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1 Density Operator

1.1 Density Operator of a Pure State

The density matrix of a pure quantum state |ψ〉 is defined as:

ρ ≡ |ψ〉 〈ψ| (1.1)

When expanding ψ in a basis |n〉, we get for the ket

|ψ〉 =
∑

n

cn |n〉 (1.2)

and for the bra, i.e. the Hermitian conjugate

〈ψ| =
∑

n

c∗n 〈n| (1.3)

⇒ ρ =
∑
n,m

cnc∗m |n〉 〈m| (1.4)

and the matrix elements of the density operator are:

ρnm ≡ 〈n| ρ |m〉 = cnc
∗
m (1.5)

The expectation value of an operator A is defined as:

〈A〉 ≡ 〈ψ|A |ψ〉 (1.6)

or, when expanding in the basis |n〉:

〈A〉 =
∑
nm

cnc
∗
mAmn (1.7)

⇒ 〈A〉 =
∑
nm

ρnmAmn (1.8)

〈A〉 = Tr (Aρ) (1.9)
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The trace of a matrix B is defined as:

Tr (B) ≡
∑

n

Bnn (1.10)

Properties of the trace:

• The trace is invariant to cyclic permutation: Tr (ABC) = Tr (CAB) = Tr (BCA)

• from which follows that the trace of a commutator vanishes: Tr ([A,B]) =

Tr (AB −BA) = Tr (AB)− Tr (BA) = 0

• The trace is invariant to unitary transformation (i.e. is invariant to the basis):

Tr (Q−1AQ) = Tr (QQ−1A) = Tr (A)

1.2 Time Evolution of the Density Operator

The time evolution of the density matrix:

d

dt
ρ =

d

dt
(|ψ〉 〈ψ|) =

(
d

dt
|ψ〉

)
· 〈ψ|+ |ψ〉 ·

(
d

dt
〈ψ|

)
(1.11)

The Schrödinger equation describes the time evolution of |ψ〉:

d

dt
|ψ〉 = − i

h̄
H |ψ〉 (1.12)

and for 〈ψ| :

d

dt
〈ψ| = +

i

h̄
〈ψ|H (1.13)

⇒ d

dt
ρ = − i

h̄
H |ψ〉 〈ψ|+ i

h̄
|ψ〉 〈ψ|H (1.14)

d

dt
ρ = − i

h̄
Hρ +

i

h̄
ρH (1.15)

d

dt
ρ = − i

h̄
[H, ρ] (1.16)

This is the Liouville-Von Neumann equation
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1.3 Density Operator of a Statistical Average

So far, we have discussed the density matrix of a pure state ρ = |ψ〉 〈ψ|. We just have

re-written the equations, but haven’t add any new physics (yet!). We can just as well

use the wavefunction directly. For example, both equations

d

dt
|ψ〉 = − i

h̄
H |ψ〉 ⇔ d

dt
ρ = − i

h̄
[H, ρ] (1.17)

are identical, as long as ρ is the density matrix of a pure state!

However, in condensed phase systems, we in general have to deal with statistical ensem-

bles, rather than pure states. There is no way to write a wavefunction of a statistical

average, but we can write the density matrix of a statistical average. Let Pk be the

probability of a system being in a pure state |ψk〉, then the density matrix is defined

as:

ρ =
∑

k

Pk · |ψk〉 〈ψk| (1.18)

with Pk ≥ 0

and
∑

k Pk = 1 (normalization)

Note (!) that this is by no means equivalent to a wavefunction of the form

θ
?
=

∑

k

Pk · |ψk〉 (1.19)

which would be still a pure state (however, not normalized)

Properties of the density matrix:

• The density matrix is Hermitian: ρnm = ρ∗mn

• The diagonal elements of ρ are non-negative: ρnn ≥ 0

⇒ ρnn can be viewed as the probability of the system to be found in state |n〉

• Tr (ρ) = 1 (normalization)

• Tr (ρ2) ≤ 1 (in general)

• Tr (ρ2) = 1 (only for a pure state)
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Since Equ. 1.9 and Equ. 1.16 are linear in ρ, we still have for the expectation value of

an operator A:

〈A〉 = Tr (Aρ) (1.20)

and for the time evolution of the density matrix:

d

dt
ρ = − i

h̄
[H, ρ] (1.21)

Example:

Let |ψ〉 be one of the basis states of a two-level system

|ψ〉 = |1〉 → ρ =

(
1 0

0 0

)
(1.22)

or

|ψ〉 = |2〉 → ρ =

(
0 0

0 1

)
(1.23)

For a coherent superposition state of both, which is still a pure state

|ψ〉 = 1
/√

2 (|1〉+ |2〉)
⇒ ρnm = cnc

∗
m =

(
1/2 1/2

1/2 1/2

)
(1.24)

On the other hand, for a statistical average of both states with P1 = P2=0.5 we obtain:

ρ =

(
1/2 0

0 1/2

)
(1.25)

As the diagonal elements are the same, the probability of finding the system in either |1〉
or |2〉 will be 0.5 in both cases, regardless whether the state is a coherent superposition

state (Equ. 1.24) or a statistical average (Equ. 1.25). However, both states are not

identical, as seen from the off-diagonal elements which describe the coherence between

both states.

Note (!) that there is no wavefunction |ψ〉 which would give

ρ
?
= |ψ〉 〈ψ| =

(
1/2 0

0 1/2

)
(1.26)
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1.4 Time Evolution of the Density Matrix of a Two-Level Sys-

tem: No Perturbation

The time evolution of the density matrix

d

dt
ρ = − i

h̄
[H, ρ] (1.27)

in the eigenstate basis of H:

H =

(
ε1 0

0 ε2

)
(1.28)

is

d

dt

(
ρ11 ρ12

ρ21 ρ22

)
= − i

h̄

[(
ε1 0

0 ε2

)(
ρ11 ρ12

ρ21 ρ22

)
−

(
ρ11 ρ12

ρ21 ρ22

)(
ε1 0

0 ε2

)]

= − i

h̄

(
0 (ε1 − ε2)ρ12

(ε2 − ε1)ρ21 0

)
(1.29)

or

ρ̇11 = 0 ⇒ ρ11(t) = ρ11(0) (1.30)

ρ̇22 = 0 ⇒ ρ22(t) = ρ22(0)

and

ρ̇12 = − i

h̄
(ε1 − ε2) ρ12 ⇒ ρ12(t) = e−i

(ε1−ε2)
h̄

tρ12(0) (1.31)

ρ̇21 = − i

h̄
(ε2 − ε1) ρ21 ⇒ ρ21(t) = e+i

(ε1−ε2)
h̄

tρ21(0)

The diagonal elements are stationary in time, and the off-diagonal elements oscillate

with the frequency splitting(ε1 − ε2)/h̄.

1.5 Density Operator in Liouville Representation

We can re-write Equ. 1.29 in the form:

d

dt




ρ12

ρ21

ρ11

ρ22


 = − i

h̄




ε1 − ε2

ε2 − ε1

0

0


 ·




ρ12

ρ21

ρ11

ρ22


 (1.32)
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which is the Liouville representation. In Liouville space, the operator ρ is written as a

vector, and the operation [H, ...] as a superoperator L.

d

dt
ρ = − i

h̄
Lρ (1.33)

or, expanded in a basis:

d

dt
ρnm = − i

h̄

∑

kl

Lmn,klρkl (1.34)

This is the Liouville Equation. L is a matrix with 4 indexes, which connects each

element of ρ (which by itself is a matrix with 2 indexes) with each element. However,

note that Equ. 1.33 is just a way of re-writing the Liouville-von Neumann equation

Equ. 1.16, but does not yet contain any new physics. As we will see in the next

paragraph, it will contain new physics when we include dephasing. Note that the

Liouville equation Equ. 1.33 is formally equivalent to the Schrödinger equation.

d

dt
|ψ〉 = − i

h̄
H |ψ〉 (1.35)

1.6 Dephasing

The simplest approach to describe dephasing phenomenologically is:

ρ̇12 = − i

h̄
(ε1 − ε2) ρ12 − Γρ12 (1.36)

ρ̇21 = − i

h̄
(ε2 − ε1) ρ21 − Γρ21

which yields:

ρ12(t) = e−i
(ε1−ε2)

h̄
te−Γtρ12(0) (1.37)

ρ21(t) = e+i
(ε1−ε2)

h̄
te−Γtρ21(0) (1.38)

There is no way to describe dephasing in the wavefunction picture. Equ. 1.36 is by no

means equivalent to an expression of the form

d

dt
|ψ〉 ?

=− i

h̄
H |ψ〉 − Γ |ψ〉 (1.39)
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which is physically not very meaningful (e.g. |ψ〉 will not stay normalized)!

Even though dephasing can be described using the density matrix (i.e. Equ. 1.36), the

much more compact and elegant way uses the Liouville representation:

d

dt
ρ = − i

h̄
Lρ− Γρ (1.40)

or, when expanding in a basis:

d

dt
ρnm = − i

h̄

∑

kl

Lnm,klρkl −
∑

kl

Γnm,klρkl (1.41)

Again, L and Γ are matrices with 4 indeces, which connect each element of ρ (which by

itself is a matrix with 2 indexes) with each element. There is no such compact matrix

representation in the density matrix picture; it can only be done for each matrix element

ρij of the density operator separately (i.e. Equ. 1.36).

1.7 Hierarchy of Representations

To summarize Sec. 1.1 to 1.6, we have introduced a hierarchy of 3 representations:

(i) The Schrödinger equation acting on wavefunctions:

d

dt
|ψ〉 = − i

h̄
H |ψ〉 (1.42)

(ii) The Liouville von Neumann equation acting on the density matrix:

d

dt
ρ = − i

h̄
[H, ρ] (1.43)

(iii) The Liouville equation acting on the density matrix using superoperators

d

dt
ρ = − i

h̄
Lρ (1.44)

From each level of this hierarchy to the next, we have in a first step just re-written the

former without adding any new physics. However, each level allows to add new physics

(we don’t necessarily have to do, but we will). For example, the physics of a density

matrix of a pure state is the same as using the wavefunction directly. However, intro-

ducing the density matrix allows describing statistical averages, which is impossible in

the wavefunction picture. The same is true for the step to the Liouville representation,

which allows a much more compact description of dephasing.
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1.8 Time Evolution of the Density Matrix of a Two-Level Sys-

tem: Optical Bloch Equation

Let the Hamiltonian be the system Hamiltonian H0 plus an interaction with an optical

light field:

H = H0 − E(t) · µ (1.45)

with

E(t) ≡ 2E0 cos (ωt) = E0

(
eiωt + e−iωt

)
(1.46)

which in the eigenstate basis of H0 is:

H = ε1 |1〉 〈1|+ ε2 |2〉 〈2| − µ · E(t) (|1〉 〈2|+ |2〉 〈1|) (1.47)

or

H =

(
ε1 −µE(t)

−µE(t) ε2

)
(1.48)

Here, µ is the so-called transition dipole operator, which in the presence of an external

electric field E(t) connects the two states |1〉 and |2〉. The Liouville von Neumann

equation

d

dt
ρ = − i

h̄
[H, ρ] (1.49)

reads in Liouville space:

d

dt




ρ12

ρ21

ρ11

ρ22


 = − i

h̄




ε1 − ε2 0 −µE(t) µE(t)

0 ε2 − ε1 µE(t) −µE(t)

−µE(t) µE(t) 0 0

µE(t) −µE(t) 0 0


 ·




ρ12

ρ21

ρ11

ρ22


 (1.50)

This is the so-called optical Bloch Equation. In the field free case, we have seen that

(see. Equ. 1.31)

ρ12(t) = e−i
(ε1−ε2)

h̄
tρ12(0) (1.51)

ρ21(t) = e+i
(ε1−ε2)

h̄
tρ21(0) (1.52)
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Therefore, it is useful to transform into the rotating frame:

ρ̃12(t) = e−iωtρ12(t) (1.53)

ρ̃21(t) = e+iωtρ21(t) (1.54)

and for the diagonal elements:

ρ̃11(t) = ρ11(t) (1.55)

ρ̃22(t) = ρ22(t) (1.56)

ω is the carrier frequency of the electric field, which will be near resonance ω ≈ ε1−ε2.

In that way, we are separating off the oscillating part exp (−iωt) and keep only the

slowly varying envelope ρ̃(t). When transforming Equ. 1.50 into the rotating frame we

obtain:

d

dt




ρ̃12

ρ̃21

ρ̃11

ρ̃22


 = −i




∆ 0 −Ω̃∗(t) Ω̃∗(t)
0 −∆ Ω̃(t) −Ω̃(t)

−Ω̃∗(t) Ω̃(t) 0 0

Ω̃∗(t) −Ω̃(t) 0 0


 ·




ρ̃12

ρ̃21

ρ̃11

ρ̃22


 (1.57)

with ∆ = (ε1 − ε2)/h̄ + ω

Ω̃(t) = Ω · (1 + ei2ωt
)

= Ω · (e−iωt + eiωt
)
eiωt (1.58)

and the Rabi frequency

Ω =
µ · E0

h̄
(1.59)

All frequencies are shifted by +ω when transforming into the rotating frame. Hence,

in the rotating frame, there is a term Ω constant in time and a term oscillating at

twice the frequency Ω · ei2ωt. In other words: As we can separate the real electric field

2E0 cos (ωt) into two terms E0 (eiωt + e−iωt) with positive and negative frequency, we

will have one term which rotates in the same direction as the rotating frame, while

the second one rotates in opposite direction. When integrating Equ. 1.57, the quickly

oscillating term Ω · ei2ωt will have essentially no effect. This is since an integral of the
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form
∫

dt · ei2ωtf(t) will be negligibly small, when f(t) is slowly varying in time; slower

than ei2ωt.

Hence, we can replace Ω̃(t) = Ω, and the Hamiltonian in Equ. 1.57 is time-independent.

This is the rotating wave approximation (RWA), which is valid when the electric field

is weak enough that the Rabi frequency Ω is slower than the carrier frequency ω. In

the RWA, the problem reduces to that of constant coupling:

d

dt
ρ̃ = − i

h̄
[Heff , ρ̃] (1.60)

with Heff =

(
h̄∆ h̄Ω

h̄Ω 0

)

In the following figures, the most important situations are discussed. For resonant

pumping (∆=0), we observe Rabi-oscillations with frequency Ω for the diagonal el-

ements of the density matrix ρ11 and ρ22 (for the initial condition ρ11(0) = 1 and

ρ22(0) = 0):

0

1 ρ
22

ρ11

 

 

 

Time

which are less pronounced when the pump field is non-resonant (∆ 6=0):

0

1

ρ
22

ρ11

 

 

 

Time

When we add dephasing (Γ << Ωp):
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0

1
ρ

22

ρ
11

 

 

 

Time

The system looses coherence, i.e. the off-diagonal elements ρ̃12(t) and ρ̃21(t) die out and

the diagonal elements ρ11(t) and ρ22(t) trend to 1/2. In the case of strong dephasing

(Γ >> Ωp):

0

1

ρ22

ρ11

 

 

 

Time

the Bloch oscillations disappear. This is the most common situation in condensed phase

systems. For example, the statement found in laser text books: ‘One cannot generate

an inversion in a 2-level system by optical pumping’ is true in the strong-dephasing

limit. However, when pumping strong enough that the Rabi oscillation is faster than

dephasing, one can in fact generate an inversion in a two level system. In NMR, this

is commonly done with π-pulses.

Remark: The Bloch equations have originally been formulated for the case of a clas-

sical spin-vector:

d

dt
~M = −γ ~B × ~M (1.61)

One can show that this equation is equivalent to the optical Bloch equation 1.50 with:

Mz = ρ11 − ρ22 (1.62)

Mx = ρ21 + ρ12

My = ρ21 − ρ12

This connection is very useful since the spin-vector moves in space in a rather intuitive

way (like a spinning top).
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2 Perturbative Expansion

2.1 Motivation: Non-Perturbative Expansion

We can formally integrate the Schrödinger equation:

d

dt
|ψ(t)〉 = − i

h̄
H(t) |ψ(t)〉 (2.1)

with the Hamiltonian H(t) being the sum of the system Hamiltonian H0 and the electric

field of a light pulse E(t) · µ interacting with the system:

H(t) = H0 + E(t) · µ (2.2)

This yields:

|ψ(t)〉 = |ψ(t0)〉 − i

h̄

t∫

t0

dτH(τ) |ψ(τ)〉 (2.3)

We can solve this equation iteratively by plugging it into itself:

|ψ(t)〉 = |ψ(t0)〉 − i

h̄

t∫

t0

dτH(τ) |ψ(t0)〉+

(
− i

h̄

)2
t∫

t0

dτ2

τ2∫

t0

dτ1H(τ2)H(τ1) |ψ(τ1)〉

(2.4)

and so on:

|ψ(t)〉 = |ψ(t0)〉+
∞∑

n=1

(
− i

h̄

)n
t∫

t0

dτn

τn∫

t0

dτn−1 . . .

τ2∫

t0

dτ1 (2.5)

H(τn)H(τn−1) . . . H(τ1) |ψ(t0)〉

Likewise, we can expand the density matrix, the time evolution of which is described

by:

d

dt
ρ = − i

h̄
[H, ρ] (2.6)

which yields:

ρ(t) = ρ(t0) +
∞∑

n=1

(
− i

h̄

)n
t∫

t0

dτn

τn∫

t0

dτn−1 . . .

τ2∫

t0

dτ1 (2.7)

[H(τn), [H(τn−1), . . . [H(τ1), ρ(t0)] . . .]]
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This expression looks very similar to our final expression Equ. 2.37. However, it is

not very useful since it would not converge (not at all, or extremely slowly). The

reason is, we did not make use of any knowledge we in general have about the system.

It is a non-perturbative expansion. In general, the interaction with the electric field

E(t) ·µ will be much weaker than the internal fields of the molecule, and hence, can be

treated perturbatively assuming we know the stationary states of the molecule itself

(even though in general the quantum mechanics of the molecule itself is extremely

complicated, we often just pretend that we know it by writing down eigenstates |i〉
with eigenenergies εi). To get to a perturbative expansion, we have to introduce the

concepts of (i) the time evolution operator and the (ii) interaction picture.

2.2 Time Evolution Operator

Let the Hamiltonian H be time-independent. Then, the time evolution operator U(t,t0)

is defined as:

|ψ(t)〉 ≡ U(t, t0) |ψ(t0)〉 (2.8)

Propagating a wavepacket in an eigenstate basis |n〉 yields:

|ψ(t)〉 =
∑

n

e−i εn
h̄

(t−t0) |n〉 〈n | ψ(t0)〉 (2.9)

⇒ U(t, t0) =
∑

n

e−i εn
h̄

(t−t0) |n〉 〈n| (2.10)

or, in a basis free representation:

U0(t, t0) = e−
i
h̄

H·(t−t0) (2.11)

where the exponential function of an operator A is defined by its Taylor expansion:

eA ≡ 1 + A +
A2

2
+

A3

6
+ ... = 1 +

∞∑
n=1

An

n!
(2.12)

Note that Equ. 2.11 is only valid for a time-independent Hamiltonian H.

When introducing the definition of the time evolution operator into the Schrödinger

equation, we obtain for its time derivative:

d

dt
|ψ(t)〉 = − i

h̄
H |ψ(t)〉 (2.13)

d

dt
U(t, t0) |ψ(t0)〉 = − i

h̄
H · U(t, t0) |ψ(t0)〉
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Since this must be valid for any wavefunction |ψ(t0)〉, we get

d

dt
U(t, t0) = − i

h̄
H · U(t, t0) (2.14)

Properties of the Time Evolution Operator:

• U(t0, t0) = 1

• U(t2, t0) = U(t2, t1)U(t1, t0)

• U is unitary: U †(t, t0)U(t, t0) = 1 since U †(t, t0) = U(t0, t)

• U(t,t0) depends only on the time interval t− t0 and is often replaced by G(t− t0)

2.3 Interaction Picture

Let the Hamiltonian now be time-dependent, however, assuming that the time-dependent

part is weak and can be treated perturbatively:

H(t) = H0 + H ′(t) (2.15)

The time evolution operator with respect to the system Hamiltonian H0 is:

U0(t, t0) = e−
i
h̄

H0·(t−t0) (2.16)

We define the wavefunction in the interaction picture:

|ψ(t)〉 ≡ U0(t, t0) |ψI(t)〉 (2.17)

In the following, the subscript I denotes interaction picture. |ψ(t)〉 is the wavefunction

under subject of the full Hamiltonian H(t), whereas U0(t, t0) is the time evolution

operator with respect to the system Hamiltonian H0 only. Hence, the time dependence

of |ψI(t)〉 describes the time evolution of the wavefunction caused by the difference

between H(t) and H0, i.e the weak perturbation H ′(t). If that difference is zero,

|ψI(t)〉 will be constant in time:

|ψI(t)〉 = |ψ(t0)〉 (2.18)
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When introducing Equ. 2.17 into the Schrödinger equation:

− i

h̄
H |ψ(t)〉 =

d

dt
|ψ(t)〉 (2.19)

− i

h̄
H(t) · U0(t, t0) |ψI(t)〉 =

d

dt
(U0(t, t0) |ψI(t)〉)

=

(
d

dt
U0(t, t0)

)
· |ψI(t)〉+ U0(t, t0)

(
d

dt
|ψI(t)〉

)

= − i

h̄
H0 · U0(t, t0) · |ψI(t)〉+ U0(t, t0) ·

(
d

dt
|ψI(t)〉

)

since H ′(t) = H(t)−H0 we get:

− i

h̄
H ′(t) · U0(t, t0) |ψI(t)〉 = U0(t, t0) ·

(
d

dt
|ψI(t)〉

)
(2.20)

or

− i

h̄
U †

0(t, t0)H
′(t) · U0(t, t0) |ψI(t)〉 =

d

dt
|ψI(t)〉 (2.21)

⇒ d

dt
|ψI(t)〉 = − i

h̄
H ′

I(t) |ψI(t)〉 (2.22)

where the weak perturbation H ′
I in the interaction picture is defined as:

H ′
I(t) = U †

0(t, t0)H
′(t)U0(t, t0) (2.23)

or

H ′
I(t) = e

i
h̄

H0·(t−t0)H ′(t)e−
i
h̄

H0·(t−t0) (2.24)

2.4 Remark: Heisenberg Picture

The interaction picture is a representation between the Schrödinger picture and the

Heisenberg picture. The interaction picture adopts the Schrödinger picture for the

small perturbation H ′, while it uses the Heisenberg picture for the larger system Hamil-

tonian H0.
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In the Schrödinger picture, wavefunctions are time-dependent and follow the time-

dependent Schrödinger equation:

d

dt
ψ(t) = − i

h̄
Hψ(t) (2.25)

⇒ Ψ(t) = e−
i
h̄

H·(t−t0)Ψ(t0)

Operators, which are used to describe experimental observables, are time independent.

The time-dependence of an experimental observation is given by the expectation value

of the corresponding (time-independent) operator A:

〈A〉(t) = 〈Ψ(t)|A|Ψ(t)〉 (2.26)

where the time-dependence enters through the time-dependent wavefunction.

In the Heisenberg picture, in contrast, operators are time-dependent, and follow the

equation:

d

dt
Ah(t) = − i

h̄
[H,AH(t)] (2.27)

with

AH(t) = e
i
h̄

H·(t−t0)Ae−
i
h̄

H·(t−t0) (2.28)

One can show that the Heisenberg wavefunction is just the normal wavefunction at t0,

ΨH = Ψ(t0), and hence, is time-independent. Of course, both pictures are identical,

and just a matter of the point of view. In particular, we get for the outcome of an

experiment:

〈Ψ(t)|A|Ψ(t)〉 = 〈ΨH |AH(t)|ΨH〉 (2.29)

2.5 Perturbative Expansion of the Wavefunction

Equ. 2.22 is formally equivalent to the Schrödinger equation Equ. 2.1, and can be solved

iteratively along the same lines as in Sec. 2.1:

|ψI(t)〉 = |ψI(t0)〉 +
∞∑

n=1

(
− i

h̄

)n
t∫

t0

dτn

τn∫

t0

dτn−1 . . .

τ2∫

t0

dτ1 (2.30)

H ′
I(τn)H ′

I(τn−1) . . . H ′
I(τ1) |ψI(t0)〉
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The important difference now is that this is an expansion in powers of the weak per-

turbation H’(t), and not the full Hamiltonian H(t). Going back to the Schrödinger

picture, we obtain when using |ψ(t)〉 ≡ U0(t, t0) |ψI(t)〉 and |ψ(t0)〉 = |ψI(t0)〉:

|ψ(t)〉 =
∣∣ψ(0)(t)

〉
+

∞∑
n=1

(
− i

h̄

)n
t∫

t0

dτn

τn∫

t0

dτn−1 . . .

τ2∫

t0

dτ1 (2.31)

U0(t, t0)H
′
I(τn)H ′

I(τn−1) . . . H ′
I(τ1) |ψ(t0)〉

where
∣∣ψ(0)(t)

〉 ≡ U0(t, t0) |ψ(t0)〉 is the zero-order wavefunction, i.e. the wavefunction

without subject to the perturbation H’(t). When writing the interaction Hamiltonian

in the Schrödinger picture using H ′
I(t) = U †

0(t, t0)H
′(t)U0(t, t0), we obtain:

|ψ(t)〉 = |ψ(t0)〉+
∞∑

n=1

(
− i

h̄

)n
t∫

t0

dτn

τn∫

t0

dτn−1 . . .

τ2∫

t0

dτ1 (2.32)

U0(t, τn)H ′(τn)U0(τn, τn−1)H
′(τn−1) . . . U0(τ2, τ1)H

′(τ1)U0(τ1, t0) |ψ(t0)〉

where we have used U(τn, τn−1) = U(τn, t0)U(t0, τn−1) = U(τn, t0)U
†(τn−1, t0). This ex-

pression has an intuitive physical interpretation: The system propagates under subject

of the system Hamiltonian H0 (i.e. propagates freely) until time τ 1, described by the

time evolution operator U(τ 1,t0). At time τ 1, it interacts with the perturbation H’(τ 1).

Subsequently, it again propagates freely until time τ 2, and so on. This interpretation

leads directly to the graphic representation of Feynman diagrams:

time t

τ1

τ3

τ2

where the vertical arrow depicts the time axis, and the dotted arrows depict interaction

with the perturbation H’ at the time points τ 1,, τ 2 and so on. The perturbative

expansion of a wavefunction is represented by a single sided Feynman diagram.

2.6 Perturbative Expansion of the Density Matrix

Along the same lines, we can develop a power expansion of the density matrix. To this

end, we first define the density matrix in the interaction picture:

|ψ(t)〉 〈ψ(t)| = U0(t, t0) · |ψI(t)〉 〈ψI(t)| · U †
0(t, t0) (2.33)
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or

ρ(t) = U0(t, t0) · ρI(t) · U †
0(t, t0) (2.34)

Since this expression is linear in ρ, it also holds for a statistical average ρ =
∑
k

Pk |ψ〉 〈ψ|.
Since the time evolution of the wavefunction in the interaction picture |ψI(t)〉 is for-

mally equivalent to the Schrödinger equation (see Equ. 2.22), the same is true for the

density matrix in the interaction picture, for which we obtain an equation which is

formally equivalent to the Liouville von Neumann equation

d

dt
ρI(t) = − i

h̄
[H ′

I(t), ρI(t)] (2.35)

Its power expansion is (see Equ. 2.7)

ρI(t) = ρI(t0) +
∞∑

n=1

(
− i

h̄

)n
t∫

t0

dτn

τn∫

t0

dτn−1 . . .

τ2∫

t0

dτ1 (2.36)

[H ′
I(τn), [H ′

I(τn−1), . . . [H
′
I(τ1), ρI(t0)] . . .]]

Going back to the Schrödinger picture yields:

ρ(t) = ρ(0)(t) +
∞∑

n=1

(
− i

h̄

)n
t∫

t0

dτn

τn∫

t0

dτn−1 . . .

τ2∫

t0

dτ1 (2.37)

U0(t, t0) · [H ′
I(τn), [H ′

I(τn−1), . . . [H
′
I(τ1), ρ(t0)] . . .]] · U †

0(t, t0)

The interaction Hamiltonian is still in the interaction picture and contains both the

perturbation H’(t) and time evolution operators, similar to Equ. 2.32. However, since

the density matrix contains a ket and a bra, the interaction can be either from the left

or the right. We will see this in Sec. 3.1 when writing the commutators explicitly.

When we assume that ρ(t0) is an equilibrium density matrix it does not evolve in time

under subject of the system Hamiltonian H0, and we can send t0 → −∞. Furthermore,

we now specify the perturbation

H ′(t) = E(t) · µ (2.38)

and get:

ρ(t) = ρ(0)(−∞) +
∞∑

n=1

ρ(n)(t) (2.39)
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with the nth-order density matrix given by

ρ(n)(t) =

(
− i

h̄

)n
t∫

−∞

dτn

τn∫

−∞

dτn−1 . . .

τ2∫

−∞

dτ1E(τn)E(τn−1) · . . . · E(τ1) · (2.40)

U0(t, t0) · [µI(τn), [µI(τn−1), . . . [µI(τ1), ρ(−∞)] . . .]] · U †
0(t, t0)

Here, the dipole operator in the interaction picture is defined as:

µI(t) = U †
0(t, t0)µU0(t, t0) (2.41)

In the Schrödinger picture, the dipole operator µ is time-independent. It is time-

dependent in the interaction picture since the system is evolving in time under subject

of the system Hamiltonian H0. The subscript I (which denotes interaction picture)

is commonly discarded, and Schrödinger picture versus interaction picture is specified

implicitly by writing either µ or µ(t), respectively.

2.7 Short Excursion into Nonlinear Optics

The electric displacement is

D = ε0E + P (2.42)

where E is the incident electric field and P the macroscopic polarization as a response

to it. In linear optics, the polarization depends linearly on the electric field E:

P = ε0χ
(1) · E (2.43)

with χ(1) the linear susceptibility. However, for high enough electric fields this is no

longer true. Therefore, we expand the polarization in powers of the electric field E:

P = ε0

(
χ(1) · E + χ(2) · E · E + χ(3) · E · E · E + . . .

)
(2.44)

with the nonlinear susceptibilities χ(n). Taking into account that the electric field is in

fact a vector, the linear and nonlinear susceptibilities become tensors. In media with

inversion symmetry, such as isotropic media, even-order susceptibilities vanish. This is

since the polarization must change its sign when the optical electric fields are reversed.

Therefore, for most media the lowest order nonlinearity is the 3rd-order nonlinearity.
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The macroscopic polarization is given by the expectation value of the dipole operator

µ:

P (t) = Tr(µρ(t)) ≡ 〈µρ(t)〉 (2.45)

where 〈. . .〉 is the expectation value Equ. 1.9). For example, we get for a two level

system:

µ =

(
0 µ12

µ21 0

)
(2.46)

and

〈µρ(t)〉 =

〈(
0 µ12

µ21 0

)(
ρ11 ρ12

ρ21 ρ22

)〉
= ρ12µ21 + ρ21µ12 (2.47)

Hence, off-diagonal elements of the density matrix give rise to a macroscopic polariza-

tion and emit a light field.

When now collecting the terms in powers of the electric field E(t) (compare Equ. 2.40

and 2.44), we obtain for the nth-order polarization:

P (n)(t) =
〈
µρ(n)(t)

〉
(2.48)

2.8 Nonlinear Polarization

When inserting Equ. 2.40 into Equ. 2.48, we obtain for the nth order polarization

P (n)(t) =

(
− i

h̄

)n
t∫

−∞

dτn

τn∫

−∞

dτn−1 . . .

τ2∫

−∞

dτ1E(τn)E(τn−1) · . . . · E(τ1) (2.49)

〈µ(t) · [µ(τn), [µ(τn−1), . . . [µ(τ1), ρ(−∞)] . . .]]〉

Here, we made use of the definition of the dipole operator in the interaction picture

(discarding the subscript I) µ(t) = U †
0(t, t0)µU0(t, t0) and the invariance of the trace

〈. . .〉 to cyclic permutation. Frequently, a different set of time variables is used:

τ1 = 0

t1 = τ2 − τ1

t2 = τ3 − τ2

...

tn = t− τn

(2.50)
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We can choose τ1 = 0 since the time-zero point is arbitrary. The time variables τndenote

absolute time points, while the time variables t1 denote time intervals:

τn

t1 t2

time tτ1=0 τ2 τ3

tn

Transforming Equ. 2.49 into this set of time variables gives:

P (n)(t) =

(
− i

h̄

)n
∞∫

0

dtn

∞∫

0

dtn−1 . . .

∞∫

0

dt1 (2.51)

E(t− tn)E(t− tn − tn−1) · . . . · E(t− tn − tn−1 − . . .− t1) ·
〈µ(tn + tn−1 + . . . t1) [µ(tn−1 + . . . + t1), . . . [µ(0), ρ(−∞)] . . .]〉

Hence, the nth-order nonlinear response can be written as a convolution of n electric

fields

P (n)(t) =

∞∫

0

dtn

∞∫

0

dtn−1 . . .

∞∫

0

dt1 (2.52)

E(t− tn)E(t− tn − tn−1) · . . . · E(t− tn − . . .− t1) · S(tn, tn−1, . . . , t1)

with the nth-order nonlinear response function:

S(n)(tn, . . . t1) =

(
− i

h̄

)n

〈µ(tn + . . . t1) [µ(tn−1 + . . . + t1), . . . [µ(0), ρ(−∞)] . . .]〉
(2.53)

The response function is defined for positive times tn only. Note the different role of

the last interaction µ(tn + tn−1 + . . . t1) compared to the previous interactions: The

interactions at times 0, t1, ... and tn−1+...+t1 generate a non-equilibrium density

matrix ρ(n), whose off-diagonal elements at time tn + tn−1+...+t1 emit a light field.

Only the first n interactions are part of the commutators, while the last is not.
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3 Double Sided Feynman Diagrams

3.1 Liouville Pathways

When writing the cummutator in Equ. 2.53

〈µ(tn + tn−1 + . . . t1) [µ(tn−1 + . . . + t1), . . . [µ(0), ρ(−∞)] . . .]〉 (3.1)

explicitly, we obtain 2n terms with various numbers of interactions acting either on the

left (i.e. on the ket) or the right (i.e. on the bra) of the density matrix. Within these

terms there are pairs of terms which are the conjugate complex of each other. Hence,

it is sufficient to consider only 2n−1 terms. We illustrate this for the most important

cases, namely linear and 3rd order response. The linear response function is:

S(1)(t1) = − i

h̄
〈µ(t1) [µ(0), ρ(−∞)]〉 = (3.2)

− i

h̄
(〈µ(t1)µ(0)ρ(−∞)〉 − 〈µ(t1)ρ(−∞)µ(0)〉) =

− i

h̄
(〈µ(t1)µ(0)ρ(−∞)〉 − 〈ρ(−∞)µ(0)µ(t1)〉) =

− i

h̄
(〈µ(t1)µ(0)ρ(−∞)〉 − 〈µ(t1)µ(0)ρ(−∞)〉∗)

Here, we have made use of the invariance of the trace on cyclic permutation and, in

the last step, of:

〈
(µ(t1)µ(0)ρ(−∞))†

〉
=

〈
ρ†(−∞)µ†(0)µ†(t1)

〉
= 〈ρ(−∞)µ(0)µ(t1)〉 (3.3)

since all operators are Hermitian (they are operators of observables).The Feynman

diagrams corresponding to both terms are:

0

t1

)()0()( 1 −∞ρµµ t )()0()( 1tµµρ −∞−

The left vertical line denotes the time evolution of the ket of the density matrix, and

the right arrow that of the bra. The interactions with the dipole operator are indicated
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by arrows acting either on the ket or the bra (i.e. from the left or the right). The right

diagram is the conjugate complex of the left, and therefore is not shown explicitly in

general. By convention, we will show only diagrams with the last interaction emitting

form the ket (i.e. the left side). Note the different role of the first interaction, which

is responsible for the perturbation of the density matrix, while the last one originates

from (see Equ. 2.48)

P (n)(t) =
〈
µρ(n)(t)

〉
(3.4)

and represents emission of light from the non-equilibrium density matrix. This differ-

ence is generally indicated by using a different arrow in the Feynman diagrams.

For the 3rd order nonlinear response we get:

〈µ(t3 + t2 + t1) [µ(t2 + t1), [µ(t1), [µ(0), ρ(−∞)]]]〉 = (3.5)

= 〈µ(t3 + t2 + t1)µ(t2 + t1)µ(t1)µ(0)ρ(−∞)〉 ⇒ R4

−〈µ(t3 + t2 + t1)µ(t2 + t1)µ(t1)ρ(−∞)µ(0)〉 ⇒ R∗
1

−〈µ(t3 + t2 + t1)µ(t2 + t1)µ(0)ρ(−∞)µ(t1)〉 ⇒ R∗
2

+ 〈µ(t3 + t2 + t1)µ(t2 + t1)ρ(−∞)µ(0)µ(t1)〉 ⇒ R3

−〈µ(t3 + t2 + t1)µ(t1)µ(0)ρ(−∞)µ(t2 + t1)〉 ⇒ R∗
3

+ 〈µ(t3 + t2 + t1)µ(t1)ρ(−∞)µ(0)µ(t2 + t1)〉 ⇒ R2

+ 〈µ(t3 + t2 + t1)µ(0)ρ(−∞)µ(t1)µ(t2 + t1)〉 ⇒ R1

−〈µ(t3 + t2 + t1)ρ(−∞)µ(0)µ(t1)µ(t2 + t1)〉 ⇒ R∗
4

Along the same lines as in Equ. 3.2 we see that the terms R∗
1, R∗

2, R∗
3 and R∗

4 are the

conjugate complex of R1,R2, R3 and R4. The corresponding Feynman diagrams are:

0

t1

t1+t2

t1+t2+t3

R1 R2 R3 R4

Feynman Diagrams: Rules

1. Vertical lines represent the time evolution of the ket and bra of the density matrix.

Time is running from the bottom to the top.

2. Interactions with the light field are represented by arrows. The last interaction,

which originates from the trace P (n)(t) =
〈
µρ(n)(t)

〉
, is different in character and

hence is often indicated using a different arrow.
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3. Each diagram has a sign (−1)n, where n is the number of interactions from the

right. This is since each time an interaction is from the right in the commutator

it carries a minus sign. Since the last interaction is not part of the commutator,

it is not counted in this sign-rule.

4. An arrow pointing to the right represents an electric field with e−iωt+ikr, while

an arrow pointing to the left represents an electric field with e+iωt−ikr. This rule

expresses the fact that the real electric field E(t) = 2E0(t)·cos(ωt−kr)can be sep-

arated into positive and negative frequencies E(t) = E0(t)·
(
e−iωt+ikr + e+iωt−ikr

)
.

The emitted light, i.e. the last interaction, has a frequency and wavevector which

is the sum of the input frequencies and wavevectors (considering the appropriate

signs).

5. An arrow pointing towards the system represents an up-climbing of the corre-

sponding side of the density matrix, while an arrow pointing away represents a

de-excitation. This rule is a consequence of the rotating wave approximation (see

below). Since the last interaction corresponds to an emission of light, it always

points away from the system.

6. The last interaction must end in a population state.

In addition to the 2n−1 terms of the nonlinear response function, the electric field

separates into many terms. To illustrate this, we consider the 3rd order response as an

example:

P (3)(t) =

∞∫

0

dt3

∞∫

0

dt2

∞∫

0

dt1E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1)S(t3, t2, t1)

(3.6)

Let’s assume the electric field originates from 3 laser pulses centered at time t=0 and

after delay times τ and T :

t0 τ T

t1 t2 t3

Each electric field which enters Equ. 3.6 is the sum of the electric fields of 3 laser pulses:

E(t) = 2E1(t) · cos(ωt) + 2E2(t) · cos(ωt) + 2E3(t) · cos(ωt) = (3.7)

= E1(t) ·
(
e−iωt + e+iωt

)
+ E2(t) ·

(
e−iωt + e+iωt

)
+ E3(t) ·

(
e−iωt + e+iωt

)
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and contains 6 terms. Hence, the expression in Equ. 3.6

E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1) · S(t3, t2, t1) (3.8)

contains in total 6·6·6·4=864 terms! Fortunately, there are experimental tricks to

reduce the number of terms considerably:

• Time ordering

• Rotating Wave Approximation

• Phase Matching

If all these tricks are applied at the same time, one may reduce the number of terms

to 2.

3.2 Time Ordering and Semi-Impulsive Limit

When the laser pulses E1(t), E2(t) and E3(t) are shorter than the time separation

between them, they do not overlap in time and we say we have strict time ordering.

In that case, we know for sure that the first interaction µ(0) originates from the pulse

E1(t), µ(t1) from E2(t), and so on. This reduces the number of terms from 6·6·6·4 to

2·2·2·4=32.

In non-linear, time-resolved spectroscopy, we often use the semi-impulsive limit. In

this limit, the laser pulses are assumed to be short compared with any time scale of

the system but long compared to the oscillation period of the light field. Hence, the

envelopes of the pulses are approximated by δ-function.

E1(t) = E1δ(t)e
±iωt∓kr

E2(t) = E2δ(t− τ)e±iωt∓kr (3.9)

E2(t) = E2δ(t− τ − T )e±iωt∓kr

while the pulses still carry a carrier frequency and a wavevector, which we will be needed

to calculate the frequency and the wavevector of the emitted light (wave matching

condition rule 4). In this limit, we obtain for the 3rd order response

P (3)(t) = S(t, T, τ) (3.10)

which reduces the computer effort to simulate the nonlinear polarisation considerably.
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3.3 Rotating Wave Approximation

When the rotating wave approximation (RWA) can be applied, only terms containing

either e−iωtor eiωt will contribute, but not both (see Sec. 1.8). When we have at the

same time strict time ordering of the 3 interacting pulses, the rotating wave approxi-

mation reduces the number of terms to 1·1·1·4. We shall illustrate the rotating wave

approximation for linear response, whose response function

〈µ(t1)µ(0)ρ(−∞)〉 (3.11)

is constructed in the following way:

• nothing happens until t=0.

• At t=0, we generate a ρ10 off-diagonal matrix element of the density matrix. The

probability that this happens is proportional to the transition dipole moment

µ10.

ρ10(0) ∝ µ10 (3.12)

• We have calculated in Equ. 1.36 how this off-diagonal density matrix element

evolves in time:

⇒ ρ10(t) ∝ µ10e
−i

(ε1−ε0)
h̄

t1e−Γt1 (3.13)

• At time t1, the off-diagonal matrix element emits a light field which is again

proportional to µ10 (see Equ. 2.45):

S(1)(t1) ∝ µ2
10e

−i
(ε1−ε0)

h̄
t1e−Γt1 (3.14)

• For the 1st order polarization, we have to calculate:

P (1)(t) = − i

h̄

∞∫

0

dt1E(t− t1)S
(1)(t1) (3.15)

Let’s assume the electric field

E(t) = 2E0(t) cos (ωt) = E0(t) ·
(
e−iωt + e+iωt

)
(3.16)
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is resonant with the system:

ω =
ε1 − ε0

h̄
(3.17)

Then, we get:

P (1)(t) = − i
h̄
µ2

10e
−iωt

∞∫
0

dt1E0(t− t1)e
−Γt1

− i
h̄
µ2

10e
+iωt

∞∫
0

dt1E0(t− t1)e
−Γt1e−i2ωt1

(3.18)

The integrand in the first term is slowly varying as a function of time t1, while that of

the second is highly oscillating. The second integral therefore is essentially zero and can

in general be neglected. This is the rotating wave approximation (RWA), which is valid

for near resonance conditions ω ≈ (ε1 − ε0)/h̄ and when the envelope of the electric

field E0(t) is slowly varying in time (slower than the carrier frequency ω). In other

words: In principle, each diagram has two possibilities to interact with the electric

field, either with e−iωt or eiωt. We indicate this using direction of the arrows in the

Feynman diagram. The two terms in Equ. 3.18 correspond to the following diagrams

(rule 4):

tie ω− tie ω

00 00

We have seen that the second diagram does not survive the rotating wave approxi-

mation. This leads to an intuitive physical interpretation: In the first diagram, the

ground state density matrix |0〉 〈0| is excited on the left side (light is going in) to yield

|1〉 〈0|. The second diagram would correspond to a de-excitation of the ground state,

which is of course not possible.

3.4 Phase Matching

When adding wavevectors to the electric fields

E(t) = E1(t)
(
e−iωt+ikr + e+iωt−ikr

)
+ E2(t)

(
e−iωt+ikr + e+iω−ikrt

)
+ (3.19)

E3(t)
(
e−iωt+ikr + e+iωt−ikr

)
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the product

E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1) (3.20)

will carry a wave vector

k = ±k1 ± k2 ± k3 (3.21)

However, given the rotating wave approximation is valid, only one set of signs will

survive, which allows further reducing of the number of terms. For example, the

diagrams:

R1 R2

+k1

-k2

+k3

-k1

+k2

+k3

will emit light in different directions, namely R1 into k = +k1 − k2 + k3 and R2 into

k = −k1 + k2 + k3. Hence, by designing the geometry of the experimental setup in an

intelligent way one can distinguish between different diagrams. This will be discussed

extensively in the next paragraph.
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4 Nonlinear Spectroscopies

4.1 Linear Spectroscopy

In this chapter, we will discuss various types of non-linear spectroscopies. To start, we

first introduce linear spectroscopy. There is only one linear experiment we can perform,

namely measuring the (linear) absorption spectrum of a sample. The corresponding

Feynman diagram is:

01

We have already calculated the 1st-order polarization (see Equ. 3.18)

P (1)(t) = − i

h̄
µ2

10e
−iω0t

∞∫

0

dt1E0(t− t1)e
−Γt1 (4.1)

Let’s assume E0(t) is a short pulse and we can apply the semi-impulsive limit:

E0(t) ≈ E0e
iωt · δ(t) (4.2)

Then, we get:

P (1)(t) = − i

h̄
E0µ

2
10e

−iω0te−Γt (4.3)

The 1st-order polarization emits an electric field with a 90˚ phase lack:

E(1)(t) ∝ −iP (1)(t) (4.4)

This is the free induction decay.
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0

|P(1)(t)|

|Ε0(t)|

  

Time

Important for the outcome of an experiment is not just this field, but also the way

how this field is detected. The field detection can be controlled by the experimental

configuration (i.e. where we put a detectoe). For instance, the most simple form of a

absorption measurement measurement would look like this:

E0
Sample

Detector

E0
P(1)

In optical spectroscopy, we typically have so-called square-law detectors, which measure

the intensity, rather than the field of the light on the detector. Furthermore, these

detectors are slow (compared to the femtosecond timescale), and hence measure the

time integrated intensity. Hence, we will measure in such an experiment:

∫ ∞

0

∣∣E0(t) + E(1)(t)
∣∣2 dt =

∫ ∞

0

|E0(t)|2 +
∣∣E(1)(t)

∣∣2 + 2< (
E0(t)E

(1)(t)
)
dt (4.5)

In most applications of spectroscopy, however, we will put a spectrometer in front of

the detector:

E0(t)Sample

Spectrometer

E0
P(1)(t)

Detector

E0(ω)

P(1)(ω)

whose action is to perform a Fourier transform of the fields:

∣∣E0(ω) + E(1)(ω)
∣∣2 = |E0(ω)|2 +

∣∣E(1)(ω)
∣∣2 + 2< (

E0(ω)E(1)(ω)
)

(4.6)
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Since we discuss a perturbative approach, we can safely assume that the second term

is small compared to the others, so that it is in general neglected. In other words,

the generated 1st order polarization is heterodyne detected, using the input laser pulse

itself as a local oscillator.

When we measure an absorption spectrum, we typically normalize the transmitted

light with the light in front of the sample:

I

I0

≡
∣∣E0(ω) + E(1)(ω)

∣∣2

|E0(ω)|2 = 1 +
2< (

E0(ω)E(1)(ω)
)

|E0(ω)|2 (4.7)

The absorption spectrum (i.e. the logarithm of this expression), can be written in the

small signal case:

A(ω) ∝ −
∣∣E0(ω) + E(1)(ω)

∣∣2

|E0(ω)|2 + 1 = −2< (
E0(ω)E(1)(ω)

)

|E0(ω)|2 = −2< (
E(1)(ω)

)

(4.8)

In the last step, we have used that the laser pulse is a δ-pulse, whose spectrum is

constant in frequency. Hence, we get:

A(ω) ∝= 2= (
P (1)(ω)

)
= 2<

∞∫

0

dt · ei(ω−ω0)te−Γt1 = 2< 1

i (ω − ω0)− Γ
(4.9)

=
2Γ

(ω − ω0)
2 + Γ2

As expected, the absorption spectrum is a Lorentzian function with a width given by

the dephasing rate of the transition.

In general, we find for the absorption spectrum:

A(ω) ∝ 2<
∞∫

0

dt · eiωt 〈µ(t)µ(0)ρ(−∞)〉 (4.10)

which can be seen when starting directly from Equ. 3.1 (see Sec. 5).

4.2 Pump-Probe Spectroscopy of a 3-Level System

Let’s assume a molecule with three states:
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0

1

2

Pump

Excited State 
Absorption

Stimulated
Emission

where both the 0→1 and the 1→2 transition are near-resonant with the probe pulse

(however, they don’t necessarily have exactly the same frequency). In a pump-probe

experiment, we use the following geometry:

Epr

Sample

Detector
Epu

Epr

P(3)

The generated 3rd order polarization is detected in exactly the same direction as the

probe pulse itself. As in linear spectroscopy, the generated 3rd order polarization is

heterodyne detected using the probe pulse as local oscillator. This geometry has an

important consequence for phase matching: The wavevector of the generated 3rd order

polarization is the sum of the wavevectors of the generating fields. However, owing to

the special geometry chosen in a pump-probe setup, we force the wavevector of the 3rd

order polarization to be the same as that of the pump pulse kpr. The only way how

this can be achieved is that the pump pulse interacts twice with the sample with wave

vectors +kpu and -kpu. As a consequence, only 6 diagrams survive the rotating wave

approximation and the phase matching condition:
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01
11

01

+kpu

-kpu

+kpr

Stimulated
Emission

01
00

01

+kpu

-kpu

+kpr

Bleach

01
11

12

+kpu

-kpu

+kpr

Excited State 
Absorption

10
11

01

+kpu
-kpu

+kpr

10
00

01
+kpu

-kpu

+kpr

10
11

12

+kpu
-kpu

+kpr

Note that both interactions of the pump pulse come from the same field Epu. Therefore,

there is no possibility to select time ordering for the first two interactions. However,

we have assumed time ordering between pump and probe pulse, i.e. the probe pulse

is the last interaction in all diagrams. When pump and probe pulse overlap in time,

additional diagrams would have to be considered. This leads to a phenomenon known

as the coherence spike or coherent artifact.

The left diagrams are pumped to the excited state by the pump pulse and stimulated

back to the ground state by the probe pulse. They represent stimulated emission. The

middle diagrams describe those molecules which are in the ground state after the pump

pulse, and hence represent the bleach contribution. The right diagrams are pumped to

the excited state by the pump pulse, from where the second excited state is probed.

They represent excited state absorption. Let’s first construct the response function for

the upper stimulated emission diagram:

• nothing happens until t=0.

• At t=0, we generate a ρ10 off-diagonal matrix element of the density matrix with

a probability that is proportional to the transition dipole moment µ10:

ρ10(0) ∝ µ10 (4.11)

• This off-diagonal matrix element would now start to oscillate and relax due to

dephasing. However, we neglect evolution of the density matrix in the first time

period t1, since we assume that the pump pulse is short (shorter than the de-

phasing rate), and the second interaction from the left is coming at essentially

the same time (t1 ≈0).
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• After the second interaction, we have generated a diagonal density matrix ρ11

with a probability proportional to ρ11(0) ∝ µ2
10

• We have seen in Equ. 1.29. that the diagonal elements of the density matrix stay

constant in time (when we neglect population relaxation T1)

⇒ ρ11(t2) ∝ µ2
10 (4.12)

• With the third interaction, a ρ10 matrix element is generated, again with proba-

bility µ10. The ρ10 matrix develops as a function of time t3:

ρ10(t3) ∝ µ3
10e

−i
(ε1−ε0)

h̄
t3e−Γt3 (4.13)

• After emitting the 3rd-order polarisation with another factor µ01 we get for the

3rd-order response function:

S
(3)
SE(t3, t2, t1) ∝ i

h̄3µ4
10e

−i
(ε1−ε0)

h̄
t3e−Γt3 (4.14)

The upper-bleach diagram has the same coherences ρ10 during the first and the third

time period, and hence will be identical to the stimulated emission diagram during these

periods. It is different during the second time period t2, where it is in the ground state

ρ00 rather than the excited state ρ11. However, since we have assumed in this simple

example that nothing is happening during this time, we find that the response function

is the same as the stimulated-emission diagram (note that this is not necessarily the

case).

S
(3)
Bl (t3, t2, t1) = S

(3)
SE(t1, t2, t3) (4.15)

The upper-excited state absorption diagram is identical with the stimulated emission

diagram until the 3rd interaction. After that, a ρ21 coherence is generated with proba-

bility µ21:

ρ(3)(t3) ∝ −µ2
10µ21e

−i
(ε2−ε1)

h̄
t3e−Γt3 (4.16)

which gives rise to the 3rd order response

S
(3)
ESA(t3, t2, t1) ∝ − i

h̄2µ2
10µ

2
21e

−i
(ε2−ε1)

h̄
t3e−Γt3 (4.17)

Note the minus sign, which originates from the fact that this diagram has 1, rather

than 2 interactions from the right (rule (3) in Sec. 3.1). We have assumed that the 01

and the 12 dephasing rates are the same.
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Finally, the difference between the bottom-diagrams and the top-diagrams is the time-

ordering of the first two interactions from the pump-pulse. However, since we have

assumed that the pump pulse is shorter than any time scale of the system (the response

functions do not depend on t1), the bottom-diagrams yield the same nonlinear response

as the corresponding diagrams at the top. Hence, we get for the total response:

S(3)(t3, t2, t1) =
6∑

i=1

S
(3)
i (t1, t2, t3) ∝ (4.18)

i

h̄3

(
4µ4

10e
−i

(ε1−ε0)
h̄

t3e−Γt3 − 2µ2
10µ

2
21e

−i
(ε2−ε1)

h̄
t3e−Γt3

)

which, in the semi-impulsive limit, equals the 3rd order polarization:

P (3)(t; T, τ) = S(3)(t, T, τ) (4.19)

The detector measures the generated 3rd order polarization as a function of t by het-

erodyning it with the original probe pulse (similar to the linear response, see Equ. 4.9):

− log

(∣∣Epr(t) + iP (3)(t)
∣∣2

|Epr(t)|2
)
≈ −2= (

Epr(t)P
(3)(t)

)

|Epr(t)|2
(4.20)

There are two possibilities to measure the signal: either directly, or after transmitting

the light through a spectrometer. In the first case, the detector again measures the

time-integrated intensity:

∆A = 2=
∞∫

0

dtEpr(t)P
(3)(t) (4.21)

In this simple example, the pump-probe signal Equ. 4.21 does not depend on the time

separation between both pulses, T (we have assumed that nothing happens during time

period t2).

In the second case, the spectrometer performs a Fourier transform of the fields with

respect to time t, and we get for the pump-probe-spectrum:

∆A(ω) ∝ −2= (
P (3)(ω)

)
= − 8µ4

10Γ

((ε1 − ε0)/h̄− ω)2 + Γ2
+ (4.22)

4µ2
10µ

2
21Γ

((ε2 − ε1)/h̄− ω)2 + Γ2

where we have used that the probe pulse has been assumed to be a δ-pulse, whose

frequency spectrum is a constant. Hence, we will observe a negative Lorentzian line at

the original frequency of the 0→1 transition (bleach and stimulated emission) and a

positive Lorentzian line at the 1→2 transition (excited state absorption).
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4.3 Quantum-Beat Spectroscopy

Now let’s assume the following three-level system:

0

1

'1

Pump Stimulated
Emission

We have put both excited states close together so that both the 0→1 and the 0→1’

transition are resonant with the pump pulse. We chose the same pump-probe geometry.

In that case, the following Feynman diagrams survive the rotating wave approximation

and phase matching condition:

01
11

01

+kpu

-kpu

+kpr

Stimulated
Emission

+kpu

-kpu

+kpr

01

'11

01

+kpu

-kpu

+kpr

Quantum
Beat

0'1
1'1

0'1

+kpu

-kpu

+kpr

Bleach

01

00

01

+kpu

-kpu

+kpr

0'1

00

0'1

+kpu

-kpu

+kpr

0'1

'1'1
0'1

There are additional Feynman diagrams with reversed time ordering of the first two

pump pulse interactions. However, we again assume that the pump pulse is short com-

pared to all timescales of the system, and these diagrams will give rise to identical

response functions. The stimulated emission and bleach diagrams are the same as be-

fore, except that we now have them for 2 resonances 0→1 and 0→1’. The corresponding
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response function is:

4∑
i=1

S
(3)
i (t3, t2, t1) ∝ − i

h̄3 4

(
µ4

10e
−i

(ε1−ε0)
h̄

t3e−Γt3 + µ4
1′0e

−i
(ε1′−ε0)

h̄
t3e−Γt3

)
(4.23)

New are the quantum beat diagrams, which oscillate as a function of t2 with a frequency

given by the splitting between both states.

6∑
i=5

S
(3)
i (t3, t2, t1) ∝ − i

h̄3 2µ2
10µ

2
1′0 (4.24)

(
e−i

(ε1′−ε1)
h̄

t2e−i
(ε1′−ε0)

h̄
t3 + e−i

(ε1−ε1′)
h̄

t2e−i
(ε1−ε0)

h̄
t3

)
e−Γt3

In the semi-impulsive limit we again get:

P (3)(t; T, τ) =
6∑

i=1

S(3)(t, T, τ) (4.25)

The detector integrates over t:

∆A(T ) = 2=
∞∫

0

dtEpr(t)P
(3)(t; T ) (4.26)

The pump-probe signal now depends on the time separation between pump and probe

pulse, T . When we scan the delay time we will observe quantum beats with a frequency

equal to the spacing between both excited state levels.

4.4 Two-Pulse Photon Echo Spectroscopy

The following geometry is chosen in a two-pulse photon echo experiment:
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Sample

Detector
k1

k2

2k2-k1

τ

We send two pulses into the sample with wavevectors k1 and k2 and the generated

3rd order polarization is detected in the 2k2-k1 direction. This choice of the geometry

has two consequences: (i) 2 interactions now come from the second pulse and (ii) the

3rd order polarization is now emitted into a direction which is different from that of

the input pulses. Hnece, we will measure the homodyned signal,
∣∣P (3)

∣∣2, rather than

the heterodyned signal 2= (
E0P

(3)
)
. Only two Feynman diagrams survive the rotating

wave approximation and phase matching condition (for a 2-level system):

10

11
01

+k2

-k1

+k2

10

00
01 +k2

-k1

+k2

Both diagrams have one feature in common: During the fist time period t1, they

propagate in a ρ01 coherence, which is flipped to a ρ10 coherence during the last time

period t3. The former is oscillating with eiωt while the latter is oscillating in the

opposite direction e−iωt. The flip of the oscillation frequency gives rise to rephasing in

very much the same way as known for spin vectors:

Inhomogeneityπ/2-Pulse Rephasingπ-Pulse

The 1st pulse generates a rotating spin vector. However, in the presence of inhomoge-

neous broadening, each individual spin will oscillate with a slightly different frequency,

38



so that the individual spin vectors will spread out and the macroscopic polarization

will disappear after some time. The 2nd pulse flips all vectors to the other side, ef-

fectively changing the direction of the rotation. As a consequence, all spin vectors

will re-combine, a phenomenon called rephasing. They will be recombined perfectly

after a time which equals the time separation between both pulses. This is why the

phenomenon is called an echo.

We shall now see how this picture can be translated to optical spectroscopy. We again

assume that the pulses are in the semi-impulsive limit, so that the second and third

interactions occur at essentially the same time and we can neglect the 2nd time period

t2. Then both response function are identical:

S
(3)
1 (t3, t2, t1) ∝ i

h̄3µ4
10e

+i
(ε1−ε0)

h̄
t1e−Γt1e−i

(ε1−ε0)
h̄

t3e−Γt3 = (4.27)

=
i

h̄2µ4
10e

−i
(ε1−ε0)

h̄
(t3−t1)e−Γ(t3+t1)

In the semi-impulsive limit, we get:

P (3)(t, τ) = S(3)(t, 0, τ) (4.28)

The detector, which is a slow detector, integrates the emitted intensity over the last

time period and hence will measure:

∞∫

0

dt
∣∣P (3)(t; T, τ)

∣∣2 ∝ µ8
10

h̄6 e−2Γτ ·
∞∫

0

dt
∣∣∣e−i

(ε1−ε0)
h̄

te−Γt
∣∣∣
2

=
µ8

10

h̄6 e−2Γτ · const (4.29)

Hence, the signal will decay with twice the dephasing rate Γ as a function of time

τ . The delay time τ is the time we control in the experiment by varying the time

separation between both pulses. Equ. 4.29 is the result for a purely homogeneously

broadened line. Inhomogeneous broadening is considered by convoluting the response

function with a Gaussian distribution for the energy splitting

S
(3)
1 (t3, t2, t1) →

∫
dε10G

(
ε10 − ε

(0)
10

)
S

(3)
1 (t3, t2, t1) (4.30)

where ε10 ≡ ε1 − ε0 and ε
(0)
10 is the center frequency of this distribution. Using the

Fourier transform of the distribution function, we obtain:

P (3)(t; T, τ) ∝ i

h̄3µ4
10e

−i
ε
(0)
10
h̄

(τ−t)e−Γ(τ+t)e−σ2 (τ−t)2

2 (4.31)
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where σ is the width of the inhomogeneous distribution. For a particular setting of

delay time τ , the emitted light as a function of t will be a product of two terms: e−Γ(τ+t)

and e−σ2 (τ−t)2

2 :

The inhomogeneous distribution acts as a gate, and light is emitted predominantly

after a time which is equal to the time separation between both pulses τ . The following

picture depicts the sequence of pulses:

time

τ τ
E1 E2 P(3)

In the limit of infinitely broad inhomogeneous broadening, the Gaussina distribution

will converge to a δ-distribution:

e−σ2 (τ−t)2

2 → δ(τ − t) (4.32)

and we obtain for the signal:

∞∫

0

dt
∣∣P (3)(t; T, τ)

∣∣2 ∝ µ8
10

h̄6 e−2Γτ

∞∫

0

dt
∣∣∣e−i

(ε1−ε0)
h̄

te−Γtδ(τ − t)
∣∣∣
2

∝ µ8
10

h̄6 e−4Γτ (4.33)

Hence, in the case of large inhomogeneous broadening, the signal decays with 4 times

the dephasing rate.

For intermediate situations (finite inhomogeneous broadening), we observe a peak shift

when we scan the time separation τ between both pulses. This shall be rationalized

using the following sequence of pictures:

The detector measures the time integral of the emitted filed (the shaded area), which

initially rises as a function of τ . For large enough decay times it will decay with a
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slope which again is 4 times the dephasing rate. Hence, there will be a maximum for

a certain delay time τ>0 which is known as the peak shift and which is a commonly

used as a measure of the strength of inhomogeneous broadening. An example of such

an experiment on the asymmetric stretching vibration of N−
3 dissolved in H2O is shown

below:
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5 Microscopic Theory of Dephasing: Kubo’s Stochas-

tic Theory of Line Shapes

5.1 Linear Response

The Feynman diagram describing linear response is:

01

The corresponding response function is:

S(1)(t) = − i

h̄
〈µ(t)µ(0)ρ(−∞)〉 (5.1)

Let’s recall that µ(t) is the dipole operator in the interaction picture:

µ(t) = e+ i
h̄

H·tµe−
i
h̄

H·t (5.2)

When we expand µ(t) in a eigenstate basis of H we obtain for the µ01(t) matrix element:

µ01(t) = e+ i
h̄

ε0t · µ01 · e− i
h̄

ε1t = e−
i
h̄
(ε1−ε0)t · µ01 (5.3)

and likewise for µ10(t) matrix element:

µ10(t) = e+ i
h̄
(ε1−ε0)t · µ10 (5.4)

This result is conform with rule (4) in Sec. 3.1. For example, the right-going arrow in

the above picture carries a frequency term e−iωt, which will cancel with the e+h̄/(ε1−ε0)t

term of µ10 in the resonant case. Hence, we can rewrite Equ. 5.1:

S(1)(t) = − i

h̄
〈µ01(t)µ10(0)ρ00〉 (5.5)

This notation distinguishes between excitation of the ket of the density matrix at time

0, µ10(0), and de-excitation at time t, µ01(t). The sign-rules are automatically taken
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care of when choosing the indices such that identical levels are next to each other in

Equ. 5.5.

At this point, we make a crude approximation, in that we interpret the quantum

mechanical operators µ01(t) as classical observables. Then we get:

µ01(t) = e−iωtµ01(0) (5.6)

with

ω ≡ (ε1 − ε0)

h̄
(5.7)

the energy gap frequency. Equ. 5.6 describes, for example, a diatomic molecule in

the vacuum. When we kick it, it will start to vibrate with a particular frequency ω.

When there is no perturbation (i.e., in vacuum), it would continue to vibrate with that

frequency for ever. However, in the presence of a bath, the surrounding will constantly

push and pull at the molecule and cause a stochastic force on the molecule. This will

give rise to a time-dependent frequency ω(t). To obtain an expression equivalent to

Equ. 5.6 for a time-dependent frequency, we first re-write it:

d

dt
µ01(t) = −iωµ01(t) (5.8)

and replace it by:

d

dt
µ01(t) = −iω(t)µ01(t) (5.9)

which yields:

µ01(t) = e
−i

t∫
0

dτω(τ)
µ01(0) (5.10)

We separate the frequency into its time average and a fluctuating part:

ω(t) = ω + δω(t) (5.11)

with ω ≡ 〈ω(t)〉 and 〈δω(t)〉 ≡ 0 where, 〈. . .〉 denotes time and/or ensemble averaging

(which both are the same). An example of a fluctuating transition frequency is depicted

in the following picture:
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time 

The linear response function is give by:

〈µ01 (t) µ10 (0) ρ00〉 = µ2
01e

−iωt

〈
exp


−i

t∫

0

dτδω(τ)




〉
(5.12)

This expression is commonly calculated using the cummulant expansion. To this end,

we expand the exponential function in powers of δω (which is assumed to be small).

〈
exp


−i

t∫

0

dτδω(τ)




〉
= 1− i

t∫

0

dτ 〈δω (τ)〉 (5.13)

−1

2

t∫

0

t∫

0

dτ ′dτ ′′ 〈δω (τ ′) δω (τ ′′)〉+ . . .

The linear term vanishes by definition

〈
exp


−i

t∫

0

dτδω(τ)




〉
= 1− 1

2

t∫

0

t∫

0

dτ ′dτ ′′ 〈δω (τ ′) δω (τ ′′)〉+ . . . (5.14)

We postulate that we can write this expression in the following form:

〈
exp


−i

t∫

0

dτδω(τ)




〉
≡ e−g(t) = 1− g(t) +

1

2
g2(t) + . . . (5.15)

and expand g(t) in powers of δω:

g (t) = g1 (t) + g2 (t) + . . . (5.16)

where g1 (t) is of the order O(δω), g2 of the order O(δω2) and so on. Inserting Equ. 5.15

into Equ. 5.16 and ordering the terms in powers of δω yields:

e−g(t) = 1− (g1 (t) + g2 (t) + . . .) +
1

2
(g1 (t) + g2 (t) + . . .)2 (5.17)
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The linear term vanishes by construct, so that we find g1(t) = 0 and the leading term

is quadratic in δω. Hence, we obtain for the so-called lineshape function g(t):

g (t) ≡ g2(t) =
1

2

t∫

0

t∫

0

dτ ′dτ ′′ 〈δω (τ ′) δω (τ ′′)〉+ O(δω3) (5.18)

Since the correlation function 〈δω (τ ′) δω (τ ′′)〉 in equilibrium depends only on the time

interval τ ’ -τ”, the correlation function can be replaced by 〈δω (τ ′ − τ ′′) δω (0)〉.
Remarks:

• The cummulant expansion is just an intelligent way of reordering terms of dif-

ferent powers of δω, which is of course in general not exact in all orders of δω.

However, one can show that the second order cummulant is exact when the dis-

tribution of δω is Gaussian. According to the central limit theorem this is often

the case to a very good approximation, namely when the random property δω is

a sum of many different random influences (like a molecule in a bath, which is

affected by many bath molecules surrounding it)

• The cummulant expansion effectively shift the averaging from
〈
e−i

∫
...
〉 ≈ e−

∫ 〈...〉,
which is much simpler to calculate in practice.

To summarize (see also Equ. 4.10):

A(ω) = 2<
∞∫

0

dteiωt 〈µ01(t)µ10(0)〉 = 2µ2
01<

∞∫

0

dteiωte−g(t) (5.19)

with

g (t) =
1

2

t∫

0

t∫

0

dτ ′dτ ′′ 〈δω (τ ′ − τ ′′) δω (0)〉 (5.20)

=

t∫

0

τ ′∫

0

dτ ′dτ ′′ 〈δω (τ ′′) δω (0)〉

For the last step we have used that 〈δω(τ)δω(0)〉 = 〈δω(−τ)δω(0)〉 is symmetric in time.

The two-point correlation function 〈δω (t) δω (0)〉 describes all linear spectroscopy (in

the limits of the cummulant expansion).
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When the transition frequency fluctuations are very fast, the frequency shift at time 0,

δω(0), is uncorrelated with that a short time later. In that case, the correlation func-

tion 〈δω (t) δω (0)〉 will decay very quickly and can be approximated by a δ-function:

〈δω (t) δω (0)〉 → δ(t). However, we often find the following situation: When the fre-

quency is at some value at time 0, it will stay in the neighborhood of this frequency

for quite some time and loose the memory about this frequency only after some time.

The following picture shows an example:

0

 

 

 

time 

In that case, the correlation function 〈δω (t) δω (0)〉 will decay slowly in time. It is

often modelled by an exponential function,:

〈δω (t) δω (0)〉 = ∆2e−
|t|
τc (5.21)

which depends on two parameters, the fluctuation amplitude ∆ and the correlation time

τ c. Integrating the correlation function twice reveals for the Kubo-lineshape function:

g(t) = ∆2τ 2
c

[
e−

t
τc +

t

τc

− 1

]
(5.22)

This model is well suited to discuss different limits:

∆τc << 1, the fast modulation, motional narrowing or homogeneous limit:

In this limit, we obtain for the line shape function:

g(t) = t/T2 (5.23)

with T2 = (∆2τc)
−1

This is since we have e−
t

τc → 0 and t
τc

>> 1

The absorption spectrum:

A (ω) = <
∞∫

0

eiωte−g(t)dt = <
∞∫

0

eiωte−t/T2dt (5.24)
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yields a Lorentzian line with homogeneous width T−1
2 . This limit applies for ∆τc << 1

or τc << T2

∆τc >> 1, the slow modulation or inhomogeneous limit:

In that case we get for the line shape function

g(t) =
∆2

2
t2 (5.25)

which can be seen when expanding the exponential function in Equ. 5.21. The line

shape function is independent on the correlation time τ c. The absorption spectrum

A (ω) = <
∞∫

0

eiωte−g(t)dt = <
∞∫

0

eiωte−
∆2

2
t2dt (5.26)

yields a Gaussian line with width ∆. This limit applies for ∆τc >> 1

Hence, we see that the width of an absorption line is given by the width of the distri-

bution of δω whenever the fluctuations are slow enough. However, when increasing the

rate of the fluctuations, we reach the fast modulation limit and obtain a Lorentzian

line. The line width then is getting narrower (since T−1
2 = ∆2τc << ∆) and decreases

linearly with the correlation time τ c. This phenomenon is called motional narrowing.

The following picture shows this effect for a constant fluctuation amplitude ∆ and

different values for the parameter ∆ · τc.

∆τ =0.1

∆τ =0.5

∆τ =10

Frequency

5.2 Nonlinear Response

We can develop the nonlinear response functions along the same lines. For a 2-level

system, the following 4 Feynman diagrams are possible within the rotating wave ap-
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proximation:

R1 R2 R3 R4

0

τ1

τ2

τ3

Let’s develop the response function R1 with the same rules as in the previous paragraph:

R1(τ3, τ2, τ1) = −
(

i

h̄

)3

〈µ01(τ3)µ10(0)ρ00µ01(τ1)µ10(τ2)〉 (5.27)

where we switched back to absolute time points, rather than time intervals:

τ1 = t1
τ2 = t2 + t1
τ3 = t3 + t2 + t1

(5.28)

τ3

t1 t2

time t0 τ1 τ2

t3

Using the sign-rules developed in the last paragraph (i.e. µ01(t) = e−iωtµ01 and µ10(t) =

e+iωtµ10), we obtain

R1(τ3, τ2, τ1) = −
(

i

h̄

)3

µ4e−iω(τ3−τ2+τ1) (5.29)

〈
exp


−i

τ3∫

0

δω(τ)dτ + i

τ2∫

0

δω(τ)dτ − i

τ1∫

0

δω(τ)dτ




〉

We again calculate this expression using the cummulant expansion. To this end, we
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expand the exponential function up to second powers of δω

〈· · · 〉 = 1− 1

2

τ3∫

0

τ3∫

0

〈δω(τ ′′)δω(τ ′)〉 dτ ′′dτ ′ − 1

2

τ2∫

0

τ2∫

0

〈δω(τ ′′)δω(τ ′)〉 dτ ′′dτ ′

−1

2

τ1∫

0

τ1∫

0

〈δω(τ ′′)δω(τ ′)〉 dτ ′′dτ ′ −
τ3∫

0

τ1∫

0

〈δω(τ ′′)δω(τ ′)〉 dτ ′′dτ ′

+

τ3∫

0

τ2∫

0

〈δω(τ ′′)δω(τ ′)〉 dτ ′′dτ ′ +

τ2∫

0

τ1∫

0

〈δω(τ ′′)δω(τ ′)〉 dτ ′′dτ ′ + O(δω3)

(5.30)

The terms linear in δω vanish by construct. The first three terms are the line shape

functions g(τ) at times τ 3, τ 2, and τ 1. We write Equ. 5.30 in the form:

〈· · · 〉 = 1− g(τ3)− g(τ2)− g(τ1)− h(τ3, τ1) + h(τ3, τ2) + h(τ2, τ1) + O(δω3)

(5.31)

Realizing that the functions h(τ ′, τ) contain the same integrand as g(τ), and are dif-

ferent only by the integration limits, we find, for example:

h(τ2, τ1) = g(τ2) + g(τ1)− g(τ2 − τ1) (5.32)

We see that from the following figure, which shows the integration areas:

τ1

τ1

τ2

τ2

where both shaded rectangulars corresponds to 2h(τ2, τ1), the lower left square to

2g(τ1), the total square to 2g(τ2) and the upper right square to 2g(τ2− τ1). Hence, we

obtain:

〈· · · 〉 = 1− g(τ3) + g(τ2)− g(τ1) + g(τ3 − τ1)− g(τ3 − τ2)− g(τ2 − τ1)

+O(δω3) (5.33)
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or, when switching back to the time intervals t1, t2 and t3 (see Equ. 5.28)

〈· · · 〉 = 1− g(t1)− g(t2)− g(t3) + g(t1 + t2) + g(t2 + t3)− g(t1 + t2 + t3)

+O(δω3) (5.34)

We postulate

〈· · · 〉 = e−f (5.35)

Expanding f in powers of δω and collecting the terms of different powers of δω yields

for the nonlinear response function:

R1(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t1+t3)e−g(t1)−g(t2)−g(t3)+g(t1+t2)+g(t2+t3)−g(t1+t2+t3)

(5.36)

Likewise, we obtain for R2:

R2(τ3, τ2, τ1) = −
(

i

h̄

)3

〈µ01(τ3)µ10(τ1)ρ00µ01(0)µ10(τ2)〉 (5.37)

= −
(

i

h̄

)3

µ4e−iω(τ3−τ2−τ1)

〈
exp


−i

τ3∫

0

δω(τ)dτ + i

τ2∫

0

δω(τ)dτ + i

τ1∫

0

δω(τ)dτ




〉

This expression has the same structure as R1, except for the signs of the oscillatory

part. We calculate it along the same lines as R1 and obtain:

R2(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t3−t1)e−g(t1)+g(t2)−g(t3)−g(t1+t2)−g(t2+t3)+g(t1+t2+t3)

(5.38)

The diagram R3:

R3(τ3, τ2, τ1) = −
(

i

h̄

)3

〈µ01(τ3)µ10(τ2)ρ00µ01(0)µ10(τ1)〉 (5.39)

= −
(

i

h̄

)3

µ4e−iω(τ3−τ2−τ1)

〈
exp


−i

τ3∫

0

δω(τ)dτ + i

τ2∫

0

δω(τ)dτ + i

τ1∫

0

δω(τ)dτ




〉

= R2(τ3, τ2, τ1)
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yields the same response as R2. R4 is:

R4(τ3, τ2, τ1) = −
(

i

h̄

)3

〈µ01(τ3)µ10(τ2)µ01(τ1)µ10(0)ρ00〉 (5.40)

=

(
i

h̄

)3

µ4e−iω(τ3−τ2+τ1)

〈
exp


−i

τ3∫

0

δω(τ)dτ + i

τ2∫

0

δω(τ)dτ − i

τ1∫

0

δω(τ)dτ




〉

= R1(τ3, τ2, τ1)

which is the same as R1.

We summarize the final result:

R1(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t1+t3)e−g(t1)−g(t2)−g(t3)+g(t1+t2)+g(t2+t3)−g(t1+t2+t3)

R2(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t3−t1)e−g(t1)+g(t2)−g(t3)−g(t1+t2)−g(t2+t3)+g(t1+t2+t3)

R3(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t3−t1)e−g(t1)+g(t2)−g(t3)−g(t1+t2)−g(t2+t3)+g(t1+t2+t3)

R4(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t1+t3)e−g(t1)−g(t2)−g(t3)+g(t1+t2)+g(t2+t3)−g(t1+t2+t3)

(5.41)

Note that the equalities R1 = R4 and R2 = R3 hold only within the framework of

the stochastic ansatz of Kubo’s line shape theory and will no longer be true in the

Brownian oscillator model (see Sec. 6). The response functions R1 to R4 describe

all nonlinear spectroscopy of a 2-level system in terms of the two-point frequency

fluctuation correlation function 〈δω (τ) δω (0)〉. This frequency fluctuation correlation

function describes the influence of the bath on the system.

5.3 Three-Pulse Photon Echo Spectroscopy

Homogeneous and inhomogeneous broadening can be obtained from the frequency fluc-

tuation correlation function 〈δω (τ) δω (0)〉 as limiting cases. Homogeneous and inho-

mogeneous broadening imply a strict separation of timescales, the first being infinitely

fast and the second being infinitely slow. Hence the frequency fluctuation correlation

function corresponding to a inhomogeneous distribution of homogeneous lines is:

〈δω (t) δω (0)〉 = Γδ(t) + ∆2
0/2 (5.42)
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and for the line shape function:

g(t) = Γt + ∆2
0t

2 (5.43)

This is the so-called Voigt profile, i.e. a Lorentzian line shape convoluted with a

Gaussian distribution. When inserting this line shape function for example into R2,

we obtain:

R2(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t3−t1)e−Γ(t3+t1)e−∆2
0(t3−t1)2 (5.44)

This is the same expression as Equ. 4.31, where we have described dephasing phe-

nomenologically. Note that the response function is independent on t2. In other words,

as long as there is a strict separation of timescales of homogeneous and inhomogeneous

broadening, there is no need to experimentally control the delay time t2. In a two-pulse

photon echo experiment, the time t2is implicitly set to zero, since the second and third

interaction come from one, short pulse.

In general there will be no strict separation of timescales of homogeneous and inho-

mogeneous broadening. This is in particular true in solution phase systems, which

fluctuate on a wide range of time scales, and a Kubo line shape is a much more realistic

model for the frequency fluctuation correlation function:

〈δω (t) δω (0)〉 = ∆2e
− |t|

τC (5.45)

In that case, the response functions R1 − R4 do in fact depend on t2. If we want to

measure these phenomena, one needs an experimental technique to control that delay

time. The technique of choice to control all time delays is the three-pulse photon echo

experiment with the geometry:

Sample

Detector
k1

k2

-k1+k2+k3

k3

The detector is put in the direction −k1 + k2 + k3, which implies that we select only

diagram R2 and R3 (which both yield the same response). An example of such a

measurement is shown in the following picture:
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The figure shows the photon echo response of the asymmetric stretching frequency of

N−
3 in H20 as a function of t1 and t2. For early times t2, we observe a peak shift as a

function of t1, which we have already discussed in Sec. 4.4. The peak shift is a measure

of the inhomogeneity. However, since the inhomogeneity is not static (the solvent is

constantly rearranging), the peak shift resembles inhomogeneity still present at time

t2. The inhomogeneity decays as function of time, observed as a decay of the peak

shift. When plotting the peak shift as a function of time t2:

 
Pe

ak
sh

if
t [

fs
] 

one obtains a quantity which resemble the frequency fluctuation correlation function
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〈δω (τ) δω (0)〉 (see insert, solid line). This is the essential property deduced from a

photon echo peak shift experiment.

As a result of truncating the cummulant expansion after second order, the nonlinear

response function R1 − R4 are completely desctribed by the line shape function g(t),

i.e. by the two-point frequency fluctuation correlation function 〈δω (τ) δω (0)〉. In other

words, the information contents of a linear experiment and any 3rd order experiment

seem to be the same. One could in principle measure the frequency fluctuation cor-

relation function 〈δω (τ) δω (0)〉 by measuring just the linear absorption spectrum and

inverting Equ. 5.19, and it seems there is no need to apply nonlinear spectroscopy. In

practice, however, this is very difficult and yields poor results. The dotted line in the in-

sert of the above picture is the frequency fluctuation correlation function 〈δω (τ) δω (0)〉
determined in that way. It does in fact resemble that determined from the photon echo

experiment but is by far noisier.
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6 Microscopic Theory of Dephasing: Brownian Os-

cillator Model

6.1 Time Evolution Operator of a Time Dependent Hamilto-

nian

In contrast to Kubo’s lineshape theory, which is a classical theory, the Brownian Oscil-

lator Model is fully quantum mechanical. In order to introduce the Brownian Oscillator

Model, we have to revisit the concept of the time evolution operator, now for a time

dependent Hamiltonian. The time evolution operator was defined in Sec. 2.2 as:

|ψ(t)〉 ≡ U(t, t0) |ψ(t0)〉 (6.1)

and we have seen that it is:

U0(t, t0) = e−
i
h̄

H·(t−t0) (6.2)

This is true only when H is time-independent! For a time-dependent Hamiltonian, we

insert Equ. 6.1. into the Schrödinger equation:

d

dt
(U(t, t0) |ψ(t0)〉) = − i

h̄
H(t) · U(t, t0) |ψ(t0)〉 (6.3)

with a time-dependent Hamiltonian. Since this equation must hold for any starting

wave function |ψ(t0)〉, we get:

d

dt
U(t, t0) = − i

h̄
H(t) · U(t, t0) (6.4)

Integrating this equation yields:

U(t, t0) = 1− i

h̄

t∫

t0

dτH(τ) · U(τ, t0) (6.5)

which can be solved by plugging it into itself iteratively:

U(t, t0) = 1 +
∞∑

n=1

(
− i

h̄

)n
t∫

t0

dτn

τn∫

t0

dτn−1 . . .

τ2∫

t0

dτ1H(τn)H(τn−1) . . . H(τ1) (6.6)
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Note that this is a time-ordered integral with

τ1 ≤ τ2 ≤ . . . ≤ τn (6.7)

If we had ignored that H(t) is an operator and treated it as a function, we could have

solved Equ. 6.4 by:

U(t, t0)
?
= exp


− i

h̄

t∫

t0

dτH(τ)


 (6.8)

Expanding the exponential function would yield:

U(t, t0)
?
= 1 +

∞∑
n=1

1

n!

(
− i

h̄

)n
t∫

t0

dτn

t∫

t0

dτn−1 . . .

t∫

t0

dτ1H(τn)H(τn−1) . . . H(τ1)

(6.9)

which is very similar as Equ. 6.6, but is wrong. The essential difference is the fact

that the time variables are not ordered in Equ. 6.9. The difference is illustrated in the

following representation of the integration area (i.e. the shaded areas):

τ2

τ1

No Time Ordering

τ2

τ1

Time Ordering

If we had:

H(τ1)H(τ2)
?
= H(τ2)H(τ1) (6.10)

which of course would be true if H(t) would be an ordinary function, then the non-

time-ordered integration would yield the same result for the upper-left triangle and the

lower-right triangle. In that case, Equ. 6.6 and Equ. 6.9 would in fact be equivalent

(the factor 1/n! in Equ. 6.9 takes care of the multiple treatment of identical terms).
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However, H(t) is an operator, and H(τ 1) and H(τ 2) do in general not commute (except

when H is not time dependent):

[H(τ1)H(τ2)] 6= 0 (6.11)

This is why both expression Equ. 6.6 and 6.9 are different. Nevertheless, in order to

emphasize the similarity of Equ. 6.6 and an exponential function, we define a positive

time ordered exponential:

exp+


− i

h̄

t∫

t0

dτH(τ)


 ≡ 1 +

∞∑
n=1

(
− i

h̄

)n
t∫

t0

dτn . . .

τ2∫

t0

dτ1H(τn) . . . H(τ1)

(6.12)

and obtain for the time evolution operator of a time dependent Hamiltonian:

U(t, t0) = exp+


− i

h̄

t∫

t0

dτH(τ)


 (6.13)

Likewise, the negative time ordered exponential is defined as:

exp−


+

i

h̄

t∫

t0

dτH(τ)


 ≡ 1 +

∞∑
n=1

(
+

i

h̄

)n
t∫

t0

dτn . . .

τ2∫

t0

dτ1H(τ1) . . . H(τn)

(6.14)

which is the adjunct of the time evolution operator:

U †(t, t0) = exp−


+

i

h̄

t∫

t0

dτH(τ)


 (6.15)

We often will have

H = H(0) + H ′ (6.16)

where H(0) is a system operator and H ′ a (hopefully small) perturbation. Applying

the definition of the time ordered exponentials, we obtain the following rule:

e−
i
h̄(H(0)+H′)t = e−

i
h̄

H(0)t exp+


− i

h̄

t∫

t0

dτH ′(τ)


 (6.17)
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with H ′(τ) being the Hamiltonian H ′ in the interaction picture with respect to H(0):

H ′(τ) = e
i
h̄

H(0)tH ′e−
i
h̄

H(0)t (6.18)

6.2 Brownian Oscillator Model

The Kubo Model assumed a fluctuating transition frequency, caused by the solvent,

but did not specify how the solvent couples to the transition. The Brownian Oscillator

model does exactly specify the coupling. It assumes a set of electronic states, whose

energies depend on a set of nuclear coordinates q as parameters (this is the Born

Oppenheimer approximation). Typically, one assumes that the potential surfaces are

harmonic:

q

E
ne

rg
y

q

E
ne

rg
y 

G
ap Slope χ

When the harmonic potential surfaces of the ground and the excited states are dis-

placed, the energy gap between the ground and the excited state will vary linearly

with the nuclear coordinate q. A fluctuating coordinate due to thermal excitation of

the nuclear coordinates hence will give rise to a fluctuating transition frequency. In

that sense the Brownian oscillator model is a more microscopic model, which specifies

the reason for a fluctuating transition frequency.

Within the Born Oppenheimer approximation, one can write the total wave function

as a product of an electronic and a nuclear wave function (i.e. one can separate the

electronic from the nuclear problem):

Ψ = ΨelΨnuc (6.19)

The Hamiltonian again is:

H = Hs + E(t)µ (6.20)
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where the system Hamiltonian is now the electronic plus the nuclear problem. We

expand the Hamiltonian with respect to the electronic eigenstates (assuming it is an

electronic two-level system):

Hs = |0〉H0 〈0|+ |1〉H1 〈1| (6.21)

One remark on the notation: H0 and H1 are now eigenvalues (numbers) with respect to

the electronic problem, but they are still operators with respect to the nuclear problem.

For linear response, we have to calculate the dipole-dipole correlation function:

〈µ(t)µ(0)ρ(−∞)〉 (6.22)

which, when we expand it with respect to the electronic system is (see Equ. 5.5):

〈µ01(t)µ10(0)ρ(−∞)〉 (6.23)

Note that µ01(t) is still an operator with respect to the nuclear problem. The notation

µ01(t)

µ01(t) = e
i
h̄

H0tµ01e
− i

h̄
H1t (6.24)

denotes the dipole operator µ time-propagated with respect to H0 on the left side and

with respect to H1 on the right side. For convenience, we want to express Equ. 6.24

with respect to one Hamiltonian, a reference Hamiltonian, for which we choose H0. To

this end, we introduce the energy gap operator Ω ≡ H1 −H0 − (ε1 − ε0):

H1 ≡ H0 + Ω + (ε1 − ε0) (6.25)

We included the average energy gap (ε1 − ε0) (which is just numbers, not operators),

to separate off the quickly oscillating part from the energy gap operator Ω. Then, we

get for

µ01(t) = e
i
h̄

H0tµe−
i
h̄

H1t (6.26)

= e−
i
h̄
(ε1−ε0)te

i
h̄

H0tµe−
i
h̄
(H0+Ω)t

= e−
i
h̄
(ε1−ε0)te

i
h̄

H0tµe−
i
h̄

H0t exp+


− i

h̄

t∫

0

Ω(τ)dτ




with

Ω(τ) = e
i
h̄

H0τΩe−
i
h̄

H0τ (6.27)
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the energy gap operator in the interaction picture with respect to the ground state

Hamiltonian H0. We have used Equ. 6.17 in the last step. Equ. 6.26 contains the

dipole operator in the interaction picture with respect to ground state Hamiltonian

H0:

µ(t) = e
i
h̄

H0tµe−
i
h̄

H0t (6.28)

At this point, we adopt the Franck-Condon approximation which assumes that the

dipole moment µ(t) of the molecule does not depend on nuclear coordinate q and is a

constant µ. In other words, even though q is a fluctuation property, the dipole operator

µ(t) will be constant in time and can be replaced by a number. Hence, we get:

µ01(t) = µe−
i
h̄
(ε1−ε0)t exp+


− i

h̄

t∫

0

Ω(τ)dτ


 (6.29)

We get along the same lines:

µ10(t) = µe+ i
h̄
(ε1−ε0)t exp−


+

i

h̄

t∫

0

Ω(τ)dτ


 (6.30)

The linear response function is:

〈µ01(t)µ10(0)ρ(−∞)〉 = µ2e−
i
h̄
(ε1−ε0)t

〈
exp+


− i

h̄

t∫

0

Ω(τ)dτ




〉
(6.31)

which is the equivalent of Equ. 5.12 in Kubo’s line shape theory:

〈µ01 (t) µ10 (0)〉 = µ2e−iωt

〈
exp


−i

t∫

0

dτδω(τ)




〉
(6.32)

The essential difference is that the integrand in Equ. 6.31 is a quantum mechanical

operator in the Brownian oscillator model, rather than an ordinary function in Kubo’s

line shape theory. As a result, the exponential function is a time-ordered exponential.

We nevertheless can perform the cummulant expansion in exactly the same way as in

Sec. 5, keeping in mind that the operators do not commute and that the exponen-

tial functions are time-ordered exponentials. We then get for the linear absorption

spectrum:

A(ω) = 2Re

∞∫

0

dteiωt 〈µ01(t)µ10(0)ρ(−∞)〉 = 2µ2Re

∞∫

0

dteiωte−g(t) (6.33)
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with

g (t) =
1

h̄2

t∫

0

dτ ′′
τ ′′∫

0

dτ ′ 〈Ω (τ ′) Ω (0) ρ (−∞)〉 (6.34)

Note that the line shape function g(t) now is a time-ordered integral τ ’≤τ”≤t, in

contrast to Equ. 5.20. We obtain for the nonlinear response functions:

R1(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t1+t3)e−g(t1)−g∗(t2)−g∗(t3)+g(t1+t2)+g∗(t2+t3)−g(t1+t2+t3)

R2(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t3−t1)e−g∗(t1)+g(t2)−g∗(t3)−g∗(t1+t2)−g(t2+t3)+g∗(t1+t2+t3)

R3(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t3−t1)e−g∗(t1)+g∗(t2)−g(t3)−g∗(t1+t2)−g∗(t2+t3)+g∗(t1+t2+t3)

R4(t3, t2, t1) = −
(

i

h̄

)3

µ4e−iω(t1+t3)e−g(t1)−g(t2)−g(t3)+g(t1+t2)+g(t2+t3)−g(t1+t2+t3)

(6.35)

The line shape function g(t) now is a complex function, and R1, R4 and R2, R3 are no

longer equal. This is since e.g. R2 is propagating on the electronically excited state

during the period t2, while R3 is propagating on the electronic ground state, and the

excited state H1 and ground state H0 Hamiltonians are different.

The correlation function

C(t) =
1

h̄2 〈Ω (t) Ω (0) ρ (−∞)〉 (6.36)

has two important symmetries. The first is:

C(−t) = C∗(t) (6.37)

which we see from:

C(−t) = 〈Ω (−t) Ω (0) ρ (−∞)〉 (6.38)

= 〈Ω (0) Ω (t) ρ (−∞)〉
= 〈ρ (−∞) Ω (0) Ω (t)〉
= 〈Ω (t) Ω (0) ρ (−∞)〉∗

where we have used in the first step the fact that the correlation function depends

only on the time interval between the first and the second action of the energy gap
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operator on the density matrix, in the second step the invariance of the trace on cyclic

permutation, and in the third step the fact that all operators are Hermitian.

We separate the correlation function into its real and imaginary part:

C(t) ≡ C ′(t) + iC ′′(t) (6.39)

C ′(t) =
1

2
(C(t) + C∗(t))

C ′′(t) =
1

2
(C(t)− C∗(t))

where C’(t) and C”(t) are both real functions and C’(t) is an even function and C”(t)

is an odd function. In frequency domain, we introduce the spectral densities:

C̃(ω) =

∞∫

−∞

dteiωtC(t) = 2Re

∞∫

0

dteiωtC(t) (6.40)

C̃ ′(ω) =

∞∫

−∞

dteiωtC ′(t) = 2

∞∫

0

dt cos(ωt)C ′(t)

C̃ ′′(ω) = −i

∞∫

−∞

dteiωtC ′′(t) = 2

∞∫

0

dt sin(ωt)C ′′(t)

C̃(ω), C̃ ′(ω) and C̃ ′′(ω) are all real functions, C̃ ′(ω)is an even function, and C̃ ′′(ω)

an odd function. The second symmetry is for C̃(ω), which satisfies a detailed balance

condition:

C̃(−ω) = e
− h̄ω

kBT C̃(ω) (6.41)

We see that when expanding Equ. 6.36 in an eigenstate basis of the nuclear coordinates:

C(t) =
1

h̄2

∑
i

∑

a,b

e
− ε

(i)
a

kBT |Ωab|2 e−iω
(i)
ba t/Z(i) (6.42)

where the first sum runs over all modes coupled to the electronic transition, and the

second sum runs over all vibrational states a, b of mode i, and Z(i) =
∑
a

e
− ε

(i)
a

kBT is the

partition function. The Boltzmann factor describes the thermal population of the

starting state a. We then obtain for the spectral density:

C̃(ω) =
1

h̄2

∑
i

∑

a,b

e
− ε

(i)
a

kBT |Ωab|2 δ(ω − ω
(i)
ba )/Z(i) (6.43)
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When replacing ω by –ω, the energy levels a and b are interchanged, and we get

Equ. 6.41. Combining Equ. 6.40 and 6.41 yields

C̃ ′(ω) =
1 + e

− h̄ω
kBT

2
C̃(ω) (6.44)

and

C̃ ′′(ω) =
1− e

− h̄ω
kBT

2
C̃(ω) (6.45)

Hence, due to the symmetries of Equ. 6.37 and 6.41, the spectral densities C̃(ω), C̃ ′(ω)

and C̃ ′′(ω) are all connected. When we know the imaginary part, we also know the

real part and vice versa. In other words, even though the line shape function in the

Brownian oscillator model is a more complicated function (i.e. it is a complex function),

we don’t need to have more knowledge about the system than in Kubo lineshape

theory. For example, when we would obtain the real part of the frequency fluctuation

correlation function from a classical molecular dynamic simulation, we would also know

the imaginary part according to Equ. 6.44 and 6.45. The existence of an imaginary

part in the frequency fluctuation correlation function is a consequence of the system

being quantum mechanical. Nevertheless, we can use the result from a fully classical

simulation to predict the properties of the corresponding quantum system.

Finally, let’s study the following simple example for the spectral density:

C̃ ′′(ω) = 2λ
ω/τc

ω2 + 1/τ 2
c

(6.46)

for which we obtain in the high temperature limit kBT/h̄ >> 1/τc:

g(t) =
2λkBTτ 2

c

h̄

[
e−

t
τc +

t

τc

− 1

]
− iλτc

[
e−

t
τc +

t

τc

− 1

]
(6.47)

The real part of this line shape function is the same as the Kubo-line shape function

(see Equ. 5.22) with fluctuation amplitude

∆2 = 2λkBT/h̄ (6.48)

which depends linearly on temperature. This can be easily seen from the following

picture:
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The system will explore regions in the ground state with energy Eth = kBT, i.e. the

thermal displacement of the nuclear coordinate is given by

q2
th = kBT/h̄ω (6.49)

For a system of displaced oscillators, the energy gap will vary linearly with nuclear

coordinate with a slope χ. Hence, thermal fluctuations of the nuclear coordinate will

give rise to fluctuations of the energy gap with amplitude:

∆2 = χ2q2
th = χ2kBT/h̄ω (6.50)

Comparing Equ. 6.48 with Equ. 6.50, we see that the parameter λ resembles the reor-

ganization energy (or the Stokes shift, see below):

λ = χ2ω (6.51)

Hence, we have described the fluctuation amplitude ∆, which in the Kubo model is just

a phenomenological parameter, by two measurable quantities, namely the temperature

and the displacement of the excited state potential. Note that the imaginary part of

the line shape function is independent on temperature. When we separate the line

shape function into real and imaginary part:

g(t) = g′(t)− ig′′(t) (6.52)

and insert this into the definition of the absorption spectrum:

A(ω) = 2µ2<
∞∫

0

dteiω−ω0te−g(t) = 2µ2<
∞∫

0

dtei(ω−ω0t−g′′(t))e−g′(t) (6.53)
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we see that the imaginary part corresponds to a frequency shift. If we would calculate

the corresponding expression for the fluorescence spectrum, we would find that the

shift is in the opposite direction. This gives rise to the Stokes shift, which in general is

time dependent:

q

E
ne

rg
y

In a dynamic Stokes shift experiment, a pump pulse projects the thermal ground state

distribution onto the excited state potential surface. The system then will be in a

non-equilibrium situation, and it will start to relax towards the bottom of the excited

state potential surface. We can follow this relaxation by monitoring the fluorescence

spectrum as a function of time, for which we will observe a transient red-shift described

by the imaginary part g”(t) of the line shape function.

The size of the Stokes shift λ measured relative to the width of the absorption spectrum

∆ (i.e. the width of the frequency fluctuations in the slow modulation limit) is:

λ

∆
=

h̄∆

2kBT
(6.54)

Hence, we see that whenever the width of an absorption line is comparable to kBT

or larger, we have to take into account the effect of the Stokes shift and have to use

the complex line shape function Equ. 6.34. This is in general the case for electronic

transitions. However, when ∆ << kBT , the significance of the Stokes shift disappears,

and the stochastic ansatz Equ. 5.20 describes the problem sufficiently well. This is in

general the case for vibrational transitions and in particular for spin transitions. Kubo

lineshape theory has initially been developed for the latter
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7 2D Spectroscopy: Measuring the 3rd-Order Re-

sponse Function Directly

7.1 2D Spectroscopy of a Single Transition

In it’s most general form, a 2D experiment uses the geometry of a 3-pulse photon echo

setup, with the difference that the 3rd-order polarization is measured by heterodyning

it with a 4th replica of the laser pulses (the so-called local oscillator), rather than by

homodyne-detecting it directly (as done in Sec. 5.3).

Sample

Detector
k1

k2
k1±k2+k3

k3

kLO

t1t2t3

±

Rephasing diagrams are collected in the −k1 + k2 + k3-direction, while non-rephasing

diagrams are collected in the +k1−k2+k3-direction. For the case of a two-level system,

the corresponding Feynman diagrams are :

R1R2 R3 R4

rephasing
-k1+k2+k3

non-rephasing
+k1-k2+k3

and the corresponding response functions are for the rephasing diagrams (in the most

simple picture of purely phenomenological dephasing):

R2 = R3 ∝ e+iωt1e−Γt1e−iωt3e−Γt3 (7.1)
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and for the non-rephasing diagrams:

R1 = R4 ∝ e−iωt1e−Γt1e−iωt3e−Γt3 (7.2)

with

ω = (ε1 − ε0)/h̄ (7.3)

As a result of the interference between the emitted light and the local oscillator, one

is measuring the electric field:

∫ ∞

0

∣∣E0(t) + iP (3)(t)
∣∣2 dt ≈

∫ ∞

0

|E0(t)|2 + 2= (
E0(t)P

(3)(t)
)
dt (7.4)

rather than its intensity:

∫ ∞

0

∣∣P (3)(t)
∣∣2 dt (7.5)

In contrast to the photon echo experiment, the heterodyned signal is no longer back-

ground free, but sits on an offset
∫∞
0
|E0(t)|2 dt (which normally is subtracted).

Ideally, one uses δ-shaped pulses for the three input pulses as well as for the local

oscillator. In this case, one obtains as the measurement signal the response function

itself:

∫ ∞

0

= (
E0(t)P

(3)(t)
)
dt ∝ S(3)(t3, t2, t1) (7.6)

without any complication due to a convolution etc. Times t1, t2, and t3 are the delay

times directly controlled by the experiment. In that sense, 2D spectroscopy is the

ultimate nonlinear experiment, since it gathers the maximum amount of information

(within the framework of 3rd-order spectroscopy). What we cannot learn with 2D

spectroscopy, we will not be able to learn with any other 3rd-order spectroscopy. The

prize we pay for this completeness, however, is: S(3)(t3, t2, t1) is a three-dimensional

oscillating function which is very complex and almost impossible to visualize. This is

why heterodyne-detected photon echoes, initially pioneered by Wiersma already in the

mid-90’s, were not considered to be anything useful for quite some time.

The simple trick to visualize such a function is to transform it into frequency space by

the help of a 2D Fourier transformation (it took quite some time to realize that):

S(3)(ω3, t2, ω1) =

∫ ∞

0

∫ ∞

0

S(3)(t3, t2, t1)e
+iω3t3e∓iω1t1dt1dt3 (7.7)
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where the ’∓’ is for rephasing and non-repahsing diagrams, respectively (see below).

The Fourier transform is performed with respect to the coherence times t1 and t3,

while time t2, where the system is in a population state (also called waiting time), is

not transformed. This leads to 2D spectra, which are much more intuitive than the

signal in the time-domain S(3)(t3, t2, t1). A sequence of 2D spectra for various waiting

times t2 gives the full information about the 3rd-order response function S(3)(ω3, t2, ω1).

The Fourier transforms of Eq. 7.9 and Eq. 7.2:

R2,3(ω1, ω3) ∝ 1

−i(ω1 − ω)− Γ
· 1

+i(ω3 − ω)− Γ
(7.8)

R1,4(ω1, ω3) ∝ 1

+i(ω1 − ω)− Γ
· 1

+i(ω3 − ω)− Γ

are complex-valued, and one may either plot the real, the imaginary or the absolute

value of the outcome. However, it turns out that neither of it are very intuitive. They

contain both absorptive and dispersive contributions, which makes the band (a) broad,

and/or which (b) renders the band positive and negative in certain regions:

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
0

Re(R2,3) Im(R2,3) Abs(R2,3)

0 10 20 30 40 50 60 0 10 20 30 40 50 60
0

Re(R1,4) Im(R1,4) Abs(R1,4)

ω1 ω1 ω1

ω
3

ω
3

It is now established that it is the best to plot the real part of the sum of both spectra:

Rabs(ω1, ω3) = < (R2,3(ω1, ω3) + R1,4(ω1, ω3)) (7.9)

which yields so-called purely absorptive spectra:
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Re(R2,3
+R1,4)

ω1

ω
3

0

The purely absorptive spectrum yields the sharpest lines and it preserves the sign of

the response function (in contrast to the absolute-valued spectrum shown above). The

latter will be important when we deal with more than one transition. The prize we pay

is: We need to collect two sets of data under exactly identical conditions, and, we need

to know the absolute phase of both of these signals (in contrast to the absolute-valued

spectrum, which is the easiest to measure).

7.2 2D Spectroscopy in the Presence of Spectral Diffusion

under construction

7.3 2D Spectroscopy of a Set of Coupled Oscillators

Consider a level scheme of two coupled vibrational oscillators:

|20�

|10�

|00�

|11�
|02�

|01�

|00�

|11�

1

2

3

4

5

6

7

8
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where |ij〉 denotes a state with i quanta in the first oscillator #1 and j quanta in

the second oscillator #2. From the ground state we can either excite state |10〉 or

state |10〉. From either of these states, we have three possibilities. When we start

for example from |10〉, then we have |10〉 → |00〉 (stimulated emission), |10〉 → |20〉
(up-climbing of oscillator #1), or |10〉 → |11〉. The transition |10〉 → |02〉 is forbidden

(in the harmonic approximation) since it would require a 3-quanta transition.

The set of Feynman diagrams we have to consider is for the k1 − k2 + k3-direction:

|10��10|

|10��00|

|01��01|

|01��00|

|00��00|

|10��00|

|00��00|

|01��00|

|10��10|

|20��10|

|01��01|

|02��01|

|10��10|

|11��10|

|01��01|

|11��01|

|10��01|

|10��00|

|01��10|

|01��00|

Bleach Stimulated
Emission

Excited State 
Absorption
Diagonal 

Excited State 
Absorption

Off-Diagonal

Interstate
Coherence

A corresponding set of Feynman diagrams exists for the −k1 + k2 + k3-direction. The

’interstate-coherence’ diagrams play special role, as they oscillate as a function of pop-

ulation time t2. In most cases, one will measure with t2 = 0, in which case the

’interstate-coherence’ diagrams result in the same signal as the bleach and stimulated

emission diagrams.

The following picture shows an example of a purely absorptive 2D-IR spectrum of the

two C=O vibrations of dicabonylacetyl-acetonato rhodium (I) (RDC) (kindly provided

by Andrei Tokmakoff, see Phys. Rev. Lett. 90, 047401 (2003)):
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Each peak is such a spectrum corresponds to one of the possible transitions (labelled by

numbers), and the 2D-lineshape of each peak is that described in Sec. 7.1 or Sec. 7.2,

respectively.

We find so-called diagonal contributions in the 2D spectrum (peaks 5, (2+6), 3 and

(4+8)) and off-diagonal contributions (peaks 1, 2, 7, and 8). Each diagonal and off-

diagonal peaks consist of a pair of peaks with positive and negative amplitudes (in-

dicated as blue and red, respectively). For example, the blue diagonal peak labelled

with 6 corresponds to the |01〉 → |00〉 stimulated emission, while the red diagonal

peak labelled with 5 corresponds to the |01〉 → |02〉 excited state absorption. Diago-

nal peaks involve one oscillator only. Since the oscillator is slightly anharmonic, the

|01〉 → |02〉 excited state absorption is red-shifted with respect to the |01〉 → |00〉
stimulated emission. If the oscillator were harmonic, both signals would overlap and

cancel completely.

As an example of an off-diagonal peak, the signal labelled 2 corresponds to the bleach of

the |01〉 oscillator, while the signal labelled 1 corresponds to the |10〉 → |11〉 absorption.

In both cases, we observe the excitation frequency of the second oscillator, with the

difference that in the one case (1) the first oscillator is excited as well, while it is not in

the second case (2). If both oscillator would not see each other, the second oscillator

would not care about the excitation of the first. Then, both signals (1) and (2) would

again coincide and the off-diagonal contribution would disappear. In that sense, the

existence of a cross peak tells something about the coupling between vibrational modes.
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7.4 The Exciton Model for Weakly Coupled Vibrational States

In order to calculate diagonal and off-diagonal contribution of a 2D-IR spectrum, one

needs to calculate the so-called diagonal (xii) and off-diagonal (xij, i 6= j) anharmonic-

ities, which are the constants of a Dunham expansion:

E =
∑

i

εi(ni +
1

2
)−

∑
i≤j

xij(ni +
1

2
)(nj +

1

2
) + . . . (7.10)

The splittings of the diagonal and off-diagonal peaks in the 2D-spectrum relate directly

to these constants. However, in order to calculate them, one would need to calculate

cubic and quartic force constants of the molecules potential energy surface, which is

a difficult task. As an alternative, there is a simplified model, the so-called exciton

model, which is often used and which describes the 2D-IR spectroscopy of weakly

coupled vibrational states reasonably well.

Coupled Harmonic Oscillators: A system of coupled harmonic oscillators is de-

scribed by the Hamiltonian:

H =
∑

i

εib
†
ibi +

∑
i<j

βij(b
†
ibj + b†jbi). (7.11)

Here, b†i and bi are the creation and annihilation operators of individual oscillators, re-

spectively. The εi are the intrinsic excitation energies of the individual sites, and the βij

are the couplings between sites. The Hamiltonian conserves the number of excitations

and hence separates into blocks of the ground-state, the one-excitonic Hamiltonian

H
(0)
1 , the two-excitonic Hamiltonian H

(0)
2 , etc. When expanding the Hamiltonian in a

site basis

{|0, 0〉, |1, 0〉, |0, 1〉, |2, 0〉, |0, 2〉, |1, 1〉}, (7.12)

(using the same convention as above) the harmonic Hamiltonian reads

H(0) =




0

ε1 β12

β12 ε2

2ε1 0
√

2β12

0 2ε2

√
2β12√

2β12

√
2β12 ε1 + ε2




(7.13)

Here, the zero-, one-, and two-exciton manifolds have been separated by lines. In the

harmonic case, we know without explicit diagonalization of the harmonic two-excitonic

Hamiltonian that its eigenstates (i.e. the two-excitonic states) are product states of

the one-excitonic states (harmonic oscillators decouple). In that sense, the one-exciton

Hamiltonian:

H
(0)
1 =

(
ε1 β12

β12 ε2

)
(7.14)
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already contains all the physics of a harmonic system.

Coupled Anharmonic Oscillators: However, as a very general argument one can

state that the nonlinear response of a harmonic system vanishes; any nonlinear ex-

periment would reveal a zero-signal. Diagonalization of the Hamiltonian would reveal

xij = 0 for all anharmonic constants, and each pair of peaks on the diagonal and on

the off-diagonal of the 2D spectrum would just coincide and cancel each other. Hence,

we have to include anharmonicity in order to understand the nonlinear spectroscopic

response of a system of coupled oscillators. Anharmonicity is generally included in

an ad hoc manner by lowering the site energies of the doubly-excited site-states by an

energy ∆:

H =




0

ε1 β12

β12 ε2

2ε1 −∆ 0
√

2β12

0 2ε2 −∆
√

2β12√
2β12

√
2β12 ε1 + ε2




(7.15)

The magnitude of the site-anharmonicity ∆ can be determined from pump-probe ex-

periments of a single uncoupled vibrator. In the weak-coupling limit β12 ¿ |ε2 − ε1|,
the two-excitonic states can still be identified as product states of the one-excitonic

states, lowered in energy by diagonal and off-diagonal anharmonicity. The latter can

be calculated perturbatively:

x12 = 4∆
β2

12

(ε2 − ε1)2
(7.16)

so that the off-diagonal anharmonicity reflects directly the anharmonic coupling.

The exciton model has been used extensively to describe 2D-IR spectra of the so-called

amide I band of small peptides. In this case, the C=O groups of the peptide backbone

are thought to be coupled mostly through electrostatic interaction, which in the most

simple approximation can be described as dipol-dipol-coupling:

βij =
1

4πε0

[
~µi · ~µj

r3
ij

− 3
(~rij · ~µi)(~rij · ~µj)

r5
ij

]
(7.17)

The strength of this coupling is given by distance and relative orientation of the C=O

groups, and hence is directly related to the geometry of the molecule. A review on this

topic can be found in [Woutersen and Hamm, J. Phys.: Condens. Matter 14 (2002)

R1035]

Final Remark: There are many variants of experimental realizations of 2D spec-

troscopy. The most important variant is obtained by introducing a spectrometer in

front of the detector:
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Sample

Detector

k1

k2
-k1+k2+k3

k3

kLO

t1t2t3

ELO(t)

Spectro-
meter

P(3)(t)

ELO(ω)

P(3)(ω)

The action of this spectrometer is to perform the Fourier-transform with respect to t3.

Scanning of t3 is no longer needed. When using an array detector that covers the whole

ω3-frequency range of interest in one shot, this actually reduces the measurement time

significantly since only one time axis t1 needs to be scanned.

The second variant of 2D spectroscopy is the so-called double-resonance experiment,

which shall not be discussed any further here. The relation between the double-

resonance experiment and the heterdyne detected photon echo experiment has been

analyzed in depth in [JCP 121 (2004) 5935-5942].
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