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Chapter 2 Solutions

1. (a) The current account identity can be written as Bs+1 = (1+r)Bs+TBs.

Now just plug in the assumed trade balance rule.

(b) Using the answer to part a, for any ξ > 0,
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= −(1 + r)Bt.

(c) Under the rule above, debt grows without bound if ξ < 1. But once the

debt is as big as Y/r, the country can honor its foreign commitments only

if debt stops growing and consumption is zero forever. Thus, the suggested

rule must entail negative consumption levels at some point, which are inad-

missible. To see directly why, consider the constant-output case, in which

TBs = Y − Cs = −ξrBs so that the payback rule implies Cs = Y + ξrBs.
Notice that since Bs → −∞, Cs must at some point become negative. The
rule therefore is consistent with intertemporal solvency only if we counterfac-

tually allow for negative consumption levels: the price of high consumption

today would be infeasibly high trade surpluses later on. In general, suppose

output grows at the gross rate 1 + g, so that Ys = (1 + g)
s−tYt. Unless 1 + g
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is at least as great as the gross growth rate of debt, which was shown to be

1 + r(1 − ξ) in part a, the external debt-output ratio is unbounded. Thus
the minimal payback fraction ξ consistent with intertemporal solvency and

positive consumption is ξ = 1 − (g/r) (which is positive if we assume that
g < r).

2. (a) The expected utility EtUt is a weighted average over different life

spans, with weights equal to the survival probabilities:

EtUt = (1− ϕ) [u(Ct)] + ϕ(1− ϕ) [u(Ct) + βu(Ct+1)] +
+ϕ2(1− ϕ)

h
u(Ct) + βu(Ct+1) + β

2u(Ct+2)
i
+ ....

(b) The result follows simply by expanding the expression in part a and

grouping terms together.

3. Recall that with isoelastic utility,
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Using the intertemporal Euler equation, we thus obtain,
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Since consumption has a conditional lognormal distribution, the natural log

of the gross consumption growth rate is conditionally normally distributed:
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[Consult footnote 41 on p. 313 of the book. Equation (2) follows from com-

puting the mean and variance of the random variable (−1/σ) log(Ct+1/Ct),
which is normally distributed when log(Ct+1/Ct) is.] Combining eqs. (1) and

(2) above and taking natural logs of the result, we arrive at

Et
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¾
or

logCt+1 − logCt = 1

2σ
Vart {εt+1}+ εt+1,

where εt+1 ≡ logCt+1 − Et {logCt+1}. Since εt+1 is a normal random vari-

able that is uncorrelated with past information (because it is a pure fore-

cast error), it is also statistically independent of that information on the

assumption that the past information itself is generated by a jointly normal

(i.e., Gaussian) stochastic process. In that case the conditional variance in

the preceding equation actually is a time-invariant constant, so the natural

log of consumption follows a random walk with a constant drift equal to
1
2σ
Var {εt+1} .

4. (a) Using eq. (32) in Chapter 2, we can write

Ct+1 − Ct = r(Bt+1 −Bt)
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The current account identity gives

Bt+1 −Bt = Yt + rBt − Ct = Yt − r

1 + r

∞X
s=t

µ
1
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¶s−t
EtYs,

which can be substituted into the previous equation for consumption to give

the result that the change in consumption equals the present value of changes

in expected future output levels.
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(b) If the process for output follows

Yt+1 − Yt = ρ (Yt − Yt−1) + ²t+1,

then (Et+1−Et)Yt+1 = ²t+1, (Et+1−Et)Yt+2 = (1+ ρ)²t+1, (Et+1−Et)Yt+3 =
(1 + ρ+ ρ2)²t+1, and so on. Therefore, for s > t,

(Et+1 − Et)Ys = 1− ρs−t
1− ρ ²t+1.

(c) Substituting the last expression into the equation for the change in con-

sumption derived in part a, we get the following
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1 + r

1 + r − ρ²t+1. (3)

As a result, provided that 0 < ρ < 1, the desire to smooth consumption

makes consumption innovations more variable than output innovations.

(d) The current account identity for date t+ 1 is

CAt+1 = Bt+2 −Bt+1 = Yt+1 + rBt+1 − Ct+1.

Because Yt+1 − EtYt+1 = ²t+1 and, by eq. (3) from part c above,

Ct+1 − EtCt+1 = Ct+1 − Ct = 1 + r

1 + r − ρ²t+1,

the preceding current account identity gives a current account innovation of

²t+1 − 1 + r

1 + r − ρ²t+1 =
−ρ

1 + r − ρ²t+1 < 0.
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Thus, a positive output innovation leads to a current account deÞcit, as

claimed at the end of section 2.3.3 in the book.

5. Work backward from the equation

CAt+1 −∆Zt+1 − (1 + r)CAt = ²t+1,

where ²t+1 is uncorrelated with date t or earlier information. Taking expec-

tations with respect to date t information yields

EtCAt+1 − Et∆Zt+1 − (1 + r)CAt = 0.

The previous equation can be rearranged to express CAt as

CAt =
1

1 + r
EtCAt+1 − 1

1 + r
Et∆Zt+1.

Through forward recursive substitution (and using the law of iterated condi-

tional expectations ) we obtain

CAt = −
∞X

s=t+1

µ
1

1 + r

¶s−t
Et∆Zs

[because as j →∞,
³

1
1+r

´j
EtCAt+j → 0]. This is Campbell�s (1987) �saving

for a rainy day� equation, eq. (43) in Chapter 2. The equation can alterna-

tively be derived using the lag and lead operator methodology described in

supplement C to Chapter 2. Start again with

CAt+1 −∆Zt+1 − (1 + r)CAt = ²t+1

and take expectations with respect to date t information to get

EtCAt+1 − Et∆Zt+1 − (1 + r)CAt = 0.

Using the lead operator we write this as

L−1CAt − L−1∆Zt − (1 + r)CAt = 0,
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or, dividing by 1 + r and rearranging, asµ
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Inversion of the lag polynomial on the left-hand side above gives
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To derive the converse, that the last equation implies CAt+1−∆Zt+1− (1+
r)CAt = ²t+1, one can simply reverse the steps above.

6. Write the expression for the current account as follows
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where the last equality is suggested in the hint. Then, multiplying both sides

by 1− 1
1+r
L−1, we have
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7. Equation (75) in appendix 2A of the book shows that as time T passes

and as B/Y →∞ along its unstable increasing trajectory,

Bt+T+1/Yt+T+1
Bt+T/Yt+T

→ (1 + r)σβσ

1 + g
.

Because Ys+1/Ys = 1+g, however, it follows that Bt+T+1/Bt+T → (1+r)σβσ

as T →∞, that is, net foreign assets grow asymptotically at the growth rate
of consumption. But the gross rate of consumption growth, (1+ r)σβσ, must

be strictly below 1 + r if, as we have assumed, an individual optimal plan

exists (see the discussion on p. 117 of the book). Thus the asymptotic gross

growth rate of foreign assets is below 1 + r and the transversality condition

lim
T→∞

(1 + r)−TBt+T+1 = 0

therefore is satisÞed.

8. If permanent output ßuctuates more than current output, as is the case

when output is a nonstationary random variable, then, as shown in exercise

4(d), a positive output innovation implies a decline in the current account:

the intertemporal approach can therefore yield a countercyclical current ac-

count. Also, in the presence of investment which enters the current account

with a negative sign, the current account can worsen following a positive

output innovation if ρ is sufficiently large. Refer to pp. 86-87 in the book for

details.

9. (a) Differentiating the Þrm�s objective function with respect to Is and

Ks, we get, respectively,

qs = 1 + χIs

and

qs =
1

1 + r
[As+1F

0(Ks+1) + qs+1] .
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(b) Combining the preceding two Þrst-order conditions, we get the following

dynamic system for q and K:

Kt+1 −Kt =
qt − 1
χ

,

qt+1 − qt = rqt −At+1F 0
Ã
Kt +

qt − 1
χ

!
.

(c) The phase diagram looks qualitatively the same as Þgure 2.9 in the book,

which is based on eqs. (66) and (67) in Chapter 2. The dynamics of q and

K and the slopes of the corresponding schedules are, however, quantitatively

different. For example, the slope of the ∆q = 0 schedule now is

dq

dK

¯̄̄̄
¯
∆q=0

=

AFKK

Ã
K +

q − 1
χ

!

r −
³
1
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´
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Ã
K +
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χ

! < 0,

not just in a neighborhood of the steady state, but globally. (Compare with

the slope given on p. 109 of the book.) As in the slightly more complex q

model of Chapter 2, the steady state is given by q̄ = 1, AFK(K̄, L) = r. The

steady state is independent of the adjustment costs, which determine only

the speed of transition to the steady state.

(d) Figure 2.9 can be used for the exercise. An unanticipated permanent rise

in A shifts the ∆q = 0 schedule immediately and permanently to the right,

raising the steady state capital stock to K̄ 0. The unique convergent saddle-
path SS also shifts to the right, becoming S0S0. Because the initial capital
stock is given as K̄ < K̄ 0, q rises in the short run (to place the economy on
its new saddle-path) and investment surges. Over time, however, q falls back

to 1 and investment decreases as K → K̄ 0.

(e) The principle for analyzing anticipated shocks is the same as that ap-

plied in Þgure 2.11. The Þrm learns on date t that productivity A will rise

permanently to A0 at a known future date T. Thus, the shifts described in
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schedules described in part d occur only on date T . Nonetheless, the Þrm

will adjust in anticipation so as to smooth its investment costs; and between

dates t and T , q and K therefore will follow the original equations of motion

(those involving A rather than A0). Thus, q jumps up initially and, until
date T , continues rising as capital is accumulated. The Þrm reaches the new

saddle-path S0S0 precisely on date T , and thereafter q falls toward 1 and K
rises to its new steady state. (An anticipated future fall in A would induce

a path qualitatively similar to the path shown in Þgure 2.11.)

(f) Marginal q does not equal average q because the installation cost function

assumed in this exercise is not linear homogeneous in K and I.
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