commutation relation 

(4.4.49) 

where the blank ket I ) stands for any ket. Applying 8 to both sides of ( 4.4.49), 
we have 

8 [xi . Pj ]8-18 1 ) = 8in8ij l  ) ,  
which leads, after passing 8 through in, to 

(4.4.50) 

(4.4.5 1 )  

Note that the fundamental commutation relation [xi , Pj] = in8ij i s  preserved by 
virtue of the fact that 8 is antiunitary. This can be given as yet another reason 
for taking 8 to be antiunitary; otherwise, we would be forced to abandon either 
(4.4.45) or (4.4.47) ! Similarly, to preserve 

(4.4.52) 

the angular-momentum operator must be odd under time reversal; that is, 

8J8-1 = -J. (4.4.53) 

This is consistent for a spinless system where J is just x x p. Alternatively, we 
could have deduced this relation by noting that the rotational operator and the 
time-reversal operator commute (note the extra i ! ) . 
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Wave Function 

Suppose at some given time, say at t = 0, a spinless single-particle system is found 
in a state represented by Ia ) . Its wave function (x' la) appears as the expansion 
coefficient in the position representation 

Ia) = J d3x' lx') (x' la ) . 
Applying the time-reversal operator yields 

E> la) = J d3x'E>Ix') (x' la)* 

= J d3x' lx') (x' la) * , 

(4.4.54) 

(4.4.55) 

where we have chosen the phase convention so that E>lx') is lx') itself. We then 
recover the rule 

1fr (x') --+ 1/r*(x') (4.4.56) 

inferred earlier by looking at the Schri::idinger wave equation [see (4.4.5)] . The 
angular part of the wave function is given by a spherical harmonic Yt . With the 
usual phase convention, we have 

(4.4.57) 

Now Yt(8,¢) is the wave function for l l ,m) [see (3 .6.23)] ; therefore, from 
( 4.4.56) we deduce 

E> l l ,m) = ( - l)m ll , -m) .  (4.4.58) 

If we study the probability current density (2.4. 16) for a wave function of type 
(3.6.22) going like R(r)Yt, we shall conclude that for m > 0 the current flows in 
the counterclockwise direction, as seen from the positive z-axis. The wave func
tion for the corresponding time-reversed state has its probability current flowing in 
the opposite direction because the sign of m is reversed. All this is very reasonable. 

As a nontrivial consequence of time-reversal invariance, we state an important 
theorem on the reality of the energy eigenfunction of a spinless particle. 

Theorem 4.2. Suppose the Hamiltonian is invariant under time reversal and the 
energy eigenket In ) is nondegenerate; then the corresponding energy eigenfunc
tion is real (or, more generally, a real function times a phase factor independent 
of x) . 

Proof To prove this, first note that 

HE> In) = E>H in) = EnE>In) , (4.4.59) 
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so In) and E> ln) have the same energy. The nondegeneracy assumption prompts 
us to conclude that In) and E> ln) must represent the same state; otherwise, there 
would be two different states with the same energy En, an obvious contradic
tion ! Let us recall that the wave functions for In ) and E> Jn) are (x' Jn) and (x' Jn )* , 
respectively. They must be the same-that is, 

(x' ln) = (x' ln)* (4.4.60) 

for all practical purposes-or, more precisely, they can differ at most by a phase 
factor independent of x. 

Thus if we have, for instance, a nondegenerate bound state, its wave function 
is always real. On the other hand, in the hydrogen atom with l i= 0, m i= 0, the 
energy eigenfunction characterized by definite (n, l ,m) quantum numbers is com
plex because Yt is complex; this does not contradict the theorem because In, l, m) 
and In , ! , -m) are degenerate. Similarly, the wave function of a plane wave eip·x/fi 
is complex, but it is degenerate with e-ip·xf1i . 

We see that for a spinless system, the wave function for the time-reversed state, 
say at t = 0, is simply obtained by complex conjugation. In terms ofket Ia) written 
as in (4.4. 16) or in (4.4.54), the E> operator is the complex-conjugate operator K 
itself because K and E> have the same effect when acting on the base ket I a') (or 
lx') ) . We may note, however, that the situation is quite different when the ket Ia) 
is expanded in terms of the momentum eigenket, because E> must change IP') into 
I - p') as follows: 

E> la) = J d3 p' l - p') (p' la)* = J d3 p' lp') (-p' la)* . (4.4.6 1 )  

It is apparent that the momentum-space wave function of the time-reversed state 
is not just the complex conjugate of the original momentum-space wave function; 
rather, we must identify ¢*( -p') as the momentum-space wave function for the 
time-reversed state. This situation once again illustrates the basic point that the 
particular form of E> depends on the particular representation used. 

lime Reversal for a Spin ! System 

The situation is even more interesting for a particle with spin-spin � , in particu
lar. We recall from Section 3.2 that the eigenket of S · fi  with eigenvalue h/2 can 
be written as 

(4.4.62) 

where fi is characterized by the polar and azimuthal angles {3 and a, respectively. 
Noting (4.4.53), we have 

(4.4.63) 

On the other hand, we can easily verify that 

lfi; _ ) = e-iaSz11i e-i(n+,B)Sy/fi I +) .  (4.4.64) 
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In general, we saw earlier that the product UK is an anti unitary operator. Com par
ing (4.4.63) and (4.4.64) with E> set equal to UK, and noting that K acting on the 
base ket I+) gives just I+) ,  we see that 

E> = rye-irrSy/n K = -irJ (2:y ) K, (4.4.65) 

where 17 stands for an arbitrary phase (a complex number of modulus unity). 
Another way to be convinced of ( 4.4.65) is to verify that if x (n; +) is the two
component eigenspinor corresponding to In; +) [in the sense that a ·  nx (n; +) = 
x (n; +)J, then 

(4.4.66) 

(note the complex conjugation!) is the eigenspinor corresponding to In; -) ,  again 
up to an arbitrary phase, see Problem 4.7 of this chapter. The appearance of Sy 
or ay can be traced to the fact that we are using the representation in which Sz is 
diagonal and the nonvanishing matrix elements of Sy are purely imaginary. 

Let us now note 

(4.4.67) 

Using (4.4.67), we are in a position to work out the effect of E>, written as (4.4.65), 
on the most general spin -! ket: 

E>(c+ l+) + c- 1-)) = +rJc� l -) - rye� I+ ) .  

Let us  apply E> once again: 

or 

E>2(c+ l+) + c- 1-)) = - lry l2c+ l+) - l rJ I2c- 1-) 

= -(c+ l+) + c l-)) 

e2 = -1 ,  

( 4.4.68) 

(4.4.69) 

(4.4.70) 

(where - 1  is to be understood as - 1  times the identity operator) for any spin 
orientation. This is an extraordinary result. It is crucial to note here that our con
clusion is completely independent of the choice of phase; ( 4.4. 70) holds no matter 
what phase convention we may use for 11· In contrast, we may note that two suc
cessive applications of E> to a spinless state give 

e2 = +1 ,  

as is evident from, say, (4.4.58). 
More generally, we now prove 

E>2 1 j half-integer) = - l jhalf-integer) 

E>2 1 j integer) = +l j integer) . 

(4.4.7 1 )  

(4.4.72a) 

(4.4.72b) 
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Thus the eigenvalue of 82 is given by ( - 1)2i .  We first note that (4.4.65) general
izes for arbitrary j to 

For a ket I a) expanded in terms of I j ,  m) base eigenkets, we have 

But 

e (e L Um)Um la)) = e (11 Le-inly/n l jm) Um la)*) 
= 1 1J I2e-2in ly/h L ljm) (jm la) . 

(4.4.73) 

(4.4.74) 

(4.4.75) 

as is evident from the properties of angular-momentum eigenstates under rotation 
by 2n . 

In ( 4.4. 72b ), I j integer) may stand for the spin state 

1 -(1 + -) ± 1 - +)) ../2 (4.4.76) 

of a two-electron system or the orbital state l l ,m ) of a spinless particle. It is 
important only that j is an integer. Likewise, l j half-integer) may stand, for ex
ample, for a three-electron system in any configuration. Actually, for a system 
made up exclusively of electrons, any system with an odd (even) number of 
electrons-regardless of their spatial orientation (for example, relative orbital an
gular momentum)-is odd (even) under 82; they need not even be J2 eigenstates ! 

We make a parenthetical remark on the phase convention. In our earlier discus
sion based on the position representation, we saw that with the usual convention 
for spherical harmonics, it is natural to choose the arbitrary phase for l l ,m) under 
time reversal so that 

E> ll ,m) = ( - l)m ll , -m) .  (4.4.77) 

Some authors find it attractive to generalize this to obtain 

E> lj ,m) = (-l)m l j ,-m) (j an integer), (4.4.78) 

regardless of whether j refers to l or s (for an integer spin system). We may natu
rally ask, is this compatible with (4.4.72a) for a spin � system when we visualize 
I j ,  m) as being built up of "primitive" spin � objects according to Wigner and 
Schwinger? It is easy to see that (4.4.72a) is indeed consistent, provided that we 
choose 1J in (4.4.73) to be +i . In fact, in general, we can take 

(4.4.79) 

for any j-either a half-integer j or an integer j; see Problem 4. 10 of this chap
ter. The reader should be warned, however, that this is not the only convention 
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found in the literature. See, for instance, Frauenfelder and Henley ( 1974). For 
some physical applications, it is more convenient to use other choices; for in
stance, the phase convention that makes the J± operator matrix elements simple 
is not the phase convention that makes the time-reversal operator properties sim
ple. We emphasize once again that (4.4.70) is completely independent of phase 
convention. 

Having worked out the behavior of angular-momentum eigenstates under time 
reversal, we are in a position to study once again the expectation values of a 
Hermitian operator. Recalling (4.4.43), we obtain, under time reversal (canceling 
the i2m factors), 

(a, j ,m iA ia, j ,m} = ±(a ,j , -m iA ia, j , -m} . (4.4.80) 

Now suppose A is a component of a spherical tensor rJk) . Because of the Wigner
Eckart theorem, it is sufficient to examine just the matrix element of the q = 0 
component. In general, y(k) (assumed to be Hermitian) is said to be even or odd 
under time reversal, depending on how its q = 0 component satisfies the upper or 
lower sign in 

erCk) e-1 = ±rCk) . 
q=O q=O 

Equation ( 4.4.80) for A = Tdk) becomes 

(a, j ,m i Tdk) la, j ,m} = ± (a, j , -m i Tdk) la, j , -m} . 

(4.4.81 )  

(4.4.82) 

Relying on (3 .6.46)-(3.6.49), we expect la, j , -m} = .V(O,n ,O) Ia, j ,m} up to a 
phase. We next use (3. 1 1 .22) for Tdk) , which leads to 

(4.4.83) 

where we have used .v6� (0,n  , 0) = Pk(cosn) = ( - 1)k, and the q i= 0 components 
give vanishing contributions when sandwiched between (a, j ,m l  and la, j ,m} . 
The net result is 

(4.4.84) 

As an example, when we take k = 1, the expectation value (x} taken with respect 
to eigenstates of j, m vanishes. We may argue that we already know (x} = 0 from 
parity inversion if the expectation value is taken with respect to parity eigenstates 
[see (4.2.41)] . But note that here, la, j ,m} need not be parity eigenkets ! For ex
ample, the l j ,m} for spin ! particles could be Cs ls1 ;2} + Cp I PI /2} . 
Interactions with Electric and Magnetic Fields; Kramers Degeneracy 

Consider charged particles in an external electric or magnetic field. If we have 
only a static electric field interacting with the electric charge, the interaction part 
of the Hamiltonian is just 

V (x) = e¢(x), (4.4.85) 
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where ¢(x) is the electrostatic potential. Because ¢(x) is a real function of the 
time-revetsai evtn O:Perator x, we have 

[G,H] = 0. (4.4.86) 

Unlike the parity case, (4.4.86) does not lead to an interesting conservation 
law. The reason is that 

GU(t, to) =!= U(t, to)8 (4.4.87) 

even if (4.4.86) holds, so our discussion following (4. 1 .9) of Section 4. 1 breaks 
down. As a result, there is no such thing as the "conservation of time-reversal 
quantum number." As we have already mentioned, requirement (4.4.86) does, 
however, lead to a nontrivial phase restriction: the reality of a non degenerate wave 
function for a spinless system [see (4.4.59) and (4.4.60)] . 

Another far-reaching consequence of time-reversal invariance is the Kramers 
degeneracy. Suppose H and 8 commute, and let I n ) and 81n) be the energy 
eigenket and its time-reversed state, respectively. It is evident from ( 4.4.86) that 
In ) and 81n) belong to the same energy eigenvalue En(H8 1n) = 8H in ) = 
EnG In)) . The question is, does In ) represent the same state as 81n)? If it does, 
In) and 8 1n) can differ at most by a phase factor. Hence, 

(4.4.88) 

Applying 8 again to (4.4.88), we have 82 1n) = 8ei8 1n) = e-io G in) = e-io e+i8 1n ) ; 
hence, 

(4.4.89) 

But this relation is impossible for half-integer j systems, for which 82 is always 
- 1 , so we are led to conclude that In ) and 8 In) , which have the same energy, must 
correspond to distinct states-that is, there must be a degeneracy. This means, for 
instance, that for a system composed of an odd number of electrons in an external 
electric field E, each energy level must be at least twofold degenerate no matter 
how complicated E may be. Considerations along this line have interesting ap
plications to electrons in crystals, where odd-electron and even-electron systems 
exhibit very different behaviors. Historically, Kramers inferred degeneracy of this 
kind by looking at explicit solutions of the SchrOdinger equation; subsequently, 
Wigner pointed out that Kramers degeneracy is a consequence of time-reversal 
invariance. 

Let us now tum to interactions with an external magnetic field. The Hamilto
nian H may then contain terms like 

S ·B, p · A + A · p, (B = V x A), (4.4.90) 

where the magnetic field is to be regarded as external. The operators S and p are 
odd under time reversal; these interaction terms therefore do lead to 

eH =1= He. (4.4.9 1 )  
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As a trivial example, for a spin ! system the spin-up state \+) and its time
reversed state \ -) no longer have the same energy in the presence of an external 
magnetic field. In general, Kramers degeneracy in a system containing an odd 
number of electrons can be lifted by applying an external magnetic field. 

Notice that when we treat B as external, we do not change B under time rever
sal; this is because the atomic electron is viewed as a closed quantum-mechanical 
system to which we apply the time-reversal operator. This should not be con
fused with our earlier remarks concerning the invariance of the Maxwell equa
tions (4.4.2) and the Lorentz force equation under t --+ -t and (4.4.3). There we 
were to apply time reversal to the whole world, for example, even to the currents 
in the wire that produces the B field! 

Problems 

4.1 Calculate the three lowest energy levels, together with their degeneracies, for the 
following systems (assume equal-mass distinguishable particles). 
(a) Three noninteracting spin i particles in a box of length L. 
(b) Four noninteracting spin i particles in a box of length L. 

4.2 Let 7d denote the translation operator (displacement vector d); let :D(fi,¢) denote 
the rotation operator (fi and 4> are the axis and angle of rotation, respectively); and 
let 1r denote the parity operator. Which, if any, of the following pairs commute? 
Why? 
(a) 7d and 7d' (d and d' in different directions). 
(b) :D(fi,¢) and :D(fi', ¢') (fi and fi' in different directions). 
(c) 7d and rr .  
(d) :D(fi,¢) and rr .  

4.3 A quantum-mechanical state IJI is known to be a simultaneous eigenstate of two 
Hermitian operators A and B that anticommute: 

AB + BA = O. 

What can you say about the eigenvalues of A and B for state IJI ?  Illustrate your 
point using the parity operator (which can be chosen to satisfy rr = rr -l = rr t) and 
the momentum operator. 

4.4 A spin i particle is bound to a fixed center by a spherically symmetrical potential. 

(a) Write down the spin-angular function y,{:0112·m=l12 . 
(b) Express (<T · x) 

y,{:0112·m=l/2 in terms of some other y,{'m . 
(c) Show that your result in (b) is understandable in view of the transforma

tion properties of the operator S · x under rotations and under space inversion 
(parity). 

4.5 Because of weak (neutral-current) interactions, there is a parity-violating potential 
between the atomic electron and the nucleus as follows: 
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where S and p are the spin and momentum operators of the electron, and the nu
cleus is assumed to be situated at the origin. As a result, the ground state of an alkali 
atom, usually characterized by ln ,l , j ,m) ,  actually contains very tiny contributions 
from other eigenstates as follows: 

l n , l , j ,m) --+ ln , l ,j ,m) + L Cn't'j'm' ln', l' , j',m') .  
n1!1j'm' 

On the basis of symmetry considerations alone, what can you say about (n' , l', j', m'), 
which give rise to nonvanishing contributions? Suppose the radial wave functions 
and the energy levels are all known. Indicate how you may calculate Cn't' j'm' · Do 
we get further restrictions on (n' , !', j' , m')? 

4.6 Consider a symmetric rectangular double-well potential: {00 
V =  0 

Vo > 0 

for lx l > a + b; 
for a < l x l  < a + b; 
for lx l < a. 

Assuming that Vo is very high compared to the quantized energies of low-lying 
states, obtain an approximate expression for the energy splitting between the two 
lowest-lying states. 

4.7 (a) Let 1/f(x, t) be the wave function of a spinless particle corresponding to a plane 
wave in three dimensions. Show that 1/f*(x, -t) is the wave function for the 
plane wave with the momentum direction reversed. 

(b) Let x (fi.) be the two-component eigenspinor of <T • fi with eigenvalue + 1. Using 
the explicit form of x (fi) (in terms of the polar and azimuthal angles f3 and y 
that characterize fi), verify that -iu2x *(fi.) is the two-component eigenspinor 
with the spin direction reversed. 

4.8 (a) Assuming that the Hamiltonian is invariant under time reversal, prove that the 
wave function for a spinless nondegenerate system at any given instant of time 
can always be chosen to be real. 

(b) The wave function for a plane-wave state at t = 0 is given by a complex func
tion eip·xfn . Why does this not violate time-reversal invariance? 

4.9 Let ¢(p1) be the momentum-space wave function for state la)-that is, ¢(p1) = 
(p' la ) .  Is the momentum-space wave function for the time-reversed state 8 1a)  given 
by ¢(p'), by ¢( -p'), by ¢*(p1), or by ¢*( -p')? Justify your answer. 

4.10 (a) What is the time-reversed state corresponding to :D(R) IJ ,m)?  

(b) Using the properties of time reversal and rotations, prove 

:D(j)*(R) = (-l)m-m' 
:D(j) (R). m1m -m1,-m 

(c) Prove e l} ,m )  = i2m 1J , -m) . 

4.11 Suppose a spinless particle is bound to a fixed center by a potential V (x) so asym
metrical that no energy level is degenerate. Using time-reversal invariance, prove 

(L) = 0 
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for any energy eigenstate. (This is known as quenching of orbital angular momen
tum.) If the wave function of such a nondegenerate eigenstate is expanded as 

LLFzm(r)Y/ (e ,¢), 
l m 

what kind of phase restrictions do we obtain on F1m (r )? 

4.12 The Hamiltonian for a spin 1 system is given by 

H = As; + B(s; - s;). 

Solve this problem exactly to find the normalized energy eigenstates and eigen
values. (A spin-dependent Hamiltonian of this kind actually appears in crystal 
physics.) Is this Hamiltonian invariant under time reversal? How do the normal
ized eigenstates you obtained transform under time reversal? 



CHAPTER 

5 Approximation Methods 

Few problems in quantum mechanics-with either time-independent or time
dependent Hamiltonians-can be solved exactly. Inevitably we are forced to 
resort to some form of approximation. One may argue that with the advent of 
high-speed computers, it is always possible to obtain the desired solution nu
merically to the requisite degree of accuracy; nevertheless, it remains important 
to understand the basic physics of the approximate solutions, even before we 
embark on ambitious computer calculations. This chapter is devoted to a fairly 
systematic discussion of approximate solutions to bound-state problems. 

5.1 . TIME- INDEPENDENT PERTURBATION THEORY: 
NON DEGENERATE CASE 

Statement of the Problem 

The approximation method we consider here is time-independent perturbation 
theory-sometimes known as the Rayleigh-Schrodinger perturbation theory. We 
consider a time-independent Hamiltonian H such that it can be split into two parts, 
namely 

H = Ho+ V, (5. 1 . 1) 

where the V = 0 problem is assumed to have been solved in the sense that both the 
exact energy eigenkets l nC0) ) and the exact energy eigenvalues E�O) are known: 

(5 . 1 .2) 

We are required to find approximate eigenkets and eigenvalues for the full Hamil
tonian problem 

(Ho + V)ln) = En ln) , (5 . 1 .3) 

where V is known as the perturbation; it is not, in general, the full-potential 
operator. For example, suppose we consider the hydrogen atom in an external 
electric or magnetic field. The unperturbed Hamiltonian Ho is taken to be the 
kinetic energy p2 j2m and the Coulomb potential due to the presence of the proton 
nucleus -e2 j r .  Only that part of the potential due to the interaction with the 
external E or B field is represented by the perturbation V. 
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Instead of (5. 1 .3), it is customary to solve 

(Ho + A  V)ln) = En In) , (5. 1 .4) 

where A is a continuous real parameter. This parameter is introduced to keep track 
of the number of times the perturbation enters. At the end of the calculation we 
may set A ----* 1 to get back to the full-strength case. In other words, we assume 
that the strength of the perturbation can be controlled. The parameter A can be 
visualized to vary continuously from 0 to 1 ,  the A = 0 case corresponding to 
the unperturbed problem and A = 1 corresponding to the full-strength problem 
of (5 . 1 .3). In physical situations where this approximation method is applicable, 
we expect to see a smooth transition of ln°) into In ) and of E�O) into En as A is 
"dialed" from 0 to 1 .  

The method rests on the expansion of the energy eigenvalues and energy eigen
kets in powers of A. This means that we implicitly assume the analyticity of the 
energy eigenvalues and eigenkets in a complex A-plane around A = 0. Of course, 
if our method is to be of practical interest, good approximations can better be 
obtained by taking only one or two terms in the expansion. 

The Two-State Problem 

Before we embark on a systematic presentation of the basic method, let us see how 
the expansion in A might indeed be valid in the exactly soluble two-state problem 
we have encountered many times already. Suppose we have a Hamiltonian that 
can be written as 

H = E�0) 1 1 CO) ) ( 1 CO) I + Ei0) 12(0) ) (2CO) I + A  V12 1 1  CO) ) (2C0) I + A V21 I2C0) ) ( 1  (O) I ,  
(5 . 1 .5) 

where 1 1 (O) ) and 1 2(0) ) are the energy eigenkets for the A = 0 problem, and we 
consider the case Vu = V22 = 0. In this representation the H may be represented 
by the square matrix 

AV12) 
(0) ' E2 

(5 . 1 .6) 

where we have used the basis formed by the unperturbed energy eigenkets. The V 
matrix must, of course, be Hermitian; let us solve the case when V12 and V21 are 
real: 

(5 . 1 .7) 

hence, by Hermiticity, 

(5 . 1 .8) 

This can always be done by adjusting the phase of 12(0) ) relative to that of 1 1 CO)) .  
The problem of obtaining the energy eigenvalues here is completely analogous to 
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that of solving the spin-orientation problem, where the analogue of (5 . 1 .6) is 

(5. 1 .9) 

where we assume a =  (a1 , 0, a3) is small and ao, a 1 , a3 are all real. The eigenvalues 
for this problem are known to be just 

(5. 1 . 10) 
By analogy, the corresponding eigenvalues for (5 . 1 .6) are 

(5. 1 . 1 1) 

Let us suppose that A I V12 l is small compared with the relevant energy scale, the 
difference of the energy eigenvalues of the unperturbed problem: 

We can then use 

1 s2 v'I+8 = 1 + -s - - + · · ·  2 8 

(5 . 1 . 12) 

(5 . 1 . 13) 
to obtain the expansion of the energy eigenvalues in the presence of perturbation 
A I V12 1 ,  namely 

(5. 1 . 14) 

These are expressions that we can readily obtain using the general formalism to 
be developed shortly. It is also possible to write down the energy eigenkets in 
analogy with the spin-orientation problem. 

The reader might be led to believe that a perturbation expansion always exists 
for a sufficiently weak perturbation. Unfortunately, this is not necessarily the case. 
As an elementary example, consider a one-dimensional problem involving a par
ticle of mass m in a very weak square-well potential of depth Vo (i.e., V = -Vo 
for -a < x < a and V = 0 for lx I > a). This problem admits one bound state of 
energy, 

(5 . 1 . 1 5) 
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We might regard the square well as a very weak perturbation to be added to the 
free-particle Hamiltonian and interpret result (5. 1 . 1 5) as the energy shift in the 
ground state from zero to I A.V I 2. Specifically, because (5. 1 . 1 5) is quadratic in 
V, we might be tempted to associate this as the energy shift of the ground state 
computed according to second-order perturbation theory. However, this view is 
false, because if this were the case, the system would also admit an E < 0 state 
for a repulsive potential case with A. negative, which would be sheer nonsense. 

Let us now examine the radius of convergence of series expansion (5. 1 . 14). If 
we go back to the exact expression of (5. 1 . 1 1) and regard it as a function of a 
complex variable A., we see that as I A. I  is increased from zero, branch points are 
encountered at 

(5. 1 . 1 6) 

The condition for the convergence of the series expansion for the A. = 1 full
strength case is 

I E(O) - E(O) I J V12 1 < 1 
2 

2 (5 . 1 . 17) 

If this condition is not met, perturbation expansion ( 5 . 1 . 14) is meaningless.* 

Formal Development of Perturbation Expansion 

We now state in more precise terms the basic problem we wish to solve. Suppose 
we know completely and exactly the energy eigenkets and energy eigenvalues of 
the unperturbed Hamiltonian Ho-that is 

(5. 1 . 1 8) 

The set { ln<0) ) }  is complete in the sense that the closure relation 1 = Ln ln(0) ) (n(O) 1 
holds. Furthermore, we assume here that the energy spectrum is nondegenerate; 
in the next section we will relax this assumption. We are interested in obtaining 
the energy eigenvalues and eigenkets for the problem defined by (5 . 1 .4). To be 
consistent with (5. 1 . 1 8), we should write (5 . 1 .4) as 

(5. 1 . 1 9) 

to denote the fact that the energy eigenvalues E�A.) and energy eigenkets lnh are 
functions of the continuous parameter A.; however, we will usually dispense with 
this correct but more cumbersome notation. 

As the continuous parameter A. is increased from zero, we expect the energy 
eigenvalue En for the nth eigenket to depart from its unperturbed value E�O) , so 
we define the energy shift for the nth level as follows: 

(5 . 1 .20) 

* See the discussion on convergence following (5. 1 .44), under general remarks. 
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The basic Schrodinger equation to be solved (approximately) is 

(E�O) - Ho) /n) = (AV - �n) /n ) . 
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(5. 1 .2 1 ) 
We may be tempted to invert the operator E�O) - Ho; however, in general, the 
inverse operator 1 /(E�O) - Ho) is ill defined because it may act on ln(0) ) .  Fortu
nately, in our case (AV - �n) ln) has no component along lnC0) ) , as can easily be 
seen by multiplying both sides of (5 . 1 .2 1 ) by (nCO) I on the left: 

(n(O) / (AV - �n) ln) = 0. 
Suppose we define the complementary projection operator 

cfJn = 1 - ln(O)) (n(O) I = L lk(O)) (k(O) I · k=f.n 

(5. 1 .22) 

(5 . 1 .23) 

The inverse operator 1 /(E�O) - Ho) is well defined when it multiplies ¢n on the 
right. Explicitly, 

1 - '"' 1 (0) (0) (0) cfJn - � (0) (O) lk ) (k / .  En - Ho k=f.n En - Ek 
Also from (5 . 1 .22) and (5 . 1 .23), it is evident that 

We may therefore be tempted to rewrite (5 . 1 .21 ) as 

? 1 In) ='= (O) cfJn(AV - �n) ln ) . En - Ho 

(5. 1 .24) 

(5. 1 .25) 

(5 . 1 .26) 

However, this cannot be correct because as A -+  0, we must have In) -+ ln(0)) and 
�n -+ 0. Nevertheless, even for A #  0, we can always add to In ) a solution to the 
homogeneous equation (5. 1 . 1 8), namely cn ln(0) ) , so a suitable final form is 

where 

Note that 

- (0) 1 /n) - Cn(A) In ) + (O) cfJn(AV - �n) ln ) , En - Ho 

lim Cn(A) = 1 .  .'.-+0 

(5. 1 .27) 

(5. 1 .28) 

(5 . 1 .29) 
For reasons we will see later, it is convenient to depart from the usual normal

ization convention 

(n /n) = 1 .  (5 . 1 .30) 
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Rather, we set 

(5. 1 .31 )  

even for A =f. 0. We can always do this if we are not worried about the overall 
normalization, because the only effect of setting Cn =f. 1 is to introduce a common 
multiplicative factor. Thus, if desired, we can always normalize the ket at the very 
end of the calculation. It is also customary to write 

and similarly 

so we have 

1 1 1 

En(O) _ u0
c/Jn = c/Jn (0) . = c/Jn (O) c/Jn , 

11.1 En - Ho En - Ho 

_ (0) c/Jn In) - In ) + (O) (AV - L\n) ln ) . En - Ho 
We also note from (5. 1 .22) and (5. 1 . 3 1 )  that 

L\n = A (n(0) 1 V In) . 

(5 . 1 .32) 

(5 . 1 .33) 

(5 . 1 .34) 

(5 . 1 .35) 

Everything depends on the two equations in (5. 1 .34) and (5 . 1 .35). Our basic 
strategy is to expand In ) and L\n in the powers of A and then match the appropriate 
coefficients. This is justified because (5. 1 .34) and (5. 1 .35) are identities that hold 
for all values of A between 0 and 1 .  We begin by writing 

In ) = ln (O) ) + Ain(l )) + A2 1n(2)) + · · · 

L\n = AL\�) + A  2 L\�2) + . . . . (5. 1 .36) 

Substituting (5 . 1 .36) into (5 . 1 .35) and equating the coefficient of various powers 
of A, we obtain 

0(A1 ) :  L\ (1 ) n (n(O) I V  ln(O) ) 
O(A 2) :  L\�2) (n(O) I V  ln( 1 ) ) 

(5 . 1 .37) 

O(AN) :  L\�N) (n(O) I V  ln(N -1) ) ,  

so to evaluate the energy shift up to order AN , it is sufficient to know In ) only up 
to order A N-1 . We now look at (5. 1 .34); when it is expanded using (5. 1 .36), we 
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get 

l n(0) ) + A. ln( l )) + A.  2 1n(2)) + . . .  
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= ln(0)) + 
¢n 

(A. V - A.D. (1) - A.  2 D. 2 - . . .  ) E�O) _ Ho n n (5. 1 .38) 

x ( ln<0> ) + A. ln<O) + . . .  ). 
Equating the coefficient of powers of A., we have 

O(A.) : ln(l ) ) = ¢n V ln(O) ) ,  E�O) - Ho (5. 1 .39) 

where we have used ¢nD.�0 1n(0) ) = 0. Armed with l n( l > ) , it is now profitable for 
us to go back to our earlier expression for D.�2) [see (5 . 1 .37)] : 

D. (2) = (n(O) I V  ¢n V ln(O) ) .  n E�O) - Ho (5 . 1 .40) 

Knowing D-�2), we can work out the A.2-term in ket equation (5 . 1 .38) also using 
(5 . 1 .39) as follows: 

l n(2) ) = ¢n V ¢n V ln(O) ) E�O) - Ho E�O) - Ho 
¢n (n(0) 1 V In(0) ) ¢n V ln<0>) .  E�O) - Ho E�O) - Ho 

(5 . 1 .41) 

Clearly, we can continue in this fashion as long as we wish. Our operator method 
is very compact; it is not necessary to write down the indices each time. Of course, 
to do practical calculations, we must use at the end the explicit form of ¢n as given 
by (5 . 1 .23). 

To see how all this works, we write down the explicit expansion for the energy 
shift 

where 

- (0) D.n = En - En 
. 2 

2 � I Vnk l 
= A. Vnn + A. � (O) (O) + . . .  , 

k=f=n En - Ek 
(5. 1 .42) 

(5 . 1 .43) 
that is, the matrix elements are taken with respect to unperturbed kets. Note that 
when we apply the expansion to the two-state problem, we recover the earlier 
expression (5. 1 . 14). The expansion for the perturbed ket goes as follows: 
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+ · . . . 
(5 . 1 .44) 

Equation (5. 1 .44) says that the nth level is no longer proportional to the unper
turbed ket ln(0) ) but acquires components along other unperturbed energy kets; 
stated another way, the perturbation V mixes various unperturbed energy eigen
kets. 

A few general remarks are in order. First, to obtain the first-order energy shift, it 
is sufficient to evaluate the expectation value of V with respect to the unperturbed 
kets. Second, it is evident from the expression of the second-order energy shift 
(5 . 1 .42) that two energy levels, say the ith level and thejth level, when connected 
by Vij tend to repel each other; the lower one-say the ith level-tends, as a result 
of mixing with the higher,jth level, to get depressed by I Vij 12 /(Ej0) - Ej0)), while 
the energy of the jth level goes up by the same amount. This is a special case of the 
no-level-crossing theorem, which states that a pair of energy levels connected by 
perturbation do not cross as the strength of the perturbation is varied. 

Suppose there is more than one pair of levels with appreciable matrix ele
ments, but the ket I n ) , whose energy we are concerned with, refers to the ground 
state; then each term in (5 . 1 .42) for the second-order energy shift is negative. This 
means that the second-order energy shift is always negative for the ground state; 
the lowest state tends to get even lower as a result of mixing. 

It is clear that perturbation expansions (5 . 1 .42) and (5 . 1 .44) will converge if 
1 Va/(Ej0) - E�0)) 1 is sufficiently "small." A more specific criterion can be given 
for the case in which Ho is simply the kinetic-energy operator (then this Rayleigh
SchrOdinger perturbation expansion is just the Born series) :  At an energy Eo < 0, 
the Born series converges if and only if neither Ho + V nor Ho - V has bound 
states of energy E _:s Eo. See Newton ( 1982), p. 233. 

Wave-function Renormalization 

We are in a position to look at the normalization of the perturbed ket. Recalling 
the normalization convention we use, (5 . 1 .3 1), we see that the perturbed ket In) 
is not normalized in the usual manner. We can renormalize the perturbed ket by 
defining 

1 /2 
ln )N = Zn I n ) ,  (5 . 1 .45) 

where Zn is simply a constant with N (n In) N = 1 .  Multiplying (nCO) I on the left, 
we obtain [because of (5 . 1 .3 1)] 

1 /2 0 Zn = (n ln )N . (5 . 1 .46) 
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What is the physical meaning of Zn? Because /n)N satisfies the usual normaliza
tion requirement (5 . 1 .30), Zn can be regarded as the probability for the perturbed 
energy eigenstate to be found in the corresponding unperturbed energy eigenstate. 
Noting 

we have 

N {n /n)N = Zn {n /n) = 1 ,  

z;l = {n /n) = ({n(O) / + A. {n( l ) / + A.2 {n(2) / + · · · ) 
x ( \n(0) ) + A.  \n(l)) + A. 2 \n(2) ) + · . .  ) 

= 1 +A.2{n(l ) /n( 1 )) + O(A.3) 

_ 1 2'"' / Vkn /2 3 - +A.  L (O) (O) + O(A. ), 
k=f-n (En - Ek )2 

(5 . 1 .47) 

(5 . 1 .48a) 

so up to order A. 2, we get, for the probability of the perturbed state to be found in 
the corresponding unperturbed state, 

Z :::::: 1 - A  2'"' / Vkn /2 n L o 0 2 · k=f-n (En - Ek) 
(5 . 1 .48b) 

The second term in (5 . 1 .48b) is to be understood as the probability for "leakage" 
to states other than /n(0)) .  Notice that Zn is less than 1 ,  as expected on the basis 
of the probability interpretation for Z. 

It is also amusing to note from (5. 1 .42) that to order A.2, Z is related to the 
derivative of En with respect to E�O) as follows: 

3En Zn = --c<f)· 3En (5. 1 .49) 

We understand, of course, that in taking the partial derivative of En with respect to 
E�0) , we must regard the matrix elements of V as fixed quantities. Result (5 . 1 .49) 
is actually quite general and not restricted to second-order perturbation theory. 

Elementary Examples 

To illustrate the perturbation method we have developed, let us look at two ex
amples. The first one concerns a simple harmonic oscillator whose unperturbed 
Hamiltonian is the usual one: 

p2 1 2 2 Ho = - + -mw x 
2m 2 

(5 . 1 .50) 

Suppose the spring constant k = mw2 is changed slightly. We may represent the 
modification by adding an extra potential 

1 
V = -E:mw2x2 

2 ' (5 . 1 .51 )  
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where 8 is a dimensionless parameter such that 8 « 1. From a certain point of 
view, this is the silliest problem in the world to which to apply perturbation theory; 
the exact solution is immediately obtained just by changing w as follows: 

(J) -+ .J1+""8 (J)' (5 . 1 .52) 

yet this is an instructive example because it affords a comparison between the 
perturbation approximation and the exact approach. 

We are concerned here with the new ground-state ket !0) in the presence of V 
and the ground-state energy shift .6.o: 

and 

" I VkO I 2 .6.o = Voo + � (O) (O) + . . . . 
ki=O Eo - Ek 

The relevant matrix elements are (see Problem 5.5 in this chapter) 

(5. 1 .53a) 

(5 . 1 .53b) 

(5. 1 .54) 

All other matrix elements of form Vko vanish. Noting that the nonvanishing energy 
denominators in (5 . 1 .53a) and (5 . 1 .53b) are -21iw, we can combine everything to 
obtain 

and 

.6.o = Eo - E(O) = hw - - -+ 0(83) . 
[ 8 82 J 0 4 16 

(5 . 1 .55a) 

(5 . 1 .55b) 

Notice that as a result of perturbation, the ground-state ket, when expanded in 
terms of original unperturbed energy eigenkets { In (O) ) } ,  acquires a component 
along the second excited state. The absence of a component along the first excited 
state is not surprising because our total H is invariant under parity; hence, an 
energy eigenstate is expected to be a parity eigenstate. 

A comparison with the exact method can easily be made for the energy shift as 
follows: 

(5 . 1 .56) 
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in complete agreement with (5 . 1 .55b). As for the perturbed ket, we look at the 
change in the wave function. In the absence of V, the ground-state wave function is 

(x iO(O) ) = _l _ __ l_e-x2j2x5 , 
nl/4 Fa 

where 

Substitution (5 . 1 .52) leads to 

Hence, 

where we have used 

xo = /h. v �  

XQ xo ---+ ( 1  + 8 ) 1/4 . 

and H2(xjxo) is a Hermite polynomial of order 2. 

(5 . 1 .57) 

(5 . 1 .58) 

(5 . 1 .59) 

(5 . 1 .60) 

(5 . 1 .61) 

As another illustration of nondegenerate perturbation theory, we discuss the 
quadratic Stark effect. A one-electron atom-the hydrogen atom or a hydrogen
like atom with one valence electron outside the closed (spherically symmetri
cal) shell-is subjected to a uniform electric field in the positive z-direction. The 
Hamiltonian H is split into two parts, 

p2 Ho = - + Vo(r) and V = -e iE iz (e < 0 for the electron). 
2m 

(5. 1 .62) 

[Editor's Note: Since the perturbation V ---+ -oo as z ---+ -oo, particles bound by 
Ho can, of course, escape now, and all formerly bound states acquire a finite life
time. However, we can still formally use perturbation theory to calculate the shift 
in the energy. (The imaginary part of this shift, which we shall ignore here, would 
give us the lifetime of the state or the width of the corresponding resonance.)] 
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It is assumed that the energy eigenkets and the energy spectrum for the unper
turbed problem (Ho only) are completely known. The electron spin turns out to 
be irrelevant in this problem, and we assume that with spin degrees of freedom 
ignored, no energy level is degenerate. This assumption does not hold for n =/= 1 
levels of the hydrogen atoms, where Vo is the pure Coulomb potential; we will 
treat such cases later. The energy shift is given by 

(5 . 1 .63) 

where we have used k rather than n to avoid confusion with the principal quantum 
number n. With no degeneracy, jk(0) ) is expected to be a parity eigenstate; hence, 

Zkk = 0, (5 . 1 .64) 
as we saw in Section 4.2. Physically speaking, there can be no linear Stark 
effect-that is, there is no term in the energy shift proportional to IE ! because 
the atom possesses a vanishing permanent electric dipole-so the energy shift is 
quadratic in lE I if terms of order e3 jEj 3 or higher are ignored. 

Let us now look at Zkj ,  which appears in (5 . 1 .63), where k (orj) is the collective 
index that stands for (n, l, m) and (n1, l1,m1). First, we recall the selection rule [see 
(3. 1 1 .39)] I I 1 {[I = [ ± 1 (n , l  m lz ln , lm) = 0 unless ml = m (5 . 1 .65) 

that follows from angular momentum (the Wigner-Eckart theorem with Ti�o) and 
parity considerations. 

There is another way to look at the m-selection rule. In the presence of V, the 
full spherical symmetry of the Hamiltonian is destroyed by the external electric 
field that selects the positive z-direction, but V (hence the total H) is still invari
ant under rotation around the z-axis; in other words, we still have a cylindrical 
symmetry. Formally this is reflected by the fact that 

[V, Lz] = 0. (5 . 1 .66) 
This means that Lz is still a good quantum number even in the presence of V. As 
a result, the perturbation can be written as a superposition of eigenkets of Lz with 
the same m, where m = 0 in our case. This statement is true for all orders-in 
particular, for the first -order ket. Also, because the second-order energy shift is 
obtained from the first-order ket [see (5 . 1 .40)] , we can understand why only the 
m = 0 terms contribute to the sum. 

The polarizability a of an atom is defined in terms of the energy shift of the 
atomic state as follows: 

1 D. =  --a !E \2 2 . (5 . 1 .67) 
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Let us consider the special case of the ground state of the hydrogen atom. Even 
though the spectrum of the hydrogen atom is degenerate for excited states, the 
ground state (with spin ignored) is non degenerate, so the formalism of non degen
erate perturbation theory can be applied. The ground state 10(0) ) is denoted in the 
(n, l, m) notation by ( 1 , 0, 0), so 

a =  _2e2� l (k(0) 1z l 1 , 0, 0) 12 
� [E(O) - E(O)] , k#O 0 k 

(5 . 1 .68) 

where the sum over k includes not only all bound states l n , l ,m) (for n > 1) but 
also the positive-energy continuum states of hydrogen. 

There are many ways to estimate approximately or evaluate exactly the sum in 
(5 . 1 .68) with various degrees of sophistication. We present here the simplest of 
all the approaches. Suppose the denominator in (5 . 1 .68) were constant. Then we 
could obtain the sum by considering 

Ll (k(0) 1z l 1 , 0, 0) 12 = Ll (k(0) 1z l 1 , 0, 0) 12 
k#O all k (5 . 1 .69) 

= (1 ,0 ,0 i z2 1 1 , 0,0) , 
where we have used the completeness relation in the last step. But we can easily 
evaluate (z2) for the ground state as follows 

and, using the explicit form for the wave function, we obtain 

(r2) = a5, 

(5 . 1 .70) 

where ao stands for the Bohr radius. Unfortunately the expression for polarizabil
ity a involves the energy denominator that depends on EkO) , but we know that the 
inequality 

-E(O) + E(O) > -E(O) + E(O) = e2 [1 - �] o k - o 1 2ao 4 (5. 1 .7 1 ) 
holds for every energy denominator in (5 . 1 .68). As a result, we can obtain an 
upper limit for the polarizability of the ground state of the hydrogen atom, namely 

16a6 3 a < -3- � 5.3a0 . (5 . 1 .72) 
It turns out that we can evaluate exactly the sum in (5. 1 .68) using a method orig
inated by A. Dalgarno and J. T. Lewis (Merzbacher 1970, p. 424, for example), 
which also agrees with the experimentally measured value. This gives 

9a6 3 a =  T = 4.5a0 . (5. 1 .73) 
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We obtain the same result (without using perturbation theory) by solving the 
Schrodinger equation exactly using parabolic coordinates. 

5.2 . TIME- INDEPENDENT PERTURBATION THEORY: 
THE DEGENERATE CASE 

The perturbation method we developed in the previous section fails when the 
unperturbed energy eigenkets are degenerate. The method of the previous section 
assumes that there is a unique and well-defined unperturbed ket of energy E�O) that 
the perturbed ket approaches as A ---+ 0. With degeneracy present, however, any 
linear combination of unperturbed kets has the same unperturbed energy; in such 
a case it is not a priori obvious to what linear combination of the unperturbed 
kets the perturbed ket is reduced in the limit A ---+ 0. Here specifying just the 
energy eigenvalue is not enough; some other observable is needed to complete 
the picture. To be more specific, with degeneracy we can take as our base kets 
simultaneous eigenkets of Ho and some other observable A, and we can continue 
labeling the unperturbed energy eigenket by \k(0)} , where k now symbolizes a 
collective index that stands for both the energy eigenvalue and the A eigenvalue. 
When the perturbation operator V does not commute with A, the zeroth-order 
eigenkets for H (including the perturbation) are in fact not A eigenkets. 

From a more practical point of view, a blind application of formulas like 
(5 . 1 .42) and (5. 1 .44) obviously runs into difficulty because 

E�O) - EkO) (5 .2. 1 ) 

becomes singular if Vnk is nonvanishing and E�O) and Ek0) are equal. We must 
modify the method of the previous section to accommodate such a situation. 

Whenever there is degeneracy, we are free to choose our base set of unper
turbed kets. We should, by all means, exploit this freedom. Intuitively we sus
pect that the catastrophe of vanishing denominators may be avoided by choosing 
our base kets in such a way that V has no off-diagonal matrix elements, such as 
Vnk = 0 in (5 .2. 1) . In other words, we should use the linear combinations of the 
degenerate unperturbed kets that diagonalize H in the subspace spanned by the 
degenerate unperturbed kets. This is indeed the correct procedure to use. 

Suppose there is a g-fold degeneracy before the perturbation V is switched 
on. This means that there are g different eigenkets all with the same unperturbed 
energy E�) · Let us denote these kets by { \m(0)} } .  In general, the perturbation 
removes the degeneracy in the sense that there will be g perturbed eigenkets, all 
with different energies. Let them form a set { \ l} } . As A goes to zero, \ l } ---+ \ 1(0) } , 
and various \ Z (0)} are eigenkets of Ho all with the same energy E};i) . However, the 
set \ Z (0)} need not coincide with { \mC0)} } even though the two sets of unperturbed 
eigenkets span the same degenerate subspace, which we call D. We can write 

\ l(O)} = L (m(O) \ l (O)} \m(O)} , 
mED 

where the sum is over the energy eigenkets in the degenerate subspace. 
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Before expanding in A, there is a rearrangement of the SchrOdinger equation 
that will make it much easier to carry out the expansion. Let Po be a projection 
operator onto the space defined by { JmC0) ) }. (Recall the discussion of projection 
operators in Section 1 .3 .) We define P1 = 1 - Po to be the projection onto the 
remaining states. We shall then write the Schrodinger equation for the states J Z ) as 

0 = (E - Ho - A.V) J Z ) 
= (E - E�) - AV)Po Jl ) + (E - Ho - AV)PI II ) . (5 .2.2) 

We next separate (5.2.2) into two equations by projecting from the left on (5.2.2) 
with Po and PI : 

(0) (E - ED - A  Po V)Po II) - A  Po V Pi ll) = 0 (5.2.3) 

-API V Po ll) + (E - Ho - API V)PI II) = 0. (5.2.4) 
We can solve (5.2.4) in the PI subspace because PI (E - Ho - API V PI ) is not 
singular in this subspace since E is close to E�) and the eigenvalues of PI HoPI 
are all different from E�) . Hence we can write 

(5.2.5) 

or, written out to order A when I I ) is expanded as I I )  = l f (O) ) + A  lfO)) + . . .  , 

To calculate Po l l ) , we substitute (5.2.5) into (5.2.3) to obtain ( (0) 2 1 ) E - ED - APoVPo - A PoVPI PI VPo Po ll ) = 0 . E - Ho - AV 

(5.2.6) 

(5.2.7) 

Although there is a term of order A 2 in (5 .2.7) that results from the substitution, 
we shall find that it produces a term of order A in the state Po Jl ) . So we obtain the 
equation for the energies to order A and eigenfunctions to order zero, 

(E - E�) - APo V Po)(Po l l(O)) )  = 0. (5.2.8) 
This is an equation in the g-dimensional degenerate subspace and clearly means 
that the eigenvectors are just the eigenvectors of the g x g matrix Po V Po and the 
eigenvalues E(l) are just the roots of the secular equation 

det[V - (E - E�))] = 0, (5.2.9) 



31 8 Chapter 5 Approximation Methods 

where V = matrix of Po V Po with matrix elements (mC0) 1  V lm'(0)) . Explicitly, in 
matrix form we have 

(5 .2. 10) 

The roots determine the eigenvalues ..6..�1) -there are g altogether-and by substi
tuting them into (5.2. 10), we can solve for (mC0) 1 l(0) ) for each l up to an overall 
normalization constant. Thus, by solving the eigenvalue problem, we obtain in 
one stroke both the first-order energy shifts and the correct zeroth-order eigen
kets. Notice that the zeroth-order kets we obtain as A --+ 0 are just the linear com
binations of the various lmC0) ) 's that diagonalize the perturbation V, the diagonal 
elements immediately giving the first-order shift 

(5.2. 1 1) 

Note also that if the degenerate subspace were the whole space, we would have 
solved the problem exactly in this manner. The presence of unperturbed "dis
tant" eigenkets not belonging to the degenerate subspace will show up only in 
higher orders-first order and higher for the energy eigenkets and second order 
and higher for the energy eigenvalues. 

Expression (5.2. 1 1 ) looks just like the first-order energy shift [see (5 . 1 .37)] in 
the nondegenerate case except that here we have to make sure that the base kets 
used are such that V does not have nonvanishing off-diagonal matrix elements in 
the subspace spanned by the degenerate unperturbed eigenkets. If the V operator is 
already diagonal in the base ket representation we are using, we can immediately 
write down the first-order shift by taking the expectation value of V, just as in the 
nondegenerate case. 

Let us now look at (5.2.7). To be safe, we keep all terms in the g x g effective 
Hamiltonian that appears in (5.2.7) to order A2, even though we want Po l l) only 
to order A. We find ( (0) 2 1 ) E - ED - A  Po V Po - A Po V P1 (O) P1 V Po Po ll) = 0. ED - Ho (5.2. 12) 

For the g x g matrix Po V Po, let us call the eigenvalues vi and the eigenvectors 
Po llj0)) .  The eigen energies to first order are Ej l) = E�) + A  Vi . We assume that 
the degeneracy is completely resolved so that Ejl) = EJI) = A(Vi - Vj ) are all 
nonzero. We can now apply nondegenerate perturbation theory (5. 1 .39) to the 
g x g-dimensional Hamiltonian that appears in (5 .2. 12). The resulting correction 
to the eigenvectors Po llj0)) is 

(5.2. 13)  
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or more explicitly 

3 1 9  

(5.2. 14) 

Thus, although the third term in the effective Hamiltonian that appears in (5.2. 12) 
is of order A. 2, it is divided by energy denominators of order A. in forming the 
correction to the eigenvector, which then gives terms of order A. in the vector. If 
we add together (5.2.6) and (5.2. 14), we get the eigenvector accurate to order A.. 

As in the nondegenerate case, it is convenient to adopt the normalization con
vention (lC0) 1 Z ) = 1 .  We then have, from (5.2.3) and (5.2.4), A. (zCO) ! V i l) = D.z = 
A.D.�l) + A.2 ��2) + · · · . The A.-term just reproduces (5.2. 1 1) .  As for the A. 2-term, 
we obtain ��2) = (l<0) 1 V I Z(1 ) ) = (lC0) 1 V I PtZ<1) ) + (l<0) 1 V I PoZ?) ) .  Since the vec
tors Po ll)0) ) are eigenvectors of V, the correction to the vector, (5.2. 14), gives no 
contribution to the second-order energy shift, so we find, using (5.2.6), 

(5.2. 15) 

Our procedure works, provided that there is no degeneracy in the roots of sec
ular equation (5.2.9). Otherwise, we still have an ambiguity: To which linear con
tribution of the degenerate unperturbed kets are the perturbed kets reduced in the 
limit A. ---+ 0? Put in another way, if our method is to work, the degeneracy should 
be removed completely in first order. A challenge for the experts: How must we 
proceed if the degeneracy is not removed in first order-that is, if some of the 
roots of the secular equation are equal? (See Problem 5 . 12  of this chapter.) 

Let us now summarize the basic procedure of degenerate perturbation theory: 

1 .  Identify degenerate unperturbed eigenkets and construct the perturbation 
matrix V, a g x g matrix if the degeneracy is g-fold. 

2. Diagonalize the perturbation matrix by solving, as usual, the appropriate 
secular equation. 

3. Identify the roots of the secular equation with the first-order energy shifts; 
the base kets that diagonalize the V matrix are the correct zeroth-order kets 
that the perturbed kets approach in the limit A. ---+ 0. 

4. For higher orders, use the formulas of the corresponding nondegenerate 
perturbation theory except in the summations, where we exclude all contri
butions from the unperturbed kets in the degenerate subspace D. 

Linear Stark Effect 

As an example of degenerate perturbation theory, let us study the effect of a uni
form electric field on excited states of the hydrogen atom. As is well known, in 
the SchrOdinger theory with a pure Coulomb potential with no spin dependence, 
the bound-state energy of the hydrogen atom depends only on the principal quan
tum number n. This leads to degeneracy for all but the ground state, because the 
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allowed values of l for a given n satisfy 

0 � l < n. (5.2. 16) 
To be specific, for the n = 2 level, there are an l = 0 state called 2s and three 
l = 1 (m = ±1, 0) states called 2p, all with the same energy, -e2 j8ao. As we apply 
a uniform electric field in the z-direction, the appropriate perturbation operator is 
given by 

V = -ez \E \ , (5.2. 17) 
which we must now diagonalize. Before we evaluate the matrix elements in detail 
using the usual (nlm) basis, let us note that the perturbation (5.2. 17) has nonva
nishing matrix elements only between states of opposite parity-that is, between 
l = 1 and l = 0 in our case. Furthermore, in order for the matrix element to be 
nonvanishing, the m-values must be the same because z behaves like a spherical 
tensor of rank one with spherical component (magnetic quantum number) zero. 
So the only nonvanishing matrix elements are between 2s (m = 0 necessarily) and 
2p with m = 0. Thus 

2s 2p m = O 2p m = 1  

v � ((2p, m � OI V I2s l 
(2s \ V \2p, m = 0) 0 

0 0 
0 0 
0 0 

Explicitly, 

(2s \ V \2p, m = 0) = (2p, m = O \V \2s ) 
= 3eao \E \ . 

2p m = -1  
0 

) 0 
0 
0 

(5.2. 18) 

(5 .2. 19) 

It is sufficient to concentrate our attention on the upper left-hand corner of the 
square matrix. It then looks very much like the O'x matrix, and we can immediately 
write down the answer-for the energy shifts, we get 

Ll�) = ±3eao \E \ , (5 .2.20) 
where the subscripts ± refer to the zeroth-order kets that diagonalize V: 

1 \±) = .J2 ( \2s,m = 0) ± \2p,m = 0)). (5.2.21) 

Schematically, the energy levels are as shown in Figure 5 . 1 .  
Notice that the shift is linear in the applied electric field strength; hence the 

term the linear Stark effect. One way we can visualize the existence of this effect 
is to note that the energy eigenkets (5.2.21 ) are not parity eigenstates and are 
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FIGURE 5.1 Schematic energy-level diagram for the linear Stark effect as an example 
of degenerate perturbation theory. 

therefore allowed to have nonvanishing electric permanent dipole moments, as 
we can easily see by explicitly evaluating (z) .  Quite generally, for an energy state 
that we can write as a superposition of opposite parity states, it is permissible to 
have a nonvanishing permanent electric dipole moment, which gives rise to the 
linear Stark effect. 

An interesting question can now be asked. If we look at the "real" hydrogen 
atom, the 2s level and 2p level are not really degenerate. Because of spin-orbit 
force, 2P3/2 is separated from 2p1 ;2, as we will show in the next section, and 
even the degeneracy between the 2s1 ;2 and 2pi;z levels that persists in the single
particle Dirac theory is removed by quantum electrodynamics effects (the Lamb 
shift). We might therefore ask, is it realistic to apply degenerate perturbation the
ory to this problem? A comparison with the exact result shows that if the perturba
tion matrix elements are much larger when compared to the Lamb shift splitting, 
then the energy shift is linear in lE I for all practical purposes, and the formal
ism of degenerate perturbation theory is applicable. At the opposite extreme, if 
the perturbation matrix elements are small compared to the Lamb shift splitting, 
then the energy shift is quadratic and we can apply nondegenerate perturbation 
theory; see Problem 5 . 13 of this chapter. This incidentally shows that the formal
ism of degenerate perturbation theory is still useful when the energy levels are 
almost degenerate compared to the energy scale defined by the perturbation ma
trix element. In intermediate cases we must work harder; it is safer to attempt 
to diagonalize the Hamiltonian exactly in the space spanned by all the nearby 
levels. 

5.3 . HYDROGEN-LIKE ATOMS: F INE STRUCTURE AND THE ZEEMAN EFFECT 

The Relativistic Correction to the Kinetic Energy 

A hydrogen-like atom with a single electron has the potential energy function 
(3.7.43), giving the Hamiltonian 

p2 ze2 Ho = -- - --, 2me r 
(5.3 . 1 ) 
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where the first term is the nonrelativistic kinetic-energy operator. However, the 
relativistically correct kinetic energy is 

K = Jp2c2 +m�c4 - mec2 
p2 (p2)2 

� -- - --2m 8m3c2 · e e (5.3.2) 

Therefore, following the notation in (5 . 1 . 1) ,  we can treat this problem in pertur
bation theory, where Ho is given by (5.3. 1 )  and the perturbation is 

(5.3.3) 

Now in principle, this is a complicated problem because of the highly degener
ate eigenstates lnlm} of the hydrogen atom. However, because L commutes with 
p2, as we noted in (3.7.2), we also have 

[L, V] = 0. (5.3 .4) 

In other words, V is rotationally symmetrical and so is already diagonal in the 
l nlm} basis. Therefore, the first-order energy shifts due to V are just equal to the 
expectation values in these basis states. Following (5 . 1 .37), we write 

(5.3.5) 

where the rotational symmetry assures us that the first-order energy shifts cannot 
depend on m. 

In principle, (5.3.5) could be evaluated by brute force, but there i s  a more 
elegant way. Because 

(5.3 .6) 

we immediately see that 

1 1 �( )2 Ze2 (Ze2)2 J !l�/ = ---2 E�O) + 2E�0) (nlm l- lnlm} + (nlm l--2 - lnlm} . 2mec r r 
(5.3 .7) 

The problem is therefore reduced to calculating the expectation values for Z e2 I r 
and ( Z e2 )2 I r2 . In fact, both of these expectation values can be evaluated using 
some clever tricks. We simply outline the approach here, but the interested reader 
is referred to Shankar ( 1994) or Townsend (2000) for more details. 

If one imagines a hydrogen atom with a "perturbation" Vy = y I r,  then the 
expectation value in the second term of (5.3 .7) is simply the first-order correction 
to the energy with y = Ze2. On the other hand, it is simple to solve this problem 
exactly, because it corresponds to the hydrogen atom with Ze2 -+ Ze2 - y ,  and 
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it is straightforward to find the first-order correction from the exact solution. One 
finds that 

Ze2 (nlm l- lnlm) = -2£�0) . (5 .3 .8) r 
Indeed, this is actually a statement of the virial theorem for the Coulomb potential. 

A similar approach can be taken for the third term in (5 .3 .7). In this case, 
imagine a perturbation Vy = y j r2 that modifies the centrifugal barrier term in the 
effective potential . That is, it takes l to a form that includes y ,  which can again be 
used to write down the first-order correction. One finds that 

(Ze2)2 4n ( )2 (nlm l lnlm) = -- E(O) . r2 l + .!. n 
2 

(5.3 .9) 

Accordingly, using (5.3 .8) and (5 .3 .9) along with E�0) from (3.7.53), we 
rewrite (5.3.7) as 

(5 .3. 10a) 

(5.3 . 10b) 

Not unexpectedly, the relative size of the first-order correction is proportional to 
Z2a2, the square of the classical electron orbital velocity (in units of c). 
Spin-Orbit Interaction and Fine Structure 

Now let us move on to study the atomic levels of general hydrogen-like atoms
that is, atoms with one valence electron outside the closed shell. Alkali atoms 
such as sodium (Na) and potassium (K) belong to this category. 

The central (spin-independent) potential Vc(r) appropriate for the valence elec
tron is no longer of the pure Coulomb form. This is because the electrostatic po
tential cf>(r) that appears in 

Vc(r) = ecf>(r) (5.3 . 1 1) 

is no longer due just to the nucleus of electric charge l e iZ; we must take into 
account the cloud of negatively charged electrons in the inner shells. A precise 
form of cf>(r) does not concern us here. We. simply remark that the degeneracy 
characteristics of the pure Coulomb potential are now removed in such a way that 
the higher l states lie higher for a given n. Physically, this arises from the fact that 
the higher l states are more susceptible to the repulsion due to the electron cloud. 

Instead of studying the details of Vc(r ), which determines the gross structure 
of hydrogen-like atoms, we discuss the effect of the spin-orbit (L · S) interaction 
that gives rise to fine structure. We can understand the existence of this interaction 
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in a qualitative fashion as follows. Because of the central force part (5.3 . 1 1) , the 
valence electron experiences the electric field 

(5 .3 . 12) 

But whenever a moving charge is subjected to an electric field, it "feels" an effec
tive magnetic field given by 

Beff = - ( �) x E. 
Because the electron has a magnetic moment fL given by 

eS 
/L =  -- , mec 

we suspect a spin-orbit potential VLs contribution to H as follows: 

(5 .3. 13) 

(5.3. 14) 

(5.3. 15) 

When this expression is compared with the observed spin-orbit interaction, it is 
seen to have the correct sign, but the magnitude turns out to be too large by a factor 
of 2. There is a classical explanation for this that invokes spin precession (Thomas 
precession after L. H. Thomas), but we shall not bother with that. See Jackson 
(1975), for example. We simply treat the spin-orbit interaction phenomenologi
cally and take VLs to be one-half of (5 .3 . 15). The correct quantum-mechanical 
explanation for this discrepancy must await the Dirac (relativistic) theory of the 
electron discussed in the last chapter of this book. 

We are now in a position to apply perturbation theory to hydrogenic atoms us
ing VLs as the perturbation (V of Sections 5 . 1 and 5.2). The unperturbed Hamil
tonian Ho is taken to be 

p2 
Ho = - + Vc(r), 2m (5 .3. 16) 

where the central potential Vc is no longer of the pure Coulomb form for alkali 
atoms. With just Ho, we have freedom in choosing the base kets: 

Set 1 :  The eigenkets ofL2, Lz, S2, Sz . 
Set 2: The eigenkets ofL2 , S2 , J2, lz . (5.3. 17) 
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Without VLs (or HLs) either set is satisfactory in the sense that the base kets are 
also energy eigenkets. With HLs added, it is far superior to use set 2 of (5.3 . 1 7) 
because L · S does not commute with Lz and Sz , whereas it does commute with 

J2 and lz . Remember the cardinal rule: Choose unperturbed kets that diagonalize 
the perturbation. You have to be either a fool or a masochist to use the Lz, Sz 
eigenkets [set 1 of (5.3 . 17)] as the base kets for this problem; if we proceeded to 
apply blindly the method of degenerate perturbation theory starting with set 1 as 
our base kets, we would be forced to diagonalize the VLs(HLs) matrix written in 
the Lz, Sz representation. The results of this, after a lot of hard algebra, give us 
just the J2 , Jz eigenkets as the zeroth-order unperturbed kets to be used! 

In degenerate perturbation theory, if the perturbation is already diagonal in the 
representation we are using, all we need to do for the first-order energy shift is 
to take the expectation value. The wave function in the two-component form is 
explicitly written as 

,1, _ R ( )'11j=l±l /2,m 'f'nlm - nl r tf>l , (5.3 . 1 8) 

where y,(=l±l/2,m is the spin-angular function of Section 3 .8 [see (3. 8.64)] . For 
the first-order shift, we obtain 

1 ( 1 d Vc ) n 2 { l } l::!..nlj = 2m�c2 ;: dr nl 2 -(l + 1) 

- - = Rnz --Rnzr dr, ( 1 d Vc ) In 00 1 d Vc 2 
r dr nl o r dr 

j = 1 + 1 
. l 1 J = - 2 

where we have used the m-independent identity [see (3.8.66)] 

(5.3 . 19) 

/ y,ts . Ly,dn = � [j(j + 1) - Z(l + 1) - �] n2 =
n2 { z } j = Z + 1 

2 4 2 -(l + 1) j = Z - 1 
(5.3 .20) 

Equation (5 .3 . 19) is known as Lande's interval rule. 
To be specific, consider a sodium atom. From standard atomic spectroscopy 

notation, the ground-state configuration is 

(5 .3 .21) 
The inner 10 electrons can be visualized to form a spherically symmetrical elec
tron cloud. We are interested in the excitation of the 1 1th electron from 3s to a 
possible higher state. The nearest possibility is excitation to 3p. Because the cen
tral potential is no longer of the pure Coulomb form, 3s and 3p are now split. The 
fine structure brought about by VLs refers to even a finer split within 3p, between 
3 PI/2 and 3 P3/2, where the subscript refers to j. Experimentally, we observe two 
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Doublet or "fine" [ 
structure 

------------ 3p3/2 

-+-------- 3Plt2 

A =  5,890 A A =  5,896 A 

----------''--------' 3s112 

FIGURE 5.2 Schematic diagram of 3s and 3p lines. The 3s and 3p degeneracy is lifted 
because Vc(r) is now the screened Coulomb potential due to core electrons rather than 
pure Coulombic; VLs then removes the 3 PI/2 and 3 P3/2 degeneracy. 

closely separated yellow lines-known as the sodium D lines-one at 5,896 A, 
the other at 5,890 A; see Figure 5 .2. Notice that 3 P3/2 lies higher because the 
radial integral in (5 .3. 19) is positive. 

To appreciate the order of magnitude of the fine-structure splitting, let us note 
that for Z � 1 ,  ( 1 d Vc ) '"'"' e2 

r dr nl a6 
(5.3 .22) 

just on the basis of dimensional considerations. So the fine-structure splitting is 
of order (e2 fa6Kn/mec)2, which is to be compared with Balmer splittings of 
order e2 I ao . It is useful to recall here that the classical radius of the electron, 
the Compton wavelength of the electron, and the Bohr radius are related in the 
following way: 

where we have used 

e2 1i --2 : - :  ao : : 1 :  137 : ( 137)2, mec mec 

e2 1 
lie 137 

(5 .3.23) 

(5 .3 .24) 

Typically, fine-structure splittings are then related to typical Balmer splittings via 

(5.3 .25) 

which explains the origin of the term fine structure. There are other effects of 
similar orders of magnitude; one example is the relativistic correction to kinetic 
energy discussed earlier in this section. 
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Before leaving this discussion, let us calculate out (5 .3 . 19) for the case of the 
Coulomb potential-that is, a hydrogen atom or one-electron ion with Z protons. 
In this case ( 1 d Vc ) ( Z e2 ) 

-;: dr nl 
= 7 nl . (5 .3.26) 

We can evaluate this expectation value with the help of yet another trick. First we 
note that with Ho given by (5 .3 . 1) , we have 

(nlm l [Ho, A] lnlm) = 0 (5.3 .27) 
for any operator A, since Ho acting to the right or left just gives E�O) . If we let 
A = Pr, the radial momentum operator, then it obviously commutes with the radial 
part of the kinetic-energy term in Ho. Hence, we are left with 

[ l(l + l )n2 ze2 ] (nlm l 2 - - , pr Jnlm) = 0. 2mer r 
(5.3 .28) 

Now in coordinate space, Pr does not commute with functions of the coordinate r 
because of the presence of the derivative 'Jj'Jr. Therefore, we can explicitly carry 
out the commutator in (5.3 .28) to arrive at 

[ l(l + 1)n2 Ze2 ] (nlm l - 3 + -2 Jnlm) = 0. mer r 
Finally, then, we make use of (5.3 .9) and (3.7.53) to write 

(5.3 .29) 

(5 .3 .30) 

We therefore have the spin-orbit correction to the energy eigenstates of the hydro
gen atom from (5.3 . 19) as 

z2a2 CO) l l } 
/),.nlj = -2nl(l + 1)(l + 1/2) En -(l + 1) 

j = l + � 
0 l 1 J = - 2 

(5 .3 .3 1 ) 

Interestingly, this expression is nonzero for l = 0. Nevertheless, i t  gives the correct 
answer for the energy eigenvalues of the Dirac equation, as we shall see later in 
this book. The origin of this shift, attributed to something called the Darwin term, 
is discussed elsewhere. See, for example, Townsend (2000) . 
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The Zeeman Effect 

We now discuss hydrogen or hydrogen-like (one-electron) atoms in a uniform 
magnetic field-the Zeeman effect, sometimes called the anomalous Zeeman ef
fect with the electron spin taken into account. Recall that a uniform magnetic field 
B is derivable from a vector potential 

A =  ! <B x r). (5 .3 .32) 
For B in the positive z-direction (B = Bz), 

A =  - i(Byx- Bxy) (5.3.33) 
suffices, where B stands for IB I .  Apart from the spin term, the interaction Hamil
tonian is generated by the substitution 

eA p -+ p - -. c 
We therefore have 

Because 

p2 e e2A2 
H = - + Vc(r) - --(p · A+ A · p) + --2 . 2me 2mec 2mec 

(x' lp ·A(x) l ) = -inV' · [A(x') (x' l ) ] 
= (x' IA(x) · P I ) + (x' l ) [-in V' · A(x')] ,  

it is legitimate to replace p · A by A · p whenever 

V· A(x) = 0, 

which is the case for the vector potential of (5.3.33). Noting 

and 

we obtain for (5 .3 .35) 

A ·  p = IBI ( - iYPx + ixpy) 
= ! IB I Lz 

To this we may add the spin magnetic-moment interaction 

(5.3.34) 

(5 .3.35) 

(5 .3 .36) 

(5 .3 .37) 

(5 .3 .38) 

(5.3 .39) 

(5 .3 .40) 

(5 .3.41) 
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The quadratic IB I 2(x2 + y2) is unimportant for a one-electron atom; the analogous 
term is important for the ground state of the helium atom where L�tot) and S�tot) 
both vanish. The reader may come back to this problem when he or she computes 
diamagnetic susceptibilities in Problems 5 . 18  and 5 . 19  of this chapter. 

To summarize, omitting the quadratic term, the total Hamiltonian is made up 
of the following three terms: 

1 1 dVc(r) HLs = -- ---L· S  2m2c2 r dr e 
-e iB I Hs = --(Lz + 2Sz). 2meC 

(5.3 .42a) 

(5.3 .42b) 

(5 .3 .42c) 
Notice the factor 2 in front of Sz ; this reflects the fact that the g-factor of the 
electron is 2. 

Suppose H B is treated as a small perturbation. We can study the effect of H B 
using the eigenkets of Ho + HLs-the J2, lz eigenkets-as our base kets. Noting 

(5.3 .43) 
we can write the first -order shift as 

-e iB I -2-- (lz + Sz) j=l±Ij2,m · m ec (5.3 .44) 
The expectation value of lz immediately gives m1i. As for (Sz ) , we first recall 

l j = l ± � ,m) = ± l ��: � !  jmz = m - � ,  ms = �) 
+ 

���:�! jmz = m + � , ms = -�)· 
The expectation value of Sz can then easily be computed: 

1i 2 2 (Sz )j=l±l/2,m = 2( 1c+ l  - lc_ l  ) 

(5 .3.45) 

= � (2l � 1 )  
[ (z ± m + �) - (z =t= m + �)] = ± (2r;:_ 1 )  · 

(5.3 .46) 
In this manner we obtain Lande's formula for the energy shift (due to the B field), 

1:1Es = --m 1 ±  . 
-e1iB [ 1 

] 2mec (2l + 1) 
(5.3 .47) 
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We see that the energy shift of (5.3 .47) is proportional to m. To understand the 
physical explanation for this, we present another method for deriving (5.3 .46). We 
recall that the expectation value of Sz can also be obtained using the projection 
theorem of Section 3 . 1 1 .  We get [see (3. 1 1 .45)] 

mti 
(Sz ) j=l±lj2,m = [ (S •J) j=l±l/2] 1i2 j(j + 1) 

m (J2 + S2 - L2) j=t±l/2 
21ij(j + 1 ) 

= mti [ (1 ± 1) (1 ± 1 + 1) + � - 1(1 + 1 )] 
2 (1 ± ! ) (1 ± ! + 1) 

mti = ±
---
(21 + 1 ) ' 

which is in complete agreement with (5.3.46). 

(5 .3 .48) 

In the foregoing discussion the magnetic field is treated as a small perturbation. 
We now consider the opposite extreme-the Paschen-Back limit-with a mag
netic field so intense that the effect of Hn is far more important than that of HLs, 
which we later add as a small perturbation. With Ho + 

H B only, the good quantum 
numbers are Lz and Sz .  Even J2 is no good because spherical symmetry is com
pletely destroyed by the strong B field that selects a particular direction in space, 
the z-direction. We are left with cylindrical symmetry only-that is, invariance 
under rotation around the z-axis. So the Lz , Sz eigenkets 1 1 , s = ! , mz ,  ms) are to 
be used as our base kets. The effect of the main term H B can easily be computed: 

(5.3 .49) 
The 2(21 + 1) degeneracy in mz and ms that we originally had with Ho [see 
(5.3 .42a)] is now reduced by Hn to states with the same (mz) + (2ms)-namely, 
(mz) + ( 1 ) and (mz + 2) + ( - 1). Clearly we must evaluate the expectation value of 
L · S with respect to lmz, ms ) :  

(L · S) = (LzSz + ! CL+S- + L_S+))mzms (5 .3 .50) 

where we have used 

(5 .3 .5 1) 
Hence, 

(5 .3 .52) 

In many elementary books there are pictorial interpretations of the weak
field result (5.3 .47) and the strong-field result (5.3 .49), but we do not bother 
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*The exception is  the stretched configuration-for example, P3/2 with m = ± � . Here Lz and S2 
are both good; this is because magnetic quantum number of 12 , m = mz + ms can be satisfied in 
only one way. 

with them here. We simply summarize our results in Table 5 . 1 ,  where weak and 
strong B fields are "calibrated" by comparing their magnitudes efiB j2mec with 
( l j l37)2e2 Jao. In this table almost good simply means good to the extent that the 
less dominant interaction could be ignored. 

Specifically, let us look at the level scheme of a p electron l = 1 (P3/2, Pl/2). In 
the weak-B case, the energy shifts are linear in B, with slopes determined by 

As we now increase B, mixing becomes possible between states with the same 
m-value-for example, P3/2 with m = ± ! and Pl/2 with m = ±! ; in this con
nection note that the operator Lz + 2Sz that appears in HB [(5.3 .42c)] is a rank 1 
tensor operator ri:�l) with spherical component q = 0. In the intermediate-B re
gion, simple formulas like (5.3 .47) and (5.3 .49) for the expectation values are not 
possible; it is really necessary to diagonalize the appropriate 2 x 2 matrix (Got
tfried and Yan 2003, Section 5 .4). In the strong-B limit, the energy shifts are again 
proportional to IB I ;  as we see in (5.3 .49), the slopes are determined by mz + 2ms . 

The Van der Waals Interaction 

An important, nice application of the Rayleigh-Schrodinger perturbation theory 
is to calculate the long-range interaction, or van der Waals force, between two 
hydrogen atoms in their ground states. It is easy to show that the energy between 
the two atoms for large separation r is attractive and varies as r-6. 

Consider the two protons of the hydrogen atoms to be fixed at a distance r 
(along the z-axis) with r1 the vector from the first proton to its electron and r2 the 
vector from the second proton to its electron; see Figure 5.3 .  Then the Hamiltonian 
H can be written as 

H = Ho + V  
fi2 e2 e2 Ho = --(VI + V�) - - - -2m r1 r2 

e2 e2 e2 e2 V = - + - - . r lr+ r2 - r1 l lr+ r2 l j r - r1 1 

(5.3 .53) 
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- L � r z-axis 

FIGURE 5.3 Two hydrogen atoms with their protons ( +) separated by a fixed distance 
r and their electrons (-) at displacements ri from them. 

The lowest-energy solution of Ho is simply the product of the ground-state wave 
functions of the noninteracting hydrogen atoms 

(5 .3.54) 

Now for large r (» the Bohr radius ao), expand the perturbation V in powers of 
ri fr to obtain 

(5.3 .55) 

The lowest-order r-3-term in (5.3 .55) corresponds to the interaction of two 
electric dipoles er1 and er2 separated by r. The higher-order terms represent 
higher-order multipole interactions, and thus every term in V involves spherical 
harmonics Yt with li > 0 for each hydrogen atom. Hence, for each term in 
(5 .3 .55) the first-order perturbation energy matrix element Voo :::::: 0, because the 
ground state ua0) wave function (5.3 .54) has li = 0 and J dQYt(Q) = 0 for l and 
m -=!= 0). The second-order perturbation 

(5.3 .56) 

will be nonvanishing. We immediately see that this interaction varies as ljr6; 
since E�O) > Eb0), it is negative. This 1 I r6 long-range attractive van der Waals 
potential is a general property of the interaction between two atoms in their ground 
state.* 

5.4 . VARIATIONAL METHODS 

The perturbation theory developed in the previous sections is, of course, of no 
help unless we already know exact solutions to a problem whose Hamiltonian 
is sufficiently similar. The variational method we now discuss is very useful for 
estimating the ground-state energy Eo when such exact solutions are not available. 

*See the treatment in Schiff ( 1968), pp. 261-63, which gives a lower and an upper bound on the 
magnitude of the van der Waals potential from (5.3.56) and from a variational calculation. Also 
note the first footnote on page 263 of Schiff concerning retardation effects. 
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We attempt to guess the ground-state energy Eo by considering a "trial ket'' 
/0) ,  which tries to imitate the true ground-state ket 10) . To this end we first obtain 
a theorem of great practical importance. We define H such that 

(5.4. 1 )  

where we have accommodated the possibility that 1 0) might not be  normalized. 
We can then prove the following. 

Theorem 5.1. 
H � Eo. (5.4.2) 

This means that we can obtain an upper bound to Eo by considering various kinds 
of 1 0) . The proof of this is very straightforward. 

Proof. Even though we do not know the energy eigenket of the Hamiltonian H, 
we can imagine that 1 0) can be expanded as 

00 

10) = L lk) (kiO) ,  (5.4.3) 
k=O 

where lk) is an exact energy eigenket of H: 
(5.4.4) 

Equation (5.4.2) follows when we use Ek = Ek - Eo+Eo to evaluate H in (5 .4. 1 ) .  
We have 

L l (k i0) 1 2Ek 
H = :..:...k=_.:O ___ _ 

'L I (k l0) 12 
k=O 

00 

L I (k iO) 12 (Ek - Eo) 
:.:.k=_l::..___ _____ + Eo 

'L I (k l0) 12 
k=O 

� Eo, 

(5.4.5a) 

(5.4.5b) 

(5.4.5c) 

where we have used the fact that Ek - Eo in the first sum of (5.4.5b) is necessarily 
positive. It is also obvious from this proof that the equality sign in (5.4.2) holds 
only if 1 0) coincides exactly with 10)-that is, if the coefficients (k iO) all vanish 
for k =!= 0. 
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The theorem (5.4.2) is quite powerful because H provides an upper bound to 
the true ground-state energy. Furthermore, a relatively poor trial ket can give a 
fairly good energy estimate for the ground state, because if 

then from (5.4.5) we have 
- 2 H - Eo "' O(s ). 

(5.4.6) 

(5.4.7) 
We see an example of this in a moment. Of course, the method does not say 
anything about the discrepancy between H and Eo; all we know is that H is 
larger than (or equal to) Eo. 

Another way to state the theorem is to assert that H is stationary with respect 
to the variation 

(5.4.8) 
that is, 8H = 0 when 10) coincides with 10) . By this we mean that if 1 0) + 8 1 0) is 
used in place of 1 0) in (5 .4.5) and we calculate H, then the error we commit in 
estimating the true ground-state energy involves 1 0) to order (8 10) )2 . 

The variational method per se does not tell us what kind of trial kets are to 
be used to estimate the ground-state energy. Quite often we must appeal to phys
ical intuition-for example, the asymptotic behavior of wave function at large 
distances. What we do in practice is to characterize trial kets by one or more pa
rameters AI , A2, . . .  and compute H as a function of AI , A2, . . . .  We then minimize 
H by (1) setting the derivative with respect to the parameters all zero, namely 

CJ H  - =0, . . .  , CJA.2 (5.4.9) 
(2) determining the optimum values of A. 1 ,  A.2, . . .  , and (3) substituting them back 
into the expression for H. 

If the wave function for the trial ket already has a functional form of the exact 
ground-state energy eigenfunction, we of course obtain the true ground-state en
ergy function by this method. For example, suppose somebody has the foresight 
to guess that the wave function for the ground state of the hydrogen atom must be 
of the form 

(5.4. 10) 
where a is regarded as a parameter to be varied. We then find, upon minimizing 
H with (5.4. 10), the correct ground-state energy -e2 j2ao. Not surprisingly, the 
minimum is achieved when a coincides with the Bohr radius ao. 

As a second example, we attempt to estimate the ground state of the infinite
well (one-dimensional box) problem defined by 

V = { 0, for lx I < a 
oo, for lx l > a. (5 .4. 1 1) 
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The exact solutions are, of course, well known: 

( 1i2 ) ( Jr2 ) Eo - - -- 2m 4a2 · 
(5.4. 12) 

But suppose we did not know these. Evidently the wave function must vanish 
at x = ±a; furthermore, for the ground state the wave function cannot have any 
wiggles. The simplest analytic function that satisfies both requirements is just a 
parabola going through x = ±a: 

(5 .4. 13) 
where we have not bothered to normalize !0) . Here there is  no variational param
eter. We can compute H as follows: 

(5.4. 14) 

It is remarkable that with such a simple trial function, we can come within 1 .3% 
of the true ground-state energy. 

A much better result can be obtained if we use a more sophisticated trial func
tion. We try 

(5.4. 15) 
where A. is now regarded as a variational parameter. Straightforward algebra gives 

H = [ (A. + 1)(2A. + 1)] (__!!___) ' 
(2A. - 1) 4ma2 

which has a minimum at 

A. = (1 + .J6) :::: 1 .  72, 2 
not far from A. =  2 (a parabola) considered earlier. This gives 

- (5 +2-J6) 
H min = nl Eo � 1 .00298Eo. 

(5.4. 16) 

(5.4. 17) 

(5.4. 18) 
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So the variational method with (5.4. 15) gives the correct ground-state energy 
within 0.3%-a fantastic result considering the simplicity of the trial function 
used. 

How well does this trial function imitate the true ground-state wave function? 
It is amusing that we can answer this question without explicitly evaluating the 
overlap integral (0 10) . Assuming that 10) is normalized, we have [from (5 .4 .1 )
(5.4.4)] 

00 

Hmin = L l (k l0) 12 Ek 
k=O (5.4. 19) 

where 9 Eo is the energy of the second excited state; the first excited state (k = 
1)  makes no contribution by parity conservation. Solving for I (0 10) I and using 
(5.4. 1 8), we have 

9Eo - H · I (010) 1 2 2: SEo 
mm = 0.99963. (5.4.20) 

Departure from unity characterizes a component of 1 0) in a direction orthogonal 
to 10) .  If we are talking about "angle" e defined by 

(0 10) = cas e,  (5.4.21 )  

then (5.4.20) corresponds to 

(5.4.22) 

so 10) and 10) are nearly "parallel." 
One of the earliest applications of the variational method involved the ground

state energy of the helium atom, which we will discuss in Section 7 .4. We can also 
use the variational method to estimate the energies of first excited states; all we 
need to do is work with a trial ket orthogonal to the ground-state wave function
either exact, if known, or an approximate one obtained by the variational method. 

5.5 . TIME-DEPENDENT POTENTIALS: THE INTERACTION PICTURE 

Statement of the Problem 

So far in this book we have been concerned with Hamiltonians that do not contain 
time explicitly. In nature, however, there are many quantum-mechanical systems 
of importance with time dependence. In the remaining part of this chapter, we 
show how to deal involving situations involving time-dependent potentials. 

We consider a Hamiltonian H such that it can be split into two parts, 

H = Ho + V(t), (5.5 . 1 )  
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where Ho does not contain time explicitly. The problem V(t) = 0 is assumed to 
be solved in the sense that the energy eigenkets In) and the energy eigenvalues En 
defined by 

Holn) = En ln) (5.5.2) 

are completely known.* We may be interested in situations where initially only 
one of the energy eigenstates of Ho-for example, l i )-is populated. As time 
goes on, however, states other than l i )  are populated because with V(t) =f=. 0, we 
are no longer dealing wit� "stationary" problems; the time-evolution operator is 
no longer as simple as e-zHtfn when H itself involves time. Quite generally, the 
time-dependent potential V(t) can cause transitions to states other than l i ) .  The 
basic question we address is, what is the probability as a function of time for the 
system to be found in I n ) , with n i= i ?  

More generally, we may be interested in how an arbitrary state ket changes as 
time goes on, where the total Hamiltonian is the sum of Ho and V(t). Suppose 
that at t = 0, the state ket of a physical system is given by 

Ia) = I>n(O) In) . (5 .5.3) n 
We wish to find cn(t) for t > 0 such that 

Ia, to = 0; t ) = :L:>n(t)e-iEntfn ln ) , (5 .5 .4) n 
where the ket on the left side stands for the state ket in the Schrodinger picture at 
t of a physical system whose state ket at t = 0 was found to be Ia ) . 

The astute reader may have noticed the manner in which we have separated the 
time dependence of the coefficient of In ) in (5 .5.4). The factor e-iEn t/n is present 
even if V is absent. This way of writing the time dependence makes it clear that 
the time evolution of cn (t) is due solely to the presence of V(t); cn (t) would be 
identically equal to en (0) and hence independent of t if V were zero. As we shall 
see in a moment, this separation is convenient because cn(t) satisfies a relatively 
simple differential equation. The probability of finding In ) is found by evaluating 
l cn(t) l 2. 
The Interaction Picture 

Before we discuss the differential equation for cn(t), we discuss the interaction 
picture. Suppose we have a physical system such that its state ket coincides with 
Ia) at t = to, where to is often taken to be zero. At a later time, we denote the state 
ket in the Schrodinger picture by la , to ; t )s , where the subscript S reminds us that 
we are dealing with the state ket of the SchrOdinger picture. 

We now define 
(5.5 .5) 

*In (5.5.2) we no longer use the notation lnC0) ) ,  E�O) .  
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where 1 ) I stands for a state ket that represents the same physical situation in 
the interaction picture. At t = 0, I ) I evidently coincides with I ) s . For operators 
(representing observables) we define observables in the interaction picture as 

(5 .5.6) 
In particular, 

(5.5.7) 
where V without a subscript is understood to be the time-dependent potential in 
the Schrodinger picture. The reader may recall here the connection between the 
Schrodinger picture and the Heisenberg picture: 

la)H = e+iHtfh la, to = O;t )s 
AH = eiHtfh Ase-iHtfn . 

(5 .5.8) 
(5.5.9) 

The basic difference between (5 .5 .8) and (5.5 .9) on the one hand and (5 .5 .6) and 
(5.5 .7) on the other is that H rather than Ho appears in the exponential. 

We now derive the fundamental differential equation that characterizes the time 
evolution of a state ket in the interaction picture. Let us take the time derivative of 
(5.5.5) with the full H given by (5.5 . 1) : 

ih i_ /a, to ; t) I = i h i_(eiHot/h /a, to ; t) s) at at 
= -HoeiHotfn Ja, to ; t) s + eiHotfh(Ho + V)/a, to ; t )s (5 .5. 10) 

We thus see 
a ih - /a, to ; t) I = VI /a, to ; t) I ,  a t  (5.5 . 1 1 ) 

which is  a Schrodinger-like equation with the total H replaced by VI . In other 
words J a , to ; t ) J would be a ket fixed in time if VI were absent. We can also show 
for an observable A (that does not contain time t explicitly in the Schrodinger 
picture) that 

dAI 1 
dt = ih [AI , Ho] , 

which is a Heisenberg-like equation with H replaced by H0. 
(5 .5 . 12) 

In many respects, the interaction picture, or Dirac picture, is intermediate be
tween the SchrOdinger picture and the Heisenberg picture. This should be evident 
from Table 5 .2. 

In the interaction picture we continue using Jn) as our base kets. Thus we 
expand I ) I as follows: 

Ja, to ; t) J  = Lcn (t) /n) . (5.5 . 13) 
n 
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TABLE 5.2 

Heisenberg picture 

State ket No change 

Observable Evolution 
determined by H 

Interaction picture 

Evolution 
determined by VI 
Evolution 
determined by Ho 

339 

Schrodinger picture 

Evolution 
determined by H 
No change 

With to set equal to 0, we see that the cn(t) appearing here are the same as the 
cn(t) introduced earlier in (5.5.4), as can easily be verified by multiplying both 
sides of (5.5 .4) by eiHot/n using (5 .5.2). 

We are finally in a position to write the differential equation for cn (t). Multi
plying both sides of (5.5 . 1 1) by (n l from the left, we obtain 

a ifi at (n la, to ; t ) J = L(n i VI im) (m ia, to ; t ) J . (5 .5. 14) 
m 

This can also be written using 

and 

Cn (t) = (n ia, to ; t ) J 
[from (5.5 . 1 3)] as 

(5 .5 . 15) 

where 

(En - Em) Wnm = 1i 
= -Wmn · (5.5 . 16) 

Explicitly, 

ih (�,�) = 

Vu V12eiwl2t r�,:J v21eiw21 t  V22 
V33 

(5.5 . 17) 

This is the basic coupled differential equation that must be solved to obtain the 
probability of finding In ) as a function of t. 
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Time-Dependent Two-State Problems: Nuclear Magnetic Resonance, 
Masers, and So Forth 

Exact soluble problems with time-dependent potentials are rather rare. In most 
cases we have to resort to perturbation expansion to solve the coupled differential 
equations (5 .5 . 17), as we will discuss in the next section. There is, however, a 
problem of enormous practical importance, which can be solved exactly-a two
state problem with a sinusoidal oscillating potential. 

The problem is defined by 

Ho = £1 1 1 ) ( 1 1 + £2 12) (2 1 (£2 > £1) 
V (t) = yeiwt 1 1 )  (2 1 + ye-iwt 1 2) ( 1 1 ,  (5 .5 . 1 8) 

where y and w are real and positive. In the language of (5 .5. 14) and (5.5 . 15), we 
have 

v12 = v;l = yeiwt 

V1 1  = V22 = o. 
(5.5 . 19) 

We thus have a time-dependent potential that connects the two energy eigenstates 
of Ho. In other words, we can have a transition between the two states 1 1 )  :_ 12) . 

An exact solution to this problem is available. If initially-at t = 0-only the 
lower level is populated so that [see (5.5 .3)] 

q (O) = 1 ,  c2(0) = 0, (5 .5 .20) 
then the probability for being found in each of the two states is given by (Rabi's 
formula, after I. I. Rabi, who is the father of molecular beam techniques) 

(5 .5.21a) 

(5 .5.21b) 
where 

(5 .5.22) 

as the reader may verify by working out Problem 5.30 of this chapter. 
Let us now look at lc2 l2 a little more closely. We see that the probability for 

finding the upper-state E2 exhibits an oscillatory time dependence with angular 
frequency, two times that of 

Q = (5.5.23) 
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The amplitude of oscillation is very large when 
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(5.5.24) 

that is, when the angular frequency of the potential-usually due to an externally 
applied electric or magnetic field-is nearly equal to the angular frequency char
acteristic of the two-state system. Equation (5 .5.24) is therefore known as the 
resonance condition. 

It is instructive to look at (5.5.2 1a) and (5 .5.21b) a little more closely exactly 
at resonance: 

W = W2I , y rl = -. 
1i 

(5.5 .25) 

We can plot l cr (t) l2 and l c2(t) l2 as a function of t; see Figure 5 .4. From t = 
0 to t = nfij2y ,  the two-level system absorbs energy from the time-dependent 
potential V(t); l ci (t) 12 decreases from unity as l c2(t) l2 grows. At t = nfij2y , 
only the upper state is populated. From t = nfij2y to t =  nfijy, the system gives 
up its excess energy [of the excited (upper) state] to V(t); l c2 l2 decreases and 
lcr 1 2 increases. This absorption-emission cycle is repeated indefinitely, as is also 
shown in Figure 5 .4, so V(t) can be regarded as a source or sink of energy; put 
in another way, V(t) can cause a transition from 1 1 )  to 1 2) (absorption) or from 
12) to 1 1 )  (emission) . We will come back to this point of view when we discuss 
emission and absorption of radiation. 

The absorption-emission cycle takes place even away from resonance. How
ever, the amplitude of oscillation for 1 2) is now reduced; l c2(t) l�ax is no longer 1 ,  
and l cr (t) l2 does not go down all the way to 0 . In Figure 5 .5 w e  plot l c2(t) l�ax as a 
function of w. This curve has a resonance peak centered around w = w21 , and the 
full width at half-maximum is given by 4y jfi. It is worth noting that the weaker 
the time-dependent potential (y small), the narrower the resonance peak. 

Absorption Emission 

rrh!y 3rrh/2y 

Absorption 

FIGURE 5.4 Plot of lei (t) 12 and lc2(t)l2 against time t exactly at resonance w = w21 
and Q = y jfi . The graph also illustrates the back-and-forth behavior between 1 1 ) and 12) . 
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Full width at half maximum = 4y!h 

w 

FIGURE 5.5 Graph of l cz(t) l�ax as a function of w, where w = wzr corresponds to the 
resonant frequency. 

Spin-Magnetic Resonance 

The two-state problem defined by (5.5 . 1 8) has many physical applications. As 
a first example, consider a spin � system-say a bound electron-subjected to 
a t-independent uniform magnetic field in the z-direction and, in addition, to a 
t-dependent magnetic field rotating in the .xy-plane: 

B = Boz+ B1 (xcoswt +y sinwt) (5 .5.26) 
with Bo and Br constant. We can treat the effect of the uniform t-independent 
field as Ho and the effect of the rotating field as V. For 

we have 

e JL = -S mec 

(efiBo ) Ho = - ( 1+) (+ 1 - 1-) (- 1) 2mec 
(efiBr )  V(t) = - -- [coswt(l+) (- 1 + 1-) (+ 1) 2meC 

+ sinwt(-i l+) (- 1 + i l -) (+ 1)] , 

(5.5.27) 

(5.5.28) 

where we have used the ket-bra forms of 2Sj jfi [see (3.2. 1)] . With e < 0, E+ has 
a higher energy than £_, and we can identify 

I+) --+ 1 2) (upper level) 

1 -) --+ 1 1 ) (lower level) 
(5.5.29) 

to make correspondence to the notation of (5 .5. 18) . The angular-frequency char
acteristic of the two-state system is 

l e i Bo 
W21 = -- , mec (5 .5 .30) 
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which is just the spin-precession frequency for the Bo =!= 0, B1 = 0 problem al
ready treated in Section 2. 1 .  Even though the expectation values of (Sx,y ) change 
due to spin precession in the counterclockwise direction (seen from the positive 
z-side), l c+ i2 and l c- 12 remain unchanged in the absence of the rotating field. We 
now add a new feature as a result of the rotating field: l c+ i2 and l c- 12 do change 
as a function of time. This can be seen by identifying 

-ehB1 
--- ---* y' w ---* w 2mec 

(5.5 .31 ) 

to make correspondence to the notation of (5.5 . 1 8) ; our time-dependent inter
action (5 .5 .28) is precisely of form (5.5 . 18) . The fact that lc+(t) i2 and lc-(t) i2 

vary in the manner indicated by Figure 5.4 for w = w21 and the correspondence 
(5.5 .29), for example, implies that the spin ! system undergoes a succession of 
spin-flips, I +) :_ 1 -) ,  in addition to spin precession. Semiclassically, spin-flips of 
this kind can be interpreted as being due to the driving torque exerted by rotat
ing B. 

The resonance condition is satisfied whenever the frequency of the rotating 
magnetic field coincides with the frequency of spin precession determined by the 
strength of the uniform magnetic field. We see that the probability of spin-flips is 
particularly large. 

In practice, a rotating magnetic field may be difficult to produce experimen
tally. Fortunately, a horizontally oscillating magnetic field-for instance, in the 
x-direction-is just as good. To see this, we first note that such an oscillating field 
can be decomposed into a counterclockwise component and a clockwise compo
nent as follows: 

2B1x cos wt = B1 (xcos wt + y sinwt) + B1 (xcoswt - y sinwt). (5 .5.32) 
We can obtain the effect of the counterclockwise component simply by reversing 
the sign of w. Suppose the resonance condition is met for the counterclockwise 
component 

Under a typical experimental condition, 

B1 � 1 
Bo "" ' 

which implies, from (5 .5 .30) and (5 .5.3 1), that 

y h « W21 ; 

(5.5.33) 

(5.5 .34) 

(5 .5.35) 
As a result, whenever the resonance condition is met for the counterclockwise 
component, the effect of the clockwise component becomes completely negligi
ble, because it amounts to w ---* -w, and the amplitude becomes small in magni
tude as well as very rapidly oscillating. 
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The resonance problem we have solved is of fundamental importance in inter
preting atomic molecular beam and nuclear magnetic resonance experiments. By 
varying the frequency of the oscillating field, it is possible to make a very precise 
measurement of magnetic moment. We have based our discussion on the solution 
to differential equations (5.5. 17); this problem can also be solved, perhaps more 
elegantly, by introducing the rotating axis representation of Rabi, Schwinger, and 
Van Vleck. 

Maser 

As another application of the time-dependent two-state problem, let us consider 
a maser. Specifically, we consider an ammonia molecule NH3 , which-as we 
may recall from Section 4.2-has two parity eigenstates I S) and lA )  lying close 
together such that 1 A) is slightly higher. Let f.Lel be the electric dipole operator of 
the molecule. From symmetry considerations we expect that f.Lel is proportional 
to x, the position operator for the N atom. The basic interaction is like -f.Lel • E, 
where for a maser, E is a time-dependent electric field in a microwave cavity: 

E = IEimaxZCOSWt. (5 .5.36) 
It is legitimate to ignore the spatial variation of E because the wavelength in the 
microwave region is far larger than molecular dimension. The frequency w is 
tuned to the energy difference between I A) and I S) :  

(EA - Es) 
w �  

1i 

The diagonal matrix elements of the dipole operator vanish by parity: 

(A IJLez iA) = (S IJLez i S) = 0, 
but the off-diagonal elements are, in general, nonvanishing: 

(S ix iA) = (A ix iS) -:/= 0. 

(5.5 .37) 

(5 .5.38) 

(5 .5.39) 
This means that there is a time-dependent potential that connects I S) and I A), and 
the general two-state problem we discussed earlier is now applicable. 

We are now in a position to discuss how masers work. Given a molecular beam 
of NH3 containing both I S) and lA ) ,  we first eliminate the I S)-component by 
letting the beam go through a region of time-independent inhomogeneous elec
tric field. Such an electric field separates I S) from lA )  in much the same way as 
the inhomogeneous magnetic field in the Stem-Gerlach experiment separates I+) 
from 1 -) .  A pure beam of I A) then enters a microwave cavity tuned to the energy 
difference E A - E s. The dimension of the cavity is such that the time spent by 
the molecule is just (:rr /2)1i j y .  As a result we stay in the first emission phase of 
Figure 5 .4; we have lA )  in and I S) out. The excess energy of lA) is given up to 
the time-dependent potential as lA )  turns into I S) and the radiation (microwave) 
field gains energy. In this way we obtain microwave amplification by stimulated 
emission of radiation, or maser. 
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There are many other applications of the general time-dependent two-state 
problem, such as the atomic clock and optical pumping. In fact, it is amusing 
to see that as many as four Nobel Prizes in physics have been awarded to those 
who exploited time-dependent two-state systems of some form.* 

5.6 . HAMILTONIANS WITH EXTREME TIME DEPENDENCE 

This section is devoted to time-dependent Hamiltonians, with some "obvious" 
approximations in the case of very fast or very slow time dependence. A careful 
look, though, points out some interesting phenomena, one of which did not come 
to light until very late in the twentieth century. 

Our treatment here is limited to a discussion of the basics, followed by some 
specific examples. An instructive example we do not discuss is that of the square 
well with contracting or expanding walls, where the walls may move quickly or 
slowly. For these cases, we refer the interested reader to D. N. Pinder, Am. J. Phys 
58 (1990) 54, and D. W. Schlitt and C. Stutz, Am. J. Phys 38 (1970) 70. 
Sudden Approximation 

If a Hamiltonian changes very quickly, then the system "doesn't have time" to 
adjust to the change. This leaves the system in the same state it was in before the 
change and is the essence of the so-called "sudden approximation." 

Of course, even though it may have been in an eigenstate beforehand, there 
is no reason to believe that this is an eigenstate of the transformed Hamiltonian. 
Therein lie opportunities for interesting physics. One classic example is calcu
lation of the population of electronic final states in the 3He+ ion following beta 
decay of the tritium atom.t See Problem 5.35 at the end of this chapter. 

Let us consider a more precise statement of the sudden approximation and 
work through some of the consequences. Rewrite the Schrodinger equation for 
the time evolution operator (2. 1 .25) as 

a 
H H i as 'U(t, to) = 1ij T 'U(t, to) = 1iQ 'U(t, to), (5.6 . 1 ) 

where we have written time t = s T in terms of a dimensionless parameter s and a 
time scale T, and defined Q = 1 j T. In the sudden approximation, the time scale T --+ 0, which means that 

1iQ will be much larger than the energy scale repre
sented by H .  Assuming we can redefine H by adding or subtracting an arbitrary 
constant, introducing some overall phase factor in the state vectors, we see that 

'U(t, to) --+ 1 as T --+ 0 (5.6.2) 
*Nobel Prize winners who took advantage of resonance in the two-level systems are Rabi ( 1944) 
on molecular beams and nuclear magnetic resonance; Bloch and Purcell ( 1952) on B field in 
atomic nuclei and nuclear magnetic moments; Townes, Basov, and Prochorov ( 1964) on masers, 
lasers, and quantum optics; and Kastler ( 1966) on optical pumping. 
tThis has important implications for modem experiments that try to infer a nonzero neutrino 
mass from beta decay measurements. The Karlsruhe Tritium Neutrino Experiment (KATRIN), for 
example, is in progress at the time of this writing. See J. Bonn, AlP Conf Proc. 972 (2008) 404. 
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This proves the validity of the sudden approximation. It should be appropriate if 
T is small compared to 2n I Wab, where Eab = liwab is the difference between two 
relevant eigenvalues of the Hamiltonian H. 
Adiabatic Approximation 

We tend to take the adiabatic approximation for granted. Given a Hamiltonian that 
depends on some set of parameters, we will find energy eigenvalues that depend 
on the values of those parameters. If the parameters vary "slowly" with time, then 
the energy eigenvalues should just follow the values one gets as the parameters 
themselves change. The key is what we mean by "slowly." Quantum-mechanically 
or otherwise, presumably we mean that the parameters change on a time scale T 
that is much larger than 2n I Wab = 2n li I Eab for some difference Eab in energy 
eigenvalues. 

An obvious classical example is a pendulum that is transported around near the 
surface of the earth. The pendulum will behave normally as you climb a mountain, 
with only the period slowly lengthening as the force of gravity decreases, so long 
as the time over which the height is changed is long compared to the pendulum 
period. If one slowly changes the electric field that permeates a hydrogen atom, 
the energy levels will change in pace according to the Stark effect calculation in 
Section 5.2. 

Let us consider the mathematics of adiabatic change from a quantum-mechan
ical point of view. We follow the treatment given in Griffiths (2005) and pay par
ticular attention to the phase change as a function of time. We number the states in 
order using the index n and assume no degeneracy* so there is no confusion with 
the ordering of states crossing as time changes. Our starting point is essentially 
(2. 1 .27), but we will take to = 0 and suppress the initial time in our notation. 

Begin with the eigenvalue equation using the notation 

H(t) i n ; t) = En(t) ln ; t ) , (5.6.3) 
simply noting that at any particular time t, the states and eigenvalues may change. 
If we now look for general solutions to the Schrodinger equation of the form 

then we can write 

where 

. a zli- la ; t) = H(t) ia ; t ) , a t 

la; t ) = Lcn (t)eien (t) ln ; t ) , 
n 
l i t I I 8n(t) =- - - En(t )dt . li 0 

(5.6.4) 

(5.6.5) 

(5.6.6) 
The separation of the expansion coefficient into the factors cn(t) and exp(i8n(t)) 
will prove useful in a moment. Substituting (5.6.5) into (5.6.4) and using (5.6.3), 
*This is not a significant constraint. If the degeneracy is broken by H (t) after some time, we can 
just "start" there. If the degeneracy is never broken by H (t ), then it is irrelevant. 
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we find 

.I:>ien(t) [cn (t) ln ; t) + cn (t) :t ln ; t )J = 0. n 
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(5.6.7) 

Now, taking the inner product with (m ; t l  and invoking orthonormality of the 
eigenstates at equal times, we arrive at a differential equation for the cn(t), namely 

Cm(t) = -.I:>n(t)ei [Bn (t)-Bm(t)] (m ; t l  [:t l n ; t)J . n 
(5.6.8) 

The inner product (m ; t l (ajat) l n ; t ) is a new feature. If H were not time
dependent, then the l n ; t) would be stationary states, and the usual exponential 
time dependence would emerge. In order to treat this in the general case, we can 
go back to (5.6.3) and take the time derivative of both sides. For the case where 
m =!= n, we find 

(m ; t iH in ; t) = [En(t) - Em(t)] (m; t l  [ :t ln ; t) J. 
This finally enables us to rewrite (5.6.8) as 

. [ a J '""' ·co 8 ) (m ; t iH in ; t) Cm(t) = -Cm(t) (m ; t l  a t  lm ; t) - Lcn(t)e1 n- m En - Em , 
n 

(5.6.9) 

(5.6 . 10) 

which is a formal solution to the general time-dependent problem. Equation 
(5.6. 10) demonstrates that as time goes on, states with n =!= m will mix with lm ; t) 
because of the time dependence of the Hamiltonian H ,  by virtue of the second 
term. 

Now we can apply the adiabatic approximation, which amounts to neglecting 
the second term in (5.6. 10) . Roughly, this means that 

(m ; t iH in ; t) 1 I [ a I ) ] Em ---- = - « (m ; t  - m ; t  "' -. Enm r at 1i 
(5.6. 1 1) 

In other words, the time scale r for changes in the Hamiltonian must be very large 
compared to the inverse natural frequency of the state-phase factor. That is, just as 
for the pendulum being carried around the earth, the Hamiltonian changes much 
more slowly than the oscillation frequency of the system. Consequently, we have 

Cn(t) = eiYn (t)Cn (O) 
where Yn (t) = i  fo

' (n ; t' l  [ a�, l n ; t' )] dt'. 
Note that by this definition, Yn(t) is real, since 

0 = 
�(n; t ln ; t) = [�(n; t l] l n ; t) + (n; t l  [� ln; t)J at at at 

(5.6. 12) 
(5.6. 13) 

(5.6. 14) 
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or, in other words, 

(5.6. 15) 

in which case the integrand in (5.6. 13) is purely imaginary. 
Therefore, in the adiabatic approximation, if a system starts out in an eigenstate 

In ) of H(O), then it remains in the eigenstate l n ; t) of H(t) , because Ci (O) = 0 
unless i = n, in which case cn (O) = 1 .  Using (5.6.5) with (5.6. 12) we have, in an 
obvious notation, 

(5.6. 16) 
It would appear that (5.6. 16) is difficult to use, since the definition (5.6. 13) as
sumes that the time dependence of the state is given, but we will find ways to 
make good use of this result. In any case, it is easy to see that the result is self
consistent. We know that for the case when H is not time-dependent, we expect 

and so 

[ a J En (n; t l  a t  ln ; t) = -i h' 

(5 .6. 17) 

(5 .6. 1 8) 

which, by (5 .6. 13), gives Yn(t) = +Entfh. On the other hand, (5.6.6) says that 
Bn (t) = -Entfh. Thus, the two exponential factors in (5.6. 16) cancel each other, 
and we find 

as we should expect. 

la(n) ; t ) = l n ; t) for H -=/=  H(t), (5 .6. 19) 

The addition of this new phase Yn(t) is the only result of the adiabatic approx
imation that is less than obvious. It was not considered worth pursuing for many 
years, until it was discovered that it is in fact measurable. Indeed, it turns out to 
be the quantum-mechanical manifestation of very many physical phenomena that 
involve systems that are cyclic in time. 

Berry's Phase 

Excitement about the implications of (5 .6. 13) grew dramatically with the pub
lication of "Quantal Phase Factors Accompanying Adiabatic Changes," by 
M. V. Berry, in Proceedings of the Royal Society of London, Series A 392 ( 1984) 
45. Indeed, the accumulated phase for systems that travel in a closed loop is 
generally called Berry's Phase, although Berry himself refers to it as a "geometric 
phase." 

Berry's paper is widely cited, and the interested reader will have no difficulty 
finding many references. One particular paper that provides a succinct summary 
and interesting implications is "The Adiabatic Theorem and Berry's Phase," by 
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B. R. Holstein, Am. J. Phys. 57 ( 1989) 1079. Berry, in fact, gives a lovely his
tory of work prior to his own. See his "Anticipations of the Geometric Phase" in 
Physics Today, December 1990. 

Assume that the time dependence of the Hamiltonian is represented by a "vec
tor of parameters" R(t). That is, there exists some space in which the components 
of a vector R(t) specify the Hamiltonian and change as a function of time. (In 
an example below, R(t) will be the magnetic field.) Therefore, we have En(t) = 
En(R(t)) and l n ; t) = ln(R(t))) ,  and also 

[ a J dR (n ; t i  ot jn ; t) = (n ; t i  [VR in ; t ) ] • dt' (5.6.20) 

where V R is simply a gradient operator in the space and direction of R. The 
geometric phase (5.6. 13) then becomes 

Yn(T) = i {T (n ; t i  [VR in ; t ) ] • dR dt lo dt �R(T) 
= i (n ; t i [VR in ; t) ]  • dR. 

R(O) 
(5 .6.21) 

In the case where T represents the period for one full cycle, so that R(T) = R(O), 
where the vector R traces a curve C, we have 

Yn(C) = if (n ; t i  [VR in ; t) ]  • dR. (5.6.22) 

With a notation that shows a bias of how we can proceed, define 

An(R) = i (n; t i  [VR in ; t) ] , (5.6.23) 
in which case 

(5.6.24) 

using Stokes' theorem, generalized* for the dimensionality of R. (The measure 
da is a small area element on some surface bounded by the closed path.) Thus, 
Berry's Phase is determined by the "flux" of a generalized field 

(5.6.25) 
through a surface S bounded by the circuit followed by R(t) over one complete 
cycle. One obtains the same phase Yn so long as one encounters the same total 
flux, regardless of the actual path followed by R(t). Note that, quite similarly 

*To be sure, generalizing Stoke's theorem for higher dimensionality is not trivial. See a discussion 
of this in Berry's original paper. In our case, however, all of our examples will involve only three
dimensional parameter vectors R. 
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to our derivation of the result (5.6. 15), both An(R) and Bn (R) are purely real 
quantities. Soon we will be concerning ourselves with sources of the field Bn (R). 

Equation (5 .6.24) has a remarkable property that betrays the notation we have 
chosen using An(R). Suppose that we multiply \n ; t ) by an arbitrary phase factor 
that changes through R-space. That is, 

l n ; t) -----+ eio(R) I n ; t ) .  (5.6.26) 
Then by (5 .6.23) we have 

(5.6.27) 
which leaves (5.6.24) unchanged. In other words, the value of Yn(C) does not 
depend on the details of the phase behavior along the path, despite our starting 
point (5.6. 16). Indeed, Yn(C) depends only on the geometry of the path traced out 
by R(t)-hence the name geometric phase. Of course, it remains for us to show 
that Yn( C) is nonzero, at least under certain conditions. Note also that (5.6.26) and 
(5.6.27) have exactly the same form as the expressions for gauge transformations 
in electromagnetism. See (2.7. 36) and (2.7.49). This analogy will be exploited 
more fully before we conclude this section. 

We now turn to an evaluation of Yn(C). Noting first that because the curl of a 
curl vanishes, we can combine (5.6.23) and (5.6.25) to get 

Bn(R) = i [VR (n ; t l ] X [VR in ; t ) ] , (5.6.28) 
we next insert a complete set of states I m; t) to find 

Bn(R) = i L [VR (n ; t l ]  lm ; t) X (m ; t l  [VR in ; t) ] . (5.6.29) 
m#n 

We explicitly discard the term with m = n, but it is easily shown to be zero, since 
(n; t l n ; t ) = 1 implies that [VR (n ; t l ]  l n ; t) = - (n; t l  [VR in ; t ) ] and so the cross 
product in (5.6.29) must be zero. Now, by taking the R-gradient of (5.6.3) and 
taking the inner product with (m ; t I ,  we determine 

(m ; t l  [VR in ; t ) ] = (m ; t l  [VRH] ln ; t) 
En - Em m # n. 

This enables us to write, finally, 

where 

Yn(C) = f Bn(R) · da, 

B (R) = i '""" (n ; t l  [VRH] lm ; t) x (m ; t l  [VRH] ln ; t ) n � (Ern - E  )2 . m#n n 

(5 .6.30) 

(5.6.31 ) 

(5.6.32) 

As Berry states in his original paper, these last two equations "embody the central 
results" of his work. Points in R-space where Em (R) = En (R) will contribute to 
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the surface integral (5.6.31) even though the path enclosing that surface does not 
include those points. 

It was realized early on that Berry's phase could be observed using photons 
moving through a twisted optical fiber and that the geometric character of this 
phase could be tested experimentally. See A. Tomita and R. Chiao, Phys. Rev. 
Lett. 57 (1986) 937. Indeed, this experiment can be carried out in the student 
laboratory. A description of the setup can be found in Experiments in Modern 
Physics, by A. Melissinos and J. Napolitano (Academic Press 2003). 
Example: Berry's Phase for Spin � 
Let us now turn to a specific example and carry through a calculation of Yn (C) 
from (5.6.31) . We will study the phase motion for a spin ! particle manipulated 
slowly through a time-varying magnetic field. This particular example has in fact 
been studied experimentally. 

We return to (2. 1 .49), our familiar Hamiltonian, for a spin ! particle in a mag
netic field, but with some modification for a particle with arbitrary magnetic mo
ment. Since in this case, it is the magnetic field that changes slowly in time, let 
the magnetic field be given by the three-dimensional vector* R(t). That is, R(t) is 
the vector of parameters that we will change slowly. For a magnetic moment f.L, 
our Hamiltonian is written as 

H(t) = H(R(t)) = - 2: S ·R(t), (5.6.33) 

where S is the spin ! angular-momentum operator. Written in this way, the ex
pectation value for the magnetic moment in the spin-up state is simply fL. 

Now on to the evaluation of B(R) using (5.6.32). First, it is simple enough 
to show, either explicitly (see Problem 3.2 in Chapter 3) or by using rotational 
symmetry to fix R in the z-direction, that the two energy eigenvalues for (5.6.33) 
are 

E±(t) = T-tLR(t), (5.6.34) 
where R(t) is the magnitude of the magnetic-field vector, and the spin-up (down) 
eigenstates (with respect to the direction of R(t)) are l± ; t) .  The summation in 
(5.6.32) consists of only one term, with denominator 

It is also clear that 

2f1, VRH = --S 1i ' 
leaving us with the need to evaluate the cross product 

(±; t i S IT-; t ) X (T-; t iS I± ; t) = (±; t iS IT-; t) X (±; t iS IT- ; t )* . 

(5.6.35) 

(5.6.36) 

(5.6.37) 
*In order to avoid confusion with (5.6.32), we do not use B to represent the magnetic field. 
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Evaluating this matrix element would be tedious, except that we can invoke ro
tational symmetry and define the components of S relative to the direction of R. 
That is, l± ; t) can be taken to be eigenstates of Sz . Thus, using (3.5.5) to write 

we invoke (3.5.39) and (3 .5.40) to find 

Combining (5.6.35), (5.6.37), and (5.6.39), we have 

1 A B±(R) = =F -2-z. 
2R (t) 

(5.6.38) 

(5 .6.39) 

(5.6.40) 

Of course, this result was derived by taking J±;  t) to be eigenstates of Sz , when in 
fact they are in the direction of R. Therefore, we actually have 

1 A 

B±(R) = =F -2- R. 
2R (t) 

Finally, we calculate Berry's Phase (5.6.3 1) to be 

1 j R · da 1 
Y±(C) = =F- -- = =F- Q 

2 R2 2 ' 

(5.6.41)  

(5.6.42) 

where Q is the "solid angle" subtended by the path through which the parameter 
vector R(t) travels, relative to an origin R = 0 that is the source point for the field 
B. This emphasizes the "geometric" character of Berry's Phase. Specifics of the 
path do not matter, so long as the solid angle subtended by the path is the same. 
The result is also independent of the magnetic moment Jk. 

Soon after Berry's prediction for this effect in spin � systems, two groups car
ried out measurements using neutrons at the Institut Laue-Langevin in Grenoble, 
France. One of the resulting studies, T. Bitter and D. Dubbers, Phys. Rev. Lett. 
59 ( 1987) 25 1 ,  used a slow (500-m/sec) neutron beam passing through a twisted 
magnetic field. The second, D. J. Richardson et al., Phys. Rev. Lettt. 61 ( 1988) 
2030, made use of ultra-cold neutrons (UCN) and is more precise. UCN can be 
stored for long periods of time, so a cycle period T = 7.387 sec was used, ensur
ing the validity of the adiabatic theorem. Initially polarized in the z-direction, the 
neutrons are subjected to a rotating-magnetic-field component that is switched on 
at t = 0 and switched off at t = T. The magnetic-field vector traces out a circle 
(or ellipse, depending on adjustable parameters) in the yz-plane, depolarizing the 
neutrons by an amount depending on the integrated phase. Measuring the final 
polarization determines the integrated phase, and the dynamical phase (5.6.6) is 
subtracted out, leaving Berry's Phase. 
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FIGURE 5.6 Observation of Berry's Phase for spin � particles using ultra-cold neu
trons, from D. J. Richardson et al., Phys. Rev. Lett. 61 (1988) 2030. Data are taken from 
Table 1 of their paper and show Berry's Phase as a function of "solid angle" for the ro
tating magnetic field. Both spin-up and spin-down phases were measured. Uncertainties 
on the data points are about the same size as, or smaller than, the points themselves. The 
solid lines are taken from (5.6.42). 

Figure 5.6 shows the results obtained by Richardson et al. Both spin-up and 
spin-down phases are measured, and both agree extremely well with Berry's anal
ysis. Even though the value of the magnetic moment does not enter the calcula
tion, its sign determines the direction of rotation, and this experiment confirms 
that the neutron magnetic moment is indeed negative. 

Aharonov-Bohm and Magnetic Monopoles Revisited 

We have seen that Berry's  Phase uses a formalism that is closely tied to the formal
ism of gauge transformations. See (5.6.26) and (5.6.27). Let us now makes this 
connection closer to some physics we have already seen in our study of gauge 
transformation in Section 2. 7 .  

First, we note that the Aharonov-Bohm effect due to the magnetic field can 
be shown to be just a consequence of a geometric-phase factor. Let a small box 
confining an electron (charge e < 0) make one turn along a closed loop C, which 
surrounds a magnetic flux line <I> B ,  as shown in Figure 5 .  7 .  Let R be the vector 
connecting the origin fixed in the space and a reference point in the box. In this 
case the vector R is an external parameter in the real space itself. When we use 
the vector potential A to describe the magnetic field B, the nth wave function of 
the electron in the box (with position vector r) is written as { ie r } (rln(R)) = exp he JR A(r') · dr' 1/fn(r - R), (5.6.43) 

where 1/f n ( r') is the wave function of the electron at the r' position coordinates of 
the box in the absence of magnetic field. 
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c 

FIGURE 5.7 The Aharonov-Bohm effect as a manifestation of Berry's Phase. An elec
tron in a box takes one tum around a magnetic flux line. 

Now let R travel around the loop C,  and calculate Berry's Phase. We can easily 
calculate the derivative of the wave function with respect to the external parameter 
to obtain 

(n(R) I [VRin(R)} ] = j d3x1jf;(r - R) 

x {-!_:_A(R)1/fn(r - R) + VR1/fn(r - R) } = -
ieA(R) . he he 

(5.6.44) 

The second term under the integral vanishes for the electron in the box. From 
(5 .6.21) and (5.6.44) we see that the geometric phase is given by 

Yn (C) = !..._ J A · dR = !..._ fr { B(R) · dS = !..._ <P s .  he fc he ls(C) he 
(5.6.45) 

This result is just the expression (2.7.70) of the Aharonov-Bohm effect obtained 
in Section 2. 7. 

A second example* of the physical connection between gauge invariance 
and Berry's Phase is the Dirac quantization condition (2.7.85) for magnetic 
monopoles. Consider two surfaces a1 and a2 in R-space, each bounded by the 
same curve C. Since the Berry's phase that results from following C is physically 
measurable, the surface integral (5.6.3 1) must be the same for a1 and a2 to within 
a multiple of 2n . That is, 

1 B · da = 1 B · da+ 2Nn 
a1 az 

N = 0, ±1 , ±2, . . . . (5.6.46) 
*Our discussion here closely follows that given by B. R. Holstein, Am. J. Phys. 57 (1989) 1079. 
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Now construct a closed surface by putting a1 "above" C and a2 below. Assuming 
that we use something like the right-hand rule to consistently determine the ori
entation of da for each of the two integrals in (5 .6.46), da points inward for one 
of them. So we reverse the sign of da for that integral and rewrite (5 .6.46) as 

f B · da = 2Nn . (5.6.47) 

Of course, inserting (5.6.4 1 ) into (5.6.47) yields ±2n, i.e. N = ±1 , but that is 
an artifact of our choosing a spin ! system for deriving (5.6.41) . If we carried 
through that example for a system with arbitrary spin, n would work out to be 
equal to twice the spin-projection quantum number. 

Now (5.6.41) looks suspiciously like the magnetic field from a monopole with 
charge ! , but recall that it is in fact a Berry field. How can we relate this to 
an actual magnetic field for a monopole? It is actually easiest to see this when 
we express Berry's Phase in terms of the line integral in (5.6.24) of the vector 
potential around the curve C .  The gauge transformation (2.7.83) gives the form 
of the vector potential, and the line integral is just an integral over ¢ leading to a 
factor of 2n . We can then use this to evaluate the left side of (5.6.47), including 
the interaction with a single electric charge e to complete the phase, leading to the 
factor ejlie as in (2.7.84). Thus, (5.6.47) becomes 

e -(2eM)2n = 2Nn lie 

or 
2eeM 
-- = N, lie 

which is the same result (2.7.85) that we obtained earlier in Section 2.7. 

5.7 . TIME-DEPENDENT PERTURBATION THEORY 

Dyson Series 

(5.6.48) 

With the exception of a few problems like the two-level time-dependent problem 
of the previous section, exact solutions to the differential equation for en(t) are 
usually not available. We must be content with approximate solutions to (5 .5. 17) 
obtained by perturbation expansion: 

en(t) = e�O) + e�l ) + e�2) + · · · , (5.7 . 1 ) 
where e�l ) , e�2\ . . .  signify amplitudes of first order, second order, and so  on in the 
strength parameter of the time-dependent potential. The iteration method used to 
solve this problem is similar to what we did in time-independent perturbation the
ory. If initially only the state i is populated, we approximate en on the right-hand 
side of differential equation (5 .5. 17) by e�O) = Oni (independent of t) and relate 
it to the time derivative of e�1\ integrate the differential equation to obtain e�l), 
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plug c�l) into the right-hand side [of (5.5 . 17)] again to obtain the differential equa
tion for c�2), and so on. This is how Dirac developed time-dependent perturbation 
theory in 1927. 

Instead of working with cn(t), we propose to look at the time-evolution op
erator UJ (t, to) in the interaction picture, which we will define later. We obtain 
a perturbation expansion for UJ(t, to), and at the very end we relate the matrix 
elements of U1 to cn(t). If we are interested only in solving simple problems in 
nonrelativistic quantum mechanics, all this might look superfluous; however, the 
operator formalism we develop is very powerful because it can immediately be 
applied to more-advanced problems, such as relativistic quantum field theory and 
many-body theory. 

The time-evolution operator in the interaction picture is defined by 

la, to ; t ) J = UJ(t, to) la, to ; to ) J . (5.7 .2) 
Differential equation (5.5. 1 1) for the state ket of the interaction picture is equiva
lent to 

(5 .7.3) 

We must solve this operator differential equation subject to the initial condition 

UJ(t, to) l t=to = 1 .  (5.7 .4) 
First, let us note that the differential equation together with the initial condition is 
equivalent to the following integral equation: 

· l t l I I I UJ(t, to) = 1 - h V1(t )UJ(t , t0)dt . to 
We can obtain an approximate solution to this equation by iteration: 

U1 (t, t0) = 1 - _£ (' V1(t1) [1 - _£ (' ' V1 (t")U1(t", to)dt"] dt1 1i lto 1i lto 
= 1 - _£ (' dt1VJ (t1) +  (-i )2 ( '  dt1 ['' dt11VJ (t1)VJ (t11) 1i �  1i � � 

(5.7.5) 

+ . . .  + ( -i )n [' dtl ['' dt" . . .  (5.7.6) 
1i lto lto 

t(n-1) 
X { dt(n)VJ(t1)VJ (t11) • • • VJ (t(n)) lto 
+ · · · . 
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This series is known as the Dyson series after Freeman J. Dyson, who applied 
this method to covariant quantum electrodynamics (QED).* Setting aside the dif
ficult question of convergence, we can compute UJ(t, to) to any finite order of 
perturbation theory. 

Transition Probability 

Once UJ(t, to) is given, we can predict the time development of any state ket. For 
example, if the initial state at t = 0 is one of the energy eigenstates of Ho, then to 
obtain the initial state ket at a later time, all we need to do is multiply by U1(t, 0): 

j i , to = O; t ) J = UI (t, O) i i )  
= l::)n) (n !UI (t, O) I i ) .  (5.7.7) 

n 
In fact, (n i UJ (t, O) I i )  is nothing more than what we called cn (t) earlier [see 
(5.5 . 1 3)] . We will say more about this later. 

We earlier introduced the time-evolution operator U(t, to) in the Schrodinger 
picture (see Section 2.2). Let us now explore the connection between U(t, to) and 
UJ (t, to). We note from (2.2. 13) and (5.5 .5) that 

la, to ; t ) J = eiHot/h la, to ; t )s 
= eiHotfh U(t, to) Ia, to ; to) s (5.7.8) 
= eiHot/h U(t, to)e-iHotofh Ia, to ; to) 1 .  

S o  we have 

(5.7.9) 
Let us now look at the matrix element of UJ(t, to) between energy eigenstates of 
Ho: 

(n i UI (t, to) l i )  = ei(En t-E;to)fh (n i U(t, to) l i ) .  (5.7 . 10) 
We recall from Section 2.2 that (n i U(t, to) l i )  is defined to be the transition ampli
tude. Hence our (n i UI (t, to) l i )  here is not quite the same as the transition ampli
tude defined earlier. However, the transition probability defined as the square of 
the modulus of (n i U(t, to) l i ) is the same as the analogous quantity in the interac
tion picture, 

(5.7 . 1 1 )  
Parenthetically, we may remark that if the matrix elements of U1 are taken be
tween initial and final states that are not energy eigenstates-for example, be
tween Ia') and l b') (eigenkets of A and B, respectively), where [Ho,A] -=/= 0 and/or 

*Note that in QED, the time-ordered product (t' > t" > · · · ) is introduced, and then this pertur
bation series can be summed into an exponential form. This exponential form immediately gives 
U(t, to) = U(t, t1 )U(tJ , to) (Bjorken and Drell 1965, pp. 175-78). 
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[Ho, B] i= O-we have, in general, 

J (b' I UJ (t, to) la') l i= l (b' J U(t, to) la') l ,  
as the reader may easily verify. Fortunately, in problems where the interaction 
picture is found to be useful, the initial and final states are usually taken to be Ho 
eigenstates. Otherwise, all that is needed is to expand Ia') , lb' ) , and so on in terms 
of the energy eigenkets of Ho. 

Coming back to (n i UI (t , to) l i ) ,  we illustrate by considering a physical situa
tion where at t = to, the system is known to be in state l i ) .  The state ket in the 
Schrodinger picture I i ,  to; t) s is then equal to I i ) up to a phase factor. In applying 
the interaction picture, it is convenient to choose the phase factor at t = to so that 

l i  t · t )  - e-iEJo/fi l z" ) ' o , 0 s - ' 

which means that in the interaction picture we have the simple equation 

I i ,  to ; to ) J = I i )  . 
At a later time we have 

l i , to ; t)J = UJ (t, to ) l i ) . 
Comparing this with the expansion 

l i , to; t ) J = :L:>n (t) ln) , n 
we see that 

Cn(t) = (n i UI (t, to) l i ) .  

(5.7. 12) 

(5.7 . 13) 

(5 .7. 14) 

(5.7 . 15) 

(5.7 . 16) 

We now go back to the perturbation expansion for UJ (t, to) [see (5 .7 .6)] . We 
can also expand cn (t) as in (5.7. 1), where c�l ) is first order in V1(t), c�2) is second 
order in V1 (t), and so on. Comparing the expansion of both sides of (5.7 . 16), we 
obtain [using (5.5 .7)] 

(0) Cn (t) = Oni (independent of t) 

c�l)(t) = �i lt (n J VI (t') l i )dt' 
to 

(5.7. 17) 

where we have used 

(5.7. 18) 
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The transition probability for l i ) --+ In ) with n i= i is obtained by 

P(i --+ n) = lc�l ) (t) + c�2)(t) + · · · 12 . 

Constant Perturbation 
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(5.7 . 19) 

As an application of (5.7 . 17),  let us consider a constant perturbation turned on at 
t = 0: 

V(t) = {� for t < 0 
(independent of t), for t ::: 0. (5.7 .20) 

Even though the operator V has no explicit dependence on time, it is, in general, 
made up of operators like x, p, and s. Now suppose that at t = 0, we have only l i ) .  
With to taken to be  zero, we obtain 

or 

(0) (0) Cn = Cn (0) = Oni , 

lc( 1) 1 2 = 
1 Vni l 2 (2 - 2 cosw · t) n l En - Ei 12 

nz 
41 Vni 1 2 . 2 [ (En - Ei)t J = Sill . l En - Ei 1 2 2fi 

(5.7.2 1 )  

(5.7.22) 

The probability of finding In ) depends not only on I Vni 12 but also on the energy 
difference En - Ei , so let us try to see how (5.7.22) looks as a function of En . In 
practice, we are interested in this way of looking at (5 .7 .22) when there are many 
states with E '"" En so that we can talk about a continuum of final states with 
nearly the same energy. To this end, we define 

(5.7 .23) 

and plot 4 sin2(wtj2)jw2 as a function of w for fixed t, the time interval during 
which the perturbation has been on; see Figure 5.8 .  We see that the height of the 
middle peak, centered at w = 0, is t2 and that the width is proportional to 1 It .  As 
t becomes large, l c�l )(t) l 2 is appreciable only for those final states that satisfy 

2n 2nfi 
t "-' - = (5.7.24) lw l I En - Ei l 

If we call l:lt the time interval during which the perturbation has been turned on, 
a transition with appreciable probability is possible only if 

(5.7.25) 
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-4n/t -2n!t 

\ 
\ ' ' ' ' ' ......... ...... 

2n!t (J) 

FIGURE 5.8 Plot of 4 sin2(wt/2)/ui versus w for a fixed t, where in w = (En - Ei )/fi 
we have regarded En as a continuous variable. 

where by !:lE we mean the energy change involved in a transition with appre
ciable probability. If !:it is small, we have a broader peak in Figure 5.8, and as 
a result we can tolerate a fair amount of energy nonconservation. On the other 
hand, if the perturbation has been on for a very long time, we have a very narrow 
peak, and approximate energy conservation is required for a transition with appre
ciable probability. Note that this "uncertainty relation" is fundamentally different 
from the x - p uncertainty relation of Section 1 .6. There x and p are both observ
ables. In contrast, time in nonrelativistic quantum mechanics is a parameter, not 
an observable. 

For those transitions with exact energy conservation En = Ei , we have 

(5.7 .26) 
The probability of finding In) after a time interval t is quadratic, not linear, in 
the time interval during which V has been on. This may appear intuitively unrea
sonable. There is no cause for alarm, however. In a realistic situation where our 
formalism is applicable, there is usually a group of final states, all with nearly the 
same energy as the energy of the initial state I i ) .  In other words, a final state forms 
a continuous energy spectrum in the neighborhood of Ei . We give two examples 
along this line. Consider for instance, elastic scattering by some finite-range po
tential (see Figure 5.9), which we will consider in detail in Chapter 6. The initial 
state is taken to be a plane-wave state with its propagation direction oriented in 
the positive z-direction; the final state may also be a plane-wave state of the same 
energy but with its propagation direction, in general, in a direction other than the 
positive z-direction. Another example of interest is the de-excitation of an excited 
atomic state via the emission of an Auger electron. The simplest example is a 
helium atom. The initial state may be (2s)2, where both the electrons are excited; 
the final state may be ( l s) (that is, one of the electrons still bound) of the He+ 
ion, while the second electron escapes with a positive energy E; see Figure 5. 10. 
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FIGURE 5.9 Elastic scattering of plane wave by some finite-range potential. 

(2s)2 ----------

( ls)(2s) ----------

( ls)2 ----------

One of the electrons is in 
l s  state and the other is 
in free state. 

FIGURE 5.10 Schematic diagram of two electron energy levels of helium atom. 

In such a case we are interested in the total probability-that is, the transition 
probabilities summed over final states with En ::: Ei : 

L lc�l ) l 2. (5.7.27) 
n,En:::::.E; 

It is customary to define the density of final states as the number of states within 
energy interval (E, E +dE): 

p(E)dE. 
We can then write (5.7.27) as 

L lc�l ) l2 ==> J dEnp(En) i c�l ) i 2 
n,En:::::.E; 

= 4/ sin2 [ (En - Ei)t ] 1 Vni l 2 (E )dE . 21i I E  n - E i 1 2 p n n 
As t --+ oo, we can take advantage of 

(5 .7.28) 

(5 .7.29) 

(5 .7.30) 
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which follows from 

1 sin2ax 
lim 2 = 8(x). a---+oon ax 

(5.7.3 1) 

It i s  now possible to take the average of \ Vni 1 2 outside the integral sign and per
form the integration with the 8-function: 

(5.7.32) 

Thus the total transition probability is proportional to t for large values of t, which 
is quite reasonable. Notice that this linearity in t is a consequence of the fact that 
the total transition probability is proportional to the area under the peak of Figure 
5.8, where the height varies as t2 and the width varies as 1ft . 

It i s  conventional to consider the transition rate-that is, the transition prob
ability per unit time. Expression (5 .7 .32) tells us that the total transition rate, 
defined by 

(5.7.33) 

is constant in t for large t. Calling (5 .7.33) Wi---+ [n] , where [n] stands for a group 
of final states with energy similar to i, we obtain 

(5.7.34) 

independent of t, provided the first-order time-dependent perturbation theory is 
valid. This formula is of great practical importance; it is called Fermi's golden 
rule even though the basic formalism of t-dependent perturbation theory origi
nated with Dirac. We sometimes write (5 .7 .34) as 

(5 .7 .35) 

where it must be understood that this expression is integrated with J d Enp(En). 
We should also understand what is meant by I Vni 1 2 . If the final states In) form 

a quasi-continuum, the matrix elements Vni are often similar if In) are similar. 
However, it may happen that not all energy eigenstates with the same En nec
essarily have similar matrix elements. Consider, for example, elastic scattering. 
The \ Vni 1 2 that determines the scattering cross section may depend on the final 
momentum direction. In such a case, the group of final states we should con
sider must have not only approximately the same energy but also approximately 
the same momentum direction. This point becomes clearer when we discuss the 
photoelectric effect. 
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Let us now look at the second-order term, still with the constant perturbation 
of (5.7 .20). From (5 .7. 17) we have 

i '"" Vnm Vmi lot · ' · ' = _ L (e!Wni t - e!Wnmt )dt' . 1i Em - Ei o m 

(5.7.36) 

The first term on the right-hand side has the same t dependence as c�l) [see 
(5.7.21)] . If this were the only term, we could then repeat the same argument 
as before and conclude that as t � oo, the only important contribution arises 
from En :::::: Ei . Indeed, when Em differs from En and Ei , the second contribution 
gives rise to a rapid oscillation, which does not give a contribution to the transition 
probability that grows with t. 

With cCI) and cC2) together, we have 

2 2n '"" Vnm V mi 
Wi-7[n] = h Vni + L E-

_ E p(En) 
m ! m 

(5 .7.37) 
En-:::::Ei 

The formula has the following physical interpretation. We visualize that the tran
sition due to the second-order term takes place in two steps. First, l i )  makes 
an energy-nonconserving transition to lm) ;  subsequently, lm) makes an energy
nonconserving transition to I n ) , where between In ) and l i )  there is overall energy 
conservation. Such energy-nonconservingtransitions are often called virtual tran
sitions. Energy need not be conserved for those virtual transitions into (or from) 
virtual intermediate states. In contrast, the first -order term Vni is often said to rep
resent a direct energy-conserving "real" transition. A special treatment is needed 
if Vnm Vmi -=f. 0 with Em :::::: Ei . The best way to treat this is to use the slow-turn-on 
method V � eiJt V , which we will discuss in Section 5.9 and Problem 5.31 of this 
chapter. The net result is to change the energy denominator in (5.7.37) as follows: 

(5.7.38) 

Harmonic Perturbation 

We now consider a sinusoidally varying time-dependent potential, commonly re
ferred to as harmonic perturbation: 

V(t) = Veiwt + vt e-iwt , (5.7.39) 
where V may still depend on x, p, s, and so on. Actually, we encountered a time
dependent potential of this kind in Section 5.5 when we discussed t-dependent 
two-level problems. 
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(i) (ii) 

�-------------------!hw 
En------------------- E; --------------

FIGURE 5.11 (i) Stimulated emission: Quantum-mechanical system gives up 1iw to 
V (possible only if initial state is excited). (ii) Absorption: Quantum-mechanical system 
receives 1iw from V and ends up as an excited state. 

Again assume that only one of the eigenstates of Ho is populated initially. 
Perturbation (5.7.39) is assumed to be turned on at t = 0, so 

(5.7 .40) 

where vJi actually stands for (Vt)ni · We see that this formula is similar to the 
constant-perturbation case. The only change needed is 

So as t --+  oo, \c�l ) \2 is appreciable only if 

Wni + w � 0 or En -:::= Ei - hw 
Wni - w � 0 or En � Ei + hw. 

(5.7.41)  

(5.7.42a) 

(5.7.42b) 

Clearly, whenever the first term is important because of (5.7 .42a), the second 
term is unimportant, and vice versa. We see that we have no energy-conservation 
condition satisfied by the quantum-mechanical system alone; rather, the apparent 
lack of energy conservation is compensated by the energy given out to-or energy 
taken away from-the "external" potential V (t). Pictorially, we have Figure 5 . 1 1 .  
In the first case (stimulated emission), the quantum-mechanical system gives up 
energy hw to V; this is clearly possible only if the initial state is excited. In the 
second case (absorption), the quantum-mechanical system receives energy hw 
from V and ends up as an excited state. Thus a time-dependent perturbation can 
be regarded as an inexhaustible source or sink of energy. 

In complete analogy with (5 .7.34), we have 

(5.7.43) 
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or, more commonly, 

Note also that 

which is a consequence of 

(remember vt ln)�(n iV) . Combining (5 .7.43) and (5 .7.45), we have 

emission rate fori --+ [n] 
density of final states for [ n] 

absorption rate forn --+ [i] 
density of final states for [i ] ' 

(5.7 .44) 

(5.7.45) 

(5.7.46) 

(5.7.47) 

where in the absorption case we let i stand for final states. Equation (5.7.47), 
which expresses symmetry between emission and absorption, is known as de
tailed balancing. 

To summarize, for constant perturbation, we obtain appreciable transition 
probability for l i )  --+ In ) only if En � Ei . In contrast, for harmonic perturba
tion, we have appreciable transition probability only if En :::: Ei - fiw (stimulated 
emission) or En :::: Ei + fiw (absorption). 

5 .8 • APPLICATIONS TO INTERACTIONS WITH THE CLASSICAL RADIATION 
FIELD 

Absorption and Stimulated Emission 

We apply the formalism of time-dependent perturbation theory to the interactions 
of atomic electrons with the classical radiation field. By a classical radiation field 
we mean the electric or magnetic field derivable from a classical (as opposed to a 
quantized) radiation field. 

The basic Hamiltonian, with IAI2 omitted, is 

which is justified if 

p2 e H =  - +ec/J(x) --A · p, 2me mec 

V · A = O. 
Specifically, we work with a monochromatic field of the plane wave for 

A = 2Ao8 cos (: fi · x -wt) , 

(5.8 . 1 ) 

(5 .8.2) 

(5 .8.3) 
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where € and :fi are the (linear) polarization and propagation directions. Equation 
(5.8.3) obviously satisfies (5.8.2), because € is perpendicular to the propagation 
direction ft. We write 

COS (: :fi .  X _ Wt) = � [ei(wjc)fi.·x-iwt + e-i(wjc)fi.·x+iwt ] (5 .8.4) 
and treat -(efmec)A ·p as a time-dependent potential, where we express A in 
(5 .8.3) as 

A = Ao€[ei(wfc)n·x-iwt + e-i(wfc)n·x+iwt ] . 
Comparing this result with (5.7.39), we see that the e-iwt -term in 

(5 .8.5) 

_ (-e-) A . P = _ (-e-) Ao€ ·p[ei(wfc)fi.·x-iwt + e-i(wjc)fi.·x+iwt] (5 .8.6) mec mec 
is responsible for absorption, while the e+iwt -term is responsible for stimulated 
emission. 

Let us now treat the absorption case in detail. We have 

and 

vt. 
= - eAo (ei(wfc)(n·x)€ ·P)ni nz mec (5 .8.7) 

(5 .8.8) 

The meaning of the 8-function is clear. If J n) forms a continuum, we simply inte
grate with p(En). But even if Jn) is discrete, because Jn) cannot be a ground state 
(even though it is a bound-state energy level), its energy is not infinitely sharp. 
There may be a natural broadening due to a finite lifetime (see Section 5.9); there 
can also be a mechanism for broadening due to collisions. In such cases, we regard 
8(w - Wni ) as 

(5.8.9) 

Finally, the incident electromagnetic wave itself is not perfectly monochromatic; 
in fact, there is always a finite frequency width. 

We derive an absorption cross section as 

(Energy/unit time) absorbed by the atom(i -+ n) 
Energy flux of the radiation field 

(5 .8 . 10) 
For the energy flux (energy per area per unit time), classical electromagnetic the-
ory gives us 

(5.8 . 1 1) 
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where we have used 

'U = � (E�ax + B�ax ) 
2 8:rr 8:rr 

for energy density (energy per unit volume) with 

1 a 
E = - - -A, c at B = V x A. 

(5 .8 . 12) 

(5.8. 13) 
Putting everything together, remembering that 1iw = energy absorbed by the atom 
for each absorption process, we get 

(5 .8 . 14) 
Equation (5 .8 . 14) has the correct dimension [ 1 j(M2jT)](M2L2j T2)T = L2 if 
we recognize that a = e2 jhc � 1 / 137 (dimensionless) and 8(En - Ei - hw) = 
(1j1i)8(wni - w), where 8(wni - w) has time dimension T. 
E lectric Dipole Approximation 

The electric dipole approximation (E1 approximation) is based on the fact that 
the wavelength of the radiation field is far longer than the atomic dimension, so 
that the series (remember wjc = 1/x) 

ei(wjc)ft·x = 1 + i w ft • X  + . . . c (5 .8 . 15) 
can be approximated by its leading term, 1 .  The validity of this approximation for 
a light atom is explained as follows: First, the 1iw of the radiation field must be of 
the order of atomic level spacing, so 

This leads to 

In other words, 

Ze2 Ze2 nw '""' '""' --(ao/Z) Ratom 

c chRatom - = x '"""' -----::--w Ze2 
137Ratom 

z 

1 z -R t '""' - � 1 X a om 137 � 

(5 .8 . 16) 

(5 .8 . 17) 

(5 .8. 1 8) 
for light atoms (small Z). Because the matrix element of x is of order Ratom, that 
of x2 is of order Ritom' and so on, we see that the approximation of replacing 
(5 .8. 15) by its leading term is an excellent one. 
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Now we have 

(n jei(wjc)(fi·X)e • p j i ) --+ e • (n jp j i ) .  (5. 8. 1 9) 
In particular, we take e along the x-axis (and ft along the z-axis). We must calcu
late (n l px l i ) .  Using 

we have 

ifipx [x, Ho] = -- , m 

m (n lPx i i )  = ifi (n j [x, Ho] i i )  
= imWni (n jx j i ) .  

(5 .8.20) 

(5 .8 .21) 

Because of the approximation of the dipole operator, this approximation scheme is 
called the electric dipole approximation. We may here recall [see (3 . 1 1 .39)] the 
selection rule for the dipole matrix element. Since x is a spherical tensor of rank 
1 with q = ±1 , we must have m' - m = ±1 , j j' - j I =  0, 1 (no 0 --+  0 transition). 
If e is along the y-axis, the same selection rule applies. On the other hand, if e is 
in the z-direction, q = 0; hence, m' = m. 

With the electric dipole approximation, the absorption cross section (5 .8 .14) 
now takes a simpler form upon our using (5 .8. 19) and (5 .8 .21) : 

(5.8.22) 
In other words, O"abs treated as a function of w exhibits a sharp 8-function-like 
peak whenever fiw corresponds to the energy-level spacing at w :::::: (En - Ei )/fi. 
Suppose J i ) is the ground state; then Wni is necessarily positive. Integrating 
(5 .8.22), we get 

J O"abs (w)dw = L 4n2awni I (n Jx J i )  1 2. n 
In atomic physics we define oscillator strength, fni , as 

2mWni . 2 fni = -fi-J (n Jx J z ) J  . 

(5 .8.23) 

(5.8.24) 
It is then straightforward (consider [x , [x , Ho]]) to establish the Thomas-Reiche
Kuhn sum rule, 

(5 .8 .25) 
n 

In terms of the integration over the absorption cross section, we have 

(5 .8.26) 
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Notice how h has disappeared. Indeed, this is just the oscillation sum rule already 
known in classical electrodynamics (Jackson 1975, for instance) . Historically, this 
was one of the first examples of how "new quantum mechanics" led to the correct 
classical result. This sum rule is quite remarkable because we did not specify in 
detail the form of the Hamiltonian. 

Photoelectric Effect 

We now consider the photoelectric effect-that is, the ejection of an electron 
when an atom is placed in the radiation field. The basic process is considered 
to be the transition from an atomic (bound) state to a continuum state E > 0. 
Therefore, j i )  is the ket for an atomic state, while jn) is the ket for a continuum 
state, which can be taken to be a plane-wave state lkJ ) ,  an approximation that is 
valid if the final electron is not too slow. Our earlier formula for aabs (w) can still 
be used, except that we must now integrate 8(wni - w) together with the density 
of final states p(En) . 

In fact, we calculated the density of states for a free particle in Section 2.5. 
To review, our basic task is to calculate the number of final states per unit energy 
interval. As we will see in a moment, this is an example where the matrix element 
depends not only on the final state energy but also on the momentum direction. 
We must therefore consider a group of final states with both similar momentum 
directions and similar energies. 

To count the number of states, it is convenient to use the box normalization 
convention for plane-wave states. We consider a plane-wave state normalized if, 
when we integrate the square modulus of its wave function for a cubic box of 
side L, we obtain unity. Furthermore, the state is assumed to satisfy the periodic 
boundary condition with periodicity of the side of the box. The wave function 
must then be of the form 

(5 .8.27) 

where the allowed values of kx must satisfy 

2nnx 
kx = ----;;-- ' . . . ' (5 .8.28) 

with nx a positive or negative integer. Similar restrictions hold for ky and kz. 
Notice that as L -+  oo, kx , ky. and kz become continuous variables. 

The problem of counting the number of states is reduced to that of counting 
the number of dots in three-dimensional lattice space. We define n such that 

(5 .8 .29) 
As L -+ oo, it is a good approximation to treat n as a continuous variable; in fact 
it is just the magnitude of the radial vector in the lattice space. Let us consider 
a small-volume element such that the radial vector falls within n and n + dn and 
the solid angle element dQ; clearly, it is of volume n2 dn dQ. The energy of the 
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final-state plane wave is related to k f and hence to n; we have 

(5.8 .30) 

Furthermore, the direction of the radial vector in the lattice space is just the 
momentum direction of the final state, so the number of states in the interval 
between E and E + dE with direction into dQ being kt is (remember dE = 
(1i2ktfme)dkj) given by* 

( L ) 3 m = - -ikt dE dQ. 
2n 1i 

(5.8.3 1 )  

We can now put everything together to obtain an expression for the differential 
cross section for the photoelectric effect: 

da
dQ (5 .8.32) 

To be specific, let us consider the ejection of a K shell (the innermost shell) 
electron caused by absorption of light. The initial-state wave function is essen
tially the same as the ground-state hydrogen atom wave function, except that the 
Bohr radius ao is replaced by ao I Z. Thus 

(5 .8.33) 

Integrating by parts, we can pass V to the left side. Furthermore, 

e ,  [V ei(w/c)(fi·x)] = O (5.8 .34) 

because e is perpendicular to ft. On the other hand, V acting on e-ikrx brings 
down -ik f ,  which can be taken outside the integral. Thus, to evaluate (5.8.33), 
all we need to do is take the Fourier transform of the atomic wave function with 
respect to 

(5.8.35) 

*This is equivalent to taking one state per cube d3 xd3 p j(2n:1i )3 in phase space. 
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FIGURE 5.12 Polar coordinate system with € and fi along the x- and z-axes, respec
tively, and kt = (k f sine cos ¢, k f sine sin¢, k 1 cos e). 

The final answer is (see Problem 5.41 of this chapter for the Fourier transform of 
the hydrogen atom wave function) 

dcr 2 2 (e - k1)2 z5 1 
dQ 

= 3 e kJ mew ag [(Z2jaJ) + q2]4 . (5 .8.36) 

If we introduce the coordinate system shown in Figure 5 . 12, we can write the 
differential cross section in terms of e and <P using 

(5 .8.37) 

5.9 . ENERGY SHIFT AND DECAY WIDTH 

Our considerations so far have been restricted to the question of how states other 
than the initial state get populated. In other words, we have been concerned with 
the time development of the coefficient Cn(t) with n =I i .  A question naturally 
arises: What happens to Ci (t) itself? 

To avoid the effect of a sudden change in the Hamiltonian, we propose to 
increase the perturbation very slowly. In the remote past (t --+ -oo), the time
dependent potential is assumed to be zero. We then gradually tum on the pertur
bation to its full value; specifically, 

(5.9. 1 ) 
where V i s  assumed to be  constant and ry is small and positive. At the end of 
the calculation, we let ry --+  0 (see Figure 5 . 13), and the potential then becomes 
constant at all times. 
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FIGURE 5.13 Plot of V(t) versus t in the adiabatic (slow-tum-on) picture. 

In the remote past, we take this time to be - oo, so the state ket in the interaction 
picture is assumed to be l i ) .  Our basic aim is to evaluate ci (t). However, before 
we do that, let us make sure that the old formula of the golden rule (see Section 
5.7) can be reproduced using this slow-turn-on method. For cn(t) with n # i ,  we 
have [using (5.7 . 17)] 

c�l )(t) = -i Vni lim 1 t 
eTJt' eiwni t' dt' h to--+ -oo to 

-i eTJt+iwni t 
= - Vni . h rJ + l Wni 

(5 .9.2) 

To lowest nonvanishing order, the transition probability is therefore given by 

(5.9.3) 

or 

(5 .9.4) 

We now let rJ --+ 0. Clearly, it is all right to replace eTJt by unity, but note that 

(5.9.5) 

This leads to the golden rule, 

(5.9.6) 
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Encouraged by this result, let us calculate cj0) , cj1 ) , and cf) , again using (5 .7. 17) . 
We have 

c�O) = 1 l 

(5.9.7) 

Thus, up to second order, we have 

c · (t) "' 1 --V.· · e17 + - I V.· · I - + - " -�___:_ __ _ 

i t (-i ) 2 2 e211t (-i ) 1 Vmi l2e217t z - -n 11  zz n z z 2172 n �21J(Ei - Em + in1J) . 
(5.9.8) 

Now consider the time derivative of Ci [dci (t)jdt = ci ] , which we have from 
(5 .9.8). Upon dividing by Ci and letting 1J -+ 0 (thus replacing el1t and e211t by 
unity), we get 

-i ( -i )2 I Vii 12 ( -i ) 1 Vmi l2 -V.· · + - -- + -n z z n 17 n � (Ei - Em + in17) m=ftz 
(5.9.9) 

Expansion (5 .9.9) is formally correct up to second order in V. Note here that 
ci (t)fci (t) is now independent of t. Equation (5.9.9) is a differential equation that 
is to hold at all times. Now that we have obtained this, it is convenient to renor
malize Ci so that ci (O) = 1 .  We now try the ansatz 

(5.9. 10) 

with 11i constant (in time) but not necessarily real. Clearly (5.9. 10) is consistent 
with (5 .9.9) because the right-hand side of (5.9. 10) is constant. We can see the 
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physical meaning of D..i by noting that e-
i.6.; t/n l i )  in the interaction picture im

plies e-i.6.;t/n-iE; t/n l i )  in the Schrodinger picture. In other words, 

(5.9 . 1 1 )  

as a result of  perturbation. That is, we have calculated the level shift using time
dependent perturbation theory. Now expand, as usual, 

and compare (5 .9.10) with (5.9.9); we get to first order: 

(1 ) D..i = Vii . 

(5.9 . 12) 

(5.9. 13) 

But this is just what we expect from t-independent perturbation theory. Before 
we look at D..�2), recall that 

Thus 

1 1 
lim --.- =  Pr. - - in8(x). 
e-+OX + l 8  X 

Im(D..f)) = -n L I Vmi I28(Ei - Em). 
mf.i 

(5.9. 14) 

(5.9. 15a) 

(5 .9 . 15b) 

But the right-hand side of (5.9. 15b) is familiar from the golden rule, so we can 
identify 

(5 .9. 16) 

Coming back to ci (t), we can write (5 .9. 10) as 

Ci (t) = e-(i/rz)[Re(.6.;)tJ+(l/rz)[Im(.6.; )tJ . (5 .9. 17) 

If we define 

(5 .9. 18) 

then 

(5 .9 . 19) 

Therefore, ri characterizes the rate at which state l i )  disappears. 
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It is worth checking the probability conservation up to second order in V for 
small t: 

(5.9.20) 

where (5 .9 . 16) has been used. Thus the probabilities for finding the initial state 
and all other states add up to 1 .  To put it another way, the depletion of state l i )  is 
compensated by the growth of states other than I i ) .  

To summarize, the real part of the energy shift is what we usually associate 
with the level shift. The imaginary part of the energy shift is, apart from -2 [see 
(5.9. 18)] , the decay width. Note also that 

where Ti is the mean lifetime of state l i )  because 

To see why r i is called width, we look at the Fourier decomposition 

Using the Fourier inversion formula, we get 

1 if(E) i 2 
ex {E - [Ei + Re(�i)]}2 + rf /4 . 

(5.9.21) 

(5 .9.22) 

(5 .9.23) 

(5 .9 .24) 

Therefore, ri has the usual meaning of full width at half maximum. Notice that 
we get the time-energy uncertainty relation from (5.9.21) : 

(5.9.25) 
where we identify the uncertainty in the energy with ri and the mean lifetime 
with �t. 

Even though we discussed the subject of energy shift and decay width using 
the constant perturbation V obtained as the limit of (5.9. 1 ) when rJ ---+ 0, we can 
easily generalize our considerations to the harmonic perturbation case discussed 
in Section 5. 7. All we must do is to let 

(5 .9.26) 
in (5 .9.2), (5.9.8), and (5 .9 . 15), and so on. The quantum-mechanical description 
of unstable states we have developed here was originally proposed by Wigner and 
Weisskopf in 1930. 
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Problems 

5.1 A simple harmonic oscillator (in one dimension) is subjected to a perturbation 

A.H1 = bx, 

where b is a real constant. 

(a) Calculate the energy shift of the ground state to lowest nonvanishing order. 

(b) Solve this problem exactly and compare with your result obtained in (a). You 
may assume without proof that 

(Un1 1x lun ) = � 1i (.Jn+l8n' n+l + .Jri8n' n-d· 2mw ' ' 

5.2 In nondegenerate time-independent perturbation theory, what is the probability of 
finding in a perturbed energy eigenstate ( lk) )  the corresponding unperturbed eigen
state ( lk(O) ) )? Solve this up to terms of order g2 . 

5.3 Consider a particle in a two-dimensional potential 

Vo = {0
' 00, 

for 0 _::: x _::: L,  0 _::: y _::: L 
otherwise. 

Write the energy eigenfunctions for the ground state and the first excited state. We 
now add a time-independent perturbation of the form 

v - {
A.xy, 

1 - 0, 
for 0 _::: x _::: L, 0 .:S y _::: L 
otherwise. 

Obtain the zeroth-order energy eigenfunctions and the first-order energy shifts for 
the ground state and the first excited state. 

5.4 Consider an isotropic harmonic oscillator in two dimensions. The Hamiltonian is 
given by 

P2 p2 mw2 
Ho = .......£ + � + -- (x2 + y2). 

2m 2m 2 
(a) What are the energies of the three lowest-lying states? Is there any degeneracy? 

(b) We now apply a perturbation 

V = 8mw2xy, 

where 8 is a dimensionless real number much smaller than unity. Find the 
zeroth-order energy eigenket and the corresponding energy to first order [that 
is, the unperturbed energy obtained in (a) plus the first-order energy shift] for 
each of the three lowest-lying states. 

(c) Solve the Ho + V problem exactly. Compare with the perturbation results ob
tained in (b). [You may use (n' lx ln) = ,J1ij2mw(.Jn+l8n',n+l + ,jn8n',n-1 ).] 

5.5 Establish (5 . 1 .54) for the one-dimensional harmonic oscillator given by (5. 1 .50) 
with an additional perturbation V = �smw2x2 . Show that all other matrix elements 
Vko vanish. 
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5.6 (From Merzbacher 1970.) A slightly anisotropic three-dimensional harmonic os
cillator has w2 � Wx :::::: wy. A charged particle moves in the field of this oscillator 
and is at the same time exposed to a uniform magnetic field in the x-direction. As
suming that the Zeeman splitting is comparable to the splitting produced by the 
anisotropy, but small compared to nw, calculate to first order the energies of the 
components of the first excited state. Discuss various limiting cases. 

5.7 A one-electron atom whose ground state is nondegenerate is placed in a uniform 
electric field in the z-direction. Obtain an approximate expression for the induced 
electric dipole moment of the ground state by considering the expectation value 
of ez with respect to the perturbed-state vector computed to first order. Show that 
the same expression can also be obtained from the energy shift ,6. = -a/E/2/2 of 
the ground state computed to second order. (Note: a stands for the polarizability.) 
Ignore spin. 

5.8 Evaluate the matrix elements (or expectation values) given below. If any vanishes, 
explain why it vanishes using simple symmetry (or other) arguments. 
(a) (n = 2,l  = 1 ,m = 0/x /n = 2,l  = O,m = 0) . 
(b) (n = 2, l = l ,m  = O/p2 /n = 2,l = O,m = 0) . 
[In (a) and (b), /nlm) stands for the energy eigenket of a nonrelativistic hydrogen 
atom with spin ignored.] 
(c) (L2 )  for an electron in a central field with j = �. m = �. l = 4. 

(d) (singlet,ms = 0 /S�e-l - S�e+l /triplet,ms = 0) for an s-state positronium. 
(e) (S(ll • s<2l ) for the ground state of a hydrogen molecule. 

5.9 Ap-orbital electron characterized by /n, l  = l ,m  = ±1 ,0) (ignore spin) is subjected 
to a potential 

V = A.(x2 - i) (A. = constant). 

(a) Obtain the "correct" zeroth-order energy eigenstates that diagonalize the per
turbation. You need not evaluate the energy shifts in detail, but show that the 
original threefold degeneracy is now completely removed. 

(b) Because V is invariant under time reversal and because there is no longer any 
degeneracy, we expect each of the energy eigenstates obtained in (a) to go 
into itself (up to a phase factor or sign) under time reversal. Check this point 
explicitly. 

5.10 Consider a spinless particle in a two-dimensional infinite square well: 

v = {0, 
00, 

for 0 ::S x ::S a, 0 ::S y ::S a 
otherwise. 

(a) What are the energy eigenvalues for the three lowest states? Is there any de
generacy? 

(b) We now add a potential 

V1 = A.xy, 0 ::S x ::S a,O ::S y ::S a. 

Taking this as a weak perturbation, answer the following: 
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(i) Is the energy shift due to the perturbation linear or quadratic in 'A for each of 
the three states? 

(ii) Obtain expressions for the energy shifts of the three lowest states accurate to 
order 'A. (You need not evaluate integrals that may appear.) 

(iii) Draw an energy diagram with and without the perturbation for the three energy 
states. Make sure to specify which unperturbed state is connected to which 
perturbed state. 

5.11 The Hamiltonian matrix for a two-state system can be written as 

Clearly, the energy eigenfunctions for the unperturbed problems ('A = 0) are given 
by 

A-(0) _ (0) 
'1-'2 - 1 0 

(a) Solve this problem exactly to find the energy eigenfunctions 1/11 and 1/!2 and the 
energy eigenvalues Er and E2. 

(b) Assuming that 'A I� I  « I E� - Eg l ,  solve the same problem using time
independent perturbation theory up to first order in the energy eigenfunctions 
and up to second order in the energy eigenvalues. Compare with the exact 
results obtained in (a). 

(c) Suppose the two unperturbed energies are "almost degenerate"; that is, 

Show that the exact results obtained in (a) closely resemble what you would 
expect by applying degenerate perturbation theory to this problem with E� set 
exactly equal to Eg. 

5.12 (This is a tricky problem because the degeneracy between the first state and the 
second state is not removed in first order. See also Gottfried 1966, p. 397, Problem 
1 .) This problem is from Schiff 1968, p. 295, Problem 4. A system that has three 
unperturbed states can be represented by the perturbed Hamiltonian matrix 

where E2 > E 1 · The quantities a and b are to be regarded as perturbations that 
are of the same order and are small compared with E2 - Er . Use the second-order 
nondegenerate perturbation theory to calculate the perturbed eigenvalues. (Is this 
procedure correct?) Then diagonalize the matrix to find the exact eigenvalues. Fi
nally, use the second-order degenerate perturbation theory. Compare the three re
sults obtained. 

5.13 Compute the Stark effect for the 2Sr;2 and 2Pr;2 levels of hydrogen for a field t: suf
ficiently weak that ewo is small compared to the fine structure, but take the Lamb 
shift 8 (8 = 1 ,057 MHz) into account (that is, ignore lP3;2 in this calculation). 
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Show that for e8ao « 8 ,  the energy shifts are quadratic in 8, whereas for eeao » 8, 
they are linear in 8. (The radial integral you need is (2s l r l2p) = 3J3ao .)  Briefly 
discuss the consequences (if any) of time reversal for this problem. This problem 
is from Gottfried 1966, Problem 7-3. 

5.14 Work out the Stark effect to lowest nonvanishing order for the n = 3 level of the hy
drogen atom. Ignoring the spin-orbit force and relativistic correction (Lamb shift), 
obtain not only the energy shifts to lowest nonvanishing order but also the corre
sponding zeroth-order eigenket. 

5.15 Suppose the electron had a very small intrinsic electric dipole moment analogous to 
the spin-magnetic moment (that is, Jlei proportional to a). Treating the hypothetical 

-Jlei • E interaction as a small perturbation, discuss qualitatively how the energy 
levels of the Na atom (Z = 1 1) would be altered in the absence of any external 
electromagnetic field. Are the level shifts first order or second order? Indicate ex
plicitly which states get mixed with each other. Obtain an expression for the energy 
shift of the lowest level that is affected by the perturbation. Assume throughout that 
only the valence electron is subjected to the hypothetical interaction. 

5.16 Consider a particle bound to a fixed center by a spherically symmetrical potential 
V(r). 
(a) Prove 

for all s-states, ground and excited. 

(b) Check this relation for the ground state of a three-dimensional isotropic os
cillator, the hydrogen atom, and so on. (Note: This relation has actually been 
found to be useful in guessing the form of the potential between a quark and 
an antiquark.) 

5.17 (a) Suppose the Hamiltonian of a rigid rotator in a magnetic field perpendicular to 
the axis is of the form (Merzbacher 1970, Problem 17-1) 

AL2 + BLz + CLy 

if terms quadratic in the field are neglected. Assuming B » C, use perturbation 
theory to lowest nonvanishing order to get approximate energy eigenvalues. 

(b) Consider the matrix elements 

(n'l' m[m� I (3z2 - r2) 1nlmzms ) ,  
(n'l' m[m� lxy lnlmzms) 

of a one-electron (for example, alkali) atom. Write the selection rules for !:!..!, 
l:!..mz, and l:!..ms . Justify your answer. 

5.18 Work out the quadratic Zeeman effect for the ground-state hydrogen atom [ (xiO) = 
(lf.;;;;;i)e-rfao ] due to the usually neglected e2A2j2mec2-term in the Hamilto

nian taken to first order. Write the energy shift as 

!:!.. = - �xB2 
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and obtain an expression for diamagnetic susceptibility, x .  The following definite 
integral may be useful: 

!aoo -ar n n ! e r dr = ---:tJ · 0 an 

5.19 (Merzbacher 1970, p. 448, Problem 1 1 .) For the He wave function, use 

3 3 [ -Zeff(rl + rz) J 1/f(xl , xz) = (Zefffna0 )exp ao 

with Zeff = 2 - {6 , as obtained by the variational method. The measured value of 
the diamagnetic susceptibility is 1 .  88 x w-6 cm3 /mole. 

Using the Hamiltonian for an atomic electron in a magnetic field, determine, 
for a state of zero angular momentum, the energy change to order B2 if the system 
is in a uniform magnetic field represented by the vector potential A = � B x r. 

Defining the atomic diamagnetic susceptibility x by E = - � x B2, calculate 
x for a helium atom in the ground state and compare the result with the measured 
value. 

5.20 Estimate the ground-state energy of a one-dimensional simple harmonic oscillator 
using 

as a trial function with f3 to be varied. You may use 

5.21 Estimate the lowest eigenvalue (A.) of the differential equation 

using the variational method with 

1/1 = {c(a - lx l ), 
0, 

for lx l  < a  
for lx l > a  

(a to be varied) 

as a trial function. (Caution: d 1/1 
j dx is discontinuous at x = 0.) Numerical data 

that may be useful for this problem are 

3 1;3 = 1 .442, s 113 = 1 .7 10, 32;3 = 2.080, n213 = 2. 145. 

The exact value of the lowest eigenvalue can be shown to be 1 .019. 

5.22 Consider a one-dimensional simple harmonic oscillator whose classical angular 
frequency is wo. For t < 0 it is known to be in the ground state. For t > 0 there is 
also a time-dependent potential 

V(t) = Fox coswt , 
where Fo is constant in both space and time. Obtain an expression for the expec
tation value (x} as a function of time using time-dependent perturbation theory 
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to lowest nonvanishing order. Is this procedure valid for w � wo? [You may use 

(n' \x \n} = J1ij2mwo(..JYl+I8n',n+l + .fo8n',n-1 ).] 
5.23 A one-dimensional harmonic oscillator is in its ground state for t < 0. For t � 0 it 

is subjected to a time-dependent but spatially uniform force (not potential!) in the 
x-direction, 

F(t) = Foe-tfr: . 

(a) Using time-dependent perturbation theory to first order, obtain the probability 
of finding the oscillator in its first excited state for t > 0. Show that the t --+ oo 
( r finite) limit of your expression is independent of time. Is this reasonable or 
surprising? 

(b) Can we find higher excited states? You may use 

(n' \x ln} = .jnj2mw(y'n8n',n- 1 + Jn+1"8n',n+I )· 
5.24 Consider a particle bound in a simple harmonic-oscillator potential. Initially (t < 

0), it is in the ground state. At t = 0 a perturbation of the form 

H'(x, t) = Ax2e-tfr: 
is switched on. Using time-dependent perturbation theory, calculate the probability 
that after a sufficiently long time (t » r ), the system will have made a transition to 
a given excited state. Consider all final states. 

5.25 The unperturbed Hamiltonian of a two-state system is represented by 

There is, in addition, a time-dependent perturbation ( 0 A. co
0
swt) V(t) = A. coswt (heal). 

(a) At t = 0 the system is known to be in the first state, represented by 

Using time-dependent perturbation theory and assuming that E? - E� is not 
close to ±hw, derive an expression for the probability that the system is found 
in the second state represented by 

as a function of t(t > 0). 
(b) Why is this procedure not valid when E? - E� is close to ±hw? 

5.26 A one-dimensional simple harmonic oscillator of angular frequency w is acted upon 
by a spatially uniform but time-dependent force (not potential) 

(For/w) F(t) = (r2 + t2) ' 

-00 < t < 00. 
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At t = -oo, the oscillator is known to be in the ground state. Using the time
dependent perturbation theory to first order, calculate the probability that the oscil
lator is found in the first excited state at t = +oo. 

Challenge for experts: F(t) is so normalized that the impulse 

f F(t)dt 

imparted to the oscillator is always the same-that is, independent of r ;  yet for 
r » 1 1  w, the probability for excitation is essentially negligible. Is this reasonable? 
[Matrix element of x :  (n' lx ln)  = (1i/2mw)112(..fiicv,n-1 + Jn+Ion',n+l ).] 

5.27 Consider a particle in one dimension moving under the influence of some time
independent potential. The energy levels and the corresponding eigenfunctions for 
this problem are assumed to be known. We now subject the particle to a traveling 
pulse represented by a time-dependent potential, 

V(t) = A8(x - ct).  

(a) Suppose that at t = -oo the particle is known to be in the ground state whose 
energy eigenfunction is (x l i )  = u i (x). Obtain the probability for finding the 
system in some excited state with energy eigenfunction (x I f) = u 1 (x) at t = 
+oo. 

(b) Interpret your result in (a) physically by regarding the 8-function pulse as a 
superposition of harmonic perturbations; recall 

8(x - ct) = -- dweiw[(xfc)-tl . 
1 100 

2rrc _00 
Emphasize the role played by energy conservation, which holds even quantum
mechanically as long as the perturbation has been on for a very long time. 

5.28 A hydrogen atom in its ground state [(n , l,m) = ( 1 ,0,0)] is placed between the 
plates of a capacitor. A time-dependent but spatially uniform electric field (not 
potential !) is applied as follows: 

E = { �oe-tfr '  
for t <  0 
for t > 0. (Eo in the positive z-direction) 

Using first-order time-dependent perturbation theory, compute the probability for 
the atom to be found at t » r in each of the three 2p states: (n , l ,m) = (2, 1 ,  ± 1  orO). 
Repeat the problem for the 2s state: (n , l ,m) = (2, 0,0). You need not attempt to 
evaluate radial integrals, but perform all other integrations (with respect to angles 
and time). 

5.29 Consider a composite system made up of two spin ! objects. For t < 0, the Hamil
tonian does not depend on spin and can be taken to be zero by suitably adjusting 
the energy scale. For t > 0, the Hamiltonian is given by 

H = ( :�) S 1  • Sz. 

Suppose the system is in I + -) for t ::::; 0. Find, as a function of time, the probability 
for its being found in each of the following states I + +) ,  I + -) ,  I - +) ,  and I - - ) : 
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(a) By solving the problem exactly. 

(b) By solving the problem assuming the validity of first-order time-dependent 
perturbation theory with H as a perturbation switched on at t = 0. Under what 
condition does (b) give the correct results? 

5.30 Consider a two-level system with £1 < E2 . There is a time-dependent potential 
that connects the two levels as follows: 

V iwt 12 = ye , V21 = ye-iwt (y real). 

At t = 0, it is known that only the lower level is populated-that is, q (0) = 1 , 
Q(O) = 0. 

(a) Find /cJ (t) /2 and /c2(t)/2 for t >  0 by exactly solving the coupled differential 
equation 

2 
ihck = LVkn (t)eiwkn 1cn , (k = 1 , 2). 

n=l 

(b) Do the same problem using time-dependent perturbation theory to lowest non
vanishing order. Compare the two approaches for small values of y .  Treat the 
following two cases separately: (i) w very different from w21 and (ii) w close 
to W2J · 

Answer for (a): (Rabi's formula) 

5.31 Show that the slow-tum-on of perturbation V --7 Ve'�1 (see Baym 1969, p. 257) can 
generate a contribution from the second term in (5.7.36). 

5.32 (a) Consider the positronium problem you solved in Chapter 3, Problem 3.4. In 
the presence of a uniform and static magnetic field B along the z-axis, the 
Hamiltonian is given by 

Solve this problem to obtain the energy levels of all four states using degener
ate time-independent perturbation theory (instead of diagonalizing the Hamil
tonian matrix). Regard the first and second terms in the expression for H as Ho 
and V, respectively. Compare your results with the exact expressions l singlet m = 0 

for 
triplet m = 0 

for triplet m = ± 1 ,  

where triplet (singlet) m = 0 stands for the state that becomes a pure triplet 
(singlet) with m = 0 as B --7 0. 
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(b) We now attempt to cause transitions (via stimulated emission and absorption) 
between the two m = 0 states by introducing an osciiiating magnetic field of the 
"right" frequency. Should we orient the magnetic field along the z-axis or along 
the x- (or y-) axis? Justify your choice. (The original static field is assumed to 
be along the z-axis throughout.) 

(c) Calculate the eigenvectors to first order. 

5.33 Repeat Problem 5.32, but with the atomic hydrogen Hamiltonian 

H = AS1 · S2 + ( eB ) S1 · B, mec 

where in the hyperfine term, AS1 • S2, S1 is the electron spin and S2 is the proton 
spin. [Note that the problem here has less symmetry than the positronium case] . 

5.34 Consider the spontaneous emission of a photon by an excited atom. The process 
is known to be an El transition. Suppose the magnetic quantum number of the 
atom decreases by one unit. What is the angular distribution of the emitted photon? 
Also discuss the polarization of the photon, with attention to angular-momentum 
conservation for the whole (atom plus photon) system. 

5.35 Consider an atom made up of an electron and a singly charged (Z = 1) triton eH). 
Initially the system is in its ground state (n = 1, l = 0). Suppose the system un
dergoes beta decay, in which the nuclear charge suddenly increases by one unit 
(realistically by emitting an electron and an antineutrino). This means that the tri
tium nucleus (called a triton) turns into a helium (Z = 2) nucleus of mass 3 eHe). 

(a) Obtain the probability for the system to be found in the ground state of the 
resulting helium ion. The hydrogenic wave function is given by 

Vrn=l , l=O(X) = J;r ( �) 3/2 
e-Zrfao . 

(b) The available energy in tritium beta decay is about 1 8  ke V, and the size of 
the 3He atom is about lA. Check that the time scale T for the transformation 
satisfies the criterion of validity for the sudden approximation. 

5.36 Show that An (R) defined in (5.6.23) is a purely real quantity. 

5.37 Consider a neutron in a magnetic field, fixed at an angle () with respect to the z-axis, 
but rotating slowly in the ¢-direction. That is, the tip of the magnetic field traces 
out a circle on the surface of the sphere at "latitude" n - () .  Explicitly calculate the 
Berry potential A for the spin-up state from (5.6.23), take its curl, and determine 
Berry's Phase Y+ · Thus, verify (5.6.42) for this particular example of a curve C. 
(For hints, see "The Adiabatic Theorem and Berry's Phase" by B.  R.  Holstein, Am. 
J. Phys. 51 (1989) 1079.) 

5.38 The ground state of a hydrogen atom (n = 1, l = 0) is subjected to a time-dependent 
potential as follows: 

V(x, t) = Vo cos(kz - wt). 

Using time-dependent perturbation theory, obtain an expression for the transition 
rate at which the electron is emitted with momentum p. Show, in particular, how 



Problems 385 

you may compute the angular distribution of the ejected electron (in terms of e and 
¢ defined with respect to the z-axis). Discuss briefly the similarities and the differ
ences between this problem and the (more realistic) photoelectric effect. (Note: For 
the initial wave function, see Problem 5.35. If you have a normalization problem, 
the final wave function may be taken to be 

,, , (x) = (-1
-) eip·xfh 

'1' [  012 

with L very large, but you should be able to show that the observable effects are 
independent of L.) 

5.39 A particle of mass m constrained to move in one dimension is confined within 
0 < x < L by an infinite-wall potential 

V = oo for x < O,x > L, 

V = 0 for 0 .::=: x .::=: L.  

Obtain an expression for the density of states (that is, the number of states per unit 
energy interval) for high energies as a function of E. (Check your dimension!) 

5.40 Linearly polarized light of angular frequency w is incident on a one-electron 
"atom" whose wave function can be approximated by the ground state of a three
dimensional isotropic harmonic oscillator of angular frequency w0. Show that the 
differential cross section for the ejection of a photoelectron is given by 

da 
_ 
4cdi2k} r;f:exp { --fi [k2 + (�)2] } 

dQ - m2wwo V � mwo f c 

x sin2 e cos2 ¢ exp [ (���) cos e l 
provided the ejected electron of momentum nk f can be regarded as being in a 
plane-wave state . .(The coordinate system used is shown in Figure 5. 12.) 

5.41 Find the probability l¢(p') l2d3 p' of the particular momentum p' for the ground
state hydrogen atom. (This is a nice exercise in three-dimensional Fourier trans
forms. To perform the angular integration, choose the z-axis in the direction of p.) 

5.42 Obtain an expression for r(2p -+ 1s) for the hydrogen atom. Verify that it is equal 
to 1 .6 X 10-9 S. 
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6 Scattering Theory 

This chapter is devoted to the theory of scattering processes. These are processes 
in which a continuum initial state is transformed into a continuum final state, 
through the action of some potential that we will treat as a time-dependent pertur
bation. Such processes are of enormous significance. They are the primary way in 
which we learn experimentally about distributions in mass, charge, and, in gen
eral, potential energy for molecular, atomic, and subatomic systems. 

6.1 . SCATTERING AS A TIME-DEPENDENT PERTURBATION 

386 

We assume that the Hamiltonian can be written as 

where 

H = Ho + V(r), 
p2 

Ho = -2m 
stands for the kinetic-energy operator, with eigenvalues 

(6. 1 . 1 ) 
(6. 1 .2) 

(6. 1 .3) 

We denote the plane-wave eigenvectors of Ho by lk) ,  and we assume that the 
scattering potential V (r) is independent of time. 

In our treatment we recognize that an incoming particle will "see" the scatter
ing potential as a perturbation that is "turned on" only during the time that the 
particle is in the vicinity of the scatterer. Therefore, we can analyze the problem 
in terms of time-dependent perturbation theory in the interaction picture. 

To review (see Section 5.7), the state la, to ; to ) J evolves into the state la, t ; to ) J 
according to 

la, t ; to ) I = UJ(t , to) la, to ; to ) J , 
where U 1 (t, to) satisfies the equation 

a i1i-UJ (t, to) = VJ (t)UJ (t , to) at 

(6. 1 .4) 

(6. 1 .5) 
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with UI(to , to) = 1 and V1 (t) = exp(iHotfh)V exp(-iHot/h) . The solution of this 
equation can be formally written as 

i lt I I I UJ (t, to) = 1 - - V1(t )U1(t , t0)dt . 1i to 
(6. 1 .6) 

Therefore, the "transition amplitude" for an initial state I i )  to transform into a 
final state I n ) , where both are eigenstates of Ho, is given by 

. l t l · I (n i UI (t, to) l i ) = Oni - -L(n j V Im) ezwnm t (m iUI(t1 , to) l i )dt1, 1i m to 
where (n l i )  = Oni and hwnm = En - Em . 

(6. 1 .7) 

To apply this formalism to scattering theory, we need to make some ad
justments. First, there is the normalization of the initial and final states. Equa
tion ( 6. 1 .  7) assumes discrete states, but our scattering states are in the continuum. 
We deal with this by quantizing our scattering states in a "big box"-a cube of 
side L.  In the coordinate representation, this gives 

1 ik·x (x lk) = L3/2 e ' (6. 1 .8) 

in which case (k1 lk) = Okk' , where the k take on discrete values. We will take 
L --+ oo at the end of any calculation. 

We also need to deal with the fact that both the intial and final states exist 
only asymptotically. That is, we need to work with both t --+ oo and to --+ -oo. 
We can take a hint from a first-order treatment of (6. 1 .7), in which case we set 
(m i UI (t1 , to) l i ) = Omi inside the integral: 

(n i UJ (t, to) l i )  = Oni - .£ (n j V I i )  [' eiwni t'dt1• 1i ito (6. 1 .9) 

In this case, as t --+ oo we saw a "transition rate" emerge as Fermi's golden rule. 
So, in order to also accommodate to --+ -oo, we define a matrix T as follows: 

. lt l · I I (n i UJ (t, to) l i )  = Oni - p;Tni e1Wni t +st dt1, 
to 

(6. 1 . 10) 

where c > 0 and t « ( 1 j c). These conditions ensure that est' is close to unity as 
t --+ oo and that the integrand goes to zero as to --+ -oo. We just need to make 
sure that we take the limit c --+  0 first, before we take t --+ +oo. 

We can now define the scattering (or S) matrix in terms of the T matrix: 

Sni = lim [ lim (n l U1(t, -oo) l i )J = Oni - .£ Tni 100 eiwni t' dt1 t-+oo s-+0 1i -oo 

= Oni - 2ni8(En - Ei)Tni · (6. 1 . 1 1) 

Clearly, the S matrix consists of two parts. One part is that in which the final state 
is the same as the initial state. The second part, governed by the T matrix, is one 
in which some sort of scattering occurs. 
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Transition Rates and Cross Sections 

Proceeding as in Section 5. 7, we define the transition rate as 

d w(i --+ n) = dt \ (n !UJ (t, -oo) \ i ) \2 , 

where for ! i )  i= in ) we have 

i 1( , I I i eiWni f+cf (n \ U1(t, -oo) \ i )  = --Tni ezwn; t +ct dt' = -;:Tni -. ---
li _00 n lWni + 8  

and therefore 

d [ 1 e2ct ] 1 28 e2ct w(i -+ n) = - 2 ITni l 2 2 2 = 2 ITni l 2 2 2 . dt 1i (1) . + 8 1i (1) . + 8 nz nz 

(6. 1 . 12) 

(6. 1 . 13) 

We need to take 8 --+ 0 for finite values of t, and then t --+ oo. Clearly this will 
send w --+ 0 if Wni i= 0, so we see something like o(wnd emerging, which is not 
unexpected given ( 6. 1 . 1 1  ). In fact, because 

(6. 1 . 14) 

for 8 > 0, we have, for finite t, 

(6. 1 . 15) 

Therefore, the transition rate is 

(6. 1 . 16) 

which is independent of time, so the limit as t --+ oo is trivial. This expression 
is strikingly similar to Fermi's golden rule (5 .7.35), except that Vni has been re
placed by the more general Tni . We will see below how to determine the matrix 
elements Tni in general. First, however, let us continue with this discussion and 
use the transition rate to express the scattering cross section. 

As with Fermi's golden rule, in order to integrate over the final-state energy 
En , we need to determine the density of final states p(En) = !:lnj !:lEn . We will 
determine the density of states for elastic scattering, where \ i )  = \k) and In) = \k') 
and !k l = !k' l  = k. (Recall our discussion of the free particle in three dimensions, 
in Section 2.5.) For our "big box" normalization, we write 

1i2k'2 1i2 (2n ) 2 2 En = -- = - - In! 2m 2m L (6. 1 . 17) 



6 . 1  Scattering a s  a Time-Dependent Perturbation 389 

where n = nxi + ny} + n2k and nx,y,z are integers. Because n = (L/2n) lk' l  = 
(L j2n )k and L is large, we can think of In I as nearly continuous, and the number 
of states within a spherical shell of radius In I and thickness .6. lnl is 

dQ /::in = 4:rr ln i2!:J.. In l x - , 
4n 

(6. 1 . 18) 

taking into account the fraction of solid angle represented by the final-state wave 
vector k. Therefore, 

.6.n m ( L ) 2 mk ( L ) 3 
p(En) =  -- = 2 - ln ldQ = 2 - dQ, .6. En 1i 2n 1i 2n 

and after integrating over final states, the transition rate is given by 

(6. 1 . 19) 

(6. 1 .20) 

We use the concept of cross section to interpret the transition rate in scattering 
experiments. That is, we determine the rate at which particles are scattered into a 
solid angle d Q from a "beam" of particles with momentum 1ik. The speed of these 
particles is v = 1ikjm, so the time it takes for a particle to cross the "big box" is 
Ljv. Thus the flux in the particle beam is ( 1jL2) -7- (Ljv) = vjL3 . Indeed, the 
probability flux (2.4. 16) for the wave function (6. 1 .8) becomes ( 1i ) k v j(x, t) = - 3 = 3 · m L L 

(6. 1 .2 1 )  

The cross section da i s  simply defined as the transition rate divided by  the flux. 
Putting this all together, we have 

(6. 1 .22) 

The job now before us is to relate the matrix elements Tni to the scattering poten
tial distribution V(r) . 
Solving for the T Matrix 

We return to the definition of the T matrix. From (6. 1 . 1 0) and (6. 1 . 13) we have 

(6. 1 .23) 

We can also return to (6. 1 .7). Writing Vnm = (n i V Im) , we have 

(n i UJ (t, -oo) j i )  = Oni - !_ L Vnm i t 
eiwnmt' (m iUJ (t' , -oo) i i )dt' . (6. 1 .24) 1i -00 m 
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Now insert (6. 1 .23) into the integrand of (6. 1 .24) . This results in three terms: the 
first is Oni , and the second looks just like ( 6 .1 .23) but with Tni replaced with Vni . 
The third term is 

(6. 1 .25) 

The integral is then carried out, and since Wnm + Wmi = Wni , the result can be taken 
outside the summation. Gathering terms and comparing the result to (6. 1 .23), we 
discover the following relation: 

1 L Tmi L Tmi Tni = Vni + - Vnm . 
= Vni + Vnm . · 1i -w · + z s  E- - E + z hs m me m 1 m (6. 1 .26) 

This is an inhomogeneous system of linear equations that can be solved for the 
values Tni , in terms of the known matrix elements Vnm . It is convenient to define 
a set of vectors 1 1/r(+) ) in terms of components in some basis l j ) ,  so that 

Tni = L(n i V I j ) (j lo/(+)) = (n i V Io/(+) ) .  
j 

(6. 1 .27) 

(The choice of notation will be become apparent shortly.) Therefore, (6. 1 .26) be
comes 

(6. 1 .28) 

Because this must be true for all In ) , we have an expression for the I 1jr< +) ) , namely 

or 

= l i )  +'"""' 1 
. lm) (m i V Io/(+) ) � Ei - Ho+ zhs 

1 1/r(+) ) = l i )  + 1 
. 

V lo/(+) ) .  Ei - Ho+ z hs (6. 1 .29) 
This is known as the Lippmann-Schwinger equation. We will discuss the physi
cal meaning of (+) in a moment by looking at (x lo/(+) ) at large distances. Clearly, 
the states 1 1/r(+)) have a fundamental importance, allowing us to rewrite (6. 1 .22) 
as 

(6. 1 .30) 
We have introduced the matrix elements Tni simply as complex numbers, de

fined by (6. 1 . 10). However, we can also define an operator T whose matrix ele
ments (n i T i i )  = Tni by writing T l i )  = V lo/(+)) .  We can then operate on (6. 1 .29) 
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from the left with V, which leads to the succinct operator equation 

1 
T = V + V  T. Ei - Ho+ i1is (6. 1 . 3 1 ) 

To the extent that the scattering potential V is "weak," an order-by-order approx
imation scheme presents itself for the transition operator T: 

1 1 1 
T = V + V  . V + V  . V V + · · · . Ei - Ho+ r1is Ei - Ho+ r1is Ei - Ho+ i1is 

We will return to this approximation scheme in Section 6.3. (6. 1 .32) 

Scattering from the Future to the Past 

We can also picture the scattering process as evolving backward in time from a 
plane-wave state J i )  in the far future to a state Jn) in the distant past. In this case, 
we would write the formal solution (6. 1 .6) as 

T I I · i to 
UI(t, to) = 1 + h 

t 
V1 (t )UJ (t , t0)dt1 , (6. 1 .33) 

which is a form suitable for taking to --+ +oo. Our T matrix is then defined by 
regularizing the integral with the opposite sign exponential: 

i itO . I I (n !UJ (t, to) J i ) = Dni + p;Tni 
t 

e1wn;t -Et dt1• (6. 1 .34) 

In this case, the T operator is defined through a different set of states 1 1/1(-) ) 
through T J i )  = V l l/1(-) ) .  We are now prepared to study practical solutions to the 
scattering problem and gain insight into the different scattering states 1 1/1(+) ) and 
1 1/1( -) ) .  

6.2 . THE SCATTERING AMPLITUDE 

Let us  replace Tis in  the Lippman-Schwinger equation with s ; this will be handy, 
and it presents no difficulties because the only constraints on s are that it be pos
itive and that it be arbitrarily small. We will also continue to anticipate applica
tion to elastic scattering and use E for the initial (and final) energy. We therefore 
rewrite ( 6. 1 .29) as 

1 1/1(±) ) = J i )  + 1 . V l l/1(±) ) . E - Ho± z s  (6.2 . 1 ) 
We now confine ourselves to the position basis by multiplying (x i from the left 
and inserting a complete set of position-basis states. Thus 

(6.2.2) 
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This is an integral equation for scattering because the unknown ket 1 7/r (±)) ap
pears under an integral sign. To make progress, we must first evaluate the function 

I fi2 ( \ 1 \ I) G±(x,x ) = 2m x E - Ho ± is x · (6.2.3) 

Because the eigenstates of Ho are most easily evaluated in the momentum basis, 
we proceed by inserting complete sets of states \k) . (Recall that these are discrete 
states in our. normalization scheme.) We then write 

G±(X,x1) = !!!'.__ L L (x\k1) (k1 I 1 . I k") (k" \x1) .  2m E - Ho ± l s  k' k" 

Now let Ho act on (k1 \ , use 

(kl I 1 I k") - Dk'k" 
E - (1i2k12 j2m) ± is - E - (1i2k12 j2m) ± is 

and 

ik'·x I e (x\k ) = L3f2 
-ik"·x' II I e (k Jx ) = L312 ' 

and put E = 1i2k2 j2m. Equation (6.2.3) then becomes 

1 eik'·(x-x') G±(x,xl) = -L-3 L -k2=-_-k-=-12_±_i_s , k' 

(6.2.4) 

(6.2.5) 

(6.2.6) 

(6.2.7) 

(6.2.8) 

where we have once again redefined s . This sum is actually easiest to do if we 
take L --+  oo and convert it to an integral. Because ki = 2nni / L (i = x ,y , z), the 
integral measure becomes d3 k1 = (2n )3 j L 3 and we have 

(6.2.9) 

where we recognize that the integrand is even in k1• This last integral can be done 
using complex contour integration,* which thereby demonstrates the importance 
of s and its sign. 

*Any study of scattering theory naturally leads to circumstances that make use of complex inte
gration. This topic is covered in just about any textbook on mathematical physics-for example, 
Arfken and Weber ( 1995) or Byron and Fuller (1992). 
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lm(k') 

Re(k') 

FIGURE 6.1 Integrating the two terms in (6.2.9) using complex contours. The dots 
(crosses) mark the positions of the two poles for the + (-) form of G±(x,x') .  We replace 
the integral over a real-valued k' in (6.2.9) with one of the two contours in the figure, 
choosing the one on which the factor e±ik' lx-x' I tends to zero along the semicircle at 
large Im(k'). Thus, the only contribution to the contour integral is along the real axis. 

The integrand in (6.2.9) contains two terms, each with poles in the complex k' 
plane. That is, the denominator of the terms in brackets becomes zero when k'2 = 
k2 ± is, or k' = k ± is and k' = -k =f is . (Once again, we redefine s, keeping its 
sign intact.) Imagine an integration contour running along the Re(k') axis and then 
closed, with a semi-circle in either the upper or the lower plane. See Figure 6. 1 .  

For the first term, close the contour in the lower plane. In this case, the con
tribution to the integrand along the semicircle goes to zero exponentially with 
e-ik' lx-x' l as Im(k') -+ -oo. Closing in the lower plane encloses the pole at 
k' = -k - i s (k' = k - is) when the sign in front of s is positive (negative). The 
integral in (6.2.9) is just 2ni times the residue of the pole, with an overall minus 
sign because the contour is traced clockwise. That is, the integral of the first term 
in brackets becomes 

e-i(=j=k) lx-x' l (-)2ni (=t=k) = -nie±ik lx-x' l , 

=t=2k (6.2. 10) 

where we have let s -+ 0. The second term is treated the same way, except that 
the contour is closed in the upper plane, and its contribution to the integral turns 
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out to be the same as the first term. We therefore get our final result, namely 

1 e±iklx-x' l G±(x, x') = - - ---4n jx - x'j (6.2. 1 1) 

The reader may recognize that G ± is nothing more than Green's function for the 
Helmholtz equation, 

(6.2. 12) 
That is, for x f. x', G±(x,x') solves the eigenvalue equation HoG± = EG± . 

We can now rewrite ( 6.2.2) in a more explicit form, using ( 6.2. 1 1  ) ,  namely 

(6.2. 13) 

Notice that the wave function (x j 'ljr(±)) in the presence of the scatterer is writ
ten as the sum of the wave function for the incident wave (x j i )  and a term that 
represents the effect of scattering. As we will see explicitly later, at sufficiently 
large distances r ,  the spatial dependence of the second term is e ±ikr j r ,  provided 
that the potential is of finite range. This means that the positive solution (negative 
solution) corresponds to the plane wave plus an outgoing (incoming) spherical 
wave. This is in keeping with the origin of the sign in terms of scattering forward 
(backward) in time. In most physical problems we are interested in the positive so
lution because it is difficult to prepare a system satisfying the boundary condition 
appropriate for the negative solution. 

To see the behavior of (x j 'ljr(±) ) more explicitly, let us consider the spe
cific case where V is a local potential-that is, a potential diagonal in the x
representation. Potentials that are functions only of the position operator x belong 
to this category. In precise terms, V is said to be local if it can be written as 

(x' J V Ix") = V(x1)8(3)(x' - x"). (6.2. 14) 
As a result, we obtain 

(6.2. 15) 
The integral equation (6.2. 13) now simplifies as 

(6.2. 16) 
Let us attempt to understand the physics contained in this equation. The vector 
x is understood to be directed toward the observation point at which the wave 
function is evaluated. For a finite-range potential, the region that gives rise to 
a nonvanishing contribution is limited in space. In scattering processes we are 
interested in studying the effect of the scatterer (that is, the finite-range potential) 
at a point far outside the range of the potential. This is quite relevant from a 
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FIGURE 6.2 Finite-range scattering potential. The observation point P is where the 
wave function (x/1/J (±) )  is to be evaluated, and the contribution to the integral in (6.2. 16) 
is for lx'l less than the range of the potential, as depicted by the shaded region of the 
figure. 

practical point of view because we cannot put a detector at a short distance from 
the scattering center. Observation is always made by a detector placed very far 
away from the scatterer at r greatly larger than the range of the potential. In other 
words, we can safely set 

lx l » lx' l ,  
as depicted in Figure 6.2. 

Introducing r = lx l , r' = /x' / ,  and a = L(x, x'), we have, for r » r', 

where 

/x - x' / = J r2 - 2rr' cos a +  r'2 

= r 1 - _!_ cos a + � 
( 2 1 t2 ) lj2 

r r2 
� r - r ·x', 

A X 
r = -- /x/ ' 

in which case k' = kr. We then obtain 

for large r. It is also legitimate to replace 1/ /x - x'/ by just 1/r . 

(6.2 .17) 

(6.2. 1 8) 

(6.2. 19) 

(6.2.20) 

At this point, we specify the initial state as an eigenstate of the free-particle 
Hamiltonian Ho-that is, / i )  = /k) . Putting this all together, we have, finally, 

(x/ 1/r(+) ) r�e (x/k) - ----- d3x'e-ik'·x' v(x') (x' /1/r(+) ) I 1 2m eikr f 
4n n2 r 

= L;/2 [eik·x + e�r f(k', k)l (6.2.2 1) 
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This form makes it very clear that we have the original plane wave in propagation 
direction k plus an outgoing spherical wave with amplitude f(k', k) given by 

f(k' k) = _ _  
_!!!_L3 d3x' e V(x') (x' \1/t(+)) 1 2 f -ik'·x' 

' 4n 1i2 £3/2 

= - mL3 (k' \ V \1/t(+) ) .  2nh2 (6.2.22) 

We can also show from (6.2. 16) and (6.2.20) that (x\1/t(-) ) corresponds to the 
original plane wave in propagation direction k plus an incoming spherical wave 
with spatial dependence e-ikr jr and amplitude -(mL3 /2n1i2) (-k' \ V \1/t(-) ) . 

We refer to f(k',k) as the scattering amplitude. By comparing (6.2.22) with 
( 6 . 1 .30), we see that the differential cross section can be written as 

Wave-Packet Description 

dO' I 2 dQ = \ f(k ,k) \  . (6.2.23) 

The reader may wonder here whether our formulation of scattering has anything 
to do with the motion of a particle being bounced by a scattering center. The 
incident plane wave we have used is infinite in extent in both space and time. In 
a more realistic situation, we consider a wave packet (a difficult subject ! )  that ap
proaches the scattering center.* After a long time, we have both the original wave 
packet moving in the original direction and a spherical wave front that moves out
ward, as in Figure 6.3. Actually, the use of a plane wave is satisfactory as long as 

�-----�· ·---- -� � 

(a) (b) 
FIGURE 6.3 (a) Incident wave packet approaching scattering center initially. (b) In
cident wave packet continuing to move in the original direction plus spherical outgoing 
wave front (after a long time). 

*For a fuller account of the wave-packet approach, see Chapter 3 in Goldberger and Watson 
( 1964) and Chapter 6 in Newton ( 1966). 



6.2 The Scattering Ampl itude 397 

the dimension of the wave packet is much larger than the size of the scatterer (or 
range of V). 

The Optical Theorem 

There is a fundamental and useful relationship popularly attributed to Bohr, 
Peierls, and Placzek* that is called the optical theorem. It relates the imaginary 
part of the forward-scattering amplitude j((} = 0) = f(k,k) to the total cross 
section O"tot = J dQ (da jdQ), as follows: 

lmj((} = O) = katot . 
4JT 

(6.2.24) 

To prove this, start with the Lippman-Schwinger Equation (6.2. 1 )  with j i )  = lk) 
to write 

= (1/f(+) ! V Il/f<+) ) - (1/f<+) I V  1 
. V l l/f(+) ) .  E - Ho - z s (6.2.25) 

Comparing (6.2.22) and (6.2.24), we see that we want to take the imaginary part of 
both sides of (6.2.25). The first term on the right side of (6.2.25) is a real number, 
because it is the expectation value of a Hermitian operator. Finding the imaginary 
part of the second term is more difficult because of singularities along the real 
axis as s --+ 0. To do this, we use a trick borrowed from the concept of the Cauchy 
principal value in complex integration. 

Figure 6.4 shows a complex integration contour that follows the real axis ex
cept for a small semicircle that jumps over a singularity near the real axis. The 
singularity is located at zo = xo + i s, with s > 0, which is always above the x
axis. Thus we let the semicircle be centered on the real axis at xo and extend into 
the lower half of the complex plane with a radius 8. The semicircle is described 
by z - xo = 8ei<P with ¢ running from -JT to zero. 

Next consider a complex function f(z), with z = x + iy. We can write 

loo f(x) lxo-8 f(x) 1 f(z) 1+oo f(x) --dx = --dx + --dz + --dx = 0 
-oo 

x - xo -oo 
x - xo c z - zo xo+8 

x -xo 
= :P l+oo f(x) dx + 1 f(z) dz, (6.2.26) 

-oo X - XO c Z - ZO 

where c denotes the small semicircular contour around the singularity. The 
Cauchy principal value is defined as 

:Pl+oo f(x) dx = lim {jxo-8 f(x) dx + r+oo f(x) dx } . 
_00 X - XO 8-+0 -oo X - XO lxo+8 X - XO 

(6.2.27) 

*This relationship was originally described by Eugene Feenberg, Phys. Rev. 40 (1932) 40. See 
R. G. Newton, Am. J. Phys. 44 (1976) 639 for the historical background. 



398 Chapter 6 Scattering Theory 

X 

FIGURE 6.4 Contour used to integrate around a singularity located at zo = xo + i s .  

We can evaluate the second term in (6.2.26) as 

""""* in f (xo) as 8 """"* 0. 
Consequently, we rewrite (6.2.26) as 

loo f(x) l+oo f(x) --dx = :P --dx+ inf(xo) . 
-oo x - xo -oo x -xo 

(6.2.28) 

(6.2.29) 

Now we can return to finding the imaginary part of the right side of (6.2.25). 
We have 

lim = lim dE' ( 1 ) l+oo o(E - E') 
s--70 E - Ho - is s--70 _00 E' - Ho - is 

= ino(E - Ho), 
where we have made use of (6.2.29). Therefore, 

Im(k\ V I 1/r(+)) = -rr (1/r(+) \ Vo(E - Ho)V I1/r(+)) 
= -rr (ki Tto(E - Ho)T ik) , 

(6.2.30) 

(6.2.3 1 ) 
where we recall that T is defined through T lk) = V 11/r(+) ) . Consequently, using 
(6.2.22), we have 

mL3 Imf(k,k) = ---2 Im (k \ V I 1/r(+) ) 2n1i 
mL3 

= -2 (ki Tto(E - Ho)T ik) 21i 
mL3 

= -2 L(kiTto(E - Ho) lk') (k' I T ik) 21i k' 

mL3 ' 2 = 21i2 L I (k I T ik) I 0E,h2k12j2m '  
k' 

(6.2.32) 
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The optical theorem (6.2.24) now begins to appear. The factor / (k' j T jk) / 2 is 
proportional to the differential cross section (6.2.23). The sum, including the 8 
function, is over all scattered momenta that conserve energy; in other words, it 
is over all directions in space. Therefore, the right-hand side of (6.2.32) is an 
integral of the differential cross section over all directions and so is proportional 
to the total cross section. 

To carry (6.2.32) through to the end, we make use of (k' ITik) = (k' IV I1/t(+) ) 
with (6.2.22), converting the sum to an integral as we did to go from (6.2.8) to 
(6.2.9). This gives 

(6.2.33) 
thus proving (6.2.24). 

Section 6.5 will provide some insights into the physical significance of the 
optical theorem. 

6.3 . THE BORN APPROXIMATION 

Our task now is to calculate the scattering amplitude f(k' ,k) for some given 
potential-energy function V(x) . This amounts to calculating the matrix element 

(6.3 . 1) 
This task is not straightforward, however, since we do not have closed analytic 
expressions for either (x' l1/t(+) ) or T. Consequently, one typically resorts to ap
proximations at this point. 

We have already alluded to a useful approximation scheme in (6. 1 .32). Again 
replacing lis with s, this is 

1 1 1 T = V + V V + V V V + . .  · , (6.3 .2) E - Ho + is E - Ho+ is E - Ho+ is 
which is an expansion in powers of V. We will shortly examine the conditions 
under which truncations of this expansion should be valid. First, however, we will 
make use of this scheme and see where it leads us. 
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FIGURE 6.5 Scattering through angle e ,  where q = k - k'. 

Taking the first term in the expansion, we note that T = V, or, equivalently, 
1 1/1(+) )  = lk) ,  is called the first-order Born approximation. In this case, the scat
tering amplitude is denoted by f(l) , where 

(6.3 .3) 

after inserting a complete set of states lx') into (6.2.22). In other words, apart from 
an overall factor, the first-order amplitude is just the three-dimensional Fourier 
transform of the potential V with respect to q = k - k'. 

An important special case is when V is a spherically symmetrical potential. 
This implies that jCl)(k' , k) is a function of q = lq l , which is simply related 
to kinematic variables easily accessible by experiment. See Figure 6.5. Because 
lk' l  = k by energy conservation, we have 

q = lk - k' l = 2 k sin � . 2 
We can perform the angular integration in (6.3.3) explicitly to obtain 

jC1\e) = - - - -;- -V(r)(e1qr - e-lqr)dr 1 2m 1 100 r2 . . 
2 1i2 r q  o r 

2m 1 100 = - 2 - rV(r) sin qrdr . 
1i q 0 

(6.3 .4) 

(6.3.5) 

A simple but important example is scattering by a finite square well-that is, 

V(r) = { Vo r ::; a 
0 r > a. 

(6.3.6) 

The integral in (6.3 .5) is readily done and yields 

(1) 2m Voa3 [ sinqa ] 
f (()) = - - -- -- - cosqa . 

1i2 (qa)2 qa (6.3.7) 
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FIGURE 6.6 Data on elastic scattering of protons from the nuclei of four different 
isotopes of calcium. The angles at which the cross sections show minima decrease con
sistently with increasing neutron number. Therefore, the radius of the calcium nucleus 
increases as more neutrons are added, as one expects. From L. Ray et al., Phys. Rev. C23 
(1980) 828. 

This function has zeros at qa = 4.49, 7.73, 10.9 . . .  , and the position of these ze
ros, along with (6.3 .4), can be used to determine the well radius a.  Figure 6.6 
shows elastic proton scattering from several nuclei, all of which are isotopes of 
calcium. The nuclear potential is approximated rather nicely by a finite square 
well, and the differential cross section shows the characteristic minima predicted 
by (6.3.7). Furthermore, the data indicate that as neutrons are added to the calcium 
nucleus, the minima appear at smaller angles, showing that the nuclear radius in 
fact increases. 

Another important example is scattering by a Yukawa potential 

Voe-w 
V(r) = , 

f.l] 
(6.3.8) 

where Vo is independent of r, and 1 I fL corresponds, in a certain sense, to the 
range of the potential. Notice that V goes to zero very rapidly for r » 1/ f.L· For 
this potential we obtain, from (6.3 .5), 

(1) _ (2m Vo) 1 f (13) - -
f.L1i2 q2 + f.L2 '  

where we note that sinqr = lm(eiqr) and have used 

lm [ {oo e-weiqr  dr] = -lm
( 1 . ) = q 

. lo -tL + T q f.L2 + q2 

Notice also that 

(6.3 .9) 

(6.3 . 10) 

(6.3. 1 1) 
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Thus, in the first Born approximation, the differential cross section for scattering 
by a Yukawa potential is given by 

(6.3 . 1 2) 

It is amusing to observe here that as JL � 0, the Yukawa potential is reduced 
to the Coulomb potential, provided that the ratio Vol JL is fixed-for example, to 
be ZZ' e2-in the limiting process. We see that the first Born differential cross 
section obtained in this manner becomes 

(6.3. 1 3) 

Even the h disappears if hk is identified as l p l , so 

(dO' )  1 (ZZ' e2 )2 

dQ = 16 EKE -si-n4-:-(-0-/2-) ' 

1 (6.3. 14) 

where EKE = lp l 2 /2m; this is precisely the Rutherford scattering cross section 
that can be obtained classically. 

Coming back to (6.3.5), the Born amplitude with a spherically symmetrical 
potential, there are several general remarks we can make if f(k' ,k) can be ap
proximated by the corresponding first Born amplitude, jC1) : 

1 .  dO' j dQ, or f(O), is a function of q only; that is, f(O) depends on the energy 
(h2k2 j2m) and e only through the combination 2k2( 1 - cosO). 

2. f(O) is always real. 
3 . d 0' j d Q is independent of the sign of V. 
4. For small k (q necessarily small), 

involving a volume integral independent of e 0 

5 . f (e) is small for large q because of rapid oscillation of the integrand. 

In order to study the conditions under which the Born approximation should 
be valid, let us return to (6.2. 1 6), slightly rewritten as 
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The approximation is that T � V, which means that hfr(+) )  can be replaced by 
lk) .  Therefore, the second term on the right-hand side in this equation must be 
much smaller than the first. Let us assume that a "typical" value for the potential 
energy V(x) is Vo and that it acts within some "range" a. Writing r' = lx - x' l 
and carrying out a rough approximation on the integral, we find that our validity 
condition becomes 

Now for low energies (ka « 1), the exponential factors can be replaced by unity. 
Then, if we ignore numerical factors of order unity, the following succinct crite
rion emerges: 

(6.3 . 1 5) 

Consider the special case of the Yukawa potential in (6.3 .8), in which the range 
a =  1/ fL. The validity criterion becomes m i Vo l fh2tL2 « 1 .  This requirement may 
be compared with the condition for the Yukawa potential to develop a bound state, 
which we can show to be 2m i Vo l fh2tL2 ;::: 2.7, with Vo negative. In other words, 
if the potential is strong enough to develop a bound state, the Born approximation 
will probably give a misleading result. 

At high energies (ka « 1), the factors eikr' and eik·x' oscillate strongly over 
the region of integration, so they cannot be set equal to unity. Instead, it can be 
shown that 

2m ! Vo la 
2 -- ln(ka) « 1 .  h k (6.3 . 16) 

As k becomes larger, this inequality is more easily satisfied. Quite generally, the 
Born approximation tends to get better at higher energies. 

The H igher-Order Born Approximation 

Now, write T to second order in V, using (6.3 .2), namely 

1 T = V + V  V. E - Ho+ is 
It is natural to continue our Born approximation approach and write 
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FIGURE 6.7 Physical interpretation of the higher-order Born term JC2l(k', k). 

where jCl l(k', k) is given by (6.3 .3) and 

!(2) = __ l_ 2m (2:rr )3 J d3 x' J d3 x" (k' Jx') V (x') 4:rr h2 

x {x' I 1 
. I x") V (x")(x" Jk) E - Ho+ zs 

= __ 1_ 2m Jd3x'J d3x"e-ik'·x' v(x') 4:rr h2 

x [�� G+(x', x")] V(x11)eik·x" . 
This scheme can obviously be continued to higher orders. 

(6.3. 17) 

A physical interpretation of ( 6.3 . 17) is given in Figure 6. 7, where the incident 
wave interacts at x"-which explains the appearance of V (x")-and then prop
agates from x" to x' via Green's function for the Helmholtz equation (6.2. 12). 
Subsequently, a second interaction occurs at x' -thus the appearance of V (x')
and, finally, the wave is scattered into the direction k'. In other words, JC2) corre
sponds to scattering viewed as a two-step process. Likewise, jC3) can be viewed 
as a three-step process, and so on. 

6.4 . PHASE SHIFTS AND PARTIAL WAVES 

In considering scattering by a spherically symmetrical potential, we often exam
ine how states with definite angular momenta are affected by the scatterer. Such 
considerations lead to the method of partial waves, which we will discuss shortly. 
However, before discussing the angular-momentum decomposition of scattering 
states, let us first talk about free-particle states, which are also eigenstates of an
gular momentum. 

Free-Particle States 

For a free particle, the Hamiltonian is just the kinetic-energy operator, which 
obviously commutes with the momentum operator. We note, however, that the 
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free-particle Hamiltonian also commutes with L2 and Lz .  Thus it is possible to 
consider a simultaneous eigenket of Ho,L2, and Lz . Ignoring spin, such a state is 
denoted by I E, l ,m}  and is often called a spherical-wave state. 

More generally, the most general free-particle state can be regarded as a super
position of I E, l ,  m} with various E, l, and m in much the same way as the most 
general free-particle state can be regarded as a superposition of lk} with different 
k, different in both magnitude and direction. Put in another way, a free-particle 
state can be analyzed using either the plane-wave basis { lk} }  or the spherical-wave 
basis { I E, l, m} } . 

We now derive the transformation function (kl E, l ,  m} that connects the plane
wave basis with the spherical-wave basis. We can also regard this quantity as 
the momentum-space wave function for the spherical wave characterized by E, l, 
and m. We adopt the normalization convention for the spherical-wave eigenket as 
follows: 

(E', l', m' I E, l ,m}  = 8ll' 8mm'8(E - E'). (6.4. 1 )  

In analogy with the position-space wave function, we may guess the angular 
dependence: 

(ki E, l ,m}  = gzE(k)Yt (k), (6.4.2) 

where the function gzE(k) will be considered later. To prove this rigorously, we 
proceed as follows. First, consider the momentum eigenket lkZ}-that is, a plane
wave state whose propagation direction is along the positive z-axis. An important 
property of this state is that it has no orbital angular-momentum component in the 
z-direction: 

Lz lkZ} = (xpy - YPx) lkx = O, ky = O, kz = k} = 0. (6.4.3) 

Actually this is plausible from classical considerations: The angular-momentum 
component must vanish in the direction of propagation because L · p = (x x p) · 
p = 0. Because of (6.4.3)-and since (E', l' , m' lkz} = 0 for m' =f:. O-we must be 
able to expand lkz} as follows: 

lkZ} = L J dE' I E', l' , m' = O} (E', l', m' = Olkz} . 
l' 

(6.4.4) 

Notice that there is no m' sum; m' is always zero. We can obtain the most general 
momentum eigenket, with the direction ofk specified by () and c/J, from lkZ} by just 
applying the appropriate rotation operator as follows [see Figure 3.3 and (3 .6.47)] : 

lk} = :D(a = cp, {J = e, y = O) lkZ} . (6.4.5) 
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Multiplying this equation by (E , l,m l  on the left, we obtain 

(E , Z ,m lk) = L f dE' (E, l ,m i:D(a = ¢, {3 = e, y = O) iE', l' ,m' = 0) 
l' 

x (E' , l', m' = O lkz) 
= L:j dE':D�6(a = ¢,f3 = 8, y = 0) 

l' 
(6.4.6) 

x 8u,8(E - E') (E' , l' ,m' = OlkZ) 
= :D��(a = ¢, {3 = e, y = O) (E, l ,m = OlkZ) . 

Now (E, l,m = O lkZ) is independent of the orientation of k-that is, independent 

of e and ¢-and we may as well call it ..[iii!-g1E (k) . So we can write, using 
(3 .6.5 1), 

(ki E, l ,m) = 8ZE (k) Yt (k). (6.4.7) 

Let us determine gzE(k) . First, we note that 

(Ho - E) IE , l ,m) = 0. (6.4.8) 

But we also let Ho - E  operate on a momentum eigenbra (kl as follows: 

(6.4.9) 

Multiplying (6.4.9) with I E, l ,m) on the right, we obtain 

(6.4. 10) 

This means that (kl E, l, m) can be nonvanishing only if E = 1i2 k2 j2m, so we must 
be able to write gzE(k) as 

(6.4. 1 1 ) 
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To determine N we go back to our normalization convention ( 6.4. 1 ). We obtain 

(E' , l'm' I E, l ,m) = I d3k" (E' , l',m' lk") (k" IE, l ,m) 
= j k"2dk" j dQ.,, INI20 ( h��2 - E') 

x 0 ( ·:�
2 
- E) Y?" (k")Yt(k") 

- I k"2dE" I 2 
(Ji2kfl2 ') 

(Ji2kfl2 ) 
- dE"/dk" 

dQk" INI 8 �-E 8 �-E 

x Y{;t'* (k")Yt(k") 

2mk' ' = IN I Ji2 8(E - E )8u'8mm' • 

(6.4 . 12) 

where we have defined E" = 1i 2 k"2 j2m to change k"-integration into E"
integration. Comparing this with ( 6.4. 1 ), we see that N = 1i j rmf will suffice. 
Therefore, we can finally write 

hence 

1i (1i2k2 ) m A (k i E, l ,m) = 
�

8 - - E Y1 (k) . vmk 2m 

(6.4. 13) 

(6.4. 14) 

From (6.4.14) we infer that the plane-wave state lk) can be expressed as a super
position of free spherical-wave states with all possible !-values; in particular, 

lk) = LL I dE IE, l,m ) (E, l, m lk) 
l m 

= f t I E , Z ,m) (�yt*ck:)) . 
l=O m=-1 E=fi2k2j2m 

(6.4. 15) 

Because the transverse dimension of the plane wave is infinite, we expect that the 
plane wave must contain all possible values of impact parameter b (semiclassi
cally, the impact parameter b :::::::: lhjp). From this point of view it is no surprise 
that the momentum eigenstates lk) , when analyzed in terms of spherical-wave 
states, contain all possible values of l. 

We have derived the wave function for I E, l, m) in momentum space. Next, we 
consider the corresponding wave function in position space. From wave mechan
ics, the reader should be familiar with the fact that the wave function for a free 
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spherical wave isjz(kr )Yt(r), where Jz (kr) is the spherical Bessel function of or
der l [see (3.7.20a) and also Appendix B] .  The second solution nt (kr), although it 
satisfies the appropriate differential equation, is inadmissible because it is singular 
at the origin. Thus we can write 

(xi E , l ,m) = cziz (kr)YtCn 

To determine q ,  all we have to do is compare 

(xlk) = 
eik:12 = LL/dE (x lE , l, m) (E, l ,m lk) 

(2rr) l m 

(6.4. 16) 

� � � m h ( h2k2 ) m* A 
= 7� dE czjz(kr)Y1 (r) 

�
8 E-

2m Y1 (k) (6.4. 17) 

(21 + 1 )  A A h = L Pz(k ·r) r=T..czjz(kr), 
1 4rr v mk 

where we have used the addition theorem 

in the last step. Now (x lk) = eik·x /(2rr)312 can also be written as 

(6.4. 18) 

which can be proved by using the following integral representation for jz(kr) :  

1 1+1 . jz(kr) = 
-2 . 1 ezkr cose Pz (cos e)d(cose) . 

l -l 

Comparing (6.4. 17) with (6.4. 18), we have 

To summarize, we have 

cz = i
z �

. h v ----;---

h ( h2k2 ) m A (ki E , l ,m) = 
�

8 E - 2m Y1 (k) 

i t � m (xiE , l ,m) = y;y ----;---jz(kr)Y1 (r). 

(6.4. 19) 

(6.4.20) 

(6.4.21a) 

(6.4.21b) 

These expressions are extremely useful in developing the partial-wave expansion. 
We conclude this section by applying (6.4.21a) to a decay process. Suppose a 

parent particle of spin j disintegrates into two spin-zero particles: A (spin j) --+ 
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B (spin 0) + C (spin 0). The basic Hamiltonian responsible for such a decay pro
cess is, in general, very complicated. However, we do know that angular momen
tum is conserved because the basic Hamiltonian must be rotationally invariant. 
So the momentum-space wave function for the final state must be of the form 
(6.4.21a), with l identified with the spin of the parent particle. This immediately 
enables us to compute the angular distribution of the decay product, because the 
momentum-space wave function is nothing more than the probability amplitude 
for finding the decay product with relative momentum direction k. 

As a concrete example from nuclear physics, let us consider the decay of an 
excited nucleus, Ne20* :  

(6.4.22) 

Both 016 and He4 are known to be spinless particles. Suppose the magnetic 
quantum number of the parent nucleus is ± 1 ,  relative to some direction z. Then 
the angular distribution of the decay product is proportional to I Yt (B, ¢) 12 = 
(3 j8n) sin2 e ' where ( e ' <P) are the polar angles defining the relative direction 
k of the decay product. On the other hand, if the magnetic quantum number 
is 0 for a parent nucleus with spin 1 ,  the decay angular distribution varies as 
I Yf(B , ¢) 12 = (3/4n) cos2 e .  

For a general spin orientation we obtain 

1 
L w(m) IYz'�1 1 2 . (6.4.23) 

m=-l 

For an unpolarized nucleus the various w(m) are all equal, and we obtain an 
isotropic distribution; this is not surprising because there is no preferred direc
tion if the parent particle is unpolarized. 

For a higher-spin object, the angular distribution of the decay is more involved; 
the higher the spin of the parent decaying system, the greater the complexity of 
the angular distribution of the decay products. Quite generally, through a study of 
the angular distribution of the decay products, it is possible to determine the spin 
of the parent nucleus. 

Partial-Wave Expansion 

Let us now come back to the case V i= 0. We assume that the potential is spher
ically symmetrical-that is, invariant under rotations in three dimensions. It then 
follows that the transition operator T, which is given by (6.3.2), commutes with 
L2 and L. In other words, T is a scalar operator. 

It is now useful to use the spherical-wave basis because the Wigner-Eckart 
theorem [see (3 . 1 1 .38)] ,  applied to a scalar operator, immediately gives 

(E' , l' , m' I T I E, l ,m)  = Tz(E)8ll'8mm' · (6.4.24) 

In other words, T is diagonal both in l and in m; furthermore, the (nonvanishing) 
diagonal element depends on E and l but not on m. This leads to an enormous 
simplification, as we will see shortly. 
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Let us now look at the scattering amplitude (6.2.22): 

1 2m 3 
f(k', k) = - - 2 L (k' I T !k} 

4n 1i 

-----* --
1 2

� (2n)3 LLLL/dE!dE' (k' ! E'l'm') 
47f 1i l m l' m' 

(6.4.25) 

To obtain the angular dependence of the scattering amplitude, let us choose the 
coordinate system in such a way that k, as usual, is in the positive z-direction. We 
then have [see (3.6.50)] 

m A j¥Jl+1  
Yz (k) = -- 8mo, 4n 

(6.4.26) 

where we have used Pz ( l )  = 1 ;  hence only the terms m = 0 contribute. Taking e 
to be the angle between k' and k, we can write 

A j¥Jl+ 1 
Y?(k') = - - Pz (cose). 

4n 
(6.4.27) 

It is customary here to define the partial-wave amplitude fz (k) as follows: 

For (6.4.25) we then have 

fz(k) =
- nTz (E)

. 
k 

00 
f(k',k) = j(e) = L (21 + l )fz (k)Pz (cose), 

l=O 

(6.4.28) 

(6.4.29) 

where j(e) still depends on k (or the incident energy) even though k is suppressed. 
To appreciate the physical significance of fz (k), let us study the large-distance 

behavior of the wave function (x llfr(+)) given by (6.2.2 1). Using the expansion of 
a plane wave in terms of spherical waves [(6.4. 1 8)] and noting that (Appendix B) 

larger ei(kr-(l:rr /2)) - e-i(kr-(l:rr /2)) 
jz(kr) -----* . ' (i z = ei(:rr/2)l ) 

2z kr 
(6.4.30) 
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and that j(()) is given by (6.4.29) , we have 

(x l1fr(+)) l� eikz + j(())-e -1 [ ikr ] 
(2n)3/2 r 

1 [ (eikr _ e-i(kr-ln) ) 
= (2n)3/2 �(21 + 1)Pz(cos()) 2ikr 

+ 2)21 + 1)fz(k)Pz(cos()) eikr ] 
l r 

41 1 

1 Pz [ . eikr e-i(kr-ln) J = (2n)3/2�(21 + 1) 2ik [ l + 2z kfz(k)] -r- - r . 
(6.4.3 1 ) 

The physics of scattering is now clear. When the scatterer i s  absent, we  can an
alyze the plane wave as the sum of a spherically outgoing wave behaving like 
eikr jr and a spherically incoming wave behaving like -e-i(kr-ln) jr for each 1. 
The presence of the scatterer changes only the coefficient of the outgoing wave, 
as follows: 

1 --+ 1 + 2ikfz(k). (6.4.32) 
The incoming wave is completely unaffected. 

Unitarily and Phase Shifts 

We now examine the consequences of probability conservation, or unitarity. In a 
time-independent formulation, the flux current density j must satisfy 

V· j = - 3 11/1 12 = 0. 
at (6.4.33) 

Let us now consider a spherical surface of very large radius. By Gauss's theorem, 
we must have 1 j · dS = 0. 

spherical surface 
(6.4.34) 

Physically, ( 6.4.33) and ( 6.4.34) mean that there is no source or sink of particles. 
The outgoing flux must equal the incoming flux. Furthermore, because of angular
momentum conservation, this must hold for each partial wave separately. In other 
words, the coefficient of eikr j r must be the same in magnitude as the coefficient 
of e-ikr Jr . Defining Sz (k) to be 

Sz (k) = 1 + 2ikfz(k), (6.4.35) 
this means [from (6.4.32)] that 

I Sz (k) l = 1 ;  (6.4.36) 
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that is, the most that can happen is a change in the phase of the outgoing wave. 
Equation (6.4.36) is known as the unitarity relation for the 1th partial wave. In a 
more advanced treatment of scattering, Sz (k) can be regarded as the 1th diagonal 
element of the S operator, which is required to be unitary as a consequence of 
probability conservation. 

We thus see that the only change in the wave function at a large distance as 
a result of scattering is a change in the phase of the outgoing wave. Calling this 
phase 28z (the factor of 2 here is conventional), we can write 

S _ e2i8t z - , (6.4.37) 
with 8z real. It is understood here that 8z is a function of k even though we do not 
explicitly write 8z as 8z(k). Returning to fz , we can write [from (6.4.35)] 

or, explicitly in terms of 8z, 

-r, _ 
(Sz - 1) 

J l - 2ik 

e2i8t - 1 eiot sin8z 1 
fz = 

2ik k 
-

k cot8z - ik ' 

whichever is convenient. For the full scattering amplitude, we have 

j(e) = 2:)21 + 1 ) (
e2i
�
1
• 
- 1 ) Pz (cose) 

l=O 
zk 

= �L(21 + 1 )ei81 sin8z Pz (cose) 
l=O 

(6.4.38) 

(6.4.39) 

(6.4.40) 

with 8z real. This expression for j(e) rests on the twin principles of rotational 
invariance and probability conservation. In many books on wave mechanics, 
(6.4.40) is obtained by explicitly solving the Schrodinger equation with a real, 
spherically symmetrical potential; our derivation of (6.4.40) may be of interest 
because it can be generalized to situations wherein the potential described in the 
context of nonrelativistic quantum mechanics may fail. 

The differential cross section dCJ jdQ can be obtained by just taking the mod
ulus squared of (6.4.40). To obtain the total cross section, we have 

4n '"" 2 = k2 �(21 + l ) sin 8z . 

(6.4.41) 
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Im(kfi) 

41 3 

Re(kfi) 

FIGURE 6.8 Argand diagram for kfz . OP is the magnitude of kfz , and CO and CP are 
each radii of length � on the unitary circle; angle 0 C P = 281 •  

We can check the optical theorem (6.2.24), which we obtained earlier using a 
more general argument. All we need to do is note from (6.4.40) that 

I f(e 
0) " (21 + 1 )1m[ei81 sinoz] 

m = = L k 
Pz (cose) 

l 8=0 
" (21 + 1) . 2 = L sm oz, 

l k 

which is the same as (6.4.41)  except for 4;r I k. 

(6.4.42) 

As a function of energy, oz changes; hence fz (k) changes also. The unitarity 
relation of (6.4.36) is a restriction on the manner in which fz can vary. This can 
be most conveniently seen by drawing an Argand diagram for kfz . We plot kfz in a 
complex plane, as shown in Figure 6.8, which is self-explanatory if we note from 
(6.4.39) that 

kfz = £ + �e-(irrj2)+2i8I . 
2 2 

(6.4.43) 

Notice that there is a circle of radius i , known as the unitary circle, on which kfz 
must lie. 

We can see many important features from Figure 6.8. Suppose oz is small. Then 
fz must stay near the bottom of the circle. It may be positive or negative, but fz is 
almost purely real: 

(6.4.44) 

On the other hand, if oz is near ;r /2, kfz is almost purely imaginary, and the mag
nitude of kfz is maximal. Under such a condition the 1th partial wave may be in 
resonance, a concept to be discussed in some detail in Section 6.7. Note that the 
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maximum partial cross section 

o- (1) = 4:rr );.2(21 + 1 ) max (6.4.45) 
is achieved [see (6.4.41)] when sin2 81 = 1 .  
Determination of Phase Shifts 

Let us now consider how we may actually determine the phase shifts given a po
tential V. We assume that V vanishes for r > R, R being the range of the potential. 
Outside (that is, for r > R), the wave function must be that of a free spherical 
wave. This time, however, there is no reason to exclude n1 (r) because the origin 
is excluded from our consideration. The wave function is therefore a linear com
bination of j1(kr)P1(cos e) and n1(kr)P1(cose) or, equivalently, h?) P1 and hf) P1 , 
where h�l) and h?) are the spherical Hankel functions defined by 

h(l) . . 

1 = ;z + z n1, h(2) . . 

1 = J1 - Z n1 ;  

these have the asymptotic behavior (see Appendix A) 

( l)r large ei(kr-(1n /2)) 
h ---+ ----1 

ikr 
(2Y large e-i(kr-(1n /2)) 

h ---+ - -----1 ikr 

The full-wave function at any r can then be written as 

1 (xi1/J(+)) = 
(2:rr )312 _l)

1C2l + 1)A1(r)P1(cos 8) (r > R). 

For r > R we have (for the radial-wave function) 

(6.4.46) 

(6.4.47) 

(6.4.48) 

(6.4.49) 
where the coefficient that multiplies A1 in (6.4.48) is chosen so that, for V = 0, 
A1(r) coincides with j1 (kr) everywhere. [See (6.4. 18). ] Using (6.4.47), we can 
compare the behavior of the wave function for large r given by (6.4.48) and 
( 6.4.49) with 

1 [ e2iol eikr e-i(kr-1n) ] 
(2:rr )312 �(2! + 1)P1 

2ikr 
-

2ikr · 

Clearly, we must have 

C(l) _ le2io1 (2) 1 
z - 2 • 

c1 = 2 · 

So the radial-wave function for r > R is now written as 

Az (r) = ei81 [cos 81j1(kr) - sin8zn1(kr) J .  

(6.4.50) 

(6.4.5 1 ) 

(6.4.52) 
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Using this, we can evaluate the logarithmic derivative at r = R-that is, just out
side the range of the potential-as follows: 

f3z = (.!__ dAz ) - Az dr r=R 
= kR [ j{(kR) cos oz - n� (kR) sinoz J jz(kR)cos oz - nz(kR) sin oz ' 

(6.4.53) 

where j{(kR) stands for the derivative of jz with respect to kr evaluated at kr = 
kR. Conversely, knowing the logarithmic derivative at R, we can obtain the phase 
shift as follows: 

kRj{(kR) - f3zjz(kR) 
tanoz = . kRn� (kR) - f3znz(kR) (6.4.54) 

The problem of determining the phase shift is thus reduced to that of obtaining f3z . 
We now look at the solution to the Schrodinger equation for r < R -that is, 

inside the range of the potential. For a spherically symmetrical potential, we can 
solve the Schrodinger equation in three dimensions by looking at the equivalent 
one-dimensional equation 

(6.4.55) 

where 

uz = rAz(r) (6.4.56) 
subject to the boundary condition 

uz l r=O = 0. (6.4.57) 
We integrate this one-dimensional Schrodinger equation-if necessary, numer
ically-up to r = R, starting at r = 0. In this way we obtain the logarithmic 
derivative at R. By continuity we must be able to match the logarithmic derivative 
for the inside and outside solutions at r = R: 

f3t linsidesolution = f3z loutsidesolution, (6.4.58) 
where the left-hand side is obtained by integrating the Schrodinger equation up 
to r =  R, and the right-hand side is expressible in terms of the phase shifts that 
characterize the large-distance behavior of the wave function. This means that the 
phase shifts are obtained simply by substituting f3z for the inside solution into 
tanoz [(6.4.54)] . For an alternative approach, it is possible to derive an integral 
equation for Az(r), from which we can obtain phase shifts (see Problem 6.9 of 
this chapter). 
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Hard-Sphere Scattering 

Let us work out a specific example. We consider scattering by a hard, or rigid, 
sphere {oo for r < R 

v - o for r > R. 
(6.4.59) 

In this problem we need not even evaluate f3z (which is actually oo ). All we need 
to know is that the wave function must vanish at r = R because the sphere is 
impenetrable. Therefore, 

or, from (6.4.52), 

or 

Az(r) l r=R = 0 

jz(kR) cos 8z - nz(kR) sin8z = 0 

tan8z = jz(kR)
. 

nz (kR) 

(6.4.60) 

(6.4.6 1) 

(6.4.62) 

Thus the phase shifts are now known for any l. Notice that no approximations 
have been made so far. 

To appreciate the physical significance of the phase shifts, let us consider the 
l = 0 case (S-wave scattering) specifically. Equation (6.4.62) becomes, for l = 0, 

sinkR/ kR 
tan8o = = - tankR, 

- cos kRjkR 
(6.4.63) 

or 8o = -kR. The radial-wave function (6.4.52) with ei8o omitted varies as 

sinkr cos kr 1 . Az=o(r) ex -- cos 8o + -- sin8o = - sm(kr + 8o). 
kr kr kr 

(6.4.64) 
Therefore, if we plot r Az=o(r) as a function of distance r, we obtain a sinusoidal 
wave, which is shifted when compared to the free sinusoidal wave by amount R; 
see Figure 6.9. 

Let us now study the low- and high-energy limits of tan8z .  Low energy means 
kR small, kR « 1 .  We can then use* 

. (kr )1 
Jz(kr) � (2! + 1) ! !  

(2! - 1) ! !  
nz(kr) :::::= - (kr)l+l 

*Note that (2n + 1 ) ! !  = (2n + 1 )(2n - 1)(2n - 3) . .  · 1 . 

(6.4.65) 
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FIGURE 6.9 Plot of r At=o(r) versus r (with the ei8o factor removed). The dashed 
cu�e for V = 0 behaves like sin kr. The solid curve is for S-wave hard-sphere scattering, 
shifted by R = -8o/ k from the case V = 0. 

to obtain 

-(kR)2l+l 
tanoz = {(21 + 1)[(21 - 1 ) ! ! ]2} · (6.4.66) 

It is therefore all right to ignore oz with 1 -=!= 0. In other words, we have S-wave 
scattering only, which is actually expected for almost any finite-range potential 
at low energy. Because oo = -kR regardless of whether k is large or small, we 
obtain 

da sin2 oo 2 - = -- ""' R for kR « 1 .  dQ k2 -
It is interesting that the total cross section, given by 

f da 2 atot = -dQ = 4n R , dQ 

(6.4.67) 

(6.4.68) 

is four times the geometric cross section n R2 . By geometric cross section we 
mean the area of the disc of radius R that blocks the propagation of the plane 
wave (and has the same cross-sectional area as that of a hard sphere) .  Low-energy 
scattering, of course, means a very large-wavelength scattering, and we do not 
necessarily expect a classically reasonable result. We will consider what happens 
in the high-energy limit when we discuss the Eikonal approximation in the next 
section. 

6.5 . EIKONAL APPROXIMATION 

This approximation covers a situation in which V(x) varies very little over a dis
tance of order of wavelength X (which can be regarded as "small"). Note that V 
itself need not be weak as long as E » I V  I ;  hence the domain of validity here is 
different from the Born approximation. Under these conditions, the semiclassical 
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FIGURE 6.10 Schematic diagram of eikonal approximation scattering, where the clas
sical straight-line trajectory is along the z-direction, lx l  = r, and b = lb l  is the impact 
parameter. 

path concept becomes applicable, and we replace the exact wave function 1/J(+) 
by the semiclassical wave function [see (2.4. 1 8) and (2.4.22)] , namely, 

(6.5 . 1 ) 
This leads to the Hamilton-Jacobi equation for S, 

(6.5 .2) 
as discussed in Section 2.4. We propose to compute S from (6.5 .2) by making the 
further approximation that the classical trajectory is a straight-line path, which 
should be satisfactory for small deflection at high energy.* Consider the situation 
depicted in Figure 6. 10, where the straight-line trajectory is along the z-direction. 
Integrating (6.5.2) we have 

S lz [ 2m ] 1/2 h = -oo k2 - p;2 V ( J b2 + z'2) dz' + constant. 

The additive constant is to be chosen in such a way that 

s 
- -+ kz as V -+ 0 
1i 

(6.5.3) 

(6.5 .4) 
so that the plane-wave form for (6.5. 1 ) is reproduced in this zero-potential limit. 
We can then write equation (6.5.3) as 

� = kz + L [ k2 - � V ( J b2 + z'2) -+z' 

(6.5.5) 
� kz -

1i
�

k 
j_� V ( Jb2 + z'2) dz', 

*Needless to say, solving (6.5.2) to determine the classical trajectory would be a forbidding task 
in general. 
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where for E » V we have used 

at high E = 1i2k2 j2m. So 

v/+) (x) = 1/r(+)(b + zz) ::::::: 
1 ei kz exp [ -im jz v (Jb2 + z'2) dz'] . (2n)3/2 1i2k -oo 

(6.5 .6) 
Though (6.5.6) does not have the correct asymptotic form appropriate for an inci
dent plus spherical outgoing wave (that is, it is not of the formeik·x+ j(e)(eikr jr) 
and indeed refers only to motion along the original direction), it can nevertheless 
still be used in (6.2.22) to obtain an approximate expression for f(k', k)-to wit* 

f(k', k) = - 4
� �7 f d3x'e-ik'·x' v ( Jh2 +z'2) eik·x' 

x exp [- i: jz' V ( Jb2 + z"2) dz"] . 
1i k -()() 

(6.5.7) 

Note that without the last factor, exp [ . . .  ], (6.5.7) is just like the first-order 
Born amplitude in (6.3.3). We perform the three-dimensional (d3x') integra
tion in (6.5.7) by introducing cylindrical coordinates d3x' = bdbd¢b dz' (see 
Figure 6.1 0) and noting that 

(k - k') • x' = (k - k') • (b + z'z) ::::::: -k' · b, (6.5 .8) 
where we have used k ..l b and (k - k') · z ""' O(e2), which can be ignored for small 
deflection e . Without loss of generality, we choose scattering to be in the xz-plane 
and write 

k' · b = (k sin ex + k cosez) • (b cos¢bx+ b sin¢bY) ::::::: kbe cos¢b · 

The expression for f(k' ,k) becomes 

1 2m ioo i2n 
j(k' ,k) = --- b db difJbe-ikMcos<Pb 4n 1i2 o o 

j+oo 
[ -im jz J x dz V exp -2-

V dz' . 
-00 1i k -()() 

We next use the following identities: 

(6.5.9) 

(6.5. 10) 

(6.5 . 1 1 )  
*We leave behind the "big box" and write f(k',k), assuming a continuum normalization. 
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and 

dz Vexp -�m V dz' = _z - exp -�m V dz' , l
+oo [ · lz J ·n2k [ · lz J lz=

+oo 

-oo h k -oo m h k -oo z=-oo 

(6.5 . 12) 
where, of course, the contribution from z = -oo on the right-hand side of (6.5. 12) 
vanishes in the exponent. So, finally, 

f(k', k) = -ik 100 db blo(kb8)[e2i"'(b) - 1] , (6.5 . 1 3) 

where 

(6.5. 14) 

In (6.5 . 14) we fix the impact parameter b and integrate along the straight-line path 
z, shown in Figure 6.10. There is no contribution from [e2it,(b) - 1] in (6.5. 13) if 
b is greater than the range of V. 
It can be shown in a straightforward manner that the eikonal approximation sat

isfies the optical theorem (6.2.24). This proof plus some interesting applications
for example, when Vis a Gaussian potential f)..(b) becomes Gaussian in b-space
are discussed in the literature (Gottfried 1966) . For the case where Vis a Yukawa 
potential, see Problem 6.8 in this chapter. 

Partial Waves and the Eikonal Approximation 

The eikonal approximation is valid at high energies (k « range R); hence many 
partial waves contribute. We may regard l as a continuous variable. As an aside, 
we note the semiclassical argument that l = bk (because angular momentum lh = 
bp, where b is the impact parameter and momentum p = hk). We take 

lmax = kR; 
then we make the following substitutions in expression (6.4.40): 

lmax=kR 
:L -+ kfdb, 

large/ smalle Pz(cose) ::::::: lo(le) = lo(kbe), 
l 
8z -+ f)..(b) lb=l/k. 

where lmax = kR implies that 
eliot - 1 = e2it,(b) - 1 = 0 �or l l L' > max· 

(6.5 . 1 5) 

(6.5 . 16) 

(6.5. 17) 
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We have 

j(e) --+ k J db��� (e2ill(b) - 1)Jo(kbe) 

= -ik J dbbJo(kbe)[e2ill(b) - 1 ] .  

421 

(6.5 . 1 8) 

The computation of oz can be done by using the explicit form for !).(b) given by 
(6.5 . 14) (see Problem 6.8 in this chapter). 

Recall now our discussion of partial waves and the "hard-sphere" example, 
from the last section. There, we found that the total cross section was four times 
the geometric cross section in the low-energy (long-wavelength) limit. However, 
one might conjecture that the geometric cross section is reasonable to expect for 
high-energy scattering, because at high energies the situation might look similar 
to the semiclassical situation. 

At high energies many !-values contribute, up to lmax. � kR, a reasonable as
sumption. The total cross section is therefore given by 

4 1-:::::.kR 
O"tot = k� L (21 + 1 ) sin2 oz . 

1=0 
But using (6.4.62), we have 

(6.5 . 19) 

. 2 tan2 81 [jz(kR)]2 . 2 (kR nl ) sm 01 = 1 + tan2 oz = [jz(kR)]2 + [nz(kR)]2 � sm - 2 ' 

(6·5·20) 

where we have used 

1 ( ln ) jz(kr) "'"' - sin kr - -kr 2 
nz(kr) "'"' - - cos kr - - . 1 ( ln ) kr 2 

(6.5.21) 

We see that 81 decreases by 90° each time l increases by one unit. Thus, for 
an adjacent pair of partial waves, sin2 oz + sin2 81+ 1 = sin2 oz + sin2( oz - n /2) = 
sin2 oz + cos2 81 = 1 ,  and with so many !-values contributing to (6.5 . 19) , it is legit
imate to replace sin2 81 by its average value, ! . The number of terms in the !-sum 
is roughly kR, as is the average of 21 + 1 .  Putting all the ingredients together, 
(6.5. 19) becomes 

4n 2 1 2 O"tot = -2 (kR) - = 2n R , k 2 (6.5.22) 
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which is not the geometric cross section n R2 either ! To see the origin of the factor 
of 2, we may split (6.4.40) into two parts: 

1 kR . kR 
f(8) = -.-2:)2! + 1 )e2i81 P1 (cos8) + .!___ 2:)2! + 1 )Pz(cos8) 

2z k 
l=O 

2k l=O 

= !reflection + !shadow· 

(6.5.23) 

In evaluating J l frefl l2dQ, the orthogonality of the Pz (cos(})'s ensures that there 
is no interference among contributions from different l, and we obtain the sum of 
the square of partial-wave contributions: 

f 2n lmax 1+1 nz2 
l frefl l 2dQ = -2 L (2! + 1)2 [Pz(cos e)fd(cos8) = �ax = n R2 . 

4k 
1=0 -1 k 

(6.5.24) 

Turning our attention to !shad, we note that it is pure imaginary. It is particularly 
strong in the forward direction because Pz (cos (}) = 1 for (} = 0, and the contribu
tions from various !-values all add up coherently-that is, with the same phase, 
pure imaginary and positive in our case. We can use the small-angle approxima
tion for Pz to obtain 

!shad �  ;k 
L(2l + 1)Jo(l8) 

� ik foR 
bdblo(kbe) 

i R J1 (kR(}) 
e 

(6.5.25) 

But this is just the formula for Fraunhofer diffraction in optics with a strong peak
ing near e � 0. Letting � = kRe and d� !� = de ;e , we can evaluate 1+1 R2 [J1 (kR8)]2 

J l !shad l 2dQ = 2n 2 d(cose) 
- 1 e 

� 2n R2 t)Q [11 (�)]2 
d� 

lo � 

� n R2. 

Finally, the interference between !shad and frefl vanishes: 

Re(fs1adfrefl) � 0 

(6.5.26) 

(6.5 .27) 

because the phase of frefl oscillates (28t+1 = 28z - n), approximately averaging 
to zero, while !shad is pure imaginary. Thus 

(6.5 .28) 
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The second term (coherent contribution in the forward direction) is called a 
shadow because for hard-sphere scattering at high energies, waves with impact 
parameter less than R must be deflected. So, just behind the scatterer there must 
be zero probability for finding the particle and a shadow must be created. In terms 
of wave mechanics, this shadow is due to destructive interference between the 
original wave (which would be there even if the scatterer were absent) and the 
newly scattered wave. Thus we need scattering in order to create a shadow. That 
this shadow amplitude must be pure imaginary may be seen by recalling from 
(6.4.3 1)  that the coefficient of eikr j2ikr for the lth partial wave behaves like 1 + 
2ikfz(k), where the 1 would be present even without the scatterer; hence there 
must be a positive imaginary term in fz to get cancellation. In fact, this gives a 
physical interpretation of the optical theorem, which can be checked explicitly. 
First note that 

4n 4n yimf(O) ::= yim[fshact(O)] (6.5.29) 

because Im[frefl(O)] averages to zero due to oscillating phase. Using (6.5.23), we 
obtain 

4 4 [ · kR 

] : Imfshact(O) = : Im ;
k
L(2l + 1 )Pz ( 1 )  = 2;r R2, 
l=O 

which is indeed equal to arot· 

6.6 . LOW-ENERGY SCATTERING AND BOUND STATES 

(6.5 .30) 

At low energies-or, more precisely, when Ji. = 1/ k is comparable to or larger 
than the range R-partial waves for higher l are, in general, unimportant. This 
point may be obvious classically because the particle cannot penetrate the cen
trifugal barrier; as a result the potential inside has no effect. In terms of quantum 
mechanics, the effective potential for the lth partial wave is given by 

n2 l(l + 1)  
Veff = V (r) + -

2 2 ; 
m r 

(6.6 . 1 )  

unless the potential i s  strong enough to accommodate l i= 0 bound states near E ::= 
0, the behavior of the radial-wave function is largely determined by the centrifugal 
barrier term, which means that it must resemble jz(kr ). More quantitatively, it is 
possible to estimate the behavior of the phase shift using the integral equation for 
the partial wave (see Problem 6.9 of this chapter) : 

eioz sin8z 2m 100 
--- = - 2  jz(kr) V(r)Az(r)r2dr. 

k h 0 
(6.6.2) 

If Az(r) is not too different from jz(kr) and 1/ k is much larger than the range of 
the potential, the right-hand side varies as k21 ; for small 8z , the left-hand side must 
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vary as 8z/ k. Hence, the phase shift k goes to zero as 

8z "' k2l+ I 

for small k. This is known as threshold behavior. 

(6.6.3) 

It is therefore clear that at low energies with a finite-range potential, S-wave 
scattering is important. 

Rectangular Well  or Barrier 

To be specific, let us consider S-wave scattering by { Vo = constant 
V =  0 

for r < R { Vo > 0 
otherwise Vo < 0 

repulsive 
attractive (6.6.4) 

Many of the features we obtain here are common to more-complicated finite
range potentials. We have already seen that the outside-wave function [see 
(6.4.52) and (6.4.64)] must behave like 

. eioo sin(kr + 8o) 
e180 [jo(kr) cos8o - no(kr) sin8o] ::::::: -----

kr 

The inside solution can also easily be obtained for Vo a constant: 

u = rAz=o(r) ex sink'r ,  

with k '  determined by 

(6.6.5) 

(6.6.6) 

(6.6.7) 

where we have used the boundary condition u = 0 at r = 0. In other words, the 
inside-wave function is also sinusoidal as long as E > Vo. The curvature of the 
sinusoidal wave is different than in the free-particle case; as a result, the wave 
function can be pushed in (8o > 0) or pulled out (8o < 0), depending on whether 
Vo < 0 (attractive) or Vo > 0 (repulsive), as shown in Figure 6. 1 1 .  Notice also 
that (6.6.6) and (6.6.7) hold even if Vo > E, provided we understand sin to mean 
sinh-that is, the wave function behaves like 

u(r) ex sinh[Kr ] , (6.6.6') 

where 

(6.6.7') 

We now concentrate on the attractive case and imagine that the magnitude of 
Vo is increased. Increased attraction will result in a wave function with a larger 
curvature. Suppose the attraction is such that the interval [0, R] just accommodates 
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r 

(a) 

r 

(b) 

r 

(c) 

FIGURE 6.11 Plot of u(r) versus r. (a) For V = 0 (dashed line). (b) For Vo < 0, 8o > 0 
with the wave function (solid line) pushed in. (c) For Vo > 0, 80 < 0 with the wave 
function (solid line) pulled out. 

one-fourth cycle of the sinusoidal wave. Working in the low-energy kR « 1 limit, 
the phase shift is now 8o = n: j2, and this results in a maximal S-wave cross section 
for a given k because sin2 8o is unity. Now increase the well depth Vo even further. 
Eventually the attraction is so strong that one-half cycle of the sinusoidal wave 
can be fitted within the range of the potential. The phase shift 80 is now n: ;  in 
other words, the wave function outside R is 1 80° out of phase compared to the 
free-particle wave function. What is remarkable is that the partial cross section 
vanishes (sin2 8o = 0), 

(6.6.8) 
despite the very strong attraction of the potential. In addition, if the energy is 
low enough for l =!= 0 waves still to be unimportant, we then have an almost 
perfect transmission of the incident wave. This kind of situation, known as the 
Ramsauer-Townsend effect, is actually observed experimentally for scattering 
of electrons by such rare gases as argon, krypton, and xenon. This effect was first 
observed in 1923 prior to the birth of wave mechanics and was considered a great 
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mystery. Note that the typical parameters here are R """ 2 X w-s em for electron 
kinetic energy of order 0. 1 eV, leading to kR """ 0.324. 

Zero-Energy Scattering and Bound States 

Let us consider scattering at extremely low energies (k :::::::: 0). For r > R and for 
l = 0, the outside radial-wave function satisfies 

(6.6.9) 

The obvious solution to this equation is 

u(r) = constant(r - a), (6.6. 10) 

just a straight line! This can be understood as an infinitely long-wavelength limit 
of the usual expression for the outside-wave function [see (6.4.56) and (6.4.64)],  

lim sin(kr + 8o) = lim sin 
[
k (r + 

00) J , 
k--'>-0 k--'>-0 k 

which looks like (6.6. 10) .  We have 

- = k cot k r + - -+ -- . 
u' [ ( 8o ) J k--'>-0 1 
u k r - a  

(6.6. 1 1) 

(6.6. 12) 

Setting r = 0 [even though at r = 0, (6.6. 10) is not the true wave function], we 
obtain 

k--'>-0 1 
lim k cot8o -+ - 

k--'>-0 a (6.6. 13)  

The quantity a is  known as the scattering length. The limit of the total cross 
section as k -+ 0 is given by [see (6.4.39)] 

O'tot = O'Z=O = 4n lim I 1 
. 1 2 = 4n a2 . 

k--'>-0 k cot80 - rk 
(6.6 . 14) 

Even though a has the same dimension as the range of the potential R, a and 
R can differ by orders of magnitude. In particular, for an attractive potential, it is 
possible for the magnitude of the scattering length to be far greater than the range 
of the potential. To see the physical meaning of a, we note that a is nothing more 
than the intercept of the outside-wave function. For a repulsive potential, a > 0 
and is roughly of order of R, as seen in Figure 6 . 12a. However, for an attractive 
potential, the intercept is on the negative side (Figure 6 . 12b). If we increase the 
attraction, the outside-wave function can again cross the r-axis on the positive 
side (Figure 6. 1 2c). 

The sign change resulting from increased attraction is related to the develop
ment of a bound state. To see this point quantitatively, we note from Figure 6. 12c 
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FIGURE 6.12 Plot of u(r) versus r for (a) repulsive potential, (b) attractive potential, 
and (c) deeper attraction. The intercept a of the zero-energy outside-wave function with 
the r-axis is shown for each of three cases. 

that for a very large and positive, the wave function is essentially flat for r > R. 
But (6.6 . 10) with a very large is  not too different from e-Kr with K essentially 
zero. Now e-Kr with K :::::: 0 is just a bound-state-wave function for r > R with en
ergy E infinitesimally negative. The inside-wave function (r < R) for the E = 0+ 
case (scattering with zero kinetic energy) and the E =  0- case (bound state with 
infinitesimally small binding energy) are essentially the same because in both 
cases, k' in sin k'r [(6.6.6)] is determined by 

(6.6. 15) 

with E infinitesimal (positive or negative). 
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Because the inside-wave functions are the same for the two physical situa
tions (E = 0+ and E = 0-) ,  we can equate the logarithmic derivative of the 
bound-state-wave function with that of the solution involving zero-kinetic-energy 
scattering, 

or, if R « a, 

The binding energy satisfies 

1 K ::::: - . a 

tz2K2 n_2 EsE = -Eboundstate = -2- � -2 2 , m ma 

(6.6. 16) 

(6.6. 17) 

(6.6. 18) 
and we have a relation between scattering length and bound-state energy. This 
is a remarkable result. To wit, if there is a loosely bound state, we can infer its 
binding energy by performing scattering experiments near zero kinetic energy, 
provided a is measured to be large compared with the range R of the potential. 
This connection between the scattering length and the bound-state energy was 
first pointed out by Wigner, who attempted to apply (6.6. 1 8) to np-scattering. 

Experimentally, the 3 S1 -state of the np-system has a bound state-that is, the 
deuteron with 

EsE = 2.22MeV. 
The scattering length is measured to be 

atriplet = 5.4 x 10- 13 em, 

leading to the binding-energy prediction 

n_2 n_2 ( n ) 2 
2fha2 = mNa2 = mNC2 mNca (2. 1 x 10-14 cm) 2 

= (938 MeV) 13 = 1 .4 MeV, 
5.4 x 10- em 

(6.6. 19) 

(6.6.20) 

(6.6.21) 

where fh i s  the reduced mass approximated by mn,p j2. The agreement between 
experiment and prediction is not too satisfactory. The discrepancy is due to the 
fact that the inside-wave functions are not exactly the same and that atriplet » R is 
not really a good approximation for the deuteron. A better result can be obtained 
by keeping the next term in the expansion of k cot 8 as a function of k, 

1 1 2 k cot 8o = --;; + 2rok , (6.6.22) 
where ro is known as the effective range (see, for example, Preston 1962, 23). 
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Bound States as Poles of Sz(k) 
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We conclude this section by studying the analytic properties of the amplitude Sz (k) 
for l = 0. Let us go back to (6.4.31 ) and (6.4.35), where the radial-wave function 
for l = 0 at large distance was found to be proportional to 

eikr e-ikr St=o(k)- - -- . r r 
Compare this with the wave function for a bound state at large distance, 

r 

(6.6.23) 

(6.6.24) 
The existence of a bound state implies that a nontrivial solution to the Schrodinger 
equation with E < 0 exists only for a particular (discrete) value of K . We may 
argue that e-Kr lr is like eikr lr , except that k is now purely imaginary. Apart 
from k being imaginary, the important difference between (6.6.23) and (6.6.24) is 
that in the bound-state case, e-Kr lr is present even without the analogue of the 
incident wave. Quite generally, only the ratio of the coefficient of eikr 1 r to that of 
e-ikr 1 r is of physical interest, and this is given by Sz(k). In the bound-state case 
we can sustain the outgoing wave (with imaginary k) even without an incident 
wave. So the ratio is oo, which means that St=o(k), regarded as a function of a 
complex variable k, has a pole at k = iK . Thus a bound state implies a pole (which 
can be shown to be a simple pole) on the positive imaginary axis of the complex 
k-plane; see Figure 6. 13 . For k real and positive, we have the region of physical 
scattering. Here we must require [compare with (6.4.37)] 

S _ e2ioo l=O - (6.6.25) 
with 8o real. Furthermore, as k -+  0, k cot 8o has a limiting value - lla (6.6 . 13), 
which is finite, so 8o must behave as follows: 

8o -+ 0, ±n ,  . . . . 
Hence St=O = e2ioo -+ 1 as k -+  0. 

Now let us attempt to construct a simple function satisfying: 

1 .  Pole at k = i K (existence of bound state) . 

2. I St=O I = 1 for k > 0 real ( unitarity). 

3 . St=O = 1 at k = 0 (threshold behavior). 

The simplest function that satisfies all three conditions of (6.6.27) is 

-k - iK St=o(k) = . . k - lK  

(6.6.26) 

(6.6.27) 

(6.6.28) 
[Editor's Note: Equation (6.6.28) is chosen for simplicity rather than as a phys
ically realistic example. For reasonable potentials (not hard spheres !) the phase 
shift vanishes as k -+ oo.] 
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K 

/ 
Region of physical scattering 

Re k 

FIGURE 6.13 The complex k-plane with bound-state pole at k = +i K .  

An assumption implicit in  choosing this form i s  that there i s  no other singular
ity that is important apart from the bound-state pole. We can then use (6.4.38) to 
obtain, for fz=o(k), 

St=O - 1 1 fz=o = 2 "k = ·k l -K - l  

Comparing this with (6.4.39), 

we see that 

1 fz=o = k t 8 ·k ' co o - z 

. 1 
hm k cot 8o = - - = - K ,  
k--70 a 

precisely the relation between bound state and scattering length (6.6. 17). 

(6.6.29) 

(6.6.30) 

(6.6.31) 

It thus appears that by exploiting unitarity and analyticity of Sz(k) in the k
plane, we may obtain the kind of information that can be secured by solving the 
Schrodinger equation explicitly. This kind of technique can be very useful in prob
lems where the details of the potential are not known. 

6.7 . RESONANCE SCATTERING 

In atomic, nuclear, and particle physics, we often encounter a situation where the 
scattering cross section for a given partial wave exhibits a pronounced peak. This 
section is concerned with the dynamics of such a resonance. 

We continue to consider a finite-range potential V(r) . The effective potential 
appropriate for the radial-wave function of the lth partial wave is V(r) plus the 
centrifugal barrier term as given by (6.6. 1 ). Suppose V(r) itself is attractive. Be
cause the second term, 

1i2 l(l + 1) 
2m r2 

is repulsive, we have a situation where the effective potential has an attractive well 
followed by a repulsive barrier at larger distances, as shown in Figure 6.14. 

Suppose the barrier were infinitely high. It would then be possible for parti
cles to be trapped inside, which is another way of saying that we expect bound 
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FIGURE 6.14 Veff = V(r) + (1i2 j2m)[l(l + l)jr2] versus r. For l =1= 0 the barrier can 
be due to (1i2 j2m)[l(l + l )jr2] ; for l = 0 the barrier must be due to V itself. 

states, with energy E > 0. They are genuine bound states in the sense that they 
are eigenstates of the Hamiltonian with definite values of E. In other words, they 
are stationary states with infinite lifetime. 

In the more realistic case of a finite barrier, the particle can be trapped inside, 
but it cannot be trapped forever. Such a trapped state has a finite lifetime as a 
consequence of quantum-mechanical tunneling. In other words, a particle leaks 
through the barrier to the outside region. Let us call such a state quasi-bound 
state because it would be an honest bound state if the barrier were infinitely high. 

The corresponding scattering phase shift 8z rises through the value n j2 as the 
incident energy rises through that of the quasi-bound state, and at the same time 
the corresponding partial-wave cross section passes through its maximum possi
ble value 4n(2l + 1)/ k2. [Editor's Note: Such a sharp rise in the phase shift is, 
in the time-dependent Schrodinger equation, associated with a delay of the emer
gence of the trapped particles, rather than an unphysical advance, as would be the 
case for a sharp decrease through n j2.] 

It is instructive to verify this point with explicit calculations for some known 
potential. The result of a numerical calculation shows that a resonance behavior is 
in fact possible for l -=/= 0 with a spherical-well potential. To be specific, we show 
the results for a spherical well with 2m VoR2 j1i2 = 5.5 and l = 3 in Figure 6 .15 . 
The phase shift (Figure 6 . 15b), which is  small at extremely low energies, starts 
increasing rapidly past k = 1 / R and goes through n /2 around k = 1 .3/ R. 

Another very instructive example is  provided by a repulsive 8-shell potential 
that is exactly soluble (see Problem 6. 10 in this chapter) : 

2m 2 V(r) = yo(r - R). 
1i 

(6.7 . 1 ) 

Here resonances are possible for l = 0 because the 8-shell potential itself can trap 
the particle in the region 0 < r < R. For the case y = oo, we expect a series of 
bound states in the region r < R with 

kR = n, 2n, . . .  ; (6.7.2) 
this is because the radial-wave function for l = 0 must vanish not only at r = 0 
but also at r = R- in this case. For the region r > R, we simply have hard-sphere 
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FIGURE 6.15 Plots of (a) CJt=3 versus k, where at resonance, 83(kres) = n: 12 and at=3 = 
(4rr I k?es) x 7 = 28rr I k?es • and (b) 83(k) versus k. The curves are for a spherical well with 
2 m  VoR2 11i2 = 5.5. 

scattering with the S-wave phase shift, given by 

oo = -kR. (6.7.3) 
With y = oo, there is no connection between the two problems because the wall 
at r = R cannot be penetrated. 

The situation is more interesting with a finite barrier, as we can show explicitly. 
The scattering phase shift exhibits a resonance behavior whenever 

Eincident ::::= Equasi-boundstate· (6.7.4) 
Moreover, the larger the y , the sharper the resonance peak. However, away from 
the resonance, oo looks very much like the hard-sphere phase shift. Thus we have 
a situation in which a resonance behavior is superimposed on a smoothly behav
ing background scattering. This serves as a model for neutron-nucleus scattering, 
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where a series of sharp resonance peaks are observed on top of a smoothly varying 
cross section. 

Coming back to our general discussion of resonance scattering, we ask how 
the scattering amplitudes vary in the vicinity of the resonance energy. If we are to 
have any connection between az being large and the quasi-bound states, oz must 
go through rr /2 (or 3rr /2, . . .  ) from below, as discussed above. In other words 81 
must go through zero from above. Assuming that cot8t is smoothly varying near 
the vicinity of resonance, that is, 

we may attempt to expand oz as follows: 

This leads to 

cot oz = � -c(E - Er) + O [(E - Eri] . 
0 

1 
fz(k) = ---k cot oz - ik 

r;2 

1 1 
- ------k [ -c(E - Er) - i ] 

[ T] '  k (E - Er) +� 
where we have defined the width r by 

d(cot 8t) I = -c = -� .  
dE E=Er r 

(6.7.5) 

(6.7.6) 

(6.7.7) 

(6.7. 8) 

Notice that r is very small if cot 81 varies rapidly. If a simple resonance dominates 
the lth partial-wave cross section, we obtain a one-level resonance formula (the 
Breit-Wigner formula): 

4rr (21 + 1)(r /2)2 az = k2 (E - Er)2 + r2;4 · (6.7.9) 

So it is legitimate to regard r as the full width at half-maximum, provided the 
resonance is reasonably narrow so that variation in 1 j k2 can be ignored. 

6.8 . SYMMETRY CONSI DERATIONS IN  SCATTERING 

Let us consider the scattering of two identical spinless charged particles via some 
central potential, such as the Coulomb potential.* The spatial part of the wave 

*The student unfamiliar with the elements of permutation symmetry with identical particles 
should see Chapter 7 of this textbook. 
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function must now be symmetrical, so the asymptotic wave function must look 
like 

eikr 
eik·x + e-ik·x + [f(8) + f(n _ 8)]-, r (6.8 . 1 )  

where x = x1 - x2 i s  the relative position vector between the two particles 1 and 
2. This results in a differential cross section, 

d� 2 - = lf(8) +  f(n - 8) 1  dQ 

= 1 !(8) 12 + l f(n - 8) 1 2 + 2Re[f(8)f*(n - 8)] . 
(6.8.2) 

The cross section is enhanced through constructive interference at 8 :::::::: n j2. 
In contrast, for spin 1- spin 1 scattering with unpolarized beam and V inde

pendent of spin, we have the spin-singlet scattering going with space-symmetrical 
wave function and the spin triplet going with space-antisymmetrical wave func
tion (see Section 7.3). If the initial beam is unpolarized, we have the statistical 
contribution t for spin singlet and i for spin triplet; hence 

d� 1 2 3 2 dQ = 4 1f(8) + f(n - 8) 1  + 4 1 !(8) - f(n - 8) 1 
= 1 !(8) 12 + l f(n - 8) 1 2 - Re[f(8)f*(n - 8)] . 

(6.8.3) 

In other words, we expect destructive interference at 8 :::::::: n j2. This has, in fact, 
been observed. 

Now consider symmetries other than exchange symmetry. Suppose V and Ho 
are both invariant under some symmetry operation. We may ask what this implies 
for the matrix element of T or for the scattering amplitude f(k', k). 

If the symmetry operator is unitary (for example, rotation and parity), every
thing is quite straightforward. Using the explicit form of T as given by (6. 1 .32), 
we see that 

UHout = Ho, uvut = v 
implies that T is also invariant under U-that is, 

We define 

Then 

urut = T.  

lk) = U lk) , lk') = Ulk') .  

(k' IT ik) = (k' l uturutu lk) 
= (k' I T ik) . 

(6.8.4) 

(6.8 .5) 

(6.8.6) 

(6.8.7) 
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(b) 

FIGURE 6.16 (a) Equality of T matrix elements between k --+  k' and -k --+ -k' . 
(b) Equality of T matrix elements under rotation. 

As an example, we consider the specific case where U stands for the parity 
operator 

n lk) = 1 - k) ,  n l - k) = lk) .  
Thus invariance of Ho and V under parity would mean 

(-k' I T I - k) = (k' I T ik) . 
Pictorially, we have the situation illustrated in Figure 6 . 16a. 

(6.8.8) 

(6.8.9) 

We exploited the consequence of angular-momentum conservation when we 
developed the method of partial waves. The fact that T is diagonal in the I Elm) 
representation is a direct consequence of T being invariant under rotation. Notice 
also that (k' I T  I k) depends only on the relative orientation of k and k', as depicted 
in Figure 6 .16b. 

When the symmetry operation is antiunitary (as in time reversal), we must be 
more careful. First, we note that the requirement that V as well as Ho be invariant 
under time-reversal invariance requires that 

This is because the antiunitary operator changes 

1 
into 

1 
E - Ho+ is E - Ho - is 

in (6. 1 .32). We also recall that for an antiunitary operator [see (4.4. 1 1)] ,  

where 

Let us consider 

(,B ia) = (& lfi) ,  

I& ) = 8 1a) and l fi) = 8 1,8) . 

Ia ) = T lk) , (,8 1 = (k' l ;  

(6.8. 10) 

(6.8. 1 1 ) 

(6.8. 1 2) 

(6.8. 13) 

(6.8 .14) 
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then 

/&) = 8T /k) = 8T8-18 /k) = rt / - k) 
\,8) = 8\k) = 1 -k') . 

As a result, (6.8 . 12) becomes 

(k' / T /k) = (-k/ T / - k') .  

(6.8. 1 5) 

(6.8. 16) 
Notice that the initial and final momenta are interchanged, in addition to the fact 
that the directions of the momenta have been reversed. 

It is also interesting to combine the requirements of time reversal (6.8 . 16) and 
parity (6.8.9): 

(k' / T \k) un�re (-k\ T \ - k') un�nr (k\ T \k' ) ;  
that is, from (6.2.22) and (6.3 . 1 )  we have 

which results in 

f(k,k') = f(k',k), 

dO' dO' -(k � k') = -(k' � k). 
dQ dQ 

Equation (6.8. 19) is known as detailed balance. 

(6.8 . 17) 

(6.8. 1 8) 

(6.8. 19) 

It is more interesting to look at the analogue of (6.8 . 17) when we have spin. 
Here we may characterize the initial free-particle ket by \k,ms ) ,  and we exploit 
(4.4.79) for the time-reversal portion: 

(k',m� \ T \k,ms ) = i -2ms+2ms' (-k, -ms \ T \ - k', -m�) 
= i -2ms+2ms' (k, -ms \T \k', -m� ) . (6.8.20) 

For unpolarized initial states, we sum over the initial spin states and divide by 
(2s + 1) ; if the final polarization is not observed, we must sum over final states. 
We then obtain detailed balance in the form 

dO' (k � k') = 
dO' (k' � k), 

dQ dQ 
(6.8.2 1 ) 

where we understand the bar on the top of dO' jdQ in  (6.8 .21) to mean that we 
average over the initial spin states and sum over the final spin states. 

6.9 • INELASTIC ELECTRON-ATOM SCATTERING 

Let us consider the interactions of electron beams with atoms assumed to be in 
their ground states. The incident electron may get scattered elastically with final 
atoms unexcited: 

e- + atom (ground state) � e- + atom (ground state). (6.9 . 1 ) 
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This is an example of elastic scattering. To the extent that the atom can be re
garded as infinitely heavy, the kinetic energy of the electron does not change. It is 
also possible for the target atom to get excited: 

e - + atom (ground state) � e - + atom (excited state). (6.9.2) 
In this case we talk about inelastic scattering because the kinetic energy of the 
final outgoing electron is now less than that of the initial incoming electron, the 
difference being used to excite the target atom. 

The initial ket of the electron plus the atomic system is written as 

lk, O) , (6.9.3) 
where k refers to the wave vector of the incident electron and 0 stands for the 
atomic ground state. Strictly speaking, (6.9.3) should be understood as the direct 
product of the incident-electron ket lk) and the ground-state atomic ket 10) . The 
corresponding wave function is 

(6.9.4) 

where we use the box normalization for the plane wave. 
We may be interested in a final-state electron with a definite wave vector k'. 

The final-state ket and the corresponding wave function are 

lk', n) and (6.9.5) 

where n = 0 for elastic scattering and n =!= 0 for inelastic scattering. 
Assuming that time-dependent perturbation theory is applicable, we can im

mediately write the differential cross section, as in the previous section: 

(6.9.6) 

Everything is similar, including the cancellation of terms such as L 3 , with one 
important exception: k' = lk' I is not, in general, equal to k = lk l for inelastic 
scattering. 

The next question is, what V is appropriate for this problem? The incident 
electron can interact with the nucleus, assumed to be situated at the origin; it can 
also interact with each of the atomic electrons. So V is to be written as 

(6.9.7) 
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Here complications may arise because of the identity of the incident electron with 
one of the atomic electrons; to treat this rigorously is a nontrivial task. Fortu
nately, for a relatively fast electron we can legitimately ignore the question of 
identity; this is because there is little overlap between the bound-state electron 
and the incident electron in momentum space. We must evaluate the matrix ele
ment {k' , n l V lkO), which, when explicitly written, is 

1 f . Ze2 e2 {k'n i V IkO) = 3 d3xetq·x {n l --+ L 10) L r . lx - xi l l 
1 f 3 iq·x n

z f 3 * [ Ze2 "' e2 ] 
= 3 d xe d x(t/ln (Xl , . . .  ,Xz) --+� I I L . r . x -� l l 

(6.9 .8) 
with q = k- k'. 

Let us see how to evaluate the matrix element of the first term, -Ze2 I r, where 
r actually means l x l . First we note that this is a potential between the incident 
electron and the nucleus, which is independent of the atomic electron coordinates. 
So it can be taken outside the integration 

in (6.9.8); we simply obtain 

{n iO) = 8no (6.9.9) 
for the remainder. In other words, this term contributes only to the elastic
scattering case, where the target atom remains unexcited. In the elastic case 
we must still integrate eiq·x I r with respect to x, which amounts to taking the 
Fourier transform of the Coulomb potential. This can readily be done because we 
have already evaluated the Fourier transform of the Yukawa potential; see (6.3 .9). 
Hence 

4n 
2 . q 

(6.9. 10) 
As for the second term in (6.9.8), we can evaluate the Fourier transform of 11 1x
Xi 1 .  We can accomplish this by shifting the coordinate variables x --+ x +Xi : 

"'f d3xeiq·x "'f d3xeiq·x + xi ) 4n "' iq·xi � lx - xi l 
= � lxl 

= """";j2 �e · 

l l l 
(6.9. 1 1) 

Notice that this is just the Fourier transform of the Coulomb potential multiplied 
by the Fourier transform of the electron density due to the atomic electrons situ
ated at Xi : 

(6.9. 12) 
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We customarily define the form factor Fn(q) for excitation 10) to In) as follows: 

(6.9. 13) 

which is made of coherent-in the sense of definite phase relationships
contributions from the various electrons. Notice that as q -+ 0, we have 

for n = 0; hence the form factor approaches unity in the elastic-scattering case. 
For n =f. 0 (inelastic scattering), Fn ( q) -+ 0 as q -+ 0 by orthogonality between 
In ) and 1 0) . We can then write the matrix element in (6.9.8) as 

f d3 xe'•·x (n I (- z;' + � lx �2 x; l ) 10) = 4"
q
�e' [ -Ono + Fn( q) ] .  (6.9. 14) 

We are finally in a position to write the differential cross section for inelastic 
(or elastic) scattering of electrons by atoms: 

dcr (k' ) 1 1 2me 4n Ze2 12 dQ (O -+ n) =  k 4n t;2 q2 [-8no + Fn(q)] 
4m� (Ze2)2 (k' ) 2 = p;4 

q4 k 1 - ono + Fn(q) l  . 
(6.9 . 15) 

For inelastic scattering the 8no-term does not contribute, and it is customary to 
write the differential cross section in terms of the Bohr radius, 

as follows: 

1i2 ao = -2-, e me 

dcr (0 -+ n) = 4Z2aJ (k') _1_4 1Fn(q) l2. dQ k (qao) 
Quite often dcr I dq is used in place of dcr I dQ; using 

q2 = lk -k' l2 = k2 + k'2 - 2kk' cose 

and dq = -d(cosB)kk' lq, we can write 

dcr 2nq dcr 
- -- --dq kk' dQ 

(6.9 . 16) 

(6.9 . 17) 

(6.9. 18) 

(6.9. 19) 
The inelastic cross section we have obtained can be used to discuss stop

ping power-the energy loss of a charged particle as it goes through matter. 
A number of people, including H. A. Bethe and F. Bloch, have discussed the 
quantum-mechanical derivation of stopping power from the point of view of the 
inelastic-scattering cross section. We are interested in the energy loss of a charged 
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particle per unit length traversed by the incident charged particle. The collision 
rate per unit length is N 0' ,  where N is the number of atoms per unit volume; 
at each collision process the energy lost by the charged particle is En - Eo. So 
dE I dx is written as 

(6.9.20) 

Many papers have been written on how to evaluate the sum in (6.9.20) .* The 
upshot of all this is to justify quantum-mechanically Bohr's 1913 formula for 
stopping power, 

(6.9.21) 

where I is  a semiempirical parameter related to the average excitation energy 
(En - Eo) . lf the charged particle has electric charge ±ze, we just replace Ze4 by 
z2 Ze4. It is also important to note that even if the projectile is not an electron, the 
me that appears in (6.9.21) is still the electron mass, not the mass of the charged 
particle. So the energy loss is dependent on the charge and the velocity of the 
projectile but is independent of the mass of the projectile. This has an important 
application to the detection of charged particles. 

Quantum-mechanically, we view the energy loss of a charged particle as a 
series of inelastic-scattering processes. At each interaction between the charged 
particle and an atom, we may imagine that a "measurement" of the position of the 
charged particle is made. We may wonder why particle tracks in such media as 
cloud chambers and nuclear emulsions are nearly straight. The reason is that the 
differential cross section (6.9. 17) is sharply peaked at small q; in an overwhelming 
number of collisions, the final direction of momentum is nearly the same as that 
of the incident electron due to the rapid falloff of q -4 and Fn ( q) for large q. 

Nuclear Form Factor 

The excitation of atoms due to inelastic scattering is important for q '"" 109 em -1 , 
to 1010 em -1 . If q is too large, the contributions due to Fo( q) or Fn ( q) drop 
off very rapidly. At extremely high q, where q is now of order 1/ Rnucleus '"" 
1012 em -1 , the structure of the nucleus becomes important. The Coulomb poten
tial due to the point nucleus must now be replaced by a Coulomb potential due to 

*For a relatively elementary discussion, see K. Gottfried ( 1966) and H. A. Be the and R. W. J ackiw 
(1968). 
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an extended object, 

Ze2 
2! d3x'N(r') 

- -- -+ - Ze r lx - x' l ' 
where N(r) is a nuclear charge distribution, normalized so that J d3 x' N(r') = 1 .  
The point-like nucleus can now be regarded as a special case, with 

N(r') = 8(3) (r'). 
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(6.9.22) 

(6.9.23) 

(6.9.24) 
We can evaluate the Fourier transform of the right -hand side of ( 6.9 .22) in analogy 
with (6.9 . 10) as follows: 

(6.9.25) 
where we have shifted the coordinates x -+ x + x' in the first step and 

v - f d3 iq·xN( ) L'nucleus = xe r . (6.9.26) 
We thus obtain the deviation from the Rutherford formula due to the finite size of 
the nucleus, 

da = (da ) I F(q) l2 , d Q d Q Rutherford (6.9.27) 
where (da j dQ)Rutherford is the differential cross section for the electric scattering 
of electrons by a point-like nucleus of charge Z le l .  For small q we have 

Fnucleus(Q) = f d3x ( 1 + iq . X - �q2r2(q . r)2 + . . .  ) N(r) 
1 2 2 = 1 - 6q (r )nucleus + · · ·  . 

(6.9.28) 

The q · x-term vanishes because of spherical symmetry, and in the q2-term we 
have used the fact that the angular average of cos2 (} (where (} is the angle between 
q and r) is just � : 

- d(cos(}) cos2 (} = - .  1 1+1 1 
2 -1  3 (6.9.29) 

The quantity (r2)nucleus is known as the mean square radius of the nucleus. In this 
way it is possible to "measure" the size of the nucleus and also of the proton, 
as done by R. Hofstadter and coworkers. In the proton case the spin (magnetic 
moment) effect is also important. 
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Problems 

6.1 The Lippmann-Schwinger formalism can also be applied to a one-dimensional 
transmission-reflection problem with a finite-range potential, V (x) =f. 0 for 0 < 
lx l  < a  only. 

(a) Suppose we have an incident wave coming from the left: (x 14>} = eikx I ,Jiii. 
How must we handle the singular 1/(E - Ho) operator if we are to have a 
transmitted wave only for x > a and a reflected wave and the original wave for 
x < -a? Is the E --+ E + i s  prescription still correct? Obtain an expression for 
the appropriate Green's function and write an integral equation for (x l l/r(+)) .  

(b) Consider the special case of an attractive 8-function potential (y1i2 ) 
v = -

2m 
o(x) (y > 0). 

Solve the integral equation to obtain the transmission and reflection ampli
tudes. Check your results with Gottfried 1966, p. 52. 

(c) The one-dimensional a-function potential with y > 0 admits one (and only one) 
bound state for any value of y .  Show that the transmission and reflection am
plitudes you computed have bound-state poles at the expected positions when 
k is regarded as a complex variable. 

6.2 Prove 

2 

f f 
. 2 kl ' I  m 3 3 , , sm x - x  

atot ::= -4 d x d X V(r)V(r ) 2 2 rr1i k lx - x' l 

in each of the following ways. 

(a) By integrating the differential cross section computed using the first-order Born 
approximation. 

(b) By applying the optical theorem to the forward-scattering amplitude in the 
second-order Born approximation. [Note that f(O) is real if the first-order Born 
approximation is used.] 

6.3 Estimate the radius of the 4°Ca nucleus from the data in Figure 6.6 and compare to 
that expected from the empirical value � 1 .4A 113 fm, where A is the nuclear mass 
number. Check the validity of using the first-order Born approximation for these 
data. 

6.4 Consider a potential 

V = 0 for r > R, V = Vo = constant for r < R, 

where Vo may be positive or negative. Using the method of partial waves, show that 
for I Vo l « E = 1i2k2 f2m and kR « 1 ,  the differential cross section is isotropic and 
that the total cross section is given by 
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Suppose the energy is raised slightly. Show that the angular distribution can then 
be written as 

da 
dQ = A + B cose . 

Obtain an approximate expression for B /A. 

6.5 A spinless particle is scattered by a weak Yukawa potential 

Voe-w 
V = --

JLr 

where JL > 0 but Vo can be positive or negative. It was shown in the text that the 
first-order Born amplitude is given by 

(a) Using jOl(&) and assuming lot / « 1 ,  obtain an expression for 81 in terms of a 
Legendre function of the second kind, 

(b) Use the expansion formula 

1 ! 
Qt(n = 1 . 3 .  5 . . .  (21 + o { 1 (1 + 1)(1 + 2) 1 x s-�+1 + 2(21 + 3) �1+3 

(1 + 1)(1 + 2)(1 + 3)(1 + 4) 1 } + 2 .  4 . (21 + 3)(21 + 5) s-1+5 + . . . 

to prove each assertion. 

( / � /  > 1) 

(i) 81 is negative (positive) when the potential is repulsive (attractive). 

(ii) When the de Broglie wavelength is much longer than the range of the 
potential, 81 is proportional to k21+ 1 . Find the proportionality constant. 

6.6 Check explicitly the x - Px uncertainty relation for the ground state of a particle 
confined inside a hard sphere: V = oo for r > a, V = 0 for r < a.  (Hint: Take 
advantage of spherical symmetry.) 

6.7 Consider the scattering of a particle by an impenetrable sphere 

V (r) = { 0 for r > a 
oo for r < a. 

(a) Derive an expression for the s-wave (1 = 0) phase shift. (You need not know the 
detailed properties of the spherical Bessel functions to do this simple problem!) 
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(b) What is the total cross section a [a = j(da jdQ)dQ] in the extreme low-energy 
limit k ---+ 0? Compare your answer with the geometric cross section :rra2. You 
may assume without proof: 

da 
2 dQ = \ f(8) \ ' ( 1 ) 00 . f(8) = - z)2l + l)e181 sin8z Pz(cos e). k 1=0 

6.8 Use 8z = Ll(b) lb=lfk to obtain the phase shift 8z for scattering at high energies 
by (a) the Gaussian potential, V = Vo exp( -r2 ja2), and (b) the Yukawa potential, 
V = Vo exp(- w) j f-LT. Verify the assertion that 8z goes to zero very rapidly with 
increasing I (k fixed) for I » kR, where R is the "range" of the potential. [The 
formula for Ll(b) is given in (6.5. 14)] . 

6.9 (a) Prove 

�(x\ 1 
. \x') = -ikL LYt(r)Yt* <r')jz (kr<)hjl\kr> ), 2m E - Ho + z s  1 m 

where r < (r>) stands for the smaller (larger) of r and r'. 
(b) For spherically symmetrical potentials, the Lippmann-Schwinger equation can 

be written for spherical waves: 1 
\ Elm(+)) =  \ Elm) +  . V \ Elm(+)) . 

E - Ho + z s 
Using (a), show that this equation, written in the x-representation, leads to an 
equation for the radial function, Az (k; r), as follows: 

2mik Az(k; r) = jz(kr) - y 
x 100 jz(kr dhjl) (kr> )V(r')Az (k; r')r'2dr'. 

By taking r very large, also obtain 

fz(k) = ei8t sin8z 

k 

= -(!�) 100 jz(kr)Az (k;r)V(r)r2dr. 

6.10 Consider scattering by a repulsive 8-shell potential: 

(!�) V(r) = y8(r - R), (y > 0). 

(a) Set up an equation that determines the s-wave phase shift 8o as a function of 
k (E = 1i2k2 j2m). 

(b) Assume now that y is very large, 1 y » R ,k. 
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Show that if tan kR is not close to zero, the s-wave phase shift resembles the 
hard-sphere result discussed in the text. Show also that for tan kR close to (but 
not exactly equal to) zero, resonance behavior is possible; that is, cot8o goes 
through zero from the positive side as k increases. Determine approximately 
the positions of the resonances keeping terms of order 1/  y ;  compare them 
with the bound-state energies for a particle confined inside a spherical wall of 
the same radius, 

V = 0, r < R; V = oo, r > R. 

Also obtain an approximate expression for the resonance width r defined by 

-2 
r = �---::----:-::----[d(cot 8o)/dE] IE=Er ' 

and notice, in particular, that the resonances become extremely sharp as y be
comes large. (Note: For a different, more sophisticated approach to this prob
lem, see Gottfried 1966, pp. 1 3 1-41 ,  who discusses the analytic properties of 
the Dt-function defined by At = jtf Dt .) 

6.11 A spinless particle is scattered by a time-dependent potential 

V(r, t) = V (r) cos wt. 

Show that if the potential is treated to first order in the transition amplitude, the 
energy of the scattered particle is increased or decreased by hw. Obtain du j dQ. 
Discuss qualitatively what happens if the higher-order terms are taken into account. 

6.12 Show that the differential cross section for the elastic scattering of a fast electron 
by the ground state of the hydrogen atom is given by 

du (4m2e4 ) l 16 )2 
dQ = 1i4q4 1 -

[4 + (qao)2]2 

(Ignore the effect of identity.) 

6.13 Let the energy of a particle moving in a central field be E(J1 hh), where 
(h, h, h) are the three action variables. How does the functional form of E 
specialize for the Coulomb potential? Using the recipe of the action-angle method, 
compare the degeneracy of the central-field problem to that of the Coulomb prob
lem, and relate it to the vector A. 

If the Hamiltonian is 

how are these statements changed? 
Describe the corresponding degeneracies of the central-field and Coulomb 

problems in quantum theory in terms of the usual quantum numbers (n, l, m) and 
also in terms of the quantum numbers (k, m, n). Here the second set, (k, m, n), labels 
the wave functions :D!n<af3y). 

How are the wave functions :D!n<af3y) related to Laguerre times spherical 
harmonics? 
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7 Identical Particles 

This chapter i s  devoted to a discussion of some striking quantum-mechanical ef
fects arising from the identity of particles. First we present a suitable formalism 
and the way that nature deals with what appears to be an arbitrary choice. We then 
consider some applications to atoms more complex than hydrogen or hydrogen
like atoms. Moving on, we develop a formalism for dealing with systems of many 
identical particles, one of the ways to approach quantum field theory. Finally, as 
one example of a many-particle quantum-mechanical system, we outline one ap
proach to quantizing the electromagnetic field. 

7.1 . PERMUTATION SYMMETRY 

446 

In classical physics it is possible to keep track of individual particles even though 
they may look alike. When we have particle 1 and particle 2 considered as a 
system, we can, in principle, follow the trajectory of 1 and that of 2 separately at 
each instant of time. For bookkeeping purposes, you may color one of them blue 
and the other red and then examine how the red particle moves and how the blue 
particle moves as time passes. 

In quantum mechanics, however, identical particles are truly indistinguishable. 
This is because we cannot specify more than a complete set of commuting ob
servables for each of the particles ; in particular, we cannot label the particle by 
coloring it blue. Nor can we follow the trajectory because that would entail a 
position measurement at each instant of time, which necessarily disturbs the sys
tem; in particular, the two situations (a) and (b) shown in Figure 7 . 1 cannot be 
distinguished-not even in principle. 

For simplicity, consider just two particles. Suppose one of the particles, which 
we call particle 1 , is characterized by lk') ,  where k' is a collective index for a 
complete set of observables. Likewise, we call the ket of the remaining particle 
lk") . The state ket for the two particles can be written in product form, 

lk' ) lk") ' (7. 1 . 1 )  
where it is understood that the first ket refers to particle 1 and the second ket to 
particle 2. We can also consider 

lk'') lk') ,  (7. 1 .2) 
where particle 1 is characterized by lk") and particle 2 by lk') . Even though the 
two particles are indistinguishable, it is worth noting that mathematically, (7 . 1 . 1 )  
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(a) (b) 
FIGURE 7.1 Two different paths, (a) and (b), of a two-electron system, for example, in 
which we cannot assert, even in principle, through which of the paths the electrons pass. 

and (7 . 1 .2) are distinct kets for k' i= k". In fact, with k' i= k", they are orthogonal 
to each other. 

Suppose we make a measurement on the two-particle system. We may obtain 
k' for one particle and k" for the other. However, we do not know a priori whether 
the state ket is lk') lk") ,  lk") lk') ,  or-for that matter-any linear combination of 
the two. Put in another way, all kets of form 

q lk') lk") + q lk") lk') (7. 1 .3) 

lead to an identical set of eigenvalues when measurement is performed. This is 
known as exchange degeneracy. Exchange degeneracy presents a difficulty be
cause, unlike the single-particle case, a specification of the eigenvalue of a com
plete set of observables does not completely determine the state ket. The way 
nature avoids this difficulty is quite ingenious. But before proceeding further, let 
us develop the mathematics of permutation symmetry. 

We define the permutation operator P12 by 

Pn lk') lk") = lk") lk') .  (7 . 1 .4) 

Clearly, 

P21 = P12 and P1� = 1 .  (7 . 1 .5) 

Under P12, particle 1 having k' becomes particle 1 having k"; particle 2 having 
k" becomes particle 2 having k' . In other words, it has the effect of interchanging 
1 and 2. 

In practice we often encounter an observable that has particle labels. For ex
ample in S1 • S2 for a two-electron system, S1 (S2) stands for the spin operator of 
particle 1 (2). For simplicity, we consider a specific case where the two-particle 
state ket is completely specified by the eigenvalues of a single observable A for 
each of the particles: 

A 1 la') Ia") = a' Ia') Ia") (7. 1 .6a) 

and 

(7. 1 .6b) 
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where the subscripts on A denote the particle labels, and A1 and A2 are thus the 
observables A for particles 1 and 2, respectively. Applying P12 to both sides of 
(7. 1 .6a), and inserting 1 = Pi21 P12, we have 

P12A 1Pi21 Pda') la") = a' P12 la') la") 
P12A1 Pi21 1a") Ia') = a' Ia") Ia') .  

This is consistent with (7 . 1 .6b) only if 

It follows that P12 must change the particle labels of observables. 

(7. 1 .7) 

(7 . 1 .8) 

Let us now consider the Hamiltonian of a system of two identical particles. The 
observables, such as momentum and position operators, must necessarily appear 
symmetrically in the Hamiltonian-for example, 

(7 . 1 .9) 

Here we have separated the mutual interaction between the two particles from 
their interaction with some other external potential. Clearly, we have 

(7 . 1 . 10) 

for H made up of observables for two identical particles. Because P12 commutes 
with H, we can say that P12 is a constant of the motion. The eigenvalues of P12 
that are allowed are + 1 and - 1  because of (7 . 1 .5). It therefore follows that if the 
two-particle state ket is symmetrical (antisymmetrical) to start with, it remains so 
at all times. 

If we insist on eigenkets of P12, two particular linear combinations are se
lected: 

and 

lk'k")+ = -
1 ( lk') lk") + lk") lk' )) ../2 

lk'k")- = � ( lk') lk") - lk") lk' )) . 

We can define the symmetrizer and antisymmetrizer as follows: 

(7. 1 . 1 1a) 

(7. l . l l b) 

(7. 1 . 12) 

We can extend this formalism to include states with more than two identical par
ticles. From (7. 1 . 12),  if we apply S12(A 12) to an arbitrary linear combination of 
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FIGURE 7.2 Dramatic consequences arise when permutation symmetry is  neglected. 
The data points are from R. D. McKeown et al., Phys. Rev. C22 ( 1980) 738, who test a 
prediction of the Conserved Vector Current (CVC) hypothesis. The 13± - a  correlation 
8- is plotted against the 13± energy. The prediction comes from a different, previous ex
periment, which at first neglected permutation symmetry. The corrected plot is on the 
right, from R. D. McKeown et al. ,  Phys. Rev. C26 ( 1982) 2336, where the CVC predic
tion is smaller by a factor of v'l. 

j k') lk") and jk") lk') , the resulting ket is necessarily symmetrical (antisymmetri
cal). This can easily be seen as follows: 

{ ��: } [ CI jk') jk") + qjk") jk') J 
= � ( q l k') lk") + qjk") lk')) ± � ( q lk") lk' ) + qjk') lk")) 
CI ± c2 ( Jk') jk") ± jk") jk')) . 

2 
(7. 1 . 13)  

In Section 7 .5  we will build on this approach. 
Before closing this section, we pause to point out that the consequences can be 

dramatic when permutation symmetry is ignored. Figure 7.2 shows a result that 
compares two experiments, before and after an error was corrected that ignored 
permutation symmetry in the analysis. 

The object of this set of experiments was to test something called the Con
served Vector Current (CVC) hypothesis, which is based on the assumption of an 
intimate connection* between the electromagnetic and weak interactions. Confir
mation, or refutation, of the CVC hypothesis was a high priority, and this exper
iment was one of the most precise tests. The initial result, shown on the left in 
Figure 7 .2, was less than clear. The corrected result, on the right, was a decisive 
confirmation of eve. 

*The eve hypothesis predates the unification of electromagnetic and weak interactions in what 
today is referred to as the Standard Model. 
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The data points in Figure 7.2, which are identical for the left- and right-hand 
plots, are from a measurement of the beta decays of 8Li and 8B, each of which 
led to a final state with two (identical) a particles, through an excited state of 8Be. 
That is, 

and 

8Li --+ 8Be* + e- + Ve 
8B --+ 8Be* + e+ + Ve 

8Be* --+ a + a. 

followed by 

(7. 1 . 14a) 

(7. 1 . 14b) 

(7 . 1 . 14c) 

The experiment determines 8-,  the correlation in direction between the e±- and 
a-directions for the two beta decays, as a function of e± energy. The result of this 
measurement is published as R. D. McKeown et al., Phys. Rev. e22 ( 1980) 738. 

The hatched area shows the eve prediction derived from an earlier experi
ment, published as T. J. Bowles and G. T. Garvey, Phys. Rev. ets ( 1978) 1447. 
This work measured the reaction 

a + a --+ 8Be* followed by 
8Be* --+ 8Be + y . 

(7 . 1 . 15a) 

(7. 1 . 1 5b) 

This process is rather the inverse of that in (7 . 1 . 14) and proceeds through an elec
tromagnetic interaction instead of the weak interaction. Deriving the eve predic
tion from this result requires that the aa wave function be symmetrized, but this 
was neglected at first, for the plot shown on the left of Figure 7 .2. Some time later, 
this error was corrected for the missing factor of v'2, and the plot on the right was 
published, showing much better agreement between prediction and measurement. 

7.2 • SYMMETRIZATION POSTULATE 

So far we have not discussed whether nature takes advantage of totally symmetri
cal or totally antisymmetrical states. It turns out* that systems containing N iden
tical particles are either totally symmetrical under the interchange of any pair, 
in which case the particles are said to satisfy Bose-Einstein (B-E) statistics and 
hence are known as bosons, or totally antisymmetrical, in which case the particles 
are said to satisfy Fermi-Dirac (F-D) statistics and hence are known as fermions. 
Thus 

Pij I N  identical bosons) = + I N  identical bosons) 

Pij I N  identical fermions) = - I N  identical fermions) , 

(7.2. 1 a) 

(7.2. 1b) 

*To be sure, there is an important subtlety that relies on our living in three-dimensional space. It 
is possible to have objects, called anyons, that have a continuum of statistical properties spanning 
the range between fermions and bosons, if they are constrained to two spatial dimensions. The 
literature on this subject is fascinating but scattered. The reader is referred to two early papers: 
F. Wilczek, "Quantum Mechanics of Fractional-Spin Particles," Phys. Rev. Lett. 49 (1982) 957 
and M. V. N. Murthy, J. Law, M. Brack, and R. K. Bhaduri, "Quantum Spectrum of Three Anyons 
in an Oscillator Potential," Phys. Rev. Lett. 67 (1991)  8 17 .  
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where Pij is the permutation operator that interchanges the ith and the jth parti
cles, with i and j arbitrary. It is an empirical fact that a mixed symmetry does not 
occur. 

Even more remarkable is that there is a connection between the spin of a par
ticle and the statistics obeyed by it: 

Half-integer-spin particles are fermions; 

Integer-spin particles are bosons. 

(7.2.2a) 

(7.2.2b) 

Here particles can be composite; for example, a 3He nucleus is a fermion just as 
the e- or the proton is; a 4He nucleus is a boson just as the n meson or the z0 
gauge boson is. 

This spin-statistics connection is, as far as we know, an exact law of nature 
with no known exceptions. In the framework of nonrelativistic quantum mechan
ics, this principle must be accepted as an empirical postulate. In the relativistic 
quantum theory, however, it can be proved that half-integer-spin particles cannot 
be bosons and integer-spin particles cannot be fermions. 

An immediate consequence of the electron being a fermion is that the electron 
must satisfy the Pauli exclusion principle, which states that no two electrons 
can occupy the same state. This follows because a state like lk') lk') is necessarily 
symmetrical, which is not possible for a fermion. As is well known, the Pauli 
exclusion principle is the cornerstone of atomic and molecular physics, as well as 
the whole of chemistry. To illustrate the dramatic differences between fermions 
and bosons, let us consider two particles, each of which can occupy only two 
states, characterized by k' and k". For a system of two fermions, we have no 
choice; there is only one possibility: 

� ( lk' ) lk" ) - lk") lk' )) . (7.2.3) 

For bosons there are three states possible: 

lk') lk') , lk") lk") ,  � ( lk' ) lk") + lk") lk' )) . (7.2.4) 

In contrast, for "classical" particles satisfying Maxwell-Boltzmann (M-B) statis
tics with no restriction on symmetry, we have altogether four independent states: 

lk') lk") , lk") lk') ' l k') lk') ' lk") lk") . (7.2.5) 

We see that in the fermion case, it is impossible for both particles to occupy the 
same state. In the boson case, for two out of the three allowed kets, both particles 
occupy the same state. In the classical (M-B) statistics case, both particles occupy 
the same state for two out of the four allowed kets. In this sense fermions are the 
least sociable; they avoid each other to make sure that they are not in the same 
state; in contrast, bosons are the most sociable, they really love to be in the same 
state, even more so than classical particles obeying M-B statistics. 
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The difference between ferrnions and bosons shows up most dramatically at 
low temperatures; a system made up of bosons, such as liquid 4He, exhibits a ten
dency for all particles to get down to the same ground state at extremely low tem
peratures.* This is known as Bose-Einstein condensation, a feature not shared 
by a system made up of ferrnions. 

7.3 • TWO-ELECTRON SYSTEM 

Let us now consider specifically a two-electron system. The eigenvalue of the 
permutation operator is necessarily - 1 .  Suppose the base kets we use may be 
specified by XJ, xz, ms l , and ms2, where msl and ms2 stand for the spin-magnetic 
quantum numbers of electron 1 and electron 2, respectively. 

We can express the wave function for a two-electron system as a linear combi
nation of the state ket with eigenbras of XJ, x2, ms l , and ms2 as follows: 

1/r = L L C (ms l , ms2) (XJ , msl ; xz,mda). 
ms l  ms2 

If the Hamiltonian commutes with Stot' 

(7. 3 . 1 )  

(7.3 .2) 

then the energy eigenfunction is expected to be an eigenfunction of St0t, and if 1fr 
is written as 

(7 .3 .3) 

then the spin function x is expected to be one of the following: 

X++ } 
� (X+- + X-+) 

X--

triplet (symmetrical) 
(7 .3 .4) 

singlet (antisymmetrical), 

where X+- corresponds to x (ms l = � ,ms2 = -�) . Notice that the triplet spin 
functions are all symmetrical; this is reasonable because the ladder operator S 1 - + 
S2- commutes with P12, and the \+) \+) state is even under P12 . 

We note 

(7.3 .5) 

*The visual behavior of liquid helium, as it is cooled past the critical temperature, is striking. 
Various video examples can be seen at http://www.youtube.com/, including a classic physics 
demonstration movie, "Liquid Helium II: The Superfluid," by A. Leitner, from 1963. See also the 
site http://alfredleitner.com/. 
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Fermi-Dirac statistics thus requires 

Clearly, P12 can be written as 

P - P (space)
p

(spin) I2 - I2 12 
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(7.3 .6) 

(7.3 .7) 

where PI�pace) just interchanges the position coordinate, while P1�pin) just inter

changes the spin states. It is amusing that we can express P1�pin) as 

which follows because 

p 
(spin)

= 
� (1 + �S • S ) I2 2 1i2 I 2 ' 

(triplet) 

(singlet). 

It follows from (7.3.3) that letting 

Ia) � P12 la) 
amounts to 

(7.3 .8) 

(7.3.9) 

(7 .3 . 10) 

(7.3 . 1 1 )  

This together with (7.3.6) implies that if the space part of the wave function is 
symmetrical (antisymmetrical), the spin part must be antisymmetrical (symmetri
cal). As a result, the spin triplet state has to be combined with an antisymmetrical 
space function, and the spin singlet state has to be combined with a symmetrical 
space function. 

The space part of the wave function ¢(xi , X2) provides the usual probabilistic 
interpretation. The probability for finding electron 1 in a volume element d3 XI 
centered around XI and electron 2 in a volume element d3x2 is 

(7.3 . 1 2) 

To see the meaning of this more closely, let us consider the specific case where the 
mutual interaction between the two electrons [for example, Vpair( I xI -x2 l ), SI • S2] 
can be ignored. If there is no spin dependence, the wave equation for the energy 
eigenfunction 1/r [see (7. 1 .9)] , 

(7.3 . 13)  
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is now separable. We have a solution of the form WA (xl )ws(x2) times the spin 
function. With no spin dependence, St�t necessarily (and trivially) commutes with 
H, so the spin part must be a triplet or a singlet, each of which has definite symme
try properties under P1�

pin) . The space part must then be written as a symmetrical 
and antisymmetrical combination of WA (xl )ws (x2) and WA (x2)ws (XI) : 

1 cp(Xl , X2) = -}2 [WA (XI )Ws (X2) ± WA(X2)Ws (Xl )] , (7.3. 14) 

where the upper sign is for a spin singlet and the lower is for a spin triplet. The 
probability of observing electron 1 in d3x1 around x1  and electron 2 in d3x2 
around x2 is given by 

! { lwA(XI ) I 2 1ws(X2) 1 2 + lwA(X2) 1 2 1ws(XI )e 
± 2Re [ WA (XI )WB (x2)wA (x2)w� (XI )] }  d3 Xl d3 X2. 

(7 .3. 15) 

The last term in the curly bracket is known as the exchange density. 
We immediately see that when the electrons are in a spin-triplet state, the prob

ability of finding the second electron at the same point in space vanishes. Put an
other way, the electrons tend to avoid each other when their spins are in a triplet 
state. In contrast, when their spins are in a singlet state, there is enhanced prob
ability of finding them at the same point in space because of the presence of the 
exchange density. 

Clearly, the question of identity is important only when the exchange density 
is nonnegligible or when there is substantial overlap between function WA and 
function w B . To see this point clearly, let us take the extreme case where I w A (x) 1 2 
(where x may refer to x1 or x2) is big only in region A and lws(x) l 2 is big only 
in region B such that the two regions are widely separated. Now choose d3x1 in 
region A and d3x2 in region B ;  see Figure 7.3. The only important term then is 
the first term in (7.3 . 15), 

(7.3 . 16) 

which is nothing more than the joint probability density expected for classical par
ticles. In this connection, recall that classical particles are necessarily well local-

FIGURE 7.3 Two widely separated regions A and B; lwA(x) [ 2 is large in region A, 
and [ws (x)[ 2 is large in region B.  
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ized and the question of identity simply does not arise. Thus the exchange-density 
term is unimportant if regions A and B do not overlap. There is no need to anti
symmetrize if the electrons are far apart and the overlap is negligible. This is quite 
gratifying. We never have to worry about the question of antisymmetrization with 
10 billion electrons, nor is it necessary to take into account the antisymmetrization 
requirement between an electron in New York and an electron in Beijing. 

7.4 • THE HELIUM ATOM 

A study of the helium atom is rewarding for several reasons. First of all, it is the 
simplest realistic problem where the question of identity-which we encountered 
in Section 7 .3-plays an important role. Second, even though it is a simple sys
tem, the two-particle Schrodinger equation cannot be solved analytically; there
fore, this is a nice place to illustrate the use of perturbation theory and also the 
use of the variational method. 

The basic Hamiltonian is given by 

PI p� 2e2 2e2 e2 
H = - + - - - - - + -

2m 2m TI r2 r12 ' 
(7.4. 1 )  

where T I  = lx1 l .  r2 = l x2 l ,  and r12 = lx1 - x2 l ;  see Figure 7.4. Suppose the e2 frl2-
term were absent. Then, with the identity question ignored, the wave function 
would be just the product of two hydrogen atom wave functions with Z = 1 
changed into Z = 2. The total spin is a constant of the motion, so the spin state is 
either singlet or triplet. The space part of the wave function for the important case 
where one of the electrons is in the ground state and the other in an excited state 
characterized by (nlm) is 

(7.4.2) 

where the upper (lower) sign is for the spin singlet (triplet). We will come back to 
this general form for an excited state later. 

For the ground state, we need a special treatment. Here the configuration is 
characterized by (ls) 2-that is, both electrons in n =  1, l = 0. 

Electron 2 

FIGURE 7.4 Schematic diagram of the helium atom. 
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The space function must then necessarily be symmetrical, and only the spin 
singlet function is allowed. So we have 

1/!wo(XI )1/!wo(X2) X singlet =  
23 

3 
e-Z(q + rz)fao X 

;rao 
with Z = 2. Not surprisingly, this "unperturbed" wave function gives 

E = 2 x 4 (- e2 ) = -108.8 e V 2ao 

(7 .4
.3) 

(7 .4.4) 

for the ground-state energy, which is about 30% larger than the experimental 
value. 

This is just the starting point of our investigation because in obtaining the 
above form (7 .4.3), we have completely ignored the last term in (7.4. 1 )  that de
scribes the interaction between the two electrons. One way to approach the prob
lem of obtaining a better energy value is to apply first-order perturbation theory 
using (7 .4.3) as the unperturbed wave function and e2 j r12 as the perturbation. We 
obtain 

�(ls)2 = (�) = ff z6 
6
e-2Z(ri +rz)/ao �d3xld3X2. r12 (ls)z n2a0 r12 

To carry out the indicated integration, we first note 

1 

(7.4.5) 

(7.4.6) 

where r> (r d is the larger (smaller) of q and r2, and y is the angle between 
XI and x2. The angular integration is easily performed by expressing Pz(cos y)  
in terms of Yt(ei , ¢1 ) and Yt(e2, ¢2), using the addition theorem of spherical 
harmonics. (See, for example, Section 12.8 of Arfken and Weber 1995.) We have 

l 

( 4;r """ m* m Pz cos y ) = 21 
+ 1 � Yz (e1 ,¢I) Y1 (e2,¢2) . 

m=-1 
(7.4.7) 

The angular integration is now trivial: 

I m 1 Yz (ei ,¢i )  dQi = 
.J4]T

(4n)8zo8mo - (7.4.8) 

The radial integration is elementary (but involves tedious algebra!) ;  it leads to 

roo [ f'I ..!.. e-(2Zfao)('I +rz)rJ dr2 
+ ioo ..!..e-(2Zfao)(ri +rz )rJ dr2] rf drl 

lo lo r1 ,1 r2 
5 a5 0 --

128 zs . 
(7.4.9) 
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Combining everything, we have (for Z = 2) (z6e2) 2 ( 5 ) ( a6 ) (5 ) ( e2 ) .6..( 1s)2 = n2ag 
4n( .J4n) 1 28 z5 = 2 2ao 

. 

Adding this energy shift to (7.4.4), we have 

Ecal = ( -8 + �) (;:0) � -74.8 eV. 

Compare this with the experimental value, 

Eexp = -78.8 eV. 
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(7.4. 10) 

(7.4. 1 1) 

(7.4. 12) 

This is not bad, but we can do better ! We propose to use the variational method 
with Z, which we call Zeff, as a variational parameter. The physical reason for this 
choice is that the effective Z seen by one of the electrons is smaller than 2 because 
the positive charge of 2 units at the origin (see Figure 7.4) is "screened" by the 
negatively charged cloud of the other electron; in other words, the other electron 
tends to neutralize the positive charge due to the helium nucleus at the center. For 
the normalized trial function we use 

From this we obtain 

H =  0 - + - 0 - 0 - + - 0 + 0 - 0 
- (- PI p� -) (- \  Ze2 ze2 \ _) (- \  e2 \ _) 

2m 2m r1 r2 r12 

We easily see that the minimization of H is at 

Zeff = 2 - ?6 = 1 .6875. 

This is smaller than 2, as anticipated. Using this value for Zeff we get 

Ecal = -77.5 eV, 

(7.4. 1 3) 

(7.4. 14) 

(7.4. 15) 

(7.4. 16) 

which is already very close, considering the crudeness of the trial wave function. 
Historically, this achievement was considered to be one of the earliest signs that 

Schrodinger's wave mechanics was on the right track. We cannot get this kind of 
number by the purely algebraic (operator) method. The helium calculation was 
first done by A. Unsold in 1927.* 

*A. Unsold, Ann. Phys. 82 (1927) 355. 
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Let us briefly consider excited states. This is more interesting from the point of 
view of illustrating quantum-mechanical effects due to identity. We consider just 
( ls)(nl). We write the energy of this state as 

E = Ewo + Enzm +I:!. E. (7.4. 17) 

In first-order perturbation theory, l:!.E is obtained by evaluating the expectation 
value of e2 I r12 . We can write 

(!_) = I ± J, r12 
(7.4. 1 8) 

where I and J, known respectively as the direct integral and the exchange integral, 
are given by 

2 I = J d3x1 J d3x2 11/rwo(xi ) I 2 11/rnzm (X2) 1 2!!.__ , Tl2 J = J d3x1 J d3x21/rwo(xi )1/rnzm(X2)!_1/rioo(X2)1/r:zm (xi ) . r12 

(7.4. 19a) 

(7.4. 1 9b) 

The upper (lower) sign goes with the spin singlet (triplet) state. Obviously, I is 
positive; we can also show that J is positive. So the net result is such that for the 
same configuration, the spin-singlet state lies higher, as shown in Figure 7.5. 

The physical interpretation for this is as follows: In the singlet case the space 
function is symmetrical, and the electrons have a tendency to come close to each 
other. Therefore, the effect of the electrostatic repulsion is more serious; hence, 
a higher energy results. In the triplet case, the space function is antisymmetrical, 
and the electrons tend to avoid each other. Helium in spin-singlet states is known 
as parahelium, and helium in spin-triplet states is known as orthohelium. Each 
configuration splits into the para state and the ortho state, the para state lying 
higher. For the ground state only parahelium is possible. See Figure 7.6 for a 
schematic energy-level diagram of the helium atom. 

It is very important to recall that the original Hamiltonian is spin-independent 
because the potential is made up of just three Coulomb terms. There was no 
S 1 · S2-term whatsoever. Yet there is a spin-dependent effect-the electrons with 
parallel spins have a lower energy-that arises from Fermi-Dirac statistics. 

We owe this explanation of the apparent spin dependence of the helium atom 
energy levels to Heisenberg. The physical origin of ferromagnetism-alignment 
of the electron spins extended over microscopic distances-is also believed to 

-::::----::---______...L _ _f_-----�-m - - - -i � 
Ewo + Entm 

Singlet 

Triplet 

FIGURE 7.5 Schematic diagram for the energy-level splittings of ( ls)(nl) for the he
lium atom. 
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FIGURE 7.6 Schematic energy-level diagram for low-lying configurations of the he
lium atom. 

be essentially the same, but the properties of ferromagnets are much harder to 
calculate quantitatively from first principles. 

7.5 • MULTIPARTICLE STATES 

Our formalism can be extended to a system made up of many identical particles. 
Recalling (7. 1 . 13),  we define 

Clearly, 

(7.5 .2) 

just as before, and the allowed eigenvalues of Pij are + 1 and - 1 .  It is important 
to note, however, that in general, 

(7.5.3) 

It is worth explicitly working out a system of three identical particles. First, 
there are 3 !  = 6 possible kets of form 

lk') lk") lk"') ' (7.5.4) 

where k', k", and k"' are all different. Thus there is sixfold exchange degeneracy. 
Yet if we insist that the state be totally symmetrical or totally antisymmetrical, we 
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can form only one linear combination each. Explicitly, we have 

\ k'k"k111)± = � { \k') \k") \k111 ) ± \k") \k') \k111 ) 

+ \k") \k111) \k') ± \k"') \k") \k') 

+ lk'") \k') lk") ± lk') lk"' ) \k") } . (7.5.5) 

These are both simultaneous eigenkets of P12, P23 , and P13 . We remarked that 
there are altogether six independent state kets. It therefore follows that there are 
four independent kets that are neither totally symmetrical nor totally antisyrnrnet
rical. We could also introduce the operator P123 by defining 

P123 ( lk' ) \k") \k"')) = \ k") \ k111) \ k') .  (7.5.6) 

Note that P123 = P12P13 because 

pl2pl3 ( lk') lk") \k111 ) ) = pl2 ( lk"') l k") \k')) = lk") \k111) lk') . (7.5.7) 

In writing (7 .5 .5) we assumed that k', k", and k111 are all different. If two of the 
three indices coincide, it is impossible to have a totally antisymmetrical state. The 
totally symmetrical state is given by 

\k'k'k")+ = -
1
- (lk') lk') lk") + \k') lk") lk') + lk") \k') lk')) ' � (7.5 .8) 

where the normalization factor is understood to be -J2!/3 ! .  For more general 
cases, we have a normalization factor 

N1 !N2 ! · Nn !  
N!  

(7.5.9) 

where N is the total number of particles and M is the number of times \k(i) ) 
occurs. 

Second Quantization 

A different approach to keeping track of multiparticle states, which in fact begins 
to lay a foundation for quantum field theory, reexamines the way in which we 
define the state vector. This approach is known as* second quantization. 

Define a mutliparticle state vector as 

(7.5 . 10) 

*The term second quantization was apparently coined in the early days of trying to extend quan
tum mechanics into field theory. The idea was that wave functions were to be turned into oper
ators, which in tum were subject to their own canonical quantization rules. Hence, quantization 
was enforced a "second" time. See, for example, Section III. l 2. 1 in Heitler ( 1954). 
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where the ni specify the number of particles with eigenvalue ki for some operator. 
Although we take it as a perfectly valid nomenclature for a state vector, it is a 
member of a new kind of vector space, called "Pock space," in which we need to 
build in the necessary permutation symmetry. 

A word of caution is in order. Our Pock space (or "occupation number") no
tation for state vectors itself makes an important assumption, namely that there 
indeed exists a basis of noninteracting states. Interactions between particles can 
in fact, in principle, affect their very nature. Whether or not, starting on this as
sumption, we can make a self-consistent theory that itself accurately describes na
ture can only be tested by experiment. See the discussions in Landau ( 1996) and 
Merzbacher ( 1998) . We will set this question aside, however, and move ahead at 
full steam. 

Let us now build a framework for a theory of many-particle systems using 
states in Pock space. We begin this task by recognizing two special cases of states 
in Pock space. The first of these is 

10, 0, . . .  , 0, . . .  ) = 10) , (7.5 . 1 1) 

for which there are no particles in any single-particle states. This state is called 
the "vacuum" and is, as usual, normalized to unity. The second special case is 

10, 0, . . .  , ni = 1 ,  . . .  ) = lki ) , (7.5. 1 2) 

which is the state in which there is exactly one particle in the state with eigenvalue 
ki . Of course, this is just the single-particle state that has dominated our discussion 
of quantum mechanics, prior to this chapter. 

Now we need to learn how to build multiparticle states and then make sure 
that this building process respects permutation symmetry. In an obvious nod to 
the creation and annihilation operators that we first encountered in Section 2.3, 
we define a "field operator" aJ that increases by one the number of particles in 
the state with eigenvalue ki-that is 

(7.5. 13) 

where a normalization criterion will be used later to determine the proportionality 
constant. We postulate that the action of the particle creation operator aJ on the 
vacuum is to create a properly normalized single-particle state, namely 

(7.5. 14) 

This leads us to write 

1 = (ki lki ) = [ (Oiad [aJ IO)] 
= (01 

[aiaJ IO)] = (O iai lki ) , (7.5 . 15) 

which implies that 

(7.5 . 16) 
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so that ai acts as a particle annihilation operator. We conclude with the following 
postulates for the particle annihilation operator: 

ai l0) = 0 
ai \k j ) = 0 if i =/= j ,  

(7 .5. 17) 

(7.5 . 1 8) 

(7.5. 19) 

where an economy of notation lets us combine (7 .5 .16) and (7.5. 19) into 

(7.5 .20) 

These are enough postulates to fully define the field operators ai , short of actually 
incorporating permutation symmetry. 

The act of permuting two particles, one for the other, is most easily seen by 
putting the "first" particle in state I ki ) and then the "second" particle in state I k j ) ,  
and comparing to what happens when we reverse the order in which these states 
are populated. That is, we expect that, for a two-particle state, 

� t t t a .' a · 10) = ±a .a . 10), l 1 1 l (7.5 .21) 

where the + (-) sign is for bosons (fermions). Applying this same logic to particle 
exchange in multiparticle states, we are led to 

t t t t  t t a . a . - a .a . = [a . , a . ] = O l 1 1 l l 1 

ala� + ata! = {al ,at } = O l 1 1 l l 1 

Bosons 

Fermions 

(7.5.22a) 

(7.5 .22b) 

where we make use of the "anticommutator" {A, B }  = AB + B A. Simply taking 
the adjoint of these equations tells us that 

[ai , aj ]  = 0 

{ai , aj } = 0 

Bosons 

Fermions 

(7 .5 .23a) 

(7.5 .23b) 

Note that the Pauli exclusion principle is automatically built into our formalism, 
since (7 .5 .22b) implies that aJ aJ = 0 for some single-particle state lki ) .  

Now what about the commutation rules for ai and a � ? We would like to define 
a "number operator" M = aJ ai that would count the �umber of particles in the 
single-particle state lki ) .  Our experience from Section 2.3 shows that this would 
be possible if we had [ ai , aJ] = 1 .  In fact, a self-consistent picture of both bosons 
and fermions can be built in just this way, by replacing commutators with anti
commutators. The complete algebra is summarized in Table 7 . 1 .  For both bosons 
and fermions, we can define the operator 

(7.5 .24) 
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TABLE 7.1 The Algebra for Identical Particles in Second 
Quantization 

Bosons 

a!a� - a�a! = [a!, a�] = O  l 1 1 l l 1 
t t aiaj - ajai = [ai , aj ] = 0 

t t t aiaj - ajai = [ai , aj ] = 8ij 

Fermions 

a!a� + a�a! = {a! ,a� } = O  l 1 1 l l 1 

aiaj +ajai = {ai , aj } = 0 

aiaJ +aJai = {ai , aJ } = 8ij 
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which counts the total number of identical particles. (See Problem 7.7 at the end 
of this chapter.) 

We have taken a very ad hoc approach to coming up with the algebra in Ta
ble 7. 1 ,  rather contrary to the general tone of this book. It is in fact possible to 
do a somewhat better job in this regard, by postulating, for example, that certain 
quantities such as the total number of particles be unchanged under a basis change 
from single-particle states l ki ) to different states ll j ) that are connected by a uni
tary transformation.* Nevertheless, it is not possible to do a fully self-consistent 
treatment minimizing ad hoc assumptions without developing relativistic quan
tum field theory, and that is not our mission here. 

Dynamical Variables in Second Quantization 

How do we build operators in second quantization that do more than simply count 
the number of particles? The answer is straightforward, but once again it is nec
essary to make some ad hoc assumptions with our current approach. 

Suppose the single-particle states lki ) are eigenstates of some "additive" 
single-particle operator K. Examples might include momentum and kinetic en
ergy. In some multiparticle state 

(7.5 .25) 

we expect the eigenvalue of the multiparticle operator X to be Li niki . This is 
easy to accomplish if we write 

(7.5.26) 

Now suppose that the basis for which the single-particle states are specified is 
different from the basis in which it is easiest to work. After all, we are used to 
working with the momentum operator in the coordinate basis, for example. If we 
use completeness to write 

lki ) = L 'zj ) (lj lki ) , j 
(7.5 .27) 

*This approach, sometimes called the principle of unitary symmetry, is exploited in Merzbacher 
( 1998). 
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then it makes sense to postulate that 

which implies that 

ai = :L:>}(lj \ki ) , j 

ai = L(ki \lj )bj , j 

(7 .5 .28a) 

(7.5 .28b) 

where the operators b � and b j create and annihilate particles in the single-particle 
states \ l j ) .  With theie assignments, acting on the vacuum state (7 .5 . 1 1) with 
(7.5 .28a) yields (7 .5.27). 

Equations 7.5 .28 give us what we need to change the basis for our dynamical 
single-particle operator. We have 

or 

mn 
= Lb�bn L(lm \ki )ki (ki \ ln ) 

mn i 

mn 
(7 .5 .29) 

This general form is suitable for writing down a second-quantized version of any 
additive single-particle operator. Examples include not only momentum and ki
netic energy but also any "external" potential-energy function that acts individ
ually on each of the particles. All that matters is that the particles do not inter
act with each other. In the case of bosons, essentially all the particles may find 
themselves in the lowest energy level of such a potential well, so long as the 
temperature is low enough. (Experimentally, this phenomenon is referred to as a 
Bose-Einstein condensate.) 

Fermions would behave differently, however. The Pauli exclusion principle 
will force the particles to populate increasingly higher energy levels in the well. 
For a system with a very large number of fermions, the total energy of the ground 
state could be enormous. The highest populated energy level (known as the "Fermi 
energy") might easily be much larger than the thermal energy ,...__, kT. A classic ex
ample is a white dwarf star, a very dense object consisting basically of carbon 
atoms. The electrons in a white dwarf are, to a good approximation, bound in a 
potential well. The Fermi level is very high, much larger than the thermal energy 
for a temperature of tens of millions of kelvins. 

Many-particle systems, however, present a new situation, namely the inevitable 
possibility that the particles actually interact among themselves. Once again, we 
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postulate an additive operator-that is, one in which the individual two-particle 
interactions add up independently. Let the symmetrical real matrix Vij specify 
the two-particle eigenvalue for an interaction between particles in single-particle 
states I ki ) and I k j ) . Then the second-quantized version of this operator becomes 

(7 .5.30) 

The first term sums up all of the two-particle interactions, where the factor of 1/2 
is necessary because this form double-counts pairs. The second term accounts for 
all "self-interactions" for particles in the same state; there are n(n - 1 )/2 ways 
to take n things two at a time. The requirement that Vij be real ensures that V is 
Hermitian. 

The part of the self-energy term in (7.5.30) containing Nl exactly represents 
the parts of the sum in the first term removed by specifying i =f. j .  Therefore, we 
can combine this more neatly as 

1 1 V = - � V· ·  (NN·  - N8 · · ) = - � V:· · IT · ·  
2 � lj l J l lj 2 � lj lj ' 

ij ij 
(7.5.3 1 )  

where ITij = Ni Nj - Ni8ij i s  called the pair distribution operator. Furthermore, 
we use Table 7 . 1  to write 

or 

t t t ITij = ai aia ja j - ai ai8ij 

= aJ ( 8ij ± a  J ai) a j - aJ ai 8ij 

t t = ±a. a . aia1· l J 
t t ITij = (±)(±)ai a ja jai ,  (7.5.32) 

where we used (7.5 .23) to reverse the order of the last two factors. This allows us 
to rewrite (7.5 .30) as 

V = � L VijaJaJajai . 
ij 

(7.5.33) 

This sequence of creation and annihilation operators-first one particle is annihi
lated, then another, and then they are created in reverse order-is called "normal 
ordering." Note that we see explicitly from (7.5.22b) or (7 .5 .23b) that there is no 
contribution from diagonal elements of V for fermions. 

We can use (7.5 .28) to rewrite (7 .5.33) in a different basis. We have 

(7.5.34) 
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where 

{mn i V I pq) = L Vij {lm lki ) {ki l lp )  {ln lkj ) {kj l lq ) . 
ij 

(7.5.35) 

This result provides some insight into the physical meaning of our formalism. 
Suppose, for example, that the lki )  are position-basis states lx) and that the l li ) 
are momentum-basis states IP = hk) . Then Vij would represent an interaction 
between two particles, one located at x and the other at x'. A natural example 
would be for a collection of particles each with charge q = -e, in which case we 
would write 

and 

e2 Vij -+ V(x,x') = , lx - x  I 

�-+  f d3x f d3x', 
I] 

(7.5 .36) 

(7.5.37) 

but any mutual interaction between the particles would be treated in a similar way. 
The quantity {mn I V  I pq ) therefore represents a momentum-space version of the 
interaction, with m and p following one particle, and n and q following the other. 
(It is easy to show that {mn I V I  pq) = {nm I V I  q p) , but interchanging one side and 
not the other will depend on whether the particles are bosons or fermions.) The 
four inner products in (7.5.35) lead to a factor 

which, after the integrals (7.5 .36) are carried out, results in a 8-function that con
serves momentum. One might diagrammatically represent the two-particle inter
action as shown in Figure 7. 7 .  

v - - - - - - - - - - - - -

FIGURE 7.7 Diagrammatic representation of the "momentum-space matrix element" 
(mn iV Ipq} . 
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Clearly we are on our way to developing a nonrelativistic version of quantum 
field theory. As a specific example, we will treat the quantum-mechanical version 
of the noninteracting electromagnetic field shortly. However, we will not push 
the general case beyond this point, as it goes beyond the scope of this book and 
is treated well in any one of several other books. See, for example, Merzbacher 
( 1998), Landau ( 1996), and Fetter and Walecka (2003a). 

Example: The Degenerate Electron Gas 

An excellent example of the principles discussed in this section is the degenerate 
electron gas. This is a collection of electrons, interacting with each other through 
their mutual Coulomb repulsion, bound in some positively charged background 
medium. Physical examples include a high-temperature plasma, and even, to some 
approximation, bulk metals. 

This problem is treated thoroughly in Chapter 1 ,  Section 3 of Fetter and 
Walecka (2003a). We present the problem and outline its solution here, but the 
interested reader is referred to the original reference to fill in the details. 

Our task is to find the eigenvalues of the Hamiltonian 

H = Her + Hb + Her-b (7.5.38) 

for a system of N electrons. The electrons interact among themselves according 
to 

L PT 1 2LL e-ttlx;-xj l 
Her = - + -e , 

2m 2 l x · - x · l i i j'fi l 1 
(7.5.39) 

where we employ a "screened" Coulomb potential but will let fJ. --+ 0 before we 
finish the calculation. The energy of the positive background is 

1 -ttlx'-x" l 
Hb = -e2 J d3 x' J d3 x" p(x')p(x") e , 

2 l x' - x" l  (7.5 .40) 

where p(x) is the number density of background particle sites. We will assume a 
uniform background, with p(x) = N j V for a system of volume V = L3 . Then, 
translating to a variable x = x' - x", (7.5 .40) becomes 

1 (N) 2 f f e-ttlxl 1 N2 4n 
Hb = 2e2 V d3x' d3x-lx_l_ = 2e2V fJ-2 . (7.5.41 )  

Thus Hb contributes simply an additive constant to the energy. The fact that this 
constant grows without bound as fJ. --+ 0 will not be a problem, as we shall see 
shortly. The interaction of the electrons with the constant background is 

Her-b = -e2 L d3 xp(x) _e ---f -ttlx-x; l 
. lx - xd l 

(7.5 .42) 
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Therefore, (7.5.38) becomes 

(7.5.43) 

The first term in this equation is just a number. The second is a one-body operator 
that we will express simply in terms of operators in second quantization in mo
mentum space. The third term is a two-body operator that will involve a bit more 
work to write in second quantization. 

Writing the kinetic-energy term in (7 .5 .43) is just a matter of rewriting (7 .5 .29) 
for K being the momentum operator p and the l ln } being momentum-basis states. 
Single-particle states are denoted by i = {k, A} , where A = ± indicates electron 
spin. We know that 

(7.5 .44) 

so we have 

(7 .5.45) 

Now we write the potential-energy term in (7.5 .43) in second quantization, 
using (7.5.34) and (7.5.35). Note (7 .5.36) and (7 .5.37). We have 

V = � L L L L (ki Alk2A2 1 V Ik3A3i4A4}a�1).1 a�2).2ai4).4ak3).3 , (7.5 .46) 
k1).1 kz).z k3).3 i4).4 

where 

(7 .5 .47) 

using a change of variables x = x" and y = x' -x". Finally, we define the momen
tum transfer q = k1 - k3 and find 

(7.5 .48) 
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The Kronecker deltas in the spin just ensure that that no spins are flipped by 
this interaction, which we expect since the interaction is spin-independent. The 
Kronecker delta in the wave number ensures that momentum is conserved. Thus 
(7 .5 .46) becomes 

e2 4:rr t V = 2V L L L L 8ki+k2,k3+14 q2 + �t2 a�lA.l ak2A.2al4A.2ak3J"  (7.5 .49) 
k1A. 1 k2A.2 k3 14 

after reducing the summations using the spin-conserving Kronecker deltas. 
An important feature of (7.5 .49) becomes apparent if we first redefine k3 = k 

and k4 = p. Then the terms of (7.5 .49) for which q = 0 become 

e2 """ """ 4:rr t t e2 4:rr """ """ t ( t ) 2V � �  /L2 akA.l aPA.2apA.2akA.l = 2V IL2 � �akA.l akA.l aPA.2apA.2 - 8kp8A.IA.2 
kp A.1 A.2 kA.1 pA.2 

e2 4:rr 
= 2V IL2 

(N2 - N), (7.5.50) 

where we have made use of the fermion anticommutation relations and the defini
tion of the number operator. The first term in this relation just cancels the first term 
of (7.5 .43). The second term represents an energy -2:rre2f�t2 V  per particle, but 
this will vanish in the limit where V = L 3 --+ oo while always keeping It » 1 /  L. 
Thus the terms with q = 0 do not contribute, and they cancel the rapidly diverg
ing terms in the Hamiltonian. Indeed, this finally allows us to set the screening 
parameter It = 0 and write the second-quantized Hamiltonian as 

(7 .5.5 1a) 

where (7.5 .5 1b) 

and (7.5 .51c) 

where the notation :E' indicates that terms with q = 0 are to be omitted. Note that 
in the limit we've taken, a finite density n = N I V  is implicitly assumed. 

Finding the eigenvalues of (7.5.5 1 )  is a difficult problem, although solutions 
are possible. Our approach will be to find the ground-state energy by treating the 
second term as a perturbation on the first. Although reasonable arguments can be 
made why this should be a good approximation (see Fetter and Walecka), those 
arguments hold only in a particular range of densities. Fortunately, that range of 
densities is relevant to physical systems such as metals, so our approach indeed 
has practical interest. 

This is a good time to introduce some scaling variables. The density is deter
mined by the interatomic spacing ro, that is, 

N 4:rr 3 n =  
V = 3ro , (7.5.52) 
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and a natural scale for ro is the Bohr radius (3.7.55), that is, ao = n2 jme2. We 
define a dimensionless distance scale rs = rofao. Our calculation of the ground
state energy will be as a function of rs . 

As an introduction to calculating the expectation value E(O) of the operator Ho 
for the ground state, we discuss the concept of Fermi energy. (Recall the discus
sion on page 464.) Because of the Pauli exclusion principle, electrons will fill the 
available energy levels up to some maximum wavenumber kF .  We can relate kF 
to the total number of electrons by adding up all of the states with k :::: k F :  

N = z:} (k - kF) 
k). 

v "! 3 v 3 --+ 
--3 L..,. d k e(kF - k) = -2 kF , (2n) t. 3n 

where e(x) = 0 for x > 0 and unity otherwise. This implies that 

kF � C":Nr � c:r r� ' 

(7.5.53) 

(7.5 .54) 

which shows that kF is about the same size as the inverse interparticle spacing. 
Now use the same approach to calculate the unperturbed energy E(O). Denoting 

the ground state as I F) ,  we have 

(7 .5.55) 

Note that e2 j2ao � 13 .6 eV, the ground-state energy of the hydrogen atom. 
The first-order correction to the ground-state energy is 

(7 .5 .56) 

The summation is easy to reduce since I F) is a collection of single-particle states 
with occupation numbers either zero or one. The only way for the matrix element 
in (7 .5 .56) to be nonzero is if the annihilation and creation operators pair up ap
propriately. Because q =j:. 0 in the sum, the only way to pair up the operators is by 
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setting {p - q,A.2} = {k, A.l } and {k + q, A. l }  = {p, A.2 } .  Therefore, 

The integral over P is just the intersection between two spheres of radius kp but 
with centers separated by q, and it is easy to evaluate. The result is 

(7.5.58) 

Therefore, the ground-state energy to first order is given by 

E = e
2 
(
9n

)
2
/3

(
�_!_ _2_ _!_

) · N 2ao 4 5 r} 2n rs (7.5.59) 

This is plotted in Figure 7.8 . The unperturbed energy decreases monotonically as 
rs --+ 0, but the first-order correction is an attraction that falls more slowly. The re
sult is a minimum at a value E / N = -0.095e2 j2ao = -1 .29 e V, where rs = 4.83. 
Our model is crude, and the solution only approximate, but the agreement with 

FIGURE 7.8 The ground-state energy, to first-order in perturbation theory, for a sys
tem of N electrons inside a uniform, positively charged background. The energy per 
electron is plotted as a function of the interparticle spacing in units of the Bohr radius. 
From Fetter and Walecka (2003a). 
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experiment is surprisingly good. For sodium metal, one finds E j N = - 1 . 13  e V, 
where rs = 3 .96. 

7.6 • QUANTIZATION OF THE ELECTROMAGNETIC FIELD 

Maxwell's equations form a complete classical description of noninteracting elec
tric and magnetic fields in free space. It is tricky to apply quantum mechanics to 
that description, but it can be done in a number of ways. In this section, we will 
once again take a "follow our nose" approach to the problem, based on the many
particle formalism developed in this chapter. The particles, of course, are photons, 
whose creation and annihilation operators obey Bose-Einstein commutation rela
tions. 

We start with a brief summary of Maxwell's equations, to establish our no
tation, and their solution in terms of electromagnetic waves. Then we derive the 
energy and associate it with the eigenvalues of a Hamiltonian constructed using 
bosonic creation and annihilation operators. 

Including interactions with electromagnetic fields, through the inclusion of 
spin � charged electrons, is the subject of quantum electrodynamics. We do not 
pursue this subject in this book. (See Section 5 .8  for a discussion of a more ad 
hoc way to apply electromagnetic-field interactions to atomic systems.) However, 
there is a fascinating quantum-mechanical effect observable with free electromag
netic fields, the Casimir effect, and we conclude this section with a description of 
the calculation and the experimental data. 

Our treatment here more or less follows Chapter 4 in Loudon (2000), al
though the approach has become rather standard. See, for example, Chapter 23 
in Merzbacher ( 1998). 

Maxwell's Equations in Free Space 

In the absence of any charges or currents, Maxwell's equations (in Gaussian units ; 
see Appendix A) take the form 

V · E = O  

V · B = O  

1 3B 
V x E + - - = 0  

c a t  
1 aE 

V x B - - - = 0. c at 

(7.6. 1 a) 

(7.6. 1b) 

(7 .6. 1c) 

(7 .6. 1d) 

Following standard procedure, we postulate a vector potential A(x, t) such that 

B = V  x A, (7.6.2) 

which means that (7 .6. 1 b) is immediately satisfied. If we impose the further con
dition 

V · A = O  (7 .6.3) 
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(which is known as "choosing the Coulomb gauge"), then 

1 3A E = ---c at 
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(7.6.4) 

means that (7.6. 1 a) and (7.6. 1c) are also satisfied. Therefore, determining A(x, t) 
is equivalent to determining E(x, t) and B(x, t). A solution for A(x, t) is evident, 
though, by observing that (7 .6. 1 d) leads directly to 

(7.6.5) 

That is, A(x, t) satisfies the wave equation, with wave speed c, just as we might 
have guessed. 

The set of solutions to (7 .6.5) are naturally written as 

A(x, t) = A(k)e±ik·x e±iwt , (7.6.6) 

where w = Wk = lk lc = kc for the solution to be valid. The Coulomb gauge con
dition (7.6.3) implies that ±ik ·A(x, t) = 0, or 

k ·A(k) = 0. (7.6.7) 

In other words, A(x, t) is perpendicular to the propagation direction k. For this 
reason, the Coulomb gauge is frequently referred to as the "transverse gauge." 
This allows us to write the general solution to (7 .6.5) as 

A(x, t) = I::ekA.Ak,A.(x, t), 
k,A. 

(7.6.8) 

where eu are two unit vectors (corresponding to two values for "A) perpendicular 
to k, and where 

(7.6.9) 

Note that in (7.6.9) the quantities written Ak,A. on the right side of the equation are 
numerical coefficients, not functions of either position or time. Note also that k 
and -k represent different terms in the sum. We write the superposition (7 .6.8) as 
a sum, not an integral, because we envision quantizing the electromagnetic field 
inside a "big box" whose dimensions may eventually be taken to grow without 
bound. 

We use the form (7.6.9) to ensure that Ak,A.(x, t) is real. When we quantize the 
electromagnetic field, Ak,A. (x, t) will become a Hermitan operator. The coefficients 
Ak,A. and Ak,A. will become creation and annihilation operators. 

As we shall see later, it is useful to take the unit vectors ekA. as directions of 
circular polarization as opposed to linear. That is, if e�l) and ef) are the linear 
unit vectors perpendicular to k, then 

(7.6. 10) 
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where ). = ± denotes the polarization state. With these definitions, it is easy to 
show that 

ekA. . f±kA.' = ±8u' 
and ekA. X f±kA.' = ±iA.8u'k, 

(7 .6. 1 1a) 

(7.6. l l b) 

where k is a unit vector in the direction of k. The electric field E(x, t) can now 
be written down from (7.6.4). The magnetic field B(x, t) can be written down 
similarly, using (7.6.2). 

The energy 8 in the electromagnetic field is given by integrating the energy 
density over all space: 

(7.6. 12) 

where, as discussed earlier, "all space" is a finite volume V = L 3 with periodic 
boundary conditions. In other words, we are working inside an electromagnetic 
cavity with conducting walls. This means that 

(7.6. 13)  

where nx , ny , and nz are integers. 
Consider first the term dependent on the electric field in (7.6. 12). Using (7 .6.4) 

with (7.6.8) and (7.6.9), we have 

and 

E = � L Wk [ Ak,A.e -i(wkt-k·x) - A�,A e +i(wkt-k·x) J ekA. k,A. 

E* _
_ � '"""' /,, [A* e+i(wk' t-k'·x) _A e-i(we t-k'·x)J e�* -

c � U/k' k',A.' k',A.' k'A.' ' 
k',A.' 

(7.6. 14a) 

(7.6. 14b) 

Since we have already suggested that the At;.. and Ak,A. will become creation and 
annihilation operators, we need to take care and keep their order intact. 

This all leads to an awkward expression for IE 12 = E* · E-a summation over 
k, A., k', and A.' , with four terms inside the summation. However, an important 
simplification follows from the integral over the spatial volume. Each term inside 
the sum packs all of its position dependence into an exponential so that the volume 
integral is of the form 

f ei(k=t=k')·xd3x VD = k,±k' · 
v 

(7.6. 15) 
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Combining this with (7 .6. 1 1  a), one finds 

475 

(7.6. 16) 

Starting with (7.6.2), the calculation for IB I2 = B* · B is very similar. The curl 
brings in factors like k X ekA instead of the Wk/C in the calculation involving 
the electric field, but since k2 = WI j c2 , the result is nearly identical. The key 
difference, though, is that under the change k --+ -k, terms like k X ekA. do not 
change sign. This means that the terms analogous to the third and fourth terms 
in (7.6. 16) appear the same way but with opposite signs. Therefore, they cancel 
when we are evaluating (7 .6. 1 2) .  The result is 

(7.6. 1 7) 

Photons and Energy Quantization 

Our goal now is to associate (7 .6. 17) with the eigenvalues of a Hamiltonian op
erator. We will do this by hypothesizing that the quantized electromagnetic field 
is made up of a collection of identical particles called photons. An operator al (k) 
creates a photon with polarization 'A and momentum hk, and a;.. (k) annihilates this 
photon. The energy of a photon is liwk = lick, so we will build our Hamiltonian 
operator according to (7.5.26) and write 

Je = _Lnwka1 (k)a;..(k). 
k,A. 

(7.6. 1 8) 

We do not need to consider terms like (7.5 .33) since, by our starting assumption, 
we are building a noninteracting electromagnetic field. 

We are now faced with an important question. Are photons bosons or fermions? 
That is, what is the "spin" of the photon? We need to know whether it is integer 
or half-integer, in order to know which algebra is followed by the creation and 
annihilation operators. A fully relativistic treatment of the photon field demon
strates that the photon has spin 1 and is therefore a boson, but do we have enough 
preparation at this point to see that this should be the case? 

Yes, we do. We know from Chapter 3 that rotation through an angle ¢ about 
(say) the z-axis is carried out by the operator exp( -i lz<P jli ). The possible eigen
values m of lz show up explicitly if we rotate a state that happens to be an eigen
state of lz , introducing a phase factor exp( -i m¢ ). [This is what gives rise to the 
"famous" minus sign when a spin � state is rotated through 2n . Recall (3.2. 1 5).] 

So, consider what happens if we rotate about the photon direction k through an 
angle <P for a right- or left-handed circularly polarized electromagnetic wave? The 
polarization directions are the unit vectors ek± given by (7 .6. 1 0). The rotation is 
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equivalent to the transformation 

e(l) --+ e(l)' - cos "'e(l) - sin "'e(2) 
k k - 'f' k  'f' k  

ef) --+ ef)' = sin¢e�l) + cos¢ef) , 

(7 .6. 19a) 

(7.6. 1 9b) 

which means that the rotation introduces a phase change exp( =j=i ¢) to the fk±.  Ap
parently, right- and left-handed circularly polarized photons correspond to eigen
values ±1h of lz . The photon seems to have spin 1 .  

Consequently, we proceed under the assumption that photons are bosons. 
Rewriting (7.6. 1 8) slightly as 

Jf = L � hwk [ ai (k)a;. (k) + ai (k)a;. (k) J 
k,A 

= L �hwk [ ai (k)a;.(k) + a;.(k)ai (k) + 1 J , 
k,A 

(7.6.20) 

we recover the classical energy (7 .6. 17) with the definition of the operator 

Ak,A = (4:rrhc2)112 � �a;.(k) 
v V  v2wk 

(7 .6.21 )  

and with the realization that the "extra term" in (7 .6.20) means that all energies in 
the photon field are measured relative to a "zero-point" energy 

1 Eo = 2 _"L nwk = _"L nwk . 
k,A k 

(7.6.22) 

This is the energy in the electromagnetic field when there are zero photons 
present; it is sometimes called the vacuum energy. It is an infinite number, but 
nevertheless a constant. More importantly, it has observable consequences. 

The Casimir Effect 

The vacuum energy of the electromagnetic field has a number of physical conse
quences, but probably the most dramatic is its ability to exert a macroscopic force 
between conducting surfaces. This is called the Casimir effect, and it has been 
precisely measured and compared to calculations. Fine accounts by S. Lamore
aux have been published, including a popular article in Physics Today, February 
2007, and a more technical review in Reports on Progress in Physics, 68 (2005) 
201 .  See also "Fluctuating About Zero, Taking Nothing's Measure," by M. For
tun, in Zeroing In on the Year 2000: The Final Edition (George E. Marcus, editor, 
University of Chicago Press, 2000). 

Casimir's calculation relies only on the assumption of the vacuum energy 
(7.6.22). We reproduce it here, following Lamoreaux's technical review article.* 

*We note that Lamoreaux's derivation closely follows that of ltzykson and Zuber (1980), Sec
tion 3-2-4. See also Holstein (1992) for a somewhat different approach, and attendant discussion, 
with a particularly physical perspective. 
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Two large, parallel, conducting plates are separated by a distance d. Define a co
ordinate system where the (x , y )-plane is parallel to the surface of the conducting 
plates, so z measures the distance perpendicularly away from one surface. This 
allows us to write down a potential-energy function 

U(d) = Eo(d) - Eo(oo), (7 .6.23) 

which gives the difference in the vacuum energy for plates with a finite and an 
infinite separation. Combining (7 .6.22) with (7 .6. 13)  (and combining positive and 
negative integer values), we have 

Eo(d) = fi  L Wk = fie L /ki +k; + (n;)2. 
kx ,ky ,n kx ,ky ,n 

(7.6.24) 

[This equation actually is missing a "lost" factor of 1/2 on the n = 0 term. This is 
because only one polarization state should be counted in (7 .6.22) for n = 0, since 
there is only one purely transverse mode when kz = 0. We will recover this factor 
below.] Now assume square plates with x and y lengths L » d. Since L is large, 
we can replace the summations over kx and ky with integrals and write 

(7.6.25) 

For the limit d -+ oo we can also replace the sum over n with an integral. This 
gives us all the necessary ingredients to evaluate (7.6.23). 

Unfortunately, however, (7.6.23) is the difference between two infinite num
bers. It is plausible that the difference is finite, since for any particular value of d, 
terms with large enough n will give the same result for different values of d. That 
is, both terms in (7 .6.23) should tend toward infinity in the same way, and these 
parts will cancel when we take the difference. 

This suggests that we can handle the infinities by multiplying the integrand 
in (7.6.25) by a function f(k), where f(k) -+ 1 for k -+  0 and f(k) -+ 0 for k -+ oo. This function "cuts off" the integrand before it gets too large but does so 
in the same way to both terms in (7 .6.23) so that the contributions from large k still 
cancel.* It is also helpful to introduce the polar coordinate p = J ki + k;, in which 
case dkxdky = 2npdp. Note that the integration limits in (7.6.25) correspond to 

*We can think of many physical reasons why there should be a cutoff at very high frequencies. 
In general, we expect the main contributions to come from values of k � l jd, but there are more 
specific examples, such as the response of electrons in metals to very high-energy photons. It 
remains an interesting problem, in any case, to see whether the eventual result can be derived 
even if there is no cutoff frequency. 
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1/4 of the (kx , ky)-plane. Then (7.6.23) becomes 

U(d) � 2rrhc (� n r pdp [ �? (J p2 + ("; )')) p2 + (";f)' (7.6.26) 

_ � r dkd (; p2 + ki); p' + k?l (7.6.27) 

Now define a function F(K) as 

F(K) = 1
00 
dx f (� Jx +K2) Jx +K2 

= 1
00 
2iJ Cr y) dy . 

K d 

(7 .6.28a) 

(7.6.28b) 

Putting p2 = (njd)2x and kz = (njd)K allows us to write the potential energy 
more succinctly, reclaiming the lost factor of 2, as 

n21ic [ 1 00 
1oo ] 

U(d) = -3-L2 -F(O) + LF(n) - F(K)dK 
4d 2 n=l 0 

(7.6.29) 

We are therefore left with evaluating the difference between an integral and a sum, 
both of which are reasonable approximations of each other. Indeed, if a function 
F(x ), defined over range 0 ::::: x :::=: N, is evaluated at integer points x = i ,  then the 
approximation scheme known as the trapezoidal rule says that 

(7.6.30) 

In our case, N --+ oo with F(N) --+ 0, thanks to the cutoff function f(k), and our 
job is to find the difference between the left- and right-hand sides of (7 .6.30). 

Fortunately, there is a theorem that evaluates this difference. It is called the 
Euler-Maclaurin summation formula and can be written as 

F(O) L
oo . 1oo 1 

' 
1 "' - + F(l ) - F(x)dx = --F (O) +-F (0) + · · · . 

2 0 12  720 i=l 
(7.6.31)  

The derivatives can be calculated using (7.6.28b). Because F(x) --+ 0 as x --+ oo, 
we have 

F'(y) = -2if (�y) , (7.6.32) 

which gives F' (0) = 0. If we make one further, but natural, assumption about the 
cutoff function f(k), namely that all of its derivatives go to zero as k --+ 0, then 
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FIGURE 7.9 Experimental verification of the Casimir effect, from U. Mohideen and 
Anushree Roy, Phys. Rev. Lett. 81 (1998) 4549. For experimental reasons, the force is 
measured between a metallic sphere and a flat plate, rather than between two flat plates. 
A laser precisely measures the small deflection, from which the force is deduced. The 
force (measured in w-rz N) varies as a function of separation between the sphere and 
the plate, in excellent agreement with the prediction, the line through the data points, 
based on a quantized electromagnetic field. 

we are left with only the third derivative term in (7.6 .31) . In fact, F"'(O) = -4 
and 

(7.6.33) 

So, finally, we derive the Casimir force (per unit area) to be 

(7.6.34) 

Thus, there is an attractive force between the plates that varies as the inverse fourth 
power of the separation, due to the reconfiguration of the vacuum energy in the 
quantized electromagnetic field. 

This is one of the examples in nature where a purely quantum-mechanical ef
fect manifests itself in a macroscopic system. Indeed, the Casimir force between 
conductors has been precisely measured, and the result is in excellent agreement 
with the theory. See Figure 7.9. This experiment makes use of the "atomic force 
microscope" concept, which relies on the bending of a microscopic cantilever 
beam in response to a tiny force between nearby surfaces. For this reason, an appa
ratus is used that suspends a small conducting sphere from the cantilever and mea
sures the force between the sphere and a fiat plate, given by -(n3 Rj360)(1icjd3), 
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where R is the sphere radius. The force deflects the cantilever, and this motion is 
detected using a laser that reflects from the sphere surface. The measured force 
as a function of the distance d is shown in the figure as data points, which are 
compared with the theoretical prediction. 

The Casimir effect has also been observed experimentally with parallel con
ducting surfaces. See, for example, G. Bressi et al., Phys. Rev. Lett. 88 (2002) 
041 804. 

If the Casimir effect is due to the presence of electromagnetic fields, and these 
fields interact only with charges, then why does the electric charge e not appear 
anywhere in (7.6.34)? The answer lies in our starting point for the calculation, 
where we assumed the boundary conditions for conducting plates. These arise 
from the relative mobility of the electrons in the metal, with which the electro
magnetic field interacts. In fact, we made use of a cutoff frequency whose physical 
basis can lie in the penetrability of electromagnetic radiation at short wavelengths. 
Indeed, if this penetrability existed for all wavelengths, there would be no Casimir 
effect. 

The Casimir effect has seen renewed interest in recent years, not only for its 
potential application in nano-mechanical devices, but also for its calculation and 
interpretation* using fundamental quantum field theoretical principles. In a for
mulation in terms of path integrals, the Casimir energy can be written down 
in terms of the free field propagator with appropriate boundary conditions. The 
boundary conditions are simply defined by the objects under consideration. The 
result is an elegant expression for the Casimir energy in terms of the T -matrix 
scattering amplitudes for the free field from the objects, and transformation ma
trices that express each object's geometry in a natural way with respect to the 
other. This approach lends itself to a number of insights. First, it allows one to 
calculate the Casimir energy for any field that can be expressed in terms of this 
constrained propagator, such as scalar or fermion fields. It is also clearly amenable 
to any number of geometries, far beyond simple parallel plates. 

Concluding Remarks 

Before leaving this chapter, we should point out that our treatment in this sec
tion only hints at the many applications of quantizing the electromagnetic field. 
Now that we have expression (7 .6.21)  (and its adjoint), which is an operator that 
destroys (or creates) photons of specific wavelength and polarization, we can in
corporate it in any number of ways. 

For example, we have already seen in (2.7.23) how we can add the electro
magnetic field into the conjugate momentum. This is built into the Hamiltonian 
in (2.7 .26). Using the quantized version for A, we have an ad hoc Hamiltonian 
operator that can create or destroy photons. Terms, then, proportional to A.  p can 
be treated as time-dependent perturbations. Thus we can let a photon be absorbed 

*There is quite a lot of recent literature. I recommend that the interested reader start with T. Emig 
and R. L. Jaffe, J. Phys. A 41 (2008); T. Emig, N. Graham, R. L. Jaffe, and M.  Kardar, Phys. Rev. 
Lett. 99 (2007) 170403; and R. L. Jaffe, Phys. Rev. D 72 (2005) 021 301 . 
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by an atom (the photoelectric effect) or let an excited state of an atom decay spon
taneously and emit a photon. 

These applications, of course, can be brought to bear just as well in systems 
covered by nuclear physics or condensed-matter physics. These topics are covered 
in a wide variety of books, some on quantum mechanics in general, but many that 
cover specific research areas. 

One particularly fascinating direction, which in fact involves noninteracting 
electromagnetic fields, is quantum optics. This is a field that has come of age 
in the past few decades, spurred on partly by advances in laser technology and 
a growing interest in quantum computing and quantum information. A reflective 
view of the field is given in Roy Glauber's Nobel Prize lecture, published in Re
views of Modern Physics 78 (2006) 1267. In the remainder of this section, we give 
a very brief overview of this large subject. 

A hint to the richness of quantum optics is immediately apparent. By virtue of 
(7.6.21) ,  the electric-field vector (7.6. 14a) becomes an operator that creates and 
destroys photons. The expectation value of this operator vanishes in any state 1 \ll ) 
with a definite number of photons-that is, 

I 'll ) =  1 . . .  , nu, . . .  ) .  (7.6.35) 

This is simple to see, since (7.6 .14a) changes the number of photons nu, in which 
case ('l! IE I 'll ) becomes the inner product between orthogonal states. Therefore 
any physical state needs to be a superposition of states with different numbers of 
photons. A wide variety of physical states with different properties can in princi
ple be realized, if one can manipulate this superposition. It is the ability to carry 
out this manipulation that has given birth to quantum optics. Problem 2. 19  of 
Chapter 2 suggests one possible manipulation leading to something known as a 
coherent state. Coherent states are eigenstates of the annihilation operator a and 
therefore serve as eigenstates of positive or negative frequency parts of E. 

Let us explore one such type of manipulation of single-mode electric-field op
erators, following Chapter 5 of Loudon (2000). For a given direction of linear 
polarization, the electric field is given by 

1 0 1 t 0 E(x) = E+(x) + E-(x) = 2ae-zx + 2a e1x , (7.6.36) 

where x = wt - kz - n j2. (We absorb a factor of -(8n1iwkf V)112 into the def
inition of the electric field.) The phase angle x can be adjusted experimentally. 
Furthermore, fields with different phase angles generally do not commute. From 
(2.3.3) it is easily shown that 

(7.6.37) 

The uncertainty relation ( 1 .4.53) therefore implies that 

(7.6.38) 
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where the electric-field variance (!J.E(x))2 is defined in the usual way as 

(!J.E(x))2 = (CE(x))2} - (E(x))2 

= (CE(x))2) 

since (E(x )) = 0 for a state with a single mode. A state I n  for which 

(7 .6.39) 

(7 .6.40) 

is said to be quadrature squeezed. It is possible to write I � )  as the action of a 
unitary operator on the vacuum: 

(7.6.41) 

where � = siB is  called the squeeze parameter. In this state, the electric-field 
variance is 

Thus one can achieve for !J.E(x) a minimum 

where m is an integer, and a maximum 

The resulting uncertainty relation is 

which satisfies (7.6.38) as an equality. 

e 
for x = 

2 + mn, 

(7.6.42) 

(7.6.43) 

(7.6.44) 

(7.6.45) 

The observation of squeezed light is challenging, but such measurements have 
been carried out. See Figure 7. 10. The squeezed states are prepared using an opti
cal technique known as parametric down conversion, which allows different mag
nitudes of � to be selected. Each point is the result of sweeping over the phase x 
and measuring the noise spectrum of the electric field. 
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FIGURE 7.10 Observation of states of "squeezed light," from L.-A. Wu, M. Xiao, and 
H. J. Kimble, Jour. Opt. Soc. Am. 4 (1987) 1465. [See also Chapter 5 in Loudon (2000).] 
Data are obtained by measuring the electric-field variance (that is, the noise) for different 
scans of the phase angle x .  The different points correspond to different squeezed states, 
formed by selecting different values of the magnitude s of the squeeze parameter s .  The 
solid line through the points is given by (7.6.45). 

Problems 

7.1 Liquid helium makes a transition to a macroscopic quantum fluid, called superfluid 
helium, when cooled below a phase-transition temperature T = 2. 17 K.  Calculate 
the de Broglie wavelength A. = hIp for helium atoms with average energy at this 
temperature, and compare it to the size of the atom itself. Use this to predict the 
superfluid transition temperature for other noble gases, and explain why none of 
them can form superfluids. (You will need to look up some empirical data for these 
elements.) 

7.2 (a) N identical spin � particles are subjected to a one-dimensional simple harmonic
oscillator potential. Ignore any mutual interactions between the particles. What 
is the ground-state energy? What is the Fermi energy? 

(b) What are the ground-state and Fermi energies if we ignore the mutual interac
tions and assume N to be very large? 
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7.3 It is obvious that two nonidentical spin 1 particles with no orbital angular momenta 
(that is, s-states for both) can form j = 0, j = I ,  and j = 2. Suppose, however, that 
the two particles are identical. What restrictions do we get? 

7.4 Discuss what would happen to the energy levels of a helium atom if the electron 
were a spinless boson. Be as quantitative as you can. 

7.5 Three spin 0 particles are situated at the comers of an equilateral triangle (see the 
accompanying figure). Let us define the z-axis to go through the center and in the 
direction normal to the plane of the triangle. The whole system is free to rotate 
about the z-axis. Using statistics considerations, obtain restrictions on the magnetic 
quantum numbers corresponding to lz . 

7.6 Consider three weakly interacting, identical spin 1 particles. 

(a) Suppose the space part of the state vector is known to be symmetrical under 
interchange of any pair. Using notation I +) I 0) I+)  for particle 1 in m s = + 1 ,  
particle 2 in m s  = 0, particle 3 in ms = + 1 ,  and so on, construct the normalized 
spin states in the following three cases: 

(i) All three of them in I+) .  

(ii) Two of them in 1+) ,  one in 10) .  

(iii) All three in different spin states. 

What is the total spin in each case? 

(b) Attempt to do the same problem when the space part is antisymmetrical under 
interchange of any pair. 

7.7 Show that, for an operator a that, with its adjoint, obeys the anticommutation rela
tion {a, a  t } = aa t + at a =  1 ,  the operator N = at a has eigenstates with the eigen
values 0 and 1 .  

7.8 Suppose the electron were a spin � particle obeying Fermi-Dirac statistics. Write 
the configuration of a hypothetical Ne (Z = 10) atom made up of such "electrons" 
[that is, the analog of (l si(2s)2(2p)6]. Show that the configuration is highly de
generate. What is the ground state (the lowest term) of the hypothetical Ne atom in 
spectroscopic notation CZS+ 1 L 1 ,  where S, L, and J stand for the total spin, the total 
orbital angular momentum, and the total angular momentum, respectively) when 
exchange splitting and spin-orbit splitting are taken into account? 
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7.9 Two identical spin ! fermions move in one dimension under the influence of the 
infinite-wall potential V = oo for x < 0, x > L, and V = 0 for 0 2 x 2 L .  
(a) Write the ground-state wave function and the ground-state energy when the 

two particles are constrained to a triplet spin state (ortho state). 

(b) Repeat (a) when they are in a singlet spin state (para state). 

(c) Let us now suppose that the two particles interact mutually via a very short
range attractive potential that can be approximated by 

V = -./...o(XI - X2) (./... > 0). 

Assuming that perturbation theory is valid even with such a singular potential, 
discuss semiquantitatively what happens to the energy levels obtained in (a) 
and (b). 

7.10 Prove the relations (7.6. 1 1 ), and then carry through the calculation to derive 
(7.6. 17). 



CHAPTER 

8 Relativistic Quantum Mechanics 

This final chapter provides a succinct look at how one constructs single-particle 
wave equations that are consistent with special relativity. 

To be sure, this effort is ultimately doomed to failure. Special relativity makes 
it possible to create particles out of energy, but much of our development of quan
tum mechanics was based on the conservation of probability, so we can't expect 
to be entirely successful. The right way to attack this problem is by starting with 
the postulates of quantum mechanics and building a many-body theory of fields 
that is relativistically consistent. Nevertheless, at energies low compared to the 
masses involved, we can expect single-particle quantum mechanics to be a very 
good approximation to nature. Furthermore, this is a natural way to develop the 
nomenclature and mathematics of a relativistic field theory. 

We will start with the general problem of forming a relativistic wave equation 
for a free particle. This leads more or less intuitively to the Klein-Gordon equa
tion, which we will discuss in some detail. Along the way, we introduce and con
tinue to use the concepts of natural units and of relativistically covariant notation. 
Then, we will go through Dirac's approach to finding a relativistic wave equation 
that is linear in space-time derivatives, not quadratic. A study of the symmetries 
of the Dirac equation is presented. The chapter concludes with the solution of the 
one-electron atom problem and its comparison with data. 

This material is of course covered by many other authors. One nice reference, 
written when relativistic field theory was emerging out of decades of relativistic 
quantum mechanics, is "Elementary Relativistic Wave Mechanics of Spin 0 and 
Spin ! Particles," by Herman Feshbach and Felix Villars, Rev. Mod. Phys. 30 
( 1958) 24. 

8.1 • PATHS TO RELATIVISTIC QUANTUM MECHANICS 

486 

The early part of the twentieth century saw the more or less simultaneous devel
opments of both relativity and quantum theory. Therefore, it is not surprising to 
learn that early attempts to develop wave mechanics produced relativistic wave 
equations.* Although we now understand the many pitfalls that confounded these 
early pioneers, it took many decades to sort things out. 

We begin by focussing on the Hamiltonian operator, the (Hermitian) generator 
of time translations that led us to the Schrodinger equation (2. 1 .25) for the time 

*See Volume I, Section 1 . 1  of Weinberg (1995). 
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evolution of a state. That is, a state 11/l (t)) evolves in time according to the equation 

i1i� l1/l(t)) = H J 1/f(t) ) .  a t  (8. 1 . 1 )  

We interpret the eigenvalues of the Hamiltonian, of course, as the allowed energies 
of the system. This is where we can start to incorporate special relativity. 

Natural Units 

This is a good time to graduate to the use of so-called natural units-that is, units 
in which n = c = 1 .  Most people react to this with bewilderment when they first 
see it, but it is in fact very simple and useful. 

We first consider the consequences of setting c = 1 .  Then, we measure time 
( = distance I c) in length units, such as meters or centimeters . (If you really need 
to know the value of time in seconds, just divide by c = 3 x 1010 em/sec.) Velocity 
becomes a dimensionless number, which we typically denote by f3 .  

Setting c = 1 means that we also measure both momentum and mass in  units 
of energy, such as e V or MeV. Frequently, one puts in the c explicitly and writes 
momentum units as MeV/c and mass as MeV/c2. Most physicists know that the 
electron mass, for example, is 0.5 1 1  MeV I c2, but very few know this value in 
kilograms without doing the conversion arithmetic ! Just don't be surprised if 
someone tells you that the mass is 0.5 1 1  MeV and leaves off the c2. 

Now consider what happens when we set n = 1 as well. This ties together units 
for length and units for energy. For example, the canonical commutation relation 
for the momentum and position operators says that their product has the same 
units as n .  Therefore, we would measure position in units of Me v- 1 ,  or some 
other inverse energy unit. 

Remember that you can always put back the n 's and c's in the right places if 
you need to return to the old way of doing things. It is not uncommon to do this if 
you are trying to evaluate the result of some experiment, for example. It is handy 
to keep in mind that, to a very good approximation, he = 200 MeV·fm for doing 
these conversions. 

As a final note, we point out that in a textbook on statistical mechanics, one 
would also "naturally" set Boltzmann's constant k = 1 .  That is, temperature would 
be measured in units of energy as well. 

The Energy of a Free Relativistic Particle 

Consider the energy of a free particle with momentum p = IP I and mass m, 
namely 

(8 . 1 .2) 

We need to come up with a Hamiltonian that yields this energy eigenvalue for 
a state Jp) with momentum eigenvalue p. It is the square root, however, which 
plagued early efforts to come up with a relativistic wave equation, and which we 
must figure out how to deal with here. 
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We have faced transcendental functions of operators before, such as U(t) = 
exp( -i H t), interpreting them in terms of their Taylor expansions. We could take 
the same approach here, and write [ 2 J 1 /2 H = J p2 + m2 = m 1 + �2 

p2 p4 p6 
= m + - - - + -- + · · · . 2m 8m3 16m5 (8. 1 .3) 

In fact, this would be a viable way to proceed, but it has some serious short
comings. For one, it would make it impossible to formulate a "covariant" wave 
equation. That is, if we formed a coordinate-space (or momentum-space) repre
sentation of a state vector 1 1/r} , the resulting wave equation would have one time 
derivative and an infinite series of increasing spatial derivatives from the momen
tum operator. There would be no way to put time and space on an "equal footing." 

This consideration actually leads to a more important problem. Let's go ahead 
and try to build this wave equation. From (8. 1 . 1 )  we have 

i .!___ (xl lfr(t)} = J d3 p (x lp} (p iH  11/r(t)} a t  

(8 . 1 .4) 

and (8 . 1 .3) means that (x' I Ep l l/r(t)} becomes an infinite series of ever higher
order derivatives; see ( 1 .7 .20). This renders this wave equation nonlocal since it 
must reach farther and farther away from the region near x' in order to evaluate the 
time derivative. Eventually, causality will be violated for any spatially localized 
wave function (x llfr(t)} . The loss of covariance costs us a great deal indeed. 

We abandon this approach and work with the square of the Hamiltonian, in
stead of with the Hamiltonian itself. This removes the problem of the square root, 
and all of its attendant problems, but it will introduce a different problem. There 
will be solutions to the wave equation with negative energies; these solutions are 
necessary to form a complete set of basis states, but they have no obvious physi
cal meaning. Nevertheless, this approach is more useful than the one we are now 
leaving. 

The Klein-Gordon Equation 

Start with (8. 1 . 1 )  and take the time derivative once more. That is, 

a2 a ----z l l/r(t)} = i -H i lfr(t)} = H2 11/r(t)} . at at (8 . 1 .5) 
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We can now write down a simple wave equation for \ll (x, t) = (xl lfr(t)) . Taking 
H2 = p2 + m2 and using (xl p2 1 1fr(t)) = -V2\ll (x, t), we obtain 

[ a2 2 2] 
ot2 

- V  + m  \ll (x, t) = O. (8 . 1 .6) 

Equation (8 . 1 .6) is known as the Klein-Gordon equation. This looks very much 
like a classical wave equation, except for the m2 term. Putting back our 1i's and 
c's, we see that this term introduces a length scale 1ijmc, called the Compton 
wavelength. 

The Klein-Gordon equation has nearly all the desirable qualities of a rela
tivistic wave equation. First, it is relativistically covariant. You can see that, be
cause a Lorentz transformation leaves the square of the space-time interval ds2 = 
dt2 - dx2 invariant. Therefore, the combination of derivatives in (8. 1 .6) is the 
same if we change frames from (x, t) to (x', t'). In other words, \ll (x', t') solves the 
same equation as 'l!(x, t). 

Relativistic covariance is easier to see if one uses relativistic covariant nota
tion. We will use a notation that has become standard. That is, Greek indices run 
0, 1 , 2, 3 and Latin indices run 1 , 2, 3 .  If an index is ever repeated in an expression, 
summation over that index is implied. A contravariant four-vector aiL = (a0, a) 
has a dual covariant vector aiL = TJ JL va v , where TJoo = + 1 ,  TJ 1 1  = T/22 = T/33 = - 1 ,  
and all other elements are zero. Thus aiL = (a0, -a). Inner products of four vec
tors can be taken only between a contravariant vector and a covariant vector; for 
example, aiL btL =  a0b0 - a · b. In particular, aiL aiL = (a0)2 - a2. 

A key point of Lorentz transformations is that inner products of four vectors are 
invariant. That is, aiL btL will have the same value in any reference frame. This is 
the reason why covariant notation is very useful for demonstrating the covariance 
of a particular expression. 

The space-time position four-vector is xtL = (t, x). This gives the four-gradient 

_a_ =  (�. v) = aiL, oxiL a t  (8 . 1 .7) 

which is a covariant vector operator, despite the positive sign in front of the space
like part. Now, the covariance of (8 . 1 .6) is absolutely clear. The Klein-Gordon 
equation becomes [aiL a iL + m2 J \ll (x, t) = 0. (8. 1 .8) 

Sometimes, an even further economy of notation is achieved by writing 32 = 
aiL a iL . 

Another desirable property of the Klein-Gordon equation is that it has solutions 
that are in fact what we expect for a free, relativistic particle of mass m. We 
expect the time dependence to be like exp( -i Et), where E is an eigenvalue of the 
Hamiltonian. We also expect the spatial dependence to be that of a plane wave; 
that is, exp( +ip · x) for momentum p. In other words, our solution should be 

\ll(x, t) = Ne-i(Et-p·x) = Ne-ipiLxJL ' (8 . 1 .9) 
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where pft 
= (E, p). Indeed, (8. 1 .9) solves (8. 1 .8) so long as 

-pftp�-t + m2 = -E2 + p2 + m2 = 0, (8. 1 . 1 0) 

or E2 = E2 . Thus the energy eigenvalues E � + E P are included, as they should 
be. On thi other hand, the negative energy eigenvalues E = -E p are also in
cluded. This was a serious stumbling block in the historical development of rel
ativistic quantum mechanics, but we will take up a practical explanation of it 
shortly. 

SchrOdinger's nonrelativistic wave equation has a very important property
namely, it implies that probability is conserved. The probability density p(x, t) = 

1/r* 1jr (2.4. 14) is a positive definite quantity, and the probability flux (2.4. 16) obeys 
a continuity equation (2.4. 15), which proves that the probability density can be 
influenced only by the flux into or out of a particular region. 

One would like to identify analogous expressions using the Klein-Gordon 
equation, so that the wave function \ll(x, t) can be similarly interpreted. The form 
of the continuity equation strongly suggests that we construct a four-vector cur
rent jtL with the property ofLjtL = 0, with the probability density p = j0. In fact, 
if we follow (2.4. 16) to write 

then it is easy to show that ofLjfL = 0. Therefore, we calculate a density 

p(x, t) = j0(x, t) = - \11* - - - \II . i [ aw ( aw ) * J 2m at ot 

(8. 1 . 1 1) 

(8. 1 . 1 2) 

Although this density is conserved, it is not positive definite ! This was a tremen
dous problem in the development of relativistic quantum mechanics, because it 
rendered the standard probabilistic interpretation of the wave function impossi
ble. Eventually a consistent physical interpretation was found. Before discussing 
this interpretation, though, we need to consider the effect of electromagnetic in
teractions within the context of our relativistic framework. 

The explicitly covariant nature of the Klein-Gordon equation makes it straight
forward to add electromagnetic interactions into the Hamiltonian. See Section 2. 7, 
especially (2.7.23) and (2.7.26). As before, we assume that the particle has an 
electric charge e < 0. In a classical Hamiltonian, one simply makes the substitu
tions* E -+  E - e<t> and p -+  p - eA, where <I> is the "scalar" electric potential 

*It is worthwhile to take a moment and review the origin of these substitutions. A Lagrangian 
L is constructed that yields the Lorentz force law, F = e [E+v  x Bjc]. For a coordinate Xi , the 
canonical momentum is Pi = aLI a xi = mxi + eAi . Hence, the kinetic energy uses the "kine
matic momentum" mxi = Pi - eAi . For more details, see Taylor (2005), Section 7.9. Extension 
to relativistic kinematics is relatively straightforward. The four-momentum piL is replaced by 
piL - eAIL ; see Jackson (1998), Section 12. 1A. When working in coordinate space, the quantum
mechanical operator for the (covariant vector) PJL = (E, -p) is iBJL = (iB1 , iV). Therefore, to 
incorporate electromagnetism, we replace iBJL with iBJL - eAJL = i(BJL + ieAJL) = i DJL .  
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and A is the vector potential. In covariant form, this becomes 

pi-L --+ pi-L - eAI-L, 
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(8. 1 . 1 3) 

where Al-L = (<P,A), so Al-L = (<P, -A). This all amounts to rewriting (8.1 .8) as 

[DJ-LD1-L +m2] wcx, t) = O, (8. 1 . 14) 

where DJ-L = al-L + ieAw We refer to DJ-L as the covariant derivative. 
Unlike the nonrelativistic SchrOdinger wave equation, the Klein-Gordon equa

tion is second order in time derivatives, not first. That implies that one must not 
only specify W(x, t) it=O for its solution, but also 3W(x, t)/3t lt=O· Consequently, 
more information is necessary than we might have originally expected based on 
our experience from nonrelativistic quantum mechanics. In fact, this additional 
"degree of freedom" shows up as the sign of the charge of the particle. This is 
clear when we note that if W(x, t) solves (8. 1 . 14), then W*(x, t) solves the same 
equation, but with e --+ -e. 

More explicitly, we can reduce the second-order Klein-Gordon equation to 
two first-order equations and then interpret the result in terms of the sign of the 
electric charge. Using a rather obvious notation in which D J-L DI-L = Dl -D2, we 
can easily write (8. 1 . 14) as two equations, each first order in time, defining two 
new functions 

cp(x, t) = � [ W(x, t) + �Dr'll(x, t)] 
x (x, t) = � [ W(x, t) - � Dr'll(x, t)] 

(8. 1 . 15a) 

(8. 1 . 15b) 

so that instead of specifying W(x, t) i t=O and 3W(x, t)/3t l r=O, we can specify 
cp(x, t) l t=O and x (x, t) i r=O· Furthermore, rjJ(x, t) and x (x, t) satisfy the coupled 
equations 

(8. 1 . 16a) 

(8. 1 . 1 6b) 

which bear a striking resemblance to the nonrelativistic Schrodinger equation. We 
can demonstrate this resemblance even more keenly be defining a two-component 
object Y(x, t) in terms of the two functions r/J(x, t) and x (x, t), and using the Pauli 
matrices (3.2.32). That is, for the functions r/J(x, t) and x (x, t) that satisfy (8. 1 . 1 6), 
we define a column vector function 

[ rjJ(x, t) J Y(x, t) = x (x, t) . 

We now write the Klein-Gordon equation as 

i DrY = [- 2� D2( r3 + i rz) + m r3 J Y. 

(8. 1 . 17) 

(8. 1 . 18) 
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(Note that we use r rather than a to denote the Pauli matrices, to avoid any con
fusion with the concept of spin.) Equation (8. 1 . 1 8) is completely equivalent to 
our formulation in (8. 1 . 14), but it is a first-order differential equation in time. We 
have "hidden" the additional degree of freedom in the two-component nature of 
Y(x, t). 

Now let us return to the question of probability current density. Now that 
we have rewritten the Klein-Gordon equation using the covariant derivative as 
(8. 1 . 14), the correct form of the conserved current is 

ji-L = _i 
[ 'll* Df-L'lJ - (DM'lJ)* 'l1 J .  

2m 
(8. 1 . 19) 

The "probability" density (8. 1 . 12) therefore becomes 

(8. 1 .20) 

This is easy to see by using (8 . 1 . 15) to write 'll(x, t) and Dt 'l1 in terms of c{J(x, t) 
and x(x, t). 

We are therefore led to interpret p as a probability charge density, where c{J(x, t) 
is the wave function of a positive particle, and x (x, t) is the wave function of a 
negative particle. That is, the Klein-Gordon equation has buried in it simultaneous 
degrees of freedom for a particle of a certain charge and a particle that behaves 
identically but with the opposite charge. Before going so far as to refer to these as 
"particle" and "antiparticle," we should go back and consider the interpretation of 
the negative-energy solutions. 

An Interpretation of Negative Energies 

First consider free particles, in which case DM = aM, and for which Y(x, t) ex 
exp [ -i (Et - p · x) J .  Inserting this into (8. 1 . 1 8) yields the eigenvalues E = ±E P 
as it, of course, should. We find, for the eigenfunctions, 

and 

Y(x, t) = 
2(m�p)lfl 

( !P
_
+
E
: ) e-iEpt+ip·x for E =  +Ep (8 . 1 .21a) 

Y(x, t) = 
2(m�p)112 

( �
p
-
+
E/:z ) e+iEpt+ip·x for E =  -Ep, (8. 1 .21b) 

with a normalization that leads to a charge density p = ±1  for E =  ±Ep . That 
is, we impose the condition that a free particle with negative charge is to be as
sociated with a particle that has negative total energy. Also, for a particle at rest, 
Ep = m and the positive-energy solution (8. 1 .21a) has only an upper compo
nent (that is, x(x, t) = 0), while the negative-energy solution (8 . 1 .21b), has only a 
lower component (that is, c{J(x, t) = 0). This continues for the nonrelativistic case 
where p « E P and the positive-energy solution is dominated by c{J(x, t) and the 
negative-energy solution by x (x, t). 
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More insight into the meaning of negative energies comes from considering 
the probability current density j .  Making use of (3.2.34), (3.2.35), and (8. 1 . 1 8), 
we have 

atP = at n-t r3!) = (at yt) r3! + yt r3 cat 1) 

= 
2:m 

[ ( V21t) ( 1  + r1)! - 1t ( 1 + r1) ( v21)] 
= -V · j , 

where j = 
2i

1
m 

[ yt (1  + r1 ) (V!) - ( vyt) (1  + r1 )!] . (8 . 1 .22) 

In the case of a free particle, for either positive or negative energies, this reduces 
to 

j = R_yt( l  + r1)! = l .  
m Ep (8 . 1 .23) 

Now this would appear to be quite peculiar. With a normalization that imposes 
positive and negative charges on positive- and negative-energy solutions, respec
tively, we end up with a charge current density that is the same regardless of 
the sign of the charge and energy. One way to "fix" this would be to recognize 
that the sign of the momentum vector p in (8 . 1 .21b) is "wrong" since we want 
the exponent to have the form ipfLxfL in order to be relativistically invariant. We 
might reverse the sign of p, therefore, for negative-energy solutions, in which case 
(8 . 1 .23) would carry the "correct" sign to account for the charge of the particle. 
Another way of "fixing" this problem would be to say that the negative-energy 
particles are moving "backwards in time." This not only reverses the sign of p but 
also lets the energy be positive in the exponent of (8. 1 .2 1  b) ! We have made some 
contact with the popular lore of particles and antiparticles . 

If we like, we can formally associate the positive-energy solution \ll E>o(x, t) 
to the Klein-Gordon equation with that for a "particle" and associate the complex 
conjugate of the negative energy solution W� <0(x, t) with an "antiparticle." In this 
case, (8. 1 . 14) yields the two equations 

[(aiL - ieAfL)(afL - ieAfL) + m2 Jwparticle(x, t) = 0 

[(aiL + i eAfL)(afL + i eAfL) + m2 J \ll antiparticle(x, t) = 0. 

(8. 1 .24a) 

(8 . 1 .24b) 

This makes it clear how to split the solutions to the Klein-Gordon equation into 
two pieces that correspond individually to particles with charge ±e. 

This is a good time to step back from the Klein-Gordon equation. By following 
our nose, we have been able to come up with a relativistic wave equation with 
free-particle solutions that can be interpreted, if we try hard enough, in terms of 
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particles and antiparticles with charges of opposite sign. These two entities appear 
as the separate degrees of freedom in our two-component wave function Y(x, t). 
It is even possible to go much further and solve the Klein-Gordon for an atomic 
system, and the results compare well with experiment so long as the orbiting 
charged particle has no spin. (See Problem 8.7 at the end of this chapter.) 

Indeed, the lack of any spin degree of freedom gave the wrong answer for 
the fine structure in the hydrogen atom and doomed the Klein-Gordon equation 
to be left on the sidelines in the development of relativistic quantum mechanics. 
This, and the fact that nobody had yet seen any evidence for antiparticles, meant 
that there were too many things that needed to be cooked up to explain all the 
idiosyncrasies of the negative-energy solutions. It took Dirac and his leap of faith 
to create a wave equation linear in space and time derivatives to point us in a more 
fruitful direction. 

8.2 . THE DIRAC EQUATION 

Many of the difficulties with interpreting the results from the Klein-Gordon equa
tion stem from the fact that it is a second-order differential equation in time. These 
difficulties include a nonpositive definite probability density, and additional de
grees of freedom, although both can be identified to some extent with particles 
and their oppositely charged antiparticles. Nevertheless, Dirac looked for a way 
to write a wave equation that is first order in time. Along the way, he discovered 
the need for j = 1 /2 angular momentum states in nature. This also lent itself to a 
particularly useful interpretation of the negative-energy states. 

The linear differential equation we seek can be written as 

(i yfL aiL - m )'ll (x, t) = 0, (8.2. 1)  

where the yM have yet to be determined. (Of course, the constant m is  also yet 
to be determined, but it will turn out to be the mass.) We must still insist that the 
correct energy eigenvalues (8. 1 . 10) are obtained for a free particle (8 . 1 .9), as does 
(8 . 1 .8). We can turn (8.2. 1 )  into (8. 1 .8) simply by operating on it with -i yv av - m  
to get 

(8.2.2) 

and then imposing the condition that y v y M av aM = aM aM = ryM v av aM . This condi
tion can be written succinctly, by reversing dummy indices to symmetrize: 

(8.2.3) 

Thus the four quantities yM ,  � = 0, 1 , 2, 3 , are not simply complex numbers but 
rather entities that obey something called a Clifford algebra. Clearly this algebra 
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implies that 

and 

(ro)2 = 1 

(rir = - 1  

yfl- yV = - y V yfl-
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(8.2.4a) 

i = 1 ,  2, 3 (8.2.4b) 

(8.2.4c) 

Note that the anticommutation property of the yfl- means that each of these matri
ces are traceless. 

Now substitute the free-particle solution (8. 1 .9) into (8.2. 1 )  to find 

(8.2.5) 

from which we can recover the free-particle energy eigenvalues E. Writing (8.2.5) 
out in terms of time-like and space-like parts, and then multiplying through by yo, 
we obtain 

(8.2.6) 

This leads to the Dirac Hamiltonian, written in a traditional form. Making the 
definitions 

(8.2.7) 

we arrive at 

H = a · p+f3m. (8.2.8) 

Note that if we add electromagnetism by making the substitution (8. 1 . 13) into 
(8.2.5), and then setting A =  0 and Ao = <1>, we have 

H = a · p +{3m +  e<l>, (8 .2.9) 

which controls the motion of a charged particle in an electrostatic potential <I> .  

We will make use of this when we solve the relativistic one-electron atom in 
Section 8.4. 

Which form of the Dirac equation we use, (8. 1 . 1) with (8.2.8) or (8.2.9), or 
the covariant form (8.2. 1 )  perhaps with the substituion (8. 1 . 1 3), depends on the 
specific problem at hand. For example, sometimes it is easier to use (8.2.8) when 
solving problems involving dynamics and the Dirac equation, whereas it is easier 
to discuss symmetries of the Dirac equation in covariant forms using yfl- . 

The algebra (8 .2.4) can be realized with square matrices, so long as they are 
at least 4 x 4. We know that 2 x 2 matrices are not large enough, for example, 
because the Pauli matrices u form a complete set along with the identify matrix. 
However {ak, 1 }  = 20'k. so this set is not large enough to realize the Clifford al
gebra. Therefore, \ll (x, t) in (8.2. 1)  would be a four-dimensional column vector. 
In order to keep a convention consistent with our matrix representation of states 
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and operators, we insist that ex and f3 be Hermitian matrices. Note that this implies 
that y0 is Hermitian, whereas y is anti-Hermitian. 

We choose to make use of the 2 x 2 Pauli spin matrices u (3 .2.32), and we 
write 

(8.2. 10) 

That is, we write these 4 x 4 matrices as 2 x 2 matrices of 2 x 2 matrices. 

The Conserved Current 

The Dirac equation immediately solves the problem of the positive-definite nature 
of the probability density. Defining wt in the usual way-namely, as the complex 
conjugate of the row vector corresponding to the column vector \11-we can show 
that the quantity p = wtw is in fact interpretable as a probability density. First, as 
the sum of the squared magnitudes of all four components of \II (x, t ), it is positive 
definite. 

Historically, the ability of the Dirac equation to provide a positive-definite 
probability current was one of the main reasons it was adopted as the correct 
direction for relativistic quantum mechanics. An examination of its free-particle 
solutions led to an attractive interpretation of negative energies-and, in fact, to 
the discovery of the positron. 

Second, it satisfies the continuity equation 

()p • 

- + V · J = O  at (8.2. 1 1) 

for j = wt cx\11 . (This is simple to prove. Just use the Schrodinger equation and 
its adjoint. See Problem 8 . 10  at the end of this chapter.) This means that p can 
change only on the basis of a flow into or out of the immediate region of interest 
and is therefore a conserved quantity. 

Instead of wt, one usually uses \II = wt f3 = wt y0 in forming the proba
bility density and current. In this case, p = wtw = wt y0y0w = wyo\11 and 
j = wt y0y0cx\ll = wy0cxw. Because y0cx = y by (8.2.7), we have 

:
t 
( w y0w) + v.  (\llrw) = af.tr- = o, 

where 

is a four-vector current. Rewriting (8.2. 1 )  in terms of four-momentum as 

(yf.t PM - m)\ll(x, t) = 0, 

(8.2. 12) 

(8.2. 13) 

(8.2. 14) 

and also taking the adjoint of this equation and using (8 .2.4) to insert a factor 
of y0, 

(8.2. 15) 
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we come to an insightful interpretation of the conserved current for a free particle. 
We write 

jM = � { (WyM] \If + \If [yM\IJ ] }  
= 

2
� { [ \lfyMJ yv PvW + \llyv Pv [yM\IJ] }  
1 -[ 

= - \If yMyV + yVyM] pv\IJ 
2m 

M = L\11\11 . 
m 

Thus, writing the usual Lorentz contraction factor as y yields 

and 

. _ 
P- _ [ t t ] J -

m 
\11\11 - yv \I! up \I! up - \II down \I! down . 

(8.2. 16) 

(8.2. 17) 

(8.2. 1 8) 

The factor of y is expected because of the Lorentz contraction of the volume 
element d3x in the direction of motion. (See Holstein 1 992 for an extended dis
cussion.) The meaning of the relative negative sign of the upper and lower com
ponents becomes clearer after we study the specific solutions for the free particle. 

Free-Particle Solutions 

We are now in a position to study solutions of the Dirac equation and their symme
try properties. Already we notice, however, that the wave function \II (x, t) has four 
components, whereas the Klein-Gordon wave function Y(x, t) has two. We will 
see that the additional degree of freedom in the Dirac equation is the same quan
tity we called "spin �, at the very beginning of this book. The four-component 
object \II (x, t) is called a spin or. 

We get immediate insight into the nature of the solutions of the Dirac equation 
just by considering free particles at rest (p = 0). In this case the Dirac equation is 
simply i at \II = {3m \11 . Given the diagonal form of f3 (8.2. 1 0), we see that there are 
four independent solutions for \II (x, t ). These are 

(8.2. 19) 

Just as in the case of the Klein-Gordon equation, the lower half of the wave func
tion corresponds to negative energy, and we will need to deal with the interpreta
tion of these equations later. Both the upper and lower halves of the Dirac wave 
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function, however, have one component that it is tempting to call "spin up" and 
another we would call "spin down." This interpretation is in fact correct, but we 
need to be somewhat more ambitious before we can state this with confidence. 

Let us go on and consider free-particle solutions with nonzero momentum p = 
pz-that is, a particle moving freely in the z-direction. In this case, we want to 
solve the eigenvalue problem H'll = E'll for H = azp + {3m, which is no longer 
diagonal in spinor space. The eigenvalue equation becomes 

[ �  0 p 
m 0 
0 -m 

-p 0 

(8.2.20) 

Notice that the equations for u 1 and u3 are coupled together, as are the equations 
for components u2 and u4, but these components are otherwise independent of 
each other. This makes it simple to find the eigenvalues and eigenfunctions. De
tails are left as an exercise. (See Problem 8. 1 1  at the end of this chapter.) From 
the two equations coupling u 1 and u3 , we find E = ±Ep .  We find the same for 
the two equations coupling u2 and u4. Once again, we find the expected "correct" 
positive-energy eigenvalue and also the "spurious" negative-energy solution. In 
the case of the Dirac equation, however, a relatively palatable interpretation is 
forthcoming, as we shall see shortly. 

First, however, let us return to the question of spin. Continue to construct the 
free-particle spinors. For E = + E P we can set either u 1 = 1 (and u2 = u4 = 
0), in which case u3 = +pf(Ep + m), or u2 = 1 (and u 1 = u3 = 0), in which 
case u4 = -pI ( E P + m ). In both cases, as for the Klein-Gordon equation, the 
upper components dominate in the nonrelativistic case. Similarly, for E = -E P 
the nonzero components are either u3 = 1 and u 1 = -p/(Ep + m) or u4 = 1 and 
u2 = pj(Ep + m), and the lower components dominate nonrelativistically. 

Now consider the behavior of the operator I; .  p = :Ez , where I: is the 4 x 4 
matrix 

(8.2.21)  

We expect this operator to project out components of spin in the direction of 
momentum. Indeed, it is simple to see that the spin operator S = �I: projects out 
positive (negative) helicity for the positive-energy solution with u 1 -=f. 0 (u2 -=f. 0). 
We find the analogous results for the negative-energy solutions. In other words, 
the free-particle solutions do indeed behave appropriately according to the spin
up/down assignment that we have conjectured. 

Putting this together, we write the positive-energy solutions as 

for E =  +Ep, 

(8.2.22a) 
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where the subscript R (L) stands for right (left) handedness-that is, positive 
(negative) helicity. For the negative-energy solutions, we have 

-p 0 Ep+m p 
u�-) (p) = 0 ui-)(p) = Ep+m for E =  -Ep .  (8 .2.22b) 

1 0 
0 1 

These spinors are normalized to the factor 2Ep/(Ep + m). The free-particle 
wave functions are formed by including the normalization and also the factor 
exp( -ipt-txt-t) . 

Interpretation of Negative Energies 

Dirac made use of the Pauli exclusion principle in order to interpret the negative
energy solutions. One conjectures a "negative-energy sea" that is filled with elec
trons, as shown in Figure 8. 1 .  (This represents a "background" of infinite energy 
and infinite charge, but it is possible to imagine that we would be insensitive to 
both of these.) Since this fills all of the negative-energy states, it is not possi
ble for positive-energy electrons to fall into negative energies. It would be pos
sible, however, for a high-energy photon to promote electrons out of the sea into 

Electron 

Hole (positron) 

FIGURE 8.1 The figure on the left shows Dirac's interpretation of negative-energy 
states, including the possibility that a negative-energy electron can be promoted to pos
itive energy, leaving a positively charge hole, or a "positron." The cloud chamber pho
tograph on the right, from Physical Review 43 (1933) 491 ,  records the discovery of the 
positron by Carl Anderson. It shows a particle track moving upward, bending in a known 
magnetic field. The direction is determined because the curvature above the lead plate 
is larger than below, since the particle lost energy while traversing it. The amount of 
energy loss is not consistent with a proton of this momentum but is consistent with a 
particle having the mass of an electron. 
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positive energies, where it would be observable. The "hole" left in the sea would 
also be observable, as an object with all the properties of an electron, but with 
positive charge. 

Figure 8 . 1  also shows the original discovery of the positron, by Carl Anderson 
in 1 933. After this discovery, the Dirac equation became the standard treatment 
of relativistic quantum mechanics, explaining the spin � electron and (as we will 
see) its electromagnetic interactions. 

E lectromagnetic I nteractions 

We introduce electromagnetic interactions in the Dirac equation in the same way 
that we did for the Klein-Gordon equation-that is; through 

p = p - eA (8 .2.23) 

and the Dirac equation becomes, in 2 x 2 matrix form, 

(8.2.24) 

At nonrelativistic (positive) energies E = K + m, the kinetic energy K « m and 
the lower equation becomes 

<T · pu = (E + m)v � 2mv, 

which enables us to write the upper equation as 

(u · p) (u · p) [ p2 iu _ - ]  
2m u = 

2m + 
2m • (p x p) u = K u,  

where we have used (3.2.39). Now in the coordinate representation, 

p x pu = (iV + eA) x (iVu + eAu) 
= i e [V x (Au) + A  x Vu] 
= ie(V x A)u = i eBu, 

(8.2.25) 

(8.2.26) 

(8.2.27) 

where B is the magnetic field associated with the vector potential A. Therefore, 
(8 .2.26) becomes 

where 

with 

and 

1i 
S =  -u 

2 

g = 2. 

(8.2.28) 

(8.2.29) 

(8.2.30) 

(8.2.3 1 )  
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In other words, the Dirac equation in the presence of an electromagnetic field 
reduces nonrelativistically to (8.2.28), which is just the time-independent 
SchrOdinger equation (with energy eigenvalue K) for a particle with magnetic 
moment JL in the presence of an external magnetic field. The magnetic moment is 
derived from the spin operator with a gyromagnetic ratio g = 2. 

This brings us full circle. We began this book by discussing the behavior of 
particles with magnetic moments in the presence of inhomogeneous magnetic 
fields, where it appeared that they behaved as though they had spin projections 
quantized in one of two states. We now see that this stems from a consideration 
of relativity and quantum mechanics, for particles that obey the Dirac equation. 

8.3 • SYMMETRIES OF THE D IRAC EQUATION 

Let us now examine some symmetries inherent in the Dirac equation. We will 
consider situations where a spin � particle sits in some external potential-that is, 
solutions to the equation 

where 

a i -\ll (x, t) = H\ll (x, t) = E\ll (x, t), 
a t  

H = a · p + ,Bm +  V(x) 

(8.3 . 1 )  

(8.3 .2) 
for some potential-energy function V (x). This form, of course, ruins our ability to 
write a covariant equation, but that is a necessary penalty if we want to talk about 
potential energy. We note, though, that in the case of electromagnetic interactions, 
we can end up with exactly this form from the covariant equation if we choose a 
frame in which the vector potential A = 0. 

Angular Momentum 

Our discussion of rotational invariance for wave mechanics in three dimensions 
centered on the fact that the orbital-angular-momentum operator L = x x p com
muted with Hamiltonians with "central potentials." This in tum hinges on the fact 
that L commutes with p2, and so with the kinetic-energy operator, and also x2. 
[See (3.7 .2).] 

Let us now consider the commutator [ H, L] first for the free Dirac Hamiltonian 
(8.2.8). It is obvious that [,B,L] = 0, so we need to consider the commutator 

[a · p, L i J = [aepe, SijkXjPk] 

= Sijkae [pe,xj]Pk 
(8.3.3) 

(Recall our convention of summing over repeated indices.) In other words, the 
orbital-angular-momentum operator does not commute with the Dirac Hamilto
nian ! Therefore, L will not be a conserved quantity for spin � particles that are 
either free or bound in central potentials. 
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Consider, however, the spin operator (8.2.2 1)  and its commutator with the 
Hamiltonian. It is simple to show that f3 "E,i = "E,i {3.  It is also easy to use (3.2.35) 
to show that [ai , bj] = 2isijkak . Hence we need to evaluate 

(8.3.4) 

Thus we see (putting h back in momentarily) that even though neither L nor I: 
commutes with the free Dirac Hamiltonian, the combined vector operator 

(8.3.5) 

does commute. That is, the Dirac Hamiltonian conserves total angular momen
tum, but not orbital momentum or spin-angular momentum separately. 

Parity 

In the case where V(x) = V( lx l ), we expect solutions to be parity symmetrical. 
That is, we should have 'll( -x) = ±'ll (x). It does not appear that this is the case, 
however, since if x -+  -x, then p -+  -p in (8.3.2) and the Hamiltonian changes 
form. However, this simple look does not take into account the parity transforma
tion on spinors. 

Indeed, the parity transformation operator n ,  discussed in Section 4.2, con
cerns only coordinate reflection. That is, n is a unitary (and also Hermitian) 
operator with the properties 

n t xn = -x (8.3.6a) 

(8.3.6b) 

(See Equations (4.2.3) and (4.2. 10).) The full parity operator, let us call it :P, 
needs to be augmented with a unitary operator Up, which is a 4 x 4 matrix in 
spinor space, and which renders the Hamiltonian (8.3 .2) invariant under a parity 
transformation. That is, 

where the matrix Up must have the properties 

and 

as well as 

Upau; = -a 
Upf3U; = f3  

2 Up = 1 .  

(8.3 .7) 

(8.3 .8a) 

(8.3.8b) 

(8.3.8c) 

Obviously Up = fJ = fJ' is consistent with these requirements. Consequently, 
a parity transformation on a Dirac Hamiltonian consists of taking x -+  -x and 
multiplying on both the left and the right by {3.  The transformation of a spin or 
'll (x) yields {J'll ( -x). 
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Therefore, in cases where V(x) = V(Jx J) ,  we expect to find eigenstates of the 
Dirac Hamiltonian that are simultaneously eigenstates of parity, J2 and lz . Luck
ily, we have already constructed angular and spin or parts of these eigenfunctions. 
These are the two-component spin-angular functions y,(=l±1/2,m(e ,¢) defined 
in (3.8.64). We will make use of these as we proceed to solve the Dirac equation 
for a particular potential-energy function of this form in Section 8.4. 

Charge Conjugation 

We saw in (8. 1 .24) that for the Klein-Gordon equation, we could split the positive
and negative-energy solutions into "particle" and "antiparticle" solutions on the 
basis of the association 

\llparticle(X, t) := \I!E>O (X, t) 
'llantiparticle(X, t) = \II� <O(X, t). 

(8.3.9a) 

(8.3 .9b) 

Let us work toward a similar association for the Dirac equation and then explore 
a symmetry operation that connects the two solutions. 

For our purposes, an antiparticle is an object whose wave function behaves 
just as that for a particle, but with opposite electric charge. So let's return to the 
covariant form (8.2. 1 )  of the Dirac equation and add an electromagnetic field 
according to our usual prescription (8. 1 . 13). We have 

(8.3 . 10) 

We seek an equation where e --+ -e and which relates the new wave function 
to \ll(x, t). The key is that the operator in (8.3 . 10) has three terms, only two of 
which contain yM, and only one of those two contains i .  So we take the complex 
conjugate of this equation to find 

(8.3. 1 1) 

and the relative sign between the first two terms is reversed. If we can now identify 
a matrix C such that 

(8.3 . 12) 

we just insert 1 = c-1 C before the wave function in (8.3 . 1 1) and multiply on the 
left by C. The result is 

(8.3 . 1 3) 

Therefore, the wave function C\lf*(x, t) satisfies the "positron" equation (8.3 . 13), 
and \ll(x, t) satisfies the "electron" equation (8.3 . 10). 

We need to identify the matrix C. From (8.2.7) and (8.2. 10) we see that y0, 
y 1 , and y 3 are real matrices, but ( y 2 ) * = -y 2. This makes it possible to realize 
(8.3 . 12) with 

- . 2 C = z y . (8.3. 14) 
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Therefore, the "positron wave" function corresponding to \ll(x, t) is i y2\ll* (x, t). 
It is more convenient, in turns out, to write this wave function in terms of \II = 
wt y0 = (w*l y0 . (The superscript T indicates "transpose".) This means that the 
"positron" wave function can be written as 

where 

U . 2 0 c = z y  y . 

Therefore, the charge conugation operator is e ,  where 

ew (x, t) = Uc 01'( . 

(8.3 . 15) 

(8.3. 16) 

(8.3 . 17) 

Note that the change in the space-time part of the free-particle wave function 
\ll (x, t) ex exp( -ip!Lx!L) due to e is to, effectively, take x --+  -x and t --+  -t. 

Time Reversal 

Let us now apply the ideas of Section 4.4 to the Dirac equation. First, a brief 
review. This discussion hinged on the definition ( 4.4. 14) of an anti unitary operator 
e :  

8 = UK, (8.3 . 1 8) 

where U is a unitary operator and K is an operator that takes the complex conju
gate of any complex numbers that follow it. Clearly, K does not affect the kets to 
the right, and K2 = 1 .  

Based on this, we defined an antiunitary operator E> that takes an arbitrary state 
Ja) to a time-reversed (or, more properly, a motion-reversed) state Ja) ; that is, 

E>Ja) = Ja ) .  (8 .3. 19) 

We imposed two reasonable requirements on E>, namely (4.4.45) and (4.4.47); 
that is, 

and so 

epe-1 = -p 
8x8-1 = X  

eJe-1 = -J. 

(8.3.20a) 

(8.3 .20b) 

(8.3.20c) 

For Hamiltonians that commute with E>, we made the important observation 
(4.4.59) that an energy eigenstate I n) has the same energy eigenvalue as its time
reversed counterpart state E>Jn) . We further learned that acting twice on a spin 
� state yields 82 = - 1 ' since the two-component spin or form of ( 4.4.65) shows 
that 

E> = -iayK . (8.3.21 )  
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In other words, U = -iay in (8.3 . 1 8). Indeed, in this case 
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82 = -iayK( -iayK) = aya; K2 = - 1 .  (8.3 .22) 

We will see something similar when we apply time reversal to the Dirac equation, 
which we now take up. 

Returning to the Schrodinger equation (8. 1 . 1) with the Dirac Hamiltonian 
(8.2.7), but using the y matrices instead of a and {3 ,  we have 

i at \IJ(x, t) = [ -i y0y . v + y0m J \IJ(x, t). (8.3 .23) 

We write our time-reversal operator, following the scheme earlier in this section, 
as T instead of 8, where 

T = UTK (8.3.24) 

and UT is a unitary matrix that we need to identify. As before, insert r-1 T before 
the wave function on the left and right sides, and multiply through from the left 
by T. The left side of (8.3 .23) becomes 

T(i at)T-1 T\IJ(x, t) = UTK(i at )KUi1 UT\IJ*(x, t) 
= -i atUT\IJ*(x, t) = i a_t [UT\IJ*(x, t)] , (8.3.25) 

reversing the sign of t in the derivative, which is what we need. In order for 
[UT \IJ*(x, t)] to satisfy the time-reversed form of (8.3 .23), we must insist that 

and 

T (iy0y) r-1 = i y0y 

T (yo) r-1 = yo . 

(8.3.26a) 

(8.3 .26b) 

These are easily converted to a more convenient form so that we can identify UT . 
First, do r-1 on the left and T on the right. Next do K on the left and right. 
Finally, insert UTUi1 in between the y matrices in (8.3 .26a), and then use the 
result from (8.3 .26b). Both results then become 

Ui1 (y) UT = - (y)* (8.3 .27a) 

and -1 ( o) ( o) * UT y UT = y . (8.3.27b) 

We now specialize to our choice (8.2. 10), with (8.2.7), for the y matrices. Only 
y2 is imaginary in this representation. Therefore, if we want to build UT out of 
y matrices, then (8.3 .27) says that we need a combination that does not change 
the sign when commuted with y0 and y2 but does change sign with y 1 and y3 . 
Rather obviously, this is accomplished by 

UT = y 1 y3 (8.3.28) 

up to some arbitrary phase factor. Indeed, this works out to be equivalent to the 
result U = iay in (8.3.21). See Problem 8 . 1 3  at the end of this chapter. 
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CPT 

We conclude with a brief look of the operator combination e /P7. Its action on 
a Dirac wave function \ll(x, t) is straightforward to work out, given the above 
discussion. That is, 

e /?7\ll (x, t) = i y2 [/?7\ll (x, t)]* 

= i y2y0 [7\11 ( -x, t)]* 
= iy2yOy l y3\ll (-x, t) = iyoy l y2y3\ll ( -x, t). (8.3.29) 

This combination of y matrices is well known; in fact, it is given a special name. 
We define 

(8.3 .30) 

In our basis (8.2. 1 0), again writing 4 x 4 matrices as 2 x 2 matrices of 2 x 2 ma
trices, we find that 

5 [ 0 1 ] y = 1 0 . (8.3 .3 1 )  

That is, y5 (and therefore also e/P7) reverses the up and down two-component 
spinors in the Dirac wave function. The net effect of e /P7 on a free-particle 
electron wave function is in fact to convert it into the "positron" wave function. 
See Problem 8. 14 at the end of this chapter. 

This is a "tip of the iceberg" observation of a profound concept in relativistic 
quantum field theory. The notion of e /P 7 invariance is equivalent to a total sym
metry between matter and antimatter, so long as one integrates over all potential 
final states. For example, it predicts that the mass of any particle must equal the 
mass of the corresponding antiparticle. 

Indeed, one can show, although it is far from straightforward, that any Lorentz
invariant quantum field theory is invariant under e /P7. The implications are far
reaching, particularly in this day and age when string theories offer the possibility 
that Lorentz-invariance is broken at distances approaching the Planck mass. The 
reader is referred to any one of a number of advanced textbooks-and also to the 
current literature-for more details. 

8.4 • SOLVING WITH A CENTRAL POTENTIAL 

Our goal is to solve the eigenvalue problem 

where 

H\ll (x) = E\ll (x), 
H = a · p + ,Bm + V(r), 

(8.4. 1 )  

(8.4.2) 
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and we write the four-component wave function \ll (x) in terms of two two
component wave functions 1/11 (x) and 1/lz(x) as 

[ 1/11 (x) J \ll(x) = 1/lz(x) · (8.4.3) 

Based on the symmetries of the Dirac equation that we have already discussed, 
we expect \ll (x) to be an eigenfunction of parity, J2 and lz . 

Parity conservation implies that {3\11 ( -x) = ±\ll(x). Given the form (8.2. 10) of 
f3 ,  this implies that 

[ 1/11 ( -x) J = ± [ 1/11 (x) J -1/tz( -x) 1/tz(x) · 

This leaves us with two choices: 

or 

Vt1 ( -x) = +1/11 (x) and 1/tz( -x) = -1/tz(x) 

1/11 ( -x) = -1/11 (x) and 1/tz( -x) = +1/tz(x). 

(8.4.4) 

(8.4.5a) 

(8.4.5b) 

These conditions are neatly realized by the spinor functions y,{m(B, ¢) defined in 
(3 .8 .64), where l = j ± ( 1/2). For a given value of j, one possible value of l is 
even and the other is odd. Since the parity of any particular Yt is just ( - 1  i, we 
are presented with two natural choices for the angular and spin or dependences for 
the conditions (8.4.5). We write 

(8.4.6a) 

which is an even (odd) parity solution if j - 1/2 is even (odd), or 

(8.4.6b) 

which is an odd (even) parity solution if j - 1/2 is even (odd). (The factor of -i 
on the lower spinors is included for later convenience.) Note that although both \II A (x) and \II B(x) have definite parity and quantum numbers j and m, they mix 
values of l. Orbital angular momentum is no longer a good quantum number when 
we consider central potentials in the Dirac equation. 

We are now ready to turn (8.4. 1 )  into a differential equation in r for the func
tions u A(B)(r) and VA(B)(r ). First, rewrite the Dirac equation as two coupled equa
tions for the spinors 1/11 (x) and 1/tz(x). Thus 

[E - m - V(r)] 1/11 (x) - (u · p)1/Jz(x) = 0 

[E + m - V(r )] 1/tz(x) - (cr · p)1/JI (x) = 0. 

(8.4.7a) 

(8.4.7b) 
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Now make use of (3.2.39) and (3.2.41) to write 

1 O" • p =  -(O" • X)(O" • X)(O" • p) 
r2 

= _!_(a · x)[x • p + iu · (x x p] 
r2 

= (a · r) [r · p + ia ·  � J .  
Working in coordinate space, we have 

a r · p --+  r ·  (-iV) = -i-, ar 

(8.4.8) 

(8.4.9) 

which will act on the radial part of the wave function only. We also know that 

so we can write 

where 

where 

2 L2 82 u · L = 2S · L = J - - , 

(0" • L)Y,(m = [j(j + 1) - l(l + 1 ) - �] "J(m 
= K(j, l)Y,(m, 

and 

3 K = -j - - = -(A + 1 )  
2 
1 K = j - - = +(A. - 1) 
2 

1 A. = j + - . 
2 

1 
for ! = j + 2 

1 
for ! = j - - ,  

2 

It is trickier to calculate the effect of the matrix factor 

A 
[ cos e  e-i</J sine ] O" · r  = . e1<P sine - cos e 

(8.4. 10) 

(8 .4. 1 1) 

(8.4. 12a) 

(8 .4. 12b) 

(8.4. 13)  

(8.4. 14) 

on the spinor wave functions. In principle, we can carry out the multiplication on 
the y,(m as defined in (3 .8.64) and then use the definition (3 .6.37) to evaluate the 
result. There is an easier way, however. 

We expect u · r to behave as a (pseudo )-scalar under rotations, so if we evaluate 
its effect at one particular r, then it should behave this way for all r. Choose 



8.4 Solving with a Central Potentia l  509 

r = z-that is, 8 = 0. Since the 8-dependent part of any Yt(8, </>) contains a factor 
[sin8] 1m l , we use (3.6.39) to write 

in which case 

m F,gil + 1  Y1 (8 = 0, </>) = - -8mo , 
4n 

(8.4. 15) 

y,(=l±1j2,m(8 = O,</>) = 1 [ ±Jl ±m  + 1/2 Yt- 1/2(0,</>) ] 
J2Z + 1 JZ :r=m + 1/2 Yt+112(0,</>) 

or 

Therefore, 

1 [ ±Jl ± m  + 1/2 8m, 1/2 ] = J4Jr Jl =r=m  + 1/2 8m,- 1/2 

Y,j,m_ (8 = O </>) = J j + 1 /2 [ ±8m,1/2 J I=H-1/2 ' 4n 8m,- 1/2 
. (8.4. 1 6) 

( �) j,m J j + 1/2 [ =f8m,1/2 J j ,m a •  z Y,l=jT-1 /2(8 = 0,</>) = -
4 8 

= -Y,l=j±1J2(8 = 0,</>), 
n m,-1/2 

(8.4. 17) 

and so, because we have argued that this result is independent of 8 and </>, we have 

(8.4. 1 8) 

where we have used the fact that (a ·  r)2 = 1 .  In other words, for a given j and 
m, y,(:,_�±112 , (8 , </>) is an eigenstate of a ·  r with eigenvalue - 1  (a consequence of 
the pseudo-scalar nature of the operator) and changes l to the other allowed value, 
which naturally has opposite parity. 

Now we return to the coupled equations (8.4.7) with solutions in the form 
(8.4.6). We have two choices for 1/11 (x) and 1/11 (x), namely "Choice N' 

(8.4. 19) 

or "Choice B" 

(8 .4.20) 

Note that for whichever of these two choices we pick, the effect of the factor 
(a ·  r), which is part of (a: p) in (8.4.7), is to exchange l = j ± 1 /2 for l = j =r= 1/2 
in the angular spinor y,fm -that is, to switch the angular spinor factor of the 
second term in each of (8.4.7) so that it is the same as the first term. In other 
words, the angular factors drop out, and we are left with just the radial equations. 
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Putting this all together, finally, (8.4. 7) becomes for "Choice N' [ d A. + 1 ] 
( E - m - V (r)] u A (r) - - + -- VA (r) = 0 dr r [ d A. - 1 ] [E + m - V(r)] VA (r) - - - -- UA(r) = 0 dr r 

and for "Choice B" 

[ d A. - 1 ] [E - m - V(r)] us (r) - - - -- vs (r) = O  dr r [ d A. + 1 ] [E + m - V(r)] vs (r) - - + -- us(r) = O. dr r 

(8.4.21 a) 

(8.4.21b) 

(8.4.22a) 

(8.4.22b) 

However, formally, equations (8 .4.21 )  become (8.4.22) with the exchange A. *+ 
-A.. Therefore, we can focus on the solution to (8.4.21 )  and drop the subscript A.  

Equations (8 .4.2 1)  are coupled, first-order ordinary differential equations to 
be solved for the u(r) and v(r), subject to certain boundary conditions (such as 
normalizability) that will yield eigenvalues E. This solution can at least be carried 
out numerically, which is practical in many situations. We conclude this chapter, 
however, with one case that can be solved analytically. 

The One-Electron Atom 

We can now consider atoms with one electron, with the potential-energy function 

Ze2 V(r) = --. r (8.4.23) 

We expect that the "fine structure" of the hydrogen atom, which we studied us
ing perturbation theory in Section 5.3, should emerge naturally with our solution 
using the Dirac equation. 

Start by writing (8.4.2 1 )  in terms of scaled variables, that is, 

and 

E E; ==. m 
x ==. mr, 

and recall that we write a =  e2(/1ic) � 1 / 1 37. This gives [ Za ] [ d A. + 1 ] 
E: - 1 + � u(x) - dx + -x- v(x) = O  

[ Za ] [ d A. - 1 ] c + 1 + � v(x) + dx - -x- u(x) = 0. 

(8 .4.24) 

(8 .4.25) 

(8.4.26a) 

(8.4.26b) 
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Next consider the behavior of the solutions as x � oo. Equation (8 .4.26a) 
becomes 

and so (8.4.26b) implies that 

dv 
(8 - l )u - - = 0  dx 

du 1 d2v 
(8 + 1)v + -

d 
= (8 + 1)v + - -

2 
= 0, 

x 8 - 1  dx 

which leads to 

(8 .4.27) 

(8.4.28) 

(8.4.29) 

Note that, classically, bound states require that the kinetic energy E - m - V(r) = 
0 at some distance r, and V (r) < 0 everywhere, so E - m < 0 and 8 = E j m < 1 .  
Therefore, 1 - 82 is guaranteed to be positive, and (8.4.29) implies that 

for x � oo, (8 .4.30) 

where we require that v(x) be normalizable as x � oo but ignore the normaliza
tion constant for now. Similarly, (8 .4.27) then implies that 

for x � oo (8 .4.3 1 )  

as well. 
Now write u(x) and v(x) as power series with their own expansion coefficients, 

and look for relationships consistent with the differential equations. Using 

(8 .4.32) 

00 

and v(x) = e-(1-s2) if2xxy L bixi ' (8.4.33) 
i=O 

we tacitly assume that we can find series solutions making use of the same overall 
power y for both u(x) and v(x ) .  Indeed, inserting these expressions into (8.4.26) 
and first considering terms proportional to xY-l , we find, after a little rearrange
ment, 

(Za)ao - (y + A +  1 )bo = 0 

(y - A + l )ao + (Za)bo = 0. 

(8.4.34a) 

(8.4.34b) 

Our approach will soon yield recursion relations for the coefficients ai and bi .  
This means that w e  need to avoid ao = 0 and bo = 0 ,  and the only way to do this 
is to require that the determinant of (8 .4.34) vanish. That is, 

(Za)2 + (y + 1 + A)(y + 1 - A) = 0 (8.4.35) 
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or, solving for y,  

[ J 1 /2 y = - 1 ± A.2 - (Zai . (8.4.36) 

Notice first A. =  j + 1/2 is of order unity, so that things will break down if Za "'"' 1 .  
In the strong Coulomb fields for Z ::::::; 137, spontaneous e + e- production would 
occur, and the single-particle nature of the Dirac equation cannot be expected to 
prevail. Indeed, we have Za « 1 in cases of interest here. This also means that 
the expression within the brackets in (8.4.36) is of order unity. For the - sign, this 
gives y ,....., -2, which would be too singular at the origin. As a result, we choose 
the + sign and have 

(8.4.37) 

Note that for j = 1/2 we still have a singularity at the origin, since y < 0, but this 
singularity is very weak and is integrable over space. 

Starting with a value for ao that is determined by normalization, and ho = 
ao(Za)j(y + A. +  1) ,  we can find the remaining ai and hi by going back to the 
result of inserting (8.4.32) and (8.4.33) into (8.4.26) . Collecting powers of xY and 
higher, we find 

( 1 - s)ai-1 - Zaai - ( 1 - s2)112hi- 1 + (A. +  1 + y + i)hi = 0 (8.4.38a) 

( 1  + s)hi-1 + Zahi - (1 - s2)1 12ai-1 - (A. - 1 - y - i)ai = 0. (8.4.38b) 

Multiply (8.4.38a) by (1 + s)112 and (8.4.38b) by ( 1 - s)1 12 and then add them. 
This leads to a relationship between the coefficients ai and hi , namely 

hi Za(l + s) 112 + (A. - 1 - y - i)( l - s) 112 
ai Za( l - s) 112 + (A. + l + y + i)(l + s)1 /2 " 

(8.4.39) 

This relation shows that for large values of x, where terms with large i domi
nate, ai and hi are proportional to each other. Furthermore, (8.4.38) also implies 
that aifai- 1 "'"' l j i  for large i. (See Problem 8 . 15  at the end of this chapter.) In 
other words, the series (8.4.32) and (8.4.33) will grow exponentially, and not be 
normalizable, unless we force the series to terminate. 

If we then assume that ai = hi = 0 for i = n' + 1 ,  then 

( 1 - s)an' - ( 1 - s2) 112hn' = 0 

( 1  + 8 )hn' - ( 1 - s2) 112an' = 0. 

(8.4.40a) 

(8 .4.40b) 

Either of these leads to the same condition on the ratio of these terminating coef
ficients, namely 

hn' = [ 1 - s ] 1 12 
an' 1 + s  (8.4.41 )  
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Combining (8.4.39) and (8 .4.40), we have 
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(8.4.42) 

which, finally, can be solved for c. Putting c back in, we determine the energy 
eigenvalues 

(8.4.43) 

We emphasize that for any given quantum number n', the energy eigenvalues de
pend on the total angular momentum j .  That is, for example, the energy will be 
the same for j = � ,  regardless of whether it comes from coupling l = 0 or l = 1 
with spin � · 

To lowest order in Za, (8.4.43) becomes 

(8 .4.44) 

where n = j + 1 /2 + n' . Comparison to (3.7.53) shows that this is simply the 
familiar Balmer formula, with the addition of rest mass energy, with n being the 
principal quantum number. Including higher orders of Za leads to the well-known 
expressions for the relativistic correction to kinetic energy (5 .3 . 10) and the spin
orbit interaction (5.3 .31) .  

Figure 8 .2  shows the energy levels of the hydrogen atom and the experiments 
that made these measurements. A number of ingenious techniques, including two
photon absorption for connecting "forbidden" transitions, were devised in order to 
obtain these results. The so-called "fine structure" is clear-that is, the relativistic 
effects that lead to splitting between the S and P levels for the n = 2 states, and 
between the S, P, and D levels for the n =  3 states. Problem 8 . 16  at the end of 
this chapter shows that the full relativistic energy levels give the same splittings 
as obtained using perturbation theory. 

There is, of course, a profound discrepancy between the energy levels in Fig
ure 8.2 and the result (8.4.43) we derived for the energy eigenvalues. According 
to (8 .4.43), the energy can depend only on n and j .  However, we see that there is 
a small splitting between, for example, the 2P1;2 and 2S1;2 states. This splitting, 
which is called the Lamb shift after its discoverer, played a central role in making 
clear the importance of relativistic quantum field theory in atomic structure. See 
Holstein ( 1992) for a discussion of the history of the Lamb shift, as well as both 
formal and "physically intuitive" derivations of its size. 

Problem 8 . 17  at the end of this chapter compares energy levels predicted by 
(8.4.43) to available high-precision data. 
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Zero of energy (ionized hydrogen) 
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FIGURE 8.2 The energy levels of the hydrogen atom, with reference to the many high
precision experiments that have measured electromagnetic transitions between them. 
Taken from "Hydrogen Metrology: Up to What Limit?" by B. Cagnac, Physica Scripta 
T70 (1997) 24. (a) The full energy-level diagram, (b) with energy scale multiplied by 4, 
and (c) fine structure of the n = 2 and n = 3 levels, detailing behavior on the quantum 
numbers l and j . 

8.5 . RELATIVISTIC QUANTUM FIELD THEORY 

We now conclude our coverage of "modern quantum mechanics." The framework 
outlined in this book continues to be the most fundamental basis by which we 
understand the physical world. Although the probabilistic interpretation of the 
concept of measurement is disturbing in some ways, it always prevails when con
fronted with experiment. 

The deficiencies that remain-for example, in the Lamb shift-are not the re
sult of problems in the underlying axioms of quantum mechanics. Instead, they 
are the result of a necessary approximation we make when we try to develop 
quantum-mechanical wave equations that are consistent with relativity. The abil-
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ity to create and destroy particles is inconsistent with our "single-particle" ap
proach to writing down dynamics in quantum mechanics. Instead, we would need 
to reexamine the Hamiltonian formalism, on which much of this book is based, in 
order to address these issues. 

Quantum field theory is the correct framework for addressing relativistic quan
tum mechanics and mutli-particle quantum mechanics in general. There are essen
tially two ways to approach quantum field theory, neither of which is developed 
here. We mention them only for the reader interested in going on to the next steps. 

One approach is through the method of "second quantization," wherein oper
ators are introduced that create and destroy particles. These operators commute 
with each other if they have integer spin, and they anticommute for half-integer 
spin. Work needs to be done in order to build in relativistic covariance, but it is 
relatively straightforward. It is also, however, not necessary if the problem doesn't 
warrant it. This is the case, for example, in a vast number of fascinating problems 
in condensed-matter physics. 

Second quantization is discussed in Section 7.5 of this book. For other ex
amples, see Quantum Mechanics, 3rd ed., by Eugen Merzbacher, and Quantum 
Theory of Many-Particle Systems, by Alexander L. Fetter and John Dirk Walecka. 

The second approach is through the path-integral approach to quantum me
chanics, famously pioneered by Richard Feynman in his Ph.D. thesis. This 
conceptually appealing formalism is straightforward to extend from particle 
quantum mechanics to quantum fields. However, it is not straightforward to use 
this formalism for calculation of typical problems until one makes the connection 
to the "canonical" formalism that eventually becomes second quantization. Nev
ertheless, it is a worthwhile subject for students who would like to have a better 
understanding of the principles that lead to the quantum many-body problem. 

Path integrals are not the basis for many books on quantum field theory, but 
they are beautifully exploited in Quantum Field Theory in a Nutshell by Anthony 
Zee. 

Problems 

8.11 These exercises are to give you some practice with natural units. 

(a) Express the proton mass mp = 1 .67262158 x 1027 kg in units of GeV. 

(b) Assume a particle with negligible mass is confined to a box the size of the 
proton, around 1 fm = w-15 m. Use the uncertainty principle estimate the 
energy of the confined particle. You might be interested to know that the mass, 
in natural units, of the pion, the lightest strongly interacting particle, is m:rr = 
1 35 MeV. 

(c) String theory concerns the physics at a scale that combines gravity, relativity, 
and quantum mechanics. Use dimensional analysis to find the "Planck mass" 
Mp , which is formed from G, h, and c, and express the result in GeV. 

8.12 Show that a matrix IJJLv with the same elements as the metric tensor IJJLv used in 
this chapter has the property that IJJL;.IJ;.v = 8� ,  the identity matrix. Thus, show that 
the natural relationship IJJLv = IJJL;.IJva IJ;.a in fact holds with this definition. Show 
also that aJLbJL = aJLbJL for two four-vectors aJL and biL. 



5 1 6  Chapter 8 Relativistic Quantum Mechanics 

8.13 Show that (8. 1 . 1 1) is in fact a conserved current when IV (x, t) satisfies the Klein-
Gordon equation. 

8.14 Show that (8. 1 . 14) follows from (8.1 .8). 

8.15 Derive (8. 1 . 16a), (8. 1 . 16b), and (8. 1 . 1 8). 

8.16 Show that the free-particle energy eigenvalues of (8. 1 . 1 8) are E = ±Ep and that 
the eigenfunctions are indeed given by (8. 1 .21), subject to the normalization that 
ytr3Y = ± 1  for E =  ±Ep.  

8.17 This problem is  taken from Quantum Mechanics II: A Second Course in Quantum 
Theory, 2nd ed., by Rubin H. Landau (1996). A spinless electron is bound by the 
Coulomb potential V(r) = -Ze2jr in a stationary state of total energy E :::; m. 
You can incorporate this interaction into the Klein-Gordon equation by using the 
covariant derivative with V = -e<l> and A = 0. Work with the upper component of 
the wave function. 

(a) Assume that the radial and angular parts of the equation separate and that the 
wave function can be written as e-iEt [uz (kr)jr ]Yzm (e , ¢). Show that the radial 
equation becomes 

d2u [2EZa 1 l(l + 1) - (Za)2 ] - +  -- - - - uz (p) = O, dp2 yp 4 p2 

where a = e2, y2 = 4(m2 - £2), and p = kr. 
(b) Assume that this equation has a solution of the usual form of a power series 

times the p ---+ oo and p ---+ 0 solutions, that is, 

uz (p) = pk( l  +c1 p +c2p2 + · · · )e-PI2, 
and show that 

and that only for k+ is the expectation value of the kinetic energy finite and 
that this solution has a nonrelativistic limit that agrees with the solution found 
for the Schrodinger equation. 

(c) Determine the recurrence relation among the Ci 's for this to be a solution of the 
Klein-Gordon equation, and show that unless the power series terminates, the 
will function will have an incorrect asymptotic form. 

(d) In the case where the series terminates, show that the energy eigenvalue for the 
k+ solution is 

where n is the principal quantum number. 

(e) Expand E in powers of (Za? and show that the first-order term yields the 
Bohr formula. Connect the higher-order terms with relativistic corrections, and 
discuss the degree to which the degeneracy in l is removed. 
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Jenkins and Kunselman, in Phys. Rev. Lett. 17 (1966) 1 148, report measurements 
of a large number of transition energies for JT - atoms in large-Z nuclei. Compare 
some of these to the calculated energies, and discuss the accuracy of the prediction. 
(For example, consider the 3d ---+ 2p transition in 59Co, which emits a photon with 
energy 384.6 ± 1 .0 keV.) You will probably need either to use a computer to carry 
out the energy differences with high enough precision, or else expand to higher 
powers of (Za)2 . 

8.8 Prove that the traces of the yll , a, and f3 are all zero. 

8.9 (a) Derive the matrices yll from (8.2. 10) and show that they satisfy the Clifford 
algebra (8.2.4). 

(b) Show that 

Y
o = ( I ::I ) = I ®  r3 

0 

and yi 
= ( 0 (ji ) i . 

-(ji 0 
= a  ® z rz, 

where I is the 2 x 2 identity matrix, and ai and Ti are the Pauli matrices. (The 
® notation is a formal way to write our 4 x 4 matrices as 2 x 2 matrices of 2 x 2 
matrices.) 

8.10 Prove the continuity equation (8.2. 1 1) for the Dirac equation. 

8.11 Find the eigenvalues for the free-particle Dirac equation (8.2.20). 

8.12 Insert one of the four solutions u�±l (p) from (8.2.22) into the four-vector proba
bility current (8.2. 1 3) and interpret

'
the result. 

8.13 Make use of Problem 8.9 to show that UT as defined by (8.3.28) is just a2 ® I, up 
to a phase factor. 

8.14 Write down the positive-helicity, positive-energy free-particle Dirac spinor wave 
function \l!(x, t). 

(a) Construct the spinors 9>\11, C?\11, T\11. 
(b) Construct the spinor e 9> T \II and interpret it using the discussion of negative

energy solutions to the Dirac equation. 

8.15 Show that (8.4.38) imply that u(x) and v(x) grow like exponentials if the series 
(8.4.32) and (8.4.33) do not terminate. 

8.16 Expand the energy eigenvalues given by (8.4.43) in powers of Za, and show that 
the result is equivalent to including the relativistic correction to kinetic energy 
(5.3 . 10) and the spin-orbit interaction (5 .3 .31)  to the nonrelativistic energy eigen
values for the one-electron atom (8.4.44). 

8.17 The National Institute of Standards and Technology (NIST) maintains a web site 
with up-to-date high-precision data on the atomic energy levels of hydrogen and 
deuterium: 

http://physics.nist.gov/PhysRefData/HDEUdata.html 
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The accompanying table of data was obtained from that web site. It gives the en
ergies of transitions between the (n , l , j) = ( 1 , 0, 1/2) energy level and the energy 
level indicated by the columns on the left. 

n j [E(n, l, j) - E(l ,O, 1/2)]/ he (cm-1 ) 

2 0 112 82 258.954 399 2832(15) 
2 1 112 82 258.919  1 13 406(80) 
2 1 3/2 82 259.285 001 249(80) 
3 0 112 97 492.221 724 658(46) 
3 1 112 97 492.21 1 221 463(24) 
3 3/2 97 492.319 632 775(24) 
3 2 3/2 97 492.319 454 928(23) 
3 2 5/2 97 492.355 591 167(23) 
4 0 112 102 823 .853 020 867(68) 
4 1 112 102 823 .848 581 88 1 (58) 
4 1 3/2 102 823 .894 3 17 849(58) 
4 2 3/2 102 823 .894 241 542(58) 
4 2 5/2 102 823.909 486 535(58) 
4 3 5/2 102 823.909 459 541 (58) 
4 3 7/2 102 823 .917 08 1 991 (58) 

(The number in parentheses is the numerical value of the standard uncertainty re
ferred to the last figures of the quoted value.) Compare these values to those pre
dicted by (8.4.43). (You may want to make use of Problem 8 . 16.) In particular: 

(a) Compare fine-structure splitting between the n = 2, j = 1 /2 and n = 2, j = 3/2 
states to (8.4.43). 

(b) Compare fine-structure splitting between the n = 4, j = 5/2 and n = 4, j = 7/2 
states to (8.4.43). 

(c) Compare the 1 S --+ 2S transition energy to the first line in the table. Use as 
many significant figures as necessary in the values of the fundamental con
stants, to compare the results within standard uncertainty. 

(d) How many examples of the Lamb shift are demonstrated in this table? Identify 
one example near the top and another near the bottom of the table, and compare 
their values. 
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A Electromagnetic U nits 

Two divergent systems of units established themselves over the course of the 
twentieth century. One system, known as S/ (from the French le Systeme inter
national d'unites), is rooted in the laboratory. It gained favor in the engineer
ing community and forms the basis for most undergraduate curricula. The other 
system, called Gaussian, is aesthetically cleaner and is much favored in the the
oretical physics community. We use Gaussian units in this book, as do most 
graduate-level physics texts. 

The SI system is also known as MKSA (for meter, kilogram, second, ampere), 
and the Gaussian is called CGS (for centimeter, gram, second) units. For problems 
in mechanics, the difference is trivial, amounting only to some powers of 10. 
Difficulty arises, however, when incorporating electromagnetism, where charge, 
for example, actually has different dimensions for the two sets of units. 

This appendix attempts to contrast the two systems of units with respect to 
electromagnetism. Some formulas are given that should make it easy for the 
reader to follow the discussions in this and other graduate-level books. 

A.1 • COULOMB'S LAW, CHARGE, AND CURRENT 

Coulomb's law is the empirical observation that two charges Q1 and Q2 attract or 
repel each other with a force F Q that is proportional to the product of the charges 
and inversely proportional to the square of the distance r between them. It is most 
natural to write this as 

F _ Q1 Q2 
Q - r2 Gaussian. (A. l . l ) 

This is  in  fact the starting point for defining Gaussian units. The units of charge 
are called statcoulombs, and the force between two charges of one statcoulomb 
each separated by one centimeter is one dyne. 

It is easy to see why such a delightfully simple formulation caught on in the 
physics community. Unfortunately, though, it is difficult to realize experimentally. 
It is much easier to set up a current source in the laboratory-perhaps with a bat
tery driving a circuit with an adjustable resistance. Furthermore, magnetic forces 
between long wires are straightforward to measure. Therefore, the SI system is 
borne out of the definition of the ampere: 

One ampere is that steady current which, when present in each of 
two long parallel conductors, separated by a distance d of one meter, 

519  
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results in a force per meter of length F1 j L between them numerically 
equal to 2 X w-7 N/m. 

The simple force formula for the SI system, analogous to Coulomb's law for the 
Gaussian system, is 

SI (A. 1 .2) 

for currents h and h (measured in amperes) in each of two wires. Although 
(A. 1 .2) doesn't carry a popularized name, it is as fundamental to the SI system of 
units as Coulomb's law (A. l . 1 )  is to the Gaussian system. 

Based on the definition of the ampere, we must have 

(A. l .3) 

Factors of 4:rr frequently appear in formulations of electromagnetism because one 
is always bound to integrate over the unit sphere. It is a matter of taste-and 
now convention-whether to take them out in the beginning or carry them around 
through the calculation. 

If one defines a unit of charge called the coulomb as the charge passing 
through a wire carrying a current of one ampere during a time of one second, then 
Coulomb's law becomes 

F _ _  1_ Q1 Q2 
Q - 4:rr£o r2 SI. (A. l .4) 

With this definition of the proportionality constant, one eventually shows that the 
speed of electromagnetic waves in free space is 

1 c - ---- �. (A. 1 .5) 

In our current standard units, the speed of light c is a defined quantity. Hence, &o 
is also defined to be an exact value. 

A relation like (A. 1 .5) is of course no surprise. Electric and magnetic fields 
are related to each other through Lorentz transformations, so the proportionality 
constants &o and p.,o should be related through c. In Gaussian units, there are no 
analogues of �>o or p.,o, but c appears explicitly instead. 

A.2 • CONVERTING BETWEEN SYSTEMS 

Electromagnetism can be developed by starting with (A. 1 . 1) or (A. 1 .4) and incor
porating special relativity. For example, one first writes down Gauss's law as 

or 

V · E = p(x)/�>o 

V • E = 4:rrp(x) 

SI 

Gaussian 

(A.2. 1a) 

(A.2. 1b) 
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TABLE A.l Maxwell's Equations in the Absence of Media 

Gauss's law (E) 

Gauss's law (M) 

Ampere's law 

Faraday's law 

Lorentz force law 

Gaussian units 

V · E  = 4np(x) 

V · B = O  
1 aE 4n V x B - -- = -J c at c 

aB V x E + - = 0  at 
F = Q (E + � x B) 

SI units 

1 V · E  = -p(x) 
so 

V · B = O  
aE V x B - (sop,o)- = 11-oJ at 

aB V x E+ - = 0 at 
F =  Q(E+ v x B) 

for the electric field E(x). The remaining Maxwell's equations are then deter
mined. Table A. l  displays Maxwell's equations in the two sets of units, as well as 
the Lorentz force law, in vacuum. From here, all else follows, and one can derive 
all the results in electromagnetism using one set of units or another. 

Of course, it is easiest to take one set of derivations and convert into the other 
after the fact. For example, (A. l . l) and (A. 1 .4) tell us that to make the conversion 

Gaussian � SI 

for Gauss's law, we just make the change 

1 Q �  � Q. 
-v 4nso 

Then, referring to the Lorentz force law in Table A. l ,  we see that 

and 

(A.2.2) 

(A.2.3) 

(A.2.4) 

(A.2.5) 

If you are ever confused, always try to relate things to a purely mechanical quan
tity such as force or energy. For example, the potential energy for a magnetic 
moment in a magnetic field is 

U = -p, · B  (A.2.6) 

independent of which system of units we are using. Therefore, using (A.2.5), we 
have 

(A.2.7) 
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and so, referring to the starting point of this book, the magnetic moment of a 
circulating charge Q with angular momentum L is 

Q 
JL = -L 

2mc 
Gaussian 

(A.2.8) 

(A.2.9) 

It is also useful to keep in mind that quantities such as Q2 have dimensions of 
energy x length in Gaussian units. This is generally enough so that you never 
have to worry about what a "statcoulomb" really is. 
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B 
Brief Summary of E lementary 

Solutions to Schrodinger's Wave 
Equation 

Here we summarize the simple solutions to Schrodinger's wave equation for a 
variety of solvable potential problems. 

8.1 • FREE PARTICLES (V = 0) 

The plane-wave, or momentum, eigenfunction is 

where 

1 "k . 
''� (x t) = el ·x-twt 'I' K , (2n)3/2 ' 

k = � 
li ' 

E p2 1ik2 
W = - = -- =

-
Ji 2m1i 2m ' 

and our normalization is 

(B. l . l )  

(B. l .2) 

(B. l .3) 

The superposition of plane waves leads to the wave-packet description. In the 
one-dimensional case, 

1/f(x , t) = -- dkA(k) ei(kx-wt) w =
-

. 
1 100 ( 1ik2 ) 

v'2n -oo 2m (B. 1 .4) 

For IA(k) l sharply peaked near k � ko, the wave packet moves with a group ve
locity 

liko 
(B. 1 .5) m 

The time evolution of a minimum wave packet can be described by 

[ 2] 1/4 
1/f(x, t) = 

(�;o /_: e-(!'>.x)6(k-ko)2+ikx-iw(k)t dk, 
1ik2 

w (k) = 
2m ' 

(B. 1 .6) 
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where 

So the width of the wave packet expands as 

B.2 • PIECEWISE CONSTANT POTENTIALS IN ONE DIMENSION 

The basic solutions are 

E > V = Vo : 

E < V = Vo (classically forbidden region) : 

,/, ( ) KX -KX 'f' E x = c+e + c_e , K = 

2m(E - Vo) 
112 

2m(Vo - E) 

112 

(B. l .7) 

(B. 1 .8) 

(B.2. 1 )  

(B.2.2) 

(c± must be set equal to 0 if x = ± oo is included in the domain under discussion). 

Rigid-Wall Potential (One-dimensional Box) 

Here 

V = 
{0 for O <

_
x < L, 

oo otherw1se. 

The wave functions and energy eigenstates are 

1/rE(x) = Jlsin (n�x ) , 

112n2n2 
E = -----,,--

2mL2 

n = 1 , 2, 3  . . .  , 

(B.2.3) 

(B.2.4) 



8.3 Transm ission-Reflection Problems 

Square-Well Potential 

The potential V is 

V _ { 0 for lx I > a 
- - Vo for lx l < a  (Vo > 0).  

The bound-state (E < 0) solutions are 

where 

for lx l > a, { e-Kix l 
1/tE '"" cos kx (evenparity) } 

sin kx (odd parity) 
for lx l  < a, 

k =  
2m(- I E I  + Vo) 

1i2 -J2m 1 E I  
K - 2 . 

1i 
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(B .2.5) 

(B.2.6) 

(B.2.7) 

The allowed discrete values of energy E = -1i2K2 j2m are to be determined by 
solving 

ka tan ka =  Ka (even parity) 
ka cot ka = -Ka (oddparity). 

Note also that K and k are related by 

2mVoa2 2 2 2 --::2,--- = (k + K )a . 
1i 

8.3 • TRANSMISSION-REFLECTION PROBLEMS 

(B .2.8) 

(B.2.9) 

In this discussion we define the transmission coefficient T to be the ratio of the flux 
of the transmitted wave to that of the incident wave. We consider the following 
simple examples. 

Square Well  (V = 0 for ix i > a, V = -Vo for ix i < a .) 

where 

1 -
{ 1 + [vJ j4E(E + Vo)] sin2 (2aJ2m(E + Vo)/1i2) }

' 

� I  k = v p;l· k = 
2m(E + Vo) 

1i2 

(B.3 . 1 )  

(B.3 .2) 
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Note that resonances occur whenever 

2m(E + Vo) 
2a 2 = nn , n = 1 , 2, 3 , . . . .  

h 

Potential Barrier (V = 0 for lx l > a, V = Vo > 0 for lx l < a.) 
Case 1: E < Vo. 

1 
T = ---------�--{ 1 + [(k2 + K2)2 j4k2K2] sinh2 2Ka } 

1 
{ 1 + [V� j4E(Vo - E)] sinh2 (2aJ2m(Vo - E)jh2) } 

(B.3.3) 

(B.3.4) 

Case 2: E > Vo. This case is the same as the square-well case with Vo replaced 
by -Vo. 

Potential Step (V = 0 for x < 0, V = Vo for x > 0, and E > Vo.) 

with 

4kk' 4.J(E - Vo)E 
T = 

(k + k')2 
= -;( .JE-;E;::+-:--./�E;=_::::;VI::;::o ):22 

k = J2mE 
k' = 

tz2 ' 
2m(E - Vo) 

tz2 

(B.3.5) 

(B .3.6) 

More General Potential Barrier {V(x) > E for a <  x < b, V(x) < E outside 
range [a, b] .} 

The approximate JWKB solution for T is 

l 1b 2m[V(x) - E] } T ::= exp -2 a dx 
h 2 

, 

where a and b are the classical turning points.* 

B.4 • SIMPLE HARMONIC OSCILLATOR 

Here the potential is 

mo}x2 
V(x) = 2 , 

*JWKB stands for Jeffreys-Wentzel-Kramers-Brillouin. 

(B.3.7) 

(B.4. 1 )  
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and we introduce a dimensionless variable 

The energy eigenfunctions are 

and the energy levels are 

fmW � = y ----p;- x.  

E = tzw ( n + �) , n = 0 ,  1 , 2, . . . .  

The Hermite polynomials have the following properties: 

l: Hn' (�) Hn (�) e-�2 d� = n 1122n !8nn' 

d2 dHn -2 Hn - 2�-- + 2nHn = 0 d� d� 

Ho(�) = 1 ,  H1 (�) = 2� 
H2(�) = 4�2 - 2, H3 (�) = 8�3 - 12� 
H4<n = 16�4 - 48�2 + 12. 

B.5 . THE CENTRAL FORCE PROBLEM [SPHERICALLY SYMMETRICAL 
POTENTIAL V = V(r)] 

Here the basic differential equation is 

where our spherically symmetrical potential V(r) satisfies 

limr2 V(r) ---+ 0. 
r--+0 

The method of separation of variables, 

WE(x) = R(x)Yt (e ,¢), 

(B .4.2) 

(B .4.3) 

(B.4.4) 

(B .4.5) 

(B.5.2) 

(B.5.3) 
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leads to the angular equation [ 1 a ( . a ) 1 a2 ] m m - -- sme- +-2---2 Y1 = l(l + 1)Y1 , 
sine ae ae sin e 3</> 

where the spherical harmonics 

satisfy 

Yt(e , ¢), l = 0, 1 , 2, . . . , m = -l, -l + 1, . . .  , +l 

. a m m -z o<f> Y1 = mY1 , 

and Yt(e, ¢) have the following properties: 

ym(e </>) = (-1)m Zl + 1 (l - m) ! Pm(cose) eim¢ for m ::=: O 1 ' 4:rr (l +m) ! 1 

Yt(e, ¢) = ( -1 ) 1m l yt1* ce, ¢) for m < 0 

dm Pt(cose) = (1 - cos2 e)mfl Pz (cose) for m :::: 0 
d(cose)m 

(- 1i d1( 1 - cos2 e)1 Pz (cose) = � d(cose)Z 

0 1 Yo
= J47r' o ff Y1 = -cose 

4:rr 

For the radial piece of (A.5.3), let us define 

U£ (r) = r R(r). 

(B.5.4) 

(B.5.5) 

(B.5.6) 

(B.5.7) 

(B .5.8) 
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Then the radial equation is reduced to an equivalent one-dimensional problem, 
namely 

subject to the boundary condition 

U£(r) lr=0 = 0. 

For the case offree particles [V(r) = 0] in our spherical coordinates :  

R(r) = qjz(p) + c2nz(p) (c2 = 0 of the origin is included.), 

where p is a dimensionless variable 

p = kr, 

-
t
mE k - 2 . 
1i 

(B .5.9) 

(B.5 .10) 

(B .5. 1 1) 

We need to list the commonly used properties of the Bessel functions and 
spherical Bessel and Hankel functions. The spherical Bessel functions are 

( 1T ) 1/2 
jz(p) = 2P 

lt+1f2(P) 

( ) 1/2 
nz(p) = (- 1 )1+ 1 � l-t-1f2(P) 

sm p jo(p) = --, p 
cos p no(p) = - --

P 
. sin p cos p cos p sin p 
J1 (P) =  -- - --, n1 (p) = - -- - --p2 p p2 p 

h(P) = (2_ - �) sin p - 2_ cos p p3 p p2 

n2(p) = - - - - cos p - - sm p. ( 3 1 ) 3 . 
p3 p p2 

For p --+  0, the leading terms are 

where 

. pl 
Jz (p) ;:t (21 + 1 ) ! ! ' 

(21 - 1) ! !  nz(p) � - 1+ 1 , p--+0 p 

(21 + 1 ) ! !  = (21 + 1 )(21 - 1)  . . .  5 . 3 . 1 .  

(B.5 . 12) 

(B.5 . 13) 

(B.5. 14) 
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In the large p-asymptotic limit, we have 

1 [ (l + 1 )n ] 
jz(p) -----+ - cos p -

2 
, 

P--*00 p 

1 [ (l + 1 )n J nz(p) -----+ - sin p - . 
P--*00 p 2 

(B.5 . 15) 

Because of constraints (A.5.8) and (A.5.9), R(r) must be finite at r = 0; hence, 
from (A.5. 10) and (A.5. 13) we see that the nz (p)-term must be deleted because 
of its singular behavior as p --+ 0. Thus R(r) = czjz(p) [or, in the notation of 
Chapter 6, Section 6.4, Az(r) = R(r) = czjz(p)] . For a three-dimensional square
well potential, V = -Vo for r < R (with Vo > 0), the desired solution is 

where 

R(r) = Az(r) = constant jz(ar), 

_ [2m(Vo - lE I ) ] 112 
a - 2 , 1i 

r < R. 

(B.5 . 16) 

(B.5. 17) 

As discussed in (7.6.30), the exterior solution for r > R, where V = 0, can be 
written as a linear combination of spherical Hankel functions. These are defined 
as follows: 

h�1)(p) = jz(p) + inz(p) 

h?)* (p) = h?)(p) = jz(p) - inz(p), 

which, from (A.5. 15), have the asymptotic forms for p --+ oo as follows:  

h(l)(p) -----+ ..!_ei[p-(l+l)n/2] 
l P-*OO p 

h(l)*(p) = h(2)(p) -----+ ..!_e-i[p-(l+l)n/2] . l l P--*00 p 

(B.5. 1 8) 

(B.5. 1 9) 

If we are interested in the bound-state energy levels of the three-dimensional 
square-well potential, where V(r) = 0, r > R, we have 

uz(r) = rAz(r) = constant e-Kr 1 (
K
�) 

K = (2:�£ 1 r/2 (B.5.20) 

To the extent that the asymptotic expansions, of which (A.5. 19) give the lead
ing terms, do not contain terms with exponent of opposite sign to that given, we 
have-for r > R-the desired solution from (A.5.20): 

Az(r) = constant h�1)(iKr) = constant [jz (iKr) + inz (iKr)], (B.5.21) 
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where the first three of these functions are 

1 
h(l ) ( . ) e-Kr tKr = - -0 Kr 

(1) . ) . ( 1 1 ) -Kr h 1 (t Kr = t  - + 22  e 
Kr K r 

(1) . ( 1 3 3 ) -Kr h2 (t Kr) = - + 22 + 33  e . 
Kr K r K r 

531 

(B.5 .22) 

Finally, we note that in considering the shift from free particles [V(r) = 0] to 
the case of the constant potential V (r) = Vo, we need only replace the E in the 
free-particle solution [see (A.5. 10) and (A.5. 1 1) by E - Vo. Note, however, that 

if E < Vo, then h�1 '2) (iKr) is to be used with K = J2m(Vo - E)j1i2. 

8.6 . HYDROGEN ATOM 

Here the potential is 

Ze2 
V(r) = --

r 
and we introduce the dimensionless variable 

The energy eigenfunctions and eigenvalues (energy levels) are 

1/fnlm = Rnz (r)Yt(e, ¢) 

_ _ 2Z (n - l - 1) !  e-p/2 ZL2l+l 

{ 

3 l l /2 
Rnz (r) - (nao) 2n[(n + l) ! ]3 p n+z (P) 

(independent of l and m) 

1i2 
a0 = Bohr radius = --2 mee 

2Zr 
n 2: l + 1 ,  p = - .  mao 

The associated Laguerre polynomials are defined as follows: 

(B.6. 1 )  

(B.6.2) 

(B.6.3) 

(B.6.4) 
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where-in particular-

and the normalization integral satisfies 

f -p 21 [L21+1 ( )]2 2d = 2n[(n + l) ! ]3 . e p n+l p p p (n - l - 1) !  

The radial functions for low n are 

( z ) 3/2 
Rw(r) = 

ao 
2e-Zrfao 

( z ) 3/2 
R2o (r) = - (2 - Zrja0)e-Zrf2ao 

2ao 

R21 (r) = - --e-Zrf2ao . ( Z ) 3/2 Zr 
2ao .J3a0 

The radial integrals are 

(rk ) = 100 dr r2+k [Rnz(r)]2 

(r) = (;�) [3n2 - l(l + 1)] 

(B.6.5) 

(B.6.6) 

(B.6.7) 

(B.6.8) 



APPEN D I X  

c 
Proof of the Angular-Momentum 
Addition Ru le G iven by Equation 

(3 .8.38) 

It will be instructive to discuss the angular-momentum addition rule from the 
quantum-mechanical point of view. Let us, for the moment, label our angular 
momenta such that h ?:_h· This we can always do. From Equation (3 .8.35), the 

maximum value of m, mmax, is 

(C. l . l ) 

There is only one ket that corresponds to the eigenvalue mmax, whether the de
scription is in terms of l hh; m 1m2) or lhh; jm).  In other words, choosing the 
phase factor to be 1 ,  we have 

(C. l .2) 

In the lhh; m 1m2) basis, there are two kets that correspond to the m eigenvalue 
mmax - 1 ,  namely, one ket with m 1 = mfax - 1 and m2 = m�ax and one ket with 
m 1 = mfax and m2 = m�ax - 1 .  There is thus a twofold degeneracy in this basis; 
therefore, there must be a twofold degeneracy in the lhh; jm) basis as well. 
From where could this come? Clearly, mmax - 1 is a possible m-value for j = 
h + h· It is also a possible m-value for j = h + h - l-in fact, it is the maximum 
m-value for this j. So h ,  h can add to j's of h + h and h + h - 1 .  

We can continue in this way, but it is clear that the degeneracy cannot increase 
indefinitely. Indeed, for mmin = -h - h, there is once again a single ket. The 
maximum degeneracy is (2 h + 1 )-fold, as is apparent from Table C. l ,  which was 
constructed for two special examples: for h = 2, h = 1 and for h = 2, h = � . 
This (2h + 1)-fold degeneracy must be associated with the 2h + 1 states j: 

h + h, h + h - 1, . . .  , h - h. (C. l .3) 

If we lift the restriction h > h, we obtain (3 .8.38). 
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TABLE C.l Special Examples of Values of m, m 1 ,  and m2 for the Two Cases j1 = 2, h = 1 and 
j1 = 2, h = 1, Respectively 

}I = 2, jz = 1 
m 3 2 1 0 - 1  -2 

(m 1 ,m2) (2, 1 )  ( 1 , 1 )  (0, 1 )  (- 1 , 1 ) ( -2, 1 )  
(2, 0) ( 1 , 0) (0, 0) ( - 1 , 0) ( -2, 0) 

-3 

(2, - 1) ( 1 , - 1 )  (0, - 1) (- 1 , - 1 )  (-2, - 1) 
Numbers of States 

0 2 0 1 ]1 = , ]2 = 2 
m 

(m 1 ,m2) 

Numbers of States 

1 2 

5 3 
2 2 

(2, 1) ( 1 , 1) 
(2, - 1) 

1 2 

3 3 3 2 1 

1 1 3 5 
2 - 2  - 2 - 2 

(0, 1) (- 1 , 1) ( -2, 1) 
( 1 , - 1) (0, - 1) (- 1 , - 1) ( -2, - 1) 

2 2 2 1 



Bibl iography 

NEW REFERENCES FOR THE SECOND EDITION 

Arfk:en, G. B .  and H. J. Weber. Mathematical Methods for Physicists, 4th ed., New York: 
Academic Press, 1995 . 

Byron, F. W. and R. W. Fuller. Mathematics of Classical and Quantum Physics, Mineola, 
NY: Dover, 1992. 

Fetter, A. L. and J. D. Walecka. Quantum Theory of Many-Particle Systems, Mineola, 
NY: Dover, 2003a. 

Fetter, A. L. and J. D. Walecka. Theoretical Mechanics of Particles and Continua, Mine
ola, NY: Dover, 2003b. 

Goldstein, H., C. Poole, and J. Safko. Classical Mechanics, 3rd. ed., Reading, MA: 
Addison-Wesley, 2002. 

Gottfried, K. and T.-M. Yan. Quantum Mechanics: Fundamentals, 2nd ed., New York: 
Springer-Verlag, 2003. 

Griffiths, D. J. Introduction to Quantum Mechanics, 2nd ed., Upper Saddle River, NJ: 
Pearson, 2005. 

Heitler, W. The Quantum Theory of Radiation, 3rd ed., Oxford (1954). 

Holstein, B. R. Topics in Advanced Quantum Mechanics, Reading, MA: Addison-
Wesley, 1992. 

Itzykson, C. and J.-B. Zuber, Quantum Field Theory, New York: McGraw-Hill, 1980. 

Jackson, J. D. Classical Electrodynamics, 3rd ed., New York: Wiley, 1998. 

Landau, R. H. Quantum Mechanics II: A Second Course in Quantum Theory, New York: 
Wiley, 1996. 

Loudon, R. The Quantum Theory of Light, 3rd ed., London: Oxford Science Publications, 
2000. 

Merzbacher, E. Quantum Mechanics, 3rd ed., New York: Wiley, 1998. 

Shankar, R. Principles of Quantum Mechanics, 2nd ed., New York: Plenum, 1994. 

Taylor, J. R. Classical Mechanics, Herndon, VA: University Science Books, 2005. 

Townsend, J. S. A Modern Approach to Quantum Mechanics, Herndon, VA: University 
Science Books, 2000. 

Weinberg, S. The Quantum Theory of Fields, New York: Cambridge University Press, 
1995. 

Zee, A. Quantum Field Theory in a Nutshell, 2nd ed., Princeton, NJ: Princeton University 
Press, 2010. 

535 



536 B ibl iography 

REFERENCE LIST FROM PRIOR EDITIONS 

Baym, G. Lectures on Quantum Mechanics, New York: W. A. Benjamin, 1969. 

Bethe, H. A. and R. W. Jackiw. Intermediate Quantum Mechanics, 2nd ed., New York: 
W. A. Benjamin, 1968. 

Biedenharn, L. C. and H. Van Dam, editors. Quantum Theory of Angular Momentum, 
New York: Academic Press, 1965. 

Dirac, P. A. M. Quantum Mechanics, 4th ed., London: Oxford University Press, 1958. 

Edmonds, A. R. Angular Momentum in Quantum Mechanics, Princeton, NJ: Princeton 
University Press, 1960. 

Feynman, R. P. and A. R. Hibbs. Quantum Mechanics and Path Integrals, New York: 
McGraw-Hill, 1965. 

Finkelstein, R. J. Nonrelativistic Mechanics, Reading, MA: W. A. Benjamin, 1973. 

Frauenfelder, H. and E. M. Henley. Subatomic Physics, Englewood Cliffs, NJ: Prentice
Hall, 1974. 

French, A. P. and E. F. Taylor. An Introduction to Quantum Physics, New York: W. W. 
Norton, 1978. 

Goldberger, M. L. and K. M. Watson. Collision Theory, New York: Wiley, 1964. 

Gottfried, K. Quantum Mechanics, vol. I, New York: W. A. Benjamin, 1966. 

Jackson, J. D. Classical Electrodynamics, 2nd ed., New York: Wiley, 1975. 

Merzbacher, E. Quantum Mechanics, 2nd ed., New York: Wiley, 1970. 

Morse, P. M. and H. Feshbach. Methods of Theoretical Physics (2 vols.), New York: 
McGraw-Hill, 1953. 

Newton, R. G. Scattering Theory of Waves and Particles, 2nd ed., New York: McGraw
Hill, 1982. 

Preston, M. Physics of the Nucleus, Reading, MA: Addison-Wesley, 1962. 

Sargent III, M., M. 0. Scully, and W. E. Lamb, Jr. Laser Physics, Reading, MA: Addison
Wesley, 1974. 

Saxon, D. S. Elementary Quantum Mechanics. San Francisco: Holden-Day, 1968. 

Schiff, L. Quantum Mechanics, 3rd. ed., New York: McGraw-Hill, 1968. 



A 
Abelian, definition of, 47 
Absorption, in classical 

radiation fields, 365-367 
Absorption-emission cycle, 

341-342 
Adiabatic approximation, 

346-348 
Aharonov-Bohm effect, 

141-145, 353-355 
Airy function, 109-1 10, 

1 1 3-115  
Alkali atoms, 323-326 
Ambler, E., 278 
Ampere (unit), 5 19  
Ampere's law, 521 
Amplitude(s) 

Born, 400, 419, 443, 523 
and bound states, 429-430 
correlation, 78-80 
partial-wave, 410 
scattering, see Scattering 

amplitude 
transition, 86-89, 120-122, 

387 
Anderson, Carl, 500 
Angular integration, in helium 

atom, 456 
Angular momentum, 157-255 

and angular-velocity vector, 
5-6 

commutation relations for, 
157-163 

density operator and 
ensembles for, 178-191 

Dirac equation for, 501-502 
orbital, see Orbital angular 

momentum 

I ndex 

rotations and commutation 
relations in, 157-172 

and Schrodinger's equation 
for central potentials, 
207-217 

Schwinger's oscillator model 
of, 232-238 

of silver atoms, 23 
and S0(3)/SU(2)/Euler 

rotations, 172-178 
spin correlation 

measurements and Bell's 
inequality for, 238-245 

tensor operator for, 246-255 
and uncoupled oscillators, 

232-235 
Angular-momentum addition, 

217-23 1 
Clebsch-Gordan coefficients 

for, 223-23 1 
examples of, 218-221 
formal theory of, 221-224 
and rotation matrices, 

230-23 1 
rule for, 533-534 

Angular-momentum barriers, 
208, 209 

Angular-momentum 
commutation relations 

and eigenvalues/eigenstates, 
191-192 

and ladder operator, 192 
and rotations, 157-163 
2 x 2 matrix realizations, 169 

Angular-momentum eigenkets, 
193-194 

Angular-momentum eigenvalues 
and eigenstates 

and commutation 
relations/ladder operator, 
19 1-192 

constructing, 193-195 
and matrix elements of 

angular-momentum 
operator, 195-196 

and rotation operator, 
196-199 

and time reversal, 298 
and Wigner-Eckart theorem 

and, 252-253 
Angular-momentum operator, 

161 , 195-196, 258 
Angular velocity vector, angular 

momentum and, 5-6 
Annihilation operator, 89-9 1 ,  

97, 152, 232-233, 465 
Anomalous Zeeman effect, 328 
Anticommutation relations, 28, 

469 
Antilinear operator, 287, 

291-292 
Antiparticles, in Klein-Gordon 

equation, 493, 494, 503 
Antisymmetrical states, 275 
Antiunitary operator, 287, 291 ,  

296, 434-436, 504-505 
Anyons, 450n 
Approximation methods, 

303-375 
for classical radiation field, 

365-371 
for degenerate energy 

eigenkets, 3 1 6-321 
for energy shifts and decay 

widths, 37 1-375 
for hydrogen-like atoms, 

321-336 

537 



538 

for nondegenerate energy 
eigenkets, 303-3 16 

Index 

for time-dependent 
Hamiltonians, 345-355 

time-dependent perturbation 
theory, 355-365 

for time-dependent potentials, 
336-345 

time-independent 
perturbation theory, 
303-321 

variational, 332-336 
Argand diagram, 413 
Argon, Ramsauer-Townsend 

effect and, 425-426 
Associative axiom of 

multiplication, 16-17 
Atom(s), See also specific types 

Bohr, 1 
one-electron, 510-5 14 
polarizability of, 297 

Atomic force microscope, 
479-480 

Atomic spectroscopy, 163 
Axial vectors, 272 

B 
Baker-Hausdorff formula, 95 
Balmer formula, 216, 5 1 3  
Balmer splittings, fine structure 

splittings and, 326 
Base kets, 17-20 

change of basis in, 35-36 
eigenkets as, 1 8-19 
and eigenkets of observables, 

17-18 
in Heisenberg and 

SchrOdinger pictures, 
86-89 

and spin � systems, 22 

in spin � systems, 22-23 
and transition amplitudes, 

86-89 
Basis 

change of, 35-40 
position, 52-53 

Baym, G., 250 

Bell's inequality, 241-245 
and Einstein's locality 

principle, 241-243 
and quantum mechanics, 

243-245 
Bennett, G. W., 76 
Berry, M. V., 348 
Berry's Phase 

and gauge transformations, 
353-355 

and time-dependent 
Hamiltonians, 348-353 

Bessel functions 
properties of, 529-530 
spherical, 210-2 1 1  

Bethe, H. A., 439 
Biedenham, L. C., 232 
Big box normalization, 104, 

388-389 
Bitter, T., 352 
Bloch, F., 439 
Bloch's theorem, 283 
Bohr, N., 73, 397, 440 
Bohr atom, 1 
Bohr model, 216 
Bohr radius, 217 
Boltzmann constant, 1 87, 487 
Born, M., 1, 48, 89, 99, 191  
Born amplitude, first-order, 400, 

419, 443, 523 
Born approximation, 399-404, 

442 
Bose-Einstein condensation, 

452, 464 
Bose-Einstein statistics, 450 
Bosons, 450-452, 462-464, 476 
Bouncing ball example, 1 10 
Bound states, 423-43 1 

and amplitude, 429-430 
and low-energy scattering, 

423-430 
quasi-, 43 1 
and zero-energy scattering, 

426-429 
Bowles, T. J., 450 
Bra, matrix representation of, 21 
Bra-ket algebra, 59 
Bra-ket notation, Dirac, 292 
Bra space, 12-14 

Breit-Wigner Formula, 433 
Bressi, G., 480 
Brillouin, L., 1 10 
Brillouin zone, 284 

c 
Cannonical (fundamental) 

commutation relations, 
48-49 

Canonical ensembles, 1 89-190 
Canonical momentum, 1 36, 

1 38, 140, 262 
Cartesian tensors, 247-250 
Casimir effect, 4 7 6-480 
Cauchy principal value, 397 
Cayley-Klein parameters, 174 
Central force problem, 

Schrodinger wave 
equation and, 527-531 

Central potentials, 506-5 14 
in eigenvalue problem, 

506-5 10 
and Hamiltonians, 207, 2 1 1  
for one-electron atom, 

5 10-5 14 
Schrodinger equation for, see 

Schrodinger equation for 
central potentials 

solving for, 506-5 14 
Cesium atoms, spin 

manipulation of, 10 
CGS system of units, 519 
Charge, units for, 5 19-520 
Charge conjugation, 503-504, 

506 
Chiao, R., 351 
Classical physics, symmetry in, 

262-263 
Classical radiation field, 

365-371 
absorption and stimulated 

emission in, 365-367 
electric dipole approximation 

for, 367-369 
photoelectric effect in, 

369-371 
Clebsch-Gordan coefficients, 

220 
properties of, 223-224 



recursion relations for, 
224-229 

and rotation matrices, 
230-23 1 

Index 

and tensors, 25 1-253 
Clebsch-Gordan series, 230-231 
Clebsch-Gordan series formula, 

25 1 
Closure, 19  
Cobalt atoms 

parity nonconservation for, 
278-279 

transition energy of, 517 
Coherent state 

for annihilation operator, 97 
in quantum optics, 48 1 

Collective index, 30, 314 
Column vector function, 491 
Commutation relations, 28 

angular-momentum, 
157-163, 169, 191-192 

cannonical, 48--49 
and eigenvalues/eigenstates, 

191-192 
in second quantization, 

462--463 
Commutators, 48--49, 64, 85 
Compatible observables, 28-3 1 
Completely random ensembles, 

179, 186 
Completeness relation, 19 
Complex conjugate transposed, 

20 
Complex contour integration, 

392-394, 397-398 
Complex numbers, quantum 

mechanics and, 27 
Complex vector space, spin 

states and, 9 
Compton effect, 1 
Compton wavelength, 489 
Confluent Hypergeometric 

Function, 215 
Conservation laws, 262-263 
Conserved current, 492, 

496--497, 516  
Conserved Vector Current 

(CVC) hypothesis, 
449--450 

Constant perturbation, 359-363 
Constant potential 

and gauge transformations, 
129-131  

in one dimension, 524-525 
Continuity equation, 496 
Continuous spectra, 40--41 
Continuous symmetry, 262-263, 

265-269 
Continuum generalizations, for 

density operator, 
185-186 

Correlation amplitude, 
energy-time uncertainty 
relation and, 78-80 

Correlation function, 151  
Coulomb (unit), 520 
Coulomb gauge, 473 
Coulomb potential 

first -order energy shift for, 
327 

and Schr6dinger's equation 
for central potentials, 
213-217 

screened, 467 
symmetry in, 265-269 

Coulomb's law, 519, 520 
Covariant derivative, 491 
Covariant Dirac equation, 494, 

495 
Covariant vector operator, 489, 

490n 
Covariant wave equations, 488, 

489 
CPT operator combination, 506 
Creation operator, 89-91 ,  152, 

232-233, 465 
Cross sections, for scattering, 

388-389 
Current 

conserved, 492, 496--497, 516 
eve hypothesis, 449--450 
units of, 5 19-520 

Cutoff frequency, Casimir effect 
and, 477, 480 

CVC (Conserved Vector 
Current) hypothesis, 
449--450 
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D 

Dalgarno, A., 3 15  

Davisson-Germer-Thompson 
experiment, 1 

de Broglie, L., 46, 66, 99 

de Broglie's matter waves, 1 
Decay width, energy shift and, 

371-375 
Degeneracy, 59 

of eigenvalues, 29, 217 
exchange, 447 
Kramers, 299 
and symmetries, 264-265 

Degenerate electron gases, 
467--472 

Degenerate energy eigenkets, 
316-321 

Degenerate time-independent 
perturbation theory, 
3 16-321 

Density matrix, 181  
of completely random 

ensemble, 1 86 
and continuum 

generalizations, 1 85-1 86 
Density of states, for free 

particles, 105 
Density operator, 180-191 

continuum generalizations 
for, 1 85-186 

definition of, 181  
and ensemble averages, 

180-185 
Hermitian, 1 82 
and pure/mixed ensembles, 

178-191 
and quantum statistical 

mechanics, 1 86-191 
time evolution of, 257 
and time evolution of 

ensembles, 1 85 
Detailed balance, 365, 436 
Deuterium atom, energy levels 

of, 517-5 18  
Diagonalization, 38-39, 64, 90 
Diamagnetic susceptibility, 380 
Dipole operator, 368 
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Dirac, P. A. M., 1, 10-1 1,  23, 
49, 50, 83, 1 14, 
124-125, 148, 356, 362, 
494 

Dirac bra-ket notation, 292 
Dirac 8 function, 40 
Dirac equation, 494-507 

for angular momentum, 
501-502 

for central potentials, 507 
and charge conjugation, 

503-504 
conserved current in, 

496-497 
and CPT operator 

combination, 506 
described, 494-496 
and electromagnetic 

interactions, 500-501 
free-particle solutions of, 

497-499 
and negative energies, 

499-500 
parity of, 502-503 
symmetries of, 501-506 
time-reversal symmetry of, 

504-505 
Dirac Hamiltonians, 495, 501 
Dirac notation, 8,  223 
Dirac picture, 338 
Dirac quantization condition, 

354-355 
Direction eigenkets, 202-203 
Discrete symmetries, 269-300, 

see also specific types 
and Dirac equation, 504-505 
lattice translation as, 280-284 
parity as, 269-280 
properties of symmetry 

operations, 287-289 
time-reversal discrete, 

284-300 
Dispersion, 33-34 
Double-bar matrix element, 252 
Dual correspondence, 1 3  
Dubbers, D., 352 
Dyadic tensors, 247-248 

Dynamical variables, in second 
quantization approach, 
463-467 

Dyson, F. J., 7 1 ,  357 
Dyson series, 71 ,  355-357 

E 
Effective potential, 208, 209 
Ehrenfest, P., 86 
Ehrenfest's theorem, 86, 1 32, 

136 
Eichinvarianz, 141 
Eigenbras, 12-13 
Eigenfunctions, 51 ,  523 
Eigenkets 

angular-momentum, 193-194 
and base kets, 17-19 
direction, 202-203 
and eigenbras, 12-13 
energy, see Energy eigenkets 
and Hermitian operator, 59 
and observables, 17-18 
parity, 273 
position, 41-42 
and simple harmonic 

oscillator, 89-93 
simultaneous, 30 
in spin i systems, 12 
zeroth-order, 316 

Eigenspinors, 296 
Eigenstates 

angular-momentum, see 
Angular-momentum 
eigenvalues and 
eigenstates 

energy, 96, 273-274 
mass, 77 
in spin i systems, 12 
zeroth-order, 377 

Eigenvalues 
angular-momentum, see 

Angular-momentum 
eigenvalues and 
eigenstates 

and central potential, 
506-5 10 

degeneracy of, 29, 217 
energ� 77-78, 89-93, 217 
and energy eigenkets, 71 

and expectation values, 24-25 
and Hermitian operator, 17 
of hydrogen atom, 268 
and orbital angular 

momentum squared, 30 
and simple harmonic 

oscillator, 89-93 
in spin ! systems, 12  

Eikonal approximation, 
417-423 

described, 417-420 
and partial waves, 420-423 

Einstein, A., 241 
Einstein-Debye theory, 1 
Einstein-Podolsky-Rosen 

paradox, 241 
Einstein's locality principle, 

241-243 
Elastic scattering, 436, 445 
Electric dipole approximation, 

367-369 
Electric fields, time-reversal 

symmetry and, 298-300 
Electromagnetic fields 

and Casimir effect, 480 
and Dirac equation, 500-501 
energy of, 4 7 4 
and momentum, 480-48 1 
polarization vectors of, 9 
quantization of, see 

Quantization of 
electromagnetic field 

Electromagnetic units, 5 19-522 
Electromagnetism, gauge 

transformations in, 
134-141 

Electron-atom scattering, 
inelastic, 436-441 

Electron gases, degenerate, 
467-472 

Electron spin, magnetic moment 
and, 2-4 

Emission, in classical radiation 
fields, 365-367 

Energy(-ies) 
of electromagnetic field, 474 
Fermi, 464, 470 
of free particles, 487-488 
kinetic, 321-323 
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negative, 492-494, 499-500 
quantization of, 475-476 
transition, 5 17 
zero-point (vacuum), 476 

Energy eigenkets 
degenerate, 3 1 6-321 
nondegenerate, 303-3 16 
and simple harmonic 

oscillator, 89-93 
and time-evolution operator, 

7 1-73 
Energy eigenstates 

parity properties of, 273-274 
superposition of, 96 

Energy eigenvalues 
degeneracy of, 217 
of neutrinos, 77-78 
and simple harmonic 

oscillator, 89-93 
Energy levels, of hydrogen and 

deuterium atoms, 
513-5 14, 5 17-5 1 8  

Energy shifts 
for Coulomb potentials, 327 
and decay width, 37 1-375 

Energy-time uncertainty 
relation, correlation 
amplitude and, 78-80 

Ensemble average 
definition of, 1 80-18 1  
and density operator, 

1 80-184 
Ensembles, 178-185 

canonical, 1 89-190 
completely random, 179, 1 86 
mixed, 1 80 
and polarized vs. unpolarized 

beams, 178-180 
pure, 24, 179, 1 80 
time evolution of, 185 

Entropy, 1 87 
Equation of motion 

Euler, 256 
Heisenberg, 82-84, 94, 256, 

263 
Euclidian space, 34 
Euler angle notation, 236 
Euler-Maclaurin summation 

formula, 478 

Euler rotations, 175-178, 256 
Exchange degeneracy, 447 
Exchange density, 454 
Expectation values, 24-25, 

F 

164-165 
and Hermitian operator, 

34-35 
time dependence of, 73 

Faraday's law, 521 
Feenberg, Eugene, 397 
Fermi-Dirac statistics, 450, 

484-485 
Fermi energy, 464, 470 
Fermions, 450-452, 462-465 
Fermi's golden rule, 362, 387, 

388 
Feshbach, H., 1 19 
Fetter, Alexander L., 467, 469, 

5 15 
Feynman, R. P., 122, 124, 5 15 
Feynman's formulation, 

123-129 
Feynman's path integral, 

127-129, 143, 5 15 
Filtration, 25 
Fine structure, 323-327, 510, 

5 17-5 1 8  
Finite-range potentials, 394-395 
Finite rotations, 166-172 

and infinitesimal rotations, 
157-160 

and neutron interferometry, 
166-168 

noncommutativity of, 
157-158 

Pauli two-component 
formalism for, 168-172 

rotation operator for spin -! 
systems, 163-165 

and spin -! systems, 163-172 
Finite square wells, 400-401 
Finkelstein, R. J., 155 
Pock, V., 136 
Pock space, 461 
Form factor, 439 
Fortun, M., 476 
Fourier decomposition, 375 

541 

Fourier inversion formula, 375 
Fourier transform, 438 
Fractional population, 179 
Franck-Hertz experiment, 1 
Frauenfelder, H., 298 
Free particles 

and Dirac equation, 497-499 
energy of, 487-488 
in Heisenberg and 

Schrodinger pictures, 

84-86 
and infinite spherical well, 

210-2 1 1  
scattering by, 404-409 
and Schri:idinger wave 

equation, 103-105, 
523-524 

in three dimensions, 103-105 
Fundamental commutation 

relations, 48-49 

G 
Garvey, G. T., 450 
Gauge invariance, 141 
Gauge transformations 

and Berry's Phase, 353-355 
and constant potentials, 

129-131  
definition of, 1 30 
and electromagnetism, 

1 34-141 
Gaussian potential, 444 
Gaussian system of units, 

5 19-522 
Gaussian wave packets, 55-57, 

62, 65, 99-100, 1 18-1 19 
Gauss's law, 146, 520-521 
Gauss's theorem, 4 1 1  
Generating functions, 105-108 
Geometric phase, 348-353 
Gerlach, W., 2 
Glauber, Roy, 48 1 
Goldstein, H., 37, 176, 264 
Gottfried, K., 25, 152, 33 1 ,  378, 

379 
Gravity, quantum mechanics 

and, 1 3 1-134 
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Green's function, 1 1 8, 394, 404, 

442 

Griffiths, D. J., 346 

H 
Hamilton, W. R., 99 
Hamiltonian matrix, for 

two-state systems, 378 
Hamiltonian operator, 148-150 

for simple harmonic 
oscillator, 89-90 

time-dependent, 70-7 1 
and time-dependent wave 

equation, 97, 98 
and time-evolution operator, 

69 
time-independent, 70 
and two-state systems, 60 

Hamiltonians, see also 
Time-dependent 
Hamiltonians 

and central potentials, 207, 
2 1 1  

Dirac, 495, 501 
Hamilton-Jacobi theory, 102, 

154, 4 1 8  
Hamilton's characteristic 

function, 103 
Hankel functions, 414, 529, 530 
Hard-sphere scattering, 416--423 
Harmonic oscillators, 21 1-214, 

376, see also Simple 
harmonic oscillator 

Harmonic perturbation, 
363-365 

Heisenberg, W., 1, 46, 48, 99, 
1 9 1  

Heisenberg equation of motion, 
82-84, 94, 256, 263 

Heisenberg picture, 148-150 
and base kets, 86-89 
free particles in, 84--86 
and Heisenberg equation of 

motion, 82-84 
and propagators, 1 20-121 
and Schrodinger picture, 

80-89 
state kets and observables in, 

82 

and time-dependent 
potentials, 337-339 

and time-evolution of 
ensembles, 1 85 

unitary operator in, 80-8 1 

Heisenberg uncertainty 
principle, 3, 56 

Helium, 452, 455--459, 483 
Helmholtz equation, 394, 404 

Henley, E. M., 298 

Hermite polynomials, 106-108, 

527 

Hermitian adjoint, 15 

Hermitian operator, 63-64, 150 

anticommute, 6 1  

definition of, 44 

and density 
operator/ensembles, 
1 82-1 83 

and Ehrenfest's theorem, 84 

eigenvalues of, 17 

and energy eigenkets, 89 

expectation values of, 34--35 

and infinitesimal rotations, 
161 

and simple harmonic 
oscillators, 95, 97 

in spin 1 systems, 26 

as time-evolution operator, 69 

and time-reversal operator, 
292, 298 

Hermiticity, 39, 1 82 

Higher-order Born 
approximation, 403--404 

Hilbert, D., 1 1 , 99 

Hilbert space, 1 1  

Holstein, B .  R., 349 
Hooke's law, 89 

Hydrogen atom 
eigenvalues of, 268 

energy levels of, 5 1 3-5 14, 

5 1 7-5 1 8  

and linear Stark effect, 
3 1 9-321 

polarizability of, 3 1 5 

and Schrodinger wave 
equation, 531-532 

Hydrogen-like atoms, 321-336 
and fine structure, 323-326 
fine structure of, 5 1 0  
relativistic correction to 

I 

kinetic energy for, 
321-323 

spin-orbit and fine structure 
of, 323-327 

van der Waals interaction in, 
33 1-332 

and Zeeman effect, 328-33 1 

Identical particles, 446--483 
and helium atoms, 455--459 
in multiparticle states, 

459--472 
permutation symmetry for, 

446--450 
and quantization of 

electromagnetic field, 
472--483 

symmetrization postulate for, 
450--452 

in two-electron systems, 
452--455 

Identity matrix, 5 1 5  
Identity operator, 19, 22, 28 
Incoherent mixtures, 179 
Incompatible observables, 

28-29, 3 1-33 
Inelastic electron-atom 

scattering, 436--441 
Inertia, moment of, computation 

of, 5-6 
Infinitesimal rotation operator, 

1 6 1 ,  199-200 
Infinitesimal rotations, 1 57-163 

commutativity of, 159 
and finite rotation, 157-160 
and quantum mechanics, 

160-163 
and vector operator, 246 

Infinitesimal time-evolution 
operator, 68 

Infinitesimal translation, 42--43 
Infinite spherical well, free 

particles in, 210-21 1 



I ndex 

Inner products, 1 3  
Integral equation for scattering, 

392-396 
Interaction picture, 337-339 
Irreducible tensors, 247-250 
Isomers, optical, 277 
Isospin, 235 

Isotropic harmonic oscillator, 
21 1-214, 376 

J 
Jackson, J. D., 324, 369 
Jacobi identity, 49 

Jaffe, R. L., 480 
Jenkins, D. A., 5 1 7  
Jordan, P., 48, 99, 1 9 1  

K 
KamLAND experiment, 78 
Kepler problem, 265 
Kets, 8, see also Base kets; 

Eigenkets 

definition of, 1 1  
and electromagnetic field 

polarization vectors, 9 
normalized, 14 
null, 1 1  
and operator, 14-15 

perturbed, normalization of, 
3 1 0-3 1 1  

spin, 1 65 

state, 67-68, 82 
vacuum, 232-233 

Ket space, 1 1-15, 63 
Kinematic momentum, 1 36, 

1 38, 140 
Kinetic energy, relativistic 

correction for, 32 1-323 
Klein-Gordon equation, 

488-494 
Kramers, H. A., 1 10 
Kramers degeneracy, 299 
Kronecker symbol, 40, 469 
Krypton, Ramsauer-Townsend 

effect and, 425-426 
Kummer's equation, 215,  259 
Kunselman, R., 5 17 

L 
Ladder operator, angular 

momentum 
commutation relations 
and, 1 9 1-192 

Lagrange equation, 262 

Lagrangian, classical, 123, 143 

Laguerre polynomials, 259, 53 1 
Lamb shift, 321,  379, 5 1 3  
Lamoreaux, S.,  476 
Landau, Rubin, 46 1,  467, 5 1 6  
Lande's interval rule, 325-326 
Laplace-Fourier transform, 120 
Laporte's rule, 278 
Lattice translation, as discrete 

symmetry, 280-284 
Lattice translation operator, 

281-282 
Legendre function, 443 
Lenz vector, 265 
Lewis, J. T., 3 1 5 
Light, polarization of, 6-10 
Linear potential, 1 08-1 1 0  
Linear Stark effect, 3 1 9-321 
Liouville's theorem, 1 85 
Lipkin, H. J., 148 
Lippmann-Schwinger equation, 

390-39 1 , 442, 444 
Local potentials, 394 
London, F., 1 36 
Lorentz contraction factor, 497 
Lorentz force, 1 36, 143, 285 
Lorentz force law, 490n, 521 
Lorentz invariance, 506 
Lorentz transformations, 489 
Loudon, R., 472 
Low-energy scattering, 423-429 

M 
Magnetic fields 

and Aharonov-Bohm effect, 
353-354 

and Stem-Gerlach 
experiment, 2-4 

and time-reversal discrete 
symmetry, 298-300 

Magnetic flux, fundamental unit 
of, 144 

Magnetic moment, 2-4, 501 
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Magnetic monopoles, 145-148, 
353-355 

Marcus, George E., 476 
Masers, 344-345 

Mass eigenstates, 77 

Matrices, see specific types 
Matrix elements 

of angular-momentum 

operator, 195-196 
double bar, 252 
reduced, 255 
tensors, 252-255 

Matrix mechanics, 48 
Matrix representations, 20-23 
Matter waves, de Broglie's, 1 
Maxwell-Boltzmann statistics, 

45 1 
Maxwell's equations, 145, 285, 

472-475, 521 
McKeown, R. D., 449, 450 
Mean square deviation, 34 
Measurements 

position, 41-42 
quantum theory of, 23-25 
selective, 25 
spin-correlation, 238-245 

Melissinos, A., 35 1 
Merzbacher, E., 3 1 5, 377, 379, 

380, 46 1 , 467, 472, 5 1 5  
Minimum uncertainty wave 

packets, 56 
Mixed ensembles, 1 80 
MKS system of units, 5 1 9  
Momentum, see also Angular 

momentum 
canonical, 1 36, 1 38, 140, 262 
definition of, 52 
and electromagnetic field, 

480-48 1 
kinematic, 1 36, 1 38, 140 
position-momentum 

uncertainty relation, 46 
and translation generation, 

45-48 
Momentum operator, 52-53, 58, 

64 
Momentum-space wave 

function, 53-55, 65, 1 5 1  
Morse, P. M., 1 1 9 
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Motion 
Euler equation of, 256 
Heisenberg equation of, 

82-84, 94, 256, 263 
Multiparticle states, 459-472 

degenerate electron gases as, 
467-472 

described, 459-460 
second quantization 

approach, 460-467 
Multiplication, of operators, 

1 5-17, 250-25 1 
Muons, spin precession of, 

76-77, 1 66 

N 
National Institute of Standards 

and Technology (NIST), 
5 1 7-5 1 8  

Natural units, 487 
Negative energies 

and Dirac equation, 499-500 
relativistic quantum 

mechanics, 492-494 
Neutrino oscillations, 77-78 
Neutron interferometry, 1 56, 

1 66-168 
Neutrons, ultra-cold, 352-353 
Newton, R. G., 397 
Newton's second law, 86, 129, 

144-145 
NIST (National Institute of 

Standards and 
Technology), 5 1 7-5 1 8  

No-level crossing theorem, 3 10 
Non-Abelian, definition of, 1 62 
Nonconservation of parity, 

278-279 
N ondegenerate 

time-independent 
perturbation theory, 
303-3 1 6  

Nonlocal wave equations, 488 
Nonstationary states, 73, 275 
Norm, 14 
Normalization 

big box, 104, 388-389 
of perturbed kets, 3 10-3 1 1  

Normalization constant, 108, 

204 
Normalized kets, 14, 3 10-3 1 1  
Normal ordering, 465 
Nuclear form factor, inelastic 

scattering and, 440-441 
Nuclear magnetic resonance, 

1 63 
Nuclear shell model, 213,  214 
Null kets, 1 1  
Number operator, 462, 469 

0 
Observables, 1 1 , 28-33 

compatible, 28-3 1 
eigenkets of, 17-1 8 
in Heisenberg and 

Schrodinger pictures, 82 
incompatible, 28-29, 3 1-33, 

35-36 
matrix representation of, 22 
and transformation operator, 

35-36 
unitary equivalent, 39-40 

Occupation number notation, 
for state vectors, 461 

One-electron atoms, central 
potential for, 5 1 0-5 14 

Operator equation, 246 
Operator identity, 44 
Operators, 1 1 ,  14-17, see also 

specific types 
associative axiom of, 1 6-17 
definition of, 33, 63 
multiplication of, 1 5-17, 

250-25 1 
for spin 1 systems, 25-28, 

1 63-165 
and time reversal, 291-293 
trace of, 37-38 
and uncertainty relation, 

33-35 
Optical isomers, 277 
Optical theorem, 397-399 
Orbital angular momentum, 

199-206 
eigenvalues of, 30 
parity eigenket of, 273 
quenching of, 302 

and rotation generation, 
1 99-202 

and rotation matrices, 
205-206 

and spherical harmonics, 
202-206 

Orthogonal groups, 172-173, 
1 75 

Orthogonality 
and Clebsch-Gordan 

coefficients, 224, 23 1 
definition of, 14 
of eigenkets, 17 
and inelastic scattering, 439 
and simple harmonic 

oscillator, 108 

in spin 1 systems, 26 
and wave functions, 50, 52 

Orthogonal matrices, 157-159, 
173 

Orthohelium, 458, 459 
Orthonormality 

and Clebsch-Gordan 
coefficients, 224 

definition of, 1 8  
and degeneracy, 30 
of Dirac 8 function, 126 
of eigenkets, 1 8-19 
in spin 1 systems, 22 
and unitary operator, 36, 59, 

63 

Oscillations, neutrino, 77-78 
Oscillation strength, 368 
Oscillators, see also Simple 

harmonic oscillator 
isotropic harmonic, 21 1-2 14, 

376 
Schwinger's model of, 

232-238 
uncoupled, 232-235 

Outer products, matrix 
representation of, 21-22 

p 
Pair distribution operator, 465 
Parahelium, 458, 459 
Parametric down conversions, 

482 



Parity (space inversion), 
269-280 

and central potentials, 507 
described, 269-272 

Index 

of Dirac equation, 502-503 
nonconservation of, 278-279 
parity-selection rule, 277-278 
for symmetrical double-well 

potential, 274-277 
for wave functions, 272-274 

Parity eigenkets, 273 
Parity operator, 269, 502, 506 
Parity-selection rule, 277-278 
Partially polarized beams, 1 80 
Partial-wave amplitude, 410 
Partial-wave expansion, 

409--4 1 1  
Partial waves 

and determination of phase 

shifts, 414--415 
and eikonal approximation, 

420--423 
and hard-sphere scattering, 

416--417 
partial-wave expansion, 

409--41 1 
and phase shifts, 414--41 5  
and scattering, 409--4 1 6  
and unitarity, 4 1 1--414 

Particles, in Klein-Gordon 
equation, 493, 494, 503 

Paschen-Back limit, 330 
Path integrals, 122-129, 5 1 5  
Pauli, W., 1 68 
Pauli exclusion principle, 284, 

45 1 , 462, 470, 499 
Pauli matrices, 1 68-169, 

49 1--492, 496 
Pauli two-component 

formalism, 1 68-172 
Peierls, R., 397 
Permutation operator, 447 
Permutation symmetry, 446--450 
Perturbation, 303 

constant, 359-363 
harmonic, 363-365 

Perturbation expansion, formal 
development of, 
306-3 1 0  

Perturbation theory, see 
Time-dependent 
perturbation theory; 

Time-independent 

perturbation theory 

Perturbed kets, 310-31 1  
Peshkin, M., 148 
Phase shifts 

determination of, 4 14--41 5  

for free-particle states, 

404--409 
and hard-sphere scattering, 

2 1 0n, 416--417 
and unitarity, 41 1--414 

Photoelectric effect, 369-371 
Photons, 475--476, 48 1--483 

Pinder, D. N., 345 
Placzek, G., 397 
Planck, M., 1 14 

Planck-Einstein relation, 

angular frequence and, 

69 
Planck's radiation law, 1 
Podolsky, B.,  241 
Poisson bracket, 48--49, 64, 83 
Polarizability, of atom, 297 
Polarization, of light, 6-10 
Polarized beams, 1 78-1 80 
Polaroid filters, 6-9 
Polar vectors, 272 
Position basis, 52-53 
Position eigenkets, 41--42 
Position-momentum uncertainty 

relation, 46 
Position-space wave functions, 

50-52 
Positive definite metric, 1 3  
Positrons, 499, 500 
Potassium atom, fine structure 

and, 323-326 
Potential differences, 1 30 
Potentials, 129-134, 141-148, 

see also specific types 
and Aharonov-Bohm effect, 

141-145 
and gauge transformations, 

129-148 
and gravity, 1 3 1-134 

and magnetic monopoles, 
145-148 

545 

and Schrodinger wave 
equation, 524 

Preston, M., 428 
Principal quantum number, 213, 

216 

Principle of unitary symmetry, 

463n 

Probability charge density, 492 

Probability conservation, 412 
Probability current density, 493 
Probability density, 100, 

490--492, 496 
Probability flux, 100, 208, 389, 

490 
Projection operator, 1 9  
Projection theorem, 254-255 
Propagators, 1 16-122 

and transition amplitude, 
120-122 

and wave mechanics, 
1 16-120 

Pseudoscalar, examples of, 272 
Pseudovectors, 272 
Pure ensembles, 24, 179, 1 80 

Q 
Quadratic Stark effect, 3 1 3-3 14 
Quadrature squeezed states, 482 
Quantization condition, 2 1 1  
Quantization of electromagnetic 

field, 472--483 
and Casimir effect, 476--480 
and Maxwell's equations, 

472--475 
and photons, 475--476 
and quantum optics, 48 1--483 

Quantization of energy, 
475--476 

Quantum dynamics, 66-148 
potentials and gauge 

transformations, 
1 29-148 

propagators and path 
integrals, 1 1 6-129 

Schrodinger and Heisenberg 
pictures, 80-89 
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Schrodinger wave equation, 
97-1 16 

simple harmonic oscillator, 
89-97 

time-evolution and 
Schr6dinger equation, 
66-80 

Quantum electrodynamics, 
covariant, 357 

Quantum field theory, 5 14-5 15 
Quantum interference, 

gravity-induced, 
133-134 

Quantum mechanics 
and Bell's inequality, 

243-245 
and complex numbers, 27 
gravity in, 13 1-134 
and infinitesimal rotations, 

160-163 
symmetry in, 263 
tunneling in, 276 

Quantum optics, 481-483 
Quantum statistical mechanics, 

186-191  
Quarkonium, 1 10 
Quenching, 302 

R 
Rabi, I. I., 340, 343 
Rabi's formula, 340 
Radial equation, 207-210 
Radial integration, helium atom 

and, 456 
Radiation field, classical, see 

Classical radiation field 
Radiation law, Planck's, 1 
Ramsauer-Townsend effect, 

425-426 
Rayleigh-Schr6dinger 

perturbation theory, 303, 
331 

Rectangular wells, low-energy 
scattering for, 424-426 

Recursion relations, 
Clebsch-Gordan 
coefficients and, 
224-229 

Reduced matrix element, 255 

Relativistic quantum mechanics, 
486-515 

central potential in, 506-5 14 
development of, 486-494 
and Dirac equation, 494-506 
and energy of free particles, 

487-488 
kinetic energy in, 321-323 
and Klein-Gordon equation, 

488-492 
natural units for, 487 
and negative energies, 

492-494 
quantum field theory of, 

514-5 15 
Renormalization, 

wave-function, 310-3 1 1  
Resonance, 163, 341-344, 430 
Resonance scattering, 430-433 
Richardson, D. J., 352-353 
Rigid-wall potential, 

Schrodinger wave 
equation and, 524 

Rosen, N., 241 
Rotational invariance, 412 
Rotation generation, orbital 

angular momentum and, 
199-202 

Rotation matrices 
and Clebsch-Gordan 

coefficients, 230-23 1 
and orbital angular 

momentum, 205-206 
Schwinger's oscillator model 

for, 236-238 
Rotation operator, 160-162 

effect on general kets, 165 
irreducible representation of, 

178 
representations of, 196-199 
S0(4) group of, 265-267 
for spin ! systems, 163-165 
2 x 2 matrix representation 

of, 170-171 
Rotations, see also specific types 

and angular momentum 
commutation relations, 
157-163 

finite vs. infinitesimal, 
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