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For a nilpotent orbit O in a complex classical Lie group G, R. Brylinski in [7] con-

structed a Dixmier Algebra model of its Zariski closure, based on an earlier con-

struction by Kraft and Procesi. On the other hand, Barbasch in [6] constructed

another model on O itself. Treating G as a real Lie group with maximal compact

subgroup K, both models can be seen as admissible (gC, KC)-modules of finite

length. We are interested in finding out the composition factors of both models.

We first list out all the possible factors that can appear in both models, and com-

pute which of them appear in the Barbasch model. When the Zariski closure of O

is normal, we prove the composition factors of the Brylinski model are the same

as the Barbasch model. Also, we give a conjecture on the composition factors in

the Brylinski model, irrespective of the normality of the orbit closure.
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CHAPTER 1

INTRODUCTION

Let G be a complex Lie group with Lie algebra g. Then the adjoint action of G on

g makes g into a union of adjoint orbits. The idea of the Orbit Method, originally

proposed by Kirillov, says that every (co)adjoint orbit in g (or its dual g∗) is re-

lated to an irreducible, unitary representation of G. This idea is realized perfectly

when g is a nilpotent Lie algebra, and some generalizations are needed if g is a

solvable Lie algebra. However, the situation becomes much more complicated in

the case of semisimple Lie algebras. One of the many difficulties arising from the

semisimple case is, not all adjoint orbits in g are closed. It is therefore suggested

by Vogan and McGovern that in the case of semisimple Lie algebras, one should

study the orbit datum of g which is a generalization of the adjoint orbits in g, and

the Dixmier algebras which is related to the irreducible unitary representations.

More precisely, if we treat G as a real Lie group with maximal compact subgroup

K (i.e. the complexification of K is KC ∼= G), a Dixmier algebra X is a filtered

algebra endowed with a (gC, KC)-action, where the KC-orbits, i.e. G-orbits on X

spans a finite-dimensional vector space and respects the grading.

Conjecture 1.1 (Vogan). LetG be a connected complex simple Lie group with Lie algebra

g. Let O be an adjoint orbit in g and Õ → O be a connected covering of O so that G acts

compatibly. Then there is a completely prime Dixmier algebra AÕ corresponding to Õ,

such that AÕ ∼= R[Õ] (the ring of regular functions of Õ) as representations of G.
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By Jordan Decomposition, it is known that every element in the semisimple Lie

algebra can be split into a semisimple part and a nilpotent part. Also, it is known

that all adjoint orbits for the semisimple part are closed, and their quantization is

known. It is therefore of interest to study how one can attach unitary representa-

tions to nilpotent orbits.

We focus on classical simple complex Lie algebras. In this case, R. Brylinski in [7]

constructed a Dixmier algebra corresponding to the closure of a nilpotent orbitO.

Her construction of the model XO is based on an earlier construction of the ring of

regular functions ofO given by Kraft and Procesi. By construction, gr(XO) = R[O]

asG-modules. However, the construction is highly geometrical, and one is unable

to extract much representation theoretic data out of her construction. For instance,

there is no direct way to find out the decomposition of XO as finite-dimensional

G-modules with multiplicities. On the other hand, Barbasch in [6] constructed

a (gC, KC)-module XO such that XO ∼= R[O] as KC ∼= G-modules. The building

blocks of his construction are unipotent representations, whose representation

theory is well studied by Barbasch and Vogan. One would hope that the Barbasch

model can give some representation theoretic insight into the Brylinski model.

The normality of O plays an important role in studying the relations between the

two models. In fact, the ring of regular functions of O and O are the same if

and only if O is normal. Consequently, if O is normal, then XO, R[O] and XO

are isomorphic as G-modules, and XO becomes a candidate of AO in the above

Conjecture. In fact, more is true in this case. We will see in Chapter 10 that as

(gC, KC)-modules,XO andXO share the same composition factors (with multiplic-
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ities). Even if O is not normal, the inclusion relation R[O] ↪→ R[O] gives an upper

bound on the multiplicities of irreducible, finite-dimensionalG-representations of

XO. This also imposes a strong constraint on the representation theory of XO.

The thesis is organized as follows. Chapter 2 gives the basic information for nilpo-

tent orbits in classical, simple, complex Lie algebras. This includes the classifi-

cation on all nilpotent orbits, and the closure relationships between the orbits.

Chapter 3 gives the basic relations between R[O] and R[O] when O is normal,

and Theorem 3.3 gives a combinatorial criterion on the normality ofO, proved by

Kraft-Procesi.

Chapter 4 focuses on the construction of the Dixmier algebra XO given by Brylin-

ski. Proposition 4.11 provides the infinitesimal character of the model, which is

the starting point of studying the representation theoretic aspects of XO.

Chapter 5 gives an introduction to the theory of unipotent representations. This

is essential in the construction of the Barbasch model on the orbit. Also, the the-

ory provides the lower bound of the associated variety of the composition factors

of XO given its infinitesimal character. Given a fixed infinitesimal character, we

study the number of unipotent representations, their associated varieties and their

character formulas. The construction of XO and some covers of O given by Bar-

basch is in Chapter 6.

Chapter 7 exhausts all the possible candidates of the composition factors of XO

and XO. It provides character formulas for all candidates. Chapter 8 determines

which of the candidates appear in XO.

Chapter 9 gives an algorithm computing the K-types (i.e. finite-dimensional ir-
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reducible G-representations) of the Barbasch model XO. More precisely, Theorem

9.2 and Theorem 9.5 give the algorithms computing the multiplicities of funda-

mental representations of XO. This in turn gives an upper bound on the K-type

multiplicities of R[O], and gives another criterion on the normality of O by com-

paring the multiplicities of the fundamental representations of R[O] and R[O].

Chapter 10 starts with a proof of the case when O is normal, the composition fac-

tors of XO is the same as that of XO. The remaining part of the Chapter is devoted

to a conjecture on the possible composition factors of XO for any orbit O, and a

possible character formula for the model.

Chapter 11 discusses the role of reductive dual pairs in our construction. By a

Theorem of Adams and Barbasch, for some mild conditions on n and 2m, the

composition factors of XP in O(n,C) correspond to that of XO in Sp(2m,C) via

the dual pair correspondence. On the other hand, the study of harmonics in the

dual pair correspondence gives another upper bound on K-type multiplicities of

XO. We compare this upper bound with the one given in Chapter 10, and draft

some possible directions for future research.
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CHAPTER 2

NILPOTENT ORBITS IN CLASSICAL LIE ALGEBRA

This Chapter gives some basic notions and theorems on nilpotent orbits. More

details can be found in [16] and [8].

Definition 2.1. Let V be a complex vector space. An element φ ∈ End(V ) is semisimple

if every φ-invariant subspace has a φ-invariant complement. An element φ ∈ End(V ) is

called nilpotent if φr = 0 for some finite r > 0.

Let g be a complex Lie algebra. For every X ∈ g, the adjoint representation ad :

g → End(g) gives a Lie algebra homomorphism. Hence we have the following

definition:

Definition 2.2. X ∈ g is semisimple if ad(X) is semisimple in End(g). And X ∈ g is

nilpotent if ad(X) is nilpotent in End(g).

2.1 Jordan Decomposition

Theorem 2.3 (Jordan Decomposition). Any φ ∈ End(V ) can be decomposed as φ =

φs + φn, where φs is semisimple, φn is nilpotent. Both φs and φn are polynomials of φ.

Theorem 2.4. Suppose g ⊂ End(V ) is semisimple, then the Jordan decomposition of

X ∈ g is the same as the Jordan decomposition of X ∈ End(V ). More generally, for any

finite dimensional representation of g, ρ : g → End(W ), if X = Xs + Xn is the Jordan
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decomposition of X ∈ g, then ρ(X) = ρ(Xs) + ρ(Xn) is the Jordan decomposition of

ρ(X) ∈ End(W )

In particular, for any matrix Lie algebra g ⊂ gl(n,C), for example all complex

simple Lie algebras, we can decompose g into a sum of a semisimple element and

a nilpotent element. And the decomposition is the same as that in gl(n,C).

Now we start looking at the conjugates of nilpotent elements:

Example 2.5. Consider the Lie algebra sl(2,C) = {M ∈ M2×2(C)| tr(M) = 0}. We

know that for any M ∈ sl(2,C), there exists Q ∈ SL(2,C) such that QMQ−1 is the

Jordan normal form. If M is semisimple, it can be diagonalized, hence it is of the form

QMQ−1 =

 µ 0

0 −µ


If M is nilpotent, the only eigenvalue of M must be zero, hence

QMQ−1 =

 0 1

0 0

 or

 0 0

0 0


Hence both the semisimple and nilpotent orbits in sl(2,C) are completely classified. In

particular, There are infinitely many semisimple orbits, and 2 nilpotent orbits.

More generally, we study the nilpotent orbits sl(n,C). The Jordan normal form tells us

that the non-conjugate representatives of the nilpotent elements are of the following:

6



X =



J1 0 0 0

0 J2 0 0

0 0
. . . 0

0 0 0 Jk


with Ji =



0 1

0 1

. . . . . .

0 1

0


where each Jordan block Ji is a ri × ri matrix. So the set of nilpotent orbits in SL(n,C)

can be parameterized by the parititions of n, i.e. {[r1, r2, . . . , ri]| r1 ≥ r2 ≥ · · · ≥ rk ≥

0,
∑k

j=1 rj = n}.

2.2 Nilpotent Orbits in Bn, Cn and Dn

As we have seen in the previous Section, each nilpotent orbit of type An corre-

sponds to a partition of n + 1. This Section concerns about the classification of

nilpotent orbits in Sp(2m,C) and O(n,C). The main Theorem is the following:

Theorem 2.6. Let ε = ±1, and consider a nondegenerate bilinear form 〈·, ·〉ε on Ck such

that

〈A,B〉ε = ε 〈B,A〉ε for all A,B ∈ Ck

We write

I(〈·, ·〉ε) = {g ∈ GLk(C)| 〈gA, gB〉ε = 〈A,B〉ε for all A,B ∈ Ck}

gε = {X ∈ sl(k,C)| 〈XA,B〉ε = −〈A,XB〉ε for all A,B ∈ Ck}
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Pε(k) = {[d1, . . . , dk] | #{j|dj = i} is even for all i such that (−1)i = ε}

Then the nilpotent I(〈·, ·〉ε)-orbits in gε are in one-to-one correspondence with partitions

in Pε(k).

With this theorem, we can conclude that

Corollary 2.7. If ε = −1, then k = 2m must be even, and I(〈·, ·〉ε) = Sp(2m,C),

gε = sp(2m,C). Hence the Sp(2m,C)-orbits of nilpotent elements in sp(2m,C) are

identified with the paritions of 2m in which odd parts occur with even multiplicity.

If ε = 1, then k = n can be any integer, and I(〈·, ·〉ε) = O(n,C), gε = o(n,C). So the

O(n,C)-orbits of nilpotent elements in o(n,C) are identified with the partitions of n in

which even parts occur with even multiplicity.

2.3 Another Characterization of Classical Nilpotent Orbits

In the last couple of Sections, all nilpotent orbits are characterized by partitions.

And the partitions are often expressed as Young diagrams whose row sizes are

determined by the corresponding partitions. In fact, in studying nilpotent orbits,

it is sometimes more convenient to look at the column sizes of a Young diagram.

The column sizes of the Young diagram corresponding to a partition is given by

the dual partition of the original partition, which is defined by the following:

8



Definition 2.8. Let [r1, r2, . . . , ri] be a partition of n, with r1 ≥ r2 ≥ · · · ≥ ri > 0, then

its dual partition is given by (ck, ck−1, . . . , c1), where ck+1−j = #{i|ri ≥ j}.

Example 2.9. Let O = [4, 2] in Sp(6,C). Then the Young diagram corresponding to O

is given by

the dual partition of O is (2, 2, 1, 1).

The dual partition ofO has an algebraic intepretation on the rank of X i, where

X is any nilpotent element in the orbit.

Proposition 2.10. Let X be any nilpotent element in the orbit O parametrized by the

dual partition (ck, . . . , c1), then

rank(Xj) =

k−j∑
i=1

ci

From now on, we will determine a nilpotent orbit by its dual partition, or

equivalently the column sizes of its corresponding Young diagram. Here is a re-

statement of Corollary 2.7 in terms of column sizes.

Corollary 2.11. Any nilpotent orbit in Sp(2m,C) can be parametrized by a partition of

2mwith column sizes (c2k, c2k−1, . . . , c0), where c2k ≥ c2k−1 ≥ · · · ≥ c0 ≥ 0 (by insisting

c2k is the longest column, we put c0 = 0 if necessary), such that c2i + c2i−1 is even for all

i (c−r and c2k+r = 0 for all r > 0).

Any nilpotent orbit in O(n,C) can be parametrized by a partition of n with column sizes

9



(b2k+1, b2k, . . . , b0), where b2k+1 ≥ b2k ≥ · · · ≥ b0 ≥ 0 (putting b0 = 0 if necessary), such

that b2i + b2i−1 is even for all i (b−r and c2k+1+r = 0 for all r > 0).

Example 2.12. Consider the dual partition (4, 4, 3, 3, 1, 1). To check whether it defines an

orbit in O(16,C), we name the longest column 4 by O, second and third longest column

S and O and so on. We get

O S O S O S O

In order for the partition to be a nilpotent orbit in O(16,C), we want the sum of each S-O

column pair (which is different from O-S column) to be even. However, the first pair 4+3

and the third pair 1 + 0 are odd. So it does not define a nilpotent orbit in O(16,C).

To check whether (4, 4, 3, 3, 1, 1) defines an orbit in Sp(16,C), name the longest and sec-

ond longest columns S and O, third and fourth longest columns S and O and so on. We

get

S O S O S O

10



Note that the sum of the S-O column pairs are 8, 6, 2 respectively. So it defines an orbit

in Sp(16,C).

2.4 Closure Relations Between Orbits

In this Section, we study the Zariski closure of nilpotent orbits. In the classical Lie

algebras, there is a nice combinatorial way of describing the orbit closures.

Definition 2.13. Let O′ and O be nilpotent orbits of a classical Lie algebra g, and let

X ′ ∈ O′, X ∈ O. We say O′ ≤ O iff rank(X ′i) ≤ rank(X i) for all i. So O′ ≤ O iff∑m′−i
k=1 c′k ≤

∑l−i
k=1 ck. For example, the diagram below shows the case of G = Sp(6,C):

/ \

- - - -

\ /

where the larger orbits appear on the left.

Definition 2.14. Let O :=
⋃
O′≤OO′. Then any element X in Ock,...,c1 must satisfy the

condition rank(Xj) ≤
∑k−j

i=1 ci =: pj . Note that the rank conditions defining the orbit

closures, namely rank(Xj) ≤ pj , can be expressed as the vanishing set of some algebraic

equations. Therefore, O is closed in the Zariski topology, and set theoretically it is indeed

the Zariski closure of the orbit O.

11



CHAPTER 3

NORMALITY OF ORBIT CLOSURES

As mentioned in the Introduction, it is suggested that the machinery of quantiza-

tion works better with orbit closure than the orbit itself. In fact, they are closely

related in the case of complex Lie algebras.

Theorem 3.1. Let O be a G-orbit with Zariski closure O. If O \O has codimension

greater than or equal to 2, then R[O] is the integral closure of R[O] in its field of fractions.

Proof. First of all, O is smooth since it is a G-orbit. Therefore O is normal, i.e.

R[O] is integrally closed. Now, take Y be the normalization of O and let π : Y →

O be the corresponding finite map. Also, let Y ′ := π−1(O). Then we have the

commutative diagram

Y ′ −−−→ Y

π

y π

y
O −−−→ O

−→

R[Y ′] ←−−− R[Y ]

π∗

x π∗

x
R[O] ←−−− R[O]

We want to show R[Y ′] ∼= R[Y ], since then

R[Y ] ⊂ R[O] ⊂ R[Y ′] = R[Y ]

and therefore R[Y ] = R[O] as required.

Note that the first inclusion holds since (by definition of integral closure of R[O])

for any x ∈ R[Y ], there exists a monic polynomial f ∈ R[O][t1, · · · , tk] such that

f(x) = 0. But R[O] ⊂ R[O], hence x is also in the integral closure of R[O], which

is R[O] itself since O is normal.

12



The second inclusion holds because π|Y ′ : Y ′ → O is dominant (as is π itself),

hence π|∗Y ′ gives the required inclusion.

To see why R[Y ] = R[Y ′], first note that R[Y ] ⊂ R[Y ′] by finiteness of π and the

easy fact that R[O] ⊂ R[O]. For the inverse inclusion, suppose f ∈ R[Y ′]. Then it

extends to a rational function on Y (since Y ′ is dense in Y ). Let X be the closed set

of poles of f in Y , which is at least codimension 1 in Y . If it were of codimension 1,

by the assumption in the Proposition and finiteness of π, Y \Y ′ is of codimension

2 in Y . Therefore X cannot lie completely inside Y \Y ′, and hence Y ′ ∩X is dense

in X .

However, f is regular on Y ′, hence regular on Y ′ ∩X , yet our setting says f has a

pole along Y ′ ∩X , a contradiction.

Therefore, f cannot contain any pole along any hypersurface of Y , i.e. f ∈ R[Y ]p

for any height 1 prime ideal p. Consequently,

f ∈
⋂

ht p=1

R[Y ]p = R[Y ]

Note that all (real or complex) nilpotent orbits are symplectic manifolds with

the Kirilov-Kostant-Souriau symplectic form, therefore they are all of even (real

or complex) dimensions. In particular, the nilpotent orbit closure O satisfies the

hypothesis of the above Theorem. So we have the following:

Corollary 3.2. R[O] ∼= R[O] if and only if O is normal.

Therefore, it is fruitful to study quantization on both O and its closure, so

13



that one can extract information from each other. In fact, this philosophy will

be applied to the fullest extent in the later Chapters (See Chapter 10). Also, for

classical nilpotent orbits, Kraft-Procesi [19] gave a criterion on normality:

Theorem 3.3 (Kraft-Procesi).

(a) All nilpotent orbit closures in SL(n,C) are normal.

(b) Let O = (c2k, c2k−1, . . . , c0) be a nilpotent orbit in Sp(2m,C). If there is a chain of

column lengths of the form

c2i 6= c2i−1 = c2i−2 = · · · = c2j−1 = c2j−2 6= c2j−3

thenO is not normal along (c2k, . . . , c2i, c2i−1+2, c2i−2, . . . , c2j−1, c2j−2−2, c2j−3, . . . , c0).

Similarly, the closure of a nilpotent orbit P = (b2k+1, . . . , b0) in O(n,C) is not normal if

there is a chain of column lengths of the form

b2i 6= b2i−1 = b2i−2 = · · · = b2j−1 = b2j−2 6= b2j−3

Remark 3.4.

(i) We will see in later Chapters that in the quantization model of O, the normality of

nilpotent orbit closures plays an important role. More precisely, if the orbit closure is

normal, the representation theoretic aspects of its corresponding model can be completely

determined (e.g. an analog of Theorem 10.1 in the type A situation holds). Since every

nilpotent orbit is normal in the type A situation, we focus on the type B, C, D cases.

(ii) Using the notation in Example 2.12, the normality criterion of nilpotent orbit closures

of types B, C, D amounts to checking whether there are even number of columns, starting
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with an O column, that have the same size. For example,

S O S O

,

S O S O

are

normal, while

S O S O

is not normal.

Later on, we will come across another criterion of the normality of nilpotent

orbit closures, by considering the multiplicities of some fundamental representa-

tions of G in R[O] and R[O] (Theorem 9.12).
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CHAPTER 4

BRYLINSKI’S CONSTRUCTION OF XO

4.1 Kraft-Procesi Construction of R[O]

In [19], Kraft and Procesi constructed a realization of R[O] to prove their non-

normality results in Theorem 3.3. Since the construction of the Brylinski model

XO is based on their construction, we give a brief account of the Kraft-Procesi

construction here.

Definition 4.1. Let (U, 〈 , 〉), (V, ( , )) be complex vector spaces equipped with symmet-

ric (or anti-symmetric) and anti-symmetric (or symmetric) inner products respectively,

with dimU = m < dimV = n. Let X ∈ L(V, U) := Hom(V, U) be surjective. Define

π : L(V, U) → End(U) and ρ : L(V, U) → End(V ) by π(X) = XX∗, ρ(X) = X∗X ,

where ∗ is the adjoint operator of the corresponding inner product spaces.

It can be checked that the images π(X) and ρ(X) are invariant operators with respect to

their inner products, therefore both are in O(U)(or Sp(U)) and Sp(V )(or O(V )) respec-

tively.

Theorem 4.2 (Kraft-Procesi). Let x ∈ O ⊂ o(U) (or sp(U)) be a nilpotent element. For

large enough n = dimV , ρ(π−1(O)) = O′, where O′ is the nilpotent orbit in Sp(V )(or

O(V )) by adding a column of length (n−m) on the Young diagram corresponding to the

nilpotent O.
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(By ‘large enough’ we mean the adding of the column makes sense, i.e. the first column of

O has to be of length shorter than (n−m).)

Proof. Let O = (ck, ck−1, · · · , c1) with c1 6= 0. Then by the Definition 2.12, O is

the union of orbits with partitions equal to the ‘toppling’ of that of O. Consider

X ∈ π−1(O), i.e. XX∗ ∈ O and hence by Definition 2.12, rank(XX∗)j ≤
∑

i≤k−j ci

for all j and

rank(X∗X)l = rankX∗(XX∗)l−1X ≤ rank(XX∗)l−1 ≤
∑

i≤k−(l−1)

ci

Therefore, X∗X ∈ O′, i.e. ρ(π−1(O)) ⊂ O′.

Now, check that O′ ⊂ ρ(π−1(O)) ⊂ O′. Let Y : V → V be an element in O′. By

definition of O′, rank(Y ) = dimU . So write U = Y (V ) and Y |U : U → U can be

treated as an element in End(U) lying on the nilpotent orbit O.

Consequently, if we denote Z = Y : V → U , Z∗ will simply be the inclusion map

U ↪→ V and

Z∗Z = Y , ZZ∗ = Y |U ∈ O

which means Y ∈ ρ(π−1(O)).

On knowing O′ ⊂ ρ(π−1(O)) ⊂ O′, we just need to show the middle element is

closed. But [19], Theorem 2 says ρ (and π) are quotient maps, hence they map

closed sets to closed sets, which proves the theorem.

Example 4.3. To construct the closure of the nilpotent orbit (4, 4, 2, 2) in O(12,C), we
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need to add columns consecutively each time. This can be seen by the diagram below:

M → * → L(V1, V0)
π−→

↓ ↓ ρ ↓ Sp(V0) = Sp(2,C)

* → L(V2, V1)
π−→

↓ ρ ↓ O(V1) = O(4,C)

L(V3, V2)
π−→

ρ ↓ Sp(V2) = Sp(8,C)

O(V3) = O(12,C)

where M = L(V1, V0)⊕ L(V2, V1)⊕ L(V3, V2).

Note that each of the L(Vi, Vi−1) has a natural symplectic structure given by the (Vi, Vi−1)

pair. Write G := O(V3) = O(12,C), S := G0 × G1 × G2 = Sp(V0)× O(V1)× Sp(V2),

then G× S acts on M by

(g, s0, s1, s2) · (X1, X2, X3) := (s0X1s
−1
1 , s1X1s

−1
2 , s2X3g

−1)

This action is Hamiltonian with moment maps µ1 : M → s∗ ∼= s given by

(X1, X2, X3) 7→ (X1X
∗
1 , X

∗
1X1−X2X

∗
2 , X

∗
2X2−X3X

∗
3 ), and µ2 : M → g∗ ∼= g given by

(X1, X2, X3) 7→ X∗3X3 and by our construction, the equation of the closure of (4, 4, 2, 2)

is exactly given by µ2(µ−1
1 (0)).
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Proposition 4.4 (Kraft-Procesi).

R[O] = (
C[M ]

〈µx1 |x ∈ s〉
)S

where M = L(V1, V0)⊕ · · · ⊕ L(Vn, Vn−1), S = G0 ×G1 × · · · ×Gn−1.

Proof. These are precisely the algebro-geometric statement of the Kraft-Procesi

construction (see [19], Theorem 5.3), namely:

• µ−1
1 (0) is the complete intersection with respect to the equations X1X

∗
1 = 0, · · · ,

X∗n−1Xn−1 −XnX
∗
n = 0.

• µ2 : µ−1
1 (0)→ O is a quotient map under S.

4.2 Some Basic Notions on Infinite Dimensional Representa-

tions

Before constructing the Brylinski model, we give some basic notions of infinite

dimensional representations which are essential for the construction.

Let g be a classical complex simple Lie algebra, and U(g) be its universal envelop-

ing algebra. Let Z(g) be the center of U(g). Then

Theorem 4.5 (Harish-Chandra Isomorphism). There is an isomorphism between Z(g)

and S(h)W , the Weyl group invariant of the symmetric algebra of a Cartan subalgebra h

of g. Therefore, by the Nullstellensatz, every maximal ideal of Z(g) can be identified as

Z(λ), where λ is an element in h∗/W .
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Let I be a two-sided ideal of U(g), then I is said to have infinitesimal character

λ if I contains the ideal U(g)Z(λ).

Definition 4.6.

(a) Let G0 be a real reductive Lie group with Lie algebra Lie(G0) = g0 and maximal com-

pact subgroup K0. Then a (g, K) := ((g0)C, (K0)C)-module V is a U(g)-module with a

K-action such that:

• For any X ∈ g and any k ∈ G, k ·X · v = (Ad(k)X) · (k · v) for all v ∈ V .

• For all Y ∈ k, Y · v = d
dt

(exp(tY ) · v)|t=0.

• V is admissible. Namely the K-action on V is finite-dimensional, i.e. V can be decom-

posed as a direct sum of finite-dimensional, irreducible K-modules, and each irreducible

K-module E appears in V with finite multiplicity.

(b) An admissible (g, K)-module V is finitely generated if there is a finite-dimensional

vector subspace V0 ≤ V such that U(g) · V0 = V .

(c) Furthermore, an admissible (g, K)-module V has an infinitesimal character λ ∈

h∗/W if the U(g)-annihilator of V contains the ideal U(g)Z(λ).

(d) Let G be a complex semisimple Lie group with compact real form K. Treat G as a real

Lie group, then (gC, KC) = (g ⊕ g, G), and the corresponding (gC, KC)-module is called

a Harish-Chandra bimodule.

Given an admissible, finitely-generated (g, K)-module, there is an important

invariant attached to it called the associated variety, which will be used again and

again in the following Chapters.
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Definition 4.7. Let X be an admissible, finitely generated (g, K)-module. Let X0 be

a finite-dimensional K-invariant generating subspace of X , define a filtration on X by

Xn := Un(g) · X0. Then gr(X) becomes an gr(U(g)) = S(g)-module, and (by the

compatibility condition of (g, K)-module) every element in k annihilates gr(X). So gr(X)

can be treated as a S(g/k)-module. Let I = AnnS(g/k)(gr(X)), then

the vanishing set V(I) does not depend on our choice of generators X0 (though I does)

Therefore, we can define the associated variety of X to be

AV (X) = V(I) ⊂ (g/k)∗

4.3 Construction of XO

Retain the notations in the last proposition, set W = Weyl algebra of M =

L(V1, V0)⊕ · · · ⊕ L(Vn, Vn−1), i.e.

W = T (M)/ 〈a⊗ b− b⊗ a− {a, b}〉

with {·, ·} being a symplectic form on M (Recall each L(Vi, Vi−1) has a symplec-

tic structure, therefore so does M ). There is a natural inclusion ξ· : sp(M,C) ∼=

S2(M) ↪→W . ThenW is a (sp(M,C)C, Sp(M)C)-module given by the actions

(x, y) · A := ξxm−mξy

g ·m = gmg−1
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for (x, y) ∈ sp(M,C)C = sp(M,C)⊕sp(M,C), g ∈ Sp(M)C ∼= Sp(M,C) and m ∈M

(extend the above actions to T (M)).

As in the last section, g and s := g0 ⊕ · · · ⊕ gn−1 are embedded in sp(M,C). Define

Definition 4.8.

XO :=Weven/ 〈(x, y) · A, A− s · A| (x, y) ∈ sC, s ∈ S, A ∈ Weven〉

Theorem 4.9. There is a filtration of algebras in XO inherited from the filtration in

Weven ⊂ W . Under this filtration,

gr(XO) = R[O]

as G ∼= KC-modules.

Proof. Here is a sketch of the proof. Recall the definition of Lie group homology,

XO = H0(sC, S;Weven)

and the Koszul complex evaluating Hi(sC, S;Weven) is

0← ∧0p⊗S Weven ← ∧1p⊗S Weven ← · · · ← ∧lp⊗S Weven ← 0

where p = {(x, x)|x ∈ s}, the noncompact part of the Cartan decomposition of sC,

and the boundary map is given by

∂(x1 ∧ · · · ∧ xt ⊗ E) =
t∑
i=1

x1 ∧ · · · ∧ x̂i ∧ · · · xt ⊗ (ξxiE + Eξxi)

where xi is a shorthand of (xi, xi) ∈ p.

Use a spectral sequence to evalute H•(sC, S;Weven): Pick Ep,q
r so that
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Ed
∞ = grp(Hp+q(sC, S;Weven)). We will show:

• E0
1 = R[O], Ed

1 = 0

• Ep,q
1 = Ep,q

∞ , i.e. Ed
r stabilizes at r = 1.

Indeed,

Ep,q
0 = ∧p+qp⊗S C[M ]−q

where the nonzero values are on the (−π/4, 0) octant {(p, q)|q ≤ 0, p + q ≥ 0}. So

Ed
0 is the complex

(0← ∧0p⊗ C[M ]even ← ∧1p⊗ C[M ]even ← · · · ← ∧dimSp⊗ C[M ]even ← 0)S

the boundary map are the downward arrows ↓: Ep,q
0 → Ep,q−1

0 on the 0th-page,

given by

∂(x1 ∧ · · · ∧ xt ⊗ E) =
t∑
i=1

x1 ∧ · · · ∧ x̂i ∧ · · · xt ⊗ gr(ξxiE + Eξxi)

but gr(ξxi) = µxi1 , so the complex is simply the Koszul complex of {µxi1 }.

However, by [19], {µxi1 |xi ∈ s} is a complete intersection, hence they form a regular

sequence. By a result in commutative algebra, the homology of the above complex

is

Ed
1 : 0← (R[M ]/ 〈µx1 |x ∈ s〉)S ← 0← · · ·

and hence the first claim is done by the Proposition above.

For the second claim, note that the boundary maps on the 1st page become←, so

the value remains unchanged and so does E2 and so on. So we are done.

Proposition 4.10.

(a) XO is admissible.
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(b) XO is finitely generated.

(c) The left and right annihilators of XO coincide.

(d) XO has an infinitesimal character.

Proof.

(a) First of all, note that bothXO and gr(XO) are isomorphic asKC-modules. Also,

by the Theorem, we know gr(XO) ∼= R[O] as KC-modules. However, by a stan-

dard theorem for reductive group actions on varieties, R[O] decomposes into a di-

rect sum of finite-dimensional irreducible KC-representations. It now remains to

show the multiplicities of each finite-dimensional irreducible KC-representation

is finite.

There are many ways to see this is the case, we will present one here which will be

relevant to the later chapters. Consider the variety of all nilpotent elements N . It

is indeed the closure of an orbit called the regular orbitOreg. It is a standard result

(which is generalized by Theorem 6.2 and Corollary 3.2) that as KC-modules,

R[Oreg] ∼= U(g)/annU(g)(M(λ))

where M(λ) = U(g) ⊗U(b) Cλ is any Verma module. In particular, R[Oreg] is iso-

morphic to a principal series representation X(λ, λ) := IndGB(Cλ,λ) and hence

admissible. This shows XOreg is admissible.

For any orbit closures O, note that there is a KC = G-equivariant morphism

R[Oreg]� R[O]

so for any finite-dimensional irreducible G representations Vµ, the multiplicity of

Vµ in R[O] is no larger than that of R[Oreg]. But we know the multiplicities of the
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latter are always finite, hence we are done.

(b) LetW inv be the algebra of S-invariants inWeven, i.e. W inv = {A ∈ Weven|A =

s · A}. Then by definition of ξ : sp(M,C) ↪→ W2 in the beginning of this Section,

we have the map of algebras ζ : g ↪→ W inv, which induces a homomorphism of

filtered algebras

ζ : U(g)→W inv

On the other hand, by the very definition of XO we have another surjective homo-

morphism of filtered algebras

φ :W inv � XO

In Section 7 of [7], it is proved that φ is surjective in each filtration degree. Also,

Theorem 4.9 says gr(XO) ∼= R[O]. So the composition of filtered algebras φ ◦ ζ :

U(g) → XO gives a surjective homomorphism S(g) � R[O] ∼= gr(XO) (the kernel

is precisely the defining ideal of the variety O, I(O)). This implies φ ◦ ζ must be

surjective in each filtration degree. Let I := ker(φ ◦ ζ), we have

U(g)/I ∼= XO

Now it is obvious that the U(gC)-module U(g)/I is generated by 1 ∈ U(g)/I.

(c) This holds if I is a 2-sided ideal in U(g). But it follows directly from I =

AnnU(g)(XO), if we treat XO as a U(g)-module under φ ◦ ζ .

(d) We want to check that

Z(λ)U(g) ⊂ I

for some λ. In fact, it suffices to check the inclusion holds after taking gr. Taking

gr, gr(Z(λ)) = S+(g)G, the G-invariant elements in S(g) of positive degree. So
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gr(Z(λ)U(g)) = 〈S+(g)G〉. On the other hand, gr(I) = I(O) ⊃ I(N ) where N is

the variety of all nilpotent elements. By a theorem of Kostant, I(N ) = 〈S+(g)G〉.

Therefore

gr(Z(λ)U(g)) = 〈S+(g)G〉 ⊂ I(O) = gr(I)

and hence the Theorem follows.

Therefore, XO is a Harish-Chandra bimodule. Moreover, its infinitesimal char-

acter is known explicitly.

Proposition 4.11. LetO = (c2k, . . . , c0) be a nilpotent orbit in Sp(2m,C). Then XO has

an infintesimal character χ = (χ0, χ1, . . . , χk), where χi is defined by the following:

• For i between 1 and k, χi = ( c2i
2
, c2i−2

2
, . . . , −c2i−1+2

2
).

• χ0 = ( c0
2
, . . . , 1).

Let P = (b2k+1, b2k, b2k−1, . . . , b0) be any nilpotent orbit in O(n,C). The infinitesimal

character of XP is (χh, χ), where

• χ is defined in the same way as the symplectic case for P ′ = (b2k, b2k−1, . . . , b0), and

• χh = ( b2k+1−2

2
, . . . , 1

2
) if b2k+1 is odd, ( b2k+1−2

2
, . . . , 0) if b2k+1 is even.

Proof. This is given in [26], using some techniques on reductive dual pair corre-

spondence. We will study the subject further in Chapter 11.

Example 4.12. Consider the orbit (7, 7, 6, 4) in Sp(24,C). Then the infinitesimal char-

acter of χ can be read from the following diagram:
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S O S O

1
2

1 0

3
2

1
2

2 1

5
2

3
2

3

7
2

5
2

i.e. χ = (7
2
, 5

2
, 3

2
, 1

2
, 5

2
, 3

2
, 1

2
, 3, 2, 1, 1, 0) (up to a Weyl group action on the coordinates, by

the Harish-Chandra isomorphism). For the orbit (7, 7, 7, 6, 4) in O(31,C), the infinitesi-

mal character is given below:

O S O S O

1
2

1 0

1
2

3
2

1
2

2 1

3
2

5
2

3
2

3

5
2

7
2

5
2

Remark 4.13. Note that as a Corollary of Proposition 4.11, the (gC, KC)-module XO

has a composition series of irreducible (gC, KC)-modules. The argument is sketched as

follows:

By Langlands classification of irreducible (gC, KC)-modules, the number of irreducible
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representations having a fixed infinitesimal character is bounded by the size of the Weyl

group ofG. Let the lowestK-types of such irreducible representations be the irreducible,

finite dimensional KC-representations V1, . . . , Vn. It follows that all (gC, KC)-modules

having the fixed infinitesimal character must contain one of the above K-types Vi.

If XO is irreducible then we are done. Suppose not, i.e. there is a submodule W ⊂ XO.

Then W , XO/W are both admissible, finitely generated and have the same infinitesimal

character as XO. Since KC-representations can be completely decomposed,

[Vi : W ] + [Vi : XO/W ] = [Vi : XO](<∞)

for all i, and there are some Vi such that [Vi : W ] > 0. In particular,
∑

i[Vi : W ],
∑

i[Vi :

XO/W ] <
∑

i[Vi : XO]. So we can use induction argument on sum of multiplicities of Vi

to conclude that both W and XO/W have composition series, and hence so does XO.

Finally, the associated variety of XO is O as expected.

Proposition 4.14. The associated variety of XO is AV (XO) = O.

Proof. In fact, if XO ∼= U(g)/I is a Harish-Chandra bimodule, it follows im-

mediately from the definition of the associated variety of a (g, K)-module that

AV (XO) ⊂ (gC/kC)∗ ∼= (g⊕ g/g)∗ ∼= g∗ ∼= g, and it is equal to Ann(gr(I)) ⊂ g.

However, in the proof of Theorem 3.9(b), gr(I) = I(O). Hence the result fol-

lows.
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CHAPTER 5

UNIPOTENT REPRESENTATIONS

Before constructing the quantization model for the nilpotent orbit O, it is impor-

tant to introduce the basic building blocks of the model - unipotent representa-

tions.

Let g be a complex classical Lie algebra, and fix λ ∈ h∗. It is known by Dixmier

that there exists a maximal ideal Jmax(λ) ⊂ U(g) so that the infinitesimal character

of U(g)/Jmax(λ) is λ.

Definition 5.1. A unipotent representation is an irreducible Harish-Chandra bimodule

X such that the left and right U(g) annihilators of X are both equal to Jmax(λ) for some

λ ∈ h∗.

These objects are well-studied by Barbasch and Vogan, as the following theo-

rem shows.

Theorem 5.2 (Barbasch-Vogan). Fix λ ∈ h∗.

(a) The associated variety of any unipotent representations X depends only on λ. In par-

ticular, for a fixed λ, all unipotent representations X have the same associated variety

AV (U(g)/Jmax(λ)).

(b) The number of unipotent representations X given a fixed infinitesimal character λ can

be computed. The character theory of all such X is also known.

(c) All representations having infinitesimal character λ must have associated variety big-

ger than or equal to AV (U(g)/Jmax(λ)).
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The rest of this Chapter will focus on applying Part (b) of the above Theorem,

given the infinitesimal character is of the form as in Proposition 4.11.

5.1 Character Theory of Unipotent Representations

5.1.1 Integral Infinitesimal Character

Recall Proposition 4.11 that if λ is integral, the infinitesimal character we are in-

terested in is of the form

(a1, a1 − 1, . . . , 1; b1, . . . , 0; a2, . . . , 1; b2, . . . , 0; . . . )

where ai > bi in G = Sp(2m,C), or (d1, . . . , 0; a1 . . . 1; b1, . . . , 0; . . . ) for G =

O(2n,C) . Given such λ, we give an algorithm computing the number of unipo-

tent representations and their associated varieties.

Proposition 5.3. Let G = Sp(2m,C), and let λ be an integral infinitesimal character of

the form given in Proposition 4.11. Replace λ by wλ for some Weyl group element w ∈ W

such that wλ = (a1, a1−1, . . . , a1−1, a1−2, . . . , a1−2, . . . , 0, . . . , 0). Then extract one

coordinate from each entry, i.e. (a1, a1 − 1, . . . , 0), and then adjoin it with the negatives

of coordinates. This forms the coordinates of F 1. Similarly, form F 2, F 3 and so on from
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the remainder until all zeros are extracted. Then collect all the remaining non-zero terms

and form T [5, Section 6.2]. Write

F i = (αi, . . . , 1, 0,−1, . . . ,−βi)

T = (d, d− 1, . . . , 1)

(The construction of λ in Proposition 4.11 forces T to be of the form above) then by con-

struction, αi ≥ βi ≥ αi+1 − 1 for all i. If αi 6= βi, let ci := (2αi, 2(βi + 1)). If αi = βi,

let ci := (2αi + 1, 2αi + 1). Write O′ = (c1, c2, . . . , ck, 2d), then

AV (U(g)/Jmax(λ)) = O′

Proof. The algorithm is essentially given in [4]. More generally, the λ we are deal-

ing with are called q-unipotent by McGovern in [24]. Here is a brief description

of the algorithm. Given λ ∈ h∗, first correspond h∗ with the Langlands L-group

Lh. Next, find the Levi subalgebra Lm ⊂L h such that 〈λ,m〉 = 0 for all m ∈L m.

Then the left cell corresponding to λ is given by V (λ) = JWW (Lm)(sgn)⊗ sgn, where

J is the truncated induction defined by Lusztig. Let σ be the (unique) special

Weyl group representation in that left cell. Then the orbit O(σ) corresponds to σ

through Springer correspondence is the precisely the O′ in the Proposition.

Example 5.4. Let O = (6, 4, 4, 2, 2) in Sp(18,C). Then by Proposition 4.11, λ =

(3, 2, 1; 1, 0; 2, 1; 0; 1). Rearrange the entries so that wλ = (3, 2, 2, 1, 1, 1, 1, 0, 0). Now

F 1 = (3, 2, 1, 0,−1,−2), F 2 = (1, 0,−1); so c1 = (6, 6), c2 = (3, 3) and hence

AV (U(g)/Jmax(λ)) = O′ = (6, 6, 3, 3). Note that O′ ⊂ O.
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Proposition 5.5. Let G = O(2n,C) and λ is an integral infinitesimal character of the

form given in Proposition 4.11. Rearrange the entries of λ in non-increasing order as in

the above Proposition. Then extract one coordinate from each entry to form E0. For the

remainder, extract F i’s and T as in the above Proposition. For E0 = (x, x − 1, . . . , 0),

T = (d, . . . , 1) and ci is defined as in the symplectic case,

AV (U(g)/Jmax(λ)) = O′

where O′ = (2x+ 2, c1, c2, . . . , ck, 2d).

The following Proposition gives the number of unipotent representations for a

given infinitesimal character.

Proposition 5.6. Let G = Sp(2m,C) or O(2n,C), and λ as above with O′ =

(x1, x2, . . . , xn). Let sO′ be the number of F i’s so that βi exists and αi 6= βi. Then for

G = Sp(2m,C), the number of unipotent representations having infinitesimal character

λ is 2sO′ . Similarly, for G = O(2n,C), the number of unipotent representations having

infinitesimal character λ is 2sO′+1.

Proof. The number is precisely the number of irreducible Weyl group represen-

tations in the left cell V (λ) in the above Propositions. More precisely, from [4,

Proposition 5.28], the number is equal to the Lusztig quotient A(O′) of the nilpo-

tent orbit O′.

Finally, the character formulas for all unipotent representations is given by the

following Theorem:
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Theorem 5.7. Let λ,O′ and V (λ) as in the previous Propositions. For any σi ∈ V (λ), i =

1, . . . 2s, there is a one-one correspondence between the abelian group A(O′) ∼= (Z/2Z)s

x ∈ A(O′)←→ σix ∈ V (λ)

such that the unipotent representations have character formulas

Xχ =
1

2s

∑
x

tr(χ(x))Rσix
(λ)

where χ is any irreducible representation of A(O′) ∼= (Z/2Z)s, parametrized by

(

s terms︷ ︸︸ ︷
±, . . . ,±), and

Rσ(λ) :=
∑
w∈W

tr(σ(w))X

 λ

wλ


whereX

(
λ

µ

)
is theK-finite part of the principal series representation IndGB(C(λ,µ)) ([4,

Definition 1.7(d)])

Remark 5.8. The Lusztig quotient A(O′) is a quotient of the fundamental group π1(O′)

of O′. Also, if χ = (+,+, . . . ,+), then X+,...,+ contains the trivial representation, i.e.

X+,...,+ is spherical.

Example 5.9. Let λ = (4, 3, 2, 2, 1, 1, 1, 0, 0) in Sp(18,C). Then F 1 =

(4, 3, 2, 1, 0,−1,−2) and F 2 = (1, 0). Then from the above Propositions,O′ = (8, 6, 2, 2),

the number of irreducible unipotent representations is four, having character formulas:

1

4

∑
W (C4×D3×C1×D1)

(−1)l(w)X

 4321, 210 1, 0

w( 4321, 210 1, 0)


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+
1

4

∑
W (D5×C2×C1×D1)

(−1)l(w)X

 43210, 21 1, 0

w( 43210, 21 1, 0)



+
1

4

∑
W (C4×D3×D2×C0)

(−1)l(w)X

 4321, 210 10

w( 4321, 210 10)



+
1

4

∑
W (D5×C2×D2×C0)

(−1)l(w)X

 43210, 21 10

w( 43210, 21 10)


and three others with signs (+,−,+,−), (+,+,−,−) and (+,−,−,+).

For the future work, we denote the four unipotent representations by the following no-

tation - (

+︷︸︸︷
8, 6 ,

+︷︸︸︷
2, 2 ) for the formula with sign (+,+,+,+), (

−︷︸︸︷
8, 6 ,

+︷︸︸︷
2, 2 ) for the formula

with sign (+,−,+,−), (

+︷︸︸︷
8, 6 ,

−︷︸︸︷
2, 2 ) for the formula with sign (+,+,−,−), (

−︷︸︸︷
8, 6 ,

−︷︸︸︷
2, 2 )

for the formula with sign (+,−,−,+).

For another example, let λ = (2, 2, 1, 1, 0) in O(12,C). Then E0 = (2, 1, 0) and

T = (2, 1). Then the above Proposition says O′ = (6, 4), the number of irreducible

unipotent representations is two, having character formulas:∑
w∈W (C2)

(−1)l(w)X

(
210+ 21

w( 210+ 21)

)
and

∑
w∈W (C2)

(−1)l(w)X

(
210− 21

w( 210− 21)

)

Again, the first formula will be denoted (

+︷︸︸︷
6 , 4), and the second formula will be denoted

(

−︷︸︸︷
6 , 4).
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5.1.2 Half-Integral Infinitesimal Character

After dealing with the case of purely integral infinitesimal characters, we move

to the case of purely half-integral infinitesimal characters. This is an important

ingredient for such theory:

Theorem 5.10 (Kazhdan-Lusztig Conjecture). For each λ ∈L h, consider the root

system ∆(λ) := {α|〈α̌, λ〉 ∈ Z}. Then the character theory of unipotent representations

in g can be derived from that of ∆(λ).

The conjecture was proved separately by Kashiwara-Vergne and Beilinson-

Bernstein.

By the Kazhdan-Lusztig conjecture, we study the character theory of unipotent

representations with half-integral infinitesimal characters in W (Dm) ≤ W (Cm)

(note that the Kazhdan-Lusztig conjecture is vacuous for half-integral infinitesi-

mal characters in the W (Dn) and W (Bn) cases). The following two Propositions

are the analogues of the ones in last subsection:

Proposition 5.11. Let G = Sp(2m,C) and λ = (a1
2
, a1

2
− 1, . . . 1

2
; a2

2
. . . , 1

2
; . . . ) be of the

form given in Proposition 4.11. Replace λ by wλ for some Weyl group element w ∈ W

such that wλ = (a1
2
, a1

2
−1, . . . , a1

2
−1, a1

2
−2, . . . , a1

2
−2, . . . , 1

2
, . . . , 1

2
). Then extract one

coordinate from each entry, i.e. (a1
2
, a1

2
− 1, . . . , 1

2
), and then adjoin it with the negatives

of coordinates. This forms the coordinates of F 1. Similarly, form F 2, F 3 and so on from

the remainder. Write
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F i = (
αi
2
, . . . ,

1

2
,−1

2
,−3

2
, . . . ,−βi

2
)

then by construction, αi ≥ βi ≥ αi+1 − 1 for all i. If αi 6= βi, let ci := (αi, βi + 2) (if

there are no negative entries in F i, take βi = −1). If αi = βi, let ci := (αi + 1, αi + 1).

Write O′ = (c1, c2, . . . ), then

AV (U(g)/Jmax(λ)) = O′.

Example 5.12. LetO = (5, 3, 3, 1) in Sp(12,C). Then by Proposition 4.11, λ = (5
2
, 3

2
, 1

2
;

1
2
; 3

2
, 1

2
). Rearrange the entries so thatwλ = (5

2
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
). Now F 1 = (5

2
, 3

2
, 1

2
, −1

2
, −3

2
),

F 2 = (1
2
); so c1 = (5, 5), c2 = (1, 1) and hence AV (U(g)/Jmax(λ)) = O′ = (5, 5, 1, 1).

Note again that O′ ⊂ O.

Proposition 5.13. Let G = O(n,C) and λ = ( b0
2
, . . . 1

2
, ; b1

2
. . . 1

2
; c1

2
, . . . , 1

2
; . . . ) be of

the form in Proposition 4.11. Rearrange the entries of λ in non-increasing order as in

the above Proposition. Then extract one coordinate from each entry to form E0. For the

remainder, extract F 1, F 2 and so on as in the above Proposition. For E0 = (x
2
, x

2
−

1, . . . , 1
2
), let c0 = x+ 2 and ci is defined as above. Then

AV (U(g)/Jmax(λ)) = O′

where O′ = (c0, c1, c2, . . . ).

Proposition 5.14. Let G = Sp(2m,C) or O(2n,C), and λ, and let λ and O′ =

(c0, c1, c2, . . . ) as above (omit c0 if G = Sp(2m,C)). Denote U ⊂ {1, 2, . . . } the sub-

set satisfying αi 6= βi for all i ∈ U . Then the unipotent representations are parametrized

by

{(
±︷︸︸︷
c0 ,

±︷︸︸︷
c1 ,

±︷︸︸︷
c2 , . . . )}
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where the sign of ci for i /∈ U is always + (and hence can be omitted). In particular, if

G = Sp(2m,C), the number of unipotent representations having infinitesimal character

λ is 2sO′ . Similarly, for G = O(2n,C), the number of unipotent representations having

infinitesimal character λ is 2sO′+1.

The character formula, however, is different from the integral case. It can be

better expressed by examples:

Example 5.15. Let λ = (7
2
, 5

2
, 3

2
, 3

2
, 1

2
, 1

2
) in Sp(12,C). Then F 1 = (7

2
, 5

2
, 3

2
, 1

2
, −1

2
, −3

2
) and

c1 = (7, 5). Therefore, O′ = (7, 5) and there are two unipotent representations - (

+︷︸︸︷
7, 5 )

and (

−︷︸︸︷
7, 5 ). The character formulas are

∑
w∈W (D4×D2)

(−1)l(w)X

 7
2
5
2
3
2
1
2

3
2
1
2

w( 7
2
5
2
3
2
1
2

3
2
1
2 )

− ∑
w∈W (D4×D2)

(−1)l(w)X

 7
2
5
2
3
2
1
2

3
2
1
2

w( 7
2
5
2
3
2
−1
2

3
2
−1
2 )


and

∑
w∈W (D4×D2)

(−1)l(w)X

 7
2
5
2
3
2
1
2

3
2
1
2

w( 7
2
5
2
3
2
−1
2

3
2
1
2 )

− ∑
w∈W (D4×D2)

(−1)l(w)X

 7
2
5
2
3
2
1
2

3
2
1
2

w( 7
2
5
2
3
2
1
2

3
2
−1
2 )


respectively.

For another example, consider λ = (5
2
, 3

2
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
, 1

2
) in Sp(16,C). Now F 1 =

(5
2
, 3

2
, 1

2
, −1

2
, −3

2
) and F 2 = (3

2
, 1

2
, −1

2
). Therefore, c1 = (5, 5), c2 = (3, 3) and O′ =

(5, 5, 3, 3). There is a total of four unipotent representations, denoted by (

±︷︸︸︷
5, 5 ,

±︷︸︸︷
3, 3 ). For

example, the character formula of (

−︷︸︸︷
5, 5 ,

+︷︸︸︷
3, 3 ) is given by

∑
w∈W (D3×D2×D2×D1)

(−1)l(w)X

 5
2

3
2

1
2

3
2

1
2

; 3
2

1
2

1
2

w( 5
2

3
2
−1
2

3
2

1
2

; 3
2

1
2

1
2
)


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−
∑

w∈W (D3×D2×D2×D1)

(−1)l(w)X

 5
2

3
2

1
2

3
2

1
2

; 3
2

1
2

1
2

w( 5
2

3
2

1
2

3
2
−1
2

; 3
2

1
2

1
2
)


−

∑
w∈W (D3×D2×D2×D1)

(−1)l(w)X

 5
2

3
2

1
2

3
2

1
2

; 3
2

1
2

1
2

w( 5
2

3
2
−1
2

3
2

1
2

; 3
2
−1
2

−1
2

)


+

∑
w∈W (D3×D2×D2×D1)

(−1)l(w)X

 5
2

3
2

1
2

3
2

1
2

; 3
2

1
2

1
2

w( 5
2

3
2

1
2

3
2
−1
2

; 3
2
−1
2

−1
2

)


As the final example, consider λ = (3

2
, 1

2
, 1

2
, 1

2
) in O(9,C). Then E0 = (3

2
, 1

2
), F 1 =

(1
2
, −1

2
), c0 = (5), c1 = (2, 2) and hence O′ = (5, 2, 2). The unipotent representations can

be expressed by (

±︷︸︸︷
5 , 2, 2). The character formulas are given by

∑
w∈W (D1×D1)

(−1)l(w)X

 3
2

1
2
± ; 1

2
1
2

w( 3
2

1
2
± ; 1

2
1
2
)



−
∑

w∈W (D1×D1)

(−1)l(w)X

 3
2

1
2
± ; 1

2
1
2

w( 3
2

1
2
± ; −1

2
−1
2

)



5.1.3 General Case

In the previous subsections, we have seen the character theory of unipotent rep-

resentations with purely integral or purely half-integral infinitesimal characters.

In fact, by the Kazhdan-Lusztig Conjecture (Theorem 5.10), it is enough to derive

the theory of unipotent representations out of these two cases. One just need to

separate the integral and half-integral coordinates, apply the algorithms in the

previous two sections, combine them together to get the result.
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Example 5.16. LetP = (9, 7, 5, 4, 2) inO(27,C). Then λ = (7
2
, 5

2
, 3

2
, 1

2
; 3

2
, 1

2
; 3

2
, 1

2
; 2, 1; 0).

The half integral infinitesimal character (7
2
, 5

2
, 3

2
, 1

2
; 3

2
, 1

2
) gives the orbit (9, 7, 5) in

O(21,C). The four corresponding character formulas are

(

±︷︸︸︷
9 ,

+︷︸︸︷
7, 5 ) =

∑
W (D4×D2)

(−1)l(w)X

 7
2

5
2

3
2

1
2
± 7

2
5
2

3
2

1
2

3
2

1
2

w( 7
2

5
2

3
2

1
2
± 7

2
5
2

3
2

1
2

3
2

1
2
)


−

∑
W (D4×D2)

(−1)l(w)X

 7
2

5
2

3
2

1
2
± 7

2
5
2

3
2

1
2

3
2

1
2

w( 7
2

5
2

3
2

1
2
± 7

2
5
2

3
2
−1
2

3
2
−1
2

)



and

(

±︷︸︸︷
9 ,

−︷︸︸︷
7, 5 ) =

∑
W (D4×D2)

(−1)l(w)X

 7
2

5
2

3
2

1
2
± 7

2
5
2

3
2

1
2

3
2

1
2

w( 7
2

5
2

3
2

1
2
± 7

2
5
2

3
2
−1
2

3
2

1
2
)


−

∑
W (D4×D2)

(−1)l(w)X

 7
2

5
2

3
2

1
2
± 7

2
5
2

3
2

1
2

3
2

1
2

w( 7
2

5
2

3
2

1
2
± 7

2
5
2

3
2

1
2

3
2
−1
2

)


For the integral part of the infinitesimal character, (2, 1, 0), the corresponding orbit is

(4, 2). The two corresponding character formulas are (

±︷︸︸︷
4, 2 ), of the form

1

2
(
∑

W (C2×D1)

(−1)l(w)X

 21 0

w( 21 0)

± ∑
W (D3×C0)

(−1)l(w)X

 210

w( 210)

)

Combining the two results, O′ for the infinitesimal character λ is (9, 7, 5, 4, 2) (which

happens to be the same as O). The number of unipotent representations attached to λ is

4× 2 = 8, of the form

(

±︷︸︸︷
9 ,

±︷︸︸︷
7, 5 ,

±︷︸︸︷
4, 2 )
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and the eight character formulas are just the ‘cocatenation’ of the two character formulas

above. For instance, the character of (

+︷︸︸︷
9 ,

+︷︸︸︷
7, 5 ,

+︷︸︸︷
4, 2 ) is:

1

2

∑
W (D4×D2×C2×D1)

(−1)l(w)X

 7
2

5
2

3
2

1
2
+ 7

2
5
2

3
2

1
2

3
2

1
2

21 0

w( 7
2

5
2

3
2

1
2
+ 7

2
5
2

3
2

1
2

3
2

1
2

21 0)



−1

2

∑
W (D4×D2×C2×D1)

(−1)l(w)X

 7
2

5
2

3
2

1
2
+ 7

2
5
2

3
2

1
2

3
2

1
2

21 0

w( 7
2

5
2

3
2

1
2
+ 7

2
5
2

3
2
−1
2

3
2
−1
2

21 0)



+
1

2

∑
W (D4×D2×D3×C0)

(−1)l(w)X

 7
2

5
2

3
2

1
2
+ 7

2
5
2

3
2

1
2

3
2

1
2

210

w( 7
2

5
2

3
2

1
2
+ 7

2
5
2

3
2

1
2

3
2

1
2

210)



−1

2

∑
W (D4×D2×D3×C0)

(−1)l(w)X

 7
2

5
2

3
2

1
2
+ 7

2
5
2

3
2

1
2

3
2

1
2

210

w( 7
2

5
2

3
2

1
2
+ 7

2
5
2

3
2
−1
2

3
2
−1
2

210)


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CHAPTER 6

THE BARBASCH MODEL XO

In [6, Section 2], Barbasch constructed a (gC, KC)-module of any nilpotent orbit of

classical type, which is denoted as XO. The definition of XO is given below:

Definition 6.1. LetO = (dk, . . . , d0) be any nilpotent orbit in G, where G = Sp(2m,C)

or O(n,C). Define E and Q inductively as follows:

Let E0 = φ and Q0 = O. Suppose i is the smallest integer such that di = di+1, then

Q1 := (dk, . . . , dk+2, dk−1, . . . , d0) and E1 := E0 ∪ {di}.

Continue the above process until we get Q = (el, . . . , e0), with ei 6= ei+1 for all i. Then E

are the lengths of the removed columns with multiplicities. Let

XO := Ind
G(2m,C)
G(Q,C)×GL(E)(XQ ⊗ |det|

1/2)

where G(Q,C) = G(
∑
ei,C), GL(E) = Πdi∈EGL(di,C) and XQ is the spherical unipo-

tent representation attached to the nilpotent orbit Q.

Theorem 6.2 (Barbasch). As KC ∼= G-modules,

XO ∼= R[O]

Example 6.3. Suppose O = (d2l, . . . , d0) is an orbit in Sp(2m,C) such that di 6= di−1

for all i. Then O = Q, and XQ is the spherical unipotent representation attached to Q.

Using the notations in Chapter 5,

XQ = (

+︷ ︸︸ ︷
d2l, d2l−1, . . . ,

+︷ ︸︸ ︷
d2, d1, d0)
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where
+︷︸︸︷
p, q has character formula

1

2

∑
W (Cp/2×Dq/2+1)

(−1)l(w)X

 p
2
. . . 1 q

2
. . . 0

w( p
2
. . . 1 q

2
. . . 0)



+
1

2

∑
W (Dp/2+1×Cq/2)

(−1)l(w)X

 p
2
. . . 0 q

2
. . . 1

w( p
2
. . . 0 q

2
. . . 1)


if p, q are both even, and

∑
W (Dp/2×Dq/2−1)

(−1)l(w)X

 p
2
. . . 1

2
q−2

2
. . . 1

2

w( p
2
. . . 1

2
q−2

2
. . . 1

2
)



−
∑

W (Dp/2×Dq/2−1)

(−1)l(w)X

 p
2
. . . 3

2
1
2

q−2
2
. . . 3

2
1
2

w( p
2
. . . 3

2
−1
2

q−2
2
. . . 3

2
−1
2

)


if p, q are both odd. And d0 has the character formula

T :=
∑

w∈W (Cd0/2)

(−1)l(w)X

 d0
2
, . . . , 1

w( d0
2
, . . . , 1)


Similarly, if P = (d2l+1, d2l, . . . , d0) is an orbit in O(n,C) where all columns are of

distinct lengths. Then the character of XP is of the form

XP ∼= (

+︷︸︸︷
d2l+1;

+︷ ︸︸ ︷
d2l, b2l−1; . . . ;

+︷ ︸︸ ︷
d2, d1; d0)

where the parts (

+︷ ︸︸ ︷
d2l, d2l−1; . . . ;

+︷ ︸︸ ︷
d2, d1; d0) is defined as in the Sp(2m,C) case, and

+︷︸︸︷
d2l+1 =

X

 d2l+1

2
− 1, . . . , 0+

d2l+1

2
− 1, . . . , 0+

 if b2d+1 is even, and
+︷︸︸︷

d2l+1 = X

 d2l+1

2
− 1, . . . , 1

2
+

d2l+1

2
− 1, . . . , 1

2
+

 if d2l+1

is odd.
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Remark 6.4. The above construction also gives a (gC, KC)-module of Õ for some covers

Õ → O. Recall in Remark 5.8 that for any orbitQ,A(Q) is a quotient of π1(Q). However,

π1(Q) ∼= (Z/2Z)r and hence any quotient of it, in particular A(Q), can be treated as a

subgroup. In fact, according [6], for any subgroup S ≤ (A(Q))∨ ∼= A(Q) ≤ π1(Q),

XQ̃ =
∑
χ∈S

Xχ

corresponds to the model of a cover of the orbit Q̃ → Q. By replacing XQ with XQ̃ in the

induction formula in Definition 6.1, it gives the model of a cover of the orbit Õ → O.

Theorem 6.5. Let O = (c2k, c2k−1, c2k−2, . . . c0) be any nilpotent orbit in Sp(2m,C) or

O(n,C). The infinitesimal character of XO is the same as that of XO.

Proof. The infinitesimal character of XO and XP are precisely given in [6].

From last Chapter, the character of XO is completely known. By Corollary 3.2,

we know that XO and XO are isomorphic as G-modules iffO is normal. We there-

fore hope the following to be true:

• If O is normal, then the composition factors of XO is the same as that of XO.

• IfO is not normal, then the composition factors of XO is strictly contained in the

set of composition factors of XO.

Before we proceed, we must first of all investigate which irreducible representa-

tions can possibly be composition factors of XO and XO. And from the list of all

possible irreducible representations, we need to determine which of them appear

in XO and XO. This is essentially the work of the next couple of Chapters.
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CHAPTER 7

EXHAUSTION OF COMPOSITION FACTORS

Recall in Chapter 4 and 6, we have quantization models of O and O. Their corre-

sponding Harish-Chandra bimodules have the same infinitsimal characters. The

natural question is, what are the composition factors of both models? In this Chap-

ter, we will give a list of all possible composition factors for both models, along

with their character formulas.

First of all, both quantization models XO and XO have infinitesimal character λO.

From the calculations in Chapter 5, it is known that all irreducible representations

with infinitesimal character λO must have associated variety bigger than or equal

to O′. On the other hand, it is almost tautological that the associated varieties of

XO and XO are bothO. Therefore the following observation comes at no surprise:

Proposition 7.1. Let O = (c2k, c2k−1, . . . , c0) be a nilpotent orbit in Sp(2m,C). Then

the O′ appearing in Chapter 5 is always contained in O. More precisely, O′ = O iff

c2i−1 6= c2i−2 for all i.

Similarly, let P = (c2k+1, c2k, . . . , c0) be a nilpotent orbit in O(n,C). Then P ′ appearing

in Chapter 5 is always contained in P . More precisely, P ′ = P iff c2i+1 6= c2i for all i.

Proof. It is just a direct consequence of the algorithm given in Chapter 5.

Therefore, we are interested in all irreducible representations having associ-

ated varieties between O′ and O. For the case O′ = O, all possible irreducible

44



representations are unipotent representations given in Chapter 5, and their char-

acter theory is known. Hence we are interested in the case when O′ ( O.

For the sake of keeping our computations and book-keeping clear, we would like

to keep the focus on certain kinds of orbits in Sp(2m,C) or O(n,C). The condition

is the following:

Let O = (dk, dk−1, . . . , d0) be an orbit in Sp(2m,C) or O(n,C). Then O satisfies

condition (†) if

Whenever di−1 = di−2, di 6= di−3 (†)

7.1 A Special Case

In this Section, we focus ourselves on integral infinitesimal characters in Sp(2m,C)

satisfying (†). Then every orbit O = (c2k, c2k−1, . . . , c0) can be partitioned into

(c2k =
︷ ︸︸ ︷
xk1 , xk1−1, xk1−1, . . . , x1, x1, x0,

︷ ︸︸ ︷
yk2 , yk2−1, yk2−1, . . . , y0,

. . . ,
︷ ︸︸ ︷
zkr , zkr−1, zkr−1, . . . , , z0 = c0)

where xi 6= xj if i 6= j, and the ‘tail’ of each partition is not equal to the ‘head’ of

its adjacent partition, for instance x0 6= yk2 . Since we insist working on integral

infinitesimal characters, all column sizes are even. And in particular we will work

on the orbit

O = (xk1 , xk1−1, xk1−1, . . . , x1, x1, x0) = (2an+1, 2an, 2an, . . . , 2a1, 2a1, 2a0)
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By Proposition 5.3, O′ = (b′n+1, bn, b
′
n , bn−1, b

′
n−1, . . . , b1, b

′
1, b0), where

• If an+1 > an, then b′n+1 = 2an+1, bn = 2an+2; if an+1 = an, then b′n+1 = bn = 2an+1;

• For i between 2 and n − 1, if ai+1 > ai + 1, then b′i+1 = 2ai+1 − 2, bi = 2ai + 2; if

ai+1 = ai + 1, then b′i+1 = bi = 2ai + 1; if ai+1 = ai, then bi+1 = bi = 2ai.

• If a1 6= a0, then b1 = 2a1 + 2, b′1 = 2a1 − 2, b0 = 2a0; if a1 = a0, then b1 = 2a1 + 2,

b′1 = b0 = a0 − 1.

which is the ‘toppling’ at columns of sizes 2a1, 2a2, · · · , 2an of the partition

(2an+1, 2an, 2an, · · · , 2a1, 2a1, 2a0).

Example 7.2. For O = (8, 6, 6, 4, 4, 2, 2), then O′ = (8, 8, 5, 5, 3, 3) and we have the

following ‘toppling’ of nilpotent orbits:

Oφ = (8, 6, 6, 4, 4, 2, 2)

jjjjjjjjjjjjjjj

TTTTTTTTTTTTTTT

O2 = (8, 6, 6, 4, 4, 4)

TTTTTTTTTTTTTTT O4 = (8, 6, 6, 6, 2, 2, 2)

jjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTT O6 = (8, 8, 4, 4, 4, 2, 2)

jjjjjjjjjjjjjjjj

O2,4 = (8, 6, 6, 6, 3, 3)

TTTTTTTTTTTTTTT O2,6 = (8, 8, 4, 4, 4, 4) O4,6 = (8, 8, 5, 5, 2, 2, 2)

jjjjjjjjjjjjjjj

O2,4,6 = (8, 8, 5, 5, 3, 3)

Note that each ’toppled’ nilpotent orbit can be expressed as a subset of {2, 4, 6}, for in-

stance {2, 6} corresponds to the orbit O2,6 = (8, 8, 4, 4, 4, 4).

Therefore, all possible composition factors ofXO andXO must have associated

variety equal to one of the above diagrams. They are all parametrized by a subset

S ⊂ {2a1, 2a2, · · · , 2an}, corresponding to the parts of partition to be ‘toppled’.

From now on, we will denote a nilpotent orbit OS by specifying its ‘toppled sub-
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set’ S.

Proposition 7.3. Let O be a nilpotent orbit in Sp(2m,C) satisfying (†), and let λO, O′

as before. Suppose OS = (dk, . . . , d0). Then the number of composition factors having

infinitesimal character λO and associated variety OS is equal to 2αS , where αS is the

number of segments in (dk, . . . , d0) of the form (2pr, 2pr−1, 2pr−1, . . . , 2p1, 2p1, 2p0 6= 0).

Example 7.4. Let O = (10, 10, 10, 8, 8, 6, 4, 2, 2) be a nilpotent orbit in Sp. Then O′ =

(11, 11, 9, 9, 6, 6, 4, 4). The correspondence between S ⊂ {2, 8, 10} and the orbits are

given as follows:

Oφ = (10, 10, 10, 8, 8, 6, 4, 2, 2)

hhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVV

O2 = (10, 10, 10, 8, 8, 6, 4, 4)

VVVVVVVVVVVVVVVVVV O8 = (10, 10, 10, 10, 6, 6, 4, 2, 2)

hhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVV O10 = (11, 11, 8, 8, 8, 6, 4, 2, 2)

hhhhhhhhhhhhhhhhhhh

O2,8 = (10, 10, 10, 10, 6, 6, 4, 4)

VVVVVVVVVVVVVVVVVV O2,10 = (11, 11, 8, 8, 8, 6, 4, 4) O8,10 = (11, 11, 9, 9, 6, 6, 4, 2, 2)

hhhhhhhhhhhhhhhhhhh

O2,8,10 = (11, 11, 9, 9, 6, 6, 4, 4)

The composition factors of each OS are parametrized as follows:

Oφ = (

±︷ ︸︸ ︷
10, 10, 10, 8, 8, 6, 4, 2, 2)

kkkkkkkkkkkkkkk

SSSSSSSSSSSSSSS

O2 = (

±︷ ︸︸ ︷
10, 10, 10, 8, 8, 6,

±︷︸︸︷
4, 4)

SSSSSSSSSSSSSSS O8 = (

±︷ ︸︸ ︷
10, 10, 10, 10,

±︷︸︸︷
6, 6, 4, 2, 2)

kkkkkkkkkkkkkkk

SSSSSSSSSSSSSSS O10 = (11, 11,

±︷ ︸︸ ︷
8, 8, 8, 6, 4, 2, 2)

kkkkkkkkkkkkkkk

O2,8 = (

±︷ ︸︸ ︷
10, 10, 10, 10,

±︷︸︸︷
6, 6,

±︷︸︸︷
4, 4)

SSSSSSSSSSSSSS O2,10 = (11, 11,

±︷ ︸︸ ︷
8, 8, 8, 6,

±︷︸︸︷
4, 4) O8,10 = (11, 11, 9, 9,

±︷︸︸︷
6, 6, 4, 2, 2)

kkkkkkkkkkkkkkk

O2,8,10 = (11, 11, 9, 9,

±︷︸︸︷
6, 6,

±︷︸︸︷
4, 4)
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For example, α2,8 = 3 and hence there are 23 = 8 composition factors with infinitesimal

character λO and associated variety O2,8.

Proof. The number of irreducible representations having infinitesimal character

λO and associated variety OS is given precisely by the multiplicity of the Weyl

group representation

[IndWW (Lm)(triv) : Vσ(OS)]

where Lm is defined in Proposition 5.3, Vσ(OS) is the left cell containing the special

Weyl group representation σ(OS) (OS and σ(OS) are related to each other by the

Springer correspondence). It is easy to check that IndWW (Lm)(triv) has multiplicity

one for each of the irreducible component in Vσ(OS). Therefore, the number of

irreducible representation is precisely the size of the left cell Vσ(OS). And now the

result follows from Proposition 4.14 in [4].

What are the possible composition factors with infinitesimal character λO and

associated variety equal to OS? First of all, for all 2ai ∈ {2a1, . . . , 2an}\S, remove

the coordinates (ai, ai − 1, ai − 1, . . . , 1, 1, 0) from λO, and let λO′S be the remaining

entries. Now consider all unipotent representations Xj with infinitesimal charac-

ter λO′S , and then take all induced representation of the form

πS,j = Ind
Sp(2m)
Sp×GL(2({a1,··· ,an}\S))(Xj ⊗

n−|S| terms︷ ︸︸ ︷
det⊗ · · · ⊗ det)

(Note: In writing GL(2S) for a set S = {as1 , · · · , ask}, we mean GL(2as1) × · · · ×

GL(2ask).) Then by the calculations in Chapter 5, Xj will automatically have
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associated variety O′S , where O′S is the orbit after removing the column pairs

{(2aj, 2aj)|2aj ∈ S} in OS .

Example 7.5. Let O = (10, 10, 10, 8, 8, 6, 4, 2, 2) and O10 = (11, 11, 8, 8, 8, 6, 4, 2, 2) as

in the above example. Then O′10 = (11, 11, 8, 6, 4), and the representations are of the form

π10;± = Ind
Sp(2m)
Sp×GL(2,C)×GL(8,C)((11, 11,

±︷︸︸︷
8, 6 , 4)⊗ det⊗ det)

By construction, all the πS,j’s have the required infinitesimal character and as-

sociated variety, and the number of such representations is equal to that in the

Proposition. Therefore, it remains to show that they are irreducible.

Theorem 7.6. The induced modules

πS,j := Ind
Sp(2m)
Sp×GL(2({a1,··· ,an}\S))(Xj ⊗

n−|S| terms︷ ︸︸ ︷
det⊗ · · · ⊗ det)

are irreducible. Consequently, they exhaust all the irreducible representions with infinites-

imal character λO and associated variety OS .

Proof. Before proving the Theorem, it is important to look at the lowest K-types

of the induced modules πS,j . They are of the form

(lowest K − type of Xj, 1, 1, . . . , 1︸ ︷︷ ︸
2
∑
as /∈S as

, 0, . . . , 0)

To find out the lowest K-types of Xj as j runs through A(O′S), it is easy to see that

λO′S is special unipotent in the sense of [5, Definition 6.5], which means the num-

ber of (x+ 1)’s is greater than the number of x’s in λO′S . Using the algorithm in [4,
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Section 9] or [5, 2.8], the lowest K-types of the special unipotent representations

Xj must be small [B 1989 Definition 3.1], i.e. consisting of even number of 1’s.

To conclude, the lowest K-type of πS,j , and hence X , must be

(

2x︷ ︸︸ ︷
1, . . . , 1,

2y︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)

where the lowest K-type of Xj is (

2x︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0), and y =

∑
as /∈S as.

Consider the infinitesimal character of πS,j : It must be of the form (λ, λ′), where

λ − λ′ = (1, . . . , 1︸ ︷︷ ︸
2x+2y

, 0, . . . , 0). And in terms of Langlands parameter (which will be

described in greater details in Chapter 11), the irreducible subquotient in πS,j can

be written as X = X(λ, λ′). Let

µz = (

2x︷ ︸︸ ︷
1, . . . , 1,

2y︷ ︸︸ ︷
1, . . . , 1,

2z︷ ︸︸ ︷
1, . . . , 1 0, . . . , 0)

then µz is a bottom-layer K-type of X(λ, λ′). There is a recipe in [5] computing

the bottom layer K-type multiplicities of X(λ, λ′), which we describe below:

Let (λ, λ′) = (µ+ µ′, µ+ µ′′), where µ′ − µ′′ = (1, . . . , 1︸ ︷︷ ︸
2x+2y

, 0, . . . , 0). Then

[X(λ, λ′) : µz] = [X(µ, µ) : (

2z︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)]

The right hand side is theK-type multiplicity of a spherical representation, whose

character formula is known (in fact, it is just U(g)/Jmax(µ), so the techniques in
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Chapter 5 carry over). On the other hand, we know by Frobenius reciprocity the

K-type multiplicity [πS,j : µz], and it is easy to check the following holds:

[X(λ, λ′) : µz] = [πS,j : µz]

Now we start to prove the Theorem by induction. Consider the smallest or-

bit OS , where S = {2a1, . . . , 2an}. All the representations in this case are special

unipotent representations, and hence irreducible.

Suppose the hypothesis is true for all smaller orbits, i.e. πS,j are irreducible for

|S| > k for some integer k. For the case when |S| = k, suppose on the contrary

that there is an irreducible Y with AV (Y ) = OS′ ( OS such that

Y ⊕X ⊂ πS,j

then Y must be one of the smaller induced representations, having lowest K-

type (1, . . . , 1︸ ︷︷ ︸
2w

, 0, . . . , 0). On the other hand, suppose πS,j has lowest K-type

(1, . . . , 1︸ ︷︷ ︸
2x+2y

, 0, . . . , 0). By the inclusion relation among the modules, w ≥ x + y. Note

that (1, . . . , 1︸ ︷︷ ︸
2w

, 0, . . . , 0) is a bottom layer K-type of X ⊂ πS,j . However, the formula

above says
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[X : (

2w︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)] = [πS,j : (

2w︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)]

≥ [X : (

2w︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)] + [Y : (

2w︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)]

= [X : (

2w︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)] + 1

> [X : (

2w︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)]

which gives a contradiction. Consequently, such Y does not exist at all, and the

induced module πS,j is equal to X exactly, i.e. it is irreducible.

Therefore, they exhaust all composition factors lying between O′ and O.

More generally, suppose Condition (†) is lifted, then the orbits between O′ and O

can no longer be parametrized by a subset S ⊂ S. However, the computation is

precisely the same as before:

Proposition 7.7. LetO be a nilpotent orbit in Sp(2m,C) with even column sizes, and let

λO and O′ as before. For any D = (dk, . . . , d0) between O′ and O, the number of compo-

sition factors having infinitesimal character λO and associated variety D is equal to 2αD ,

where αD is the number of segments in (dk, . . . , d0) of the form (2pr, 2pr−1, 2pr−1, . . . ,

2p1, 2p1, 2p0 6= 0).

Example 7.8. Let O = (6, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2). Then O′ = (6, 6, 5, 5, 4, 4, 3, 3, 3, 3)
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and we have a diagram showing all composition factors between O′ and O:
Oφ = (6, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2)

jjjjjjjjjjjjjjj

TTTTTTTTTTTTTTT

(

±︷︸︸︷
6, 6,

±︷ ︸︸ ︷
4, 4, 4, 4, 4, 4, 2, 2, 2)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY (

±︷ ︸︸ ︷
6, 4, 4, 4, 4, 4, 4, 4, 4, 4)

(

±︷︸︸︷
6, 6, 5, 5,

±︷︸︸︷
4, 4, 3, 3, 2, 2, 2)

RRRRRRRRRRRRRR (

±︷︸︸︷
6, 6,

±︷ ︸︸ ︷
4, 4, 4, 4, 4, 4, 3, 3)

lllllllllllll

(

±︷︸︸︷
6, 6, 5, 5,

±︷︸︸︷
4, 4, 3, 3, 3, 3)

For instance, the irreducible representation (

+︷︸︸︷
6, 6 ,

−︷ ︸︸ ︷
4, 4, 4, 4, 4, 4, 3, 3) is

Ind
Sp(2m,C)
Sp×GL(4,C)×GL(4,C)((

+︷︸︸︷
6, 6 ,

−︷︸︸︷
4, 4 , 3, 3)⊗ det⊗ det)

7.2 Half-integral Characters

The case of half-integral characters are exactly the same as that of integral charac-

ters in Sp(2m,C). The computation on the number of irreducible representations

is done by computing Weyl group representations of type Dm instead of type Cm.

We therefore state the results without going into the computations:

Proposition 7.9. Let O be a nilpotent orbit in Sp(2m,C) with odd column sizes, and

let λO, O′ as before. Suppose D = (dk, . . . , d0). Then the number of composition factors

having infinitesimal character λO and associated variety D is equal to 2αD , where αD is

the number of segments in (dk, . . . , d0) of the form (2pr + 1, 2pr−1 + 1, 2pr−1 + 1, . . . ,

2p1 + 1, 2p1 + 1, 2p0 + 1).
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Example 7.10. Let O = (9, 9, 9, 7, 5, 3, 3, 1), the composition factors are given by:

Oφ = (

±︷ ︸︸ ︷
9, 9, 9, 7,

±︷ ︸︸ ︷
5, 3, 3, 1)

nnnnnnnnnnnn

PPPPPPPPPPPP

(10, 10,

±︷︸︸︷
7, 7,

±︷ ︸︸ ︷
5, 3, 3, 1)

PPPPPPPPPPPP (

±︷ ︸︸ ︷
9, 9, 9, 7,

±︷︸︸︷
5, 5,

±︷︸︸︷
1, 1)

nnnnnnnnnnnn

(10, 10,

±︷︸︸︷
7, 7,

±︷︸︸︷
5, 5,

±︷︸︸︷
1, 1)

7.3 The Case in the Orthogonal Group

As in last Chapter, the arguments are exactly the same for the orthogonal case.

However, the statement of the Proposition is more involved.

Proposition 7.11. Let P be a nilpotent orbit with even column sizes in O(n,C), and

let λP , P ′ as before. For any orbits D = (d2k+1, d2k, . . . , d0) between P ′ and P ,

the number of irreducible representations with infinitesimal character λP and associ-

ated variety D is 2αD , where αD is the number of segments in (dk, . . . , d0) of the

form (d2k+1 = 2qr, 2qr, 2qr−1, 2qr−1 , . . . , 2q1, 2q1, 2q0) or (d2i = 2pr, 2pr−1, 2pr−1, . . . ,

2p1, 2p1, 2p0 6= 0).

Similarly, if P is a nilpotent orbit with even column sizes in O(n,C). Then the

number of irreducible representations with infinitesimal character λP and associated

variety D is 2αD , where αD is the number of segments in (dk, . . . , d0) of the form

(d2k+1 = 2qr + 1, 2qr + 1, 2qr−1 + 1, 2qr−1 + 1 , . . . , 2q1 + 1, 2q1 + 1, 2q0 + 1) or

(d2i = 2pr + 1, 2pr−1 + 1, 2pr−1 + 1, . . . , 2p1 + 1, 2p1 + 1, 2p0 + 1 6= 0).
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Example 7.12. Let P = (4, 4, 2, 2, 2) in O(12,C). Then P ′ = (6, 3, 3, 1, 1) and the

composition factors are as follows:

Oφ = (

±︷ ︸︸ ︷
4, 4, 2, 2, 2)

ssssssssss

LLLLLLLLLL

(

±︷ ︸︸ ︷
4, 4, 4, 1, 1)

KKKKKKKKKK (

±︷︸︸︷
6 ,

±︷ ︸︸ ︷
2, 2, 2, 2)

rrrrrrrrrr

(

±︷︸︸︷
6 , 3, 3, 1, 1)

As the final example, suppose P = (7, 7, 7, 6, 4, 4, 2) be a nilpotent orbit in O(37,C) with

a mixture of odd and even columns. Then the composition factors are as follows:

Oφ = (

±︷ ︸︸ ︷
7, 7, 7,

±︷ ︸︸ ︷
6, 4, 4, 2)

ooooooooooo

NNNNNNNNNNN

(

±︷︸︸︷
9 , 6, 6,

±︷ ︸︸ ︷
6, 4, 4, 2)

OOOOOOOOOOO (

±︷ ︸︸ ︷
7, 7, 7,

±︷︸︸︷
6, 6

±︷︸︸︷
2, 2)

ppppppppppp

(

±︷︸︸︷
9 , 6, 6,

±︷︸︸︷
6, 6,

±︷︸︸︷
2, 2)

Note that there are unbracketed (6, 6) on the left and at the bottom, since the unbracketed

pair (6, 6) comes from collapsing the odd columns (7, 7, 7).
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CHAPTER 8

DECOMPOSITION OF XO

From last Chapter, we know all the possible composition factors of XO and XO.

More precisely, we know the character formulas of all such factors. On the other

hand, from Chapter 6, we know the character formula of XO. Now it remains an

exercise to compute which composition factors appear in XO. As in last Chapter,

we begin with the special case of O, and then generalize it to all orbits of classical

type.

8.1 A Special Case Revisited

Throughout this Section, we consider orbits in Sp(2m,C) having integral infinites-

imal character and satisfying Condition (†). Here is the Decomposition Theorem

for all such orbits:

Theorem 8.1. LetO = (dk, dk−1, . . . , d0) be a nilpotent orbit in Sp(2m,C) with columns

of even sizes and satisfies (†). The composition factors πS,j appearing in XO can be com-

puted as follows:

(0) There is exactly one composition factor πφ appearing in XO. This is determined by

taking out the parts (2an+1, 2an, 2an, . . . , 2a1, 2a1, 2a0) of O = Oφ, where ai is allowed

to be equal to ai−1, and we put a0 = 0 if necessary. If a0 6= 0, we assign the sign (−1)n on

each part.
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(1) Suppose OS ⊃ OS′ is not normal in codimension two, then for the toppled part

(2an+1, 2an, 2an, . . . , 2a1, 2a1, 2a0)→ (2an+1, . . . , 2ai+1, 2ai + 2, 2ai − 2, 2ai−1, . . . )

(a) If the sign assigned to (2an+1, 2an, 2an, . . . , 2a1, 2a1, 2a0) in OS is +, then assign

+,− and −,+ to the parts (2an+1, . . . , 2ai+1, 2ai+1, 2ai + 2) and (2ai − 2, 2ai−1, 2ai−1

, . . . , 2a0) in OS′ respectively.

(b) If the sign assigned to (2an+1, 2an, 2an, . . . , 2a1, 2a1, 2a0) in OS is −, then assign

+,+ and −,− to the parts (2an+1, . . . , 2ai+1, 2ai+1, 2ai + 2) and (2ai − 2, 2ai−1, 2ai−1

, . . . , 2a0) in OS′ respectively.

(c) If no sign is assigned to (2an+1, 2an, 2an, . . . , 2a1, 2a1, 2a0) in OS , i.e. a0 = 0,

then assign ± to the part (2an+1, . . . , 2ai+1, 2ai+1, 2ai + 2) in OS′ .

(2) Suppose OS ⊃ OS′ is normal in codimension two, and αS = αS′ . Then it is either of

the form

(2an+1, 2an, 2an, . . . , 2a1, 2a1, 2a1)→ (2an+1, . . . , 2a2, 2a2, 2a1 + 2, 2a1 − 1, 2a1 − 1)

or

(2an, 2an, 2an, . . . , 2a1, 2a1, 2a0)→ (2an + 1, 2an + 1, 2an − 2, 2an−1, 2an−1, . . . , 2a0)

In both cases, we assign a sign to parts (2an+1, . . . , 2a2, 2a2, a1 + 2) or

(2an − 2, 2an−1, 2an−1, . . . , 2a0) in OS′ that is opposite to that assigned to

(2an+1, 2an, 2an, . . . , 2a1, 2a1, 2a1).

(3) Suppose OS ⊃ OS′ is normal in codimension two, and 2αS = αS′ . Then it must be of

the form

(2a1, 2a1, 2a1, 2a1)→ (2a1 + 1, 2a1 + 1, 2a1 − 1, 2a1 − 1)
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Then we cancel the sign assigned to (2a1, 2a1, 2a1, 2a1) of the larger orbit. How-

ever, if the part (2a1, 2a1, 2a1, 2a1) comes from the toppling of a non-normal orbit, e.g.

(8, 6, 6, 4, 4, 4)
1→ (8, 8)(4, 4, 4, 4)

3→ (8, 8)(5, 5, 3, 3), then assign a sign to the remaining

part (8, 8) that is the same as that appearing in (8, 6, 6, 4, 4, 4).

Example 8.2. Let O = (10, 10, 10, 8, 8, 6, 4, 2, 2). According to the Theorem, the compo-

sition factors of XO are listed below:

Oφ = (

+︷ ︸︸ ︷
10, 10, 10, 8, 8, 6, 4, 2, 2)

kkkkkkkkkkkkkk

SSSSSSSSSSSSSSS

O2 = (

+︷ ︸︸ ︷
10, 10, 10, 8, 8, 6,

±︷︸︸︷
4, 4)

SSSSSSSSSSSSSSS O8 = (

+−,−+︷ ︸︸ ︷
10, 10, 10, 10, 6, 6, 4, 2, 2)

kkkkkkkkkkkkkk

SSSSSSSSSSSSSSS O10 = (11, 11,

−︷ ︸︸ ︷
8, 8, 8, 6, 4, 2, 2)

kkkkkkkkkkkkkkk

O2,8 = (

+−,−+︷ ︸︸ ︷
10, 10, 10, 10, 6, 6,

±︷︸︸︷
4, 4)

SSSSSSSSSSSSSS O2,10 = (11, 11,

−︷ ︸︸ ︷
8, 8, 8, 6,

±︷︸︸︷
4, 4) O8,10 = (11, 11, 9, 9,

+︷︸︸︷
6, 6, 4, 2, 2)

kkkkkkkkkkkkkkk

O2,8,10 = (11, 11, 9, 9,

+︷︸︸︷
6, 6,

±︷︸︸︷
4, 4)

We do not give a proof of the Theorem here, but instead illustrate the compu-

tations with an example. The following Lemma is the key of the computations:

Lemma 8.3.

(a)
∑

w∈Sp×O
(−1)l(w)X

 n . . . 1 ; (n− 1) . . . 0

w( n . . . 1 ; (n− 1) . . . 0 )

 =

∑
w∈GL

(−1)l(w)X

 n . . .− (n− 1)

w( n . . .− (n− 1) )

+
∑
w∈GL

(−1)l(w)X

 n . . .− (n− 1)

w( (n− 1) . . .− n )


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(b)
∑

w∈O×Sp
(−1)l(w)X

 n . . . 0 ; (n− 1) . . . 1

w( n . . . 0 ; (n− 1) . . . 1 )

 =

∑
w∈GL

(−1)l(w)X

 n . . .− (n− 1)

w( n . . .− (n− 1) )

− ∑
w∈GL

(−1)l(w)X

 n . . .− (n− 1)

w( (n− 1) . . .− n )


(c)

∑
w∈O×Sp

(−1)l(w)X

 m. . . 0 ; m. . . 1

w( m. . . 0 ; m. . . 1 )

 =
∑
w∈GL

(−1)l(w)X

 m. . .−m

w( m. . .−m )



Proof. One can either do it combinatorially, or use the idea in [4]. For (a), note that

Ind
Sp(4n)
GL(2n)(triv), IndSp(4n)

GL(2n)(det) are special unipotent with associated variety equal

to (2n, 2n), with Lusztig symbols

(
×

n n

) and (
×

n+1 n-1

). By [4, Theorem III (a)]

∑
w∈Sp×O

(−1)l(w)X

 n . . . 1 ; (n− 1) . . . 0

w( n . . . 1 ; (n− 1) . . . 0 )

 = Ind
Sp(4n)
GL(2n)(triv)+Ind

Sp(4n)
GL(2n)(det)

∑
w∈O×Sp

(−1)l(w)X

 n . . . 0 ; (n− 1) . . . 1

w( n . . . 0 ; (n− 1) . . . 1 )

 = Ind
Sp(4n)
GL(2n)(triv)−IndSp(4n)

GL(2n)(det)

Hence (a), (b) follows. For (c), use IndSp(4n+2)
GL(2n+1)(triv) instead.

Example 8.4. Consider O = (8, 6, 6, 4, 4). Then λO = (4, 3, 2, 1; 3, 2, 1, 0, 1, 2; 2, 1, 0, 1)
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and O′ = (8, 8, 5, 5, 2). By the Theorem, the composition factors of XO is given by

Oφ = (8, 6, 6, 4, 4)

nnnnnnnnnnnn

PPPPPPPPPPPP

O6 = (

±︷︸︸︷
8, 8, 4, 4, 4)

NNNNNNNNNNN O4 = (

±︷ ︸︸ ︷
8, 6, 6, 6, 2)

ppppppppppp

O4,6 = (

±︷︸︸︷
8, 8, 5, 5, 2)

Now, the formula in the previous chapters gives

(8, 6, 6, 4, 4) =
∑

w∈W (C4×A5×A3)

(−1)l(w)X

 4321 3210− 1− 2 210− 1

w( 4321 210− 1− 2− 3 10− 1− 2)



(

+︷︸︸︷
8, 8 , 4, 4, 4)+(

−︷︸︸︷
8, 8 , 4, 4, 4) =

∑
w∈W (C4×D4×A3×C2)

(−1)l(w)X

 4321 3210 210− 1 21

w( 4321 3210 10− 1− 2 21)



(

+︷ ︸︸ ︷
8, 6, 6, 6, 2)+(

−︷ ︸︸ ︷
8, 6, 6, 6, 2) =

∑
w∈W (C4×D3×A5×C1)

(−1)l(w)X

 4321 210 3210− 1− 2 1

w( 4321 210 210− 1− 2− 3 1)



(

+︷︸︸︷
8, 8 , 5, 5, 2)+(

−︷︸︸︷
8, 8 , 5, 5, 2) =

∑
w∈W (C4×D4×C2×D3×C1)

(−1)l(w)X

 4321 3210 21 210 1

w( 4321 3210 21 210 1)


Using the above Lemma, the sum of the first two lines gives

(8, 6, 6, 4, 4) + (

+︷︸︸︷
8, 8 , 4, 4, 4) + (

−︷︸︸︷
8, 8 , 4, 4, 4)

=
∑

w∈W (C4×A5×A3)(−1)l(w)X

(
4321 3210− 1− 2 210− 1

w( 4321 3210− 1− 2 10− 1− 2)

)
and the sum of the last two lines gives
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(

+︷ ︸︸ ︷
8, 6, 6, 6, 2) + (

−︷ ︸︸ ︷
8, 6, 6, 6, 2) + (

+︷︸︸︷
8, 8 , 5, 5, 2) + (

−︷︸︸︷
8, 8 , 5, 5, 2)

=
∑

w∈W (C4×D3×A5×C1)(−1)l(w)X

 4321 210 3210− 1− 2 1

w( 4321 210 3210− 1− 2 1)


Now use the Lemma again to see the sum of the seven terms is equal to

∑
w∈W (C4×A5×A3)

(−1)l(w)X

(
4321 3210− 1− 2 210− 1

w( 4321 3210− 1− 2 210− 1)

)

which is precisely the character formula of XO.

Note that the composition factors of XO is always of multiplicity one in the

above description. This is no longer true if (†) does not hold. Also, there are no

nice description of the composition factors of XO in the general case.

Example 8.5. Let O = (6, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2). The composition factors of XO are

given by

Oφ = (6, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2)

jjjjjjjjjjjjjjj

SSSSSSSSSSSSSSS

(

2×(±,±)︷ ︸︸ ︷
6, 6, 4, 4, 4, 4, 4, 4, 2, 2, 2)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY (

±︷ ︸︸ ︷
6, 4, 4, 4, 4, 4, 4, 4, 4, 4)

(

±︷︸︸︷
6, 6, 5, 5,

±︷︸︸︷
4, 4, 3, 3, 2, 2, 2)

RRRRRRRRRRRRRR (

2×(±,±)︷ ︸︸ ︷
6, 6, 4, 4, 4, 4, 4, 4, 3, 3)

lllllllllllll

(

±︷︸︸︷
6, 6, 5, 5,

±︷︸︸︷
4, 4, 3, 3, 3, 3)

Note that, for instance, the irreducible representation (

+︷︸︸︷
6, 6 ,

+︷ ︸︸ ︷
4, 4, 4, 4, 4, 4, 2, 2, 2) appears

twice in the composition factors of XO.
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8.2 Half-integral Characters

The computations for the case of half-integral infinitesimal characters is totally

different, due to the difference in the character formulas. However, the description

of the composition factors of XO is completely analogous to that of the integral

character case. We give an example below to give its resemblance to the integral

case:

Example 8.6. Let O = (9, 9, 9, 7, 5, 3, 3, 1), the composition factors are given by:

Oφ = (

−︷ ︸︸ ︷
9, 9, 9, 7,

−︷ ︸︸ ︷
5, 3, 3, 1)

nnnnnnnnnnnn

PPPPPPPPPPP

(10, 10,

+︷︸︸︷
7, 7,

−︷ ︸︸ ︷
5, 3, 3, 1)

PPPPPPPPPPPP (

−︷ ︸︸ ︷
9, 9, 9, 7,

++,−−︷ ︸︸ ︷
5, 5, 1, 1)

nnnnnnnnnnnn

(10, 10,

+︷︸︸︷
7, 7,

++,−−︷ ︸︸ ︷
5, 5, 1, 1)

Notice that the assignment of signs is the same as that of Q = (10, 10, 10, 8, 6, 4, 4, 2),

which is obtained by adding one extra block on each column. This phenomenon holds for

all orbits in Sp(2m,C) with odd column sizes.

8.3 The Case in the Orthogonal Group

The computations for the symplectic group case can carry over in the same fashion

to the orthogonal case. Here is the algorithm on which composition factors appear

in XP for any nilpotent orbit P in O(n,C).
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Theorem 8.7. Let P = (b2k+1, b2k, . . . , b0) be a nilpotent orbit in O(n,C) satisfying (†).

Consider the ‘head’ of the orbit

(b2k+1 = qr = b2k, b2k−1 = qr−1 = b2k−2, . . . , b2k−2r+3 = q1 = b2k−2r+2, b2k−2r+1 = q0 6= b2k−2r)

Define Q = (qr + 2, qr, qr, qr−1, . . . , q0) be an orbit in Sp(2m,C). Then the assignment

of signs of the head of the orbit P is the same as that of Q. For the ‘tail’ of the orbit

(b2k−2r, . . . , b0), use the same rule as in the symplectic case (Theorem 8.1) for the sign

assignment.

Example 8.8. Let P = (9, 9, 7, 7, 5, 4, 2, 2) in O(45,C). Then P ′ = (11, 8, 8, 5, 5, 4, 4).

The composition factors of XP is as follows:

(9, 9, 7, 7,

+︷︸︸︷
5 , 4, 2, 2)

ooooooooooo

OOOOOOOOOOO

(

+−,−+︷ ︸︸ ︷
11, 7, 7, 7, 5, 4, 2, 2)

OOOOOOOOOOO (

+−,−+︷ ︸︸ ︷
9, 9, 9, 5, 5, 4, 2, 2)

ooooooooooo

OOOOOOOOOOO (9, 9, 7, 7,

+︷︸︸︷
5 ,

±︷︸︸︷
4, 4)

ooooooooooo

(

++,−−︷ ︸︸ ︷
11, 8, 8, 5, 5, 4, 2, 2)

OOOOOOOOOOO (

+−,−+︷ ︸︸ ︷
11, 7, 7, 7, 5,

±︷︸︸︷
4, 4) (

+−,−+︷ ︸︸ ︷
9, 9, 9, 5, 5,

±︷︸︸︷
4, 4)

ooooooooooo

(

++,−−︷ ︸︸ ︷
11, 8, 8, 5, 5,

±︷︸︸︷
4, 4)
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Compare the above with the composition factors of Q = (11, 9, 9, 7, 7, 5, 4, 2, 2) below:

(

+︷ ︸︸ ︷
11, 9, 9, 7, 7, 5, 4, 2, 2)

nnnnnnnnnnnn

OOOOOOOOOOO

(

+−,−+︷ ︸︸ ︷
11, 11, 7, 7, 7, 5, 4, 2, 2)

PPPPPPPPPPPP (

+−,−+︷ ︸︸ ︷
11, 9, 9, 9, 5, 5, 4, 2, 2)

nnnnnnnnnnnn

OOOOOOOOOOO (

+︷ ︸︸ ︷
11, 9, 9, 7, 7, 5,

±︷︸︸︷
4, 4)

ooooooooooo

(

++,−−︷ ︸︸ ︷
11, 11, 8, 8, 5, 5, 4, 2, 2)

PPPPPPPPPPPP (

+−,−+︷ ︸︸ ︷
11, 11, 7, 7, 7, 5,

±︷︸︸︷
4, 4) (

+−,−+︷ ︸︸ ︷
11, 9, 9, 9, 5, 5,

±︷︸︸︷
4, 4)

ooooooooooo

(

++,−−︷ ︸︸ ︷
11, 11, 8, 8, 5, 5,

±︷︸︸︷
4, 4)
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CHAPTER 9

COMPUTATION OF K-TYPE MULTIPLICITIES

In this Chapter, we describe how one can compute K-type multiplicities of a rep-

resentation given its character formula. In particular, we will focus on the multi-

plicities of the fundamental representations of G = Sp(2m,C) and O(n,C).

Let µ be a finite-dimensional representation of G. Then µ is parametrized by its

highest weight. By Frobenius reciprocity:

[X

 λ

λ′

 : µ] = [(λ− λ′) : µ|T ]

Note that by a Theorem of Parasarathy-Rao-Varadarajan [4, Proposition 1.8], one

can replace (λ, λ′) by (wλ,wλ′) for some w ∈ W such that λ − λ′ is dominant.

Therefore, the multiplicity is known once we apply Weyl character formula on µ.

In our situation, all irreducible representations we are dealing with have character

formula of the form π =
∑

(−1)l(w)X

 λ

wλ

. Hence we can compute [π : µ] in

theory.

9.1 Computations in Sp(2m,C)

In general, one can find out the character formula of µ|T directly from LiE. In this

Section, we focus ourselves on the fundamental representations ofG = Sp(2m,C),
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namely µ = µi = ∧iC2m/ ∧i−2 C2m for i = 0, . . . ,m (by convention, we let negative

wedge powers be the trivial representation). In this case, the weights of µi lying

on the dominant Weyl chamber and their multiplicities are known completely.

Lemma 9.1.

[∧2iC2m|T : (

j︷ ︸︸ ︷
1, . . . , 1,

m−j︷ ︸︸ ︷
0, . . . , 0)] =

 0 if 2i < j or j is odd(m−j
2i−j
2

)
otherwise

[∧2i+1C2m|T : (

j︷ ︸︸ ︷
1, . . . , 1,

m−j︷ ︸︸ ︷
0, . . . , 0)] =

 0 if 2i+ 1 < j or j is even(m−1−j
2i+1−j

2

)
otherwise

Proof. This can easily be seen by looking at the weights of ∧iC2m.

Example 9.2. We can now compute the K-type multiplicities of some unipotent repre-

sentations. Let π = (

+︷︸︸︷
8, 4 ) + (

−︷︸︸︷
8, 4 ) be a representation in Sp(12,C). Then

(

+︷︸︸︷
8, 4 ) + (

−︷︸︸︷
8, 4 ) =

∑
w∈W (C4×D2)

(−1)l(w)X

 4321 10

w( 4321 10)


To find out [π : ∧2C12], for example, one needs to find out which w ∈ W (C4 × D2) so

that (4321, 10) − w(4321, 10) can be W -conjugated to have weight (110000). The list of

all such w(4321, 10) is given below:
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wλ λ− wλ

3421,10 1-10000

4231,10 01-1000

4312,10 001-100

4321,01 00001-1

4321,0-1 000011

Therefore,

[π : ∧2C12] = [
∑
w

(−1)l(w)X

 4321 10

w( 4321 10)

 : ∧2C12]

=
∑
w

(−1)l(w)[X

 4321 10

w( 4321 10)

 : ∧2C12]

= [1× (000000)− 5× (110000) + · · · : ∧2C12|T ]

by the above Lemma,

∧2C12|T = 1× (110000) + 6× (000000)

Hence,

[π : ∧2C12] = [1× (000000)− 5× (110000) : 1× (110000) + 6× (000000)] = 6− 5 = 1

Also, it is known that [π : ∧0C12] = [π : triv] = 1. This can be seen by either the argu-

ment above, or noting that R[(̃8, 4)] ∼= π. Consequently, the constant function in the ring
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of regular functions R[(̃8, 4)] constitutes the multiplicity one of the trivial representation

in π. Now,

[π : µ2] = [π : ∧2C12/ ∧0 C12]

= [π : ∧2C12]− [π : ∧0C12]

= 1− 1 = 0

We now give an algorithm computing the multiplicities of the fundamental

K-types of XO for any orbit O in Sp(2m,C):

Theorem 9.3. Suppose O = (c2k, c2k−1, . . . , c0) is a nilpotent orbit in Sp(2m,C). First

remove all column pairs of same size, leaving the orbit (d2l, d2l−1, . . . , d0). For each of the

removed column pair ci = ci−1 = y, let E = {ci|ci = ci−1 are removed from O} with

multiplicities. Also, let Z = {zj =
d2j+d2j−1

2
|j = 0, . . . , l}. Then rearrange elements in

E ∪ Z in non-decreasing order to get W := E ∪ Z = {wi|i = 0, 1, . . . , k}, with wi ≤ wj

if i < j.

Now define a sequence of sequences βi = (βi0, βi1, . . . ) recursively by:

• Begin with the sequence β0 = (β00, β01, β02, . . . ) = (
(
k−1

0

)
,
(
k
1

)
,
(
k+1

2

)
, . . . ).

• Define the i-th sequence αi recursively by βi+1 = βi − (

wi+1︷ ︸︸ ︷
0, . . . , 0, βi0, βi1, βi2, . . . ).

Then [R[O] : µ2i] = [XO : µ2i] = β(k+1)i for i ≤ m
2

, and [R[O] : µ2i+1] = [XO : µ2i+1] =

0 for all i.

Example 9.4. Let O = (8, 6, 6, 4, 4, 2, 2) in Sp(32,C). Then the wi’s are {2, 4, 4, 6}. We

therefore have the multiplicities as follows:
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[R[O] : µi] 1 0 3 0 6 0 9 0 12 0 13 0 12 0 8 0 3

We first prove the Theorem holds for orbits with no columns of the same size.

In this case, Example 6.3 gives the character formula for XO.

Lemma 9.5. In Sp(2m,C), let
+︷︸︸︷
p, q and T as in Example 6.3. Then

[

+︷ ︸︸ ︷
(p, q) : µi] = [Ind

Sp(p+q,C)

GL( p+q
2
,C)

(triv) : µi] = δi0

[T : µi] = [Ind
Sp(d0,C)

GL(
d0
2
,C)

(triv) : µi] = δi0

Proof. The computations of [

+︷ ︸︸ ︷
(p, q) : µi] is essentially given in the beginning of this

Chapter (more precisely, we did the example of [

+︷ ︸︸ ︷
(8, 4)⊕

−︷ ︸︸ ︷
(8, 4) : µi]). For T , note

that it is just the character formula of the trivial representation in Sp(d0,C).

Proposition 9.6. Theorem 9.4 holds for O having no columns of the same size, i.e. O =

(d2l, . . . , d0) with di 6= di−1 for all i.

Proof. Recall the character formula of XO in Example 6.3,

XO = (

+︷ ︸︸ ︷
d2l, d2l−1,

+︷ ︸︸ ︷
d2l−2, d2l−3, . . . ,

+︷ ︸︸ ︷
d2, d1, d0)

XO has the same virtual character as

Ind
Sp(2m,C)
Sp(d2l+d2l−1,C)×···×Sp(d2+d1,C)×Sp(d0,C)(

+︷ ︸︸ ︷
d2l, d2l−1⊗ · · · ⊗

+︷ ︸︸ ︷
d2, d1⊗ T )
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Therefore, to compute [XQ : µi], we need to know:

[XQ : µi] = [Ind
Sp(2m,C)
Sp(d2l+d2l−1,C)×···×Sp(d2+d1,C)×Sp(d0,C)(

+︷ ︸︸ ︷
d2l, c2l−1⊗ · · · ⊗

+︷ ︸︸ ︷
d2, d1⊗ triv) : µi]

= [

+︷ ︸︸ ︷
d2l, d2l−1⊗ · · · ⊗

+︷ ︸︸ ︷
d2, d1⊗T : ∧iC2m|Sp(d2l+d2l−1,C)×···×Sp(d2+d1,C)×Sp(d0,C)]

− [

+︷ ︸︸ ︷
d2l, d2l−1⊗ · · · ⊗

+︷ ︸︸ ︷
d2, d1⊗T : ∧i−2C2m|Sp(d2l+d2l−1,C)×···×Sp(d2+d1,C)×Sp(d0,C)]

= [

+︷ ︸︸ ︷
d2l, d2l−1⊗ · · · ⊗

+︷ ︸︸ ︷
d2, d1⊗T : ∧iC2m|Sp(2zl,C)×···×Sp(2z1,C)×Sp(2z0,C)]

− [

+︷ ︸︸ ︷
d2l, d2l−1⊗ · · · ⊗

+︷ ︸︸ ︷
d2, d1⊗T : ∧i−2C2m|Sp(2zl,C)×···×Sp(2z1,C)×Sp(2z0,C)]

Also, the restriction decomposes as

∧iC2m|Sp(2zl,C)×···×Sp(2z1,C)×Sp(2z0,C) =
⊕

i0+···+il=i

l⊗
p=0

∧ipC2zp

So

[XQ : µi] = [

+︷ ︸︸ ︷
d2l, d2l−1⊗ · · · ⊗

+︷ ︸︸ ︷
d2, d1⊗T :

⊕
i0+···+il=i

l⊗
p=0

∧ipC2zp ]

− [

+︷ ︸︸ ︷
d2l, d2l−1⊗ · · · ⊗

+︷ ︸︸ ︷
d2, d1⊗T :

⊕
i0+···+il=i−2

l⊗
p=0

∧ipC2zp ]

=
∑

i0···+il=i

[T : ∧i0C2z0 ]
l∏

p=1

[

+︷ ︸︸ ︷
d2p, d2p−1 : ∧ipC2zp ]

−
∑

i0···+il=i−2

[T : ∧i0C2z0 ]
l∏

p=1

[

+︷ ︸︸ ︷
d2p, d2p−1 : ∧ipC2zp ]
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On the other hand, by Lemma 9.5,

[

+︷ ︸︸ ︷
d2p, d2p−1 : ∧iC2zp ] = [

+︷ ︸︸ ︷
d2p, d2p−1 : µi ⊕ µi−2 ⊕ µi−4 ⊕ . . . ]

= [Ind
Sp(2zp,C)

GL(zp,C) (triv) : µi ⊕ µi−2 ⊕ µi−4 ⊕ . . . ]

= [Ind
Sp(2zp,C)

GL(zp,C) (triv) : ∧iC2zp ]

and

[T : ∧iC2z0 ] = [Ind
Sp(2z0,C)
GL(z0,C) (triv) : ∧iC2z0 ]

Consequently,

[XQ : µi] =
∑

i0···+il=i

l∏
p=0

[Ind
Sp(2zp,C)

GL(zp,C) (triv) : ∧ipC2zp ]

−
∑

i0···+il=i−2

l∏
p=0

[Ind
Sp(2zp,C)

GL(zp,C) (triv) : ∧ipC2zp ]

Reversing the process, we get

[XQ : µi] = [Ind
Sp(2m,C)
GL(zl,C)×···×GL(z0,C)(triv ⊗ · · · ⊗ triv) : µi]

Then the result follows by Frobenius reciprocity and induction on the number of

columns.

Proof of Theorem 9.4

Recall that

XO := Ind
G(2m,C)
G(Q,C)×GL(E)(XQ ⊗ triv ⊗ · · · ⊗ triv)
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By Proposition 9.6 and induction in stages, for any fundamental representations

µ,

[XO : µ] = [Ind
Sp(2m,C)
GL(E)×GL(Z)(triv ⊗ · · · ⊗ triv) : µ]

Consequently the result follows by induction on the number of columns.

9.2 Computations in O(n,C)

The case of O(n,C) is more complicated, mainly because of the ± sign in the char-

acter formula. By Proposition 7.11, the character formulas of all representations

we are dealing with has the term

X

 a, . . . 1, 0± b1, . . . , 1 b2, . . . , 0 c1, . . . , 1 . . .

w( a, . . . 1, 0± b1, . . . , 1 b2, . . . , 0 c1, . . . , 1 . . . )


The following Lemma gives an algorithm computing their K-type multiplicities:

Lemma 9.7.

X

(
a, . . . 1, 0+ b1, . . . , 1 b2, . . . , 0 . . .

w( a, . . . 1, 0+ b1, . . . , 1 b2, . . . , 0 . . . )

)
= Ind

O(2n,C)
O(2a+2,C)×SO(2n−2a−2,C)(triv ⊗X

′)

where X ′ is a representation of SO(2n− 2a− 2,C) having virtual character

X ′ = X

(
b1, . . . , 1 b2, . . . , 0 . . .

w( b1, . . . , 1 b2, . . . , 0 . . . )

)

X

(
a, . . . 1, 0− b1, . . . , 1 b2, . . . , 0 . . .

w( a, . . . 1, 0− b1, . . . , 1 b2, . . . , 0 . . . )

)
= Ind

O(2n,C)
O(2a+2,C)×SO(2n−2a−2,C)(det⊗X

′)

with the same X ′ as above.
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With this Lemma, we can give an algorithm computing the fundamental K-

type multiplicities of XP :

Theorem 9.8. Suppose P = (c2k+1, c2k, c2k−1, . . . , c0) is a nilpotent orbit in O(n,C).

First remove all column pairs of same size, leaving the orbit (d2l+1, d2l, d2l−1, . . . , d0). For

each of the removed column pair ci = ci−1 = y, let E = {ci|ci = ci−1 are removed from

P} with multiplicities. Also, let Z = {zj =
d2j+d2j−1

2
|j = 0, . . . , l} (note that d2l+1 is not

used in the algorithm). Then rearrange elements in Y ∪ Z in non-decreasing order to get

E ∪ Z = {wi|i = 0, 1, . . . , k}, with wi ≤ wj if i < j.

Now define a sequence of sequences βi = (βi0, βi1, . . . ) recursively by:

• Begin with the sequence β0 = (β00, β01, β02, . . . ) = (
(
k
0

)
,
(
k+1

1

)
,
(
k+2

2

)
, . . . ).

• Define the i-th sequence αi recursively by βi+1 = βi − (

wi+1︷ ︸︸ ︷
0, . . . , 0, βi0, βi1, βi2, . . . ).

Then for the fundamental representations µ′j := ∧jCn in O(n,C),

[R[P ] : µ′2i] = [XP : µ′2i] = β(k+1)i for 2i ≤ n, and [R[P ] : µ′2i+1] = [XP : µ′2i+1] = 0 for

all i.

Example 9.9. Let P = (7, 5, 3, 3, 1) in O(19,C). Then Then the wi’s are {6, 6}. We

therefore have the multiplicities of µ′2i as follows:

i 0 2 4 6 8 10 12 14 16 18

[R[P ] : µ′i] 1 2 3 4 3 2 1 0 0 0

There is a Lemma analogous to Lemma 9.6 in the orthogonal case:
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Lemma 9.10. In SO(n,C), let
+︷︸︸︷
p, q and T as in Example 6.3. Then

[
+︷︸︸︷
p, q : µ′i] = [Ind

SO(p+q,C)

GL( p+q
2
,C)

(triv) : µ′i] =

 1 if i is even

0 otherwise

[T : µ′i] = [Ind
SO(d0,C)

GL(
d0
2
,C)

(triv) : µ′i] =

 1 if i is even

0 otherwise

Proof of Theorem 9.8

As in the proof of Theorem 9.4, we first look at the orbit P = (d2l+1, . . . , d0) with

di 6= di−1 for all i. In this case, we have

XP = (

+︷︸︸︷
d2l+1,

+︷ ︸︸ ︷
d2l, d2l−1, . . . ,

+︷ ︸︸ ︷
d2, d1, d0)

which has the same virtual character as

Ind
O(n,C)
O(d2l+1)×SO(d2l+d2l−1,C)×···×SO(d2+d1,C)×SO(d0,C)(triv ⊗

+︷ ︸︸ ︷
d2l, d2l−1⊗ · · · ⊗

+︷ ︸︸ ︷
d2, d1⊗ T )

by the same technique as in Theorem 9.4,

[XP : µ′i] = [Ind
O(n,C)
O(d2l+1)×GL(zl,C)×···×GL(z0,C)(triv ⊗ · · · ⊗ triv) : µ′i]

Therefore, by Frobenius reciprocity and induction on the number of columns, the

Theorem follows for P with no columns of the same size.

For the general case, the argument works in exactly the same way as in the sym-

plectic one, which gives

[XP : µ′i] = [Ind
O(n,C)
O(d2l+1)×GL(E)×GL(Z)(triv ⊗ · · · ⊗ triv) : µ′i]

So the result follows.
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9.3 A Criterion of Normality of Orbit Closures

With the algoritms above, we can now state and prove another criterion of the

normality ofO, by computing theK-type multiplicities of the representationsXO.

Note that the computations above does not involve the longest column of the orbit

in O(n,C), we can just focus ourselves for the case of Sp(2m,C).

Lemma 9.11. Let O = (c2k, c2k−1, . . . , c0) be a nilpotent orbit in G = Sp(2m,C), and µ

be any finite dimensional irreducible representation of G, then

[R[O] : µ] = [XO : µ] ≤ [XO] : µ] = [R[O]] : µ]

where O] = ( c2k+c2k−1

2
, c2k+c2k−1

2
, c2k−2+c2k−3

2
, c2k−2+c2k−3

2
, . . . , c2+c1

2
, c2+c1

2
, c0)

Proof. Note that O] is normal and O] ⊃ O. Consequently, we have a G-module

surjection

R[O]] = R[O]]� R[O]

and hence [R[O] : µ] = [XO : µ] ≤ [R[O]] : µ] for any finite dimensional G-

representations µ. Hence the result follows.

From results in the last Section (or from [22] directly), one can find out the

K-type multiplicities of XO] . And hence we come to the Theorem below:

Theorem 9.12. Let O be a nilpotent orbit in Sp(2m,C). Then O is not normal iff

[R[O] : µi] < [R[O] : µi]
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for some i > 0.

Let P = (b2k+1, . . . , b0) be a nilpotent orbit in O(n,C) such that b2k+1 6= b2k. Then O is

not normal iff

[R[P ] : µ′i] < [R[P ] : µ′i]

for some i > 0.

Proof. One direction is easy - if O is normal, then R[O] = R[O] as G-modules,

hence [R[O] : µi] = [R[O] : µi] for all i. Now suppose O is not normal, and let O]

as in last Section. Then we obtain a new set of integers {xi} computing theK-type

multiplicities of XO] . By the Kraft-Procesi criterion (Theorem 3.3), the two sets of

integers {xi} and {wi} are different, and therefore there exists an i > 0 such that

[R[O]] : µi] < [R[O] : µi]. Now Lemma 9.11 says [R[O] : µi] ≤ [R[O]] : µi] for all i,

and consequently the theorem follows.

Remark 9.13. The Theorem holds even in the case when b2k+1 = b2k for nilpotent orbit

P in O(n,C). We omit the proof here.

Example 9.14. Let O = (8, 6, 6, 4, 4, 2, 2) in Sp(32,C). From the previous Proposition,

the wi’s are {2, 4, 4, 6}. NowO] = (7, 7, 5, 5, 3, 3, 2), the xi’s are {1, 3, 5, 7}. We therefore

have the multiplicities as follows:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[R[O]] : µi] 1 0 3 0 5 0 7 0 8 0 8 0 7 0 5 0 2

[R[O] : µi] 1 0 3 0 6 0 9 0 12 0 13 0 12 0 8 0 3
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Let P = (7, 5, 3, 3, 1) in O(19,C). Then P] = (7, 4, 4, 2, 2), the wi’s are {6, 6}, and the

xi’s are {4, 8}. We therefore have the multiplicities of µ′2i as follows:

i 0 2 4 6 8 10 12 14 16 18

[R[P]] : µ′i] 1 2 3 3 3 2 1 0 0 0

[R[P ] : µ′i] 1 2 3 4 3 2 1 0 0 0
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CHAPTER 10

SOME RESULTS ON XO

10.1 Composition Factors of XO when O is Normal

We now investigate the composition factors of XO. As seen in Chapter 4, the con-

strcution of XO is more geometrical than algebraic. One does not have a character

formula of XO as in the case of XO. However, by Corollary 3.2, the K-type mul-

tiplicities of XO is the same as XO if O is normal. It is therefore hoped that the

composition factors of both models are the same (note that the equality of K-type

multiplicities of both models does not guarantee their equality as (g, K)-modules).

And in fact, it is true for all orbits O with normal closure.

Theorem 10.1. Let O be an orbit in Sp(2m,C) or O(n,C) satisfying (†) such that O is

normal. Then the composition factors of XO is the same as that of XO.

Remark 10.2. In fact, the above Theorem is true without Condition (†). However the

book-keeping tools we use below will be too cumbersome to be presented. For instance, the

list in Lemma 10.3 will become infinite.

Before proving the Theorem, recall that all orbits in Sp(2m,C) satisfying (†)

can be partitioned into

(xk, xk−1, xk−1, . . . , x1, x1, x0)
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and all orbits P = (b2k+1, . . . , b0) in O(n,C) satisfying (†) can be partitioned into

the ‘head’

(b2k+1 = hi, b2k = hi, hi−1, hi−1, . . . h1, h1, h0 = b2k−2i+1)

and the ‘remaining’ part (b2k−2i, b2k−2i−1, . . . , b0) is done in the same fashion as in

the Sp(2m,C) case. The following Lemma characterizes all orbits O satisfying (†)

with normal orbit closures.

Lemma 10.3. Suppose O is a nilpotent orbit in Sp(2m,C) satisfying (†) with normal

orbit closure. Then O must be composed of the following three fundamental types of

partitions:

(1) (a, a, a, b, b, b), a 6= b

(2) (a, a, a, b), a 6= b

(3) (a, b), a can be equal to b

Suppose P is a nilpotent orbit in O(n,C) satisfying (†) with normal orbit closures. Then

its head must be of the types of partitions:

(0) (a, a, a)

(0’) (a)

and the remaining part of P must be composed of types (1), (2), (3) as above.

Proof. This can easily be seen by the Kraft-Procesi criterion of normality.

The next Definition is to record the lowest K-types of the orbits corresponding

to the fundamental partitions above.
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Definition 10.4. Suppose (a, a, a, b, b, b) is a nilpotent orbit in Sp(2m,C). Then the

possible composition factors of X(a,a,a,b,b,b) are of the form

Oφ = (

±︷ ︸︸ ︷
a, a, a, b, b, b)

kkkkkkkkkkkkkkk

SSSSSSSSSSSSSSS

(a + 1, a + 1,

±︷ ︸︸ ︷
a− 2, b, b, b)

SSSSSSSSSSSSSSS (

±︷ ︸︸ ︷
a, a, a, b + 2, b− 1, b− 1)

kkkkkkkkkkkkkkk

(a + 1, a + 1,

±︷ ︸︸ ︷
a− 2, b + 2, b− 1, b− 1)

(the bottom orbit is equal to (a+ 1, a+ 1, b+ 1, b+ 1, b− 1, b− 1) if a = b+ 2). In either

cases, record all the possible lowest K-types of the above irreducible representations. For

instance, Oφ has two irreducible components,

Ind
Sp(2m,C)
GL(a,C)×GL(b,C)×Sp(a+b,C)(det⊗ det⊗

±︷︸︸︷
a, b )

having lowest K-types (

a+b︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) and (

a+b+b︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0). For future purpose,

keep track on the induced representations from GL(a,C) and GL(b,C) by defining the

lowest K-type set to be {a ⊕ b, a ⊕ b ⊕ b}. Then define the lowest K-type set of

fundamental type (1) orbit to be

K(a,a,a,b,b,b) := {0, b, (b+ 2), a, a⊕ b, a⊕ (b+ 2), a⊕ b⊕ b}

or

K(b+2,b+2,b+2,b,b,b) := {0, b, (b+ 2), (b+ 2)⊕ b, (b+ 2)⊕ (b+ 2), (b+ 2)⊕ b⊕ b}

if a = b+ 2. Similarly, the lowest K-type set of fundemental type (2) orbit (a, a, a, b) is

K(a,a,a,b) := {0, a, b, a⊕ b}
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The lowest K-type set of fundemental type (3) orbit (a, b) is

K(a,b) := {0, b}

The lowest K-type set of fundemental type (0) orbit (a, a, a) is

K(a,a,a) := {0, a, (a+ 2), a⊕ a}

The lowest K-type set of fundemental type (0’) orbit (a) is

K(a) := {0, a}

With this on hand, we can further define the fundamental K-type set of any

normal orbit O satisfying (†). This records the lowest K-types of all the possible

composition factors of XO.

Definition 10.5. Let O be a nilpotent orbit in Sp(2m,C) or O(n,C). So it can be parti-

tioned into fundamental types (0)− (3). Suppose O = (T0, T1, . . . Tr) where Ti are of the

fundamental types, and Ki is the corresponding lowest K-type set of Ti. Define the lowest

K-type set of O to be

KO = T0 ⊕ T1 ⊕ · · · ⊕ Tr

whereM⊕N = {m⊕ n|m ∈ M, n ∈ N} (with the usual abelian rules a⊕ b = b⊕ a,

0⊕ a = a).

Example 10.6. Let O = (8, 8, 8, 4, 3, 3) in Sp(34,C). Then T0 = φ, T1 = (8, 8, 8, 4),

T2 = (3, 3). From above, K1 = {0, 4, 8, 8⊕ 4}, K2 = {0, 3}. So

KO = {0, 3, 4, 3⊕ 4, 8, 3⊕ 8, 4⊕ 8, 3⊕ 4⊕ 8}
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The 8 possible composition factors of XO are (

±︷ ︸︸ ︷
8, 8, 8, 4,

±︷︸︸︷
3, 3 ), (9, 9,

±︷︸︸︷
6, 4 ,

±︷︸︸︷
3, 3 ). By chang-

ing ⊕ in KO into +, it gives the lowest K-types of these 8 irreducible representations.

The following observation is crucial for the proof of the Theorem:

Lemma 10.7. LetO be any nilpotent orbit in Sp or O satisfying (†). Suppose there exists

a1 ⊕ · · · ⊕ am, b1 ⊕ · · · ⊕ bn in KO such that
∑

i ai =
∑

j bj . Then {a1, . . . , am} 6=

{b1, . . . , bn} as sets.

In other words, all elements in KO are distinct.

Proof. First of all, it is easy to check the Lemma holds if O is of the fundamental

types. Now use induction on the number of fundamental types inO: Suppose the

hypothesis holds for O = (T0, T1, . . . , Tr). Then for O′ = (T0, T1, . . . , Tr+1),

KO′ = KO ⊕Kr+1

where every element in KO are distinct and Kr+1 belongs to one of the fundamen-

tal types (0) − (3). If there exists a repetition of in KO′ , that means there must be

some ai1⊕· · ·⊕aip ∈ KO, aj1⊕· · ·⊕ajm−p ∈ Kr+1; bk1⊕· · ·⊕bkq ∈ KO, bl1⊕· · ·⊕blm−q ∈

Kr+1 such that ai1 ⊕ · · · ⊕ aip 6= bk1 ⊕ · · · ⊕ bkq , aj1 ⊕ · · · ⊕ ajm−p 6= bl1 ⊕ · · · ⊕ blm−q

and ⊕
i

ai ⊕
⊕
j

aj =
⊕
k

bk ⊕
⊕
l

bl

But note that all aj and bl are smaler than or equal to a, the longest column of Tr+1,

while all ai and bk are greater than or equal to b, the shortest column in Tr. By
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construction, b > a and hence this forces⊕
i

ai =
⊕
k

bk

⊕
j

aj =
⊕
l

bl

which is impossible by our hypothesis.

Proof of Theorem 10.1

For any nilpotent orbit O with normal closure, we know the following holds:

• The composition factors of XO give the correct K-type multiplicities of XO.

• All the possible composition factors of XO are also known.

On the other hand, Definition 10.5 collects the lowest K-types of all the possible

composition factors of XO. Let

KO = {α1, . . . , αn, β1, . . . , βm}

where αi’s are the lowest K-types of the composition factors of XO. By Lemma

10.7, since all elements in KO are distinct, write Xαi , Xβi be their corresponding

irreducible representations (so that the composition factors of XO are Xαi , all ap-

pearing once), and let (

Ai︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0), (

Bi︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) be the lowest K-type of

Xαi , Xβi respectively.

We now begin to determine which of them appears in XO. First of all, since

XO is spherical, it contains a irreducible component with lowest weight (0, . . . , 0).

From the results in Chapter 7 and 8, there is only one such irreducible component,
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and is of the form Xαi for some i. Without loss of generality, let Xα1 be the irre-

ducible, spherical component.

Next, consider the lowest K-type (

2l︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) of the virtual character

XO − Xα1 with multiplicity m2l (Recall from Chapter 9 that the K-types of XO =

XO must have even number of 1’s). Since we explicitly know the K-type multi-

plicities of XO,

2l = min{Ai|i 6= 1}

m2l = #{i|Ai = 2l}

It is hoped that all the Xαi’s with Ai = 2l appear in the composition factors of

XO exactly once, as in the case of XO. However, it is possible that some of such

Xαi appears more than once and some others does not appear in the composition

factors of XO. Or even worse, some Xβj have Bj = 2l and they appear in the

composition factors of XO. The Lemma below, to be proved later, is to rule out

these possibilities.

Lemma 10.8. Suppose γ = γ1 ⊕ · · · ⊕ γr ∈ KO, with Xγ having lowest K-type

(

2l︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) (so γ1 + · · ·+ γr = 2l). Considering γ as a partition Pγ of 2l, then for

any partition Pδ of 2l,

[Xγ : V (Pδ, 0, . . . , 0)] 6= 0 iff Pδ 4 P ∗γ

where P ∗γ is the dual partition of Pγ (Chapter 2.3), and V (Pδ, 0, . . . , 0) is the K-type with

highest weight (δ1, . . . , δs, 0, . . . , 0).
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SupposeQ := {Xα2 , Xα3 , . . . , Xαs , Xβ1 , . . . , Xβt} are the irreducible factors with

lowest K-type (

2l︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0). Then since Xαi are the composition factors of

XO, for all partitions δ of 2l,

[XO : V (Pδ, 0, . . . , 0)] =
n∑
i=1

[Xαi : V (Pδ, 0, . . . , 0)]

also by lowest K-type argument, if Xγ /∈ Q ∪ {Xα1},

[Xγ : V (Pδ, 0, . . . , 0)] = 0

Now consider the |partitions of 2l|×(s−1+t) matrixM = [cα2| . . . |cαs|cβ1 | . . . |cβt ],

where the columns cαi , cβj of M are given by the multiplicities [Xαi :

V (Pδ, 0 . . . , 0)], [Xβj : V (Pδ, 0 . . . , 0)] for all partitions δ of 2l. Then by Lemma

10.7, no two partitions αi, βj are the same, and by Lemma 10.8, all the columns of

M are linearly independent.

Finally, suppose Xαi appears in the composition factors of XO with multiplicity

pi, Xβj appears in the composition factors of XO with multiplicity qj , by the above

two conditions of multiplicities of K-types of form (Pδ, 0, . . . , 0), we get

[Xα1 ⊕
s⊕
i=2

piXαi ⊕
t⊕

j=1

qjXβj : V (P, 0, . . . , 0)] =
s∑
i=1

[Xαi : V (P, 0, . . . , 0)]

grouping the equations together, we get

p2cα2 + · · ·+ pscαs + q1cβ1 + · · ·+ qtcβt = cα2 + · · ·+ cαs

Obviously, pi = 1, qj = 0 is a solution of the above system of linear equations.

However, we have already seen that the columns of M are all linearly indepen-

dent. This forces the solution to be unique, i.e. Xα2 , . . . , Xαs appears in the com-

position factors of XO with multiplicity 1, Xβj does not appear in the composition
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factors of XO, which is the same as the case of the composition factors of XO.

Continue the argument inductively on the size of 2l, the result follows.

10.1.1 Proof of Lemma 10.8

Recall that the set Q = {Xα2 , . . . , Xαs , Xβ1 , . . . , Xβt} be the irreducible representa-

tions with lowestK-type (

2l︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0). Using the notation in Section 2.6 of [5],

m = gl(2l,C)⊕ sp(2m− 4l,C). Therefore, all the K-types of the form (P, 0, . . . , 0),

where P is a partition of 2l is a bottom layer K-type of the irreducible representa-

tions in Q. By Proposition 2.6 in [5], for all Xγ ∈ Q,

[Xγ : (P, 0, . . . , 0)] = [Xγ,gl(2l,C) : (P, 0, . . . , 0)]

where Xγ,gl(2l,C) is the Langlands quotient of a principal series representation in

GL(2l,C), dependent on γ. In fact, a result of Vogan says

Xγ,gl(2l,C) = Ind
GL(2l,C)
GL(Pγ) (det⊗ · · · ⊗ det)

where GL(Pγ) = GL(γ1,C) × · · · × GL(γr,C) if γ is the partition [γ1, . . . , γr] of 2l.

So the Lemma can be rephrased as

[Ind
GL(2l,C)
GL(Pγ) (det⊗ · · · ⊗ det) : V (P, 0, . . . , 0)] 6= 0 iff P 4 P ∗γ

By Frobenius reciprocity, it suffices to understand V (P, 0, . . . , 0)|GL(Pγ), and check

if the det representation appears in all GL(γi,C). But the restriction of K-types

in GL is known to be related to the Littlewood-Richardson rule, for example [18,
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Proposition 2.6], and our problem can be reduced to:

Given columns of sizes γ1, γ2, . . . , γr, add the columns up using Littlewood-

Richardson rule. Suppose the partition P appears in the sum mP times, then

[Ind
GL(2l,C)
GL(Pγ) (det⊗ · · · ⊗ det) : V (P, 0, . . . , 0)] = mP

And it is easy to see that mP 6= 0 iff P 4 P ∗γ . Hence the Lemma is proved.

10.2 A Conjecture for all Orbits

In this Section, we give a Conjecture on the character formula forXO, and from the

character formula we can derive which composition factors appear in XO. Before

we proceed, it is helpful to look at the constraints of the conjecutured composition

factors:

• They must match our results in the last Section, namely when O is normal, the

composition factors of XO must be the same as that of XO.

• The K-type multiplicities of XO must be smaller than that of XO] .

In fact, the conjecutured composition factors will give [XO : µi] = [XO] : µi] for all

fundamental representations µi.
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10.2.1 A Special Case

Throughout this section, we assumeO satisfies condition (†). We will pick up one

distinguished composition factor πS,jS for each subset S ⊂ S such that the collec-

tion of such composition factors, {πS,jS |S ⊂ S}, are conjecturally the composition

factors of XO. As a corollary of the conjecture, the inequality in the above Propo-

sition is an equality for small K-types µi.

Recall Section 8.1 in determining composition factors of XO. We set up a new

rule in assigning the signs, so that for any subset S ⊂ S, there is only one sign

assigned to OS . In fact, Rule (1) is the only rule doubling the possible sign assign-

ments, so we replace Rule (1) by the following:

(1′) Suppose OS ⊃ OS′ is not normal in codimension two, for the toppled part

(an+1, an, an, . . . , a1, a1, a0)→ (an+1, . . . , ai+1, ai+1, ai + 2, ai − 2, ai−1, ai−1, . . . )

(a) If a0 6= 0, use Rule (0) to determine the signs of (an+1, . . . , ai+1, ai+1, ai + 2)

and (ai − 2, ai−1, ai−1, . . . , a0) in OS′ respectively.

(b) If a0 = 0, use Rule (0) to determine the sign of (an+1, . . . , ai+1, ai+1, ai + 2) in

OS′ .

In this case, we always get one set of signs assigned to any orbit OS , and the

corresponding composition factor is denoted πS,jS . By construction, the collection

{πS,jS |S ⊂ S} is always a subset of the composition factors of XO.
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Example 10.9. Back to Example 8.2, where O = (10, 10, 10, 8, 8, 6, 5, 5, 4, 2, 2). We

apply Rule (0) to every orbit below O = Oφ to get all πS,jS . The list of πS,jS is stated

below:

Oφ = (

+︷ ︸︸ ︷
10, 10, 10, 8, 8, 6,

+︷︸︸︷
5, 5, 4, 2, 2)

jjjjjjjjjjjjjjjj

UUUUUUUUUUUUUUUU

O2 = (

+︷ ︸︸ ︷
10, 10, 10, 8, 8, 6,

+︷︸︸︷
5, 5,

+︷︸︸︷
4, 4)

UUUUUUUUUUUUUUUU O8 = (

−︷ ︸︸ ︷
10, 10, 10, 10,

+︷︸︸︷
6, 6,

+︷︸︸︷
5, 5, 4, 2, 2)

iiiiiiiiiiiiiiii

UUUUUUUUUUUUUUUU O10 = (11, 11,

−︷ ︸︸ ︷
8, 8, 8, 6,

+︷︸︸︷
5, 5, 4, 2, 2)

iiiiiiiiiiiiiiii

O2,8 = (

−︷ ︸︸ ︷
10, 10, 10, 10,

+︷︸︸︷
6, 6,

+︷︸︸︷
5, 5,

+︷︸︸︷
4, 4)

TTTTTTTTTTTTTTTT O2,10 = (11, 11,

−︷ ︸︸ ︷
8, 8, 8, 6,

+︷︸︸︷
5, 5,

+︷︸︸︷
4, 4) O8,10 = (11, 11, 9, 9,

+︷︸︸︷
6, 6,

+︷︸︸︷
5, 5, 4, 2, 2)

iiiiiiiiiiiiiiii

O2,8,10 = (11, 11, 9, 9,

+︷︸︸︷
6, 6,

+︷︸︸︷
5, 5,

+︷︸︸︷
4, 4)

Lemma 10.10. Let Q = (an+1, an, an, . . . , a1, a1, a0) be a nilpotent orbit in Sp(2m,C)

(putting a0 = 0 if necessary), and Q∗ = (d2, d1, an+1, an, an, . . . , a1, a1, a0) a nilpotent

orbit in Sp(2m′,C) (with m′ > m), both satisfying (†). Let πQ and πQ∗ be the represen-

tations corresponding to Q and Q∗ using Rule (0). Consider

I = Ind
Sp(2m′)
Sp(2m)×Sp(d1+d2)(πQ ⊗

+︷ ︸︸ ︷
d2, d1)

where Xd2,d1 is the spherical unipotent representation attached to the orbit (d2, d1), then

(a) If d1 6= an+1, then I = πQ∗

(b) If d1 = an+1 = r, then I = πQ∗ ⊕ πQ∗n , where

(i) for d2 6= d1 = an+1 = r 6= an, πQ∗n = (

+︷ ︸︸ ︷
d2, r + 2,

(−1)n︷ ︸︸ ︷
r − 2, an, an . . . , a0).

(ii) for d2 = d1 = an+1 = r 6= an, πQ∗n = (r + 1, r + 1,

(−1)n︷ ︸︸ ︷
r − 2, an, . . . , a0).
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(iii) for d2 6= d1 = an+1 = r = an, then by (†), n = 1 and πQ∗n = (

+︷ ︸︸ ︷
dk+2, r + 2, r−1, r−1).

(iv) for d2 = d1 = an+1 = r = an, then by (†), n = 1 and πQ∗n = (r+1, r+1, r−1, r−1).

Proof. Part (a) is trivial, by the definition of πQ. For Part (b), we do (iii) as an

example and the other parts follows in exactly the same fashion. To simplify our

computations, let Q = (2r, 2r) and Q∗ = (2s, 2r, 2r, 2r). Then πQ = (

+︷ ︸︸ ︷
2r, 2r) and

πQ∗ = (

−︷ ︸︸ ︷
2s, 2r, 2r, 2r). The character formula of πQ is

1

2
[
∑
w

(−1)l(w)

(
(r . . . 1; (r − 1) . . . 0)

w (r . . . 1; (r − 1) . . . 0)

)
+
∑
w′

(−1)l(w
′)

(
(r . . . 0; (r − 1) . . . 1)

w′ (r . . . 0; (r − 1) . . . 1)

)
]

Now for (dk+2, dk+1) = (2s, 2r), Xdk+2,dk+1
has character formula

1

2
[
∑
w

(−1)l(w)

(
(s . . . 1; (r − 1) . . . 0)

w (s . . . 1; (r − 1) . . . 0)

)
+
∑
w′

(−1)l(w
′)

(
(s . . . 0; (r − 1) . . . 1)

w′ (s . . . 0; (r − 1) . . . 1)

)
]

Now inducing means concatenating the character formulas, which gives

I =
1

4
[

(
r . . . 1; (r − 1) . . . 0

r . . . 1; (r − 1) . . . 0

)
+

(
r . . . 0; (r − 1) . . . 1

r . . . 0; (r − 1) . . . 1

)
][

(
s . . . 1; (r − 1) . . . 0

s . . . 1; (r − 1) . . . 0

)
+

(
s . . . 0; (r − 1) . . . 1

s . . . 0; (r − 1) . . . 1

)
]

(for simplicity, the summations were hidden from the calculations)

The character formula for πQ∗ is

πQ∗ =
1

4
[

(
r . . . 1; (r − 1) . . . 0

r . . . 1; (r − 1) . . . 0

)
−

(
r . . . 0; (r − 1) . . . 1

r . . . 0; (r − 1) . . . 1

)
][

(
s . . . 1; (r − 1) . . . 0

s . . . 1; (r − 1) . . . 0

)
−

(
s . . . 0; (r − 1) . . . 1

s . . . 0; (r − 1) . . . 1

)
]
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So I − πQ∗ is equal to

1

2
[

(
r . . . 1; (r − 1) . . . 0; s . . . 0; (r − 1) . . . 1

r . . . 1; (r − 1) . . . 0; s . . . 0; (r − 1) . . . 1

)
+

(
r . . . 0; (r − 1) . . . 1; s . . . 1; (r − 1) . . . 0

r . . . 0; (r − 1) . . . 1; s . . . 1; (r − 1) . . . 0

)
]

=
1

2
[

(
r . . . 1; s . . . 0; (r − 1) . . . 0; (r − 1) . . . 1

r . . . 1; s . . . 0; (r − 1) . . . 0; (r − 1) . . . 1

)
+

(
r . . . 0; s . . . 1; (r − 1) . . . 0; (r − 1) . . . 1

r . . . 0; s . . . 1; (r − 1) . . . 0; (r − 1) . . . 1

)
]

=
1

2
[

(
s . . . 1; r . . . 0

s . . . 1; r . . . 0

)
+

(
s . . . 0; r . . . 1

s . . . 0; r . . . 1

)
]

(
r − 1 . . . 1; r − 1 . . . 0

r − 1 . . . 1; r − 1 . . . 0

)

which is preceisely πQ∗r , where Q∗r = (2s, 2r + 2, 2r − 1, 2r − 1).

Theorem 10.11. LetO = (c2k, c2k−1, . . . , c0) be a nilpotent orbit in Sp(2m,C) satisfying

(†). Then as G representations,

Ind
Sp(2m)
Sp(c2k+c2k−1)×···×Sp(c1+c2)×Sp(c0)(

+︷ ︸︸ ︷
c2k, c2k−1⊗ · · · ⊗

+︷ ︸︸ ︷
c2, c1⊗triv) ∼=

⊕
S⊂S

πS,jS

Proof. We prove by induction on the number of columns of O. The result is ob-

viously true when there are one or two columns. Suppose the Theorem holds for

O = (c2i, c2i−1, . . . , c0) (c0 can be zero), let O∗ = (c2i+2, c2i+1, . . . , c0). From now on,

we denote the ‘toppling set’ S of any nilpotent orbit P by SP , and any subset S in

SP by SP .

Suppose c2i+1 6= c2i, then the places where O∗ can topple is the same as that

of O, i.e. SO = SO∗ . And for any S ⊂ SO = SO∗ , O∗S = (c2i+2, c2i+1,OS). Lemma

10.10(a) says for a fixed S ⊂ SO = SO∗ ,

Ind(πSO,jSO ⊗
+︷ ︸︸ ︷

c2i+2, c2i+1) = πSO∗ ,jSO∗
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and hence

Ind(
+︷ ︸︸ ︷

c2i+2, c2i+1⊗ · · · ⊗ triv) = Ind[
+︷ ︸︸ ︷

c2i+2, c2i+1⊗Ind(
+︷ ︸︸ ︷

c2i, c2i−1⊗ · · · ⊗ triv)]

= Ind(
+︷ ︸︸ ︷

c2i+2, c2i+1⊗
⊕

SO⊂SO

πSO,jSO )

=
⊕

SO⊂SO

Ind(
+︷ ︸︸ ︷

c2i+2, c2i+1⊗πSO,jSO )

=
⊕

SO∗⊂SO∗

πSO∗ ,jSO∗

This finishes the proof for Condition (a). Now suppose c2i+1 = c2i = r, and SO∗ =

SO ∪ {r}. For any S ⊂ SO, Lemma 10.10(b) says

Ind(πSO,jSO ⊗
+︷ ︸︸ ︷

c2i+2, c2i+1) = πSO∗ ,jSO∗ ⊕ πSO∗∪{r},jSO∗∪{r}

by adding both sides for all subsets S ⊂ SO, we get our desired result.

Corollary 10.12. Let O = (c2k, . . . , c0) be any orbit in Sp(2m,C) satisfying (†), and

O] = ( c2k+c2k−1

2
, c2k+c2k−1

2
, c2k−2+c2k−3

2
, c2k−2+c2k−3

2
, . . . , c2+c1

2
, c2+c1

2
, c0). Then

[R[O]] : µi] = [
⊕
S⊂S

πS,jS : µi]

Proof. By Theorem 10.11,
⊕

all S πS,jS has virtual character formula equal to

(
+︷ ︸︸ ︷

c2k, c2k−1, . . . ,

+︷ ︸︸ ︷
c2, c1, c0)

(note that the character formula is the same as the case when all columns of O

are distinct). By the techniques in Chapter 9, the multiplicities of the fundamental

representations of the above character is given by

[Ind
Sp(2m,C)

GL(
c2k+c2k−1

2
,C)×···×GL(

c2+c1
2

,C)×Sp(c0,C)
(triv) : µi]
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which is precisely [R[O]] : µi] by Theorem 9.4 (or [22] directly).

Conjecture 10.13. Let O be a nilpotent orbit in Sp(2m,C) satisfying (†). Then the set

{πS,jS |S ⊂ S}

is the set of composition factors ofXO. Consequently, by Lemma 9.11 and Corollary 10.12,

[R[O]] : µi] ≥ [XO : µi] = [
⊕
S⊂S

πS,jS : µi] = [R[O]] : µi]

and the inequality will become an equality. More generally, for any nilpotent orbit O in

Sp(2m,C),

[R[O]] : µi] = [XO : µi] = [R[O] : µi]

Similarly, suppose P = (b2k+1, . . . , b0) is an orbit in O(n,C) satisfying (†) and b2k+1 6=

b2k. Then

[R[P]] : µ′i] = [XP : µ′i] = [R[P ] : µ′i]

10.2.2 General Case

Here is the statement for the general case:

Conjecture 10.14. Let O = (c2k, . . . , c0) be an orbit in Sp(2m,C). Then the character

of XO is of the form

XO
∼= (

+︷ ︸︸ ︷
c2k, c2k−1;

+︷ ︸︸ ︷
c2k−2, c2k−3; . . . ;

+︷ ︸︸ ︷
c2, c1; c0)

Let P = (b2k+1, . . . , c0) be an orbit in O(n,C). Then the character of XP is of the form

XP
∼= (

+︷ ︸︸ ︷
b2k+1;

+︷ ︸︸ ︷
b2k, b2k−1; . . . ;

+︷︸︸︷
b2, b1; b0)

93



As a consequence, the second part of Conjecture 10.13 holds, i.e. [R[O]] : µi] =

[R[O] : µi] for all orbits in Sp(2m,C), and [R[P]] : µ′i] = [R[O] : µ′i] for all orbits

P = (b2k+1, . . . , b0) in O(n,C) such that b2k+1 6= b2k.

To check the validity of the conjecture if O or P are normal, note that Lemma

8.3 says
+︷︸︸︷
c, c and IndGGL(c,C)(|det|1/2) have the same character formula. So the con-

jectured character formula for XO,

(
+︷ ︸︸ ︷

c2k, c2k−1;
+︷ ︸︸ ︷

c2k−2, c2k−3; . . . ;
+︷ ︸︸ ︷

c2, c1; c0)

will have the same character as XO and similarly for XP (Check Definition 6.1).

Therefore the Conjecture is consistent with Theorem 10.1.
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CHAPTER 11

LINKS TO DUAL PAIR CORRESPONDENCE

11.1 Langlands Parameters of Irreducible Modules

In the previous Chapters, we have seen that for a fixed infinitesimal character

λO, there is a list of all candidates of the composition factors of XO or XO. Since

they are all irreducible (gC, KC)-modules, they all appear as Langlands quotients

of a principal series representation. Since a principal series representation can

be parametrized by its infinitesimal character, we can parametrize all irreducible

(gC, KC)-modules by their infinitesimal characters, and they are called Langlands

parameters.

Example 11.1. Consider the orbit O = (6, 4, 4, 2, 2) in Sp(32,C). The composition fac-

tors of XO, written as the Langlands quotient of a principal series, is given below:

πφ = X̄

 321, 210− 1, 10

321, 10− 1− 2, 0− 1


π2,+ = X̄

 3210− 1, 210− 1

3210− 1, 10− 1− 2

 ; π2,− = X̄

 3210− 1, 210− 1

310− 1− 2, 10− 1− 2



π4,+ = X̄

 3210− 1− 2, 10, 1

3210− 1− 2, 0− 1, 1

 ; π4,− = X̄

 3210− 1− 2, 10, 1

210− 1− 2− 3, 0− 1, 1


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π2,4,+ = X̄

 3210− 1− 2, 10− 1

3210− 1− 2, 10− 1

 , π2,4,− = X̄

 3210− 1− 2 10− 1

210− 1− 2− 3 10− 1



The reason why Langlands parameter is of interest in our work is the following

Theorem:

Theorem 11.2. Let P = (b2k+1, . . . , b0) be a nilpotent orbit in O(n,C) so that P ′ =

(b2k+1 + 2, b2k+1, . . . , b0) is a nilpotent orbit in Sp(2m,C) satisfying (†). As O(n,C)-

modules,

XP ∼= R[P ] ∼=
⊕
j

θ(πj)

where the πj’s are the composition factors of XP ′ , and θ is the dual pair correspondence

given in [1, Theorem 2.8].

Proof. This is just a direct computation of the formulas given in [6] and [1].

The above Theorem shows a connection between the composition factors of

nilpotent orbits in O(n,C) and Sp(2m,C). It shows that there are some links be-

tween the construction of XO (or XO) and the dual pair correspondence between

irreducible representations of O(n,C) and Sp(2m,C).
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11.2 Lowest Harmonics and K-type Multiplicities

In this Section, we explore another link between the construction of R[O] and the

dual pair correspondence. Here is a brief recap of the basic idea of the theory:

Theorem 11.3. Let R[C2mn] be the ring of polynomial functions on a 2m× n matrix X ,

and let GL(2m,C)×O(n,C) act on R[X] by the following:

(g1, g2) · f(X) := f(g−1
1 Xg2)

where g1 ∈ GL(2m,C), g2 ∈ O(n,C) and X ∈M2m×n. Then

R[X] =
∑
τ

Hτ · C[r2
ij]

where r2
ij are the coordinate entries of the XX∗, where X∗ is defined in Definition 4.1,

and Hτ
∼= τ ⊗ τ ′ as an irreducible, finite-dimensional O(n,C) × GL(2m,C) module.

Moreover, τ ′ can be determined by τ .

Similarly, let R[C2mn] be the ring of polynomial functions on a n× 2m matrix X ′, and let

GL(n,C)× Sp(2m,C) acts on R[X ′] by the following:

(g1, g2) · f(X ′) := f(g−1
1 X ′g2)

where g1 ∈ GL(n,C), g2 ∈ Sp(2m,C) and X ′ ∈Mn×2m. Then

R[X ′] =
∑
σ

Hσ · C[s2
ij]

where s2
ij are the coordinate entries of the X ′∗X ′, where X ′∗ is defined in Definition 3.1,

and Hσ
∼= σ ⊗ σ′ as an irreducible, finite-dimensional Sp(2m,C) × GL(n,C) module.

97



Moreover, σ′ can be determined by σ.

The functions in R[X] or R[X ′] represented by Hτ or Hσ above are called lowest har-

monics, since they are solutions of some Laplacian equations by construction.

Proof. This is given in [13] or [20].

As a Corollary, the functions appearing in R[O] can all be represented by the

lowest harmonics.

Corollary 11.4. LetM and µ as in Proposition 4.4. Then the elements in the space R[M ]
〈µx1 |x∈s〉

are generated by the lowest harmonics.

Proof. Use induction on the number of matrices in the spaceM . IfM only contains

L(V1, V0), then the above Theorem says

R[M ] =
∑

Hτ · C[r2
ij]

(or Hσ ·C[s2
ij]). Therefore every element in M can be written as a sum of elements

of the form h · (c0 +
∑

i,j c
1
ijr

2
ij +h.o.t.). All the non-zero order terms are in the ideal

〈µx1 |x ∈ s〉, and hence the result follows in this case.

Suppose M = L(V1, V0)⊕ L(V2, V1)⊕ · · · ⊕ L(Vk+1, Vk), and Mi ∈ L(Vi, Vi−1). Then

R[M ]

〈µx1 |x ∈ s〉
=

R[M1, . . . ,Mk+1]

〈M1M∗
1 = 0,M∗

1M1 = M2M∗
2 , . . .M

∗
kMk = Mk+1M∗

k+1〉

(or R[M1,...,Mk+1]

〈M∗1M1=0,M1M∗1 =M∗2M2,...,MkM
∗
k=M∗k+1Mk+1〉

). For simplicity, assume the former is

true.

By induction hypothesis, R[M1,...,Mk]
〈M1M∗1 =0,M∗1M1=M2M∗2 ,...M

∗
k−1Mk−1=MkM

∗
k 〉

can be represented
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by lowest harmonics. Suppose f ∈ R[M ]/〈µx1 |x ∈ s〉, then we just need to con-

sider summands of f with coordinates in Mk+1. In particular, we only consider

f ∈ R[Mk+1] ∩R[M ]/〈µx1 |x ∈ s〉.

Suppose f is not a lowest harmonic, then by lowest weight representation the-

ory, it can be written as f =
∑
mifi, where mi are the coordinate entries of

Mk+1M
∗
k+1, and fi ∈ R[Mk+1] have smaller degree than f . However, the relation

M∗
kMk = Mk+1M

∗
k+1 means each mi can be represented as an element in R[Mk],

and hence we can inductively reduce the degree of f until it cannot be further re-

duced. The final fi’s must be lowest harmonics, and hence f can be represented by

a sum of product of an element in R[Mk] and a lowest harmonic, and by induction

hypothesis we are done.

With the above Corollary, we can now give another upper bound on the K-

type multiplicities of R[O]. The key is to understand the relation between σ and

σ′ in Theorem 11.3, as we will see in the following Corollary:

Corollary 11.5. Let O = (c2k, c2k−1 . . . c0) be a nilpotent orbit in Sp(2m,C), with c0 6=

0. Let dr =
∑r

0 cr, then [R[O] : µi] ≤ [Yk : µi], where [Yk : µi] is defined inductively by

[Yk : µi] = 0 if i is odd

[Yj+1 : µi] =

min{i,
d2j
2
−i}∑

l=0

[Yj : µ2l] if i is even

with [Y0 : µi] = δi0 for all i. If c0 = 0 then begin with Y1 instead of Y0.

Let P = (b2k+1, b2k, . . . , b0) be a nilpotent orbit in O(n,C). Then [R[P ] : µ′i] < [Zk :
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µ′i], where [Zk : µ′i] :=
∑

i−2r≥0[Yk : µi−2r] and Yk is defined by taking the orbit

(b2k, b2k−1, . . . , b0) in Sp.

Example 11.6. Let O = (8, 6, 5, 5, 4, 2, 2) in Sp(32,C). Then the algorithm above gives

the multiplicities [Y3 : µi] as listed below:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[R[O] : µi] 1 0 3 0 5 0 7 0 8 0 8 0 7 0 5 0 2

[Y : µi] 1 0 3 0 5 0 7 0 8 0 8 0 7 0 5 0 3

In this case, [R[O] : µi] ≤ [Y : µi] as expected.

Let P = (8, 8, 6, 5, 5, 4, 2, 2) in O(40,C), then the multiplicities are as follows:

i 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34-40

[Z : µ′i] 1 4 9 16 24 32 39 44 47 44 39 32 24 16 9 4 1 0

Proof. In Corollary, we know R[M ]
〈µx1 |x∈s〉

is generated by lowest harmonics, i.e. every

element in the ring can be written as a sum of products of lowest harmonics. In

terms of representation theory, the summand of elements in the ring must be of

the form

{f1 ⊗ f2 ⊗ · · · ⊗ fk|fi ∈ Hσi
∼= σi ⊗ σ′i}

Recall the Kraft-Procesi construction of R[O]:

R[O] ∼= (
R[M ]

〈µx1 |x ∈ s〉
)S

for instance, if f1⊗· · ·⊗ fk is an element in R[O], with fi ∈ σi⊗σ′i a representation

of GL×O or GL× Sp, then σ′i ⊗ σi+1, as an irreducible representation of Sp×GL
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or O × GL, must contain a trivial representation of Sp
∆
↪→ Sp × Sp ⊂ Sp × GL

(or O
∆
↪→ O × O ⊂ O × GL). Also it forces σ1

∼= triv as a representation of O or

Sp ⊂ GL.

We now start proving the Theorem for the case of Sp(2m,C) by induction on the

number of columns. The Theorem holds when there is only one column (the zero

orbit). For the case of two columns (so that c0 = 0), then elements in R[O] can be

represented by f ∈ σ ⊗ σ′, where

• σ ⊗ σ′ is an irreducible, finite dimensional representation of GL⊗ Sp, and

• σ and σ′ corresponds to each other by the dual pair correspondence, and

• σ|O(c1,C) is the trivial representation.

Therefore, σ itself must also be trivial, and by [20] σ′ is a trivial representation of

Sp. Hence the Theorem is true for nilpotent orbits with two columns.

Now suppose the Theorem is true for orbits with 2k−1 or 2k−2 columns, and sup-

pose O = (c2k, . . . , c0) with c0 6= 0 (the case is the same if c0 = 0). Let f1 ⊗ · · · ⊗ f2k

be a representative ofR[O], with fi ∈ σi⊗σ′i, with σ2k⊗σ′2k an irreducible represen-

tation of GL(d2k−1,C)× Sp(2m,C) and σ2k−1⊗ σ′2k−1 an irreducible representation

of GL(d2k−2,C)×O(d2k−1,C), satisfying:

• σ2k⊗σ′2k and σ2k−1⊗σ′2k−1 correspond to each other by dual pair correspondence.

• σ′2k−1 ⊗ σ2k contains a trivial representation of O(d2k−1,C).

By [20], if σ′2k = µi, then σ2k = ∧iCd2k−1 . By the second condition above and the

self-duality of representations orthogonal groups, σ′2k−1 = ∧iCd2k−1 . By [20] again,

σ2k−1 = ∧iCd2k−2 as a representation of GL(d2k−2,C). But upon restricted as a rep-

resentation of Sp(d2k−2,C), ∧iCd2k−2 is decomposed as µ0⊕µ2⊕· · ·⊕µmin{i,d2k−2−i}.
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Therefore the Theorem holds by induction hypothesis.

Obviously, the above argument can be extended to all irreducible K-types

other than fundamental representations. The statement for the general case is

not included for two reasons: The branching of non-fundamental representations

from GL to Sp or O is more involved, which we do not have nice recursive for-

mula as above. Also, the limitations of this upper bound can already be reflected

for fundamental representations.

Recall the construction of O] and the upper bound on K-type multiplicities of

R[O] in Chapter 9. It is natural to ask whether the upper bound we just attained is

as good as, or even better than the one we have in Lemma 9.11. Unfortunately, the

following Theorem says the bound we just obtained can never be a better bound

for the fundamental representations.

Theorem 11.7. Retain the notations in Lemma 9.11 and Corollary 11.5, then [R[O]] :

µi] ≤ [Yk : µi] for any i.

Proof. Let Xj := Ind
Sp(d2j)

GL(
d2j−d2j−2

2
)×GL(

d2j−2−d2j−4
2

)×···×Sp(d0)
(triv⊗· · ·⊗ triv). Then, by

induction in stages, Xj+1 = Ind
Sp(d2j+2)

Sp(d2j)×GL(
d2j+2−d2j

2
)
(Xj ⊗ triv), and Xk

∼= R[O]] as

in Lemma 9.11. We argue by induction on j that [Xj : µi] ≤ [Yj : µi] for all i.

It is obviously true when j = 0, since [X0 : µi] = [trivSp(d0) : µi] = δi0 = [Y0 : µi].

Suppose that for a fixed j, [Xj : µi] ≤ [Yj : µi] for all i, then we want the inequality

holds for j + 1. Without loss of generality, assume i ≤ d2j+2

2
, since µi = µd2j+2−i in
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Sp(d2j+2,C). Then

[Xj+1 : µi] = [Ind
Sp(d2j+2)

Sp(d2j)×GL(
d2j+2−d2j

2
)
(Xj ⊗ triv) : µi]

= [Xj ⊗ triv : Res
Sp(d2j+2)

Sp(d2j)×GL(
d2j+2−d2j

2
)
(∧iCd2j+2/ ∧i−2 Cd2j+2)]

=
∑
p+q=i

[Xj ⊗ triv : ∧pCd2j ⊗ ∧qCd2j+2−d2j ]

−
∑

p′+q′=i−2

[Xj ⊗ triv : ∧p′Cd2j ⊗ ∧q′Cd2j+2−d2j ]

where the second equality is from Frobenius reciprocity.

Note that [triv : ∧qCd2j+2−d2j ] = 1 iff q = i − p ≤ d2j+2 − d2j and q is even, or zero

otherwise, hence

[Xj+1 : µi] =
∑

i≥p≥i−(d2j+2−d2j)
p≡i(mod2)

[Xj : ∧pCd2j ]−
∑

i−2≥p′≥i−2−(d2j+2−d2j)
p′≡i(mod2)

[Xj : ∧p′Cd2j ]

Therefore, if i is odd, the right hand side of the equation is zero by inductive

hypothesis, and hence [Xj+1 : µi] = 0 = [Yj+1 : µi]. If i is even, then

[Xj+1 : µi] = [Xj : ∧iCd2j − ∧i−2−(d2j+2−d2j)Cd2j ] ≤ [Xj : ∧iCd2j ]

= [Xj :

min{i,
d2j
2
−i}∑

l=0

µ2l]

≤ [Yj :

min{i,
d2j
2
−i}∑

l=0

µ2l]

= [Yj+1 : µi]
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Hence the equality holds for any j, and we are done.

Remark 11.8. In fact, using the Kraft-Procesi coordinates for R[O], one can write down

the functions on O corresponding to a particular K-type. For instance, in Example 11.6,

one can write down the three highest weight functions of µ16 corresponding to the mul-

tiplicity [Y : µ16] = 3. In this particular example, one can even check that one of the

functions is precisely zero in R[O], accounting for the discrepancy between the two rows

in the Example.

11.3 Some Untied Ends

According to our Conjecture in Chapter 10, the fundamentalK-type multiplicities

of R[O] is given by that of R[O]]. On the other hand, we have another upper

bound in the above Section. Here is a Conjecture on the fundamental K-type

multiplicities mixing the two algorithms:

Conjecture 11.9. The fundamental K-type multiplicities of the ring of regular functions

of nilpotent orbit closures can be computed recursively by:

Let P = (b2k+1, b2k, . . . , b0) be a nilpotent orbit in O(n,C), then

[R[P ] : µ′2i+1] = 0

[R[P ] : µ′2i] =

min{2i,d2k−2i}∑
j=0

[R[P ′] : µj]

where P ′ = (b2k, . . . , b0), and d2k =
∑2k

0 bi (and is equal to 0 if min{2i, d2k − 2i} < 0).
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Let O = (c2k, . . . , c0) be a nilpotent orbit in Sp(2m,C), then

[R[O] : µ2i+1] = 0

[R[O] : µ2i] = [R[O′] : µ′2i]− [R[O′] : µ′2d2k−1−2i−2]

where O′ = (c2k−1, . . . , c0), and d2k−1 =
∑2k−1

0 ci. Note that [R[O′] : µ′2d2k−1−2i−2] = 0

if 2d2k−1 − 2i− 2 > d2k−1.

This algorithm gives the same result as Conjecture 10.13.

Remark 11.10. The algorithm in the above Conjecture is the same as that in Corollary

11.5, except the extra negative term −[R[O′] : µ′2d2k−1−2i−2] in the last equation.
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