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The Sequence Alignment Problem

Question:

How similar two words are?

Say   “ocurrance”  and  “occurrence”

They are similar, because one can be turned into another by few 

changes

oc-urrance

occurrence

Clearly, this can be done in many ways, say

oc-urr- ance

occurre-nce

Problem: Minimize the “number”  of gaps and mismatches

gap mismatch
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Alignments

Let                                  and                                  be two strings

A  matching is a set of ordered pairs, such that an element of  each set 

occurs at most once.

A matching is an  alignment if there no crossing pairs:

if  (i,j)  and  (i’,j’)  are in the matching  and  i < i’  then  j < j’
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The Problem

Let  M  be an alignment between  X  and  Y.  

Each position of  X  or  Y  that is not matched in  M  is called a gap.

Each pair  (i,j) ∈ M  such that                 is called a mismatch

The cost of  M  is given as follows:

- There is  δ > 0, a  gap penalty.  For each gap in  M  we incur a cost 

of  δ

- For each pair of letters  p,q  in the alphabet,  there is a mismatch 

cost For each  (i,j) ∈ M  we pay the mismatch cost                 

Usually,

- The cost of  M  is the sum its gap penalties and mismatch costs    
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The Problem  (cntd)

The Sequence Alignment Problem

Instance:

Sequences  X  and  Y

Objective:

Find an alignment between  X  and  Y  of minimal cost.
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Dynamic Programming Approach

Lemma

Let  M  be any alignment of  X  and  Y.  If  (m,n) ∉ M,  then either  the  

m-th position of  X  or the  n-th position of  Y  is not matched in  M.

Proof

Suppose that  (m,n) ∉ M,  and there are numbers  i < m  and  j < n  

such that  (m,j), (i,n) ∈ M.

However, this is a crossing pair.

QED
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The Idea

Corollary

In an optimal alignment  M, at least one of the following is true

(i)  (m,n) ∈ M;  or

(ii)   the  m-th position of  X  is not matched; or

(iii)   the  n-th position of  Y  is not matched.

Let  OPT(i,j)  denote the minimum cost of an alignment between           

and 

To get  OPT(m,n)  we

(i)  pay             and then align                             and                                  

as well as possible, to get   
121 ,,, −mxxx K 121 ,,, −nyyy K
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The Idea (cntd)

(ii) pay a gap cost of  δ since the  m-th position of  X  is not matched, 

and then align                             and                               as well as 

possible, to get

(iii) pay a gap cost to get 

Lemma.

The minimum alignment cost satisfy the following recurrence

Moreover,  (i,j)  is in an optimal assignment for this subproblem if and 

only if  the minimum is achieved by the first of these values.
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Alignment:  Algorithm

Alignment(X,Y)

array  M[0..m,0..n]

set M[i,0]:=iδ for each i

set M[0,j]:=jδ for each j

for i=1 to m do

for j=1 to n do

set M[i,j]:=min{M[i-1,j-1]+     , M[i-1,j]+δ, 

M[i,j-1]+δ}

endfor

endfor

return M[m,n]

ji yxα
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Analysis

Proof

Soundness follows from previous arguments.

Running time:

We fill up a  m × n  table and spend constant time on each entry

QED 

Theorem

The Alignment algorithm correctly finds a minimal alignment in   

O(mn)  time
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Graph Based Approach

Having                                  and                                construct a square 

grid-like graph

Lemma

Let  f(i,j)  denote the minimum weight of a path from  (0,0)  to  (i,j)         

in              Then for all  i,j,  we have  f(i,j) = OPT(i,j)

mxxxX ,,, 21 K= nyyyY ,,, 21 K=
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Weights:

δ on each horizontal or vertical arc

on the diagonal arc from  (i,j)      

to  (i + 1, j + 1)
ji yxα
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Graph Based Approach (cntd)

Proof

Induction on  i + j.  

Base Case.   If  i + j = 0,  then  f(0,0) = 0 = OPT(0,0)

Induction Step.

Suppose the statement is true for all pairs  (i’, j’)  with  i’ + j’ < i + j

The last edge on the shortest path to  (i,j)  is from either  (i – 1, j – 1),  

or (i – 1, j),  or  (i, j – 1).

Therefore
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Sequence Alignment in Linear Space

The  Alignment algorithm uses  O(mn)  space, which may be too much

Using an idea similar to that for the Shortest Path problem we can 

reduce space to linear

We store only two columns of the table

Array  B[0..m,0..1]  will be used for this purpose
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Space Saving Alignment:  Algorithm

Space-Saving-Alignment(X,Y)

array  B[0..m,0..1]

set B[i,0]:=iδ for each i  /*like column 0 of M

for j=1 to n do

set B[0,1]:=jδ /*like M[0,j]

for i=1 to m do

set B[i,1]:=min{B[i-1,0]+     , B[i-1,1]+δ,

B[i,0]+δ}

endfor

set B[0..m,0]:=B[0..m,1]

endfor

ji yxα
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Sequence Alignment in Linear Space (cntd)

The Space-Saving-Alignment algorithm runs in  O(mn)  time and uses  

O(m)  space

Clearly, when the algorithm terminates  B[m,1] contains the weight of the 

optimal alignment

But where is the alignment?

Somehow to find the alignment is more difficult than in the Shortest Path 

problem
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Backward Search

We introduce another function related to  OPT

Let  g(i,j)  denote the length of a shortest  path from  (i,j)  to  (m,n)

Lemma

Then for all  i,j,  we have
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Backward Search (cntd)

Lemma

The length of the shortest corner-corner path in            that passes 

through  (i,j)  is  f(i,j) + g(i,j)

Proof

Let  k  denote the length of a shortest corner-to-corner path that passes 

through  (i,j)

It splits into to parts:  from  (0,0)  to  (i,j),  and from  (i,j)  to  (m,n)

The length of the first part is  ≥ f(i,j),  the length of the second  ≥ g(i,j)

Thus,  k ≥ f(i,j) + g(i,j)

Finally, the path consisting of the shortest path from  (0,0)  to  (i,j)  (it 

has length  f(i,j)), and the shortest path  from  (i,j)  to  (m,n)  has 

length  exactly  f(i,j) + g(i,j)

XYG
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Backward Search (cntd)

Lemma

Let  j  be any number  0 ≤ j ≤ n,  and let  q be an index that minimizes  

f(q,j) + g(q,j).  Then there is a corner-to-corner path of minimum 

length that passes through  (q,j).

Proof

Let  k  denote the length of a shortest corner-to-corner path in  

Fix  j ∈ {0, …, n}.

The shortest path must use some node in the  j-th column.  Suppose it 

is  (p,j)

Therefore    k = f(p,j) + g(p,j) ≥ min   { f(q,j) + g(q,j) }

If  q  is the node achieving the minimum,  then  k = f(q,j) + g(q,j)  and  

by the previous Lemma there is a shortest path passing through  (q,j)

XYG

q
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Divide and Conquer

The idea is to split            around the middle column and, using the 

previous Lemma find a node in this column that belongs to  a 

shortest path

We use:

Alignment(X,Y)

Space-Saving-Alignment(X,Y)

Bckw-Space-Saving-Align(X,Y)

Global  set  P  (for the path)

XYG
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Divide and Conquer  (cntd)

Divide-and-Conquer-Alignment(X,Y)

set m:=length(X),  n:=length(Y)

if m≤2 or n≤2 do  Alignment(X,Y)

set OPT:=∞ q:=1

for i=1 to m do

set a:=Space-Saving-Alignment(X[1..i],Y[1..n/2])

set b:=Bckw-Space-Saving-Align(X[i..m],Y[n/2+1..n])

if a+b<OPT then do set OPT:=a+b  set q:=i

endfor

add (q,n/2) to P

Divide-and-Conquer-Alignment(X[1..q],Y[1..n/2]

Divide-and-Conquer-Alignment(X[q..m],Y[n/2+1..n]



Algorithms – Sequence Alignment II 10-21

Analysis

Proof

The space complexity is straightforward

Let  T(m,n)  denote the running time.

The algorithm spends  O(mn)  on executing  Alignment,               

Space-Saving-Alignment  and  Bckw-Space-Saving-Align

Then it runs recursively on strings of length  q, n/2,  and  m – q, n/2.

Thus             T(m,n) ≤ c⋅mn + T(q,n/2) + T(m – q,n/2)

T(m,2) ≤ c⋅m,  

T(2,n) ≤ c⋅n

Theorem

The Divide-and-Conquer-Alignment algorithm runs in   O(mn)  time 

and uses  O(m + n)  space
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Analysis (cntd)

Proof (cntd)

For a sanity check,  suppose  m = n

Then       T(n) ≤ 2 T(n/2) + cn²

By the Master Theorem    T(n) = O(n²).  So we expect   T(m,n) = O(mn)

We prove that  T(m,n) ≤ k⋅mn  for some  k.

Choosing  k ≥ c  we have the Basis Case:  

T(m,2) = cm ≤ 2km,     T(2,n)  = 2n ≤ 2kn

Suppose  T(m’,n’) ≤ k⋅m’n’  for all  m’,n’ such that  m’n’ < mn

T(m,n)   ≤ c⋅mn + T(q,n/2) + T(m – q, n/2)

≤ c⋅mn + kqn/2 + k(m – q)n/2

=   c⋅mn + kqn/2 + kmn/2 – kqn/2 = (c + k/2)⋅mn

Choose  k = 2c


