
Algorithms – Sequence Alignment

Sequence Alignment

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms – Sequence Alignment 8-2

The Sequence Alignment Problem

Question:

How similar two words are?

Say “ocurrance” and “occurrence”

They are similar, because one can be turned into another by few

changes

oc-urrance

occurrence

Clearly, this can be done in many ways, say

oc-urr- ance

occurre-nce

Problem: Minimize the “number” of gaps and mismatches

gap mismatch

Algorithms – Sequence Alignment 8-3

Alignments

Let and be two strings

A matching is a set of ordered pairs, such that an element of each set

occurs at most once.

A matching is an alignment if there no crossing pairs:

if (i,j) and (i’,j’) are in the matching and i < i’ then j < j’

o

c
u
r
r
a
n
c
e

o

c

u

r
r
e
n
c
e

c

o

c
u
r
r
a
n
c
e

o

c

u

r
r
e
n
c
e

c

mxxxX ,,, 21 K= nyyyY ,,, 21 K=

Algorithms – Sequence Alignment 8-4

The Problem

Let M be an alignment between X and Y.

Each position of X or Y that is not matched in M is called a gap.

Each pair (i,j) ∈ M such that is called a mismatch

The cost of M is given as follows:

- There is δ > 0, a gap penalty. For each gap in M we incur a cost

of δ

- For each pair of letters p,q in the alphabet, there is a mismatch

cost For each (i,j) ∈ M we pay the mismatch cost

Usually,

- The cost of M is the sum its gap penalties and mismatch costs

ji yx ≠

.pqα .
ji yxα

.0=ppα

Algorithms – Sequence Alignment 8-5

The Problem (cntd)

The Sequence Alignment Problem

Instance:

Sequences X and Y

Objective:

Find an alignment between X and Y of minimal cost.

Algorithms – Sequence Alignment 8-6

Dynamic Programming Approach

Lemma

Let M be any alignment of X and Y. If (m,n) ∉ M, then either the

m-th position of X or the n-th position of Y is not matched in M.

Proof

Suppose that (m,n) ∉ M, and there are numbers i < m and j < n

such that (m,j), (i,n) ∈ M.

However, this is a crossing pair.

QED

Algorithms – Sequence Alignment 8-7

The Idea

Corollary

In an optimal alignment M, at least one of the following is true

(i) (m,n) ∈ M; or

(ii) the m-th position of X is not matched; or

(iii) the n-th position of Y is not matched.

Let OPT(i,j) denote the minimum cost of an alignment between

and

To get OPT(m,n) we

(i) pay and then align and

as well as possible, to get
121 ,,, −mxxx K 121 ,,, −nyyy K

nm yxα

nm yxnmOPTnmOPT α+−−=)1,1(),(

ixxx ,,, 21 K jyyy ,,, 21 K

Algorithms – Sequence Alignment 8-8

The Idea (cntd)

(ii) pay a gap cost of δ since the m-th position of X is not matched,

and then align and as well as

possible, to get

(iii) pay a gap cost to get

Lemma.

The minimum alignment cost satisfy the following recurrence

Moreover, (i,j) is in an optimal assignment for this subproblem if and

only if the minimum is achieved by the first of these values.

121 ,,, −mxxx K nyyy ,,, 21 K

δ+−=),1(),(nmOPTnmOPT

δ+−=)1,(),(nmOPTnmOPT

})1,(

,),1(,)1,1(min{),(

δ

δα

+−

+−+−−=

jiOPT

jiOPTjiOPTjiOPT
ji yx

Algorithms – Sequence Alignment 8-9

Alignment: Algorithm

Alignment(X,Y)

array M[0..m,0..n]

set M[i,0]:=iδ for each i

set M[0,j]:=jδ for each j

for i=1 to m do

for j=1 to n do

set M[i,j]:=min{M[i-1,j-1]+ , M[i-1,j]+δ,

M[i,j-1]+δ}

endfor

endfor

return M[m,n]

ji yxα

Algorithms – Sequence Alignment 8-10

Analysis

Proof

Soundness follows from previous arguments.

Running time:

We fill up a m × n table and spend constant time on each entry

QED

Theorem

The Alignment algorithm correctly finds a minimal alignment in

O(mn) time

Algorithms – Sequence Alignment 8-11

Graph Based Approach

Having and construct a square

grid-like graph

Lemma

Let f(i,j) denote the minimum weight of a path from (0,0) to (i,j)

in Then for all i,j, we have f(i,j) = OPT(i,j)

mxxxX ,,, 21 K= nyyyY ,,, 21 K=

1x

2x

3x

1y 2y 3y 4y

XYG

Weights:

δ on each horizontal or vertical arc

on the diagonal arc from (i,j)

to (i + 1, j + 1)
ji yxα

.XYG

Algorithms – Sequence Alignment 8-12

Graph Based Approach (cntd)

Proof

Induction on i + j.

Base Case. If i + j = 0, then f(0,0) = 0 = OPT(0,0)

Induction Step.

Suppose the statement is true for all pairs (i’, j’) with i’ + j’ < i + j

The last edge on the shortest path to (i,j) is from either (i – 1, j – 1),

or (i – 1, j), or (i, j – 1).

Therefore

),(

)}1,(),,1(),1,1(min{

)}1,(),,1(),1,1(min{
),(

jiOPT

jiOPTjiOPTjiOPT

jifjifjif
jif

ji

ji

yx

yx

=

−+−+−−+=

−+−+−−+=

δδα

δδα

Algorithms – Sequence Alignment 8-13

Sequence Alignment in Linear Space

The Alignment algorithm uses O(mn) space, which may be too much

Using an idea similar to that for the Shortest Path problem we can

reduce space to linear

We store only two columns of the table

Array B[0..m,0..1] will be used for this purpose

Algorithms – Sequence Alignment 8-14

Space Saving Alignment: Algorithm

Space-Saving-Alignment(X,Y)

array B[0..m,0..1]

set B[i,0]:=iδ for each i /*like column 0 of M

for j=1 to n do

set B[0,1]:=jδ /*like M[0,j]

for i=1 to m do

set B[i,1]:=min{B[i-1,0]+ , B[i-1,1]+δ,

B[i,0]+δ}

endfor

set B[0..m,0]:=B[0..m,1]

endfor

ji yxα

Algorithms – Sequence Alignment 8-15

Sequence Alignment in Linear Space (cntd)

The Space-Saving-Alignment algorithm runs in O(mn) time and uses

O(m) space

Clearly, when the algorithm terminates B[m,1] contains the weight of the

optimal alignment

But where is the alignment?

Somehow to find the alignment is more difficult than in the Shortest Path

problem

Algorithms – Sequence Alignment II 10-16

Backward Search

We introduce another function related to OPT

Let g(i,j) denote the length of a shortest path from (i,j) to (m,n)

Lemma

Then for all i,j, we have

1x

2x

3x

1y 2y 3y 4y

)}1,(),,1(),1,1(min{),(+++++++= jigjigjigjig
ji yx δδα

Algorithms – Sequence Alignment II 10-17

Backward Search (cntd)

Lemma

The length of the shortest corner-corner path in that passes

through (i,j) is f(i,j) + g(i,j)

Proof

Let k denote the length of a shortest corner-to-corner path that passes

through (i,j)

It splits into to parts: from (0,0) to (i,j), and from (i,j) to (m,n)

The length of the first part is ≥ f(i,j), the length of the second ≥ g(i,j)

Thus, k ≥ f(i,j) + g(i,j)

Finally, the path consisting of the shortest path from (0,0) to (i,j) (it

has length f(i,j)), and the shortest path from (i,j) to (m,n) has

length exactly f(i,j) + g(i,j)

XYG

Algorithms – Sequence Alignment II 10-18

Backward Search (cntd)

Lemma

Let j be any number 0 ≤ j ≤ n, and let q be an index that minimizes

f(q,j) + g(q,j). Then there is a corner-to-corner path of minimum

length that passes through (q,j).

Proof

Let k denote the length of a shortest corner-to-corner path in

Fix j ∈ {0, …, n}.

The shortest path must use some node in the j-th column. Suppose it

is (p,j)

Therefore k = f(p,j) + g(p,j) ≥ min { f(q,j) + g(q,j) }

If q is the node achieving the minimum, then k = f(q,j) + g(q,j) and

by the previous Lemma there is a shortest path passing through (q,j)

XYG

q

Algorithms – Sequence Alignment II 10-19

Divide and Conquer

The idea is to split around the middle column and, using the

previous Lemma find a node in this column that belongs to a

shortest path

We use:

Alignment(X,Y)

Space-Saving-Alignment(X,Y)

Bckw-Space-Saving-Align(X,Y)

Global set P (for the path)

XYG

1x

2x

3x

1y 2y 3y 4y

Algorithms – Sequence Alignment II 10-20

Divide and Conquer (cntd)

Divide-and-Conquer-Alignment(X,Y)

set m:=length(X), n:=length(Y)

if m≤2 or n≤2 do Alignment(X,Y)

set OPT:=∞ q:=1

for i=1 to m do

set a:=Space-Saving-Alignment(X[1..i],Y[1..n/2])

set b:=Bckw-Space-Saving-Align(X[i..m],Y[n/2+1..n])

if a+b<OPT then do set OPT:=a+b set q:=i

endfor

add (q,n/2) to P

Divide-and-Conquer-Alignment(X[1..q],Y[1..n/2]

Divide-and-Conquer-Alignment(X[q..m],Y[n/2+1..n]

Algorithms – Sequence Alignment II 10-21

Analysis

Proof

The space complexity is straightforward

Let T(m,n) denote the running time.

The algorithm spends O(mn) on executing Alignment,

Space-Saving-Alignment and Bckw-Space-Saving-Align

Then it runs recursively on strings of length q, n/2, and m – q, n/2.

Thus T(m,n) ≤ c⋅mn + T(q,n/2) + T(m – q,n/2)

T(m,2) ≤ c⋅m,

T(2,n) ≤ c⋅n

Theorem

The Divide-and-Conquer-Alignment algorithm runs in O(mn) time

and uses O(m + n) space

Algorithms – Sequence Alignment II 10-22

Analysis (cntd)

Proof (cntd)

For a sanity check, suppose m = n

Then T(n) ≤ 2 T(n/2) + cn²

By the Master Theorem T(n) = O(n²). So we expect T(m,n) = O(mn)

We prove that T(m,n) ≤ k⋅mn for some k.

Choosing k ≥ c we have the Basis Case:

T(m,2) = cm ≤ 2km, T(2,n) = 2n ≤ 2kn

Suppose T(m’,n’) ≤ k⋅m’n’ for all m’,n’ such that m’n’ < mn

T(m,n) ≤ c⋅mn + T(q,n/2) + T(m – q, n/2)

≤ c⋅mn + kqn/2 + k(m – q)n/2

= c⋅mn + kqn/2 + kmn/2 – kqn/2 = (c + k/2)⋅mn

Choose k = 2c

