
THE DIAMETER OF INHOMOGENEOUS RANDOM GRAPHS

NICOLAS FRAIMAN AND DIETER MITSCHE

Abstract. In this paper we study the diameter of inhomogeneous random
graphs G(n, κ, p) that are induced by irreducible kernels κ. The kernels we
consider act on separable metric spaces and are almost everywhere continuous.

We generalize results known for the Erdős-Rényi model G(n, p) for several
ranges of p. We find upper and lower bounds for the diameter of G(n, κ, p) in
terms of the expansion factor and two explicit constants that depend on the

behavior of the kernel over partitions of the metric space.

1. Introduction

In this work we study metric properties of inhomogeneous random graphs, where
edges are present independently but with unequal edge occupation probabilities.
We study the behavior of the diameter for different ranges of the mean edge density.
Under weak assumptions we find tight asymptotic bounds of the diameter for
connected graphs in this random graph model.

Let S be a separable metric space and µ a Borel probability measure on S. Let
κ : S × S → [0, 1] be a measurable symmetric kernel. The inhomogeneous random
graph with kernel κ and density parameter p (depending on n) is the random graph
G(n, κ, p) = (V,E) where the vertex set is V = {1, . . . , n} and we connect each
pair of vertices i, j ∈ V independently with probability pij = κ(Xi, Xj)p, where
X1, . . . , Xn are independent µ-distributed random variables on S.

We study the asymptotic expansions for distances in the graph G(n, κ, p) by
associating to G(n, κ, p) two graphs induced by the kernel κ. Given two subsets
A,B ⊂ S, let

κ`(A,B) = ess inf{κ(x, y) : x ∈ A, y ∈ B},
κu(A,B) = ess sup{κ(x, y) : x ∈ A, y ∈ B}.

A finite partition A = {A1, . . . ,Am} of S is called essential, if it has no measure
zero sets and it covers all of S except possibly a measure zero set, that is µ(Ai) > 0
and µ(S \ ∪mi=1Ai) = 0. All partitions considered in the manuscript are essential
partitions. For a finite partition A = {A1, . . . ,Am} of S, we define the lower partition
graph P`(A) induced by A as the graph with vertex set A and where (Ai,Aj) is an
edge if κ`(Ai,Aj) > 0. Analogously, we define the upper partition graph Pu(A) as
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the graph with vertex set A and where (Ai,Aj) is an edge if κu(Ai,Aj) > 0. Note
that in both graphs we allow loops if κ`(Ai,Ai) > 0 (κu(Ai,Ai) > 0, respectively).
We only consider finite partitions with at least three parts (we see below that we
need this assumption for a claim about the diameter of the lower partition graph
when refining a partition).

A kernel κ on (S, µ) is reducible if there exists a set A ⊂ S with 0 < µ(A) < 1
such that κ = 0 almost everywhere on A× (S \ A). Otherwise κ is irreducible.

Throughout the paper we always assume that n is sufficiently large. We say that
a sequence of events holds with high probability, if it holds with probability tending
to 1 as n→∞. Since we are interested in results that hold with high probability
(rather than almost surely), we can work with essential partitions. Throughout the
paper we denote by ω an arbitrary function tending to infinity with n; however, in
all statements below the statement is stronger (the conditions are less restrictive,
respectively), if ω →∞ at a slower speed.

For two vertices u, v ∈ V belonging to the same connected component of a
graph G = (V,E), denote by dG(u, v) the graph distance between u and v, that is,
the number of edges on a shortest path between them. For a connected graph G,
let diamG = maxu,v dG(u, v). We study the diameter of G(n, κ, p) by studying the
diameters of the induced graphs P`(A) and Pu(A).

We define the following two constants:

∆` := inf
A

diamP`(A) and ∆u := sup
A

diamPu(A),

where A ranges over all partitions with no measure zero sets. Next, we define the
expansion factor

Φ :=

⌈
log n

log np

⌉
.

This quantity is about the diameter of G(n, p), where G(n, p) is the Erdős-Rényi
graph, as first shown by [5]. In order to simplify the statements of our results, we
consider values of n and p for which

(1)
(np)Φ

n
− ω log n→∞ and

(np)Φ−1

n
− 1

ω
log n→ −∞,

In fact, there is no need to have the same ω in both conditions, but since both
conditions of (1) are less restrictive if ω → ∞ at a slower rate, we may as well
assume that it is the same ω. For the relation of Φ to the diameter of the Erdős
and Rényi model G(n, p), recall the following lemma, first proved by [5]:

Lemma 1 ([6], Corollary 10.12). Let np ≥ ω(log n)3 and let k = k(n) ∈ N. Assume
(np)k/n− 2 log n→∞ and (np)k−1/n− 2 log n→ −∞. Then, with high probability
diam(G(n, p)) = k.

Observe that if np ≥ ω(log n)3, and n and p satisfy the conditions given in (1),
then the assumptions of Lemma 1 are satisfied. In this case, for k as in Lemma 1,
clearly k = Φ. (Our results hold also for the ranges in between with the obvious
changes. Since this is handled as in G(n, p), we focus on the one–value case for the
sake of clarity).

Throughout the paper we assume the following regularity conditions hold:
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Regularity conditions (R). Let G ∈ G(n, κ, p) with κ being irreducible, contin-
uous (µ ⊗ µ)-almost everywhere. Moreover, np ≥ ω(log n)3, and we assume that
the hypotheses given in (1) hold. We also assume that p < 1, so that with high
probability Φ ≥ 2. We also consider only kernels so that ∆u ≥ 2.

In Section 3 we show our first main result:

Theorem 1. Suppose that regularity conditions (R) hold and suppose ∆` < ∞.
Then

∆u ≤ ∆` ≤ ∆u + 2,

both bounds being tight.

Remark 1. The assumption ∆` <∞ is needed to get the desired inequalities: For
instance, consider the case S = [0, 1] with Lebesgue measure µ and for x ≤ y, let
κ(x, y) = f(x) for some function f that tends to 0 as x → 0 (for x > y, κ here
and below is extended by symmetry). Then for any finite partition A, we have
diamPu(A) = 1 and diamP`(A) =∞, since the part containing 0 is not connected
to any other part in P`, but the part containing 0 as well as all other parts are
connected between themselves by an edge in P`, and hence ∆` =∞ whereas ∆u = 1.

Our second main result is the following:

Theorem 2. Suppose that regularity conditions (R) hold. With high probability,
the following statements hold:

(i) If Φ < ∆u, then
∆u ≤ diamG(n, κ, p) ≤ ∆`.

(ii) If ∆u ≤ Φ < ∆`, then

Φ ≤ diamG(n, κ, p) ≤ ∆`.

Moreover, if there exists a partition A and Ai and Aj, with no walk of length
exactly Φ between them in Pu(A), then

Φ + 1 ≤ diamG(n, κ, p).

(iii) If 3 ≤ ∆` ≤ Φ = O(1), then

Φ ≤ diamG(n, κ, p) ≤ Φ + 1.

Moreover,
diamG(n, κ, p) = Φ + 1,

if and only if there exists a partition A and Ai and Aj , with no walk of length
exactly Φ between them in Pu(A).

(iv) If 3 ≤ ∆` <∞ and Φ = ω(1), then

Φ ≤ diamG(n, κ, p) ≤ Φ(1 + o(1)).

Remark 2. Continuing Remark 1, if ∆u = 1 and ∆` =∞, the value of p can be
chosen so that any value in [2,∞) is attained for diamG(n, κ, p): indeed, using the
notation of Remark 1, if for x ≤ y, we have say f(x) = x1/x (note that κ is bounded,
irreducible and continuous, f(x) is monotonically increasing on [0, 1], and f(x)→ 0
as x → 0), then with high probability we have diamG(n, κ, p) = ∞: indeed, first
note that with high probability we find one vertex u such that Xu ≤ C log n/n for
C being large enough. Next, such a vertex is isolated, since the expected number



4 NICOLAS FRAIMAN AND DIETER MITSCHE

of neighbors of such a vertex is at most n(C log n/n)n/C logn → 0, and the result
follows from Markov’s inequality. On the other hand, if for x ≤ y, f(x) = x1/2−ε

for some small ε > 0 (again κ is irreducible, continuous and bounded, and again
f(x) is monotonically increasing on [0, 1], and f(x)→ 0 as x→ 0) and p = Θ(1),
then with high probability diamG(n, κ, p) = 2: to see this, first note that with high
probability for all u, Xu ≥ 1/n log n. Next, with high probability all vertices are at
distance 2 from each other; indeed, if for all u, Xu ≥ 1/n log n, for a fixed pair of
vertices, the probability of having no common neighbor is at most(

1− (1/(n log n))2( 1
2−ε)p

)n−2

≤ e−n2ε+o(1)

,

and by a union bound over all
(
n
2

)
pairs of vertices, we see that with high probability

each pair of vertices has a common neighbor. By suitable choices of p any value
in [2,∞) can be obtained (the same example can be used to show that all pairs of
vertices are at distance at most k for any k ≥ 3, and some are actually at distance
exactly k).

1.1. Background and history. A discrete version of this model was introduced
by Söderberg [19]. The sparse case (when the number of edges is linear in the
number n of vertices) was studied in detail by Bollobás, Janson and Riordan [7].
Among other things they give an asymptotic formula for the diameter of the giant
component when it exists. Connectivity at the intermediate case was analyzed by
Devroye and Fraiman [11]. The dense case (when the number of edges is quadratic
in n) is closely related with the theory of graph limits started by Lovász and Szegedy
[15] and further studied in depth by Borgs, Chayes, Lovász, Sós and Vesztergombi
[8, 9] among others. For a thorough introduction to the subject of graph limits see
the book by Lovász [14]. Recently, the authors of [12] studied the clique number of
dense inhomogeneous graphs.

The diameter of random graphs has been studied widely. In particular, for the
Erdős-Rényi model, Bollobás [5] generalized the results of Klee and Larman [13]
characterizing the case of constant diameter. Later, Chung and Lu [10] proved con-
centration results in various different ranges. More recently, Riordan and Wormald
[18] completed the program to study the missing cases for the Erdős-Rényi model.

The critical window, when p = 1/n + cn−4/3, for G(n, p) is much harder to
analyze. Nachmias and Peres [16] obtained the order of the diameter, namely
n1/3. Addario–Berry, Broutin and Goldschmidt [1, 2] proved convergence, in the
Gromov–Hausdorff distance, of the rescaled connected components to a sequence of
continuous compact metric spaces. In particular, the diameter rescaled by n−1/3

converges in distribution to an absolutely continuous random variable with finite
mean. Their approach was extended by Bhamidi, Sen and Wang [4] to the Norros–
Reittu [17] random graph model, and then further generalized by Bhamidi, Broutin,
Sen and Wang [3].

1.2. Structure of the paper. In Section 2 we introduce all concepts, additional
definitions and results needed to prove Theorem 2. In Section 3 we prove Theorem 1
on the behavior of the upper and lower diameters ∆u and ∆`. In Section 4 we prove
that the number of vertices that are at a fixed distance from a given vertex grows
exponentially as a function of the distance. Finally, in Section 5 we combine the
results of the previous sections to give the proof of Theorem 2.



THE DIAMETER OF INHOMOGENEOUS RANDOM GRAPHS 5

2. Framework

In this paper we follow the notation from [7] with minor changes. We also use
the following standard notation: for functions f(n) and g(n) we write f = O(g) if
|f |/|g| is bounded and f = o(g) if |f |/|g| → 0. We say that f = Ω(g) if g = O(f),
and f = Θ(g) if both f = O(g) and f = Ω(g) holds.

Given a subset A ⊂ S we write V (A) for the set of vertices with type in A, i.e.,

V (A) =
{
v ∈ V : Xv ∈ A

}
.

The asymptotic expansions for distances in the graph G(n, κ, p) are obtained
by looking at the lower and upper partition graphs P`(A) and Pu(A) of a finite
partition A = {A1, . . . ,Am} of S, as defined in the introduction. These graphs are
finite graphs that describe approximations of κ that may be successively refined.
More formally, we have the following definition:

Definition 1. We say that a partition A is a refinement of B, denoted by A ≺ B,
if for every A ∈ A there exists B ∈ B such that A ⊂ B. Note that in this case, for

each Bi ∈ B there exists mi ∈ N and A(i)
1 , . . . ,A(i)

mi ∈ A such that Bi = ∪mis=1A
(i)
s

µ-almost everywhere.

Let us examine the effect of a refinement on the partition graphs: it is clear
that κu(Bi,Bj) > 0 if and only if there exist Ai,Aj with Ai ⊂ Bi and Aj ⊂ Bj such
that κu(Ai,Aj) > 0. This implies that Pu(B) is obtained from Pu(A) by contracting
the vertices Ai ⊂ Bi into one vertex Bi. In particular,

diamPu(B) ≤ diamPu(A).

On the other hand, κ`(Bi,Bj) > 0 if and only if for all Ai ⊂ Bi and Aj ⊂ Bj we
have κ`(Ai,Aj) > 0. This implies that the graph obtained by splitting each vertex
Bi into the parts of A that it contains is a subgraph of P`(A). In particular,

diamP`(B) ≥ diamP`(A).

(If we had not made our assumption on considering partitions with at least three
parts, then the claim could be false when splitting a partition with one or two parts).
Note also that if A ≺ B and Ai ⊂ Bi and Aj ⊂ Bj , we always have

dP`(A)(Ai,Aj) ≤ dP`(B)(Bi,Bj),
dPu(A)(Ai,Aj) ≥ dPu(B)(Bi,Bj).

When studying ∆` and ∆u we want to avoid trivial cases where they are infinite
because there is a structural obstruction for connectivity given by κ. If κ is reducible
then the whole graph G(n, κ, p) is disconnected since almost surely there are no
edges between the sets V (A) and V (S \ A). Since we want to work with connected
graphs, we restrict our attention to the irreducible case.

3. Upper and lower diameters

In this section we study the behavior of the diameters ∆u and ∆`. The goal is
to prove Theorem 1. We split the proof into two lemmas. We suppose in the two
lemmas and the claim of this section that regularity conditions (R) hold.
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Given two partitions A and B, we define their common refinement as

A ∨ B := {A ∩ B : µ(A ∩ B) > 0, for A ∈ A and B ∈ B}.
(Recall that since we consider essential partitions only, A∨B still remains an essential
partition of S.)

Lemma 2. If ∆` <∞, then ∆u ≤ ∆`.

Proof. Since ∆` <∞, there exists a partition A such that diamP`(A) = ∆`. Let B
be an arbitrary partition. Consider the common refinement A ∨ B. Since P`(A ∨ B)
is a subgraph of Pu(A ∨ B) we have that

diamPu(A ∨ B) ≤ diamP`(A ∨ B).

Moreover, we also have that

diamPu(B) ≤ diamPu(A ∨ B) and diamP`(A ∨ B) ≤ diamP`(A),

because A ∨ B is a refinement of both A and B. Combining these three inequalities
we get that diamPu(B) ≤ diamPu(A) ≤ diamP`(A) = ∆` < ∞. Therefore, the
inequality also holds after taking the supremum over all partitions. In particular,
we can choose B such that diamPu(B) = ∆u, and the desired inequality follows. �

In particular, the above bound gives an easy way to determine ∆u and ∆` in
the case they are equal. It suffices to find a partition A for which diamPu(A) =
diamP`(A) holds.

We can also show the following bound.

Lemma 3. If ∆` <∞, then ∆` ≤ ∆u + 2.

Proof. We state the following claim which we prove below.

Claim 1. Suppose ∆u < ∞. Given a partition B, let Bs,Bf ∈ B. There exists a
refinement A ≺ B such that there exist As,Af ∈ A with As ⊂ Bs, Af ⊂ Bf such
that dP`(A)(As,Af ) ≤ ∆u.

Assuming the claim, the lemma follows easily: indeed, start with a partition B
with diamP`(B) <∞. Consider all pairs

P = {(Bi,Bj) ∈ B× B : dP`(B)(Bi,Bj) > ∆u + 2}.
If P = ∅ then we are done, as ∆` ≤ maxBi,Bj∈B dP`(B)(Bi,Bj) ≤ ∆u + 2. Therefore
suppose P 6= ∅. Since diamP`(B) < ∞, given (Bi,Bj) ∈ P there exist Bs and Bf
such that κ`(Bi,Bs) > 0 and κ`(Bf ,Bj) > 0.

Since ∆` <∞, by Lemma 2 we have ∆u ≤ ∆` <∞. Thus, by Claim 1, there
exists A ≺ B such that dP`(A)(As,Af ) ≤ ∆u for some As,Af with As ⊂ Bs and
Af ⊂ Bf . Then, for any Ai,Aj ∈ A such that Ai ⊂ Bi and Aj ⊂ Bj we have that
κ`(Ai,As) > 0 and κ`(Af ,Aj) > 0, and therefore dP`(A)(Ai,Aj) ≤ ∆u + 2.

We construct such a partition A for each pair in P. Since P is finite, con-
sider a common refinement C of all of these partitions. It is clear that C has
maxCi,Cj∈C dP`(C)(Ci, Cj) ≤ ∆u + 2, and since ∆` ≤ maxCi,Cj∈C dP`(C)(Ci, Cj), the
lemma follows. �
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We first give a high-level strategy of the proof of Claim 1: we first check whether
in the partition B we find r ≤ ∆u, x1 ∈ Bs, xi ∈ Bi for i = 2, . . . , r, xr+1 ∈ Bf such
that κ(xi, xi+1) ≥ δ for some δ > 0 for all i = 1, . . . , r (this corresponds to a path
of length r ≤ ∆u from Bs to Bf in the upper partition graph). If this is the case,
we easily find the partition A by considering parts that contain small enough balls
around the r + 1 elements xi. Otherwise, we refine B by partitioning each minimal
length path from Bs to Bf ; we split each vertex Bi of the path into 3 parts: one
part containing those elements xi ∈ Bi for which there exists a sequence of x1 ∈ Bs,
xj ∈ Bj for j = 2, . . . , i−1 with κ(xj , xj+1) ≥ δ for some δ > 0 for all j = 1, . . . , i−1
(this corresponds to a minimal length path from Bs to this part of Bi), one part
containing those elements xi ∈ Bi for which there exists a sequence xi ∈ Bi, xj ∈ Bj
for j = i + 1, . . . , r (for some r ≤ ∆u), xr+1 ∈ Bf with κ(xj , xj+1) ≥ δ for some
δ > 0 for all j = i, . . . , r (this corresponds to a minimal length path from this
part of Bi to Bf ), and one part containing the remainder of Bi. Crucially, in the
upper partition graph the distance of the minimal length path then must increase
in this refinement. For the common refinement of all partitions corresponding to all
minimal length paths, the argument is repeated, and since ∆u is finite, after finitely
many steps we must find the desired path or reach a contradiction. We now give
the detailed proof.
Proof of Claim 1. Eliminate from S all points where κ is not continuous. Note
that the removed set has measure zero and does not affect the calculations of
essential infima and suprema.

Next, suppose there exists δ > 0 and suppose that in the remaining set there
exist x1, . . . , xr+1 with r ≤ ∆u with x1 ∈ B1 := Bs, xr+1 ∈ Br+1 := Bf , xi ∈ Bi
for i = 2, . . . , r and κ(xi, xi+1) ≥ δ for i = 1, . . . , r. By continuity of κ, there exist
εi, εi+1 > 0 such that for any y in the ball B(xi, εi) and z in the ball B(xi+1, εi+1)
we have κ(y, z) ≥ δ/2. Consider the partition A ≺ B in the following way: all
parts except for Bi with i = 1, . . . , r + 1 remain unchanged: for i = 1, . . . , r + 1,
Bi is split into Ai = Bi ∩ B(xi, εi) and A′i = Bi \ B(xi, εi). Since in A we have
dP`(A)(As,Af ) ≤ r ≤ ∆u, we found the desired partition A.

Otherwise, there exists no such path of length r ≤ ∆u. Consider any shortest
path B1 := Bs,B2, . . . ,Br+1 := Bf of length r ≤ ∆u in Pu(B). For i = 1, . . . , r + 1
let

Asi := {x ∈ Bi : ∃(x1, . . . , xi = x) ∈ (B1, . . . ,Bi) | κ(xj , xj+1) > 0, j = 1, . . . , i− 1}
be the sets of vertices of Bi to which there is a path that starts at Bs. Similarly, let

Afi := {x ∈ Bi : ∃(xi = x, . . . , xr+1) ∈ (Bi, . . . ,Br+1) | κ(xj , xj+1) > 0, j = i, . . . , r}
be the sets of vertices of Bi from which there is a path that finishes at Bf . Note

that for all i = 1, . . . , r + 1, we must have Asi ∩ Afi = ∅, as otherwise we would
have a path of length r between Bs and Bf in P`(B), and we would be in the first
case addressed in this claim. Consider the partition A ≺ B induced from splitting

Bi into Asi ,Afi and Bi \ (Asi ∪ Afi ). Since some of these sets might be empty we
consider the partition obtained after removing sets of measure zero. Note that for

the new partition A, the shortest path starting from As1 and ending at Afr+1 and

using only elements Asi ,Afi ,Bi \ (Asi ∪ Afi ) for some i = 1, . . . , r + 1 must have
length d1 ≥ r + 1 in the upper partition graph corresponding to A1 := A (indeed, if

there exists i, and x ∈ Asi , y ∈ Afi+1 with κ(x, y) > 0, then there would exist δ > 0
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and x1 ∈ B1, . . . , xr+1 ∈ Br+1 with κ(xi, xi+1) ≥ δ for i = 1, . . . , r, and we would
be in the first case). If there are several shortest paths of length r in Pu(B) between
Bs and Bf , do independently the same refinement and obtain for each such path a
refined partition Ai ≺ B. Note that there are only finitely many partitions, since
there are only finitely many shortest paths of length r in Pu(B). As before, when
refining, distances in the upper partition graph either stay the same or increase. We
may thus take a partition C which is a common refinement of all Ai, and we have
for all Cs, Cf ∈ C with Cs ⊂ Bs and Cf ⊂ Bf , dPu(C)(Cs, Cf ) ≥ d1. If d1 > ∆u, we
found a new partition C with diameter bigger than ∆u, contradicting the definition
of ∆u. Otherwise we apply the claim with partition C playing the role of partition
B. Note that there are only finitely many elements Cs, Cf with Cs ⊂ Bs and Cf ⊂ Bf .
For a fixed pair of such elements Cs, Cf repeat the argument of the proof of the
claim (yielding a sequence of refined partitions corresponding to all shortest paths
of length d1 between them), giving either the desired path or a partition being a
common refinement of all these partitions. Taking then again the refinement of
all refined partitions corresponding to all pairs Cs, Cf yields a new refinement D in
which all pairs are at distance d2 ≥ d1 + 1, and the claim can then be applied with
D playing the role of C. Since ∆u <∞, after finitely many iterations we must have
found the desired path of length at most ∆u, and the claim follows. �

The first part of Theorem 1 follows now easily by combining Lemma 2 and
Lemma 3. For the second part, to show that both bounds can be attained, on the
one hand consider a constant kernel defined as κ(x, y) = 1 for all x, y. Clearly, for
any partition A of S, the upper and lower partitions corresponding to A are the
same graphs, and therefore for such a kernel ∆` = ∆u. On the other hand, to show
that ∆` = ∆u + 2 can be attained, consider the following example: fix k ≥ 2 and let

S = [0, 1/2] ∪
k+1⋃
i=1

{i} ∪ [k + 3/2, k + 2]

µ =
1

k + 3

(
2λ[0,1/2] +

k+1∑
i=1

δi + 2λ[k+3/2,k+2]

)
where δi is the Dirac measure and λI is the Lebesgue measure restricted to the
interval I (by suitable rescaling of intervals we could clearly have the same example
in [0, 1]); µ is then the new measure obtained from the combinations of Dirac and
Lebesgue measures. Define κ for x ≤ y as follows (and extend by symmetry):

κ(x, y) =



1 if y = x+ 1 and x ∈ {1, . . . , k},
1 if x ∈ [0, 1/2] and y = 1,

x if x ∈ [0, 1/2] and y = 2,

k + 2− x if x = k and y ∈ [k + 3/2, k + 2],

1 if x = k + 1 and y ∈ [k + 3/2, k + 2],

0 otherwise.

It is easy to see that ∆` = k+ 2 and ∆u = k: indeed, for any partition A, since
A is finite, there must exist an element A0 of A such that µ(A0 ∩ [0, ε]) > 0 for
all ε > 0. Therefore, ess infx∈A0 κ(x, 2) = 0. Analogously, there must also exist an
element Ak+2 of A such that µ(Ak+2∩ [k+ 2− ε, k+ 2]) > 0 for all ε > 0. Therefore,
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1 2 3 k + 1kk − 14

[0, 1/2] [k+3/2,k+2]

Figure 1. The partition graphs P`(A) and Pu(A) only differ in
the dotted edges at the endpoints.

ess infx∈Ak+2
κ(x, k) = 0. This implies that there cannot be a path of length strictly

less than k + 2 between A0 and Ak+2 in P`(A), and hence ∆` ≥ k + 2. To show
that ∆u ≤ k, consider any partition A and consider two parts Ai,Aj such that
there exist ε > 0 with µ(Ai ∩ [0, ε]) = µ(Aj ∩ [0, ε]) = µ(Ai ∩ [k + 2− ε, k + 2]) =
µ(Aj ∩ [k + 2− ε, k + 2]) = 0. Then, clearly there exists a path of length at most k
in Pu(A) between Ai and Aj . Next, suppose that A0 is such that µ(A0 ∩ [0, ε]) > 0
for all ε > 0. Then, ess supx∈A0

κ(x, 2) > 0. Similarly, suppose that Ak+2 is such
that µ(Ak+2 ∩ [k + 2 − ε, k]) > 0 for all ε > 0. Then, ess supx∈Ak+2

κ(x, k) > 0.

Therefore, we can connect A0(Ak+2, respectively) with any other element of A in
Pu(A) in at most k steps, and thus ∆u ≤ k. In fact, ∆u = k and ∆` = k + 2 by
taking the partition A = {[0, 1/2], {1}, . . . , {k + 1}, [k + 3/2, k + 2]}.

The proof of Theorem 1 is complete.

4. Expansion of neighborhoods

In this section we prove that the number of vertices at distance k from a given
vertex grows exponentially with k, showing that there exist pairs of vertices that
are not too close. The main tool we use is a guided exploration process together
with concentration inequalities. In all lemmas of this section we assume as before
that regularity conditions (R) hold.

Definition 2. Given a partition A, a configuration of points X1, . . . , Xn is called
A-balanced if for each part A ∈ A we have |V (A)| ≥ µ(A)n/2.

Lemma 4. A randomly chosen configuration X1, . . . , Xn is A-balanced with proba-
bility 1− e−Ω(n).

Proof. Consider a fixed part A of A. Every element Xi belongs to A with probability
µ(A), and therefore, the expected number of Xi in µ(A) is nµ(A). Moreover, all
elements are independent, and the result follows by Chernoff bounds together with
a union bound over all parts A. �

Let χ = {X1, . . . , Xn} be a randomly chosen configuration in Sn (that is, each
Xi is chosen independently according to µ). We write Pχ (·) = P (· | χ) as shorthand
notation. We need a few definitions: let

κmin := min{κ`(Ai,Aj) : (Ai,Aj) is an edge of P`(A)}
and for a partition A = {A1, . . . ,Ar} set

‖A‖µ = min{µ(Ai) : Ai ∈ A}.
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Definition 3. For a given a partition A, we define the critical length as

Lc = max{t : κminp(κmin‖A‖µnp/16)t ≤ 1}.
Also, a sequence A0,A1, . . . ,Aq is an expansion walk in P`(A) if κ`(At,At+1) > 0
for all t, and the sequence does not repeat parts after the Lc-th step, that is, As 6= At
for s 6= t and s > Lc.

Remark 3. Note the following bounds on Lc.

(i) Φ− 3 ≤ Lc.
By the second assumption of (1), (np)Φ−1/n ≤ (log n)/ω. Also κ ≤ 1, thus

κminp(κmin‖A‖µnp/16)Φ−3 ≤ κminp(κmin‖A‖µ/16)Φ−3 n log n

ω(np)2
≤ log n

ω(np)
≤ 1,

where the last inequality follows from our assumption of np ≥ ω log3 n.

(ii) If elog2(np) ≥ ωn then Lc ≤ Φ− 1.
By the first assumption of (1), (np)Φ ≥ ωn log n, and therefore

κminp(κmin‖A‖µnp/16)Φ = Ω
(
ωnp log n(κmin‖A‖µ/16)Φ

)
> 1,

where the last inequality follows from the fact that Φ = Θ(log n/ log(np)) and

the assumption elog2(np) ≥ ωn.

(iii) If elog2(np) ≤ ωn then Lc ≤ Φ(1 + α(n)) with α(n) = o(1) ∩ ω(1/ log(np)).
By the same argument, for such a function α(n),

κminp(κmin‖A‖µnp/16)Φ(1+α(n)) = Ω
(
ω(np)Φ·α(n) log n(κmin‖A‖µ/16)Φ(1+α(n))

)
= Ω

(
eΦ·α(n) log(np)e−Θ(logn/ log(np))

)
> 1.

Given an expansion walk, we define a guided exploration process on the set of
vertices. At each step t we maintain a partition of the vertex set into three subsets
Γt, Et, Nt (active, explored, and neutral): explored vertices and edges incident to
them are discarded in step t (and from step t on), edges between active and neutral
vertices have not been exposed yet, and edges between two neutral vertices have not
been exposed yet either. In step t edges between active vertices and (some) neutral
vertices are exposed in a fixed order. Our guided exploration process has two phases.
While t ≤ Lc + 1, we obtain a set Γt ⊂ V (At) such that |Γt| = (κmin‖A‖µnp/16)t

(we assume for simplicity that κmin‖A‖µnp/16 is an integer). In this phase, we
expand the size of the previous subset by a factor of κmin‖A‖µnp/16 at each step.
In the second case, for t > Lc + 1, we obtain subsets of linear size and we visit a
new part at each step.

More precisely, let u ∈ V (A0). Define Γ0 = {u}, E0 = E1 = ∅, and N0 = V \{u}.
To define Γt recursively for t ≥ 1, we consider the vertices in V (At) \ Et in order
until we reach a certain size. Denote the desired size at step t by

s(t) =

{
(κmin‖A‖µnp/16)t, if t ≤ Lc + 1,

‖A‖µn/16, otherwise.

(We suppose for simplicity that s(t) is an integer for all t.) Define Γ0
t = ∅ and let

the event F0 = ∅. For s ≤ s(t), let

ust = min{v ∈ V (At) \ (Et ∪ Γs−1
t ) : dG(v,Γt−1) = 1},
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if such an element exists, and let Γst = Γs−1
t ∪ {ust}. Otherwise, we fail at step t

while trying to add the s-th element and we stop the process. Denote this event by
Ft,s. Define the event of failing by step t as

Ft =

t−1⋃
j=1

Fj ∪
s(t)⋃
s=1

Ft,s.

Finally, if Ft does not hold, let

Γt = Γ
s(t)
t \ Et,

Nt = Nt−1 \ (Γt ∪ Et),
Et+1 = Et ∪ Γt.

(Recall that, for t > Lc, we only visit parts that have never been visited before,
that is, for t > Lc, At 6= At′ for any t′ 6= t, and thus all vertices in V (At) are
neutral.)

Remark 4. Note that since there are only finitely many elements in each partition,
for every expansion walk of length q, we have q − Lc ≤ L for some constant L > 0.
Note also that if Ft does not hold, then |Γt| = s(t).

In the following lemma we show that if in one step of the expansion walk the
set of neutral vertices (restricted to a certain part in the expansion walk) is still
large enough, we expand well from an active set (by definition of the exploration
process, the active set is always restricted to one part in the expansion walk).

Lemma 5. Let A be a partition of S and χ be A-balanced. Fix an expansion walk
A0,A1, . . . ,Aq in P`(A). Let u ∈ V (A0) and t ∈ N. Consider the t-th step of the
exploration process. Then,

Pχ

(
Ft | Fct−1

)
≤ e−s(t)/2.

Proof. Since χ is A-balanced, in particular we have |V (At)| ≥ µ(At)n/2. Moreover,
for t > Lc, by definition of an expansion walk, |Nt ∩ V (At)| = |V (At)|, and for
t ≤ Lc, |Nt ∩ V (At)| ≥ µ(At)n/4 ≥ ‖A‖µn/4, since by definition of Lc and our

assumption on np ≥ ω log3 n,

∑
t≤Lc

|Γt| ≤
Lc∑
s=0

1

κminp(κmin‖A‖µnp/16)s
≤ 2

κminp
≤ n

log3 n
≤ ‖A‖µn

4
.

For t > Lc + 2, each of the vertices in |Nt−1 ∩ V (At)| is connected to at least
one vertex in Γt−1 with probability at least 1− (1− κ`(At−1,At)p)|Γt−1|, and this
lower bound holds independently for all vertices. For t ≤ Lc + 2, note that for every
vertex v ∈ Nt−1, for all but at most a o(1)-fraction of the pairs (v, w) with w ∈ Γt−1

there is no knowledge about the presence of the edge vw (we say, the pair has not
been exposed yet): indeed, since for all t ≤ Lc + 2, |Γt−1| = o(n) and np ≥ ω log3 n,
all but a o(1)-fraction of the vertices in |Γt−1| have not been active at time t− 2,
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and the vertex pairs incident to them have not been exposed yet. Hence, each such
vertex is also connected to at least one vertex in Γt−1 with probability at least
1− (1− κ`(At−1,At)p)|Γt−1|(1−o(1)). Note that

1− (1− κ`(At−1,At)p)|Γt−1| ≥ 1− (1− κminp)
|Γt−1|.

In the case when t ≤ Lc + 1, we have

κminp|Γt−1| = κminps(t− 1)

= κminp(κmin‖A‖µnp/16)t−1

≤ κminp(κmin‖A‖µnp/16)Lc ≤ 1,

by definition of Lc. Thus, we have

1− (1− κminp)
|Γt−1|(1−o(1)) ≥ κminp|Γt−1|/2.

The number of neighbors of Γt−1 in Nt−1 ∩ V (At) stochastically dominates a
binomial random variable with parameters ‖A‖µn/4 and κminp|Γt−1|/2. The desired
concentration then holds by applying Chernoff bounds for binomial random variables.

In the case when t > Lc + 1, we have

κminp|Γt−1| = κminps(t− 1) ≥ κminp(κmin‖A‖µnp/16)Lc+1 > 1

by definition of Lc. Hence, in this case,

1− (1− κ`(At−1,At)p)|Γt−1|(1−o(1)) ≥ 1− e−κ`(At−1,At)p|Γt−1|(1−o(1))

≥ 1− e−κminp|Γt−1|(1−o(1))

≥ 1− e−1

≥ 1/2.

The number of neighbors of Γt−1 in Nt−1 ∩ V (At) stochastically dominates a
binomial random variable with parameters ‖A‖µn/4 and 1/2, and again the desired
concentration then holds by applying Chernoff bounds for binomial random variables.

�

We immediately obtain the following lemma.

Lemma 6. Let A be a partition of S. Fix an expansion walk A0,A1, . . . ,Aq in
P`(A). Let u ∈ V (A0). Then

P
(
|Γq| < s(q)

)
≤ e− log3 n.

Proof. First assume that χ is A-balanced. By Lemma 5 we have that

Pχ

(
Fcq
)
≤

q∑
t=1

Pχ (Fct |Ft−1)

≤
q∑
t=1

e−s(t)/2

≤
Lc+1∑
t=1

e−(κmin‖A‖µnp/16)t/2 +

q∑
t=Lc+2

e−‖A‖µn/32

= e−Ω(np) + (q − Lc − 1)e−Ω(n) ≤ (1/2)e− log3 n,
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where the last inequality follows from the fact that q − Lc ≤ L for some constant L
(see Remark 4), and due to the assumption of np ≥ ω log3 n. Now, denote by B the
event that χ is A-balanced. We have

P
(
|Γq| < s(q)

)
= E

(
Pχ

(
|Γq| < s(q)

)
(1B + 1Bc)

)
,

where the expectation is taken with respect to the configuration χ. By the first part
of this lemma and by Lemma 4,

P
(
|Γq| < s(q)

)
= E

(
Pχ

(
|Γq| < s(q)

)
1B

)
+ E

(
Pχ

(
|Γq| < s(q)

)
1Bc

)
≤ (1/2)e− log3 n + P (Bc)
≤ (1/2)e− log3 n + e−Ω(n)

≤ e− log3 n. �

Lemma 7. Let A be a partition such that Ar,As,Aj is an expansion walk in P`(A)
and there is an expansion walk of length q from Ai to Ar. Then, there exists a
constant c > 0 such that for u ∈ V (Ai), w ∈ V (Aj),

P (dG(u,w) > q + 2) ≤ e−(min{(cnp)q+2/n,log3 n}).

Proof. Let Γ(u) and Γ(w) be the associated guided exploration processes starting
from u and w, respectively. Note that by Lemma 6, with probability at least

1− e− log3 n,

|Γq(u)| = s(q).

Also, with probability at least 1− e− log3 n, |Γ1(w)| = ‖A‖µκminnp/16. Assume that
both |Γq(u)| = s(q) and |Γ1(w)| = ‖A‖µκminnp/16. For u = w the statement is
trivial, thus assume u 6= w. If w ∈ Γt(u) for some t ≤ q, then the statement trivially
holds as well, so assume also this is not the case.

Case 1: Γq−1(u) ⊆ As and |Γq−1(u)| = Ω(|As|/ log3 n). In this case, by our

assumption of np ≥ ω log3 n, with probability at least 1 − e− log3 n, dG(u,w) ≤ q:
indeed, the probability that there is no edge between Γq−1(u) and Γ1(w) is at most

(1− κminp)
Ω(n2p/ log3 n) ≤ e−Ω((np)2/ log3 n) ≤ e− log3 n, and the statement follows.

Case 2: Γq−1(u) ⊆ As and |Γq−1(u)| = o(|As|/ log3 n). In this case (or also,
if in previous steps of the expansion walk starting from u some edges between
vertices in As and Ar were exposed), Γq−1(u) is a randomly chosen subset of As,
independently of Γ1(w), since by assumption w /∈ Γt(u). Then, by our assumption of

np ≥ ω log3 n, with probability at least 1− e− log3 n, |Γq−1(u)∩ Γ1(w)| = o(|Γ1(w)|),
and at most a o(1)-fraction of pairs of vertices in Γq(u) and Γ1(w) has been exposed.
(The same clearly holds if no edge between vertices of As and Ar has been exposed
in the expansion walk starting from u.) Thus, the probability that there is no edge
between Γq(u) and Γ1(w) is at most

(1− κminp)
(1+o(1))s(q)‖A‖µκminnp/16 ≤ e−(min{(cnp)q+2/n,c(np)2})

for a sufficiently small constant c > 0.

In all cases, noting that (np)2 ≥ ω log3 n, the lemma follows by summing the
failure probabilities. �
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5. Bounding the diameter

We dedicate this section to the proof of Theorem 2. We break up the proof
of the theorem into seven lemmas where we study the behavior of the diameter of
G(n, κ, p) depending on the relationships between Φ,∆u and ∆`. Once more, we
assume in all lemmas that regularity conditions (R) hold.

Lemma 8. With high probability, diamG(n, κ, p) ≥ ∆u.

Proof. Consider a partition A attaining ∆u. With probability 1, there is no edge
between any pair of vertices w, x and any two elements Ak,A` ∈ A, such that
w ∈ V (Ak), x ∈ V (A`), and Ak,A` /∈ E(Pu(A)). Note that with probability
1− e−Ω(n) we can find two vertices u, v ∈ V (Ai), V (Aj) such that Ai and Aj are at
distance ∆u in Pu(A), and hence the lemma follows. �

Lemma 9. Suppose ∆` > Φ. With high probability, diamG(n, κ, p) ≤ ∆`.

Proof. We may assume ∆` <∞, as otherwise there is nothing to prove. Consider
a partition A attaining ∆`, and consider two arbitrary vertices u ∈ V (Ai) and
w ∈ V (Aj). There exists Ar ∈ A such that Ar,As,Aj is an expansion walk of
length 2 in P`(A), and such that there exists an expansion walk of length q from Ai
to Ar, for some Φ− 2 ≤ q ≤ ∆` − 2: we may assume the upper bound, since if no
such walk of length at most ∆` − 2 would exist, then also no path of length at most
∆` − 2 between Ai and Ar would exist, and then Ai and Aj would be at distance
bigger than ∆`, contradicting the fact that the maximal distance between Ai and
Aj in P`(A) is at most ∆`. On the other hand, we clearly may assume the lower
bound, since for q ≤ Φ− 3 we may reuse partitions to make the walk longer: more
precisely, if the expansion walk had length Φ− 3 or less, by making zigzags between
the first two partitions of the walk we can make the walk longer and end up with a
walk of length Φ− 2 or Φ− 1; indeed, note that ∆` ≥ 3, hence there exist at least
four partitions, and the last two partitions of the walk can be chosen to appear
only once; all other partitions can be reused, since by Remark 3(i), Φ− 3 ≤ Lc. By
Lemma 7,

P (dG(u,w) > q + 2) ≤ e−(min{(cnp)q+2/n,log3 n}) ≤ n−ω,
where the second inequality uses the fact that q + 2 ≥ Φ and (cnp)Φ/n ≥ ω log n
which follows from the first assumption of (1), noting that Φ = O(1). By a union
bound over all pairs of vertices, the statement follows. �

Lemma 10. With high probability, diamG(n, κ, p) ≥ Φ.

Proof. Since κ ≤ 1, we can couple G(n, κ, p) so that it is a subgraph of G(n, 1, p).
This can be done, for instance, by using uniform random variables Uij ∈ [0, 1] and
letting each edge be present if Uij < κ(Xi, Xj)p in G(n, κ, p), and if Uij < p in
G(n, 1, p). Note that G(n, 1, p) is nothing but G(n, p). Recall that by Lemma 1
we have diamG(n, p) = Φ. Hence, with high probability we have diamG(n, κ, p) ≥
diamG(n, p) = Φ. �

Lemma 11. Suppose Φ ≥ ∆u. If there exists a partition A and i ≤ j, such that
there exists no path of length exactly Φ between Ai and Aj in Pu(A), then with high
probability diamG(n, κ, p) ≥ Φ + 1.
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Proof. Fix an arbitrary partition A and let i ≤ j as in the statement of the lemma.
First recall that since κ ≤ 1, by the same argument as in Lemma 10, G(n, κ, p) can
be coupled to be a subgraph of G(n, p). Let Y be the random variable counting the
number of vertices y ∈ V (Ai) such that there exists z ∈ V (Aj) at distance bigger
than Φ − 1 in G(n, κ, p), and let Z be the same random variable in the coupled
G(n, p), so that Y ≥ Z.

Our proof is based in the second moment method, using ideas similar to
Theorem 10.10 of [6]. From now on we consider the coupled G(n, p) graph. First we
want to bound from below the first moment of Z. Denoting by B the event that χ
is A-balanced, we have that

(2) EZ ≥ E(Z | B)P (B) .

Note that P (B) = 1 + o(1) since P (Bc) ≤ e−Ω(n). Now we condition on the point
configuration χ, which we can assume to be A-balanced. For y ∈ V (Ai), let Ry be
the event that there exists z ∈ V (Aj) such that dG(y, z) ≥ Φ. We have

EχZ =
∑

y∈V (Ai)

Pχ (Ry) .

Given a vertex v ∈ V (G), define

B(v) = {u : dG(u, v) ≤ Φ− 2} and S(v) = {u : dG(u, v) = Φ− 2}.
We say that the event Ey holds if we have

|B(y)| ≤ 2(np)Φ−2 and |S(y)| = (1 + o(1))(np)Φ−2.

To bound the probability of Ry from below, we note that

Pχ (Ry) ≥ Pχ (Ry | Ey) Pχ (Ey) .

Conditional under Ey, for a vertex z ∈ V (Aj) outside of B(y), the probability that
it does not connect to any vertex in S(y) is

(1− p)(1+o(1))(np)Φ−2

.

Since (np)Φ−2 = o(n) and χ is A-balanced, almost all vertices of V (Aj) are outside
B(y). Moreover, since the edges for different vertices z ∈ V (Aj) outside of B(y) are
all independent,

Pχ

(
Rcy | Ey

)
=
(

1− (1− p)(1+o(1))(np)Φ−2
)|V (Aj)|(1+o(1))

.

From the second assumption in Condition (1) of (np)Φ−1/n ≤ log n/ω we have

(1− p)(1+o(1))(np)Φ−2 ≥ (1− p)(1+o(1)) logn/(ωp) ≥ e−c logn/ω � 1/
√
n,

where the second inequality follows from the fact that 1 − p ≥ e−cp for c small

enough and p ≤ 1/2. Thus, 1 − (1 − p)(1+o(1))(np)Φ−2 ≤ e−1/
√
n. Then, we have

that Pχ

(
Rcy | Ey

)
≤ e−Ω(

√
n). Since Pχ

(
Ecy
)
≤ e−(logn)3/ω for any arbitrarily slowly

growing function ω by our assumption that np ≥ ω log3 n (the desired concentration
for |B(y)| and |S(y)| for a fixed y follows by expanding neighborhoods inductively
using a breadth first search, and then Chernoff bound is applied), we have Pχ (Ey) =
1 + o(1), and thus Pχ (Ry) = 1 + o(1).

So, if χ is A-balanced, we have that EχZ = (1 + o(1))|V (Ai)|. This implies

E(Z | B) = E (EχZ | B) = (1 + o(1))E|V (Ai)|.
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Going back to (2), we have

EZ ≥ (1 + o(1))E|V (Ai)| = (1 + o(1))µ(Ai)n→∞.

We bound the second moment trivially from above as follows:

EχZ
2 =

∑
y∈V (Ai)

∑
y′∈V (Ai)

Pχ (Ry ∩Ry′) ≤ |V (Ai)|2.

Therefore, averaging over χ we get

EZ2 = E
(
EχZ

2
)
≤ E|V (Ai)|2 = µ(Ai)2n2 + µ(Ai)(1− µ(Ai))n.

Thus, by the Cauchy-Schwartz inequality we have

P (Z > 0) ≥ (EZ)2

EZ2
≥ (1 + o(1))µ(Ai)2n2

µ(Ai)2n2 + µ(Ai)(1− µ(Ai))n
→ 1.

By the coupling we are using, P (Y > 0) → 1 also. (In fact, Y = Ω(n) with
probability tending to 1.) Therefore, with high probability there exists a remote
pair of vertices u ∈ V (Ai) and v ∈ V (Aj) with d(u, v) ≥ Φ. Since there is no path
of length exactly Φ between Ai and Aj in Pu(A), with high probability, v cannot
be reached by u in Φ steps. Hence, the distance between u and v is at least Φ + 1,
and the lemma follows. �

Lemma 12. Suppose 3 ≤ ∆` ≤ Φ = O(1). With high probability, diamG(n, κ, p) ≤
Φ + 1.

Proof. Following the notation and proof of Lemma 9, in this case there exists an
expansion walk of length q = Φ− 2 or q = Φ− 1 from Ai to Ar (the lower bound is
as in Lemma 9. If the upper bound did not hold, then there would be no expansion
walk of length at most Φ− 1 between Ai and Ar, hence also no path of length at
most Φ − 1 of length Ar, and then Ai and Aj would be at distance bigger than
Φ + 1 > ∆`, contradicting the fact that the maximal distance between Ai and Aj
in P`(A) is at most ∆`). Moreover,

P (dG(u,w) > q + 2) ≤ e−(min{(cnp)q+2/n,log3 n}) ≤ n−ω,
still holds, since Φ = O(1) and thus (cnp)Φ/n ≥ c′ω′ log n for some constants

c, c′ > 0 and some function ω′ tending to infinity with n, so that e−c
′ω′ logn = n−ω.

The statement follows as before. �

Lemma 13. Suppose ∆` ≤ Φ = O(1). If there exists a partition A such that for
any i ≤ j, there exists a path of length exactly Φ between Ai and Aj in P`(A), then
with high probability diamG(n, κ, p) ≤ Φ.

Proof. Following the notation and proof of Lemma 9, in this case there exists an
expansion walk of length exactly q = Φ− 2 from Ai to Ar. The argument is then
as in Lemma 12. �

Lemma 14. Suppose 3 ≤ ∆` < ∞ and Φ = ω(1). Then diamG(n, κ, p) ≤ Φ(1 +
o(1)) with high probability.
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Proof. The argument is as in Lemma 9. Recall that (np)Φ/n ≥ ω log n which follows
from the first assumption of (1) and recall also that np ≥ ω log3 n. Let f be a
function so that f = o(1) ∩ ω(1/ log logn). Observe that

(cnp)Φ(1+f)/n ≥ cΦ(cnp)fΦω log n ≥ ω log n,

since (c(cnp)f )Φ ≥ (c(log n)3f )Φ which follows from the fact that 3f log log n = ω(1)
and thus 3f log logn+ log c > 0.

Thus, for q + 2 = dΦ(1 + f)e (note that since Φ = Ω(1), q + 2 = Φ(1 + o(1)),
by Lemma 7,

P (dG(u,w) > q + 2) ≤ e−(min{(cnp)q+2/n,log3 n}) ≤ n−ω,
and the lemma follows. �

Remark 5. Note that for Φ = ω(1) an upper bound of diamG(n, κ, p) ≤ Φ + 1 does
not hold in general. An inhomogeneous random graph G(n, κ, p) with constant kernel
κ = c < 1 has diameter equal to the diameter of the Erdős-Rényi model G(n, cp),
and the diameter of G(n, cp) can already be bigger than Φ + 1 (for c sufficiently
small). For a more precise upper bound of a concrete inhomogeneous random graph
we would need information about κ and about ‖A‖µ.

Finally, combining all the lemmas above we obtain the proof of the three
statements in Theorem 2.

Proof of Theorem 2. By combining Lemma 8 and 9 (using also Lemma 2) (i)
follows. The first part of (ii) follows by Lemma 10 and Lemma 9, and the second
part follows by adding Lemma 11. The first part of (iii) follows by Lemma 10
and 12; for the second part Lemma 11 and Lemma 13 is used. Finally, (iv) holds by
Lemma 10 and Lemma 14. �
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