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For a nilpotent orbit O in a complex classical Lie group G, R. Brylinski in [7] con-
structed a Dixmier Algebra model of its Zariski closure, based on an earlier con-
struction by Kraft and Procesi. On the other hand, Barbasch in [6] constructed
another model on O itself. Treating G as a real Lie group with maximal compact
subgroup K, both models can be seen as admissible (gc, K¢)-modules of finite
length. We are interested in finding out the composition factors of both models.

We first list out all the possible factors that can appear in both models, and com-
pute which of them appear in the Barbasch model. When the Zariski closure of O
is normal, we prove the composition factors of the Brylinski model are the same
as the Barbasch model. Also, we give a conjecture on the composition factors in

the Brylinski model, irrespective of the normality of the orbit closure.
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CHAPTER 1
INTRODUCTION

Let G be a complex Lie group with Lie algebra g. Then the adjoint action of G on
g makes g into a union of adjoint orbits. The idea of the Orbit Method, originally
proposed by Kirillov, says that every (co)adjoint orbit in g (or its dual g*) is re-
lated to an irreducible, unitary representation of G. This idea is realized perfectly
when g is a nilpotent Lie algebra, and some generalizations are needed if g is a
solvable Lie algebra. However, the situation becomes much more complicated in
the case of semisimple Lie algebras. One of the many difficulties arising from the
semisimple case is, not all adjoint orbits in g are closed. It is therefore suggested
by Vogan and McGovern that in the case of semisimple Lie algebras, one should
study the orbit datum of g which is a generalization of the adjoint orbits in g, and
the Dixmier algebras which is related to the irreducible unitary representations.
More precisely, if we treat G as a real Lie group with maximal compact subgroup
K (i.e. the complexification of K is K¢ = (), a Dixmier algebra X is a filtered
algebra endowed with a (g¢, K¢)-action, where the K¢-orbits, i.e. G-orbits on X

spans a finite-dimensional vector space and respects the grading.

Conjecture 1.1 (Vogan). Let G be a connected complex simple Lie group with Lie algebra
g. Let O be an adjoint orbit in g and O — O be a connected covering of O so that G acts
compatibly. Then there is a completely prime Dixmier algebra Az corresponding to O,

such that Az = R[O] (the ring of reqular functions of O) as representations of G.



By Jordan Decomposition, it is known that every element in the semisimple Lie
algebra can be split into a semisimple part and a nilpotent part. Also, it is known
that all adjoint orbits for the semisimple part are closed, and their quantization is
known. It is therefore of interest to study how one can attach unitary representa-
tions to nilpotent orbits.

We focus on classical simple complex Lie algebras. In this case, R. Brylinski in [7]
constructed a Dixmier algebra corresponding to the closure of a nilpotent orbit O.
Her construction of the model X is based on an earlier construction of the ring of
regular functions of O given by Kraft and Procesi. By construction, gr(Xgz) = R[O]
as G-modules. However, the construction is highly geometrical, and one is unable
to extract much representation theoretic data out of her construction. For instance,
there is no direct way to find out the decomposition of X as finite-dimensional
G-modules with multiplicities. On the other hand, Barbasch in [6] constructed
a (gc¢, Kc)-module Xp such that Xp = R[0] as K¢ = G-modules. The building
blocks of his construction are unipotent representations, whose representation
theory is well studied by Barbasch and Vogan. One would hope that the Barbasch
model can give some representation theoretic insight into the Brylinski model.
The normality of O plays an important role in studying the relations between the
two models. In fact, the ring of regular functions of O and O are the same if
and only if O is normal. Consequently, if O is normal, then Xp, R[O] and X5
are isomorphic as G-modules, and X5 becomes a candidate of Ay in the above
Conjecture. In fact, more is true in this case. We will see in Chapter 10 that as

(gc, K¢)-modules, Xp and X share the same composition factors (with multiplic-



ities). Even if O is not normal, the inclusion relation R[O] — R[] gives an upper
bound on the multiplicities of irreducible, finite-dimensional G-representations of
Xg- This also imposes a strong constraint on the representation theory of Xg.
The thesis is organized as follows. Chapter 2 gives the basic information for nilpo-
tent orbits in classical, simple, complex Lie algebras. This includes the classifi-
cation on all nilpotent orbits, and the closure relationships between the orbits.
Chapter 3 gives the basic relations between R[O] and R[O] when O is normal,
and Theorem 3.3 gives a combinatorial criterion on the normality of O, proved by
Kraft-Procesi.

Chapter 4 focuses on the construction of the Dixmier algebra X given by Brylin-
ski. Proposition 4.11 provides the infinitesimal character of the model, which is
the starting point of studying the representation theoretic aspects of X4.

Chapter 5 gives an introduction to the theory of unipotent representations. This
is essential in the construction of the Barbasch model on the orbit. Also, the the-
ory provides the lower bound of the associated variety of the composition factors
of X5 given its infinitesimal character. Given a fixed infinitesimal character, we
study the number of unipotent representations, their associated varieties and their
character formulas. The construction of X, and some covers of O given by Bar-
basch is in Chapter 6.

Chapter 7 exhausts all the possible candidates of the composition factors of X5
and Xo. It provides character formulas for all candidates. Chapter 8 determines
which of the candidates appear in Xo.

Chapter 9 gives an algorithm computing the K-types (i.e. finite-dimensional ir-



reducible G-representations) of the Barbasch model X». More precisely, Theorem
9.2 and Theorem 9.5 give the algorithms computing the multiplicities of funda-
mental representations of Xy. This in turn gives an upper bound on the K-type
multiplicities of R[O], and gives another criterion on the normality of O by com-
paring the multiplicities of the fundamental representations of R[O] and R[O].
Chapter 10 starts with a proof of the case when O is normal, the composition fac-
tors of X is the same as that of X. The remaining part of the Chapter is devoted
to a conjecture on the possible composition factors of X for any orbit O, and a
possible character formula for the model.

Chapter 11 discusses the role of reductive dual pairs in our construction. By a
Theorem of Adams and Barbasch, for some mild conditions on n and 2m, the
composition factors of Xp in O(n,C) correspond to that of X in Sp(2m, C) via
the dual pair correspondence. On the other hand, the study of harmonics in the
dual pair correspondence gives another upper bound on K-type multiplicities of
X&. We compare this upper bound with the one given in Chapter 10, and draft

some possible directions for future research.



CHAPTER 2
NILPOTENT ORBITS IN CLASSICAL LIE ALGEBRA

This Chapter gives some basic notions and theorems on nilpotent orbits. More

details can be found in [16] and [8].

Definition 2.1. Let V' be a complex vector space. An element ¢ € End(V') is semisimple
if every ¢-invariant subspace has a ¢-invariant complement. An element ¢ € End(V) is

called nilpotent if " = 0 for some finite r > 0.

Let g be a complex Lie algebra. For every X € g, the adjoint representation ad :
g — End(g) gives a Lie algebra homomorphism. Hence we have the following

definition:

Definition 2.2. X € g is semisimple if ad(X) is semisimple in End(g). And X € gis
nilpotent if ad(X) is nilpotent in End(g).

2.1 Jordan Decomposition

Theorem 2.3 (Jordan Decomposition). Any ¢ € End(V') can be decomposed as ¢ =

®s + ¢n, where ¢ is semisimple, ¢,, is nilpotent. Both ¢, and ¢,, are polynomials of ¢.

Theorem 2.4. Suppose g C End(V') is semisimple, then the Jordan decomposition of
X € g is the same as the Jordan decomposition of X € End(V'). More generally, for any

finite dimensional representation of g, p : g — End(W), if X = X, + X, is the Jordan



decomposition of X € g, then p(X) = p(X;) + p(X,,) is the Jordan decomposition of
p(X) € End(W)

In particular, for any matrix Lie algebra g C gl(n, C), for example all complex
simple Lie algebras, we can decompose g into a sum of a semisimple element and
a nilpotent element. And the decomposition is the same as that in gl(n, C).

Now we start looking at the conjugates of nilpotent elements:

Example 2.5. Consider the Lie algebra s(2,C) = {M € Msyo(C)| tr(M) = 0}. We
know that for any M € sl(2,C), there exists Q € SL(2,C) such that QM Q™" is the

Jordan normal form. If M is semisimple, it can be diagonalized, hence it is of the form

0
omo = | "
0 —p

If M is nilpotent, the only eigenvalue of M must be zero, hence

01 00
QMQ™! = or
00 00

Hence both the semisimple and nilpotent orbits in sl(2,C) are completely classified. In
particular, There are infinitely many semisimple orbits, and 2 nilpotent orbits.
More generally, we study the nilpotent orbits sl(n, C). The Jordan normal form tells us

that the non-conjugate representatives of the nilpotent elements are of the following:



01
J 0 0 0
0 1
0 Jo 0 0
X = with J; =

0o 0 "~ 0

0 1
0 0 0 Jg

0

where each Jordan block J; is a r; x r; matrix. So the set of nilpotent orbits in SL(n,C)
can be parameterized by the parititions of n, i.e. {[r1,7a,...,7]|r1 > 19 > -0 > >

07 Z?:l rj = n}

2.2 Nilpotent Orbits in B,, C,, and D,

As we have seen in the previous Section, each nilpotent orbit of type A, corre-
sponds to a partition of n + 1. This Section concerns about the classification of

nilpotent orbits in Sp(2m, C) and O(n, C). The main Theorem is the following:

Theorem 2.6. Let € = +1, and consider a nondegenerate bilinear form (-, -)_ on C* such
that

(A,B), =€(B,A), forall A,B e C"

We write
I((-,-).) = {g € GLi(C)| {gA, g B), = (A, B), for all A, B € C*}

g. = {X €5sl(k,C)| (XA, B), = — (A, XB)_ forall A,B € C"}



P.(k) = {[d,...,dy] | #{j|d; = i} is even for all i such that (—1)" = €}

Then the nilpotent 1((-,-)_)-orbits in g. are in one-to-one correspondence with partitions

in P.(k).

With this theorem, we can conclude that

Corollary 2.7. If e = —1, then k = 2m must be even, and 1({-,-).) = Sp(2m,C),
g. = sp(2m,C). Hence the Sp(2m, C)-orbits of nilpotent elements in sp(2m,C) are
identified with the paritions of 2m in which odd parts occur with even multiplicity.

If e = 1, then k = n can be any integer, and 1((-,-).) = O(n,C), g. = o(n,C). So the
O(n, C)-orbits of nilpotent elements in o(n,C) are identified with the partitions of n in

which even parts occur with even multiplicity.

2.3 Another Characterization of Classical Nilpotent Orbits

In the last couple of Sections, all nilpotent orbits are characterized by partitions.
And the partitions are often expressed as Young diagrams whose row sizes are
determined by the corresponding partitions. In fact, in studying nilpotent orbits,
it is sometimes more convenient to look at the column sizes of a Young diagram.
The column sizes of the Young diagram corresponding to a partition is given by

the dual partition of the original partition, which is defined by the following:



Definition 2.8. Lef [ry,rs, ..., ;] be a partition of n, with ry > ry > -+ > r; > 0, then

its dual partition is given by (cy, cx—1, . .., c1), where cy41—; = #{i|r; > j}.

Example 2.9. Let O = [4,2] in Sp(6,C). Then the Young diagram corresponding to O
is given by

the dual partition of O is (2,2,1,1).

The dual partition of O has an algebraic intepretation on the rank of X*, where

X is any nilpotent element in the orbit.

Proposition 2.10. Let X be any nilpotent element in the orbit O parametrized by the

dual partition (cy, ..., c1), then

From now on, we will determine a nilpotent orbit by its dual partition, or
equivalently the column sizes of its corresponding Young diagram. Here is a re-

statement of Corollary 2.7 in terms of column sizes.

Corollary 2.11. Any nilpotent orbit in Sp(2m, C) can be parametrized by a partition of
2m with column sizes (cak,, Cak—1, - - - , Co), Where co, > Cop—1 > - -+ > ¢ > 0 (by insisting
cor 15 the longest column, we put cy = 0 if necessary), such that co; + co;—1 is even for all
i (c_p and copyr = 0 forall v > 0).

Any nilpotent orbit in O(n, C) can be parametrized by a partition of n with column sizes



(bog41, bok, - - -, by), where bog 1 > boy, > - -+ > by > 0 (putting by = 0 if necessary), such

that by; + b,y is even for all i (b_, and copy14, = 0 for all r > 0).

Example 2.12. Consider the dual partition (4,4, 3,3, 1,1). To check whether it defines an
orbit in O(16, C), we name the longest column 4 by O, second and third longest column

S and O and so on. We get

OSsS OS O S O

In order for the partition to be a nilpotent orbit in O(16, C), we want the sum of each S-O
column pair (which is different from O-S column) to be even. However, the first pair 4 + 3
and the third pair 1 4 0 are odd. So it does not define a nilpotent orbit in O(16, C).

To check whether (4,4, 3, 3,1, 1) defines an orbit in Sp(16, C), name the longest and sec-

ond longest columns S and O, third and fourth longest columns S and O and so on. We

get

s OS§S O S O

10



Note that the sum of the S-O column pairs are 8, 6, 2 respectively. So it defines an orbit
in Sp(16,C).

2.4 Closure Relations Between Orbits

In this Section, we study the Zariski closure of nilpotent orbits. In the classical Lie

algebras, there is a nice combinatorial way of describing the orbit closures.

Definition 2.13. Let O and O be nilpotent orbits of a classical Lie algebra g, and let
X' e, X €0. Wesay O < O iff rank(X") < rank(X") for all i. So O' < O iff

ZZL/I’ ¢, < SV e For example, the diagram below shows the case of G = Sp(6, C):

/ \ |

HNERENE [ ]

VL

where the larger orbits appear on the left.

-----

condition rank(X’) < S¥77¢; =: p;. Note that the rank conditions defining the orbit
closures, namely rank(X7?) < p;, can be expressed as the vanishing set of some algebraic
equations. Therefore, O is closed in the Zariski topology, and set theoretically it is indeed

the Zariski closure of the orbit O.

11



CHAPTER 3
NORMALITY OF ORBIT CLOSURES

As mentioned in the Introduction, it is suggested that the machinery of quantiza-
tion works better with orbit closure than the orbit itself. In fact, they are closely

related in the case of complex Lie algebras.

Theorem 3.1. Let O be a G-orbit with Zariski closure O. If O \O has codimension

greater than or equal to 2, then R[] is the integral closure of R[O] in its field of fractions.

Proof. First of all, O is smooth since it is a G-orbit. Therefore O is normal, i.e.
R[0] is integrally closed. Now, take Y be the normalization of O and let 7 : Y —
O be the corresponding finite map. Also, let Y’ := 771(O). Then we have the

commutative diagram

Y — Y R[Y'] «+— RI[Y]
R
O — 0 R[O] +—— R|O]

We want to show R[Y'] = R[Y], since then
R[Y] C R[O] C R[Y'] = R[Y]

and therefore R[Y]| = R[O] as required.

Note that the first inclusion holds since (by definition of integral closure of R[O])

for any x € R[Y], there exists a monic polynomial f € R[O][t,--- ,t;] such that

f(x) = 0. But R[O] C R[0O], hence z is also in the integral closure of R[O], which

is R[] itself since O is normal.

12



The second inclusion holds because 7|y : Y/ — O is dominant (as is 7 itself),
hence 7|}, gives the required inclusion.
To see why R[Y] = R[Y’], first note that R[Y] C R[Y”] by finiteness of 7 and the
easy fact that R[O] C R[O)]. For the inverse inclusion, suppose f € R[Y’]. Then it
extends to a rational function on Y (since Y’ is dense in Y'). Let X be the closed set
of poles of finY, which is at least codimension 1in Y. If it were of codimension 1,
by the assumption in the Proposition and finiteness of 7, Y'\Y” is of codimension
2in Y. Therefore X cannot lie completely inside Y'\Y’, and hence Y’ N X is dense
in X.
However, f is regular on Y”, hence regular on Y’ N X, yet our setting says f has a
pole along Y’ N X, a contradiction.
Therefore, f cannot contain any pole along any hypersurface of Y, i.e. f € R[Y],
for any height 1 prime ideal p. Consequently,

fe () R =R

ht p=1

Note that all (real or complex) nilpotent orbits are symplectic manifolds with
the Kirilov-Kostant-Souriau symplectic form, therefore they are all of even (real
or complex) dimensions. In particular, the nilpotent orbit closure O satisfies the

hypothesis of the above Theorem. So we have the following:

Corollary 3.2. R[O] = R[O] if and only if O is normal.

Therefore, it is fruitful to study quantization on both O and its closure, so

13



that one can extract information from each other. In fact, this philosophy will
be applied to the fullest extent in the later Chapters (See Chapter 10). Also, for

classical nilpotent orbits, Kraft-Procesi [19] gave a criterion on normality:

Theorem 3.3 (Kraft-Procesi).
(a) All nilpotent orbit closures in SL(n,C) are normal.
(b) Let O = (cog, €21, - - -, Co) be a nilpotent orbit in Sp(2m, C). If there is a chain of

column lengths of the form
Co; 7£ Coi—1 = Cg4—2 = =+ = C25—1 = Cg5—2 75 Coj—3

then O is not normal along (cok, - - -, C2iy Coim1+2, Coia, . .., Coj—1, Caj—2—2, Caj_3, . . ., Co)-
Similarly, the closure of a nilpotent orbit P = (boj11, - .., bo) in O(n, C) is not normal if

there is a chain of column lengths of the form
boi # boi—1 = bajg = -+ = baj—1 = byj_2 # baj_3

Remark 3.4.

(i) We will see in later Chapters that in the quantization model of O, the normality of
nilpotent orbit closures plays an important role. More precisely, if the orbit closure is
normal, the representation theoretic aspects of its corresponding model can be completely
determined (e.g. an analog of Theorem 10.1 in the type A situation holds). Since every
nilpotent orbit is normal in the type A situation, we focus on the type B, C, D cases.

(ii) Using the notation in Example 2.12, the normality criterion of nilpotent orbit closures

of types B, C, D amounts to checking whether there are even number of columns, starting

14



with an O column, that have the same size. For example, , are

normal, while is not normal.

Later on, we will come across another criterion of the normality of nilpotent

orbit closures, by considering the multiplicities of some fundamental representa-

tions of G in R[O] and R[O] (Theorem 9.12).

15



CHAPTER 4
BRYLINSKI'S CONSTRUCTION OF X5

4.1 Kraft-Procesi Construction of R[O]

In [19], Kraft and Procesi constructed a realization of R[O] to prove their non-
normality results in Theorem 3.3. Since the construction of the Brylinski model
X is based on their construction, we give a brief account of the Kraft-Procesi

construction here.

Definition 4.1. Let (U, (, )), (V,(, )) be complex vector spaces equipped with symmet-
ric (or anti-symmetric) and anti-symmetric (or symmetric) inner products respectively,
with dimU =m < dimV =n. Let X € L(V,U) := Hom(V,U) be surjective. Define
7w : L(V,U) = End(U) and p : L(V,U) — End(V) by 7(X) = XX*, p(X) = X*X,
where * is the adjoint operator of the corresponding inner product spaces.

It can be checked that the images w(X ) and p(X) are invariant operators with respect to
their inner products, therefore both are in O(U )(or Sp(U)) and Sp(V')(or O(V')) respec-

tively.

Theorem 4.2 (Kraft-Procesi). Let z € O C o(U) (or sp(U)) be a nilpotent element. For
large enough n = dimV, p(7=1(0)) = O', where O' is the nilpotent orbit in Sp(V )(or
O(V')) by adding a column of length (n — m) on the Young diagram corresponding to the
nilpotent O.

16



(By ‘large enough’ we mean the adding of the column makes sense, i.e. the first column of

O has to be of length shorter than (n —m).)

Proof. Let O = (cy,cp_1,+- ,c1) with ¢; # 0. Then by the Definition 2.12, O is
the union of orbits with partitions equal to the ‘toppling” of that of O. Consider
X e n71(0),ie. XX* € O and hence by Definition 2.12, rank(X X*)1 < 3., ¢
for all j and

rank(X*X)" = rankX*(XX*)7'X < rank(XX*)T < Y o

i<k—(1-1)
Therefore, X*X € O, i.e. p(m~1(0)) C O'.

Now, check that O' C p(7~}(0)) € O'. LetY : V — V be an element in O0'. By
definition of O, rank(Y) = dimU. So write U = Y(V) and Y|y : U — U can be
treated as an element in End(U) lying on the nilpotent orbit O.

Consequently, if we denote Z =Y : V — U, Z* will simply be the inclusion map

U — Vand
7'Z=Y , ZZ"=Y|p €O

which means Y € p(7~1(0)).
On knowing O’ C p(r1(0)) C O, we just need to show the middle element is
closed. But [19], Theorem 2 says p (and 7) are quotient maps, hence they map

closed sets to closed sets, which proves the theorem. O

Example 4.3. To construct the closure of the nilpotent orbit (4,4,2,2) in O(12,C), we

17



need to add columns consecutively each time. This can be seen by the diagram below:

M — * — L(V1, Vo) PLEY H

1 l Pl Sp(Vo) = Sp(2,C)
* — L(V2, V1) I
1 ol O(V1) = 0(4,0)
L(V3,V2) RN
pl Sp(V2) = Sp(8,C)

O(V3) = 0(12,C)
where M = L(Vy, Vo) @ L(Va, Vi) @ L(Vs, Va).
Note that each of the L(V;, V;_1) has a natural symplectic structure given by the (V;,V;_1)
pair. Write G := O(V3) = O(12,C), S := Gy x G1 x Gy = Sp(Vp) x O(Vy) x Sp(Va),
then G x S acts on M by

(9,50, 51, 82) - (X1, Xo, X3) 1= (50 X157, 51 X185, 52 X397")

This action is Hamiltonian with moment maps p, : M — s = s given by
(Xl, XQ, Xg) —> (Xle, Xle —X2X57 X;XQ —X3X§>, and Mo - M — g* = ggiven by
(X1, Xo, X3) — X3 X5 and by our construction, the equation of the closure of (4,4,2,2)

is exactly given by pa(uy ' (0)).
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Proposition 4.4 (Kraft-Procesi).

ClM]

0= Gl es)

)S

where M = L(V1, Vo) ® -+ ® L(V,,, V1), S =Go X Gy X -+ - X Gy_1.

Proof. These are precisely the algebro-geometric statement of the Kraft-Procesi
construction (see [19], Theorem 5.3), namely:

e 117 (0) is the complete intersection with respect to the equations X; X; =0, - - -,
X X — X, X =0.

e iy : ;' (0) — O is a quotient map under S. O

4.2 Some Basic Notions on Infinite Dimensional Representa-

tions

Before constructing the Brylinski model, we give some basic notions of infinite
dimensional representations which are essential for the construction.
Let g be a classical complex simple Lie algebra, and U(g) be its universal envelop-

ing algebra. Let Z(g) be the center of U(g). Then

Theorem 4.5 (Harish-Chandra Isomorphism). There is an isomorphism between Z(g)
and S(h)W, the Weyl group invariant of the symmetric algebra of a Cartan subalgebra b
of g. Therefore, by the Nullstellensatz, every maximal ideal of Z(g) can be identified as
Z (), where \ is an element in h* /W .
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Let I be a two-sided ideal of U(g), then [ is said to have infinitesimal character
A if I contains the ideal U(g)Z ().

Definition 4.6.

(a) Let Gy be a real reductive Lie group with Lie algebra Lie(Gy) = go and maximal com-
pact subgroup K. Then a (g, K) := ((go)c, (Ko)c)-module V' is a U(g)-module with a
K-action such that:

eForany X e gandany k € G, k- X -v = (Ad(k)X) - (k-v) forallv e V.
eForallY €6,Y -v=L(exp(tY) - v)|io.

o V is admissible. Namely the K-action on V is finite-dimensional, i.e. V can be decom-
posed as a direct sum of finite-dimensional, irreducible K-modules, and each irreducible
K-module E appears in V with finite multiplicity.

(b) An admissible (g, K )-module V' is finitely generated if there is a finite-dimensional
vector subspace Vo <V such that U(g) - Vo = V.

(c) Furthermore, an admissible (g, K )-module V' has an infinitesimal character \ €
b*/W if the U(g)-annihilator of V contains the ideal U(g)Z(\).

(d) Let G be a complex semisimple Lie group with compact real form K. Treat G as a real
Lie group, then (gc, Kc) = (g9 ® g, G), and the corresponding (gc, Kc)-module is called
a Harish-Chandra bimodule.

Given an admissible, finitely-generated (g, K')-module, there is an important
invariant attached to it called the associated variety, which will be used again and

again in the following Chapters.
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Definition 4.7. Let X be an admissible, finitely generated (g, K')-module. Let X, be
a finite-dimensional K-invariant generating subspace of X, define a filtration on X by
X, = Uy(g) - Xo. Then gr(X) becomes an gr(U(g)) = S(g)-module, and (by the
compatibility condition of (g, K)-module) every element in € annihilates gr(X'). So gr(X)
can be treated as a S(g/€)-module. Let I = Anngqye)(gr(X)), then

the vanishing set V(1) does not depend on our choice of generators X, (though I does)
Therefore, we can define the associated variety of X to be

AV(X) =V(I) C (9/8)

4.3 Construction of X5
Retain the notations in the last proposition, set W = Weyl algebra of M =
L(‘/17 %) DD L(VTLJ Vn71>/ ie.

W=T(M)/{a®b—-b®a—{a,b})

with {-,-} being a symplectic form on M (Recall each L(V;,V;_;) has a symplec-
tic structure, therefore so does M). There is a natural inclusion ¢ : sp(M,C) =

S%(M) < W. Then Wis a (sp(M, C)¢, Sp(M)¢)-module given by the actions
(z,y) - A:=&"m —mg?

g-m=gmg~'
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for (z,y) € sp(M,C)c = sp(M,C)®sp(M,C), g € Sp(M)¢c = Sp(M,C)and m € M
(extend the above actions to T'(M)).

As in the last section, gand s := go @ - - - & g,,_1 are embedded in sp(M, C). Define

Definition 4.8.
Xo =W/ ((z,y)- A, A—s- Al (z,y) € 8¢, s €S, Aec W)

Theorem 4.9. There is a filtration of algebras in X inherited from the filtration in

wever ¢ W. Under this filtration,

gr(Xo) = R[O]

as G = Kc-modules.

Proof. Here is a sketch of the proof. Recall the definition of Lie group homology,
Xo = Ho(sc, S; W)
and the Koszul complex evaluating H;(sc, S; W) is
0+ A% @5 W& Alp @g W < . Alp @g W 0

where p = {(z, )|z € s}, the noncompact part of the Cartan decomposition of sc,

and the boundary map is given by
t

Nzt A ANy @E) =Y ay Av- Ady Aveay @ (7 E + EE™)
i=1

where z; is a shorthand of (z;, x;) € p.

Use a spectral sequence to evalute H,(sc, S; W"): Pick EP? so that
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EL = gry(Hpyq(sc, S; Ween)). We will show:
o B0 = R[], B = 0
o EP1 = EPa je. E?stabilizes atr = 1.
Indeed,
EFt = APTp @g C[M] 9

where the nonzero values are on the (—x/4,0) octant {(p,¢)|qg < 0, p+ g > 0}. So

Ed is the complex
(0 — /\Op ® (C[M]even Y /\1]3 ® (C[M]even — .. /\dimSp ® C[M]even — O)S

the boundary map are the downward arrows |: EY? — EP?" on the 0*"-page,

given by
a(xl/\---Axt®E):le/\---/\:fi/\---xt®gr(§xiE+E§xi)

but gr(£*) = pi*, so the complex is simply the Koszul complex of {77 }.

However, by [19], {11 |x; € s} is a complete intersection, hence they form a regular
sequence. By a result in commutative algebra, the homology of the above complex
is

EY: 0« (RM]/(uflz €8))° 0 -
and hence the first claim is done by the Proposition above.

For the second claim, note that the boundary maps on the 15 page become <+, so

the value remains unchanged and so does E; and so on. So we are done. O

Proposition 4.10.

(a) X is admissible.
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(b) X is finitely generated.
(c) The left and right annihilators of X coincide.

(d) X has an infinitesimal character.

Proof.
(a) First of all, note that both X and gr(Xg) are isomorphic as K¢-modules. Also,

by the Theorem, we know ¢gr(Xa) = R[O] as Kc-modules. However, by a stan-
dard theorem for reductive group actions on varieties, ?[O] decomposes into a di-
rect sum of finite-dimensional irreducible Kc-representations. It now remains to
show the multiplicities of each finite-dimensional irreducible K¢-representation
is finite.

There are many ways to see this is the case, we will present one here which will be
relevant to the later chapters. Consider the variety of all nilpotent elements N. It

is indeed the closure of an orbit called the regular orbit O,.,. It is a standard result

(which is generalized by Theorem 6.2 and Corollary 3.2) that as K¢-modules,

R[Oyeq] = U(g)/ann ) (M (X))

where M (\) = U(g) ®u() Cy is any Verma module. In particular, R[O,,] is iso-
morphic to a principal series representation X (\,)\) := Ind$(C, ) and hence
admissible. This shows X5 — is admissible.

For any orbit closures O, note that there is a K¢ = G-equivariant morphism

R[Oreg] - R[O]

so for any finite-dimensional irreducible G representations V), the multiplicity of

V,, in R[O] is no larger than that of R[O,.,]. But we know the multiplicities of the
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latter are always finite, hence we are done.
(b) Let W™ be the algebra of S-invariants in W, i.e. W™ = {4 € W |A =
s - A}. Then by definition of ¢ : sp(M,C) — W? in the beginning of this Section,
we have the map of algebras ¢ : g — W™, which induces a homomorphism of
filtered algebras

¢:U(g) » W

On the other hand, by the very definition of X7 we have another surjective homo-

morphism of filtered algebras
¢ W™ = Xg

In Section 7 of [7], it is proved that ¢ is surjective in each filtration degree. Also,

[

Theorem 4.9 says gr(Xg) = R[O]. So the composition of filtered algebras ¢ o ( :
U(g) — Xg gives a surjective homomorphism S(g) — R[O] = gr(Xg) (the kernel
is precisely the defining ideal of the variety O, I(O)). This implies ¢ o ¢ must be

surjective in each filtration degree. Let J := ker(¢ o (), we have

1%

U(g)/I = X5

Now it is obvious that the U(g¢)-module U(g)/J is generated by 1 € U(g)/J.
(c) This holds if J is a 2-sided ideal in U(g). But it follows directly from J =
Anny ) (Xg), if we treat X5 as a U(g)-module under ¢ o (.
(d) We want to check that
Z(\NU(g) C T
for some \. In fact, it suffices to check the inclusion holds after taking gr. Taking

gr, gr(Z(\)) = ST(g)¢, the G-invariant elements in S(g) of positive degree. So
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gr(Z(A\)U(g)) = (S*(g)%). On the other hand, ¢gr(3) = I(O) D I(N) where N is
the variety of all nilpotent elements. By a theorem of Kostant, I(N) = (ST (g)%).

Therefore
gr(Z(NU(g)) = (S*(9)%) € I(O) = gr(7)

and hence the Theorem follows. O

Therefore, X is a Harish-Chandra bimodule. Moreover, its infinitesimal char-

acter is known explicitly.

Proposition 4.11. Let O = (cyy, . . ., ¢o) be a nilpotent orbit in Sp(2m, C). Then X has
an infintesimal character x = (X0, X1, - - -, Xk ), Where x; is defined by the following:

o Foribetween 1and k, x; = (%, 22 . =—2-142)

* xo=(2,...,1).

Let P = (bog+1, bk, bok—1, - .., bo) be any nilpotent orbit in O(n,C). The infinitesimal
character of X5 is (xn, x), where

e X is defined in the same way as the symplectic case for P' = (ba, bog—1, - . ., bo), and

e — (%TI_Q, ooy 3) if bogy Bs 0dd, (w, oo+, 0) if bag 41 is even.

Proof. This is given in [26], using some techniques on reductive dual pair corre-

spondence. We will study the subject further in Chapter 11. O

Example 4.12. Consider the orbit (7,7,6,4) in Sp(24, C). Then the infinitesimal char-

acter of x can be read from the following diagram:
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1
= 11100
311
2 1 2
2|1
5| 3
2 |1 2
13
715
2|1 2

ie.x = (L2 3 L2 3°1'391,1,0) (up to a Weyl group action on the coordinates, by
the Harish-Chandra isomorphism). For the orbit (7,7,7,6,4) in O(31, C), the infinitesi-

mal character is given below:

O SsS O S O

1
2
1|0
1131
2 2|2
211
3 5|3
2 2| 2
3
S| 7153
2 [ 2|2

Remark 4.13. Note that as a Corollary of Proposition 4.11, the (gc, Kc¢)-module X5
has a composition series of irreducible (gc, Kc)-modules. The arqument is sketched as
follows:

By Langlands classification of irreducible (gc, K¢)-modules, the number of irreducible
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representations having a fixed infinitesimal character is bounded by the size of the Weyl
group of G. Let the lowest K -types of such irreducible representations be the irreducible,
finite dimensional Kc-representations Vi, ..., V,. It follows that all (gc, Kc¢)-modules
having the fixed infinitesimal character must contain one of the above K-types V;.

If X is irreducible then we are done. Suppose not, i.e. there is a submodule W C Xg.
Then W, X5 /W are both admissible, finitely generated and have the same infinitesimal

character as X. Since Kc-representations can be completely decomposed,
Vi: W]+ [Vi: Xo/W] = [Vi: Xgl(< o0)

for all i, and there are some V; such that [V; : W] > 0. In particular, Y [V; : W], .[V; :
Xa/W] <> .[Vi: Xp|. So we can use induction argument on sum of multiplicities of V;

to conclude that both W and X&/W have composition series, and hence so does X¢.

Finally, the associated variety of X5 is O as expected.

Proposition 4.14. The associated variety of X is AV (Xg) = O.

Proof. In fact, if X5 = U(g)/J is a Harish-Chandra bimodule, it follows im-
mediately from the definition of the associated variety of a (g, K')-module that
AV (Xp) C (gc/tc)” = (9@ 9/9)" = g = g, and it is equal to Ann(gr(J)) C g.

However, in the proof of Theorem 3.9(b), gr(J) = I(O). Hence the result fol-

lows. ]
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CHAPTER 5
UNIPOTENT REPRESENTATIONS

Before constructing the quantization model for the nilpotent orbit O, it is impor-
tant to introduce the basic building blocks of the model - unipotent representa-
tions.

Let g be a complex classical Lie algebra, and fix A € h*. It is known by Dixmier
that there exists a maximal ideal J,,,,.(A) C U(g) so that the infinitesimal character

of U(9)/Jmaz(A) is A

Definition 5.1. A unipotent representation is an irreducible Harish-Chandra bimodule
X such that the left and right U(g) annihilators of X are both equal to J,,,q..(\) for some
A€ b

These objects are well-studied by Barbasch and Vogan, as the following theo-

rem shows.

Theorem 5.2 (Barbasch-Vogan). Fix A € h*.

(a) The associated variety of any unipotent representations X depends only on \. In par-
ticular, for a fixed X, all unipotent representations X have the same associated variety
AV (U(8)/ Tmaz(N))-

(b) The number of unipotent representations X given a fixed infinitesimal character \ can
be computed. The character theory of all such X is also known.

(c) All representations having infinitesimal character A must have associated variety big-

ger than or equal to AV (U(9)/ Jmaz(N))-
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The rest of this Chapter will focus on applying Part (b) of the above Theorem,

given the infinitesimal character is of the form as in Proposition 4.11.

5.1 Character Theory of Unipotent Representations

5.1.1 Integral Infinitesimal Character

Recall Proposition 4.11 that if A is integral, the infinitesimal character we are in-

terested in is of the form
(ar,a1 —1,...,1;by,...,05a9,...,1;bs,...,0;...)

where a; > b; in G = Sp(2m,C), or (dy,...,0;ay...1;by,...,0;...) for G =
O(2n,C) . Given such ), we give an algorithm computing the number of unipo-

tent representations and their associated varieties.

Proposition 5.3. Let G = Sp(2m, C), and let \ be an integral infinitesimal character of
the form given in Proposition 4.11. Replace A\ by w for some Weyl group element w € W
such that w\ = (ay, a1 —1,...,a1 —1,a1—2,...,a1—2,...,0,...,0). Then extract one
coordinate from each entry, i.e. (a1,a1 — 1,...,0), and then adjoin it with the negatives

of coordinates. This forms the coordinates of F''. Similarly, form F?, F* and so on from
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the remainder until all zeros are extracted. Then collect all the remaining non-zero terms

and form T' [5, Section 6.2]. Write

F'=(a,...,1,0,—1,...,—f)
T=(dd—1,...,1)

(The construction of X in Proposition 4.11 forces T" to be of the form above) then by con-
struction, oy > ﬁz > Qi1 — ].fOT' all 1. IfOéi §£ Bi/ let C; = (2051'7 2(6@ -+ 1)) IfOéi = 62',

let ¢; := (20; + 1,2 + 1). Write O' = (¢y, ¢, . . ., ¢k, 2d), then

AV(U(Q)/‘]mam(/\)) = @

Proof. The algorithm is essentially given in [4]. More generally, the A we are deal-
ing with are called q-unipotent by McGovern in [24]. Here is a brief description
of the algorithm. Given A € b, first correspond h* with the Langlands L-group
Lp. Next, find the Levi subalgebra “m c’ h such that (A\,m) = 0 for all m € m.
Then the left cell corresponding to ) is given by V() = JVV[‘//( Ly (89n) ® sgn, where
J is the truncated induction defined by Lusztig. Let o be the (unique) special
Weyl group representation in that left cell. Then the orbit O(o) corresponds to o

through Springer correspondence is the precisely the O’ in the Proposition. [

Example 5.4. Let O = (6,4,4,2,2) in Sp(18,C). Then by Proposition 4.11, X\ =
(3,2,1;1,0; 2,1;0; 1). Rearrange the entries so that wA = (3,2,2,1,1,1,1,0,0). Now
F' = (3,2,1,0,—-1,-2), F? = (1,0,—1); so ¢; = (6,6), co = (3,3) and hence
AV(U(g)/Jmax(N)) = O = (6,6, 3, 3). Note that O’ C O.
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Proposition 5.5. Let G = O(2n,C) and X is an integral infinitesimal character of the
form given in Proposition 4.11. Rearrange the entries of \ in non-increasing order as in
the above Proposition. Then extract one coordinate from each entry to form E. For the
remainder, extract F'’s and T as in the above Proposition. For Ey = (z,z — 1,...,0),

T =(d,...,1)and ¢, is defined as in the symplectic case,
AV(U(g)/ Jmas(N)) = O

where O' = (2x + 2,¢1, a5 - . ., Ck, 2d).

The following Proposition gives the number of unipotent representations for a

given infinitesimal character.

Proposition 5.6. Let G = Sp(2m,C) or O(2n,C), and X\ as above with O’ =
(z1,29,...,2,). Let sor be the number of F''s so that j; exists and o; # B;. Then for
G = Sp(2m,C), the number of unipotent representations having infinitesimal character
A is 2°0'. Similarly, for G = O(2n, C), the number of unipotent representations having

infinitesimal character \ is 250’1,

Proof. The number is precisely the number of irreducible Weyl group represen-
tations in the left cell V(\) in the above Propositions. More precisely, from [4,

Proposition 5.28], the number is equal to the Lusztig quotient A(O’) of the nilpo-

tent orbit O'. m

Finally, the character formulas for all unipotent representations is given by the

following Theorem:
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Theorem 5.7. Let A, O' and V () as in the previous Propositions. Forany o; € V(X), 1 =

1,...2%, there is a one-one correspondence between the abelian group A(Q') = (Z/2Z)*

x € A(O) +— 0, € V(N
such that the unipotent representations have character formulas

Xy = 52 S tr(x(@) R, )

where x is any irreducible representation of A(O') = (Z/27Z)°, parametrized by

(£, ..., %), and
A
R,(\) = tr(o(w))X

weW WA

A

where X (
Definition 1.7(d)])

) is the K-finite part of the principal series representation Ind%(C, ,.)) ([4,

o

Remark 5.8. The Lusztig quotient A(Q') is a quotient of the fundamental group m (O’)
of O'. Also, if x = (+,4+,...,+), then X
X,

+ contains the trivial representation, i.e.

.....

+ is spherical.

7777

Example 5.9. Let N = (4,3,2,2,1,1,1,0,0) in Sp(18,C).  Then F' =
(4,3,2,1,0,—1,—2) and F* = (1,0). Then from the above Propositions, O’ = (8,6,2,2),

the number of irreducible unipotent representations is four, having character formulas:

4321,210 1,0

1 w
1 > (1) x

W (CyxDsxCyxDy) w( 4321,210 1,0)
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1 l 43210,21 1,0
. 1))
+3 > (—=1)H) x

W(D5><02><01XD1) w( 432107 21 1,0)
1 4321,210 10
+4—l Z (—1)l(w)X
W (Cyx D3 x Dy xCo) w( 4321,210 10)
1 43210,21 10
+3 > (—1)!®) x
W (D5 xC2xDaxCly) ’UJ( 43210, 21 10)
and three others with signs (+, —, +, =), (+,+, —, —) and (+, —, —, +).

For the future work, we denote the four unipotent representations by the following no-
+ 1 - %

N AN AN AN
tation - (8,6, 2,2) for the formula with sign (+,+,+,+), (8,6, 2,2) for the formula
+ — — —

)

AN AN AN A
8,6,2,2 8,6,72,2

with sign (+, —,+, —), ( ) for the formula with sign (+, +, —, —), (

for the formula with sign (+, —, —, +).

For another example, let X = (2,2,1,1,0) in O(12,C). Then E° = (2,1,0) and
T = (2,1). Then the above Proposition says O' = (6,4), the number of irreducible

unipotent representations is two, having character formulas:

1\ (w) 2104+ 21
> e e ¥

(—1>l(w)X( 210— 21 )
w(  210—  21)
weW (C?) weW (C2)

+

Again, the first formula will be denoted (/6\, 4), and the second formula will be denoted

(76, 4).
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5.1.2 Half-Integral Infinitesimal Character

After dealing with the case of purely integral infinitesimal characters, we move
to the case of purely half-integral infinitesimal characters. This is an important

ingredient for such theory:

Theorem 5.10 (Kazhdan-Lusztig Conjecture). For each \ € b, consider the root
system A(N) := {a|(&, \) € Z}. Then the character theory of unipotent representations

in g can be derived from that of A(\).

The conjecture was proved separately by Kashiwara-Vergne and Beilinson-
Bernstein.
By the Kazhdan-Lusztig conjecture, we study the character theory of unipotent
representations with half-integral infinitesimal characters in W(D,,) < W(C,,)
(note that the Kazhdan-Lusztig conjecture is vacuous for half-integral infinitesi-
mal characters in the W (D,,) and W (B,,) cases). The following two Propositions

are the analogues of the ones in last subsection:

Proposition 5.11. Let G = Sp(2m,C)and A = (%, % —1,...5;% ..., 3;...) beof the
form given in Proposition 4.11. Replace X by wA for some Weyl group element w € W
such thatwh = (%, % —1,..., 9 —1,%9 -2, ..., 9—2 .. 1 ... 1) Thenextract one
coordinate from each entry, i.e. (%,% —1,...,3), and then adjoin it with the negatives

of coordinates. This forms the coordinates of F''. Similarly, form F?, F* and so on from

the remainder. Write
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2 7t 2 ) 2 ) 2 AR ) 2
then by construction, o; > B; > oy — 1 forall i. If a; # By, let ¢; == (o, B; + 2) (if
there are no negative entries in I, take 3; = —1). If a; = 3, let ¢; = (c; + 1, + 1).

Write O' = (¢, ¢a, ...), then

AV(U(9>/‘]maa:<>\)) - @

Example 5.12. Let O = (5,3,3,1) in Sp(12, C). Then by Proposition 4.11, A = (3,2, 1
;2 1). Rearrange the entries so that wh = (2,2,3 1 1 1) Now F' = (2,3,4, 31, 52),
F? = (Y50 ci = (5,5), ¢a = (1,1) and hence AV (U(g)/Jmax(N)) = O" = (5,5,1,1).

Note again that O’ C O.

=

. by
iy

Proposition 5.13. Let G = O(n,C) and \ = (“

1
"2

N[ =

;%,...,l;...)beof

20 2
the form in Proposition 4.11. Rearrange the entries of A\ in non-increasing order as in
the above Proposition. Then extract one coordinate from each entry to form E. For the
remainder, extract F', F* and so on as in the above Proposition. For E° = (£,%2 —

1,..., %), let co = x + 2 and c; is defined as above. Then
AV(U(9)/ Jmax(N) = O
where O' = (cy, c1, ¢, ... ).
Proposition 5.14. Let G = Sp(2m,C) or O(2n,C), and X, and let X\ and O =

(co, €1, Ca, ... ) as above (omit cq if G = Sp(2m,C)). Denote U C {1,2,...} the sub-

set satisfying «; # B; forall i € U. Then the unipotent representations are parametrized

by
+ + +

A~ AN AN
{( Cp , C1 , Co ,)}
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where the sign of ¢; for i ¢ U is always + (and hence can be omitted). In particular, if
G = Sp(2m,C), the number of unipotent representations having infinitesimal character
A is 2%0'. Similarly, for G = O(2n,C), the number of unipotent representations having

infinitesimal character X is 250’1,

The character formula, however, is different from the integral case. It can be

better expressed by examples:

Example 5.15. Let A = (£,2,3 3 1 1)in Sp(12,C). Then F* = (£,5,3, 1 21 =3) and

2727272722

= (7,5). Therefore, O’ = (7,5) and there are two unipotent representations - ('7,5)

and (/7/,\) The character formulas are

w .
weW(D4xD2)( R w( 3337 33) weW(%ng)( R wl 3337 37
and

() 1327 33 I(w) 3322 33
weW()ZMDQ)( v w( 3335 33) weW(%ng)( R w( 3335 3%
respectively.
For another example, consider X = (3,3,3 3 1 2 1 1) in Sp(16,C). Now F' =
(5,3,5,55, ) and F? = (3,5,5). Therefore, ¢; = (5,5), co = (3,3) and O' =

+ 4

(5,5,3,3). There is a total of four unipotent representations, denoted by (5,5, 3,3). For
-+

A= A
example, the character formula of (5,5, 3,3 ) is given by

N[

S (Cpx

53
weW (D3 xDaxDaxD1) w( 5575

|

—
N N
NI—= N
N N
N |#—= DN |
NI
SN—
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531 31 31 1

222 22 722 2

531 3-1 31 1

wEW (D3 xDaxDaxDy) 'l,U( 522 573 + 93 5)
531 31 31 1

222 22 22 2

53-1 31 . 3-1 -1
wEW (D3 xDax Dy x D1) w( 2251 22 2= 7)
531 31 31 1

222 22 ¢ 22 2

+ > (=)'x
531 3-1 . 3-1 -1
wEW (D3 x D x Dy X Dy) w( 252 55 3% 7)
As the final example, consider X = (2,1, 1. 2) in O(9,C). Then E° = (2,3), F' =

(3,51, co = (5), 1 = (2,2) and hence O’ = (5,2, 2). The unipotent representations can
+

~= '
be expressed by (' 5 ,2,2). The character formulas are given by
31 .11
> ()x 22 3 3
weW (D1 x Dy) w( %%j: : % %)
31 .1 1
_ Z (_1>l(w)X 2 Qi ) 2
weW (D1 xD1) w( %%:l: ; —71 —Tl)

5.1.3 General Case

In the previous subsections, we have seen the character theory of unipotent rep-
resentations with purely integral or purely half-integral infinitesimal characters.
In fact, by the Kazhdan-Lusztig Conjecture (Theorem 5.10), it is enough to derive
the theory of unipotent representations out of these two cases. One just need to
separate the integral and half-integral coordinates, apply the algorithms in the

previous two sections, combine them together to get the result.
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75 3 1.3 1.3 1.

Example 5.16. Let P = (9, 7, 5, 47 2) in 0(27, (C) Then \ = (5, 3195151915797 ) 2, 1, 0)
The half integral infinitesimal character (%,2,3 1.3 1) gives the orbit (9,7,5) in

O(21,C). The four corresponding character formulas are

£ f 7531 7531 31
e Weathe L9924 L9221 22
(975 = > (-1)X 32225 2222 232
Wby o B3E BH P
75314 7531 31
— Z (—1)!w) X 2222 2222 22
wibiin ol B 1333
and
g 75314 7531 31
(9 ,75)= Z (_1)l(w)X 2222 2222 22
T5314 T53-1 31
W(DaxDz2) w( 3353%F 335% 33
75314 7531 31
_ Z (_1)l(w)X 2222 2222 22
wibios o 33 35333
For the integral part of the infinitesimal character, (2,1,0), the corresponding orbit is

s
AN
(4,2). The two corresponding character formulas are (4,2), of the form

oy eyex | T ey x| )

W(CQXDl) w( 21 0) W(D3><CO) w( 210)
Combining the two results, O for the infinitesimal character X is (9,7,5,4,2) (which
happens to be the same as O). The number of unipotent representations attached to X is

4 x 2 =38, of the form

+ + +
N AN AN
(9 ,75,4,2)
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and the eight character formulas are just the ‘cocatenation’ of the two character formulas
+ o+ o+

. AN AN AN
above. For instance, the character of ( 9 , 7,5, 4,2) is:
7531, 7531 31
1 3 (— 1)) x 32231 2223 323 21 O
W(DyxD2xCoxDy) w( 12324 1231 31 921 0)
7531 7531 31
1 T (—1)x 32237 3223 323 210
W (Dx DaxCaxD1) w( 12314 I83-1 3-1 91 )
7531, 7531 31
1 1331y 7531 31 9]
- Z (—1)l) x 22221 2222 22
W(D4><D2><D3><Co) W( %g%%"‘ %g%% %% 210)
7531 7531 31
1 3 (— 1)) x 32237 3223 322 210
2 7531, 753-1 3-1 97
W (DaxD2xDsxCo) w( 3353F 3353 53 )
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CHAPTER 6
THE BARBASCH MODEL X

In [6, Section 2], Barbasch constructed a (gc, /¢ )-module of any nilpotent orbit of

classical type, which is denoted as X. The definition of X is given below:

Definition 6.1. Let O = (dg, . . ., dy) be any nilpotent orbit in G, where G = Sp(2m, C)
or O(n,C). Define £ and Q inductively as follows:

Let & = ¢ and Qy = O. Suppose i is the smallest integer such that d; = d;;,, then
Q1 :=(di,. .. ,dgro,dx_1,...,do) and & := Eg U {d;}.

Continue the above process until we get Q = (ey, ..., eo), with e; # e, for all i. Then £

are the lengths of the removed columns with multiplicities. Let
G(2m,C
Xo = Indgp oy gy (Xo @ |det|'?)

where G(Q,C) = G(>_e;,C), GL(E) = y,ce GL(d;, C) and X g is the spherical unipo-

tent representation attached to the nilpotent orbit Q.

Theorem 6.2 (Barbasch). As K¢ = G-modules,

Example 6.3. Suppose O = (dy, ..., dy) is an orbit in Sp(2m, C) such that d; # d;_,
forall i. Then O = Q, and X is the spherical unipotent representation attached to Q.

Using the notations in Chapter 5,

/—'j;‘ /"+‘\
XQ = (dgl,dgl_l, . ,dg,dhdo)
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+
where p, ¢ has character formula

P q
LS ey b1 2.0
2 p q
W(CP/QXDq/2+1) w( 5 1 5 .. O)
1 L - S |
ty o>, (FLMX e
W(Dp/2+1><(]q/2) w( %)O %1)
if p, q are both even, and
p L g2 1
] B R
W (D,2xDya—1) w( L...4 2
p 31 q=2 31
_ Z (—l)l(w)X 27722 2 1122
W (Dy2xDy/a1) w( L35 2 34
if p, q are both odd. And djy has the character formula
do 1
T -— Z (_1)l(w)X 2
WEW (Cyy 2) w( %,....1)

Similarly, if P = (day1,da, ..., do) is an orbit in O(n,C) where all columns are of

distinct lengths. Then the character of Xp is of the form
+ + +
N e Yt ~
Xp = (doy15dat, ba—1; - - -5 da, dy; dp)

+ + +

—— ~ = ~
where the parts (dy, do—1; . . . ; da, dy; do) is defined as in the Sp(2m, C) case, and dy 11 =

d + d 1
%_1,70—% . . /-/\\ %_ ’...,§+ .

X if bogyq iseven, and dy 1 = X if doyy1
doj11 doy 1
Bl g0+ e I

is odd.
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Remark 6.4. The above construction also gives a (gc, K¢ )-module of O for some covers

O — O. Recall in Remark 5.8 that for any orbit Q, A(Q) is a quotient of m,(Q). However,

m(Q) = (Z/2Z)" and hence any quotient of it, in particular A(Q), can be treated as a

),
subgroup. In fact, according [6], for any subgroup S < (A(Q)) = A(Q) < m(Q),

XQ:ZXX

X€ES

corresponds to the model of a cover of the orbit Q — Q. By replacing X o with X 5 inthe

induction formula in Definition 6.1, it gives the model of a cover of the orbit O — O.

Theorem 6.5. Let O = (cop, Co—1, Cop—2, - - - Co) be any nilpotent orbit in Sp(2m, C) or

O(n, C). The infinitesimal character of X is the same as that of X¢.
Proof. The infinitesimal character of X, and Xp are precisely given in [6]. O]

From last Chapter, the character of X is completely known. By Corollary 3.2,
we know that Xy and X3 are isomorphic as G-modules iff O is normal. We there-
fore hope the following to be true:

e If O is normal, then the composition factors of X5 is the same as that of X.

e If O is not normal, then the composition factors of Xz is strictly contained in the
set of composition factors of Xo.

Before we proceed, we must first of all investigate which irreducible representa-
tions can possibly be composition factors of Xy and X5. And from the list of all
possible irreducible representations, we need to determine which of them appear

in Xy and X¢. This is essentially the work of the next couple of Chapters.
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CHAPTER 7
EXHAUSTION OF COMPOSITION FACTORS

Recall in Chapter 4 and 6, we have quantization models of O and O. Their corre-
sponding Harish-Chandra bimodules have the same infinitsimal characters. The
natural question is, what are the composition factors of both models? In this Chap-
ter, we will give a list of all possible composition factors for both models, along
with their character formulas.

First of all, both quantization models X and X have infinitesimal character \o.
From the calculations in Chapter 5, it is known that all irreducible representations
with infinitesimal character A\p must have associated variety bigger than or equal
to O'. On the other hand, it is almost tautological that the associated varieties of

Xg and X are both O. Therefore the following observation comes at no surprise:

Proposition 7.1. Let O = (ca, Cok—1,- - -, Co) be a nilpotent orbit in Sp(2m, C). Then
the O appearing in Chapter 5 is always contained in O. More precisely, O' = O iff
Coi—1 F Coi—o for all i.

Similarly, let P = (co+1, Cok, - - - , Co) be a nilpotent orbit in O(n, C). Then P’ appearing

in Chapter 5 is always contained in P. More precisely, P' = P iff coiy1 # co; for all i.

Proof. It is just a direct consequence of the algorithm given in Chapter 5. O

Therefore, we are interested in all irreducible representations having associ-

ated varieties between O’ and O. For the case O' = O, all possible irreducible
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representations are unipotent representations given in Chapter 5, and their char-
acter theory is known. Hence we are interested in the case when O’ C O.

For the sake of keeping our computations and book-keeping clear, we would like
to keep the focus on certain kinds of orbits in Sp(2m, C) or O(n, C). The condition
is the following:

Let O = (dy,dg_1,...,dp) be an orbit in Sp(2m,C) or O(n,C). Then O satisfies
condition () if

Whenever d;_, = d;_o, d; # d;i_s3 (1)

7.1 A Special Case

In this Section, we focus ourselves on integral infinitesimal characters in Sp(2m, C)

satisfying (f). Then every orbit O = (ca, c2k—1, - - ., ¢o) can be partitioned into
(CZk =Ty Thy—15,Thy—15 -+ -5 L1, L1, L0y Yko s Yko—15 Yko—15 - - - » Y0,
s 7,Z]€7»7 Rhr—15 Rhp—1y -5, 2’6 = CO)

where z; # z; if i # j, and the “tail’ of each partition is not equal to the ‘head’ of
its adjacent partition, for instance xy # yi,. Since we insist working on integral
infinitesimal characters, all column sizes are even. And in particular we will work

on the orbit

O = (Thy, Thy—1, Thy—15 - - -, T1, T1, To) = (241, 200, 2an, - . ., 201, 241, 2a0)
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By Proposition 5.3, O’ = (V, 1, b, b, , b1, b, _1,...,b1,b],by), where

o Ifa,.1 > a,, thenb, |, = 2a,.1,b, = 2a,+2;if a,41 = a,, thenb | = b, = 2a,+1;
e Foribetween2and n — 1,if a;y1 > a; + 1, then b}, = 2a;41 — 2,b; = 2a; + 2; if
;i1 = A5 + 1, then b;—l—l = bZ = 2@2‘ + ]_, if a;1 = a4, then bi+1 = bl = 2&2‘.

o If ai 7é Qag, then bl = 2(11 + 2, bll = 2&1 — 2, bo = 2(10,' if ayp = Ao, then bl = 2&1 + 2,
bll = b() = ag — 1.

which is the ‘toppling” at columns of sizes 2as,2as,--- ,2a, of the partition

(2Gp11,2Gp, 20y, - - -, 2a1, 2a7, 2ay).

Example 7.2. For O = (8,6,6,4,4,2,2), then O’ = (8,8,5,5,3,3) and we have the

following “toppling” of nilpotent orbits:

O, =(8,6,6,4,4,2,2)

Oz = (8,6,6,4,4,4) 04 = (8,6,6,6,2,2,2) Op = (8,8,4,4,4,2,2)

02,4 = (8,6,6,6,3,3) O2.6 =(8,8,4,4,4,4) O46 =(8,8,5,5,2,2,2)

O2.4.6 = (8,8,5,5,3,3)

\
/

!
!

/
\

Note that each "toppled’ nilpotent orbit can be expressed as a subset of {2,4,6}, for in-
stance {2, 6} corresponds to the orbit Oy = (8,8,4,4,4,4).

Therefore, all possible composition factors of Xy and X7 must have associated
variety equal to one of the above diagrams. They are all parametrized by a subset
S C {2a1,2as,- - ,2a,}, corresponding to the parts of partition to be ‘toppled’.

From now on, we will denote a nilpotent orbit Og by specifying its ‘toppled sub-
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set’ S.

Proposition 7.3. Let O be a nilpotent orbit in Sp(2m, C) satisfying (1), and let Ao, O’
as before. Suppose Og = (d, ...,dy). Then the number of composition factors having
infinitesimal character Ao and associated variety Og is equal to 2%, where ayg is the

number of segments in (dy, . . ., dy) of the form (2p,., 2p,—1,2p,—1, - . ., 2p1,2p1, 2po # 0).

Example 7.4. Let O = (10,10, 10, 8,8, 6,4, 2, 2) be a nilpotent orbit in Sp. Then O’ =
(11,11,9,9,6,6,4,4). The correspondence between S C {2,8,10} and the orbits are

given as follows:

04 = (10,10,10,8,8,6,4,2,2)

/ \

05 = (10, 10, 10,8, 8,6, 4, 4) 0g = (10, 10, 10, 10, 6, 6,4, 2, 2) 010 = (11,11,8,8,8,6,4,2,2)
02,8 = (10,10, 10, 10, 6, 6, 4, 4) 03,10 = (11,11,8,8,8,6,4,4) Og,10 = (11,11,9,9,6,6,4, 2, 2)

\/

O3 8,10 = (11,11,9,9,6,6,4,4)

The composition factors of each Og are parametrized as follows:

+
— e
Oy = (10,10,10,8,8,6,4,2,2)

/\

+ +
——— r—’\—\ ——
0, = (10, 10,10, 8,8, 6, 4, 4) 0s = (10, 10,10, 10, 6, 6, 4, 2, 2) O10 = (11,11, 8, 8,8, 6,4, 2,2)
+ + + +
—— oy
03,5 = (10,10,10, 10,6, 6, 4, 4) 02,10 = (11,11, s 8,8,6,4, 4) 08,10 = (11,11,9,9,6,6,4,2,2)
+ +
PN
028,10 = (11,11,9,9,6,6,4,4)



For example, as s = 3 and hence there are 2° = 8 composition factors with infinitesimal

character Ao and associated variety O .

Proof. The number of irreducible representations having infinitesimal character
Ao and associated variety Os is given precisely by the multiplicity of the Weyl
group representation

[Ind%(Lm) (triv) : Voyog)]

where “m is defined in Proposition 5.3, V, o, is the left cell containing the special
Weyl group representation 0(Og) (Os and o(Og) are related to each other by the
Springer correspondence). It is easy to check that I nd%( Ly (triv) has multiplicity
one for each of the irreducible component in V,o,). Therefore, the number of

irreducible representation is precisely the size of the left cell V). And now the

result follows from Proposition 4.14 in [4]. O

What are the possible composition factors with infinitesimal character A\ and
associated variety equal to Og? First of all, for all 2a; € {2ay, ..., 2a,}\S, remove
the coordinates (a;,a; — 1,a;, — 1,...,1,1,0) from \p, and let Aoy, be the remaining
entries. Now consider all unipotent representations X; with infinitesimal charac-

ter Ao, and then take all induced representation of the form

n—|S| terms

Sp(2m —N
71-57]' = ]ndsziGl),(Q({ah... an}\9)) (X] X th Q- d@t)

(Note: In writing GL(2S) for aset S = {as,, -+, as,}, we mean GL(2a,,) X - X

GL(2as,).) Then by the calculations in Chapter 5, X, will automatically have
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associated variety O, where Of is the orbit after removing the column pairs

{(2a;,2a;)|2a; € S} in Og.

Example 7.5. Let O = (10,10, 10,8,8,6,4,2,2) and Oy = (11,11,8,8,8,6,4,2,2) as
in the above example. Then O}, = (11,11, 8, 6,4), and the representations are of the form

+
m ~ =
Mo = Ind?2m) ((11,11,'8,6, 4) ® det @ det)

SpxGL(2,C)xGL(8,C)
By construction, all the g ;’s have the required infinitesimal character and as-
sociated variety, and the number of such representations is equal to that in the

Proposition. Therefore, it remains to show that they are irreducible.

Theorem 7.6. The induced modules

n—|S| terms

. Sp(2m)
TS, = IndsixGL(Q({al,n-,an}\S))(Xj Rdet R -+ R det)

are irreducible. Consequently, they exhaust all the irreducible representions with infinites-

imal character \o and associated variety Og.

Proof. Before proving the Theorem, it is important to look at the lowest K-types

of the induced modules 7g ;. They are of the form

(lowest K —type of X;,1,1,...,1,0,...,0)
—_———
2> asgs s
To find out the lowest K -types of X; as j runs through A(OY), it is easy to see that
Aoy, is special unipotent in the sense of [5, Definition 6.5], which means the num-

ber of (z +1)’s is greater than the number of 2’s in Ao, Using the algorithm in [4,
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Section 9] or [5, 2.8], the lowest K-types of the special unipotent representations

X; must be small [B 1989 Definition 3.1], i.e. consisting of even number of 1’s.

To conclude, the lowest K-type of 75 ;, and hence X, must be

—
where the lowest K-type of X, is (1,...,1,0,...,0),and y = Zasgs .

Consider the infinitesimal character of g ;: It must be of the form (A, \), where

A—XN=(1,...,1,0,...,0). And in terms of Langlands parameter (which will be
N——

2z+2y
described in greater details in Chapter 11), the irreducible subquotient in 7g ; can

be written as X = X (), \). Let

x 2 z
w=(1,...1,1,....1.1,...,10,...,0)
then 4, is a bottom-layer K-type of X (A, X). There is a recipe in [5] computing
the bottom layer K-type multiplicities of X (A, \'), which we describe below:

Let (M N) = (n+p/,n+ p”), where o/ — " = (1,...,1,0,...,0). Then
——

2x+2y

(XN N) ) = [X () : (1,...,1,0,...,0)]

The right hand side is the K-type multiplicity of a spherical representation, whose

character formula is known (in fact, it is just U(g)/Jmae(1t), so the techniques in
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Chapter 5 carry over). On the other hand, we know by Frobenius reciprocity the

K-type multiplicity [rg; : 1t.], and it is easy to check the following holds:

[Y()H /\/) ) = [WSJ D]

Now we start to prove the Theorem by induction. Consider the smallest or-
bit Og, where S = {2ay,...,2a,}. All the representations in this case are special

unipotent representations, and hence irreducible.

Suppose the hypothesis is true for all smaller orbits, i.e. 7g ; are irreducible for
|S| > k for some integer k. For the case when |S| = k, suppose on the contrary

that there is an irreducible Y with AV (Y) = Ogs C Og such that
Y ) 7 C UK

then Y must be one of the smaller induced representations, having lowest K-

type (1,...,1,0,...,0). On the other hand, suppose 7s; has lowest K-type

2w
(1,...,1,0,...,0). By the inclusion relation among the modules, w > z + y. Note
——

2x+2y o
that (1,...,1,0,...,0) is a bottom layer K-type of X C 7g ;. However, the formula
N——
2w

above says
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which gives a contradiction. Consequently, such Y does not exist at all, and the

induced module 75 ; is equal to X exactly, i.e. it is irreducible. O

Therefore, they exhaust all composition factors lying between O" and O.
More generally, suppose Condition () is lifted, then the orbits between O’ and O
can no longer be parametrized by a subset S C S. However, the computation is

precisely the same as before:

Proposition 7.7. Let O be a nilpotent orbit in Sp(2m, C) with even column sizes, and let
Ao and O’ as before. For any D = (dy, . .., dy) between O’ and O, the number of compo-
sition factors having infinitesimal character Ao and associated variety D is equal to 2°P,

where ap is the number of segments in (dy, ..., dy) of the form (2p,,2p,_1,2p,—1, ...,

2p1, 2p1, 2po # 0).

Example 7.8. Let O = (6,4,4,4,4,4,4,4,4,2,2). Then O' = (6,6,5,5,4,4,3,3,3,3)
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and we have a diagram showing all composition factors between O" and O:

Op = (6,4,4,4,4,4,4,4,4,2,2)

/\

+ + +
AN p—N— — N ———
(6,6,4,4,4,4,4,4,2,2,2) (6,4,4,4,4,4,4,4,4,4)
+ + \ + +
~~ ~~ AN ———
(6,6,5,5,4,4,3,3,2,2,2) (6,6,4,4,4,4,4,4,3,3)

+ +
~~ ~~
(6,6,5,5,4,4,3,3,3,3)
+ —
For instance, the irreducible representation (6,6 ,4,4,4,4,4,4,3,3) is

_l’_
Sp(2m,C AN AN
[ndSZ(XcL(iC)XGL(m)(( 6,6,74,4,3,3) ® det ® det)

7.2 Half-integral Characters

The case of half-integral characters are exactly the same as that of integral charac-

ters in Sp(2m, C). The computation on the number of irreducible representations

is done by computing Weyl group representations of type D,, instead of type C,,.

We therefore state the results without going into the computations:

Proposition 7.9. Let O be a nilpotent orbit in Sp(2m, C) with odd column sizes, and

let Ao, O’ as before. Suppose D = (dy, . .., dy). Then the number of composition factors

having infinitesimal character \o and associated variety D is equal to 2°, where ap is

the number of segments in (dy, ..., dy) of the form (2p, + 1,2p,—1 + 1,2p,_1 + 1,...,

2p1 + 1a 2p1 + 17 2p0 + 1)

53



Example 7.10. Let O = (9,9,9,7,5, 3, 3, 1), the composition factors are given by:

i
04 = (9,9,9, 7,5,3,3, 1)

/\

i + =+
/—A—\ N AN
(10, 10,7,7,5,3,3,1) (9,9,9,7,5,5,1,1)

+ +
AN
(10,10,7,7,5,5,1,1)

7.3 The Case in the Orthogonal Group

As in last Chapter, the arguments are exactly the same for the orthogonal case.

However, the statement of the Proposition is more involved.

Proposition 7.11. Let P be a nilpotent orbit with even column sizes in O(n,C), and
let \p, P’ as before. For any orbits D = (dogy1,dox,...,dy) between P’ and P,
the number of irreducible representations with infinitesimal character \p and associ-
ated variety D is 2°?, where ap is the number of segments in (dy,...,dy) of the
form (dae1 = 2Gr, 267, 2¢r—1, 261 - 2q1, 201, 2q0) OF (d2i = 2pr, 2pr—1, 2pr—1, - -,
2p1, 2p1, 2po # 0).

Similarly, if P is a nilpotent orbit with even column sizes in O(n,C). Then the
number of irreducible representations with infinitesimal character \p and associated
variety D is 2°7, where ap is the number of segments in (dy, ..., dy) of the form
(doks1 = 2¢, + 1,2, + 1,221 + 1,2¢,1 + 1 ,...,2q1 + 1,2q1 + 1,2q0 + 1) or

(d2i = 2p7“ + 17 2p7'71 + 17 2p1“71 + 17 R 2p1 + 17 2]71 + 17 2p0 + 1 7£ O)
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Example 7.12. Let P = (4,4,2,2,2) in O(12,C). Then P’ = (6,3,3,1,1) and the
composition factors are as follows:

_x
o¢744222

o

/ ~ ——
~.

(6 3,3,1,1)

+
(44411)

As the final example, suppose P = (7,7,7,6,4,4,2) be a nilpotent orbit in O(37, C) with
a mixture of odd and even columns. Then the composition factors are as follows:

+ +
N p—N—
Oy =(7,7,7,6,4,4,2)

" \;

~~ —_——
(9,6,6,6,4,4,2) (7,7,7,6,6 2,2)

+

/
\

Note that there are unbracketed (6,6) on the left and at the bottom, since the unbracketed

pair (6, 6) comes from collapsing the odd columns (7,7,7).
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CHAPTER 8
DECOMPOSITION OF X

From last Chapter, we know all the possible composition factors of Xy and X5.
More precisely, we know the character formulas of all such factors. On the other
hand, from Chapter 6, we know the character formula of X». Now it remains an
exercise to compute which composition factors appear in Xp. As in last Chapter,

we begin with the special case of O, and then generalize it to all orbits of classical

type.

8.1 A Special Case Revisited

Throughout this Section, we consider orbits in Sp(2m, C) having integral infinites-
imal character and satisfying Condition (}). Here is the Decomposition Theorem

for all such orbits:

Theorem 8.1. Let O = (dj, dg_1, . .., do) be a nilpotent orbit in Sp(2m, C) with columns
of even sizes and satisfies (1). The composition factors g ; appearing in X can be com-
puted as follows:

(0) There is exactly one composition factor m, appearing in Xo. This is determined by
taking out the parts (2a,41,2an, 20y, . . ., 2a1, 2a1, 2a9) of O = Oy, where a; is allowed
to be equal to a;_,, and we put ay = 0 if necessary. If ag # 0, we assign the sign (—1)" on

each part.
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(1) Suppose Os D Og is not normal in codimension two, then for the toppled part
(2an41,2ap, 20y, . . ., 2a1,2a1,2a9) — (2ap41, - - -, 20541, 20; + 2, 2a; — 2,2a;_1, .. .)

(a) If the sign assigned to (2a,,41, 20y, 20y, . . ., 2a1, 2a4, 2ag) in Og is +, then assign
+, — and —, + to the parts (2a,41, - .., 2a;41, 2011, 2a; + 2) and (2a; — 2,2a,_1,2a;_1
..., 2a0) in Og respectively.

(b) If the sign assigned to (2a,41, 2an, 20y, . . ., 2a1, 2a4, 2ag) in Og is —, then assign
+,+ and —, — to the parts (2a,41, ..., 20,41, 20,41, 2a; + 2) and (2a; — 2,2a;_1,2a;1
..., 2a0) in Og respectively.

(c) If no sign is assigned to (2a,+1, 20y, 2a,, . . ., 2ay, 2a1, 2ay) in Og, ie. ay = 0,
then assign + to the part (2a,41, . .., 20,41, 20,41, 2a; + 2) in Ogr.

(2) Suppose Ogs D> O is normal in codimension two, and as = ag. Then it is either of

the form

(2Gn41,2Gp, 20y, . . ., 2a1,2a1,2a1) = (2441, - . ., 209, 209, 2a1 + 2,207 — 1,2a; — 1)
or

(2an, 20y, 2a,, . . ., 2a1, 2a1, 2a9) — (2a, + 1, 2a, + 1,2a, — 2,2a,_1,2a,_1, ..., 2ag)

In both cases, we assign a sign to parts (2a,11,...,2a2,2a2,a1 + 2) or
(2a, — 2,2ap-1, 2an-1,...,2a9) in Og that is opposite to that assigned to
(2an41,2ap, 20y, . . ., 2a1, 2a1, 2a,).

(3) Suppose Og > Og is normal in codimension two, and 2ag = . Then it must be of
the form

(2&1,2&1, 2&1,2&1) — (2(11 + 1,2&1 + 1,261,1 — 1,2&1 — 1)
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Then we cancel the sign assigned to (2as,2ay,2a1,2a1) of the larger orbit. How-
ever, if the part (2ay,2a1,2ay,2a,) comes from the toppling of a non-normal orbit, e.g.
(8,6,6,4,4,4) EN (8,8)(4,4,4,4) &N (8,8)(5,5,3,3), then assign a sign to the remaining

part (8,8) that is the same as that appearing in (8,6, 6,4, 4, 4).

Example 8.2. Let O = (10, 10, 10, 8,8, 6,4, 2, 2). According to the Theorem, the compo-
sition factors of Xo are listed below:

+
s
04 = (10,10, 10,8,8,6,4,2,2)

A
/

+ +——+ -
— N T — —N—
0o = (10,10, 10,8,8,6,4,4) Og = (10,10, 10, 10,6, 6,4, 2,2) O19 = (11,11,8,8,8,6,4,2,2)
ot + - % +
——— —— N ~~
Os,8 = (10,10,10,10,6,6,4,4) 02,10 = (11,11,8,8,8,6,4,4) Os,10 = (11,11,9,9, 6,6, 4,2,2)
+ +
AN~

038,10 = (11,11,9,9,6,6,4,4)

We do not give a proof of the Theorem here, but instead illustrate the compu-

tations with an example. The following Lemma is the key of the computations:

Lemma 8.3.

(@ > (-1)x S =

weSpxO w( n...1 ; (n—1)...0 )

n (n—1) n...—(n-—1)
ST (-1)iwx + ) (-n'x
weGL w( n...—(n—-1) ) weGL w( (n—1)...—n )
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weOXSp w( n...0 ; (n—1)...1 )
n...—(n-—1) n...—(n-—1)
S (-1yix - Y (cyix
weGL w( n...—(n—=1) ) weGL w( (n—1)...—n )
© Z l(w m...0 ; m...1 _ Z ( 1)l(w)X m...—m
weOX Sp w( m...0 ; m...1 ) weGL w( m...—m )

Proof. One can either do it combinatorially, or use the idea in [4]. For (a), note that
In dSp o o (triv), I ndé’fm (det) are special unipotent with associated variety equal

to (2n, 2n), with Lusztig symbols

( ) and ( ' D ). By [4, Theorem III (a)]

3 (- — Ind3) (triv)+ IndSi) (det)

n...0 ; (n—1)...1
( ) =1In dSp( )(tmv) Ind>Pim) (det)

GL(2n)
weOx Sp w( n...0 ; (n—1)...1 )
Hence (a), (b) follows. For (c), use I ndé’igﬁl) (triv) instead. O

Example 8.4. Consider O = (8,6,6,4,4). Then Ao = (4,3,2,1;3,2,1,0,1,2;2,1,0,1)
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and O' = (8,8, 5,5,2). By the Theorem, the composition factors of X is given by

Oy =(8,6,6,4,4)

T

——~
Og = (8,8,4,4,4) 04 = (8,6,6,6,2)

~

O4,6 =(8,8,5,5,2)

+

Now, the formula in the previous chapters gives

(8 6.6.4 4) — Z (—1)l(w)X 4321  3210-1-2 210 —1

WEW (Cads  A3) w( 4321 210-1-2-3 10—1-2)

—~ A~ 4321 3210 210—1 21
(8,8,4,4,4)+(8,8,4,4,4) = > (—1)'™x

WEW (Cax Dax Az xCo) w( 4321 3210 10—1-2 21)

Jr —

e e e N 4321 210 3210—1 -2 1
(8,6,6,6,2)+(8,6,6,06,2) = > (—1)x

WEW (Cax Dax AsxCh) w( 4321 210 210-1-2-3 1)
—~ PNy 4321 3210 21 210 1
('8,8,5,5,2)+(8,8,5,5,2) = > (=1)H) x

WEW (Cyx DaxCax D3xCy) w( 4321 3210 21 210 1)

Using the above Lemma, the sum of the first two lines gives
+ —
~ N ~ N
(8,6,6,4,4) + (8,8, 4,4,4) + (3,8, 4,4,4)
4321 3210—-1-2 210 -1
= ZweW(C4xA5><A3)(_1)l(w)X )
w( 4321 3210—-1—-2 10-—-1-2)

and the sum of the last two lines gives
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+ — + —
—— — ~ N ~ N
8,6,6,6,2) + (8,6,6,6,2) +(8,8,5,5,2) + (8,8,5,5,2)

4321 210 3210—-1-2 1

-5 (-1
’IUEW(C4><D3><A5><01)
w( 4321 210 3210—1-2 1)

Now use the Lemma again to see the sum of the seven terms is equal to

Z ( 1)l(w)X< 4321 3210-1-2 210—1)

wEW (Cyx As x A3) w( 4321 3210—-1-2 210-—1)

which is precisely the character formula of Xo.

Note that the composition factors of X is always of multiplicity one in the
above description. This is no longer true if () does not hold. Also, there are no

nice description of the composition factors of X in the general case.
Example 8.5. Let O = (6,4,4,4,4,4,4,4,4,2,2). The composition factors of X are

given by

Oy = (6,4,4,4,4,4,4,4,4,2,2)

T

2x (£,4) +
—— N
(6,6,4,4,4,4,4,4,2,2,2) \ (6,4,4,4,4,4,4,4,4,4)

+ + 2% (£,%)
N N e e
(6,6,5,5,4,4,3,3,2,2,2) (6,6,4,4,4,4,4,4,3,3)
+ +
A A~

+ +
Note that, for instance, the irreducible representation (6,6,4,4,4,4,4,4,2,2,2) appears

twice in the composition factors of Xo.
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8.2 Half-integral Characters

The computations for the case of half-integral infinitesimal characters is totally
different, due to the difference in the character formulas. However, the description
of the composition factors of Xy is completely analogous to that of the integral
character case. We give an example below to give its resemblance to the integral

case:

Example 8.6. Let O = (9,9,9,7,5, 3,3, 1), the composition factors are given by:

Oy = ( 9,9,9,7,9,3,3,1

T

+ - ++,——
N e N
(10, 10775331) (9,9,9,7,5,5,1,1)

\ /

+ -
AN ——
(10,10,7,7,5,5,1,1)

Notice that the assignment of signs is the same as that of Q = (10,10, 10,8,6,4,4,2),
which is obtained by adding one extra block on each column. This phenomenon holds for

all orbits in Sp(2m, C) with odd column sizes.

8.3 The Case in the Orthogonal Group

The computations for the symplectic group case can carry over in the same fashion
to the orthogonal case. Here is the algorithm on which composition factors appear

in Xp for any nilpotent orbit P in O(n, C).
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Theorem 8.7. Let P = (bagt1, bok, - - -, bo) be a nilpotent orbit in O(n, C) satisfying ().
Consider the "head’ of the orbit

(b2k+1 =(qr = bok, bog—1 = gr—1 = bor—2, ..., b2k—2r+3 =q1 = b2k—2r+2; b2k—2r+1 =4qo 7é b2k—27~)

Define Q = (¢ + 2,4, ¢, Gr—1, - - -, qo) be an orbit in Sp(2m, C). Then the assignment
of signs of the head of the orbit P is the same as that of Q. For the ‘tail” of the orbit
(bog—2r, - - -, bo), use the same rule as in the symplectic case (Theorem 8.1) for the sign

assignment.

Example 8.8. Let P = (9,9,7,7,5,4,2,2) in O(45,C). Then P’ = (11,8,8,5,5,4,4).

The composition factors of Xp is as follows:

4
~~
(9,9,7,7, 5 ,4,2,2)

\
/

+——+ Jr* -+ + *
——— A~
(11,7,7,7,5,4,2,2) (9,9,9,.),.),4,2,2) (9,9,7,7, 5 ,4,4)

++,—— +——+ +——+
e N, —— N —— N
(11,8,8,5,5,4,2,2) (1,7,7,7,5,4,4) (9,9,9,5,5,4,4)

\ - i/

(11,8,8,5,5,4,4)
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Compare the above with the composition factors of Q = (11,9,9,7,7,5,4, 2, 2) below:

"
—N—
(11,9,9,7,7,5,4,2,2)

/

\

+—-—+ +——+ + +
—— e N —N— N
(11,11,7,7,7,5,4,2,2) (11,9,9,9,5,5,4, 2,2) (11,9,9,7,7,5,4,4)

X
X

+t,—— +—,—+ +——+ +
—_— ———— A~ —_— -
(11,11, 8,8,5,5,4,2,2) (11,11,7,7,7,5, 4,4) (11,9,9,9,5,5, 4,4)

/
\

++,——
———
(11,11,8,8,5,5,4,4)
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CHAPTER 9
COMPUTATION OF K-TYPE MULTIPLICITIES

In this Chapter, we describe how one can compute K-type multiplicities of a rep-
resentation given its character formula. In particular, we will focus on the multi-
plicities of the fundamental representations of G = Sp(2m, C) and O(n, C).

Let 1 be a finite-dimensional representation of ;. Then . is parametrized by its

highest weight. By Frobenius reciprocity:

A
(X ] = (A= X) e
A/

Note that by a Theorem of Parasarathy-Rao-Varadarajan [4, Proposition 1.8], one
can replace (A, \') by (wA, wX') for some w € W such that A — X' is dominant.
Therefore, the multiplicity is known once we apply Weyl character formula on .

In our situation, all irreducible representations we are dealing with have character

formula of the form 7 = > (—1) WX . Hence we can compute [7 : y] in
wA

theory.

9.1 Computations in Sp(2m,C)

In general, one can find out the character formula of y|; directly from LiE. In this

Section, we focus ourselves on the fundamental representations of G = Sp(2m, C),
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namely u = p; = AN'C*™/ AN'"=2 C*" for i = 0, ..., m (by convention, we let negative
wedge powers be the trivial representation). In this case, the weights of y; lying

on the dominant Weyl chamber and their multiplicities are known completely.

Lemma 9.1.
i m—j . . . L.
e, (T30 0) O g orgisod

(5=])  otherwise

J m—j o . .
4 e 0 if2e+1<joryjiseven
[AFTIC? ) (1,...,1,0,...,0)] = , /
(Z‘;}f 7)  otherwise
2
Proof. This can easily be seen by looking at the weights of A'C*™. O

Example 9.2. We can now compute the K-type multiplicities of some unipotent repre-
+ —
~ = ~ = i .
sentations. Let m = (8,4) + (8,4 ) be a representation in Sp(12, C). Then

+ —
AN 4321 10
84)+(84)= > ()X

weW (Cyx D2) w( 4321 10)

(

To find out [z : N*C'?], for example, one needs to find out which w € W(Cy x Dy) so
that (4321,10) — w(4321,10) can be W -conjugated to have weight (110000). The list of

all such w(4321, 10) is given below:
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WA A — wA

3421,10 | 1-10000
4231,10 | 01-1000
4312,10 | 001-100
4321,01 | 00001-1

4321,0-1 | 000011

Therefore,
4321 10
[ AC?) = D o(-)™X L A2CY2]
" w( 4321 10)
4321 10
— Z(—l)l(“’)[X . \2C12]
w w( 4321 10)

= [1 x (000000) — 5 x (110000) 4+ - - - : A*C"?|7]

by the above Lemma,
A*C" | =1 x (110000) + 6 x (000000)
Hence,
[ : A2C™] = [1 x (000000) — 5 x (110000) : 1 x (110000) + 6 x (000000)] = 6 —5 =1

Also, it is known that [t : A°C'?] = [r : triv] = 1. This can be seen by either the arqu-

ment above, or noting that R[(8,4)] = n. Consequently, the constant function in the ring
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P

of reqular functions R[(8,4)] constitutes the multiplicity one of the trivial representation

in 7. Now,

[T:ps) = [r:A2C2/ A" CH
= [r: A’CY - [r: AOCYY

= 1-1=0

We now give an algorithm computing the multiplicities of the fundamental

K-types of X for any orbit O in Sp(2m, C):

Theorem 9.3. Suppose O = (cop, Co—1, - - -, Co) is a nilpotent orbit in Sp(2m, C). First
remove all column pairs of same size, leaving the orbit (dy;, do—1, . . ., do). For each of the
removed column pair ¢; = ¢;-1 = y, let £ = {cilc; = ¢;—1 are removed from O} with
multiplicities. Also, let Z = {z; = %\j = 0,...,l}. Then rearrange elements in
& U Z in non-decreasing order to get W := EU Z = {w;|i = 0,1, ..., k}, with w; < w,
ifi <j.

Now define a sequence of sequences 5; = (B0, Bi1, - . . ) recursively by:

e Begin with the sequence By = (Boo, Bor, Boz. - --) = ((*;1), (1), (*31),...).
w;+1
e Define the i-th sequence «; recursively by B;1 = B; — (0,...,0, B, Bi1, Bizs - - - )-

Then [R[O] : poi] = [Xo : pai] = B(k+1)z’f07’i <% and [R[O] : pai1] = [Xo © pigip1] =
0 for all i.

Example 9.4. Let O = (8,6,6,4,4,2,2) in Sp(32,C). Then the w;’s are {2,4,4,6}. We

therefore have the multiplicities as follows:
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7 0(112|3/4|5|6|7|8 91011 |12|13 |14 15|16

RIO]: ) [1]0]3]|0]6|l0|9|0]12]0|13]0|12] 0| 8|03

We first prove the Theorem holds for orbits with no columns of the same size.

In this case, Example 6.3 gives the character formula for Xo.

+
Lemma 9.5. In Sp(2m,C), let p, ¢ and T as in Example 6.3. Then

+

—~ = S ,(C X
(.q) « i) = Indgf{770 (triv) = ) = bio

(T i) = [Ind> 55 (triv) : ) = i
+
~ =
Proof. The computations of [(p, ¢) : 1] is essentially given in the beginning of this
/-j\\ /-/_\\
Chapter (more precisely, we did the example of [(8,4) @ (8,4) : y;]). For T, note

that it is just the character formula of the trivial representation in Sp(dy, C). O

Proposition 9.6. Theorem 9.4 holds for O having no columns of the same size, i.e. O =

(dgl, R ,do) with dz 7é di—l fOT' all i.

Proof. Recall the character formula of Xy in Example 6.3,

XO = <d2l7 d21717 d2l*27 d2l737 ER d2> d17 dO)

X has the same virtual character as

+ +
Sp(2m,C) / \ / \
TN gy gy CyxeecSplda+d ©)xSp(do,0) (2t o1 @ -+ - @ do, dy @ T)
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Therefore, to compute [ X : j;], we need to know:

+ +
[Xo:pi] = []”dgigzllﬁ;%hc)X...Xgp(dﬁdhc)xgp(dm(c)(dzl, Col—1 &~ ®El_;,?1® triv) : p]
+
= |da, dzz_1 ®--- ®?l_;,?1®T t N C?™ | St 1.C)x - x Sp(da—+dr.C)x Sp(do,C))
L
- d2z,dzl 1R ®d2,d1 QT : N 72C*™| sp(dyy+dat_1,C)x - x Sp(da-+ds,C) x Sp(do.C))
At
= dQl,dQl 1® - ®d27d1 QT : N'C*™|5p(221,C)x-x Sp(221,C) x Sp(270,C)]
L

- d217d2l 18- ®d27d1 QT : /\Z ZCQ |S’p(221, )X XSp(Zzl,C)XSp@zo,C)]

Also, the restriction decomposes as

(C2 |Sp (221,C) x+--xSp(221,C) x Sp(220,C) @ ® /\ZP(CQZP

io+--+i;=1 p=0

So

+ -

!
o~ :
[(Xo :p) = [doy,do1 & - - @ dy, dy QT @ ®/\“’C2z’7]
i0+-+u =1 p=0
+ +

l
fmdi e @b heT: D @ArC)

io+-+i=1—2 p=0

l
_ Z T /\’Lo(CQZO H[d2p;d2p ) 2pC2zp
p=1

i i =i
l
_ E T /\1,0@220 H[d2p7 op—1 /\ZP(CZZP
19+ +i=1—2 p=1
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On the other hand, by Lemma 9.5,

+ +
dap, dop—1 = N'C*7] = [dop, dop—1 = f1; B pis S ptis & ... ]
=[In dsp o )) (triv) « ps ® pi2 ® pi-a ® . ..

= [In dsp 2Zp ))(tmv) A'C?]

and

(T2 NIC*] = [Indg i) (triv) « ANIC*]

Consequently,

(Xo:ml= > HI derf o) (triv) « AvC]

i0---+i;=1 p=0

— Z HI dsp 2Z” trw) N C27r]

ig-+iy=1—2 p=0

Reversing the process, we get
Sp(2m,C . .
(Xo : ] = [IndeL (2 (C))X X CL(z0) (TTTV ® -+~ @ triv) : 1]

Then the result follows by Frobenius reciprocity and induction on the number of

columns. n

Proof of Theorem 9.4
Recall that

G(2m,C . .
Xo:=1In dGEQ C)iGL(g)(XQ R triv® - .- @ triv)
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By Proposition 9.6 and induction in stages, for any fundamental representations

14,
Sp(2m,C . .
[Xo @ u| = [IndeL((S)XéL(Z) (triv® - @ triv) : p
Consequently the result follows by induction on the number of columns. O

9.2 Computations in O(n,C)

The case of O(n, C) is more complicated, mainly because of the + sign in the char-
acter formula. By Proposition 7.11, the character formulas of all representations

we are dealing with has the term

a,...l,O:I: b17...,1 bg,...,o Cl,...,l
X

w( a,...1,0& by,...,;1 boy...,0 ¢q,...,1 ..0)

The following Lemma gives an algorithm computing their K-type multiplicities:

Lemma 9.7.

a,...1,0+ by,..., 1 bo,..., 0 L. O(QH,C) .
X ( ( : ) = Indj .19 0)xs0@n—20-2.0) (trive X')

@ L0= byl b0 O(2n,C)
X( ( ) > = I”dO(Qa“*C)XSO(2n—2a_2,(c)(det®X’)

with the same X' as above.
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With this Lemma, we can give an algorithm computing the fundamental K-

type multiplicities of Xp:

Theorem 9.8. Suppose P = (Cokt1, Coks Cok—1, - - -, Co) 1S a nilpotent orbit in O(n, C).
First remove all column pairs of same size, leaving the orbit (doyy1, doy, doi—1, . - ., dp). For
each of the removed column pair ¢; = ¢;_1 =y, let & = {¢;|c; = ¢;_1 are removed from
P} with multiplicities. Also, let Z = {z; = %\j =0,...,l} (note that dy 1 is not
used in the algorithm). Then rearrange elements in Y U Z in non-decreasing order to get
EUZ ={w;|i=0,1,....k}, withw; < w;ifi <j.

Now define a sequence of sequences 3; = (B0, Bi1, - - . ) recursively by:

e Begin with the sequence By = (Boo, Bor, Boz. - --) = ((5), (*T1), (*3%),...).

e Define the i-th sequence «; recursively by B;1 = B; — (0,...,0, B, Bi1, Bizs - - - )-
Then for the fundamental representations ' :== NC"™ in O(n, C),
[R[P] : pig;) = [Xp + py] = By for 20 < m, and [R[P] - piy; 1] = [Xp : piy; 4] = 0 for

all 4.

Example 9.9. Let P = (7,5,3,3,1) in O(19,C). Then Then the w;’s are {6,6}. We

therefore have the multiplicities of 1, as follows:

7 012|4|6(8|10|12 14|16 |18

RIP]: ] | 112|343 211|000

There is a Lemma analogous to Lemma 9.6 in the orthogonal case:
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+
Lemma 9.10. In SO(n,C), let ‘p, ¢ and T as in Example 6.3. Then

by 1

NN SO C
(D0 s ) = [Ind>00te®)

. ) if i is even
GL( P+q ,C) (t/’m“)) : IMJ =

0 otherwise
1 ifiiseven
(T pi] = [Indgy) ) (triv) - i) = !
27 0 otherwise
Proof of Theorem 9.8
As in the proof of Theorem 9.4, we first look at the orbit P = (dg+1, . .., dy) with

d; # d;_; for all 7. In this case, we have

XP = (d21+17 d2l7 d2l—17 s 7d27 d17 dO)

which has the same virtual character as

+ +
Ind2"® triv @ dy, d Ao, d; @ T
NG (401 % SO(da-idot1,C) - x SO(da-+dy ,C)x 50 (dy,C) (FTT0 @ oty dy 1 @ -+ - @ dp, dy @ T)

by the same technique as in Theorem 9.4,

[ Xp @ pt] = [Ind dQZH)XeL(Zl ©) 5 xGL(z0.0) (T @ -+ @ Triv) : ]

Therefore, by Frobenius reciprocity and induction on the number of columns, the
Theorem follows for P with no columns of the same size.
For the general case, the argument works in exactly the same way as in the sym-

plectic one, which gives
O(n,C . .
[(Xp : ] =[In dogdgljl)xGL(g)XGL(Z)(trw ® - @ triv) : p

So the result follows. 0
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9.3 A Criterion of Normality of Orbit Closures

With the algoritms above, we can now state and prove another criterion of the
normality of O, by computing the K-type multiplicities of the representations Xo.
Note that the computations above does not involve the longest column of the orbit

in O(n, C), we can just focus ourselves for the case of Sp(2m, C).

Lemma 9.11. Let O = (ca, Cop—1, - - - , Co) be a nilpotent orbit in G = Sp(2m, C), and

be any finite dimensional irreducible representation of G, then

[RIO]: p] = [Xo + ] < [Xos : p] = [R[OF] : g

__ (C2ktCok—1 CoktCak—1 C2k—2+C2k—3 C2p—2+Cak—3 cotc1 cotc
where OF = (22T2h1 CkTEko1 - , - .., eda eta o)

Proof. Note that 0% is normal and Of > O. Consequently, we have a G-module

surjection

R|O*] = R[O?] — R[O]

and hence [R[O] : pu] = [Xg : p] < [R[OF] : u] for any finite dimensional G-

representations p.. Hence the result follows. O

From results in the last Section (or from [22] directly), one can find out the

K-type multiplicities of X»:. And hence we come to the Theorem below:

Theorem 9.12. Let O be a nilpotent orbit in Sp(2m, C). Then O is not normal iff

[RIO] : wi] < [R[O] : pi]
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for some i > 0.
Let P = (bogy1, - - -, bo) be a nilpotent orbit in O(n, C) such that by, # bay,. Then O is
not normal iff

[RIP] = ] < [R[P] : p]

for some i > 0.

Proof. One direction is easy - if O is normal, then R[O] = R[O] as G-modules,
hence [R[O] : p1;] = [R[O] : ;] for all i. Now suppose O is not normal, and let O
as in last Section. Then we obtain a new set of integers {x;} computing the K -type
multiplicities of X:. By the Kraft-Procesi criterion (Theorem 3.3), the two sets of
integers {z;} and {w,} are different, and therefore there exists an i > 0 such that

[R[O¥] : ;] < [R[O] : wi]. Now Lemma 9.11 says [R[O] : p;] < [R[OF] : ;] for all 4,

and consequently the theorem follows. O

Remark 9.13. The Theorem holds even in the case when by, 1 = by, for nilpotent orbit

P in O(n, C). We omit the proof here.

Example 9.14. Let O = (8,6,6,4,4,2,2) in Sp(32,C). From the previous Proposition,
the w;'s are {2,4,4,6}. Now O* = (7,7,5,5,3,3,2), the v;'s are {1,3,5, 7}. We therefore

have the multiplicities as follows:
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Let P = (7,5,3,3,1) in O(19,C). Then P* = (7,4,4,2,2), the w;'s are {6,6}, and the

x;’s are {4,8}. We therefore have the multiplicities of 5, as follows:

l 0[2|4|6|8|10|12 |14 |16 |18

RIPH )| 1]2]3]3/3/2|1]0]0]0
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CHAPTER 10
SOME RESULTS ON X4

10.1 Composition Factors of Xz when O is Normal

We now investigate the composition factors of X. As seen in Chapter 4, the con-
strcution of X5 is more geometrical than algebraic. One does not have a character
formula of X as in the case of Xp. However, by Corollary 3.2, the K-type mul-
tiplicities of X is the same as X4 if O is normal. It is therefore hoped that the
composition factors of both models are the same (note that the equality of K-type
multiplicities of both models does not guarantee their equality as (g, /')-modules).

And in fact, it is true for all orbits O with normal closure.

Theorem 10.1. Let O be an orbit in Sp(2m, C) or O(n, C) satisfying (1) such that O is

normal. Then the composition factors of X is the same as that of Xo.

Remark 10.2. In fact, the above Theorem is true without Condition (1). However the
book-keeping tools we use below will be too cumbersome to be presented. For instance, the

list in Lemma 10.3 will become infinite.

Before proving the Theorem, recall that all orbits in Sp(2m, C) satisfying (1)

can be partitioned into

(wk,xk—l,xk—b e ,$1,I1,$0)
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and all orbits P = (bgk+1,-..,bo) in O(n, C) satisfying () can be partitioned into
the ‘head’

(b2k+1 - hia b2k = hi7 hi—h h’i—l) s hla h17 hO = b2k—2i+1)

and the ‘remaining’ part (bo_2;, bok—2i—1, - .., bp) is done in the same fashion as in
the Sp(2m, C) case. The following Lemma characterizes all orbits O satisfying ()

with normal orbit closures.

Lemma 10.3. Suppose O is a nilpotent orbit in Sp(2m,C) satisfying (1) with normal
orbit closure. Then O must be composed of the following three fundamental types of
partitions:

(1) (a,a,a,b,b,b), a #b

(2) (a,a,a,b),a #b

(3) (a,b), a can be equal to b

Suppose P is a nilpotent orbit in O(n, C) satisfying () with normal orbit closures. Then
its head must be of the types of partitions:

0) (a,a,a)

(0') (a)

and the remaining part of P must be composed of types (1), (2), (3) as above.

Proof. This can easily be seen by the Kraft-Procesi criterion of normality. O

The next Definition is to record the lowest K-types of the orbits corresponding

to the fundamental partitions above.
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Definition 10.4. Suppose (a,a,a,b,b,b) is a nilpotent orbit in Sp(2m,C). Then the
possible composition factors of X4 q.q.66,5) are of the form

+
P —
Oy = (a,a,a,b,b,b)

(a+1,a4+1,a —2,b,b,b) (a,a,a,b+2,b—1,b—1)

\ i

—N—
(a+1l,a+1l,a—2,b+2,b—1,b—1)

(the bottom orbit is equal to (a+ 1,a+ 1,b+1,b+1,b—1,b— 1) ifa = b+ 2). In either
cases, record all the possible lowest K-types of the above irreducible representations. For

instance, Oy has two irreducible components,

+
Sp(2m,C) ~ =~
Indel)Z(a,C)xGL(b,C)><Sp(a+b,(C)(det ® det @ a,b)
atb a+b+b
) —— ~
having lowest K-types (1,...,1,0,...,0) and (1,...,1,0,...,0). For future purpose,

keep track on the induced representations from GL(a,C) and GL(b, C) by defining the
lowest K-type set to be {a @ b,a ® b ® b}. Then define the lowest K-type set of

fundamental type (1) orbit to be
Kaaappp) :=1{0,b,(b+2),a,a®b,a® (b+2),adbdb}
or
Kr2b+20+2000) = 10,0, (b+2), (0+2) Db, (b+2)® (b+2),(b+2) DbD b}
if a = b+ 2. Similarly, the lowest K-type set of fundemental type (2) orbit (a, a,a,b) is
K(a,a,a) = 10,a,b,a ® b}
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The lowest K-type set of fundemental type (3) orbit (a,b) is
Kap) = 1{0,b}
The lowest K-type set of fundemental type (0) orbit (a,a,a) is
Klaaa) = 1{0,a,(a +2),a ® a}
The lowest K -type set of fundemental type (0°) orbit (a) is

/C(a) = {0, (L}

With this on hand, we can further define the fundamental K-type set of any
normal orbit O satisfying (). This records the lowest K -types of all the possible

composition factors of Xp.

Definition 10.5. Let O be a nilpotent orbit in Sp(2m, C) or O(n, C). So it can be parti-
tioned into fundamental types (0) — (3). Suppose O = (To, T, . .. T,) where T; are of the
fundamental types, and IC; is the corresponding lowest K-type set of T;. Define the lowest
K-type set of O to be

Ko=ToedTh @& --oT

where M &N = {m @ n|m € M,n € N'} (with the usual abelian rulesa &b =b P a,

0®a=a).

Example 10.6. Let O = (8,8,8,4,3,3) in Sp(34,C). Then Ty = ¢, T1 = (8,8,8,4),
Tz = (3,3). From above, Ky = {0,4,8,8 ¢ 4}, Ky = {0,3}. So

Ko=140,3,4,304,8,3®8,4®8,3d4D 8}
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+ + £+
—
The 8 possible composition factors of X are (8,8,8,4, 3,3), (9,9, 6,4, 3,3). By chang-

ing @ in Ko into +, it gives the lowest K-types of these 8 irreducible representations.

The following observation is crucial for the proof of the Theorem:

Lemma 10.7. Let O be any nilpotent orbit in Sp or O satisfying (1). Suppose there exists
a1 @ Bay b @B b, in Ko such that Y, a; = Zjbj. Then {ay,...,an} #
{b1,..., by} as sets.

In other words, all elements in Ko are distinct.

Proof. First of all, it is easy to check the Lemma holds if O is of the fundamental
types. Now use induction on the number of fundamental types in O: Suppose the

hypothesis holds for O = (7o, 71, ..., 7). Thenfor O = (7o, T1, ..., Tr+1),
Ko =Ko ® K11

where every element in K¢ are distinct and K, belongs to one of the fundamen-
tal types (0) — (3). If there exists a repetition of in Ko/, that means there must be
some a;, & - -®a;, € Ko, a;,®---Day,,_, € Kyy1; 01, - By, € Ko, b, ®---Dby,,,_, €
IC,i1suchthata;, @ - - @ a;, by, @ Bby, a5, ®---Da, , b, ® - Dby,

and

@ai@@aj Z@bk@@bl
j k I

But note that all a; and b, are smaler than or equal to a, the longest column of 7,4,

while all a; and b, are greater than or equal to b, the shortest column in 7,. By
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construction, b > a and hence this forces

&9
@aj :G?bl

J

which is impossible by our hypothesis. O

Proof of Theorem 10.1

For any nilpotent orbit O with normal closure, we know the following holds:

e The composition factors of Xy give the correct K-type multiplicities of X¢.

e All the possible composition factors of X are also known.

On the other hand, Definition 10.5 collects the lowest K-types of all the possible

composition factors of X4. Let

]C(’):{Oéh"'aan?/@l)”'aﬁm}

where «;’s are the lowest K-types of the composition factors of Xy. By Lemma
10.7, since all elements in K¢ are distinct, write X,,, X3, be their corresponding

irreducible representations (so that the composition factors of Xy are X,,, all ap-
A B;
—— —
pearing once), and let (1,...,1,0,...,0),(1,...,1,0,...,0) be the lowest K-type of

Xa,, X, respectively.

We now begin to determine which of them appears in Xg. First of all, since
X is spherical, it contains a irreducible component with lowest weight (0, ..., 0).

From the results in Chapter 7 and 8, there is only one such irreducible component,
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and is of the form X, for some i. Without loss of generality, let X, be the irre-

ducible, spherical component.

2l

Next, consider the lowest K-type (m, 0,...,0) of the virtual character
Xo — X, with multiplicity my (Recall from Chapter 9 that the K-types of X5 =
Xo must have even number of 1’s). Since we explicitly know the K-type multi-
plicities of X,

2l = min{ A4;|i # 1}

It is hoped that all the X,,’s with A; = 2[ appear in the composition factors of
X5 exactly once, as in the case of X». However, it is possible that some of such
X,, appears more than once and some others does not appear in the composition
factors of Xz. Or even worse, some X have B; = 2/ and they appear in the
composition factors of X5. The Lemma below, to be proved later, is to rule out

these possibilities.

Lemma 10.8. Suppose v = v @ --- & 7 € Ko, with X, having lowest K-type
2l
j——

(1,...,1,0,...,0) (s0 y1 + - - - + v = 20). Considering y as a partition P, of 21, then for
any partition Py of 21,
(X, V(F5,0,...,0)] #0iff s < P}

where P} is the dual partition of P, (Chapter 2.3), and V (P, 0, . .., 0) is the K-type with
highest weight (41, ...,6s,0,...,0).
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Suppose Q = {Xa,, Xogs - - -, Xay, Xpy, - - -, X, } are the irreducible factors with
2

——
lowest K-type (1,...,1,0,...,0). Then since X,, are the composition factors of

Xo, for all partitions ¢ of 2/,

n

[Xp: V(P5,0,...,0)] =Y [Xo, : V(P5,0,...,0)]

=1

also by lowest K-type argument, if X, ¢ Q U {X,,},

(X, : V(P5,0,...,0)] =0

Now consider the |partitions of 2| x (s —1+t) matrix M = [ca,| - .- |ca.|cs |- - |cs],
where the columns c,, ¢z of M are given by the multiplicities [X,,
V(F5,0...,0)], [Xp, : V(F5,0...,0)] for all partitions 0 of 2[. Then by Lemma
10.7, no two partitions «;, 3; are the same, and by Lemma 10.8, all the columns of
M are linearly independent.

Finally, suppose X,, appears in the composition factors of X5 with multiplicity

pi, X, appears in the composition factors of X with multiplicity ¢;, by the above

two conditions of multiplicities of K-types of form (F5,0,...,0), we get

S

s t
[Xo, ® P piXe, @ @ a; X5, - V(P0,...,0)] =D [Xa, : V(P,0,...,0)]

i=2 j=1 i=1

grouping the equations together, we get
P2Cay + -+ PsCa, + 1€ + -0+ G1Cp, = Cay + -1+ Cq,

Obviously, p; = 1, ¢; = 0 is a solution of the above system of linear equations.
However, we have already seen that the columns of A are all linearly indepen-
dent. This forces the solution to be unique, i.e. X,,,...,X,, appears in the com-

position factors of X with multiplicity 1, X5, does not appear in the composition
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factors of X, which is the same as the case of the composition factors of Xp.

Continue the argument inductively on the size of 2/, the result follows. O

10.1.1 Proof of Lemma 10.8

Recall that the set Q) = {X,,,..., Xa,, Xp,, ..., Xp, } be the irreducible representa-
2

—
tions with lowest K-type (1,...,1,0,...,0). Using the notation in Section 2.6 of [5],
m = gl(2[,C) & sp(2m — 41, C). Therefore, all the K-types of the form (P,0,...,0),
where P is a partition of 2/ is a bottom layer K-type of the irreducible representa-

tions in (). By Proposition 2.6 in [5], for all X, € @,

X, 1 (P,0,...,0)] = [X, @0 ¢ (P.0,....0)]

where X, j2,c) is the Langlands quotient of a principal series representation in

GL(2l,C), dependent on 1. In fact, a result of Vogan says
X gice) = Indgyn (det @ - @ det)

where GL(P,) = GL(7,C) x --- x GL(v,, C) if v is the partition [y4,...,~,| of 2I.

So the Lemma can be rephrased as
[Indgy() (det @ -+ @ det) : V(P,0,...,0)] £ 0iff P < P}

By Frobenius reciprocity, it suffices to understand V' (P, 0, ...,0)|crp,), and check
if the det representation appears in all GL(~;, C). But the restriction of K-types

in GL is known to be related to the Littlewood-Richardson rule, for example [18,
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Proposition 2.6], and our problem can be reduced to:
Given columns of sizes 7,7s,...,7, add the columns up using Littlewood-

Richardson rule. Suppose the partition P appears in the sum mp times, then
[Indg,(7) (det @ -+ @ det) : V(P,0,...,0)] = mp

And it is easy to see that mp # 0 iff P < P;. Hence the Lemma is proved.

10.2 A Conjecture for all Orbits

In this Section, we give a Conjecture on the character formula for X, and from the
character formula we can derive which composition factors appear in Xg. Before
we proceed, it is helpful to look at the constraints of the conjecutured composition
factors:

e They must match our results in the last Section, namely when O is normal, the
composition factors of X must be the same as that of Xo.

e The K-type multiplicities of X5 must be smaller than that of X:.

In fact, the conjecutured composition factors will give [Xg : 11;] = [Xo: @ ;] for all

fundamental representations ;.

87



10.2.1 A Special Case

Throughout this section, we assume O satisfies condition (). We will pick up one
distinguished composition factor 7g j, for each subset S C S such that the collec-
tion of such composition factors, {rs ;;|S C S}, are conjecturally the composition
factors of X5. As a corollary of the conjecture, the inequality in the above Propo-

sition is an equality for small K-types ;.

Recall Section 8.1 in determining composition factors of X. We set up a new
rule in assigning the signs, so that for any subset S C S, there is only one sign
assigned to Og. In fact, Rule (1) is the only rule doubling the possible sign assign-

ments, so we replace Rule (1) by the following;:

(1') Suppose Os D Og is not normal in codimension two, for the toppled part

(an+1, Ay, Qp,y . ..,01,01, Clo) — (an+1, ey A1, A1, A4 + 2, a; — 2, Ai—1,Ai—1, - - )

(a) If ag # 0, use Rule (0) to determine the signs of (a1, ..., ai+1, Git1, a; + 2)
and (a; — 2,a;-1,a;_1, ..., ap) in Og respectively.

(b) If ay = 0, use Rule (0) to determine the sign of (a,+1, - .., @it+1, Git1,a; +2) in
OS/-

In this case, we always get one set of signs assigned to any orbit Og, and the

corresponding composition factor is denoted 7g j,. By construction, the collection

{ms,;s|S C S} is always a subset of the composition factors of X¢.
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Example 10.9. Back to Example 8.2, where O = (10,10, 10,8,8,6,5,5,4,2,2). We

apply Rule (0) to every orbit below O = O, to get all g ;. The list of g, is stated

below:
+ +
O¢ = (10, 10,10,8,8,6,5,5,4,2,2)
+ + o+ - + o+ - +
—— N ——— N A ——
04 = (10,10, 10, 8,8, 6, 5,5, 4, 4) 0g = (10, 10, 10, 10, 6,6, 5, 5,4, 2, 2) 010 = (11,11,8,8,8,6,5,5,4, 2, 2)

- + + o+
———— N S ——
03,8 = (10,10, 10, 10, 6,6, 5,5, 4,4) O3,10 = (11,11, 8,8,8,6,5,5,4,4) Og,10 = (11,11,9,9,6,6,5,5,4,2,2)

- + o+

/

Lemma 10.10. Let Q = (an41, Gn, Ay, - - ., a1, a1, ag) be a nilpotent orbit in Sp(2m, C)
(putting ap = 0 if necessary), and Q* = (da, dy, Gpy1, An, Gn, - - ., a1, 01, Qo) @ Nilpotent
orbit in Sp(2m/, C) (with m’ > m), both satisfying (t). Let mg and mo- be the represen-
tations corresponding to Q and Q* using Rule (0). Consider

+
_ 71, 75p(2m’) N
1= Ind5£(2m)xSp(d1+d2)(7TQ ® da, dy)

where X4, 4, is the spherical unipotent representation attached to the orbit (ds, d, ), then
(a) If dy # apt1, then T = mo-

(b)If dy = apy1 =1, then T = mo+ © mo:, where

; (-1

. —— -\

(i) for dy # dy = Qi1 =7 # Ay, To: = (do, 7 + 2,7 — 2,0y, Cyy . . . , Q).
(=n»

(ii) for dy = dy = apq1 =1 # ap, Tox = (7‘+1,r+1,?—2,an,...,a8).
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e ﬁ_‘g
(iii) for dy # dy = apyy =1 = ap, thenby (), n = land o: = (dji2,7 + 2,7 —1,7—1).

(iv) for dy = dy = Gpi1 =7 = Gy, thenby (1), n = land mg: = (r+1,r+1,r—1,r—1).

Proof. Part (a) is trivial, by the definition of mo. For Part (b), we do (ii¢) as an
example and the other parts follows in exactly the same fashion. To simplify our
+
. ~=
computations, let @ = (2r,2r) and Q* = (2s,2r,2r,2r). Then 7g = (2r,2r) and
—

mo+ = (2s,2r,2r,2r). The character formula of 7g is

]- r...1;(r—1)...0) / (r...0;(r—1)...1)

IS~ [« )

2[2( ) (w (r...5;(r—1)...0) +;( ) w’ (r...05(r—1)...1) ]

Now for (diy2, diy1) = (25,2r), X4, ., 4,,, has character formula

1 s...1;(r—1)...0) / (s...0;(r—1)...1)
- E —1)lw) SER E _1)Hw")
Q[w ( ) (w (s...1;(r—1)...0) * ,( ) w' (s 05(r—1)...1) ]

Now inducing means concatenating the character formulas, which gives

1 ... 1;(r—1)...0 7.0 (r—1)...1 s...1;(r—1)...0 5...0;(r—1)...1
-l - I - |
4 r...1;(r—1)...0 r...0;(r—1)...1 s...1;(r—=1)...0 s...0;(r—1)...1

(for simplicity, the summations were hidden from the calculations)

The character formula for 7g- is

1 r...1;(r—1)...0 r...0;(r—1)...1 s...1;(r—1)...0 s...0;(r—1)...1
moe =1 - I -
r...1;(r—1)...0 r...0;(r—1)...1 s...1;(r—=1)...0 s...0;(r—1)...1
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So Z — mg- is equal to
1 Pl (r=1)...0;5...0;(r—1)...1 r...0;(r—1)...1;5...1;(r—1)...0
S L(r—1)...0;5...0;(r—1)...1 r...0;(r—1)...1;s...1;(r—1)...0

1 oo lys. . 0;(r—1)...0;(r—1)...1 r.o.. 0. 1 (r—1)...0;(r—1)...1
r...l;s...0;(r—1)...0;(r—1)...1 r...0;s...15(r—1)...0;(r—1)...1

N |
5

N |
vy vy
«)—‘ “’—‘
S S
o o
SN—
7N
» »
e L2
S 3
—= e
N———
—
—
< <
| |
— —
“)—' l—‘
S S
| |
— —_
o o
SN——

which is preceisely 7o, where QF = (2s,2r +2,2r — 1,2r — 1). O

Theorem 10.11. Let O = (co, Cog—1, - - - , Co) be a nilpotent orbit in Sp(2m, C) satisfying

(t). Then as G representations,

+ B
Sp(2m) —
In dSP(C%JrCzk 1)><'"><SP(01+C2)><5P(CO)<62k’ Coh-1Q -+ @ 02’ “ ®tmv @ TS.is

ScS

Proof. We prove by induction on the number of columns of O. The result is ob-
viously true when there are one or two columns. Suppose the Theorem holds for
O = (¢2i,C2i-1, - - -, o) (co can be zero), let O* = (cgi42, 2541, - - -, Co). From now on,
we denote the ‘toppling set” S of any nilpotent orbit P by Sp, and any subset S in
Sp by Sp.

Suppose c;41 # 2, then the places where O* can topple is the same as that
of O, ie. Sp = So-. And for any S C Sp = Sp-, O% = (242, C2i+1, Os). Lemma
10.10(a) says for a fixed S C Sp = Sp-,

+
e e
]nd(ﬂ-SO,jso ® Coita, C2it1) = TS 0% 45 o
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and hence

+ + +
Ind(Cyiya, Coi1 ® -+ - @ triv) = Ind[Coira, Coitr @INd(Cy;, Coi 1 @+ - - @ triv)]
+

—_—
= Ind(Cyit2, C2it1 ® @ WSo,jSO)
SoCSo
+

— e
— @ Ind(Caiya, C2i1 50,5,

SoCSo

= @ WSO*’]'SO*

So* CSo*
This finishes the proof for Condition (a). Now suppose c3;+1 = ¢3; = 7, and Sp+ =

So U {r}. For any S C Sp, Lemma 10.10(b) says

+

——
Ind(ﬂso,jso & €252, C2i+1) = TS0x,4s o S¥ WSO*U{T}JSO*U{T}
by adding both sides for all subsets S C Sp, we get our desired result. O

Corollary 10.12. Let O = (co, ..., o) be any orbit in Sp(2m,C) satisfying (1), and

_ (C2ktCok—1 C2pF+Cok—1 C2k—2+C2k—3 C2k—2+C2k—3 cotc1 cotel
OFf = (2t 5 , 5 , 5 yoy BT 2T o). Then

(RO : ] = [P mss : ]

ScS

Proof. By Theorem 10.11, @, s 7s,js has virtual character formula equal to

+ +
— ~~=
(C2k7 Cok—1,---,C2,C1, Co)

(note that the character formula is the same as the case when all columns of O
are distinct). By the techniques in Chapter 9, the multiplicities of the fundamental

representations of the above character is given by

[ Sp(Zm,(C) . : '
[ nd@(%@X.__XGL(%#C)XSP(CO@(’57’“1) 4:]
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which is precisely [R[O?] : 11;] by Theorem 9.4 (or [22] directly). O

Conjecture 10.13. Let O be a nilpotent orbit in Sp(2m, C) satisfying (). Then the set
{mssS C S}

is the set of composition factors of X. Consequently, by Lemma 9.11 and Corollary 10.12,

(RO : ] > [Xg : ] = [ s = ] = [RIOF] : pu]

and the inequality will become an equality. More generally, for any nilpotent orbit O in
Sp(2m, C),

[RIOF] : ] = [Xg + i) = [RIO] : pu
Similarly, suppose P = (bagy1, . .., bo) is an orbit in O(n, C) satisfying (1) and boy1 #
bo.. Then

(RIPF] : ] = [Xp: i) = [R[P) : ]

10.2.2 General Case

Here is the statement for the general case:

Conjecture 10.14. Let O = (cox, ..., o) be an orbit in Sp(2m,C). Then the character
of X is of the form

+ + +
X o —N— —— s
o= (C%, Cok—1; C2k—2, C2k—3; - - - ; C2, C1; CO)

Let P = (bok+1, - - -, o) be an orbit in O(n, C). Then the character of X is of the form

+ + X
Y
X5 = (barr; bk, bog—13 - - -3 b2, bis bo)
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As a consequence, the second part of Conjecture 10.13 holds, ie. [R[OY] : ] =

[R[O] : wi] for all orbits in Sp(2m,C), and [R[P*] : ] = [R[O] : pl] for all orbits
P = (b2k+1, R ,bo) in O(TL, (C) such that ka-H 7é bgk.

To check the validity of the conjecture if O or P are normal, note that Lemma
+

8.3 says c, ¢ and IndS det|'/?) have the same character formula. So the con-
y GL(c,C)

jectured character formula for X,

+ + +
(Czk, Cok—1, C2k—2, C2k—3; - - - ; C2, C1, CO)

will have the same character as Xy and similarly for Xp (Check Definition 6.1).

Therefore the Conjecture is consistent with Theorem 10.1.
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CHAPTER 11
LINKS TO DUAL PAIR CORRESPONDENCE

11.1 Langlands Parameters of Irreducible Modules

In the previous Chapters, we have seen that for a fixed infinitesimal character
Ao, there is a list of all candidates of the composition factors of Xy or Xg. Since
they are all irreducible (gc, K¢)-modules, they all appear as Langlands quotients
of a principal series representation. Since a principal series representation can
be parametrized by its infinitesimal character, we can parametrize all irreducible
(gc, Kc)-modules by their infinitesimal characters, and they are called Langlands

parameters.

Example 11.1. Consider the orbit O = (6,4,4,2,2) in Sp(32,C). The composition fac-

tors of Xo, written as the Langlands quotient of a principal series, is given below:

321, 210—1, 10

7T¢:X
321, 10—1—-2, 0—-1
3210—-1, 210—-1 _ 3210 — 1, 210 —1
T4 =X ;Mo =X
3210—-1, 10—-1-2 310—1—-2, 10—-1-2
3210—-1-2, 10, 1 _ 3210 — 1 — 2, 10, 1
Ty =X ;M- =X
3210—-1-2, 0—-1, 1 2101 —-2-3, 0—1, 1
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3210—-1-2, 10-1 _ 3210—-1-2 10-1
2.4+ =X ; TT2.4,— =X
3210-1-2, 10-1 20-1-2—-3 10—-1

The reason why Langlands parameter is of interest in our work is the following

Theorem:

Theorem 11.2. Let P = (bogy1, .- ., bo) be a nilpotent orbit in O(n,C) so that P’ =
(bog+1 + 2, bags1, - - ., bo) is a nilpotent orbit in Sp(2m, C) satisfying (f). As O(n,C)-
modules,

Xp = R[P] = @9(@

where the ;s are the composition factors of Xp:, and 6 is the dual pair correspondence
given in [1, Theorem 2.8].

Proof. This is just a direct computation of the formulas given in [6] and [1]. H

The above Theorem shows a connection between the composition factors of
nilpotent orbits in O(n,C) and Sp(2m, C). It shows that there are some links be-
tween the construction of X (or Xg) and the dual pair correspondence between

irreducible representations of O(n, C) and Sp(2m, C).
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11.2 Lowest Harmonics and K-type Multiplicities

In this Section, we explore another link between the construction of R[O] and the

dual pair correspondence. Here is a brief recap of the basic idea of the theory:

Theorem 11.3. Let R[C*™| be the ring of polynomial functions on a 2m x n matrix X,
and let GL(2m, C) x O(n,C) act on R[X] by the following:

(g1, 92) - [(X) == f(g,' X g2)
where g1 € GL(2m,C), go € O(n,C) and X € Moy «pn. Then
R[X] = Z H; - C[Tfj]

where 17, are the coordinate entries of the X X*, where X* is defined in Definition 4.1,
and H, = 7 ® 7' as an irreducible, finite-dimensional O(n,C) x GL(2m, C) module.
Moreover, T can be determined by .

Similarly, let R[C*™"] be the ring of polynomial functions on a n x 2m matrix X', and let

GL(n,C) x Sp(2m, C) acts on R[X'] by the following:
(91,92) - F(X') := flg7' X g2)
where g, € GL(n,C), g2 € Sp(2m,C) and X' € M,,w2,. Then
RIX) =Y H, Cls})

where s;; are the coordinate entries of the X" X', where X' is defined in Definition 3.1,

and H, = o ® o’ as an irreducible, finite-dimensional Sp(2m,C) x GL(n,C) module.
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Moreover, o' can be determined by o.
The functions in R[X] or R[X'| represented by H, or H, above are called lowest har-

monics, since they are solutions of some Laplacian equations by construction.

Proof. This is given in [13] or [20]. H

As a Corollary, the functions appearing in R[O] can all be represented by the

lowest harmonics.

R[M]
(uilzes)

Corollary 11.4. Let M and yuas in Proposition 4.4. Then the elements in the space

are generated by the lowest harmonics.

Proof. Use induction on the number of matrices in the space M. If M only contains

L(V4,Vp), then the above Theorem says
R[M] =) H, C[r}]

(or H, - C[s?j]). Therefore every element in M can be written as a sum of elements

of the form /- (" 43~ i ¢;;75; +h.o.t.). All the non-zero order terms are in the ideal

(uf|x € s), and hence the result follows in this case.

Suppose M = L(V1, Vo) & L(Vo, V1) & - - - & L(Viy1, Vi), and M; € L(V;,V;_y). Then

R[M] R[M, ..., My]

(,uﬂx € 5> <]\41]\4ik = 0, Mile = MQM;, R M;:Mk = Mk+1M];k+1>

(or VN 703 V0 V£ Yo T Vs v >). For simplicity, assume the former is

k+1Mk+1

true.

By induction hypothesis, ; can be represented

My M;=0,M; Mi=MaMj,..M;_ My,_1 =M, M)
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by lowest harmonics. Suppose f € R[M]/(uf|x € s), then we just need to con-
sider summands of f with coordinates in M. In particular, we only consider
[ € R[My1] 0 RIM]/{uilx € 5).

Suppose f is not a lowest harmonic, then by lowest weight representation the-
ory, it can be written as f = ) m;f;, where m; are the coordinate entries of
M1 M, and f; € R[M;,] have smaller degree than f. However, the relation
MM, = MM} | means each m; can be represented as an element in R[My],
and hence we can inductively reduce the degree of f until it cannot be further re-
duced. The final f;’s must be lowest harmonics, and hence f can be represented by
a sum of product of an element in R[M;] and a lowest harmonic, and by induction

hypothesis we are done. O

With the above Corollary, we can now give another upper bound on the K-

type multiplicities of R[O]. The key is to understand the relation between o and

o’ in Theorem 11.3, as we will see in the following Corollary:

Corollary 11.5. Let O = (cok, Cok—1 - - - Co) be a nilpotent orbit in Sp(2m, C), with ¢y #

0. Let d, = Y ¢, then [R[O] : p;) < [Yy : ], where [Yy, : ;] is defined inductively by

Yy : i) =0 ifiisodd

d
min{i,—2L —i}

[Yitr: ] = Z 1Y) pot] if i is even

1=0
with [Yy : ;] = i for all i. If ¢y = 0 then begin with Y instead of Y.

Let P = (bog+1,bok, - - ., bo) be a nilpotent orbit in O(n,C). Then [R[P] : ;] < [Z :
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pi), where [Z), : pi] = 30 o5olYk 1 pi-or| and Yy is defined by taking the orbit
(bgk, bgkfl, R ,bo) in Sp

Example 11.6. Let O = (8,6,5,5,4,2,2) in Sp(32,C). Then the algorithm above gives

the multiplicities [Y3 : 1] as listed below:

i 0111234 |5|6|7]8|9|10|11 12|13 |14 |15]16

RO]: ] |1|0|3]0]5|0|7]|0|8l0o| 8 0| 7]0]|5]|0]2

Y:w |2/0[3]0]|5|0|7|0|8]0| 8|07 |0]|5|0]|3

In this case, [R[O] : ;] < [Y : ;] as expected.
Let P = (8,8,6,5,5,4,2,2) in O(40, C), then the multiplicities are as follows:

i 012 |4] 6 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 3440

(Z : ] 114|916 |24 |32 |39 |44 | 47 | 44 | 39 | 32 | 24 | 16 | 9 4 1 0

R[M]
(5 |wes)

Proof. In Corollary, we know is generated by lowest harmonics, i.e. every
element in the ring can be written as a sum of products of lowest harmonics. In
terms of representation theory, the summand of elements in the ring must be of

the form

{i®fo®- @ filfi € Hy, = 0, ® 0}

Recall the Kraft-Procesi construction of R[O]:

_ R[M]

R[O] = (m)s

for instance, if f1 ® - - - @ f is an element in R[O], with f; € 0; ® o] a representation

of GL x O or GL x Sp, then 0] ® 0,41, as an irreducible representation of Sp x GL

100



or O x GL, must contain a trivial representation of Sp <£> Spx Sp C Spx GL
(or O & 0x%x0 C O x GL). Also it forces oy = triv as a representation of O or
Sp C GL.

We now start proving the Theorem for the case of Sp(2m, C) by induction on the
number of columns. The Theorem holds when there is only one column (the zero
orbit). For the case of two columns (so that ¢, = 0), then elements in R[O] can be
represented by f € 0 ® o/, where

e 0 ® ¢’ is an irreducible, finite dimensional representation of GL ® Sp, and

e 0 and ¢’ corresponds to each other by the dual pair correspondence, and

® 7|0(c, 0 is the trivial representation.

Therefore, o itself must also be trivial, and by [20] ¢’ is a trivial representation of
Sp. Hence the Theorem is true for nilpotent orbits with two columns.

Now suppose the Theorem is true for orbits with 2k —1 or 2k —2 columns, and sup-
pose O = (¢, - - ., ¢p) With ¢y # 0 (the case is the same if ¢y = 0). Let f; ® - - - ® for
be a representative of R[O], with f; € 0;®0!, with 09, ®0}, an irreducible represen-
tation of GL(dy,—1,C) x Sp(2m, C) and o9j,_1 ® 04, _, an irreducible representation
of GL(dak—2,C) x O(dax—1, C), satisfying:

® 09 ® 0}, and o9, ® 0, _, correspond to each other by dual pair correspondence.
e 0}, ® oy, contains a trivial representation of O(dy,_1,C).

By [20], if 0, = u;, then o9 = A‘C%*1. By the second condition above and the
self-duality of representations orthogonal groups, o5, _; = A‘C%#-1. By [20] again,
Oop_1 = N'C%k-2 a5 a representation of G L(dy,—2, C). But upon restricted as a rep-

resentation of Sp(day—s, C), A'C%-2 is decomposed as 1o @ fi2 B+ D fhmingi, oy o—i}-

101



Therefore the Theorem holds by induction hypothesis. O

Obviously, the above argument can be extended to all irreducible K-types
other than fundamental representations. The statement for the general case is
not included for two reasons: The branching of non-fundamental representations
from GL to Sp or O is more involved, which we do not have nice recursive for-
mula as above. Also, the limitations of this upper bound can already be reflected
for fundamental representations.

Recall the construction of O and the upper bound on K-type multiplicities of
R[O] in Chapter 9. It is natural to ask whether the upper bound we just attained is
as good as, or even better than the one we have in Lemma 9.11. Unfortunately, the

following Theorem says the bound we just obtained can never be a better bound

for the fundamental representations.

Theorem 11.7. Retain the notations in Lemma 9.11 and Corollary 11.5, then [R[O] :

i) < Ve : i for any i

Sp(da;) . .
. . :: [ J DY .
Proof. Let X; ndGL(dzj,Z%2 L= ) (triv® - - - ®@triv). Then, by
induction in stages, X, = Ind’P(%i+) (X; @ triv), and X = R[O"] as

do —do .
Sp(doj) x GL( 2221 )

in Lemma 9.11. We argue by induction on j that [X; : ;] < [Y] : ] for all 4.
It is obviously true when j = 0, since [ X : ;] = [trivsp,) @ ] = 6o = [Yo © 4.
Suppose that for a fixed j, [ X : y;] < [Y : ;] for all 4, then we want the inequality

holds for j + 1. Without loss of generality, assume ¢ < ‘12]%, since fi; = fid,; ,—i N
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Sp(d2j+2, (C) Then
Sp(dz;+2) .
1) = | ! X; s
I:X]+1 /’Ll] [ ndsp(d2j)><GL(d2j+22—d2j)< J ® tT"H}) ILL ]

= . oy Sp(dzj+2) ida; i—2 rvdaj
= [X;@triv: Ressp(de)XGL(w)o\ Civ2 | A2 Chi2)]

- Z [(X; ® triv : APC%i /\quQHQ,d%]

pt+q=i
N Z [XJ ® triv : /\pl(cdzj ® /\q/(cdzjjtzfd@j]

p'+q'=i-2

where the second equality is from Frobenius reciprocity.
Note that [triv : AIC%i+27%i] = 1iff ¢ = i — p < daj42 — do; and ¢ is even, or zero

otherwise, hence

. ] = . AP(d2] . AP (d2j
(X1 s ] = § [Xj : A\PC™] § [Xj : A7 C™]
i>p>i—(dgjyo—dyj) i—2>p/>i—2—(dgj o —daj)
p=i(mod2) p/ =i(mod2)

Therefore, if i is odd, the right hand side of the equation is zero by inductive

hypothesis, and hence [ X1 : j;] =0 = [Yj11 : ;). If i is even, then

Xivg o] = [X: 0 ANNC% — A2 (d2iva—d)) 0] < (X ACY2
j+1 - H J J

do
min{i,—=L —i}

=[X;: > pal

=0

do.:
min{i,—2L —i}

<Y ), el

=0

= [Yj+1 : Mi]
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Hence the equality holds for any j, and we are done. O

Remark 11.8. In fact, using the Kraft-Procesi coordinates for R[O)], one can write down
the functions on O corresponding to a particular K-type. For instance, in Example 11.6,
one can write down the three highest weight functions of i1 corresponding to the mul-
tiplicity [Y : pie] = 3. In this particular example, one can even check that one of the

functions is precisely zero in R[O)], accounting for the discrepancy between the two rows

in the Example.

11.3 Some Untied Ends

According to our Conjecture in Chapter 10, the fundamental K-type multiplicities
of R[O] is given by that of R[0f]. On the other hand, we have another upper
bound in the above Section. Here is a Conjecture on the fundamental K-type

multiplicities mixing the two algorithms:

Conjecture 11.9. The fundamental K-type multiplicities of the ring of reqular functions
of nilpotent orbit closures can be computed recursively by:

Let P = (bokt1, bag, - - -, bo) be a nilpotent orbit in O(n, C), then

[R[P] : Hoipa] =0
min{2¢,dof, —27}

[RIP): il = D [R[P]:u]

J=0

where P' = (bag, ..., by), and da, = ng b; (and is equal to 0 if min{2i, doy, — 2i} < 0).
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Let O = (cop, - . ., ¢o) be a nilpotent orbit in Sp(2m, C), then

[R[O] : pgiz1] =0

[RIO] : pai] = [R[O'] : py] = [R[O'] + pigg,, 2]

where O = (co—1,...,¢o), and dop_1 = gk_l ¢;. Note that [R[O'] : ply g5 5] =0

lf?dgk_l —21—2> dgk_l.

This algorithm gives the same result as Conjecture 10.13.

Remark 11.10. The algorithm in the above Conjecture is the same as that in Corollary

11.5, except the extra negative term —[R[O'] : jiyy, o o] in the last equation.
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