
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1989

Reverse Software Engineering of Concurrent Real Time Programs Reverse Software Engineering of Concurrent Real Time Programs

Mitchell C. Song
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Mitchell C. Song, "Reverse Software Engineering of Concurrent Real Time Programs", . December 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-81.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/810
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/810
mailto:repository@pobox.upenn.edu

Reverse Software Engineering of Concurrent Real Time Programs Reverse Software Engineering of Concurrent Real Time Programs

Abstract Abstract
This paper presents an algorithm for translating concurrent procedural language programs into
nonprocedural, mathematical language programs, called specifications. The goal is to achieve reuse of
old existing programs in developing new systems, through having them explained automatically and
facilitating their modification.

Mathematical languages are widely believed to be superior to procedural languages. Unlike procedural
languages, mathematical languages do not have "side effects" and are oblivious to computer concepts.
Thus mathematical languages free the user of having to "think like a computer" when developing or
modifying a program. Its mathematical semantics make proving software correctness easier and
improves software reliability. The specification can then be used to generate automatically highly efficient
procedural language programs for computer system.

The translation algorithm centers around the difference in the meaning of variables in procedural and
mathematical languages. In a procedural language a variable may be assigned many values. In a
mathematical language, however, a variable may be assigned only one value. The translation algorithm
focuses on renaming variables in a procedural language program so that each variable is assigned only
one value.

This paper also presents a methodology for proving specification correctness. The idea is based on
generating scenarios that define values of variable for an applicable situation and using this to prove the
specification satisfy a given requirement. This is contrasted with use of temporal logic for proving
correctness of concurrent programs.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-89-81.

This thesis or dissertation is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/810

https://repository.upenn.edu/cis_reports/810

Reverse Software Engineering
Of Concurrent

Real Time Programs

Mitchell C. Song

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

December 1989

UNIVERSITY OF PENNSYLVANIA

THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

SCHOOL OF ENGINEEFUNG AND APPLIED SCIENCE

REVERSE SOFTWARE ENGINEERING
O F CONCURRENT REAL TIME PROGRAMS

Mitchell C. Song

Philadelphia, Pennsylvania

December 1989

A thesis presented to the Faculty of Engineering and Applied Science of the University of

Penrlsylvania in partial fulfillment of the requirements for the degree of Master of Science in

Engineering for graduate work in Computer and Information Science.

Dr. Noah S. Prywes V

';t-e" U -
rr

Dr. iean H. Ga1lier1-\

ABSTRACT

This paper presents an algorithm for translating concurrent procedural language pro-

grams into nonprocedural, mathematical language programs, called specifications. The goal

is to achieve reuse of old existing programs in developing new systems, through having them

explained automatically and facilitating their modification.

Mathematical languages are widely believed to be superior to procedural languages.

Unlike procedural languages, mathematical languages do not have "side effects" and are

oblivious to computer concepts. Thus mathematical languages free the user of having to

"think like a computer" when developing or modifying a program. Its mathematical se-

mantics make proving software correctness easier and improves software reliability. The

specification can then be used to generate automatically highly efficient procedural language

programs for computer system.

The translation algorithm centers around the difference in the meaning of variables

in procedural and mathematical languages. In a procedural language a variable may be

assigned many values. In a mathematical language, however, a variable may be assigned

only one value. The translation algorithm focuses on renaming variables in a procedural

language program so that each variable is assigned only one value.

This paper also presents a methodology for proving specification correctness. The idea

is based on generating scenarios that define values of variable for an applicable situation and

using this to prove the specification satisfy a given requirement. This is contrasted with use

of temporal logic for proving correctness of concurrent programs.

Contents

1 INTRODUCTION

. 1.1 The Problem

. 1.2 The Solution

. 1.3 Contributions

. 1.4 Outline

2 SUMMARY OF REVERSE SOFTWARE ENGINEERING

3 MODEL

4 COMMUNICATION BETWEEN CONCURRENT PROCESSES

. 4.1 Communication Through Messages

. 4.2 Communication Through Shared Memory

5 EXAMPLE OF TRANSFORMATION

5.1 Pre-Translation .

. 5.2 Program Tree

. 5.3 Instrument ation

. 5.4 Renaming for Single Assignment

. 5.5 Single Value Assignment

. 5.6 Initial Specification

5.7 Final Specification . 49

5.8 Comments . 49

6 Proving Correctness of The Specification

7 SURVEY OF TEMPORAL LOGIC

8 CONCLUSION 65

List of Figures

. Use of Translations Between Procedural and Equational Languages

. Program Transformations

. Specification Transformations

. Example Specification using Mailboxes

. Example Specification using Shared Variables

. MODEL'S View of Shared Memory

. Dekker's Algorithm In Procedural Form

. The Critical Section Problem

. Translation of Shared Variables

. Pre-translated Program with Program Tree

. Transforming WHILE Loop

. Transforming DO Loop

. Transforming Non-Loop-Nested IF

. Transforming Nested IF

. Transforming Assignments to a Program Array Variable

. Instrumented Program

. LHS Renaming Table

. RHS Renaming Table

. 19 Single Assignment Program 43

. 20 Single Value Variables Program 45

21 Dataflow Diagram of the Shared Structures Sharedinl. Sharedin2 and Sharedout 48

. 22 Specification for Enter Header and Declarations 50

. 23 Specification for Enter . Equations 51

. 24 Specification for Leave 51

List of Tables

1 Header Statements in MODEL . 16

2 Declarations of Variables in MODEL . 17

3 Equations. Variables. Subscripts and Operations in MODEL 19

4 Summary of Applicable Situations for the Three Requirements 55

5 Scenarios Table . 56

1 INTRODUCTION

This report deals with the reverse translation of concurrent programs using shared memory

into equational specifications. It is an extension of the research performed on "Reverse

Software Engineering" in [l l] . The goal is to achieve reuse of existing software, thereby

reducing the cost of redeveloping or modifying existing software to perform on different

computer systems. The research for this report was supported by the Air Force Office of

Scientific Research under contract AFOSR-88-0116.

1.1 The Problem

Programs written in procedural languages are computer dependent. They are prescriptive

and consist of an ordered set of statements that direct the computer. Such existing programs

must be frequently modified or redeveloped to take advantage of features offered by different

computer systems. As the need to use modern computer systems increases, this costly

approach is used widely. The difficulty and expense lie in the developer/modifier having to

understand the old programs in order to modify and test them.

1.2 The Solution

Procedural language programs are notoriously difficult to read and comprehend. There are

two major difficulties in working with procedural languages. The first is the need for the

user to "think like a computer" in both developing and reading a program. A program is

written as a sequence of steps taken by a computer. This is regarded by Parnas as the

primary reason that conventional software development does not produce reliable programs

[6, 101. The second difficulty arises from the existence of "side effects". Side effects, though

making a program more efficient, frequently obliterate from view the original algorithm on

which the program is based. They add to the difficulties of understanding and modifying

statements, as the statement may effect or be effected by other statements [ll].

Mathematically oriented languages, on the other hand, are computer independent.

They differ in that they are purely declarative or descriptive [Ill. A specification contains

only rules or axioms of the problem and is oblivious to computer concepts. There is no

significance to the order of statements and no "side effects". Therefore, the user is freed

from having to "think like a computer". They also state the algorithm explicitly. For these

reasons, languages of this class are generally thought of as being easier to work with. The

user only specifies what he/she wants and does not concern himself/herself with how to

best utilize a given computer system. A forward translator can generate automatically an

optimized program for a given computer system, taking advantage of any special features

that system might offer.

We use proving correctness as a criterion for understanding a program. Equational

languages are often easier to prove correct by using conventional algebraic manipulations.

Since the program is nothing more then mathematical equations, the proof can be con-

ducted mathematically. This is generally easier and leads to a more rigorous and straight

forward proof. Thus, the use of equational languages can greatly reduce the cost of software

development, maintenance and verification of correctness.

In light of the advantages of equational languages, it is very desirable to translate

existing software into equational specifications before performing further maintenance or

development. If all programming and maintenance is performed on a non-procedural, com-

puter independent language, only one source version need to be kept. Programs can then be

automatically generated in any language for any computer system using the non-procedural

language program.

1.3 Contributions

We present in this report a reverse translation algorithm to translate concurrent programs

using shared memory. An algorithm of this sort can greatly increase the life of existing

software and reduce the cost of porting software to different computer systems. Porting

to another system merely consists of automatically forward translating the specification to

the desired language on the desired computer system. As mentioned, multiple copies of the

source for the same software are no longer needed. Maintenance is also made more cost

effective. The specification is easier to comprehend and only one version need be modified.

As understanding of a program is the key objective, this document focuses on a

methodology of using the generated specification for verification. This is also the objective

of temporal logic, and the paper compares the use of specifications with the methodology of

temporal logic.

1.4 Outline

Section 2 briefly describes Reverse Software Engineering and gives a summary of the re-

verse translation algorithm. Section 3 is provided for those not familiar with the MODEL

equational language. It describes the basic components and their syntax. It also describes

additional features such as the RENAMING clause that are used in the specifications of pro-

grams that share memory. Section 4 discusses the two forms of communication between con-

current programs, message passing and shared memory. It also explains how MODEL views

shared memory. Section 5 gives in detail the algorithm for reverse translating concurrent

programs that use shared memory. Section 6 presents a technique for proving specification

correctness. Section 7 surveys temporal logic and contrasts the its proof methodology with

that in Section 6. Finally, Section 8 summarizes the key issues in this paper.

2 SUMMARY OF REVERSE SOFTWARE ENGI-
NEERING

Reverse Software Engineering is a process by which a procedural program is transformed,

through a series of transformations, into an equational specification. This specification is

the mathematical meaning of the procedural program and is computer independent.

The specification is intended as the medium in which analysis of correctness and

maintenance is to be performed. The specification can then be automatically forward trans-

lated, via "Forward Software Engineering", into a new highly optimized procedural program

to conform to any desired computer system. The notion of reverse software engineering is

shown in Figure 1.

In a procedural language program, a variable may assume many different values during

the course of an execution. In an equational language program, such as MODEL [cccc], a

variable may assume one and only value. Therefore, the goal is to a uniquely named variable

for each instance that a variable is assigned a value. This is accomplished by mapping each

instance of an assignment in the program into an array such that every array element is

assigned only one value. The dimensionality of the array is equivalent to the depth the

variable is nested plus one. The equations constituting the specification are simply the

assignment statements. The correctness of the translation follows from the fact that for each

assignment to a variable during the execution of the source program there is an equation

that defines a variable in the specification. Thus the source program and the resulting

specification are equivalent in that the respective mapped variables have the same value.

The translation consists of eight transformations which are applied in succession.

Each of the first five transformations generates a program that is equivalent to the input

program. This first group is shown in Figure 2. It starts with the source procedural program

and ends with a program that can be directly transformed into equations. In the second

group of transformations shown in Figure 3, the final program is translated into equations

I Existing I i-+
I Procedural Programs I-+

I Translation
1 -----------

(Reverse Software Engineering)
I I

+------------------------- + I
I

+-------------------------
I I

+ I I
0 I New 1 1 1
I / I 1 Equational Specification1 I-+

/I\ / 1 <---------------- > I
+-------------------------

I -+
1 --- / I Compose +

/ \I -----I read I
modify I
verify V

I Translation ----------- I
I I

(Forward Software ~ngineering)
I I
+------------------------- +

I
I
v

+------------------------- +
I New or Improved I
I Procedural Programs I
+------------------------- +

Figure 1: Use of Translations Between Procedural and Equational Languages

and declarations and then simplified. The transformations in the second group operate on

equations. They use algebraic identities to collect common factors and use substitutions to

simplify the specification.

The following is a brief explanation of the need and purpose of each transformation.

Transformation 1 converts the source program using subroutine calls, goto statements,

dynamic memory allocations and shared variables into a program using only the basic types

of statements.

Transformation 2 builds a tree from the source program such that intermediate nodes

represent block statements and leaf nodes represents basic statements. The tree is modified

in the succeeding transformations.

Transformation 3 instrument^'^ the assignments in the program. It nests each

WHILE and DO loop within an IF statement block and introduces counters for each WHILE

and DO loops, and for IF statements. These counters are used in transformation 4 to iden-

tify each instance of an assignment that can be repeated zero or more times. In addition, it

eliminates nested IF statements by combining conditions used in the nested IF statements

to simplify the next transformation.

Transformation 4 generates a "single-assignment" program in which a variable is

assigned a value by exactly one statement. It first gives distinct names to left hand side

(LHS) variables of assignments. It then substitutes variables referenced in expressions with

corresponding renamed LHS variables. To simplify the next transformation, if a variable is

assigned a value in more than one statement (before LHS renaming) within a loop, it adds

extra variable that remembers the last assignment to the variable with the loop.

Transformation 5 generates a "single value variable" program. That is, this transfor-

mation completes the conversion of the source program into an equivalent program in which

each variable has exactly one value. This is achieved by converting each variable that is

assigned multiple times within a loop into an array. The resulting assignments can then be

Source Procedura l Program

+---+-- +
1 1 1 Pre -Trans l a t ion
I I T r a n s l a t e i n t o b a s i c s t a t e m e n t s t y p e s

I
+---+--

I +

Source program b a i i c t y p e s of s t a t e m e n t s
I

+---+-- +
1 2 1 Tree -S t ruc tu re
I I S t o r e source program i n t h e t r e e form

I
+---+--

I +
I v

program t r e e s t r u c t u r e
I
v +---+-- +

I 3 1 Ins t rument program I
I I (a) WHILE/DO loop coun te r I
I I (b) Conso l ida t e IFs
1 I (c) I F subcounter

I
+---+-- 1 +

I v
Instrumented Program

I
v +---+-- +

1 4 I Renaming I
I I (a) LHS v a r i a b l e renaming I
1 I (b) Merge/reduce c o n d i t i o n a l assignments 1
1 1 (c) RHS v a r i a b l e s u b s t i t u t i o n s +---+-- I +

I
v

LHS Renaming Table
RHS Renaming Table
S i n g l e Assignment Program

I
v +---+-- +

1 5 1 S i n g l e Value Expansion I
1 I Arrays f o r v a r i a b l e s i n loops
+---+--

I +
I

i
S i n g l e v a l u e v a r i a b l e program

Figure 2: Program Transformations.

Sing le value va r i ab l e program
I
3 +---+-- +

1 6 1 Transformation i n t o s p e c i f i c a t i o n 1 +

+---+-- +
1 7 1 Transformation t o reduce IFs +---+-- I +

I
0

Simpl i f ied l o g i c i n spec i f i c a t i on
I
v +---+-- +

1 8 1 Transformation t o reduce
I I va r i ab l e s and equations

I
+---+--

1 +
I
v

Reduced equations s p e c i f i c a t i o n

Figure 3: Specification Transformations.

viewed as equations.

Transformation 6 adds a header and declarations to the set of assignments produced

previously to make it a MODEL specification. The specification is now longer than the

source program, because a number of variables and conditions were added to make explicit

all the interactions among variables.

Transformations 7 and 8 simplify the specification. Transformation 7 identifies com-

mon conditions and factors and eliminates multiple definitions of them. In addition, condi-

tions and factors are simplified using identities. Transformation 8 eliminates some variables

by substituting their references with defining expressions.

3 MODEL

MODEL is the language used for the object equational specification. This section, taken

almost verbatim from [Ill, describes briefly the syntax and semantics of the basic parts of

MODEL.

The benefit of using MODEL is that the present system accepts equational specifi-

cations and generates procedural programs in Ada, C and PL/I [2]. In addition, the "spec-

ification extension" phase of the MODEL system tolerates omissions in the user provided

specification and fills-in missing parts automatically. We take advantage of this feature to

simplify the translation.

A MODEL specification consists of a header, declarations and equations. The com-

putation of a specification produces values for variables that make all equations true. The

order of equation statements is irrelevant, and thus, may be in any order.

Header The format of a header is shown in Table 1. A header defines the specification

type (MODULE, FUNCTION and PROCEDURE), name, inputs (called SOURCE) and

outputs (called TARGET). A module denotes a main program. A function has only input

parameters and returns a result and a procedure has input, output and update (i.e., both

input and output) parameters.

EXTERNAL variables are external variables that are declared, reference or defined

in external program entities in an overall software system. External variables may repre-

sent structured or elementary variables. They may be used in any kind of program entity

(MODULE, FUNCTION and PROCEDURE) and must be listed in the SOURCE and/or

TARGET statements.

Declarations The format of a declaration statement is shown in Table 2. Input and out-

put variables including parameters, external variables and variables in 1 /0 devices must be

HEADER:

Name Statements

MODULE: <main procedure name> EXTERNAL(<variable>,. . .);
FUNCTION: <function name> (<input-parameter>, ...) EXTERNAL(<variable>,. . .)

RESULT(<variable> ,. . .);
PROCEDURE: <subroutine name> (<parameter>, ...) EXTERNAL(<variable>,. . .);

Input/Output Argument Declarations

SOURCE: <input argument or i/o file> ,...;
TARGET: <output argument or i/o file> ,...;

Table 1: Header Statements in MODEL.

declared. Other (interim) variables can also be declared, but their declarations are optional.

If omitted, they are generated automatically in the extension phase of the MODEL system.

Unlike declarations in a procedural language which only identify the structure trans-

ferred in each input and output operation, the entire input and output structures must be

defined. Each declaration is thus viewed as defining a multi-level tree in a depth-first man-

ner. Each node has a level number, name, repetition (or dimension) size, and data type.

Each leaf node must have a primitive data type.

The "rename clause" plays a special role in translating programs using shared vari-

ables. Therefore, it is important that we discuss this feature in detail. In numerous cases,

such as in the use of shared variables, it is desired that only one memory location be updated

and referenced by a number of concurrent programs. This causes a conflict with MODEL

as MODEL variables follow the convention in mathematics of being assigned only one value.

However, this conflict is resolved through the use of the renaming clause. The renaming

clause permits the user of MODEL to specify a mapping of MODEL variables to a single

DECLARATIONS:

Input/Ou
entire
types.

. tput: Declaration of input/output arguments are mandatory. If it is a structure, the
input/output data must be declared down to individual data elements and their data

1 <structure name><repetitions><type of device>
2 <substructure name><repetitions><structure data type>

n <elementary variable name> <repetitions>
<primitive data type> [<rename clause>];

<repetition> may consist of:
<integer>
<min integer>:<max integer>, or
* : denoting 1 or more repetitions

The type of device must be declared as follows:
sequential file (default),
messages from other processes (tasks),
addressed messages,
random access,
shared memory,
dynamically allocated memory.

In ter im variables: Declaration is optional. The translator from MODEL to a procedural lan-
guage declares interim variables automatically.

Table 2: Declarations of Variables in MODEL.

variable of the interfacing program. The rename clause has the following syntax:

<rename clause> : := RENAME <name>.

In the generated program, the MODEL variable name is renamed to <name>.

Equations Table 3 summarizes the syntax and meaning of equations. The left hand side

of an equation statement contains only a variable reference. This is the independent variable

of the equation. The right hand side is an expression which consists of operations and

variables. They have the syntax and meaning of arithmetic or boolean algebra (depending

on the operators).

Variables referenced in equations may be scalars or arrays. An array variable name

must be followed by subscript expressions for each of its dimensions, in parenthesis. A

variable in some programming languages, as well as in MODEL, may denote an entire tree

structure of more elemental variables. Transformation of such structured variables into the

basic variables is performed automatically by the MODEL system. If an equation contains

a subscripted variable, then an equation is assumed to be repeated for all integer values in

the range of 1 to the size of each subscript of the variable. Thus, an equation as well as

a variable may be multidimensional. If a subscript expression has the value zero, then the

RHS variable in an equation must be preceded by an IF condition preventing use of the

variable in such a case.

A specification must include an explicit or implicit definition of each different size

of a dimension in the variables. The definition is given through a declaration or through

an equation. The size of a dimension variable can be denoted by a control variable. There

are two ways to denote a control variable: by use of the prefix SIZE to denote the number

of elements in a dimension of the suffix variable, or by use of the prefix END to denote

a boolean vector where each element denotes whether the respective element of the suffix

variable is the last one in the dimension. The size of a dimension may be specified to have

a zero or positive integer value. If the size is zero, the respective variable is said to be null.

The equation in which it is the LHS variable is considered to be non-existent.

Several types of operations can be used in expressions. These include arithmetic,

logical and string operations. Arithmetic and boolean expressions can be mixed using the

IF-THEN-ELSE operation, which has the three operands as follows:

IF <boolean expr> THEN <arithmetic expr> ELSE <arithmetic expr>

where ELSE <arithmetic expr> is optional.

MODEL specifications are time invariant. That is, values of variables in a MODEL

EQUATIONS:
<variable name> (<subscript expression> ,...) = < expression > ;

<variable name> may refer to an individual element variable or to a tree structure of subvari-
ables.

Control variables denote the sizes of dimensions of arrays. They must be defined by equations.
They can be represented as:

SIZE. <variable name> (<subscript expression> ,...) : denotes the number of elements in
the rightmost dimension of <variable name > (<subscript expression> ,. . .).

END. <variable name> (<subscript expression> ,. ..): denotes whether an element is the
last one in the rightmost dimension of <variable name> (<subscript expression>,...).

Subscript denotes the index of the referenced element of an array. The equation is true for all
the integer values of each subscript in the range of 1 to the size of the respective dimension
(defined by a constant or control variable). The equation and the array do not apply (are
null) if the size of a LHS variable dimension is zero. The syntax of subscripts is: subl, sub2, ...
. These subscripts are local to the equation where they are used. Equations must include
qualifying conditions to avoid referencing variables with subscript expression of zero value.

Operations used in expressions include the following:

arithmetic, logical and string operations
if- then-else
built-in or user-defined functions and subroutines

Note: The translator from MODEL to procedural languages tolerates in many cases omissions of
definitions of control variables.
There are no order of statements, loop or input/output commands.

Table 3: Equations, Variables, Subscripts and Operations in MODEL.

specification, as in mathematics, are defined by equations only and have no concept of time.

All initial values are either declared in the specification or passed in as parameters. In

addition to time invariance, a specification has no concept of memory space. Thus it can

define an infinite number of variables. (It should be noted that the MODEL compiler does

optimize memory usage when generating a program from a specification.)

Further information on MODEL is given in [2] .

4 COMMUNICATION BETWEEN CONCURRENT
PROCESSES

Concurrent processes can be classified into two categories, independent processes and co-

operating processes. A process is independent if it cannot affect nor be affected by other

processes during its execution [12]. Thus any process that does not share data with any

other process is independent. Clearly, the section of code that execute in an independent

process can be thought of as a sequential subroutine. Thus translation of such code into

equations is equivalent to the translation of any other sequential subroutine.

The interesting case involves cooperating processes. A process is cooperating if it can

affect or be affected by other processes during its execution [12]. Thus any process that share

data with and/or send messages to other processes is a cooperating process.

There is only one real difference between concurrent programs and sequential pro-

grams. This is that processes in concurrent programs may execute in parallel and com-

municate with other executing processes. Thus the problem of extending the translation

algorithm of [ll] to include concurrent programs, is really the problem of translating the

features in concurrent programs that facilitate interprocess communication.

4.1 Communication Through Messages

Communication through messages can be either direct or indirect. In direct communication,

each process that wants to send a message must explicitly name the recipient of the message.

Likewise, each process that wants to receive a message must explicitly name the sender of

the message. Communication in such a scheme is carried out by means of the following

primitives or a variant there of:

send(P,message) - send message to process P,

receive(P,message) - receive message from process P.

In indirect communication, processes communicate via an intermediate repository,

commonly known as a mailbox. A mailbox is abstractly viewed as an object into which

messages may be placed by processes and from which messages may be removed [12]. Here,

the primitives are defined as follows:

send(M,message) - send a message to mailbox M,

receive(M,message) - receive a message from mailbox M .

A process may communicate with another process only if they share at least one mailbox.

Each mailbox has a unique identification.

The MODEL system supports indirect communication via mailboxes. It views mail-

boxes as external 1/0 devices, i.e. external to the specification, to and from which messages

may be sent and received. Although, mailboxes are viewed as external devices they do not

physically exist.

To facilitate this approach, MODEL makes available to the user the two file types

MAIL and POST. A MAIL file is used to communicate with other processes. It may receive

from one or more other processes but can only be read by one process. POST files are used

when one process wishes to send a message to many other processes. It differs from a MAIL

file in that it includes the address of its destination as a key.

To send a message in MODEL one need only define a value for a variable in a MAIL

file. Similarly, to receive a message one need only reference a variable in a MAIL file.

This is illustrated in Figure 4. The first equation sends a message by assigning a value to

msgq. The second equation receives a message by simply referencing msg-p. Thus these

equations are equivalent to the execution of the primitives send(mai1box-q,''send message")

and receive(mai1box-p,msg-p) , respectively.

PROCEDURE: Example1 EXTERN AL(mai1box-p,mailbox-q);
SOURCE: mailbox-p;
TARGET: mailbox-q;

1 mailbox-p IS FILE ORG=MAIL,
2 message-p IS RECORD,

3 msg-p IS FIELD (char(20));

1 mailbox-q IS FILE ORG=MAIL,
2 message-q IS RECORD,

3 msg-q IS FIELD (char(20));

msg-q = "send message";
msg = msg-p;

Figure 4: Example Specification using Mailboxes

4.2 Communication Through Shared Memory

Shared variables are used by concurrent programs to facilitate communication, in one way or

another, between concurrent processes. Communication is accomplished by assigning values

to and referencing from shared variables. In the course of a computation, a shared variable

may be assigned many values by different processes.

MODEL follows the mathematical convention that a variable can assume only one

value. Thus all values generated must be assigned to a separate variable in a MODEL

specification. However, in the case of shared variables, it is desirable to update only one

memory location. The renaming clause in MODEL, discussed in Section 3, permits us to

show such a correspondence.

The use of the renaming clause is illustrated in Figure 5 . The procedure Example2

tests the value of f Eagl, and if it is FALSE, sets f lag2 to TRUE. From the view of the

specification, flag1 and f lag2 are two separate local variables. But to the external world,

procedure Example2 operates on the shared variable flag.

PROCEDURE: Example2 EXTERNAL(sharedin, sharedout);
SOURCE: sharedin;
TARGET: sharedout ;

1 sharedin IS FILE ORG=SHARED,
2 reel(*) IS RECORD,

3 flagl IS FIELD (bit(1)) RENAME flag;

1 sharedout IS FILE ORG=SHARED,
2 rec2 IS RECORD,

3 flag2 IS FIELD (bit(1)) RENAME flag;

flag2 = DEPENDS-ON(flagl(sub1));
flag2 = TRUE;

Figure 5: Example Specification using Shared Variables

The DEPENDS-ON is a MODEL built in function that defines the evaluation prece-

dence between two variables. Thus the second equation merely states that flagl is to be

evaluated before flag2.

Shared memory is viewed as an external 1/0 device by MODEL. Thus all shared

variables are declared in SHARED files. SHARED files are external random access de-

vices where its contents are seen by equations of a specification through templates. These

templates allow an equation to only see the shared variables it updates or references. A

template shows either input variables or an output variable but not both. Figure 6 shows

this correspondence.

Input
Template

Renaming

Output
Template

Figure 6: MODEL'S View of Shared Memory

EXAMPLE OF TRANSFORMATION

The basic differences between concurrent programs and sequential programs are the features

introduced in concurrent programs to handle interprocess communication during parallel

execution of processes. For without interprocess communication, there is no real distinc-

tion between concurrent and sequential programs. Furthermore, each concurrent process is

nothing more then a sequential program. So the problem of extending the RSE algorithm

to translate concurrent programs is, as stated previously, really the problem of extending

the translation algorithm to handle statements that facilitate interprocess communication

between concurrent processes. Therefore, it is not surprising that the translation algorithm

for concurrent programs is just the translation algorithm for sequential programs extended

to include the translation of those features that facilitate interprocess communication.

As indicated by Section 4, there are numerous schemes for allowing interprocess com-

munication. However, to present a translation algorithm for all possible schemes would go far

beyond the bounds of this paper. We therefore limit ourselves to the translation of programs

that use only shared variables as a means of communication between concurrent processes.

[Note however that MODEL has features to specify and generate programs that exchange

messages between processes. An example was given in Section 4.1.1

The translation algorithm is described with the aid of an example. For this we have

selected the classic algorithm presented by Dekker as a software solution to the critical

section problem [3]. The routines, Enter() and Leave(), that implement Dekker's algorithm

are given in Figure 7. We have selected this algorithm because it shows many of the features

of the reverse translation algorithm. It also shows the less attractive side of our solution. It

was deliberately chosen to curb any claim of our fixing the example to our benefit.

Figure 8 shows how two processes use the procedures Enter() and Leave() to achieve

mutual exclusion in their critical section. When process pi wishes to enter its critical section,

it blocks process p j from entering pj's critical section by executing Enter(i). When pi is

finished, it then unblocks the other process by executing Leave(i).

Given two processes pl and p2, each with a critical section, Dekker's algorithm insures

mutual exclusion, progress and bounded wait through the use of the shared variables c[l],

c[2] and turn. c[l] and c[2] are booleans and turn is an integer that assumes either 1 or 2.

Observe that c[i] may only be changed by pi. Whenever process pi wants to enter

its critical section, it sets c[i] to TRUE. A process pi may enter its critical section only if

c[i]=TRUE and cb]=FALSE. In the event that both processes wish to enter at the same

time, the variable turn dictates which process enters first and which process waits. pi, upon

leaving the critical section, sets turn to the index of the other process.

Despite its brevity, Dekker's algorithm is very complex as it has numerous side effects

that are not apparent superfically. The transformations given below will make these side

effects explicit in the object specification.

A non-rigorous proof of correctness of Dekker's algorithm, based on the procedural

language program, is given in [3]. Using the equational language specifications, a more rigor-

ous proof may be easily given. In Section 6, we present an approach based on the equational

specification to proving correctness. It also "explains" the function of the procedure Enter()

by enumerating the cases that must be considered in proving mutual exclusion, progress and

bounded wait.

The following subsections describe the eight transformations that make up our al-

gorithm. Because the main focus of this paper is to show how concurrent programs, i.e.

interprocess communications, are translated and the algorithm for sequential programs has

already been given in [Ill, we discuss in detail only those parts of the algorithm that pertain

to concurrency. Other parts of the algorithm are summarized. Readers wishing more detail

may consult [ll].

For our example, the reader should not be concerned with the choice of the procedural

programming language used, as any procedural language program can be pre-translated to

01 PROCEDURE Enter (i : in teger) ;
02 j : integer ;
0 3
04 begin
05 j = 3-i;
06 c [i] = t r u e ;
07 while (cCjl) do
08 i f turn = j then
0 9 c[il = f a l s e ;
10 while (turn = j) do
11 endwhile
12 cCi1 = t r u e ;
13 endif
14 endwhile
15 end
16
17
18 PROCEDURE Leave (i : in teger) ;
19
20
21 begin
22 tu rn = 3-i;
23 cCil = f a l s e ;
24 end

Figure 7: Dekker's Algorithm In Procedural Form

c [ll =c [21 =FALSE : SHARD BOOLEAN;
turn=2: SHARED INTEGER;

COBEGIN
PROCESS p i :

LOOP

CALL Enter (1) ;
(c r i t i c a l sec t ion)
CALL Leaveci) ;

ENDLOOP
I I

PROCESS p2:
LOOP

CALL Enter (2) ;
< c r i t i c a l sec t ion)
CALL Leave (2) ;

ENDLOOP
COEND

Figure 8: The Critical Section Problem

have only the basic types of statements [ll].

We note that since Enter() and Leave() are procedures, they are translated indepen-

dently into separate equational specifications. We also note that because the translation

algorithm makes use of line numbers in generating new names for variables, will include line

numbers in our figures for completeness.

5.1 Pre-Translation

Transformation one converts the source program into a program that is composed of only the

basic types of statements common to most procedural languages. These basic statements are

input/output (read, write), assignment, DO, WHILE and IF statements and declaration of

variables. Discussions of translating numerous "non-basic" statements to their corresponding

basic statements are given in [I] and [Ill. We discuss here only the transformation of

statements that refer to shared variables.

As mentioned in Section 4.2, shared memory is envisioned as an external I/O device

to which read and write operations are performed. Thus for each occurrence of a shared

variable referenced on the RHS of a statement, we insert immediately before the statement a

pseudo-read operation on the external device. We likewise insert a pseudo-write operation on

the external device immediately after each occurrence of a shared variable on the LHS of an

assignment statement. All shared variables are then newly declared as local variables. These

local variables will later be mapped to their respective shared variables. This translation is

illustrated in Figure 9.

Although a shared variable may be assigned many different values by many processes,

when it is referenced the variable has only the most recent value. Therefore, the transfor-

mation of shared variables in this way does not alter the meaning of the program.

The benefit of this transformation is that the program is now void of shared variables

and their side effects, i.e. all variables are local and assigned values only by statements

(shared var) = (expression) (var) = (expression)
WRITE (var) TO (shared file)

(a) Translation of an Assignment to a Shared Variable

(varl) = f((shared var)) READ (var2) FROM (shared file)
(varl) := f((var2))

(condition(shared var))) READ (var) FROM (shared file)
(condition(var)))

(b) Translation of a Reference to a Shared Variable

Figure 9: Translation of Shared Variables

within the process.

The result of Transformation 1 is show in Figure 10. The EXTERNAL statement

introduced in the new program merely states that the filenames in its parameter are external

devices. This statement is equivalent to the MODEL EXTERNAL statement discussed in

Section 3.

01 PROCEDURE Enter (i : in teger) EXTERNAL(sharedin,sharedout); ------- > 0
02 j , turn : i n t ege r ; I
02a1 c [2] : boolean; I
0 3 I
04 begin

o<------
I

05 j = (i + i) mode 2;
o<------

1
0 6 c[i] = t r u e ;

o<------
I

06al wr i te c [i] t o sharedout ;
o<------

I
07bl read c[j l from sharedin; I
07 while (c[j]> do (,<------'

08b1 read t u r n from sharedin; 0<----

o<----
I

08 i f t u r n = j then
o<----

I
09 c [i l = f a l s e ; I I

o<---- 09al wr i t e c [i] t o sharedout ; I I
o<---- lob 1 read t u r n from sharedin; I I
o<---- 10 while (tu rn = j) do I I

o<----' I l b l read t u r n from sharedin; I I
11 endwhile I I

o<---- 12 cCil = t r u e ; I
o<---- 9

I
12al wr i t e c [i] t o sharedout ; I
13 endif I
14bl read c[j l from sharedin; o<----'
14 endwhile
15 end
15
17
18 PROCEDURE Leave (i : in teger) EXTERN(sharedin,sharedout) -->O
19 tu rn : i n t ege r ; 1
19al c [21: boolean; I
20 1
2 1 begin

o<----------------------
I

22 t u r n = 3- i ;
o<----------------------

I
22al wri te t u r n t o sharedout ;

o<----------------------
I

23 c[i l = f a l s e ; I
23al wr i t e c [i] t o sharedout ; 0<---------------------->

24 end

- - -

Figure 10: Pre-translated Program with Program Tree

5.2 Program Tree

The right side of Figure 10 shows the program tree for our sample program. The tree is

constructed from the source program such that intermediate nodes represent block state-

ments and leaf nodes represent basic statements. The remaining transformations operate on

this tree. In fact, the first six transformations can be expressed as operations on the tree.

However, for ease of reading we display the results of each transformation in non-tree format.

5.3 Instrumentation

We perform three depth-first traversals on the program tree. On the first traversal, we

instrument each WHILE loop node as illustrated in Figure 11 and each DO loop node as

illustrated in Figure 12. That is, we first nest each loop block within an IF block, the effect

of which is to push the loop node further from the root. This instrumentation is necessary

to account for and handle the case that the body of the loop is not executed at all as a

result of failing the loop condition on the first try. We then introduce a loop counter, subi,

and a variable, sizei for a DO loop and endi for a WHILE loop, that defines the number of

iterations. The reader should not that if the IF condition is satisfied, the nested loop will

always be executed at least once. The objective of these transformations is to provide the

variables that index each variable defined in a loop and obtain a count of such definitions.

On the second traversal, we instrument each IF node as shown in Figures 13 and 14.

If the distance to the root is one, then we transform the IF node into a DO loop. Note that

the DO loop is executed either zero or once. The reason for this instrumentation is largely

for uniformity in the tree, consisting of loop blocks with IF blocks nested in them.

If the distance to the root node is greater then one, then we introduce in each loop

sublinear subscripts for each conditional block.

Source Program Target Program

line i: WHILE (condition) DO

IF (condition) THEN
subi = 0
WHILE (IF subi=O THEN TRUE

ELSE ^endi) DO
subi = subi + 1

(block) (block)
endi = (condition)

ENDWHILE ENDWHILE
ENDIF

Note: subi serves as the subscript for the WHILE loop

Figure 11: Transforming WHILE Loop

A sublinear subscript denotes the index of the variables defined in the IF blocli,

i.e, conditional block, and is viewed as a vector with an element for each subscript of the

immediately nesting loop. A sublinear subscript is called slk, where k is the statement

number of the respective THEN or ELSE block of the IF statement. The condition itself is

called slcj, where j is the statement number of the IF condition. s lc j and slk are functions

of their respective loop counter subi. Note that subi may itself be a sublinear subscript. The

values of the sublinear subscripts are defined by the function sublinear(). Given a sublinear

condition slcj, sublinear subscript slk, and subscript subi, the following relationship holds

for the sublinear function:

sublinear(slcj,slk,subi) = IF subi=l THEN IF slcj THEN 1 ELSE 0

ELSE IF slcj THEN slk+l ELSE slk.

Thus a sublinear subscript is increlnerited only if the sublinear conditioil is true.

Source Program Target Program

IF (exp2) 2 (expl) THEN
sizei = ((exp2)- (exp 1) +(exp3))/ (exp3)

line i: DO I=(expl)TO(exp2),(exp3) DO subi=l TO sizei
I = IF subi=l THEN expl

(block) ELSE I+exp3
ENDDO (block)

ENDDO
ENDIF

Note: (expl), (exp2) and (exp3) are integer expressions where (exp3)>0 and they do not depend
on the block.

Figure 12: Transforming DO Loop

Source Program Target Program

sizei = IF (condition) THEN 1 ELSE 0
sizej = IF ^(condition) THEN 1 ELSE 0

line i: IF (condition) THEN DO subi=l TO sizei
(block) (block)

line j: ELSE ENDDO
(block) DO subj=l TO sizej

ENDIF (block)
ENDDO

Figure 13: Tra.nsforming Non-Loop-Nested IF

Source Program Target Program

slcj = (condition)
prev.slj = I F subi>l THEN slj
prev.slk = IF subi> 1 THEN slk

line j: IF (condition) THEN slj = sublinear(s1cj ,slj ,subi)
(block) slk = sublinear(̂ slcj,slk,subi)

line li: ELSE I F slcj THEN
(block) (block)

ENDIF 2 ELSE (block)

ENDIF

Notes: subi is the subscript of the loop that directly nests the IF

prev.slj and prev.slk are saved values of sublinear subscripts slj, slk previous to their
updating (in the subi-1 iteration).

Figure 14: Transforming Nested IF

~ (s u b l , ..., subn) =

IF subl=expl & ... & subn=expn
v(exp1, . .. ,expn)=exp THEN exp ELSE v(sub1, ..., subn)

ENDDO

ENDDO

Figure 15: Transforming Assignments to a Program Array Variable

On the third traversal, each statement that assigns a value to a program array variable

is instrumented as illustrated in Figure 15. That is, each statement is nested in a series of

loops, where the number of loops is equivalent to the dimension of the array variable. The

effect is to update all other elements of the array with their respective old values whenever

a given element of the array is assigned a value. How this benefits our translation Inay

seem unclear at this point but suffice it to say that this instrumentation greatly simplifies

subscript determination in transformation 5. For a more detailed explanation, the reader

may consult 1111.

This instrumentation of arrays, however, is unnecessary for arrays mapped to sharecl

arrays since each element of the array is updated (through a read or an assignment operation)

before its use. Thus in the instrumented program, array variable c is not nested in a loop.

All references to an element of c is preceded by an update to that element.

Figure 16 shows the instrumented program.

01 PROCEDURE Enter (i : i n t ege r) EXTERNAL(sharedin,sharedout);
02 j , t u r n : i n t ege r ;
02al c [21 : boolean;
03
04 begin
05 j = (i + l) mode 2;
06 c[i] = t r u e ;
06al wr i t e c [il t o sharedout ;
07bl read c[j] from sharedin;
07b2 s i z e 7 = i f c [j l then 1 e l s e 0;
07b3 do sub l= l t o s ize7
07b4 sub2 = 0 ;
07 while (i f sub2=0 then TRUE e l s e -end71 do
07al sub2 = sub2 + 1 ;
08bl read t u r n from sharedin;
08b2 s l c 8 = t u rn= j ;
08b3 p rev . s l8 = i f sub2>l then s18;
08b4 s18 = sub l inea r (s l c8 , s l8 ,sub21 ;
08 i f s l c 8 then
09 c [i l = f a l s e ;
09al wr i t e c [i] t o sharedout ;
lob1 read t u r n from sharedin;
lob2 s lc lO = t u r n = j ;
iOb3 p r e v . s l l 0 = i f s18>1 then s110;
lob4 s l l O = sub l inea r (s l c l0 ,s110 ,sl8) ;
lob5 i f s lc lO then
1 Ob6 sub3 = 0 ;
10 while (i f sub3=0 then TRUE e l s e -endlo) do
i l b l read t u r n from sharedin;
I lb2 end10 = ' (turn= j) ;
11 endwhile
1 l a 1 endif
12 c [il = t r u e ;
12al w r i t e c [il t o sharedout ;
13 endif
14bl read c [j l from sharedin;
14b2 end7 = ' (c[j]) ;
14 endwhile
14a1 enddo
15 end
15
17
18 PROCEDURE Leave (i : in teger) EXTERN(sharedin,sharedout);
19 t u r n : i n t ege r ;
19al c [2] : boolean;
20
2 1 begin
22 t u r n = 3 - i ;
22al wr i t e t u r n t o sharedout;
23 c[i] = f a l s e ;
23al wr i t e c [i] t o sharedout ;
24 end

Figure 16: Instrumented Program

38

5.4 Renaming for Single Assignment

This transformation transforms the output program of Transformation 3 into a single as-

signment program. A single assignment program is a program where each of its variables is

assigned a value by one assignment statement only. The transformation is accomplished by

renaming each LHS variable in an assignment statement to have a unique name .

This transformation has three phases: (1) LHS renaming, (2) addition of localizing

loop variables and (3) RHS renaming.

LHS renaming This phase renames the variables on the LHS of each assignment

statement (for the purpose of our algorithm, a READ statement is considered to be an

assignment statement). This is accomplished by simply appending the line number of the

statement to the LHS variable name. This results in a distinct LHS variable for each assign-

ment statement. In this way the single assignment rule is applied to the program.

Figure 17 shows a table that summarizes the LHS renaming. It shows for each LHS

variable the statement address, i.e. line number, it appears in and its new name for that

occurrence. The subscripts column is actually generated in the next transformation and will

be used to achieve our goal of having each variable assume only one value.

Localizing Loop Variables This phase is concerned with adding assignments to

localize loop variables. It merges conditional assignments to the same variable to reduce the

number of LHS variables that must be considered for RHS referencing. It also defines for

each LHS variable in a loop two types of dimension-reduction variables: a boolean variable

that denotes whether the variable is null, i.e. is not assigned a value, and a variable that

represents the last value of the variable at the termination of each loop provide it is not null.

These dimension-reduction variables facilitate the generation of substituting expressions for

RHS variables.

As will be noted, localizing loop variables will not be necessary for variables declared

in the pre-translation of shared variables as on every reference we read a separate variable.

RHS variables This phase generates the expressions for substituting renamed LHS

variables for variables on the RHS of each assignment statement. The tree is scanned to

find for each RHS variable the same named LHS variables that have been assigned values

preceding the RHS reference. In the case of variables introduced by the pre-translation of

shared variables this is always the assignment statement (or read statement) that irnrnedi-

ately precedes its reference. For this reason dimension-reduction variables are not needed.

As an example refer to Figure 19, line 14bl is a read statement with c-141j-51 as the LHS

variable. So in line 14b2, the RHS variable clj-51 is renamed to c-141j-51.

This renaming is also illustrated in the RHS renaming table of Figure 18. It shows for

each RHS occurrence of a variable its statement address and the substituting expression. For

original local variables, i.e. those not as a result of the pre-translation of shared variables,

the substituting expression may be simple or complex. But for those variables declared as

a result of the pre-translation, the substituting expression is always simple as evidenced in

the table.

Figure 19 shows the resulting single assignment program.

s t a t ement
var address renamed a s subsc r ip t s

j 5 j -5 s c a l a r ..
c 6 C-5 i

7b l c-7 j -5
9 c-9 sub1 , s l 8 [sub1 , sub21 , i

12 c-12 sub1 , s l 8 [sub1 , sub21 , i
14b 1 c-14 sub1 , s l 8 [sub1 , sub21 , j -5
23 c-23 i

t u r n 8 b l turn-8 sub 1, sub2
lob1 turn-10 sub1 , s l 8 [sub1 , sub21
l l b l turn-11 sub1 , s l l 0 [subl , s l 8 [sub1 , sub21 1 ,sub3
22 turn-22 s c a l a r ..

s i ze7 7b2 s i ze7 s c a l a r ..
s l c 8 8b2 s l c 8 sub 1 , sub2 ..
prev . s l8 8b3 prev . s l 8 sub 1 , sub2 ..
s18 8b4 s18 sub1 , sub2 ..
s l c l 0 lob2 s l c l 0 sub1 , s l 8 [sub1 , sub21 ..
p r e v . s l l 0 lob3 prev . s l l 0 sub1 , s l 8 [sub1 , sub21 ..
s l10 lob4 s l10 sub1 , s l 8 [sub1 , sub21 ..
end10 l i b 2 end10 subl,sll0~subl,sl8[subl,sub2]] ,sub3 ..
end7 14b2 end7 sub 1, sub2

Figure 17: LHS Renaming Table

st at ement
var address

substituting
expression

j 7bi j -5
7b2 j -5
8b2 j -5
lob2 j -5
1 lb2 j -5
14b1 j -5
14b2 j -5 ..

c 6a1 C-6
7b2 c -7
gal C-9
12al c-12
14b 1 c-14
23al c-23 ..

turn 8b2 turn-8
lob2 turn-10

turn- 11
turn-22

Figure 18: RHS Renaming Table

01 PROCEDURE Enter (i : in teger) EXTERNAL(sharedin,sharedout);
02 j-5, turn-8, turn-10, turn-11: i n t ege r ;
02al c-5 C21, c-7C21, c-9 C21 ,c-12 C21, c-14 C21: i n t ege r ;
03
04 begin
05 j-5 = (i + l) mode 2;
06 c-6 [i] = t r u e ;
06al wr i t e c-6 [i] t o sharedout ;
07bl read c-7[j-51 from sharedin;
07b2 s i ze7 = i f c-7 [j-51 then 1 e l s e 0 ;
07b3 do subl-1 t o s i ze7
07b4 sub2 = 0 ;
07 while (i f sub2=0 then TRUE e l s e -end71 do
07al sub2 = sub2 + 1;
08bl read turn-8 from sharedin;
08b2 s l c 8 = turn,8=j -5;
08b3 p rev . s l8 = i f sub2>1 then s18;
08b4 s18 = sublinear(slc8,slc8,sub2);
08 i f s l c 8 then
09 c-9Cil = f a l s e ;
09al wr i t e c-9 [i] t o sharedout ;
lob1 read turn-10 from sharedin;
lob2 s lc lO = turn-lO=j-5;
lob3 p r e v . s l l 0 = i f s18>1 then s110;
lob4 s l lO = sublinear(slc10,s110,s18) ;
lob5 i f s lc lO then
lob6 sub3 = 0 ;
10 while (i f sub3=0 then TRUE e l s e -endlo) do
l l b l read turn-11 from sharedin;
1 lb2 end10 = -(turn, l l=j ,5) ;
11 endwhile
l l a l endif
12 c-12Cil = t r u e ;
12al wr i t e c-12 [i] t o sharedout ;
13 endif
14bl read c-14Cj -51 from sharedin;
14b2 end7 = -(c-14Cj-5]);
14 endwhile
14al enddo
15 end
15
17
18 PROCEDURE Leave (i : in teger) EXTERN(sharedin,sharedout);
19 turn-22: i n t ege r ;
19al c-23 121 : boolean;
20
21 begin
22 turn-22 = 3- i ;
22al wr i t e turn-22 t o sharedout ;
23 c,23Ci] = f a l s e ;
23al wr i t e c,23[i] t o sharedout;
24 end

- - - - -

Figure 19: Single Assignment Program

5.5 Single Value Assignment

To achieve single value assignment, the declaration of each LHS variable in a loop is modified

to increase its dimension by one for each level the variable is nested. If the size of a dimension

is not know at this point, an asterisk (*) is used to denote an arbitrary size. The sizes for

these dimensions are computed at run time by the assignments to the size and end variables.

The respective loop counters are then inserted as subscripts to these variables. The order

of the subscripts reflect the order of the nesting loops. The subscripts, therefore, represents

the loops the variable is nested in. If a variable is nested in an IF block, the sublinear

subscript defined for that IF block is used in place of the loop counter. Note that this rule

for substituting a sublinear subscript for a loop counter is a recursive rule, as a sublinear

subscript is itself a loop counter.

The subscripts of each variable is shown in the subscripts column of Figure 17 and

the program with the added subscripts is shown in Figure 20.

This completes our transformation from procedural language program to procedural

language program. The next transformation extracts the equations from the single value

variable program. The remaining transformations are concerned with simplifying the initial

equations.

5.6 Initial Specification

Figures 22, 23 and 24 are the results of transformation 6. The equations are merely the

assignment statements of the program in Figure 20 with MODEL key words, in capital

letters, substituted. They include the header and variable declarations necessary in MODEL.

The header and 1/0 declarations in a MODEL specification establish the interface

with the external environment. The procedure name identifies itself to the external en-

01 PROCEDURE Enter (i : i n t ege r) EXTERNAL(sharedin,sharedout);
02 j -5, turn-8 C* , *I , turn-10 [* , *I , turn-1 1 [* , * , *I : i n t ege r ;
02al ~ ,5[* ,* ,21 , ~-7C*,*,21, c-9[*,*,21, c-12[*,*,21, c-14[*,*,21: i n t ege r ;
03
04 begin
0 5 j-5 = (i + l) mode 2 ;
06 c-6 [il = t r u e ;
06al wr i t e c-6 [i] t o sharedout ;
07bl read c-7[j-51 from sharedin;
07b2 s i ze7 = i f c-7[j-51 then 1 e l s e 0 ;
07b3 do subl=l t o s i ze7
07b4 sub2 = 0 ;
07 while (i f sub2=0 then TRUE e l s e -end71 do
07al sub2 = sub2 + 1;
08bl read turn-8[subl,sub2] from sharedin;
08b2 s l c 8 [sub 1, sub21 = turn-8 [sub1 , sub21 = j -5 ;
08b4 s l 8 [subl , sub21 = subl inear (s lc8 [sub1 , sub21 , s l c 8 [subl , sub21 , sub21 ;
08 i f s l c 8 [subl , sub21 then
0 9 c-9 [subl , s l 8 [sub1 ,sub21 ,il = f a l s e ;
09al wr i t e c-9 [sub1 ,s l8[subl ,sub21 ,il t o sharedout ;
lob1 read turn~10[subl,sl8[subl,s~b2]] from sharedin;
lob2 slclO[subl ,s l8[subl ,sub211 = t u r n ~ l 0 ~ s u b l , s l 8 C s u b l ,sub211 =j-5;
lob4 sllO[subl , s l 8 [subl, sub211 = subl inear (s l c l 0 [subl , s l 8 [subl, sub211 ,

sll0[subl,sl8[subl,sub2]] ,
s l 8 [sub1 , sub21) ;

lob5 i f s l c l 0 [sub1 , s l 8 [sub1 , sub21 1 then
lob6 sub3 = 0;
10 while (i f sub3=0 then TRUE

e l s e -end10 [subl, s l 8 [subl , sub21 , sub31) do
l i b 1 read turn-1 1 [sub 1, s l 8 [subl , sub21 , sub31 from sharedin;
l i b 2 end10 = -(turn-11 [subl, s l 8 [subl, sub21 , sub31 l=j - 5) ;
11 endwhile
l l a l endif
12 c~l2[subl,sl8[subl,sub21,il = t r u e ;
12a1 wr i t e c-12 [sub1 , s l 8 [subl ,sub21 , il t o sharedout ;
13 endif
14b 1 read c-14 [subl , sub2, j -51 from sharedin;
14b2 end7 = ~ (c , 1 4 [s u b l , s u b 2 , j ~ 5]) ;
14 endwhile
14al enddo
15 end
15
17
18 PROCEDURE Leave (i) EXTERN(sharedin, sharedout) ;
19 turn-22: i n t ege r ;
19a1 c-13[2] : boolean;
20
21 begin
22 turn-22 = 3- i ;
22al wr i t e turn-22 t o sharedout;
23 c_23[i] = f a l s e ;
23al wr i t e c-23 [il t o sharedout ;
24 end

- --

Figure 20: Single Value Variables Program

vironment and the EXTERNAL parameters allow the sharing of memory with other pro-

cesses. All structures in the EXTERNAL parameters must be listed in either or both the

SOURCE and TARGET statements and defined via the declaration statement. The state-

ment ORGSHARED states that the file, i.e. memory, is shared with other tasks. The

RENAME clause maps the structure being declared to the structure following the RENAME

clause.

Variables in SHARED files are structured as they appear in a depth-first search of

the program tree. Declarations of SHARED files needed to describe the 110 for renamed

variables are determined as follows. First, renamed variables are first grouped into input and

output variables. Then, each of the two groups are further separated into smaller groups such

that variables in the same group have the same subscripts. Each of these groups corresponds

to a SHARED file in our specification.

The control variables SIZE.s18(*,*), END.slc8(subl ,sub2) and

END.turn-11 (subl ,sllO(subl,sl8(subl,sub2)),sub3) denotes the size of the first (subl), sec-

ond (sub2) and third (sub3) dimensions, respectively.

An equation is such that its dependencies on other variables are explicitly given in

the equation. Thus the order of evaluation of an equation is determined by its dependencies.

However, an equation's dependencies does not always determine timing precedences between

shared variables.

Shared variables are often placed in a procedural program under the assumption

that they will be evaluated in a certain order. That is to say, a time dependency exists

in concurrent programs that use shared variables. To change the order of evaluation of a

shared variable will most certainly change the meaning of the program. Thus, it is crucial

that this order of evaluation be preserved. Equations, however, are time invariant and do

not express timing dependencies. Therefore, another mechanism is introduced to enforce

this dependency. This is the DEPENDS-ON() function. An equation of the form

indicates a precedence of y over x. That is, y is to be evaluated before x.

Figure 21 illustrates by example how MODEL views shared memory. Each of the

three shared files of Enter() are represented in the figure as a separate tree structure. The

shape of each tree (the solid edges) is defined by the declaration of the file it represents, which

is identified by the root label. The top two trees represents the two SOURCE files sharedinl

and sharedin2. The bottom tree represents the TARGET file sharedout. The combination of

the solid and dotted directed edges between nodes within the same tree indicates the order

of reading (for SOURCE) or writing (for TARGET) defined by a depth-first traversal of

the tree (note that nodes with an asterisk may be visited repeatedly). The dotted directed

edges between trees represent precedences that exist but are not determined by either data

dependencies or file declarations. The algorithm to determine these edges is given below.

The following algorithm determines the directed edges between trees. For each state-

ment that references or assigns to variable x renamed to a shared variable, we scan the

program tree in reverse depth-first order looking for the first (nearest) preceding statement

with an occurrence of any other variable y renamed to a shared variable. (This excludes

READ and WRITE statements as they are not part of the specification.) If a precedence

edge, dotted or solid, does not already exist between the two variables, we than add a dotted

directed edge from y to x. This is accomplished by adding to the specification the statement:

If the nearest statement is an IF statement then we may arbitrarily pick the last such

y in the THEN block or the ELSE block. The resulting edges along with their respective

statement are shown in Figure 21 as dotted directed edges between trees.

Since the thrust of this research has been on the ease of user understanding of the

algorithm that underlies a program, it is important to note that a diagram such as in Figure

21 can be generated automatically and is important to our "explaining" goal.

Sharedinl

A

I \ \ I '\ I
I \ c-14(j-5)=DEPENDS-ON(c-l2(,i)) / 't-- \

\ I - 214 I
turn-

\ \ \ / I

Figure 21: Dataflow Diagram of the Shared Structures Sharedinl, Sharedin2 and Sharedout

5.7 Final Specificat ion

The 7-t h and 8-th transformation simplifies the logic and reduces the equations, respectively.

Because of the simplicity of the way variables renamed to shared variables are transformed,

the equations are already in a reduced form. Thus Transformations 7 and 8 have little or no

effect on these equations.

Since no further simplification can be performed on our initial specifications, they are

also our final specifications.

5.8 Comments

At first glance the reader may be surprised at the length of the final specification for Enter().

However, the reader is reminded of our goal of making explicit in the final specification the

subtle attributes in the source program. This, we feel, is one of the important result.

Procedural language programs often look deceivingly simple. A user of a procedural

language program may feel that they completely understand what a program does. When

in reality, they may not have considered the many special cases that are often hidden in

a program. As any programmer knows, it is these special cases that often cause the most

trouble and require the most time. A specification generated through the reverse translation

algorithm makes explicit to the user many of these special cases by showing all conditions and

naming each value explicitly through the single value variables. The resulting specification

also makes explicit the order of evaluation and sharing of data with other processes through

its file declarations.

In comprehending the specification it is important to remember that the specification

is NOT a procedural language program. A user should not attempt to comprehend the

specification by asking, "what is the specification doing?" Rather, the user should view the

specification as a set of equations that define values and ask what are the values being defined.

PROCEDURE: Enter (i) EXTERNAL(sharedinl,sharedin2,sharedin3,sharedout);

SOURCE: i, sharedinl, sharedin2, sharedin3;
TARGET: sharedout;

i IS FIELD (DEC) ;

1 sharedinl IS FILE ORG-SHARED,
2 c-7 IS FIELD (BIT(1)) RENAME AS c[1:2],
2 grpl(0:l) IS GROUP,
3 grp2(*) IS GROUP,
4 turn-8 IS FIELD (DEC) RENAME AS turn,
4 c-14(1:2) IS FIELD (BIT(1)) RENAME AS c[1:2];

1 sharedin2 IS FILE ORG=SHARED,
2 grpl(0:l) IS GROUP,
3 grp2(*) IS GROUP,
4 turn-10 IS FIELD (DEC) RENAME AS turn,

1 sharedin3 IS FILE ORG=SHARED,
2 grpl(0:l) IS GROUP,
3 grp2(*) IS GROUP,
4 grp3 (*) IS GROUP,
5 turn-11 IS FIELD (DEC) RENAME AS turn;

1 sharedout IS FILE ORG=SHARED,
2 c-6 IS FIELD (BIT(1)) RENAME AS c[l:2],
2 grpl(0:l) IS GROUP,
3 grp2(*) IS GROUP,
4 c-9(1:2) IS FIELD (BIT(1)) RENAME AS c[1:2],
4 c-12(1:2) IS FIELD (BIT(1)) RENAME AS c[1:2],

~,12(~~bl, sl8(subl, sub2), i) = DEPENDS,ON(~U~~-~~ (subl ,sl8 (subl , sub21 , sub31 ;

Figure 22: Specification for Enter - Header and Declarations

j - 5 = 3-i;

c-6(i) = true;

c~9(subl,sl8(subl,sub2),i) = false;

c~l2(subl,sl8(subl,sub2),i) = true;

SIZE.slc8(*,*) = if c-7(j-5) then 1 else 0;

- - - - -

Figure 23: Specification for Enter - Equations

PROCEDURE: Leave (i) EXTERNAL(sharedout1;

SOURCE: i;
TARGET: sharedout;

i IS FIELD (DEC) ;

1 sharedout IS FILE ORG=SHARED,
2 turn-22 IS FIELD (DEC) RENAME AS turn,
2 c,23(1:2) IS FIELD (BIT(1)) RENAME AS c[1:21;

c,23(i) = false;

Figure 24: Specification for Leave

51

6 Proving Correctness of The Specification

The key objective of reverse software engineering is to improve the understandability of pro-

grams. Our belief is if a program is easier to prove correct then it is also easier to understand.

Therefore, we use ease of proving correctness as an indicator for ease of understandability.

Using the ease of proving correctness as an indicator, we claim the generated speci-

fication is easier to understand then the source procedural program. The following proof is

presented in support of this claim.

In determining the correctness of Dekker7s Algorithm it suffices to show the cor-

rectness of the specification generated by Reverse Software Engineering. There are three

requirements that we must verify. They are: (1) mutual exclusion, (2) deadlock free and (3)

bounded-wait .

Before preceding, we make the following observation. From Figure 8 it can be seen

that process pi may only enter its critical section if Enter(i) has terminated. Therefore,

proving the specifications satisfy the above three requirements is really proving appropriate

termination of Enter(). The termination of Enter() is determined by the control variables

SIZE.slc8(*,*), END.slc8(subl ,sub2) and END.turn-1 l(subl,sllO(subl ,sl8(subl ,sub2)),sub3);

they define the range of the first, second and third dimensions, respectively, of multi-

dimensional variables. If SIZE.slc8(*,*)=07 the range of the first dimension is zero which by

definition implies the other two variables do not exist, i.e. they are NULL. END.slc8(subl,sub2)

is TRUE for the last value in the second dimension. Likewise,

END.turn-1 l(sub1 ,sllO(subl,sl8(subl ,sub2)),sub3) is TRUE for the last value of the third di-

mension. Thus the specification terminates if SIZE.slc8(*,*)=0 or END.slc8(subl,sub2)=TRUE

and END.turn-11 is NULL or END.slc8(subl ,sub2)=TRUE and

END.turn-1 l(sub1 ,sllO(subl ,sl8(subl ,sub2)),sub3)=TRUE.

The reader should keep in mind during the proofs the renaming of variables defined in

the specifications. Because the two processes may be executing both Enter(1) and Enter(2)

concurrently, the same variable name may appear in a proof twice. Once for the occurrence in

the specification executing in p l and once for p2. To distinguish between the two referenced

variable name, we prefix the name of the variable with the appropriate process name.

The approach we use for proving the three requirements is as follows. We first de-

rive for each requirement the applicable situations. Then for each applicable situation, we

generate a scenario of source variable value from which target values are determined. The

values are then used as the base of our proof. Note that the process of generating scenarios

may lead to the awareness of additional situations. In this way the two steps are performed

iteratively.

Table 4 shows the applicable situations for each of the three proof requirements and

the corresponding scenario. The applicable situations are derived in a goal/subgoal tree

structure fashion. Table 5 shows the four generated scenarios. A scenario represents a

computation of the specification with a given set of input values. This set of input values

may constrain other input values.

Each situation in Table 4 defines initial values for the specification. With these initial

values the target values defined by the specification are determined. For example, the first

applicable situation for mutual exclusion states pi request entry into cs;, pj is in csj and

initially turn=i. These initial conditions are all that is necessary to determine the values of

each input variable in the specification. They are shown in Table 5 in the column labeled

scenario 2. The values of c_7(j5) and c-14(l ,sub2j5) are determined by the condition pj is

in csj. turnB(1,l) and turnS(l,sub2) are determined by the initial condition turn=i. This

is an example of one input value what another input value may be. A quick scan of the

specification reveals that only pi changes turn to j and this occurs in specification Leave(i).

Thus initial turn=i implies turn=i for all values of turn in specification Enter(i). With all

input values determined, the values of all other variables are defined as shown in scenario 2.

Scenarios are similarly generated for all applicable situations. Our 12 situations result

in four scenarios. As might be expected more then one set of initial conditions may generate

the same scenario. It may interest the reader that these four scenarios are also the only

possible scenarios for Enter(i) and express all possible values of each variable.

The generation of scenarios is similiar to tracing a program with a set of initial input

values. The difference is that all values are determined and summarized for immediate

reference. Furthermore, the process of generating a scenario of values can be automated. All

that is required is some set of initial source variable values. The automation of this process

allows the analyst to interatively develop the applicable situations table with the aid of a

computer. This can greatly reduces the possibility of incorrect results due to human error.

Requirements Tree Structure of Applicable Situations Scenario

Mutual Exclusion pi request entry into csi and p j is in csj
initially turn=i
initially turn=j

Progress Both pi and p j request entry into their cs
initially turn=i
initially turn=j

Bounded-wait pi request entry into csi and p j not in csj
initially turn=i
initially turn=j

pi request entry into csi and p j in csj
p j leaves and does not want to re-enter csj

initially turn=i
initially turn=j

tturn=i
tturn=i

p j leaves and wants to re-enter csj
initially turn=i
initially turn=j

tturn=i
tturn=i

tpi.turn-8(1,1)=j and pi.turn-l0(1,1)=i follows pj.turn-23=i
~pi.turn-ll(l,l,sub3)=j and sub3=q follows p j .turn23=i.

Table 4: Summary of Applicable Situations for the Three Requirements

'For all sub2> 1
2For a11 sub3<q, where Osq corresponds to p j defining pj.turn-22=i. If q=O, then sub3=0 and
the variable is NULL.

3 ~ o r all sub2sn, where Osn corresponds to p j defining either pj.c-9(j)=FALSE or
pj.c-23(j)=FALSE. If n=O, then sub2=0 and the variable is NULL.

4c-12(l,l,i) is defined only if END.turn-11 is NULL or END.turn-ll(l,l,q+l)=TRUE.

Table 5: Scenarios Table

Scenario 2

TRUE
i
i
NULL
NULL
NULL
TRUE
FALSE

Scenario 1

FALSE
NULL
NULL
NULL
NULL
NULL
NULL
NULL

SOURCE

Variables

c-7(j-5)
turn-8(1,1)
t~ rn_8(l , sub2)~
turn-lO(1,l)
turn-1 l (l , l , s ~ b 3) ~
turn-ll(l,l,q+1)2
c-14(l,sub2 j-5)3
c-14(l,n+l,j-5)

Data
Control
Variables

Scenario 3

TRUE
j-5
i
i
NULL
NULL
TRUE
FALSE

Scenario 4

TRUE
j-5
i
j-5
j-5
1

TRUE
FALSE

SIZE.slc8(*.*)
END. t~rn- l l (l , l , sub3)~
~ N ~ . t u r n - l l (l , l , q + l) 2
END .slc8(1 ,sub2)3
END.~lc8(l ,n+l)~

0
NULL
NULL
NULL
NULL

1
FALSE
TRUE
FALSE
TRUE

1
NULL
NULL
FALSE
TRUE

1
NULL
NULL
FALSE
TRUE

Mutual exclusion The requirement for mutual exclusion is that if one process (pj) is

executing in its critical section (csj), the other process (pi) cannot be executing in its critical

section (cs;).

Proof. We have as a given condition process p j in csj and pi request entry into cs;. According

to Table 4 scenarios 2 and 4 summarize this situation. Scenario 2 shows the value of each

variable in Enter(i) given this condition and turn=i. Scenario 4 show the value of each vari-

able in Enter(i) given this condition and turn=j. From scenarios 2 and 3 it can be seen that

pi.END.slc8(l,sub2)=FALSE for sub2<n, where n corresponds to either pj.c-9(j)=FALSE

or pj.c-23(j)=FALSE. Thus we conclude pi does not enter cs; as long as p j is in csj and

mutual exclusion is observed.

Progress If both processes wants to enter its cs simultaneously, one will be allowed to

enter in a finite amount of time.

Proof. We have as our initial condition processes pi and p j both request entry simultaneously.

Without loss of generality, we assume turn=i.

From Table 4 we know that Scenario 4 shows the value of each variable in Enter(j)

for this initial condition. According to Scenario 4, p j .END.turn-ll(1 ,l ,sub3)=FALSE for

sub3<q, where q corresponds to pi defining pi.turn22=j. Thus p j does not enter csj.

Scenario 2 shows the value of each variable in Enter(i) for the same initial condition.

Scenario 4 shows pi.END.turn-11 is NULL and pi.END.slc8(l,n+l)=TRUE, where n corre-

sponds to p j defining p j .c-9(1 ,l j)=FALSE. Thus pi enters cs; for some value n and progress

is observed.

Bounded-wait The requirement for bounded-wait is that there is a bound in the number

of times process p j may enter csj between the moment process pi makes a request to enter

cs; and the moment the request is granted.

Proof.

Case 1. pi request entry into csi and p j is not in, nor requesting to enter csj.

Scenario 1 summarizes this situation. But Scenario 1 shows END.turn-11 and END.slc8

are NULL. Thus pi enters cs; immediately.

Case 2. pi request entry into cs; and p j is in csj leaves and does not want to re-enter csj.

Subcase 1. Initially turn=i.

This condition is summarized by Scenario 2. Scenario 2 shows pi.END.turn-11 is

NULL and pi.END.slc8(l7n+1)=TRUE7 where n corresponds to p j defining pj.c23(j)=FALSE

via Leave(j). Thus pi enters cs; for some value n.

Subcase 2. Initially turn=j .

This condition is summarized by scenarios 3 and 4. Scenario 3 shows pi.END.turn-11

is NULL and pi.END.slc8(l,n+l)=TRUE for some n corresponding to p j defining pj.c23(j)=FALSE

via Leave(j). Thus pi enters cs; for some value n.

Scenario 4 shows pi.END.turn-ll(l,l,q+l)=TRUE for some q corresponding to p j

defining pj.turn22=i, and pi.END.slc8(l,n+l)=TRUE for some n corresponding to p j defin-

ing pj.c23(j)=FALSE. Thus pi enters cs; for some values q and n.

Case 3. pi request entry into cs; and p j in csj leaves and wants to re-enter csj.

Subcase 1. Initially turn=i.

If pi detects p j has left csj, i.e. pi.c-14(l,n+17j)=FALSE, then this is the same as

Subcase 1 of Case 2.

On the other hand, if p j is sufficiently fast to reference Enter(j) before pi detects p j

has left csj then we have both pi and p j requesting entry into their cs and turn=i. But this

is equivalent to proving progress where we have already shown pi enters cs;.

Subcase 2. Initially turn=j .

This condition again corresponds to scenario 3 and 4. If pi detects p j has left csj, i.e.

pi.c-14(17n+l j)=FALSE, then this is the same as Subcase 1 of Case 2. So we assume that

p j is sufficiently fast to reference Enter(j) before pi detects p j has left csj.

Scenario 3 shows pi.c-S(l,i)=FALSE. Thus p j may re-enter its cs any number of times.

But Scenario 3 also shows pi.END.turn-11 is NULL and pix-12(l,i)=TRUE. Thus there is a

bound on the number of times p j may re-enter its cs. So for some instance we have both pi

and p j requesting to enter their respective cs and turn=i. But this is equivalent to showing

progress where we have shown pi enters cs;.

Scenario 4 shows pi.c2(l,i)=FALSE. Again p j may re-enter its cs any number of

times. But Scenario 4 shows pi.END.turn-ll(1 ,l ,q+l)=TRUE for some q corresponding to

p j defining pj.turn22=i and pic-12(l,i)=TRUE. Thus there is a bound on the number of

times p j may re-enter its cs. So for some instance we have both pi and p j requesting to

enter their respective cs and turn=i. This is again equivalent to showing progress where it

was shown pi enters cs;.

Thus for all possible cases pi enters cs; and the requirement of bounded-wait is ob-

served.

To summarize, we proceed a proof by the derivation of the applicable situations and

the generation of scenarios. We then perform the proof by referencing the values defined in

the scenarios. In contrast, a proof given in [3] involves tracing the execution of the procedural

program.

7 SURVEY OF TEMPORAL LOGIC

"Temporal logic is a logic of propositions whose truth and falsity may depend on time" [5].

Its interest lie in its usefulness in analysis and formalization of concurrent programs.

An execution of a program can be viewed as a sequence of states, called execution

states, that undergo a series of transformations determined by the program's instructions [a].
In different states, program entities such as variables may have different values. Temporal

logic enables us to discuss this change of situation over time in a formal setting.

We make no attempt here to fully formalize temporal logic. Our only interest is to

present an example of how a proof in temporal logic may proceed and contrast this with the

alternative approach given in Section 6. Any reader not familiar with temporal logic and

wishing more detail is encouraged to read [5, 8, 91.

The execution of a concurrent program may be modeled as taking place in discrete

steps. That is, although two or more processes of a program may be executing in parallel,

only one statement from all processes is executed in a given step. Thus an execution of a

concurrent program can be viewed as a sequentialization of its statements. The order of

execution, however, is arbitrary and may vary on each run. This model of computation is

called the interleaving model and the justification of this model is given in [5]. It is on the

basis of this model that we give our example proof.

Before we present our example proof in temporal logic we need to first lay a foundation

on which to proceed. We assume some minimal familiarity with temporal logic on the part

of the reader.

The following definitions and rule were obtained from [5]. The invariant rule we give is

stated without proof as the proof is already given in [5]. This is justified since reproduction

of the proof here would mean the formalization of temporal logic which we have already

stated is not our goal.

Logical operators and their meanings:

o A: "A holds at the time point immediately after the reference point"
(nextime operator).

OA: "A holds at all time points after the reference point"
(always operator).

OA: "There is a time point after the reference point a t which A holds"
(eventually operator).

Other meanings:

a "The action represented by a is executed (next)".

at a "The action represented by a is the next one to be executed",
("a is ready t o execute").

at c; "One of the action represented by a member of set c; is the
next one to be executed."

Abbreviations:

C invof a for a A C -+ oC

("C is an invariant of a"),

C invof M for C invof a1 A . . .A C invof a,, where M=(al,. . .,a,)

("C is an invariant of every EM").

exor (Al, ..., Ak) for (A1 A l A z A ... A 7Ak)v

(1Al A Az A ... A 1Ak)v

(1Al A ... A 1Ak-l A Ak)v

("Exactly one of Al, ..., Ak is true"),

excl (Al, ..., Ak) for exor (A1, ..., Ak)V (l A l A ... A l A k)

("At most one of Al, ..., Ak is true").

Invariance rule:

(inv) A + B, B invof Mn FA + U B .

This rule states "in order to prove that B holds in every execution state from a state

in which A holds, show that B is true in this first state and is invariant under every action"

[51

A label, say ad is associated with each statement of the program. This label is unique

and does not occur as a label for any other statement in the program.

Proving Mutual Exclusion To contrast the difference between the approach given in

Section 6 to that of temporal logic, we will again show mutual exclusion for Dekker7s algo-

rithm. The proof is performed with respect to the original procedural language program of

Figure 7.

As stated previously, we must show that if one process (pj) is executing in its critical

section (a j) , the other process (pi) cannot be executing in its critical section (cs;).

We perform the following proof by the invariant method. In this method, we merely

state mutual exclusion as an assertion and show this assertion is invariant under every action

of the program.

For brevity let IT represent the main program, i.e. the program the two processes

reside in. We then observe the following facts about IT:

F1: For pi to enter csa, it must be that clj]=FALSE.

F2: pi sets c[i]=TRUE before entering cs;.

F3: pi always sets c[i]=FALSE after leaving cs;.

F4: c[i]=TRUE while pi is in cs;.

F5: Only pi changes the value of c[i].

Proof. Let a h be the label for line k in Enter(i) and Leave(i) of Figure 7. Likewise, let Pk
be the label for line k in Enter(j) and Leave(j). Finally, let c; and cj be the sets of labels in

the critical sections of pi and pj , respectively. Then the assertion of mutual exclusion is:

I- Startn + O e x c l (at c;, at cj).

To show mutual exclusion we need only show that the assertion of mutual exclusion is

derivable.

Derivation of the assertion. Let A ~ e x c l (at c;, at cj) and let Mn be the set of all labels in

IT. The derivation is as follows:

at (a6, ..., a 1 4 , a 2 2 , C Y ~ ~) A A + l a t ca
(a67 ..., a13, a 2 2 , ~ 2 3) A A 4 OA
a 6 + oc[i]=TRUE
a 9 + oc[i]=FALSE
a12 + oc[i]=TRUE
a9 + 0 ~ 1 2

at a14 + c[i]=TRUE A clj]=FALSE
c[i]=TRUE A clj]=FALSE -+ l a t cj
at a 1 4 A A + l a t ci A l a t cj
a 1 4 A A + oA
A invof (P6,. .. ,P14,P22,P23)

A invof Mn
Startn + UA

definition of start
since without occurrence of
~ [i] ,clj] and turn
n
IJ, (3)
n
n
rI
rI
n,(5>7(6>,(7>7(8>
n,F1 ,F2,F3,F4
n,(9),(10)
n,(ll)
in the same way as (4) and (12)

(2)7(4)7(12)7(13)
(in.), (I) , (14)

We point out that this is not a derivation in the strict sense. Some steps have been

abbreviated and purely logical rules and laws have been omitted. This was done to minimize

time spent on developing temporal logic for this example.

This proof technique is mathematically rigorous and is widely regarded as a promising

approach to proving program correctness. However, this approach requires the user to be

knowledgeable in (temporal) logic.

The approach we have presented in Section 6 requires no understanding of any formal

logic. All that is required is some basic understanding of regular and boolean algebra.

The process of proving an assertion in temporal logic is entirely manual. The analyst

must first formally state the assertion he/she wishes to prove. Then he/she must manually

step through the program with no aid.

On the otherhand, the approach in Section 6 is largely automated. Information is

gained both interactively and automatically. The applicable situations are derived while

interacting with the computer. The computer also automatically generates the scenario of

variable values determined by the initial source variable values. No manual stepping through

of the specification is require.

CONCLUSION

Reverse Software Engineering is a method to utilize outdated programs to reduce the cost

of developing new replacement systems. The old computer systems are assumed to be in-

adequate in functionality and implementation technology. Still, to reduce cost it is desired

to reuse what is available in the old system as a basis for making appropriate modifications.

This is becoming increasingly important as the rapid advancements in new technology quickly

age existing systems [ll].

One of the major problems with software development and modification is the need of

the user to "think like a computer." By translating the procedural language program into a

specification we relieve the user of computer oriented concerns such as execution sequences,

loops, side effects and efficiency. The generated specification contain only dataflow informa-

tion and rules for data transformation [6]. All analysis and modification are performed on

the specification. Efficient programs are then automatically generated from the specification.

By using a mathematical representation as a medium for understanding, analyzing

and modifying old programs we can avoid many of the difficulties inherent in procedural

language programs and reduce software development costs. This is the underlying notion of

this paper.

The major contribution of this paper is the algorithm for translating concurrent pro-

cedural programs into specifications, and especially the new treatment of shared memory. To

maintain in the specification the time precedences in the program, declarations of the shared

memory specify order of references and use a renaming scheme to map these declarations to

the structure of the real shared memory.

Another contribution is the methodology of proving program correctness presented

in Section 6. By using the Scenario Table the reader can more easily comprehend the values

being defined and prove assertions about the specification.

We have also described graphical ways of presenting information about the specifi-

cation, the generation of which may be automated. This is the dataflow diagram of shared

memory, the Applicable Situations table and the Scenarios table.

References

[l] E. Ashcroft and Z. Manna, "The Translation of Goto Programs to While Programs,"

Proceedings, IFIP Congress 1971, North-Holland Publ. Co. Amsterdam, ppl 250-255,

1972.

[2] Computer Command and Control Company, The MODEL Language Usage and Refer-

ence Guide - Non-Procedural Programming for Non-Programmers, 2300 Chestnut St.,

Philadelphia, PA 19103, 1987.

[3] E. Dijkstra, "Co-operating Sequential Processes," Technical Report EWD-123, Techno-

logical University, Eindhoven, the Netherlands, 1965; reprinted in [4], pages 43-112.

[4] F. Genuys, (Editor), Programming Languages, Academic Press, London, 1968

[5] F. Kroger, "Temporal Logic of Programs," EATCS Monographs on Theoretical Com-

puter Science, Vol. 8, 1987.

[6] L. Liu, "Specification-Based Interface Checking of Large Real-Time/Distributed Sys-

tems," Ph.D. Thesis, University of Pennsylvania, July 1988.

[7] M.Maekawa, A. Oldehoeft and R. Oldehoeft, "Operating Systems Advanced Concepts,"

The Benjamin/Cumrnings Publishing Company, Inc., 1987.

[8] Z. Manna and A. Pnueli, "Verification of Concurrent Programs, Part I: The Temporal

Framework," Research sponsored by the Office of Naval Research, Report No. STAN-

CS-81-836, Stanford University, June 1981.

[9] Z. Manna and A. Pnueli, "Verification of Concurrent Programs, Part 11: Temporal Proof

Principles," Research sponsored by the Office of Naval Research, Report No. STAN-CS-

81-843, Stanford University, September 1981.

[lo] D. Parnas, "Software Aspects of Strategic Defense Systems," American Scientist, Vol.

73, September-October, 1985, pp.432-440.

[ll] N. Prywes, X. Ge, I. Lee and M. Song, "Reverse Software Engineering," Research

sponsored by the Air Force Office of Scientific Research, Contract AFOSR-88-0116,

University of Pennsylvania, December 1989.

[12] A. Silberschatez and J. Peterson, Operating Systems Concepts, Addison-Wesley Pub-

lishing Company, 1988.

	Reverse Software Engineering of Concurrent Real Time Programs
	Recommended Citation

	Reverse Software Engineering of Concurrent Real Time Programs
	Abstract
	Comments

	tmp.1199890619.pdf.zkyL4

