Chapter 2

IC DESIGN

Digital Design and Computer Architecture, 2" Edition

David Money Harris and Sarah L. Harris

NAL LOG

S

MBINATIO

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 2 <1>

* Introduction
 Boolean Equations
* Boolean Algebra

* From Logic to Gates

e X’'sand Z’s, Oh My
* Karnaugh Maps

* Timing

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012

Multilevel Combinational Logic

 Combinational Building Blocks

Chapter 2 <2>

Chapter 2 :: Topics

Application |>"hello
Software |world!”

Operating
Systems

) T
Architecture i ——

T
Micro- <>
architecture <>

Digital
Circuits

Analog
Circuits

Devices

Physics

2
9
"
Q
S
O
@'
el
; .
=
Q
1;_
S
Q
g
&

Inputs
Outputs

A logic circuit is composed of:

Functional specification

Timing specification

_)
Inputs >
_)

Introduction

-

_

functional spec

timing spec

~

IS outputs

J

© Digital Design and Computer Architecture, 2" Edition, 2012

Chapter 2 <3>

< : :
S Circuits

Y

Q° e+ Nodes

9 | A B C

G' — Inputs: A, B, - 2

O' — QOutputs: Y, Z A E1 n1

el . .

- Internal: nl B { E3 |7+ Y
§‘ e Circuit elements ¢ - B2 | > Z
Qi — E1, E2, E3 - /

]E: — Each a circuit

<

ey

g

0O

u|

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <4>

— Memoryless

— Has memory

 Combinational Logic

* Sequential Logic

Types of Logic Circuits

— Outputs determined by current values of inputs

— Outputs determined by previous and current values

5 outputs

of inputs
(_)
—»{ functional spec
inputs »
—»{ timing spec
_ W,

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2"° Edit

ion, 2012 Chapter 2 <5>

Rules of Combinational Composition

* Every element is combinational

* Every node is either an input or connects
to exactly one output

* The circuit contains no cyclic paths

il
=i

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <6>

 Example:

COMBINATIONAL LOGIC DESIGN

Boolean Equations

* Functional specification of outputs in terms

of inputs
« Example: S =F(4,8,C,)
Cout = F(A; B; Cin)

A —(_
B— ¢ | ‘g
Cin_\ Y out

S =A B C_
COut = AB + ACin + BCin

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <7>

A B, C

A A B,B,C,C
* Implicant: product of literals
ABC, AC, BC

variables
ABC, ABC, ABC

COMBINATIONAL LOGIC DESIGN

(A+B+C), (A+B+C), (A+B+C)

© Digital Design and Computer Architecture, 2" Edition, 2012

Some Definitions

 Complement: variable with a bar over it

* Literal: variable or its complement

 Minterm: product that includes all input

 Maxterm: sum that includes all input variables

Chapter 2 <8>

e Each row has a minterm

Sum-of-Products (SOP) Form

« All equations can be written in SOP form

* A minterm 1s a product (AND) of literals
« Each minterm 1s TRUE for that row (and only that row)

Form function by ORing minterms where the output is TRUE
e Thus, a sum (OR) of products (AND terms)

2
9
9
Q
e
O
QO
.l
~
2
S
<
=
D
S
S

© Digital Design and Computer Architecture, 2" Edition, 2012

minterm
A B | Y |minterm| npame
0 0|0 AB m,
o 1|1 A B m,
1 0]0 AB m,
1 111 A B m,
Y=F(4, B) =

Chapter 2 <9>

e Each row has a minterm

Sum-of-Products (SOP) Form

« All equations can be written in SOP form

* A minterm 1s a product (AND) of literals
« Each minterm 1s TRUE for that row (and only that row)

Form function by ORing minterms where the output is TRUE
e Thus, a sum (OR) of products (AND terms)

2
9
9
Q
e
O
QO
.l
~
2
S
<
=
D
S
S

© Digital Design and Computer Architecture, 2" Edition, 2012

minterm
A B Y | minterm| pame
0 0] 0 A B m,
Co 1|1 A B m,)
1 0|0 AB m,
(1 1] 1 A B m,)
Y=F(4, B) =

Chapter 2 <10>

e Each row has a minterm

Sum-of-Products (SOP) Form

« All equations can be written in SOP form

* A minterm 1s a product (AND) of literals
« Each minterm 1s TRUE for that row (and only that row)

Form function by ORing minterms where the output is TRUE
e Thus, a sum (OR) of products (AND terms)

minterm
A B | Y | minterm| name
0 0] 0 A B m,
Co 1|1 A B m,)
1 0 0 AB m,
(1 1] 1 A B m,)

2
2
0
Q
-
S
Q
-l
~ 3
2
Q
<
2
-Q
S
(

© Digital Design and Computer Architecture, 2" Edition, 2012

Y=F(4, B)=AB + AB =X(1, 3)

Chapter 2 <11>

Product-of-Sums (POS) Form

» All Boolean equations can be written in POS form

2
9
i
Q
<
T,
Q
-
~
2
Q
<
=
Q
S
O

output 1s FALSE
e Thus, a product (AND) of sums (OR terms)

maxterm

A B | Y |maxterm| name

(o o|o0of|a+ B M,)

0o 1|1|a+B M,

1 o]0 |A+B M,)

1 1 1 | A+ B M

* Each row has a maxterm

* A maxterm 1s a sum (OR) of literals

* Each maxterm 1s FALSE for that row (and only that row)
Form function by ANDing the maxterms for which the

Y=F(4, B)=(4+ B)(4A+ B) = f[(o, 2)

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <12>

Boolean Equations Example

* You are going to the cafeteria for lunch
— You won’t eat lunch (E)
— If it’s not open (O) or
— If they only serve corndogs (C)

* Write a truth table for determining if you

COMBINATIONAL LOGIC DESIGN

will eat lunch (E).
O C|E
0 0
0 1
1 0
11

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <13>

Boolean Equations Example

* You are going to the cafeteria for lunch
— You won’t eat lunch (E)
— If it’s not open (O) or
— If they only serve corndogs (C)

* Write a truth table for determining if you

will eat lunch (E).
O C|E
0 0 0
0 1 0
1 0 1
1 1 0

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <14>

COMBINATIONAL LOGIC DESIGN

e SOP — sum-of-products

O C | E | minterm
0 0 0O C
0 1 0O C
1 0 O C
1 1 O C

POS — product-of-sums

O C | E | maxterm
0 0 O + C
0 1 O + C
1 0 0O + C
1 1 0O + C

© Digital Design and Computer Architecture, 2" Edition, 2012

Chapter 2 <15>

O C | E | minterm
0 0| 0 0T
| 0 1 0 0O C
| Cl 0 1 O 6)
1 1 0 O C

* POS - product-of-sums

COMBINATIONAL LOGIC DESIGN

O C | E | maxterm

(0 o fofo+)

| © 1 |0]o0o+C)
1 0|1]0+cC

| (1 1]10]0+C)

© Digital Design and Computer Architecture, 2" Edition, 2012

SOP & POS Form

e SOP — sum-of-products

E=0C
=2(2)

E=(0+ C)O + O) 0+ C)
=T1(0, 1, 3)

Chapter 2 <16>

Boolean Algebra

* Axioms and theorems to simplify Boolean
equations

* Like regular algebra, but simpler: variables
have only two values (1 or 0)

e Duality in axioms and theorems:
— ANDs and ORs, 0’s and 1’s interchanged

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <17>

Boolean Axioms

Axiom Dual Name
Al B=0itB#1 Al" B=1ifB=#0 Binary field
A2 0=1 A2 T=0 NOT
A3 0e0=0 A3’ 1+1=1 AND/OR
A4 lel= A4 0+4+0=0 AND/OR

AS Del=10=0 A5’ 1+0=0+1=1 AND/OR

Theorem Dual Name
T1 Be1=B Tl B+0=B8B Identity
T2 Be0=0 T2’ B+1=1 Null Element
T3 BeB=B8B T3’ B+ B=B8B Idempotency
T4 B=B Involution
TS BeB=0 TS5’ B+B=1 Complements

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012

&)
Chapter 2 <18> ELSEVIER

NAL LOGIC

COMBINATIO

—

© Digital Design and Computer Architecture, 2" Edition, 2012

T1: Identity Theorem

+ B+ 1=B
- B+0=8B

Chapter 2 <19>

ELSEVIER

c@l T1:!dentity Theorem

V)(
Q. e B 1=B
S’
5 °*B+0=B

S -

NAL

- —

- e B R & =

COMBINATIO
o™
1

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <20> l-'leVll-R

—

COMBINATIONA

—

T2: Null Element Theorem

+ B 0=0
cB+1=1

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <21>

ELSEVIER

—

COMBINATIONA

+ B 0=0
cB+1=1

© Digital Design and Computer Architecture, 2" Edition, 2012

Chapter 2 <22>

ELSEVIER

COMBINATIONA

—

T3: ldempotency Theorem

- B*B=B
- B+B=B

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <23>

il
ELSEVIER

—

COMBINATIONA

© Digital Design and Computer Architecture, 2" Edition, 2012

- B*B=B
- B+B=B

Chapter 2 <24>

ELSEVIER

NAL LOGIC

—

COMBINATIO

—

© Digital Design and Computer Architecture, 2" Edition, 2012

T4: Identity Theorem

:

=B

Chapter 2 <25>

ELSEVIER

Q -T3=B

NAL LOGIC

o
|

COMBINATIO

—

© Digital Design and Computer Architecture, 2" Edition, 2012

oo

Chapter 2 <26>

'g T4: Identity Theorem

ELSEVIER

COMBINATIONA

—

T5: Complement Theorem

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <27>

ELSEVIER

—

COMBINATIONA

0ol
|

=
5l

| o

© Digital Design and Computer Architecture, 2" Edition, 2012

Chapter 2 <28>

ELSEVIER

Boolean Theorems Summary

g
A
Theorem Dual Name
o _
G' T1 Bel=B8B T1' B+0=B8B Identity
®' T2 Be0=0 T2’ B+1=1 Null Element
oaad
- T3 BeB=B T3’ B+ B=B Idempotency
§ T4 B=B Involution
Q[TS BeB=20 TS5’ B+ B=1 Complements
—
]E
S
g
U‘
© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <29> blgl;\ TER

Boolean Theorems of Several Vars

Theorem Dual Name
| Té BeC=CeB Té&' B+C=C+B Commutativity
T?7 (BeCjeD=RBe(CeD) T7' (B+C)+D=B+ (C+ D) Associativity
T8 (BeC)+(BeD)=Be(C+D) T¥§ (B+C)e(B+D)=B+(CeD) Distributivity
T9 Be(B+C)=B T9’ B+(BeC)=R Covering
| Ti0 (BeC)+(BeT)=B Ti0" (B+C)*(B+7T)=B Combining
‘ Til (BeC)+(BEeD)+(CeD] T11’ (B+C)e(BE+ D)e(C+ D) Consensus
=BeC+BeD =(B+ C)e (B + D)
T12 Bg* By* 5. T12" By + By + Bj.. De Morgan’s
=(By + By + B; ...) =(ByeB +E) Theorem

Note: T8 differs from traditional algebra: OR (+) distributes over AND ()

COMBINATIONAL LOGIC DESIGN

80
© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <30> ELSEVIER

COMBINATIONA

—

© Digital Design and Computer Architecture, 2" Edition, 2012

Simplifying Boolean Equations

Example 1:
Y=AB+AB

Chapter 2 <31>

il
ELSEVIER

= Simplifying Boolean Equations

- Example 1:

= Y=AB + AB

S = B(A + A)

;t‘g = B(1) T5’
5&

<

-

§

O

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <32>

NAL LOGIC

COMBINATIO

—

Simplifying Boolean Equations

Example 2:
Y = A(AB + ABC)

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <33>

ELSEVIER

S

MBINATIONA

Simplifying Boolean Equations

Example 2:
Y = A(AB + ABC)

= A(AB(1 + (C)) T8
= A(AB(1)) T2’
= A(AB) T1
= (AA)B T

= AB 13

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <34>

Sk
ELSEVIER

Q: * Y=AB=A+B g:}v
5 v
1

NAL LOGIC

A O
B—ij

COMBINATIO

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <35>

9 DeMorgan’s Theorem

ELSEVIER

5 Bubble Pushing

0

Q' e« Backward:

2' — Body changes

O — Adds bubbles to inputs

S A
S e
 Forward:

— Body changes
— Adds bubble to output

S B> 5 Y
't

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <36>

0 >
~<

MBINATIONA

=@ Bubble Pushing

2

2 * What 1s the Boolean expression for this
4 circuit?

G’

2)

< 51 P

> }Y
Q S

~ D —

<

<

-

g:

O

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 2 <37>

NAL LOGIC D

COMBINATIO

Bubble Pushing

* What is the Boolean expression for this
circuit?

|

|

|

>
}ﬂ}

Y=AB+ (CD

SO >
|

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <38>

ELSEVIER

COMBINATIONAL LOGIC DESIGN

(¢

h

) Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <39>

Bubble Pushing Rules

* Begin at output, then work toward 1nputs
* Push bubbles on final output back

* Draw gates 1n a form so bubbles cancel

5|
—— D

NAL LOGIC

—

COMBINATIO

—

Bubble Pushing Example

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <40>

ol
hl SbVlhR

Bubble Pushing Example

ol |
W no output
Q) A Di bubble
B
o
3 ; ‘
Q P
e
=
O
b 3
I
<
g‘
Ot
© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <41>

ELSEVIER

@l Bubble Pushing Example

A
(
L no output
Q) A Di bubble
B
&
3 ; v
Q P
= bubble on
E‘l Dﬁ input and output

COMBINATION

—

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <42>

ELSEVIER

@l Bubble Pushing Example

5

A
(
L no output
Q A :Doi bubble
B
o
O C v
Q b
=~ bubble on
— A input and output
< B
S : y
B D
].&: no bubble on
z A _O:)E%tand output
_— B3
g

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <43>

ELSEVIER

@l From Logic to Gates

) * Two-level logic: ANDs followed by ORs

J° « Example: Y=ABC+ABC+ ABC

G’

°| A B C

-l

;t‘! >1<AT >l<§ >l<

z }— minterm: ABC
S — s
]‘: minterm: ABC
< — | _
5 minterm: ABC
g e

0' y

© Digital Design and Computer Architecture, 2" Edition, 2012

Chapter 2 <44>

ELSEVIER

=@ Circuit Schematics Rules

&

Q¢ ¢ Inputs on the left (or top)
o .

5 * Outputs on right (or bottom)
S - Gates flow from left to right
§ e Straight wires are best

9

l;:}

=

-

g

O

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <45>

Circuit Schematic Rules (cont.)

* Wires always connect at a T junction

e A dot where wires cross indicates a
connection between the wires

* Wires crossing without a dot make no

connection
wires crossing
wires connect wires connect without a dot do
at a T junction at a dot not connect

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <46>

Multiple-Output Circuits

* Example: Priority Circuit

AL A A ALY, Y, Y, Y
| Output asserted N E —
| corresponding to 8 8 2 é
| most significant 8 2 % (1)
| : 0 1 0 1
TRUE input o 1 1 0
0o 1 1 1
e
| v—— 1 0 1 0
A 2 1 0 1 1
| vl 1 1 o0 o0
A 1 1 1 0 1
| A Y, 1 1 1 0
PRIORITY 1l
\ CilRCUIT

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <47>

Multiple-Output Circuits

* Example: Priority Circuit

A. A A AlY, Y, Y Y
Output asserted 03 02 01 oo 03 o2 01 oO
, 0O 0 O 1]/]0 0 0 1
corresponding to o o 1 olo o 1 o
N 0 0 1 1/l0 o 1 o
most significant o 1.0 olo 1 o o
: 0 1 0 1]/0 1 o0 o0
TRUE input o 1 1 olo 1 o o
0 1 1 1]/0 1 o o0
——1A, Y, 1 0 0 0 1 0O O 0
1 0 0 11 o0 o0 o
] A2 Y —— 1 0 1 0 1 0 0 0
2 1 0 1 1|1 0o 0 o
1 1 0 11 o0 o0 o
_ AO YO— 1 1 1 0 1 0 0 0
PRIORITY 1 1.1 1]1 0 0 O

CilRCUIT

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <48>

ELSEVIER

Chapter 2 <49>

AR A A,

OrlO0 000000000000

Yo

Q
S
(O
=
=
-
(O
L
—

Yy

COrHrHOOOOOOOOOO0OOO

COO0OOrHrErrHrOOOOOOOO

Ircu
Y, Y,

COO0O0CO0O0COOrmHimHedrr

Orli OO rH O 1O -HOHOAO

Ay

ty C

OO0 OO 1O O —"-HOO

A, A

OCOO0COHrHEH1OOOO =

[olg

OCOO0CO0OO0OOCOO0OHH A

As

Pr

NDIS3d JID0T TVNOILLYNIGWOD

© Digital Design and Computer Architecture, 2" Edition, 2012

S 1=
SlooHoo
QY|
sVloooHo
™
SNSIOOCOO
N
S o
L[O = X X X Y
(@\]
~ H
[O H X X o
N S
J|locoo - X
™
J|jlcocoocoH
u
© =
sylorHoooocooocoocooocoo p
S
SNjlooHHoooooooooocoo S

COO0COrHrrEHOO0OO0OO0OOOO0O0O

COO0O0CO0OOCOCOmmmrer

o
< OrHO-HOHOHO-HOHOHO
OCO0OrH-H OO OO 1O O™

COO0C O T rH 1O OO O =

Vg
Q
at
qv)
O
S
-
O
O

%0000000011111111

NDIS3d JID0T TVNOILLYNIGWOD

© Digital Design and Computer Architecture, 2

Contention: X

* Contention: circuit tries to drive outputto 1 and 0
— Actual value somewhere in between
— Could be 0, 1, orin forbidden zone
— Might change with voltage, temperature, time, noise
— Often causes excessive power dissipation

A =1 >0—

—Y=X

B=01>0—
* Warnings:

— Contention usually indicates a bug.

— Xis used for “don’t care” and contention - look at the context
to tell them apart

COMBINATIONAL LOGIC DESIGN

80
© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <51> ELSEVIER

Floating: Z

* Floating, high impedance, open, high Z

* Floating output might be 0O, 1, or
somewhere in between

— A voltmeter won’t indicate whether a node is floating
Tristate Buffer

COMBINATIONAL LOGIC DESIGN

E
A_»Y
E A Y
0 0 Z
0 1 Z
1 0 0
1 1 1

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <52>

Tristate Busses

* Floating nodes are used in tristate

busses processor enf |
. . tobus—| B—l
\ — Many different drivers frombus —< |
. . N\ J
\ — Exactly one is active at , \
video en2
once tobus —>—
i frombus {]—') Z):;_
(| 8
Ethernet en3 o
tobus—| B—l ®
frombus{]—I
J

N

p
memory en4

tobus
frombus

COMBINATIONAL LOGIC DESIGN

Ayt

.

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <53>

Karnaugh Maps (K-Maps)

* Boolean expressions can be minimized by
combining terms

* K-maps minimize equations graphically
« PA+PA=P

A B C|Y

0 0 o1 AB AB

o o 11 c 00 01 11 10 o\ 00 01 11 10
0 1 010 I .
0o 1 1| 0 0] 1 0 0 0 0| ABC | ABC | ABC | ABC
1 0 0 0

1 0 1 0 _ _

1 1 o0l o 11 1 0 0 0 1| ABC | ABC | ABC | ABC
1 1 1 0

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <54>

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <55>

* Circle 1’s 1n adjacent squares

* In Boolean expression, include only
literals whose true and complement form
are not 1n the circle

A B cly LOY::

o 0 0|1 00 01 11 10
o o 1|1 C

o 1 0o

O I om 0 | 0 | 0O
1 0 0o

1 0 110

1 1 0] 0 1 1 0 0 0
1 1 110

Y=AB

vl 3-Input K-Map

Wy y

o\ 00 01 11

10

O ABC | ABC | ABC

ABC

1| ABC | ABC | ABC

ABC

NAL LOGIC

K-Map

01 11

10

Truth Table

Q! A B C|Y Y AB
o~ 0 0 00 c . 00
q: O 0 110
2. o 1 o0 |1 0
— o 1 1|1
0 1 0 o0|o

: 1 0 1|0 1
§ 1 1 0| o
o, 11 1|1

© Digital Design and Computer Architecture, 2" Edition, 2012

Chapter 2 <56>

ELSEVIER

<@l 3-'nput K-Map

17y
W y
Q B o1 11 10
C
9
G’ 0| ABC | ABC | ABC | ABC
@
:' 1| ABc | ABc | ABc | ABC
<
= Truth Table K-Ma
S p
e A B cly Y AB
b~ 0 0 oo c\._ 00 01 11 10
' 0 0 1 0
§ O 1 0|1 0 O 1 1) O
~— 0 1 1|1 i
1 0 0 0
g. 1 0 1 0 1 O L]_./ O O
f 1 1 0 0
01 11 1]1
O Y=4B + BC

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <57>

K-Map Definitions

 Complement: variable with a bar over it
A, B, C
 Literal: variable or its complement
A A B,B,CC
* Implicant: product of literals
ABC, AC, BC
* Prime implicant: implicant corresponding to
the largest circle in a K-map

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <58>

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <59>

K-Map Rules

Every 1 must be circled at least once

Each circle must span a power of 2 (i.e. 1, 2,
4) squares in each direction

Each circle must be as large as possible
A circle may wrap around the edges

A “don't care” (X) is circled only if it helps
minimize the equation

5.,5 4-Input K-Map

V)(
Qn

U
L')(

AB
CD 00 01 11 10

A B C D|Y
o 0 0 o0 |1
O 0O 0 110
O 0 0 1 0|1
el o o0 1 1|1 00
O 1 0 0O
-~ o 1 o0 1|1
<. o 1 1 0|1 01
Zj o 1 1 1|1
Q(1 0 0 0|1
— 1 0 0 1|1 11
- 1 0 1 0|1
<' 1 0 1 110
ZI 1 1 0 0|0 10
— 1 1 0 110
(aa) 1 1 1 010
E. 1 1 1 110
0

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <60> l-'leVll-R

5.,5 4-Input K-Map

V)(
Qn

U
L')(

AB
CD 00 01 11 10

A B C D |Y
O 0 0 0|1
o 0 0 110
O 0 0 1 0|1
R 0 0 1 1|1 00 1 0 0 1
o 1 0 0] 0
—_ o 1 0 1|1
<. 0 1 1 0 1 01 0 1 0 1
Zj o 1 1 1|1
o A 11 1 1 0 0
1 0 0 1|1
]:. 1 0 1 0|1
<' 1 0 1 1 0
ZI 1 1 0 0 0 10, 1 1 0 1
~— 1 1 0 110
0 1 1 1 010
E. 1 1 1 110
0

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <61> l-'leVll-R

= 4-Input K-Map

PR RPRPRPRPRPRPPRPPRPOOODOOOOOOD

HFHRRPRPPRPOOCOORRREELROOOOm
HRP OORRPRPOORREPLOORRE OO
HFORrRrOROROROROR ORF O|Q
COO0O0OORRFRERPREREREORRORIKL

COMBINATIO

© Digital Design and Computer Architecture, 2™ Edition, 2012

Y
AB
CD 00 01 11 10
00| 1 0 0 1
N
01 O 1 0 1
- ™
1) | 1 1 0 0
N
10/ | 1 1 0 1
N J

Y=AC + ABD + ABC + BD

Chapter 2 <62>

ELSEVIER

NAL LOGIC

—

PFRPRPRPRPPRPRPRPRPRPOOOOOOOOD

I—‘I—‘OOI—‘I—‘OOHI—‘OOI—‘I—‘OOO
l—‘OI—‘OI—‘OI—‘OI—‘Ol—‘OI—‘OI—‘OD

PR R P OOOCOORRLRRERLREPLOOOoOm
.’><.'[><:><}[><:.’><::><}I—‘I—‘I—‘I—‘[><:OI—‘I—‘OI—‘~<

COMBINATIO

© Digital Design and Computer Architecture, 2" Edition, 2012

AB

CD

@l K-Maps with Don’t Cares

00 01

11

10

00

01

11

10

Chapter 2 <63>

ELSEVIER

NAL LOGIC

PFRPRPRPRPPRPRPRPRPRPOOOOOOOOD

I—‘I—‘OOI—‘I—‘OOHI—‘OOI—‘I—‘OOO
l—‘OI—‘OI—‘OI—‘OI—‘Ol—‘OI—‘OI—‘OD

PR R P OOOCOORRLRRERLREPLOOOoOm
.’><.'[><:><}[><:.’><::><}I—‘I—‘I—‘I—‘[><:OI—‘I—‘OI—‘~<

COMBINATIO

© Digital Design and Computer Architecture, 2™ Edition, 2012

@l K-Maps with Don’t Cares

Y
AB
CD 00 01 11 10
00| 1 0 X 1
01 O X X 1
11 1 1 X X
10 1 1 X X

Chapter 2 <64>

ELSEVIER

NAL LOGIC

PFRPRPRPRPPRPRPRPRPRPOOOOOOOOD

I—‘I—‘OOI—‘I—‘OOHI—‘OOI—‘I—‘OOO
l—‘OI—‘OI—‘OI—‘OI—‘Ol—‘OI—‘OI—‘OD

PR R P OOOCOORRLRRERLREPLOOOoOm
.’><.'[><:><}[><:.’><::><}I—‘I—‘I—‘I—‘[><:OI—‘I—‘OI—‘~<

COMBINATIO

© Digital Design and Computer Architecture, 2™ Edition, 2012

@l K-Maps with Don’t Cares

Y
AB
CD 00 01 11 10
e
00 1 0 X 1
01 0 X X 1
4
11 1 1 X X
N
10 1 1 X X
N L
Y=A+BD+C

Chapter 2 <65>

ELSEVIER

NAL LOGIC

COMBINATIO

—

© Digital Design and Computer Architecture, 2" Edition, 2012

Combinational Building Blocks

* Multiplexers

e Decoders

Chapter 2 <66>

ELSEVIER

E Multiplexer (Mux)

vy
W :
0 * Selects between one of N inputs to connect
‘é to output
|
Qe log,N-bit select input — control input
|
-J * Example: 2:1 Mux
< s
> Do |
2 o)
< S D, D,|Y S| Y
< EHEE
o) o 1 oo
> L0 0o
) S
u| 1 1 1|1

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <67>

* Logic gates * Tristates

— Sum-of-products form — For an N-input mux, use N
tristates

— Turn on exactly one to
sy 110 select the appropriate input

of o | o (1] 1)
S
710 (1] 1) o0

Y=D,S+D,S

D

NAL LOGIC D

O
I

MBINATIO
>

: =
) y

Y

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <68>

@l Logic using Multiplexers

%

Q¢ « Using the mux as a lookup table
2

G’ A BlY
S K
= 1 0 0
q 1 1 1
> Y=AB
S A
~

< o

< o [
g' VT—H

O:

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 2 <69>

ELSEVIER

NAL LOGIC D

MBINATIO

S

Y

AB

A B|lYy AlY
T 0 [0

01 OJ’CO O L
T 0] 0 -

ER 1]—>L_B)B

© Digital Design and Computer Architecture, 2" Edition, 2012

Chapter 2 <70>

<
S Decoders

|

W
8 * N inputs, 2V outputs
5 * One-hot outputs: only one output HIGH at
O once 2:4
- Decoder
| M—Y
§‘ A 10—,
o Ay — 01—,
= 00— Y
[y 0
<
<
— A ALY, Y, Y, Y,
Q 0 o]0 0 0 1
Ef 0 1 0 0 1 0
, 1 o]lo 1 0 0
8 1 1|1 0 0 0

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <71>

cd@l Decoder Implementation

V)(
Ql Ay Ao

3 EaE

X

NAL L

<

X

JIUL

COMBINATIO

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <72> l-'leVll-R

§., Logic Using Decoders
v |

Q' ¢ OR minterms

9

Q 2:4

9: Decoder Minterm
- 11 AB
S A 10 AB
O B — 01 AB
s -

3 Y = AB + AB

O

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 2 <73>

v
|

Q¢+ Delay between input change and output
% changing

O¢ « How to build fast circuits?

3 g e

<

Q

]: —»(delay €——

0

S v

8: Time >

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <74>

Propagation & Contamination Delay

* Propagation delay: ¢,, = max delay from input to output

IC DESIGN

* Contamination delay: ¢z, = min delay from input to

G’

0O output p v

ol >

§' 4}; tpd ;‘7
S N
= T\

3 v i

g 4’; tcd i‘i

O Time >

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 2 <75>

Propagation & Contamination Delay

* Delay 1s caused by

— Capacitance and resistance in a circuit
— Speed of light limitation

* Reasons why ¢,, and 7., may be difterent:

— Different rising and falling delays

— Multiple inputs and outputs, some of which are
faster than others

— Circuits slow down when hot and speed up when
cold

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <76>

NAL LOGIC

—

COMBINATIO

Critical (Long) & Short Paths

Critical Path
A n1
B n2
C
D Y
Short Path

Critical (Long) Path: t,;,=2t,; sxp T g or
Short Path: f.,= 1.4 anp

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <77>

ELSEVIER

<4 '

G Glitches

Q

Q¢ « When a single input change causes an output
% to change multiple times
o

-

-

2

Qu

l;ti

=

-

g:

O

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 2 <78>

<
o
9
S :
ol
.
< ¢
<
o Y
=
2
-
=
Q.

=

© Digital Design and Computer Architecture, 2" Edition, 2012

AB
00 01 11 10
O//:\ 0 0 0
1 1 C1 1) 0
N
Y=AB + BC

Chapter 2 <79>

9 Glitch Example

Q¢+ What happens when A=0, C =1, B falls?

ELSEVIER

=@ Glitch Example (cont.)

A
(
l’“' Critical Path
Q A=0 0>1
U(B=1->0— n1
G‘ Y=1>0->1
n2
Q C=1 A 1->0
ol /
) Short Path
3 .
(
:: n2 \%\
3 :
g‘ Y /,'4—/ glitch
Time >

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <80> l-'leVll-R

5 Fixing the Glitch

Q)

8: CABoo 01 11 10
G; oc\ 0 0 0
Q s

5: 1/}1/(1) 1) 0
g AC Y=AB +BC +AC
EE B=l;\—=>(()) i }
S o e
g. C=1 }
S 1 —

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 2 <81>

Why Understand Glitches?

* Glitches don’t cause problems because of

synchronous design conventions (see
Chapter 3)

* [t’s important to recognize a glitch: in
simulations or on oscilloscope

* Can’t get rid of all glitches — simultaneous
transitions on multiple inputs can also
cause glitches

COMBINATIONAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 2 <82>

