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Abstract

We introduce the concept of a Markov risk measure and we use it to formulate
risk-averse control problems for two Markov decision models: a finite horizon
model and a discounted infinite horizon model. For both models we derive risk-
averse dynamic programming equations and a value iteration method. For the
infinite horizon problem we also develop a risk-averse policy iteration method and
we prove its convergence. Finally, we propose a version of the Newton method to
solve a nonsmooth equation arising in the policy iteration method and we prove its
global convergence.
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1 Introduction
Dynamic programming is one of classical areas of operations research. Initiated

by Bellman [4], it underwent rapid development in the last five decades, both in theory
and applications. Several excellent textbooks and monographs [5, 6, 21, 27, 32, 39, 50]
discuss various aspects of this vast area.

Classical dynamic programming models are concerned with expected performance
criteria. However, in many practical problems the expected values may not be appro-
priate to measure performance. Models with risk aversion were, so far, represented by
separable utility functions; see, among others, [9, 12, 13, 23, 24] and the references
therein.

The need to put mathematical framework into the theory risk-averse preferences was
one of motivations for the development of the general theory of risk measures. Starting
from the seminal publication of Artzner, Delbaen, Eber, and Heath [1], the theory
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developed new tools to evaluate risk of uncertain outcomes and stochastic processes.
Particularly relevant for us are the duality theory [1, 10, 14, 16, 17, 34, 43, 45, 46], and
the theory of conditional and dynamic risk measures [2, 8, 11, 15, 18, 19, 28, 38, 48,
40, 45, 47].

Our plan is to adapt concepts and methods of the modern theory of risk measures
to dynamic programming models for Markov decision processes. The adaptation is not
straightforward, and new ideas and techniques need to be developed.

This work is not a survey paper, but rather an original contribution. In section 2
we quickly review fundamental concepts of controlled Markov models. Section 3 has a
synthetic character. We present the concepts of conditional and dynamic risk measures,
and their time-consistency, and we derive a nested structure of a time-consistent dynamic
risk measure. The main contributions of the paper are contained in sections 4 through 9.
In section 4 we introduce the concepts of a risk transition mapping and of a Markov risk
measure and we analyze their properties. In section 5 we derive dynamic programming
equations for finite horizon problems with Markov risk measures. Section 6 is devoted
to the construction of a discounted measure of risk for infinite cost sequences. It is used
in an infinite horizon Markov problem in section 7, where the corresponding dynamic
programming equations are developed. We also present there a risk-averse version of
the value iteration method. In section 8 we propose and analyze a risk-averse policy
iteration method. In section 9 we present a specialized nonsmooth Newton method
for solving a nonsmooth equation arising in the evaluation step of the policy iteration
method, and we prove its global monotonic convergence. Finally, in section 10 we
discuss relations of our results to min-max Markov decision problems.

2 Controlled Markov Models
We quickly review the main concepts of controlled Markov models and we introduce
relevant notation. Our presentation is close to that of [21]. Let X and U be two
Borel spaces (Polish spaces equipped with their Borel σ -algebras B(X ) and B(Y ),
respectively), and let U : X ⇒ U be a measurable multifunction. We call X the
state space, U the control space, and U (·) the control set. We also introduce the graph
of the multifunction U ,

graph(U ) = {(x, u) ∈X ×U : u ∈ U (x)}.

We use P to denote the set of probability measures on (X ,B(X )) and we endow it
with the weak topology. A stochastic kernel is a measurable function K :X →P . For
a Borel set B ∈ B(X ) we write the measure [K (x)](B) as K (B | x). By a controlled
kernel we mean a measurable function Q : graph(U ) → P . This means that for all
x ∈ X and all u ∈ U (x) its value Q(x, u) is a probability measure on (X ,B(X )).
Its values are written Q(B | x, u), where B is a Borel subset of X , x ∈X , u ∈ U (x).
Finally a cost function is a measurable mapping c : graph(U )→ R.

A controlled Markov model is defined by a state space X , a control space U , and
sequences of control sets Ut , controlled kernels Qt , and cost functions ct , t = 1, 2, . . . .

For t = 1, 2, . . . we define the space Ht of admissible state histories up to time t
as Ht = X t . A policy is a sequence of measurable functions πt : Ht → U ,
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t = 1, 2, . . . , such that πt (x1, . . . , xt ) ∈ Ut (xt ) for all (x1, . . . , xt ) ∈ Ht . A Markov
policy is a sequence of measurable functions πt : X → U , t = 1, 2, . . . , such that
πt (x) ∈ Ut (x) for all x ∈X , i. e., the mappings πt are measurable selectors of Ut . A
Markov policy is stationary if πt = π1, t = 2, 3, . . . .

To simplify the presentation of our ideas, we restrict our considerations to deter-
ministic policies. In a more general setting one can define H t = graph(U1) × · · · ×

graph(Ut ) ×X and consider mixed policies defined as mappings from H t to the set
of probability measures on (U ,B(U )), and such that

[πt (x1, u1, . . . , xt−1, ut−1, xt )](Ut (xt )) = 1.

All our considerations can be cast in this framework, with more complex notation, but
with virtually no conceptual difference.

Consider the canonical sample space Ω = X ∞ with the product σ -algebra F .
Let P1 be the initial distribution of the state x1 ∈ X . Suppose we are given a policy
Π = {πt }

∞
t=1, t = 1, 2, . . . . The Ionescu Tulcea theorem (see, e. g., [6]) states that

there exists a unique probability measure PΠ on (Ω,F ) such that for every measurable
set B ⊂X and all ht ∈Ht , t = 1, 2, . . . ,

PΠ (x1 ∈ B) = P1(B);

PΠ (xt+1 ∈ B | ht ) = Qt (B | xt , πt (ht )).

To simplify our notation, from now on we focus on the case when the initial state x1 is
fixed. It will be obvious how to modify our results for a random initial state.

We start from the following two basic optimization problems for controlled Markov
processes. The first one is the finite horizon expected value problem, in which, for a
given T ≥ 1, we want to find a policyΠ = {π1, . . . , πT } so as to minimize the expected
cost:

min
Π

E

[ T∑
t=1

ct (xt , ut )+ cT+1(xT+1)

]
, (1)

where ut = πt (x1, . . . , xt ) and cT+1 :X → R is a measurable function.
The second problem is the infinite horizon discounted expected value problem. For

a given α ∈ (0, 1), our aim is to find a policy Π = {πt }
∞
t=1 so as to minimize the

expected discounted cost:

min
Π

E

[
∞∑

t=1

αt−1ct (xt , ut )

]
. (2)

Under more specific but still fairly general assumptions, both problems have solutions
in form of Markov policies (see, e. g., [21]). Moreover, the second problem has a
stationary optimal policy, if the underlying Markov model is stationary. In both cases,
the optimal policies can be constructed by solving appropriate dynamic programming
equations.

Our intention is to introduce risk aversion to both problems, and to replace the
expected value operators in (1) and (2) by more general risk measures.

In order to motivate our research, let us consider a simple example.
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Example 1 Suppose a device can be in one of the states i = 1, 2, . . . , n, with 1 rep-
resenting “new,” n representing “irreparable,” and intermediate states corresponding to
decreasing quality levels. At each state i = 1, 2, . . . , n we have a set U (i) of possible
control decisions u. For i = 2, . . . , n − 1,

U (i) = {“do nothing”, “perform maintenance”, “replace”};

U (1) contains only the first two controls, and U (n) = {“replace”}. Corresponding
transition probabilities qi j (u), i = 1, . . . , n, j = 1, . . . , n, u ∈ U (i), describe the
evolution of the controlled Markov chain. Costs ci (u), i = 1, . . . , n, u ∈ U (i),
are associated with each state-control pair. Our objective is to minimize expected
discounted cost of operating the system over infinite horizon. For nonnegative costs
and any transition kernel qi j (u), such problem has an optimal solution given by some
Markov policy π̂ .

Suppose a possibility is offered at each state i = 1, . . . , n−1 to purchase insurance
against transition to the “irreparable” state in the next stage. Such an insurance would
decrease the replacement cost by some amount C > 0. The price w(i) of the insurance
depends on the current state i . With this option available, all combinations of previously
available controls with “yes” or “no” decisions to purchase insurance are possible control
values. Consequently, the set of possible controls increases to 6 at states 2,…,n−1, and
to 4 at state 1. We also have to augment our model with a new state n+ 1: “irreparable
insured.” Suppose insurance does not change any transition probabilities, except that
transition to state n is replaced by an equally likely transition to state n + 1. As the
insurance seller is a profit-making business, it is reasonable to assume that

w(i) > Cpin(û(i)), i = 1, . . . , n − 1.

Then in the expected value model the insurance will never be purchased, because the
expected profit of the insurer is our expected loss. Similar situations arise in financial
models, where options can be purchased. A question arises, why warranty or insurance
are purchased in real life? In order to understand the motivation for such actions, we
need to introduce risk aversion to the preference model of the decision maker.

3 Dynamic Risk Measures. Time Consistency
Consider a probability space (Ω,F , P), a filtration F1 ⊂ · · · ⊂ FT ⊂ F , and an
adapted sequence of random variables Z t , t = 1, . . . , T . We assume that F1 = {Ω,∅},
and thus Z1 is in fact deterministic. In our all considerations we interpret the variables
Z t as stage-wise costs.

Define the spaces Zt = Lp(Ω,Ft , P), p ∈ [1,∞], t = 1, . . . , T , and let Zt,T =

Zt × · · · ×ZT .
The fundamental question in the theory of dynamic risk measures is the following:

how do we evaluate the risk of the subsequence Z t , . . . , ZT from the perspective of
stage t? This motivates the following definition.
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Definition 1 A mapping ρt,T : Zt,T → Zt , where 1 ≤ t ≤ T , is called a conditional
risk measure, if it has the following monotonicity property:

ρt,T (Z) ≤ ρt,T (W ) for all Z ,W ∈ Zt,T such that Z ≤ W. (3)

Here and elsewhere in the paper, inequalities between random vectors are understood
component-wise and in the almost sure sense.

The monotonicity requirement in Definition 1 is weaker than the monotonicity con-
dition of [8, 25], because we consider the sequence of stage-wise costs, rather than
the sequence of positions, or cumulative costs, Ct =

∑t
τ=1 Z t , t = 1, . . . , T . This

is discussed in detail in [19, Remark 4.1]. Our main motivation to look at stage-wise
costs, rather than positions, is the application to discrete-time dynamic optimization.

The value of the conditional risk measure ρt,T (Z t , . . . , ZT ) can be interpreted as a
fair one-time Ft -measurable charge we would be willing to incur at time t , instead of
the sequence of random future costs Z t , . . . , ZT .

Much work on dynamic measures of risk focused on the case when we have just one
final cost ZT and we are evaluating it from the perspective of earlier stages t ; see, inter
alia, [15, 18, 28, 48]. Another approach is to define time-consistency directly through
the dynamic programming principle in optimization models, as it is done for a portfolio
problem in [7]. Our view is close to [19], who consider risk of a sequence of payoffs.

Definition 2 A dynamic risk measure is a sequence of conditional risk measures ρt,T :

Zt,T → Zt , t = 1, . . . , T .

The key issue associated with dynamic preferences is the question of their consis-
tency over time. It has been studied in various contexts in the past (see, inter alia,
[2, 29, 30]); here, we adapt the perspective which is closest to that of [8]. The following
definition is similar to [8, Prop. 4.4], which we use as the starting point, due to its
intuitive appeal.

Definition 3 A dynamic risk measure
{
ρt,T

}T
t=1 is called time-consistent if for all 1 ≤

τ < θ ≤ T and all sequences Z ,W ∈ Zτ,T the conditions

Zk = Wk, k = τ, . . . , θ − 1 and ρθ,T (Zθ , . . . , ZT ) ≤ ρθ,T (Wθ , . . . ,WT ) (4)

imply that
ρτ,T (Zτ , . . . , ZT ) ≤ ρτ,T (Wτ , . . . ,WT ). (5)

In words, if Z will be at least as good as W from the perspective of some future time
θ , and they are identical between now (τ ) and θ , then Z should not be worse than W
from today’s perspective. A similar view is adapted in [40], but with equality, rather
than inequality ≤, between risk measures in (4)–(5).

For a dynamic risk measure
{
ρt,T

}T
t=1 we can define a broader family of conditional

risk measures, by setting

ρτ,θ (Zτ , . . . , Zθ ) = ρτ,T (Zτ , . . . , Zθ , 0, . . . , 0), 1 ≤ τ ≤ θ ≤ T . (6)

We can derive the following structure of a time-consistent dynamic risk measure.
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Theorem 1 Suppose a dynamic risk measure
{
ρt,T

}T
t=1 satisfies for all Z ∈ Z and all

t = 1, . . . , T the conditions:

ρt,T (Z t , Z t+1, . . . , ZT ) = Z t + ρt,T (0, Z t+1, . . . , ZT ), (7)
ρt,T (0, . . . , 0) = 0. (8)

Then it is time-consistent if and only if for all 1 ≤ τ ≤ θ ≤ T and all Z ∈ Z1,T the
following identity is true:

ρτ,T
(
Zτ , . . . , Zθ , . . . , ZT

)
= ρτ,θ

(
Zτ , . . . , Zθ−1, ρθ,T (Zθ , . . . , ZT )

)
. (9)

Proof. We follow the argument of [8, Prop. 4.4]. Consider two sequences:

Z = (Zτ , . . . , Zθ−1, Zθ , Zθ+1, . . . , ZT ),

W =
(
Zτ , . . . , Zθ−1, ρθ,T (Zθ , . . . , ZT ), 0, . . . , 0

)
.

Suppose the measure
{
ρt,T

}T
t=1 is time-consistent. Then, by (7) and (8),

ρθ,T (Wθ , . . . ,WT ) = ρθ,T (ρθ,T (Zθ , . . . , ZT ), 0, . . . , 0
)

= ρθ,T (Zθ , . . . , ZT )+ ρθ,T (0, . . . , 0) = ρθ,T (Zθ , . . . , ZT ).

Using Definition 3 we get ρτ,T (Z) = ρτ,T (W ). Equation (6) then yields (9).
Conversely, suppose the identity (9). Consider Z and W satisfying conditions (4).

Then, by Definition 1, we have

ρτ,T
(
Zτ , . . . , Zθ−1, ρθ,T (Zθ , . . . , ZT ), 0, . . . , 0

)
≤ ρτ,T

(
Wτ , . . . ,Wθ−1, ρθ,T (Wθ , . . . ,WT ), 0, . . . , 0

)
.

Using equation (9) we obtain (5). �
We may remark that condition (7) is a form of the translation property, discussed in
various settings in [2, 19, 38]. Our version is weaker, because Z t is Ft -measurable.

In fact, relations corresponding to (9) are usually used to define time-consistency of
dynamic risk measures: see, e.g., [8, 25] and the references therein.

If the risk measure is time-consistent and satisfies (7) and (8), then we obtain the
chain of equations:

ρt,T
(
Z t , . . . , ZT−1, ZT

)
= ρt,T

(
Z t , . . . , ρT−1,T (ZT−1, ZT ), 0

)
= ρt,T−1

(
Z t , . . . , ρT−1,T (ZT−1, ZT )

)
= ρt,T−1

(
Z t , . . . , ZT−1 + ρT−1,T (0, ZT )

)
.

In the first equation we used the identity (9), in the second one – equation (6), and in the
third one – condition (7). Define one-step conditional risk measures ρt : Zt+1 → Zt ,
t = 1, . . . , T − 1 as follows:

ρt (Z t+1) = ρt,t+1(0, Z t+1).

Proceeding in this way, we obtain for all t = 1, . . . , T the following recursive relation:

ρt,T (Z t , . . . , ZT )

= Z t + ρt

(
Z t+1 + ρt+1

(
Z t+2 + · · · + ρT−2

(
ZT−1 + ρT−1(ZT )

)
· · ·

))
.

(10)
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It follows that a time-consistent dynamic risk measure is completely defined by one-step
conditional risk measures ρt , t = 1, . . . , T − 1. For t = 1 formula (10) defines a risk
measure of the entire sequence Z ∈ Z1,T (with a deterministic Z1).

It may be worth mentioning that the particular structure (10) of a dynamic risk
measure has been introduced in a constructive way in [47]. Here, it has been derived
from general principles of time-consistency and conditions (7)–(8).

Another important property of a dynamic risk measure is the local property, dis-
cussed in detail in [8, 25, 28].

Definition 4 A conditional risk measure ρτ,θ , 1 ≤ τ ≤ θ ≤ T , has the local property
if for all sequences Z ∈ Zτ,θ and all events A ∈ Fτ we have

ρτ,θ (1A Z) = 1Aρτ,θ (Z).

It means that if event A ∈ Fτ did not happen, then the risk of the future costs 1A Z is
zero. Local property does not follow from time-consistency, as defined here. In [49]
the local property is called time-consistency, but we shall follow here the terminology
established in the dynamic risk measurement literature.

Our considerations had, so far, quite general character. Their main objective was to
derive equation (10), which will have fundamental importance in all our considerations.

To proceed further, we shall assume stronger properties of the one-step conditional
risk measures ρt : Zt+1 → Zt , t = 1, . . . , T − 1, appearing in (10):

A1. ρt (λZ + (1− λ)W ) ≤ λρt (Z)+ (1− λ)ρt (W ) ∀ λ ∈ (0, 1), Z ,W ∈ Zt+1;

A2. If Z ≤ W then ρt (Z) ≤ ρt (W ), ∀ Z ,W ∈ Zt+1;

A3. ρt (Z +W ) = Z + ρt (W ), ∀ Z ∈ Zt , W ∈ Zt+1;

A4. ρt (βZ) = βρt (Z), ∀ Z ∈ Zt+1, β ≥ 0.

These axioms were introduced in the spaces L∞(Ω,Ft , P) in [48]; later they were
analyzed in the general setting in [28, 47]. In the special case of F1 = {Ω,∅} these are
the axioms of a coherent measure of risk of [1] (also introduced for p = ∞).

In fact, (A2) follows from Definition 1, but we repeat it here for completeness. We
can also remark that the property of time consistency, conditions (7)–(8), and assumption
(A3) imply a much stronger monotonicity property, than that assumed in Definition 1.
Applying (A3) for T, T − 1, . . . , t to (10) we get

ρt,T (Z t , . . . , ZT ) = ρt

(
ρt+1

(
· · · ρT−2

(
ρT−1(Z t+Z t+1+· · ·+ZT−1+ZT )

)
· · ·

))
.

As all ρτ , τ = t, . . . , T − 1, are monotone, their composition is monotone as well.
Therefore

ρt,T (Z t , . . . , ZT ) ≤ ρt,T (Wt , . . . ,WT ) if
T∑
τ=t

Zτ ≤
T∑
τ=t

Wτ .
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Assumptions (A2) and (A3) imply the local property of a one-step conditional risk
measure; see [47, Prop. 3.2] and [28, Sec. 3].

All our further considerations will assume the form (10) of a dynamic risk measure,
with one-step conditional risk measures ρt satisfying (A1)–(A4). The system (A1)–
(A4) is written for the case when lower values of Z are preferred (for example, Z
represents an uncertain cost); a similar system, with (A2) and (A3) suitably modified,
can be written for the opposite preferences, and all results for any of these systems can
be easily translated to the other one.

Example 2 An example of a one-step conditional risk measure is the following mean–
semideviation model analyzed in [35, 36], [46, Example 4.2], [47, Example 6.1]):

ρt (Z t+1) = E[Z t+1|Ft ] + κE
[(
(Z t+1 −E[Z t+1|Ft ])+

)r ∣∣Ft
] 1

r . (11)

Here r ∈ [1, p] and κ ∈ [0, 1] may be Ft -measurable random variables. The symbol
(z)+ denotes max(0, z).

Example 3 Another important example is the Conditional Average Value at Risk (see,
inter alia, [37, Sec. 4], [38, Sec. 2.2.3, 3.3.4], [41], [46, Example 4.3], [47, Example
6.2]), which is defined as follows:

ρt (Z t+1) = inf
U∈Zt

{
U +

1
α
E
[
(Z t+1 −U )+

∣∣Ft
]}
. (12)

In the formula above, the infimum is understood point-wise, and the level α may be an
Ft -measurable function with values in an interval [αmin, αmax] ⊂ (0, 1).

4 Markov Risk Measures
Consider now application of the dynamic risk measure (10) to a controlled Markov
process xt , t = 1, . . . , T, T + 1. Each policy Π results in a cost sequence Z t =

ct (xt , ut ), t = 1, . . . , T , and ZT+1 = cT+1(xT+1). To evaluate risk of this sequence
we use a dynamic time-consistent risk measure. By our results of section 3, it has the
form (10), which we recall here for convenience:

J (Π) = ρ1,T+1(Z1, . . . , ZT+1) = c1(x1, u1)+ ρ1

(
c2(x2, u2)+ ρ2

(
c3(x3, u3)+

· · · + ρT−1
(
cT (xT , uT )+ ρT (cT+1(xT+1))

)
· · ·

))
, (13)

with some one-step conditional risk measures ρt : Zt+1 → Zt , t = 1, . . . , T . The
fundamental difficulty of this formulation is that at time t the value of ρt (·) is Ft -
measurable and is allowed to depend on the entire history of the process. For example,
the multiplier κ in (11) may depend on ht = {x1, . . . , xt }. We cannot expect to obtain
a Markov optimal policy, if our attitude to risk may depend on the whole past of the
process.
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In order to overcome these difficulties, we consider a new construction of a one-
step conditional measure of risk. Its arguments are measurable functions on the state
space X , rather than on the probability spaceΩ . This entails additional complication,
because in a controlled Markov process the probability measure on the state space is
not fixed, but depends on our decisions u.

To simplify notation, from now on we write B for the σ -field B(X ) of Borel
sets in the state space X . Let P0 be some fixed probability measure on (X ,B). Let
V = Lp(X ,B, P0), Y = Lq(X ,B, P0) with p, q ∈ [1,∞], and 1/p + 1/q = 1.
Define

M =

m ∈ Y :

∫
X

m(x) P0(dx) = 1, m ≥ 0

 .
We identify an element m ∈M with a probability measure on (X ,B), which has m(x)
as its density (Radon–Nikodym derivative) with respect to P0. We also assume that the
spaces V and Y are endowed with topologies that make them paired topological vector
spaces with the bilinear form

〈v,m〉 =
∫
X

v(x)m(x) P0(dx). (14)

In the sequel, we always assume that we the space Y (and thus M ) is endowed with the
weak∗ topology. For p ∈ [1,∞) we may endow V with the strong (norm) topology,
or with the weak topology. For p = ∞, the space V will be endowed with is weak
topology defined by the form (14), that is, the weak∗ topology on L∞(X ,B, P0).

Definition 5 A measurable functional σ : V × X ×M → R is a risk transition
mapping associated with the controlled kernel Q : graph(U )→M if

(i) For every x ∈ X and every u ∈ U (x) the functional v 7→ σ
(
v, x, Q(x, u)

)
is a

coherent measure of risk on V ;

(ii) For every v ∈ V and every measurable selection u(·) of U (·) the function x 7→
σ
(
v, x, Q(x, u(x)

)
is an element of V .

Suppose for every x ∈X and every m ∈M the risk transition mapping σ is lower
semicontinuous with respect to the first argument. Then it follows from [46, Theorem
2.2] that there exists a closed convex set A (x,m) ⊂ M such that for all v ∈ V we
have

σ(v, x,m) = sup
µ∈A (x,m)

〈v, µ〉. (15)

If, in addition, the functional σ(·, x,m) is continuous, then the set A (x,m) is bounded.
In fact, for p ∈ [1,∞) the continuity of σ(·, x,m) follows from the monotonicity and
convexity axioms [46, Proposition 3.1]. Moreover, the set A (x,m) is weakly∗ compact.
In this case the “sup” operation in (15) can be replaced by the “max” operation.

Example 4 Consider the mean–semideviation measure defined by (11), but now with
the state and the underlying probability measure as its arguments. For r ≥ 1 we define

σ(v, x,m) = 〈v,m〉 + κ(x)
(〈(
(v − 〈v,m〉)+

)r
,m
〉) 1

r
, (16)
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with some measurable function κ : X → [0, 1]. Observe that a function v ∈ V
is integrable with respect to a measure m ∈ M . Therefore the first order (r = 1)
semideviation with respect to the measure m is well-defined for all p ∈ [1,∞]. Another
important case is that of p = ∞. Then we can consider semideviations of any order
r ∈ [1,∞). In this case r in (16) may be replaced by a measurable function from X
to [1,∞).

Following the derivations of [46, Example 4.2], for r > 1 we obtain

A (x,m) =
{

g ∈M : g = m
(
1+ h − 〈h,m〉

)
,
(〈
|h|

r
r−1 ,m

〉) r−1
r
≤ κ(x), h ≥ 0

}
,

and for r = 1 we have

A (x,m) =

{
g ∈M : g = m

(
1+ h − 〈h,m〉

)
, sup

y∈X
|h(y)| ≤ κ(x), h ≥ 0

}
.

Example 5 The Conditional Average Value at Risk defined in (12) has the following
risk transition counterpart:

σ(v, x,m) = inf
u∈R

{
u +

1
α(x)

〈
(v − u)+,m

〉}
.

Here α :X → [αmin, αmax] is measurable. Following the derivations of [46, Example
4.3], we obtain

A (x,m) =
{

g ∈M : 0 ≤ g ≤
1

α(x)
, 〈g,m〉 = 1

}
.

Risk transition mappings allow for convenient formulation of risk-averse preferences
for controlled Markov processes. From now on we assume that the controlled kernels
Qt have values in the set M , which is the set of probability measures on (X ,B) having
densities with respect to P0 in Y .

Definition 6 A one-step conditional risk measure ρt : Zt+1 → Zt is a Markov risk
measure with respect to the controlled Markov process {xt }, if there exists a risk tran-
sition mapping σt : V ×X ×M → R such that for all v ∈ V and for all measurable
ut ∈ Ut (xt ) we have

ρt (v(xt+1)) = σt
(
v, xt , Qt (xt , ut )

)
.

From (15) we deduce that for a Markov risk measure ρt there exists a closed convex-
valued multifunction At :X ×M ⇒ M such that

ρt (v(xt+1)) = sup
µ∈At (xt ,Qt (xt ,ut ))

〈v, µ〉. (17)

We shall call the multifunction St :X ×U ⇒ M defined as the composition

St (xt , ut ) = At (xt , Qt (xt , ut )) (18)
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the controlled multikernel associated with the controlled Markov process {xt } and with
the conditional risk mapping ρt . Define the function Ψt : V × graph(Ut )→ R,

Ψt (v, xt , ut ) = σt
(
v, xt , Qt (xt , ut )

)
= sup
µ∈St (xt ,ut )

〈v, µ〉. (19)

Obviously, ρt (v(xt+1)) = Ψt (v, xt , ut ).
In the risk-neutral setting, when ρt (v(xt+1)) = E

[
v(xt+1)|Ft

]
we have a single-

valued controlled kernel St (xt , ut ) = {Qt (xt , ut )}. Representation (19) means that
risk-averse preferences correspond to ambiguity in the transition kernel. We elaborate
on this issue in section 10.

Continuity properties of the functions Ψt are germane for our analysis. Let us
quickly review basic concepts of continuity of multifunctions (see [3] for an extensive
presentation). The multifunction A is upper semicontinuous at (x0,m0), if for every
neighborhood B of A (x0,m0) we can find neighborhoods X0 of x0 and B0 of m0
such that for all x ∈ X0 and all m ∈ B0 we have A (x,m) ⊂ B. The multifunction
A is lower semicontinuous at (x0,m0), if for every µ ∈ A (x0,m0) and for every
sequence {xk,mk

} in the domain of A converging to (x0,m0) we can find a sequence
µk
∈ A (xk,mk) converging to µ. The multifunction A is continuous, if it is both

upper and lower semicontinuous at every point.

Proposition 1 Suppose the kernel Qt is continuous. If the multifunction At is lower
semicontinuous, then for every v ∈ V the function (xt , ut ) 7→ Ψt (v, xt , ut ) is lower
semicontinuous. If p ∈ [1,∞) and the multifunction At is upper semicontinuous, then
for every v ∈ V the function (xt , ut ) 7→ Ψt (v, xt , ut ) is upper semicontinuous.

Proof. For a continuous Qt , the composition St (xt , ut ) = At (xt , Qt (xt , ut )) inherits
the continuity properties of At . For every fixed v, the functionµ 7→ 〈v, µ〉 is continuous
on M (in the weak∗ topology). Moreover, for p < ∞ the values of At (and thus of
St ) are weakly∗ compact in M . The assertion of the theorem follows now from [3,
Theorem 1.4.16], whose proof remains valid in our setting as well. �
In our application, lower semicontinuity of Ψt (v, x, ·) is most important.

Corollary 1 If Qt (x, ·) is continuous and At (x, ·) is lower semicontinuous, then the
function Ψt (v, x, ·) is lower semicontinuous.

5 Finite Horizon Problem
We now fix T ≥ 1 and consider the problem

min
Π

J (Π, x1), (20)

with J (Π, x1) defined by formula (13),

J (Π, x1) = c1(x1, u1)+ ρ1

(
c2(x2, u2)+ ρ2

(
c3(x3, u3)+ · · ·

· · · + ρT−1
(
cT (xT , uT )+ ρT (cT+1(xT+1))

)
· · ·

))
.
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Theorem 2 Assume that the following conditions are satisfied:

(i) For every x ∈X the transition kernels Qt (x, ·), t = 1, . . . , T , are continuous;

(ii) The conditional risk measures ρt , t = 1, . . . , T , are Markov and such that for
every x ∈X the multifunctions At (x, ·) are lower semicontinuous;

(iii) For all measurable selections ut (·) ∈ Ut (·), the functions x 7→ ct (x, ut (x)),
t = 1, . . . , T , and cT+1(·) are elements of V ;

(iv) For every x ∈X the functions ct (x, ·), t = 1, . . . , T , are lower semicontinuous;

(v) For every x ∈X the sets Ut (x), t = 1, . . . , T , are compact.

Then problem (20) has an optimal solution and its optimal value v1(x) is the solution
of the following dynamic programming equations:

vT+1(x) = cT+1(x), x ∈X , (21)

vt (x) = min
u∈Ut (x)

{
ct (x, u)+ σt

(
vt+1, x, Qt (x, u)

)}
, x ∈X , t = T, . . . , 1, (22)

where
σt (v, x, Qt (x, u)) = sup

µ∈At (x,Qt (x,u))
〈v, µ〉, t = 1, . . . , T . (23)

Moreover, an optimal Markov policy Π̂ = {π̂1, . . . , π̂T } exists and satisfies the equa-
tions:

π̂t (x) ∈ argmin
u∈Ut (x)

{
ct (x, u)+ σt

(
vt+1, x, Qt (x, u)

)}
, x ∈X , t = T, . . . , 1. (24)

Conversely, every measurable solution of equations (21)–(24) defines an optimal Markov
policy Π̂ .

Proof. Due to the monotonicity condition (A2) applied to ρt , t = 1, . . . , T , problem
(20) can be written as follows:

min
π1,...,πT−1,πT

{
c1(x1, u1)+ ρ1

(
c2(x2, u2)+ · · ·

· · · + ρT−1
(
cT (xT , uT )+ ρT (cT+1(xT+1))

)
· · ·

)}
= min
π1,...,πT−1

{
c1(x1, u1)+ ρ1

(
c2(x2, u2)+ · · ·

· · · + ρT−1
(

min
πT

[
cT (xT , uT )+ ρT (cT+1(xT+1))

])
· · ·

)}
.

This is the fundamental property of interchangeability, discussed in another setting in
[47]. In our case it is connected to the time-consistency property, and can also be derived
directly from Theorem 1.

Consider the innermost optimization problem. Owing to the Markov structure of
the conditional risk measure ρT , this problem can be rewritten as follows:

min
πT

{
cT (xT , πT (hT ))+ σT (vT+1, xT , QT (xT , πT (hT )))

}
.
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For every hT the optimization can be carried out with respect to uT = πT (hT ). The
problem takes on the form

min
uT

{
cT (xT , uT )+ σT (vT+1, xT , QT (xT , uT ))

}
. (25)

Moreover, the functions in (25) depend on hT only via xT , and thus the optimal solution
set ÛT will be a function of xT . The problem becomes equivalent to the problem in (22)
for t = T , and its solution is given by (24) for t = T . Due to Corollary 1, the function
σT (vT+1, xT , QT (xT , ·)) is lower semicontinuous, and the function cT (x, ·) is lower
semicontinuous by assumption. As the set Ut (x) is compact, problem (22) for t = T
has for every x ∈X an optimal solution uT = π̂T (x), which is a measurable function
of x (cf. [42, Theorem 14.37]). As cT+1 ∈ V , it follows from Definition 5 that the
function vT is an element of V as well. We conclude that problem (20) is equivalent to
the problem

min
π1,...,πT−1

{
c1(x1, u1)+ ρ1

(
c2(x2, u2)+ · · · + ρT−1

(
vT (xT )

)
· · ·

)}
,

in which the horizon is decreased by 1, and the terminal cost equals vT (xT ).
Proceeding in this way for t = T, T − 1, . . . , 1 we obtain the assertion of the

theorem. �
It follows from our proof that the functions vt (·) calculated in (22) are the optimal

values of tail subproblems formulated for a fixed xt = x as follows:

vt (x) = min
πt ,...,πT

{
ct (x, ut )+ ρt

(
c(xt+1, ut+1)+ · · ·

· · · + ρT−1
(
c(xT , uT )+ ρT (cT+1(xT+1))

)
· · ·

)}
.

We call them value functions, as in risk-neutral dynamic programming.
Equations (21)–(24) provide a computational recipe for solving finite horizon prob-

lems, which is easily implementable if the state space X is finite.

6 Discounted Measures of Risk
Our next step is to define an infinite horizon risk-averse model. Let {Ft } be a filtration
on (Ω,F ), with F1 = {Ω,∅}, and let Z t , t = 1, 2 . . . , be an adapted sequence of
random variables. Similarly to the construction in section 4, we consider the spaces
Zt = Lp(Ω,Ft , P), t = 1, 2, . . . , with p ∈ [1,∞]. We define the space Z =

Z1 ×Z2 × · · · . A sequence Z ∈ Z is almost surely bounded, if

max
t

essup |Z t (ω)| <∞.

Consider a sequence of one-step conditional risk mappings ρt : Zt+1 → Zt ,
t = 1, 2 . . . . Fix the discount factor α ∈ (0, 1). For T = 1, 2, . . . we define the
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functionals ρα1,T : Z1 × · · · ×ZT → R as follows:

ρα1,T (Z1, Z2, . . . , ZT ) = ρ1,T (Z1, αZ2, . . . , α
T−1 ZT )

= Z1 + ρ1

(
αZ2 + ρ2

(
α2 Z3 + · · · + ρT−1(α

T−1 ZT ) · · ·
))
.

(26)

They are the same as (10) for t = 1, but with discounting applied to the sequence {Z t }.
Finally, we define the functional %α : Z → R as

%α(Z) = lim
T→∞

ρα1,T (Z1, Z2, . . . , ZT ). (27)

We call it a discounted measure of risk.

Theorem 3 The discounted measure of risk %α is well defined on the set of almost surely
bounded sequences Z ∈ Z , and has the following properties:

(i) It is convex;

(ii) For all Z ,W ∈ Z , if Z t ≤ Wt for all t = 1, 2, . . . , then %α(Z) ≤ %α(W );

(iii) For all Z ∈ Z , all t = 1, 2 . . . , and all Wt ∈ Zt we have

%α(Z1, . . . , Z t , Z t+1 +Wt , . . . ) = %
α(Z1, . . . , Z t + αWt , Z t+1, . . . );

(iv) %α(τ Z) = τ%α(Z), ∀ Z ∈ Z , τ ≥ 0.

Proof. Each functional (26) can be regarded as defined on the space Z . We first prove
that every ρα1,T (·) satisfies conditions (i)–(iv). For T = 1 these conditions hold trivially.
Supposing they are satisfied for T , we shall prove them for T + 1. We have

ρα1,T+1(Z1, Z2, . . . , ZT+1)

= Z1 + ρ1

(
αZ2 + · · · + ρT−1

(
αT−1 ZT + ρT (α

T ZT+1)
)
· · ·

)
= ρα1,T (Z1, Z2, . . . , ZT + αρT (ZT+1)).

(28)

Thus ρα1,T+1(Z1, Z2, . . . , ZT+1) is a composition of ρα1,T (·) and the mapping

(Z1, . . . , ZT , ZT+1) 7→ (Z1, . . . , ZT + αρT (ZT+1)).

The first function is convex and nondecreasing, by virtue of (i) and (ii) for T . The
second function is convex and nondecreasing, owing to conditions (A1) and (A2) of
a conditional risk mapping ρT (·). Therefore, their composition is convex and nonde-
creasing as well. The positive homogeneity property (iv) follows in the same way. It
remains to verify (iii) for T + 1. Observe that when t ≤ T we can apply property (iii)
for T to the right hand side of (28), and obtain it for T + 1 on the left hand side. It
remains to consider the case of t = T + 1. By (28), axiom (A3), and condition (iv) for
t = T we have

ρα1,T+1(Z1, Z2, . . . , ZT+1 +Wt ) = ρ
α
1,T (Z1, Z2, . . . , ZT + αρT (ZT+1 +WT ))

= ρα1,T (Z1, Z2, . . . , ZT + αWT + αρT (ZT+1)).
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Comparing this to (28) we conclude that (iv) holds true for T + 1.
We now prove that for every almost surely bounded Z ∈ Z the limit in (27) exists.

Fix T . Let C = maxt essup |Z t (ω)|. As−C ≤ ZT+1 ≤ C , from axiom (A2) we obtain

−C ≤ ρT (ZT+1) ≤ C. (29)

Using this in (28), we get

ρα1,T (Z1, . . . , ZT − αC) ≤ ρα1,T+1(Z1, . . . , ZT , ZT+1) ≤ ρ
α
1,T (Z1, . . . , ZT + αC).

We can now apply property (iii), which we have just proved for ρα1,T , to both sides of the
last inequality. We do it T − 1 times moving the constants ±αC to the first argument,
and we conclude that

ρα1,T (Z1, . . . , ZT )−α
T C ≤ ρα1,T+1(Z1, . . . , ZT , ZT+1) ≤ ρ

α
1,T (Z1, . . . , ZT )+α

T C.

This implies that the sequence in (27) is a Cauchy sequence. As the functions ρα1,T (·),
T = 1, 2, . . . , satisfy conditions (i)–(iv), the limit function %α(·) satisfies these condi-
tions as well. �

7 Discounted Infinite Horizon Problem. Value Iteration
Consider now application of the discounted risk measure (27) to a controlled Markov
process {xt }, t = 1, 2, . . . . We assume that the controlled Markov model is stationary,
that is, there exist a control set U : X ⇒ U , a controlled transition kernel Q :
graph(U )→P , and a cost function c : graph(U )→ R, such that such that Ut = U ,
Qt = Q, and ct = c, for t = 1, 2, . . . .

Each policy Π =
{
πt
}∞

t=1 results in a cost sequence Z t = c(xt , ut ), t = 1, 2, . . . .
We use a discounted measure of risk to evaluate the cost of the policy Π :

J (Π, x1) = %
α
(
c(x1, u1), c(x2, u2), · · ·

)
= c(x1, u1)+ ρ1

(
αc(x2, u2)+ ρ2

(
α2c(x3, u3)+ · · ·

))
.

(30)

The last expression should be understood as the limit (27). We assume that the condi-
tional risk measures ρt are Markov, in the sense of Definition 6, and that there exists a
risk transition mapping σ : X × V ×M → R such that σt = σ , for all t = 1, 2 . . . .
We call such a sequence of Markov risk mappings stationary. For such a sequence,
there exists a multifunction A : X ×M ⇒ M such that representation (17) holds
true with At = A , t = 1, 2 . . . , that is,

σ
(
v, x, Q(x, u)

)
= sup
µ∈A (x,Q(x,u))

〈v, µ〉. (31)

We are interested in the infinite horizon problem

min
Π

J (Π, x1). (32)

In order to analyze this problem we need to make several assumptions. It is most
convenient to state these assumptions within the formulation of our main result. Its
proof will be deferred until after several technical results.
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Theorem 4 Assume that the following conditions are satisfied:

(i) For every x ∈X the transition kernel Q(x, ·) is continuous;

(ii) The conditional risk measures ρt , t = 1, . . . , T , are Markov, stationary and such
that for every x ∈X the multifunction A (x, ·) is lower semicontinuous;

(iii) The function c(·, ·) is nonnegative and uniformly bounded from above;

(iv) For every x ∈X the function c(x, ·) is lower semicontinuous;

(v) For every x ∈X the set U (x) is compact.

Then problem (32) has an optimal solution and its optimal value v̂(x), as a function of
the initial state x1 = x , satisfies the following dynamic programming equation:

v(x) = min
u∈U (x)

{
c(x, u)+ ασ

(
v, x, Q(x, u)

)}
, x ∈X . (33)

Moreover, an optimal stationary Markov policy Π̂ = {π̂ , π̂ , . . . } exists and satisfies the
equation:

π̂(x) ∈ argmin
u∈U (x)

{
c(x, u)+ ασ

(
v̂, x, Q(x, u)

)}
, x ∈X . (34)

Conversely, every bounded solution of equation (33) is the optimal value of problem
(32), and every measurable solution of (34) defines an optimal stationary Markov policy.

The assumption that the function c(·, ·) is nonnegative can be replaced by the as-
sumption of uniform boundedness of this function from below, because we can always
add a sufficiently large constant to the function c(·, ·) to make it nonnegative. Indeed,
adding a constant C to each Z t = c(xt , ut ), due to Theorem 3(iii), has the following
effect on the discounted measure of risk:

%α(Z1 + C, Z2 + C, Z3 + C, . . . ) = %α(Z1, Z2, Z3, . . . )+ C + αC + α2C + · · · .

Thus the problem of minimizing %α(Z1, Z2, Z3, . . . ) is equivalent to the problem of
minimizing %α(Z1 + C, Z2 + C, Z3 + C, . . . ).

If C is the uniform upper bound on c(·, ·), then from Theorem 3(ii)-(iii) we obtain
the following uniform bound on v̂(x):

0 ≤ J (Π, x) = %α(Z1, Z2, Z3, . . . ) ≤ %
α(C,C,C, . . . ) =

C
1− α

.

Thus the optimal value v̂(x) is well defined and is uniformly bounded.
In order to prove Theorem 4, we need to establish several auxiliary results. For a

measurable selector π : X → U of U (·) we define the operator Dπ : V → V as
follows:

Dπv(x) = c(x, π(x))+ ασ
(
v, x, Q(x, π(x))

)
, x ∈X .

We also define the operator D : V → V by the following relation:

Dv(x) = min
u∈U (x)

{
c(x, u)+ ασ

(
v, x, Q(x, u)

)}
, x ∈X .
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With this notation, equation (33) can be compactly written as

v = Dv, (35)

and thus properties of the operator D are germane for our problem.

Lemma 1 The operators Dπ and D are nondecreasing in the sense that v ≥ w implies
Dπv ≥ Dπw and Dv ≥ Dw.

Proof. Both results follow from (31) and the fact that the sets A (x, Q(x, u)) contain
only probability measures. �

Lemma 2 The operators Dπ and D are contraction mappings with modulus α on
L∞(X ,B, P0), that is, for all v,w ∈ L∞(X ,B, P0) we have

‖Dπv −Dπw‖∞ ≤ α‖v − w‖∞, (36)
‖Dv −Dw‖∞ ≤ α‖v − w‖∞. (37)

Proof. For any probability measure µ we have

〈v, µ〉 ≤ 〈w,µ〉 + ‖v − w‖∞. (38)

Taking the supremum over µ ∈ A (x, Q(x, u)) preserves this inequality, and thus, for
all π(x) ∈ U (x) we have

Dπv(x) ≤ Dπw(x)+ α‖v − w‖∞, x ∈X . (39)

Reversing the roles of v and w we obtain (36). Inequality (37) follows from taking for
every x ∈X the infimum of both sides of (39) with respect to π(x). �

Lemma 3 (i) If w ∈ V+ and w ≥ Dw, then w ≥ v̂;

(ii) If w ∈ L∞(X ,B, P0) and w ≤ Dw, then w ≤ v̂.

Proof. (i) Let π be the measurable selector of U for which

w ≥ Dπw. (40)

It exists, due to assumptions (i)–(v) of Theorem 4, exactly as in the proof of Theorem
2. Applying the operator Dπ to both sides of inequality (40) and using Lemma 1, we
obtain

w ≥ [Dπ ]T w, T = 1, 2, . . . . (41)

The right hand side of this inequality represents the cost of a finite horizon problem with
the stationary Markov policy Π = {π, π, . . . } and with the final cost cT+1(·) = w(·).
Denoting by Z t = c(xt , π(xt )), t = 1, 2, . . . , the cost sequence in this system, we get

[Dπ ]T w = ρα1,T+1(Z1, Z2, . . . , ZT , w) ≥ ρ
α
1,T (Z1, Z2, . . . , ZT ).

In the last inequality we used the fact that w ≥ 0 and Theorem 3(ii). Combining the
last two inequalities and passing to the limit with T →∞ we conclude that

w(x) ≥ %α(Z1, Z2, . . . ) = J (Π, x), x ∈X .
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This proves (i).
(ii) Consider an arbitrary (not necessarily Markov) policy Π = {π1, π2, . . . } and

the resulting cost sequence Z t = c(xt , ut ), t = 1, . . . , T , in a finite horizon problem
with the terminal cost w(xT+1), We write ut = πt (ht ), where ht is the history of the
process up to time t . We have

ρα1,T+1(Z1, . . . , ZT , w(xT+1))

= Z1 + ρ1

(
αZ2 + · · · + ρT−1

(
αT−1 ZT + ρT (α

Tw(xT+1))
)
· · ·

)
= c1 + ρ1

(
αZ2 + · · · + ρT−1

(
αT−1
[ZT + αρT (w(xT+1))]

)
· · ·

)
.

By assumption (ii), the expression in brackets can be estimated as follows:

ZT + αρT (w(xT+1)) ≥ Dw(xT ) ≥ w(xT ).

Therefore, ρα1,T+1(Z1, . . . , ZT , w(xT+1)) ≥ ρ
α
1,T (Z1, . . . , ZT−1, w(xT )). Proceeding

in this way, we conclude that

ρα1,T+1(Z1, . . . , ZT , w(xT+1)) ≥ w(x1).

Let C be an upper bound on |w(x)|, x ∈ X . By property (ii) and (iii) of Theorem 3,
the cost of policy Π can be estimated as follows:

ρα1,T (Z1, . . . , ZT ) ≥ ρ
α
1,T+1(Z1, . . . , ZT , w(xT+1))− CαT .

Combining the last two inequalities and passing to the limit with T →∞ we conclude
that for every policy Π

J (Π, x) ≥ w(x).

Therefore the infimum over all Π is bounded from below by w(x), as claimed. �

Lemma 4 The value v of a stationary policy Π = {π, π, . . . } is the unique bounded
solution of the equation

v = Dπv. (42)

Proof. By Lemma 2, the operator Dπ is a contraction in L∞(X ,B, P0) and thus
equation (42) has a unique bounded solution v. Observe that for every T = 1, 2, . . .
the expression [Dπ ]

T v represents the cost of a T -period problem having v(·) as its
terminal cost. Due to (42) this is the same as v. Passing to the limit we obtain the result.

�
We are now ready to provide a simple proof of the main theorem.

Proof of Theorem 4 By Lemma 2, the operator D is a contraction in L∞(X ,B, P0).
By Banach’s contraction mapping principle, equation (35), which is a compact form of
(33), has a unique bounded solution v. Owing to Lemma 3, v = v̂.

Consider the problem on the right hand side of (34). Owing to the assumptions of
Theorem 4, an optimal solution of this problem exists, exactly in the same way as in the
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proof of Theorem 2. Applying the operator Dπ̂ to both sides of the equation v̂ = Dπ̂ v̂,
we obtain

v̂ =
[
Dπ̂

]T
v̂, T = 1, 2, . . . .

The right hand side of this inequality represents the cost of a finite horizon problem
with the stationary Markov policy {π̂ , π̂ , . . . } and with the final cost cT+1(·) = v̂(·).
Passing to the limit with T →∞we conclude that v̂ is the cost of the policy {π̂ , π̂ , . . . }
in the infinite horizon problem.

Suppose another optimal Markov policyΠ = {π, π, . . . } exists, but v̂ 6= Dπ v̂. The
value v(·) of policy Π satisfies equation (42). Thus v 6= v̂, a contradiction. �

Our analysis of the dynamic programming equation (33) suggests the following
iterative method, corresponding to the classical value iteration method in risk-neutral
dynamic programming. We start from an arbitrary function v1

∈ L∞(X ,B, P0) and
generate a sequence

vk+1
= Dvk, k = 1, 2, . . . . (43)

Theorem 5 If conditions of Theorem 4 are satisfied, then the sequence {vk
} generated

by the value iteration method is convergent linearly in L∞(X ,B, P0) to the optimal
value function v̂, with the quotient α. Moreover, If v1

= 0, then the sequence {vk
} is

nondecreasing, while for v1
≥ sup{c(x, u) : x ∈X , u ∈ U (x)} the sequence {vk

} is
nonincreasing.

Proof. Linear convergence of the sequence {vk
} to v̂ follows from the contraction

property of D in L∞(X ,B, P0), established in Lemma 2, by virtue of Banach’s
contraction mapping principle. Suppose v1

= 0. Then v2
≥ v1, and Lemma 1 implies

that vk+1
≥ vk , k = 1, 2, . . . . The case of v1 larger than the maximum cost per stage

is similar. �

8 Policy Iteration
Consider now another approach to solving the dynamic programming equations, ex-
tending the risk-neutral policy iteration method (see [5, 22]). In the new method, for
k = 0, 1, 2, . . . , given a stationary Markov policy Πk

= {πk, πk, . . . }, we find the
corresponding value function vk

∈ L∞(X ,B, P0) by solving the equation

v(x) = c(x, πk(x))+ ασ
(
v, x, Q(x, πk(x))

)
, x ∈X . (44)

Then we find the next policy πk+1(·) as a measurable function satisfying the relation

πk+1(x) ∈ argmin
u∈U (x)

{
c(x, u)+ ασ

(
vk, x, Q(x, u)

)}
, x ∈X . (45)

After that, k is increased by 1, and the iteration continues.
Clearly, equations (44)–(45) can be compactly written as follows:

vk
= Dπkv

k, (46)

Dπk+1v
k
= Dvk . (47)
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Theorem 6 Assume that the assumptions of Theorem 4 are satisfied. Then the sequence
of functions vk , k = 0, 1, 2, . . . , is nonincreasing and convergent to the unique bounded
solution v̂(·) of the dynamic programming equation (33).

Proof. It follows from (47) and (46) that

Dπk+1v
k
= Dvk

≤ Dπkv
k
= vk .

Using the monotonicity property of the operator Dπk+1 (Lemma 1), we obtain that[
Dπk+1

]T
vk
≤ Dvk

≤ vk, T = 0, 1, 2, . . . .

By Lemma 2 and Banach’s contraction mapping principle, the left hand side of this
inequality converges to vk+1, as t →∞. Thus

vk+1
≤ Dvk

≤ vk . (48)

Therefore, the sequence {vk
} is nonincreasing. Each vk , as the value of not necessarily

optimal policy5k , satisfies the inequality vk
≥ v̂. From the first part of (48) we deduce

that
0 ≤ vk+1

− v̂ ≤ Dvk
− v̂ = Dvk

−Dv̂.

Owing to the contraction property of the operator D established in Lemma 2, we con-
clude that

‖vk+1
− v̂‖∞ ≤ α‖v

k
− v̂‖∞.

Hence, the sequence {vk
} is convergent to v̂. �

If Dπk+1vk
= vk , then it follows from (47) that vk

= Dvk . By virtue of Theorem 4,
πk and πk+1 are optimal policies, and vk is the optimal value function.

Consider the special case of finitely many possible policies. Only finitely many
different value functions vk can be generated by the policy iteration method, and they
form a nondecreasing sequence. Thus, a value function can be repeated only if it occurs
in two consecutive steps, but then we know that it is optimal. Consequently, the policy
iteration method is convergent in finitely many steps.

9 Specialized Nonsmooth Newton Method
At every step of the policy iteration method, in order to evaluate the current pol-
icy πk , we have to solve the nonlinear equation (44). Observe that the mapping
v 7→ σ

(
v, x, Q(x, πk(x))

)
is nonsmooth, in general. Because of that, equation (44) is

much harder than the corresponding linear equation in the risk-neutral case.
Our aim is to propose a version of the nonsmooth Newton method for solving this

equation. The general theory of nonsmooth Newton methods originated in [31, 44];
it is discussed extensively in [26, Chapter 10]. In our case, owing to the special form
of equation (44), we can use the simplest algorithm with linear auxiliary problems, as
presented in [31] and in [26, Sec. 10.1]. We can also provide a direct proof of its global
and monotonic convergence.
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To simplify notation, we suppress the index k of the current iteration of the policy
method, and we use ` to denote iterations of the Newton method.

Consider equation (44), which we write as

v(x) = c̄(x)+ α sup
µ∈ ¯A (x)

〈v, µ〉, x ∈X , (49)

with c̄(x) = c(x, πk(x)) and ¯A (x) = A (x, Q(x, πk(x))). Suppose at iteration ` of
the Newton method we have a certain approximation v` of the solution of (49). We
calculate a kernel µ` by

µ`(x) ∈ argmax
µ∈ ¯A (x)

〈v`, µ〉, x ∈X .

Under the assumptions of Theorem 6 with p ∈ [1,∞), the set ¯A (x) is weakly∗ compact,
and thus an optimal kernel µ` exists. It may not be unique, but this will not play any
role in our method. Then we solve the linear equation

v(x) = c̄(x)+ α〈v, µ`(x)〉, x ∈X . (50)

We denote its solution by v`+1, increase ` by one, and continue.
Observe that the linear equation (50) is the evaluation of the expected cost in the

process with transition kernel µ`, which can be done in the same way as in the policy
iteration method for a risk-neutral model. The essence of our method in this case is to
construct a sequence of risk-neutral models, for ` = 1, 2, . . . , to evaluate discounted
risk.

Theorem 7 Assume conditions of Theorem 4 and let V = Lp(X ,B, P0) with p ∈
[1,∞). Then for every initial function v1 the sequence {v`} generated by the Newton
method is convergent to the unique solution v∗ of equation (49). Moreover, the sequence
is monotone: v`+1 ≥ v`, ` = 2, 3, . . . .

Proof. Let us denote by M` the affine operator appearing on the right hand side of
equation (50):

[M`v](x) = c̄(x)+ α〈µ`(x), v〉.

The operator M` is a contraction in L∞(X ,B, P0). By virtue of Banach’s contraction
mapping principle, equation (50) has a unique solution v`+1 ∈ L∞(X ,B, P0).

By construction, for every v ∈ L∞(X ,B, P0), we have

M`v ≤ Dπkv. (51)

As µ`(x) is a probability measure for every x , the operator M` is nondecreasing.
Applying M` to both sides of (51) we get

[M`]
2v ≤M`Dπkv ≤ [Dπk ]

2v.

Continuing in this way, we conclude that for every T = 1, 2, . . .

[M`]
T v ≤ [Dπk ]

T v.
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Let us pass to the limit on both sides of this inequality with T → ∞. Owing to the
contraction properties of M` and Dπk , the left hand side converges to v`+1, the unique
solution of (50), while the right hand side converges to the value function v̄, the unique
solution of the dynamic programming equation (49). Consequently, v`+1 ≤ v̄.

In view of the argument in the preceding paragraph, we have v` ≤ v̄ for all ` ≥ 2.
Then

v` ≤ Dπkv` =M`v`.

Applying the monotone operator M` to both sides we conclude that

v` ≤ Dπkv` ≤ [M`]
T v`

T→∞
−→ v`+1. (52)

It follows that the sequence {v`} is nondecreasing and bounded from above. Conse-
quently, it has a limit v∗ ∈ L∞(X ,B, P0). Passing to the limit with ` → ∞ in the
relations (52), we conclude that

v∗ ≤ Dπkv
∗
≤ v∗.

This means that the limit v∗ is the unique solution of equation (49). �

10 Relation to Min–Max Markov Control Models
Close and intriguing relations exist between our risk-averse control models and min–
max Markov control problems, as discussed in [20, 33] and the references therein.
We already mentioned in section 4 that risk-averse preferences may be interpreted as
ambiguity in the transition kernel, where the distribution of the next state is chosen from
the set St (xt , ut ) = At (xt , Qt (xt , ut )). We can, therefore, envisage a min–max control
model, in which there are two players. Player 1 chooses at each time t and at each state
xt a control ut ∈ Ut (xt ). Player 2, the opponent, given xt and ut , selects a probability
measure µt ∈ St (xt , ut ) which describes the distribution of the next state xt+1.

Let us start from the finite horizon problem. We denote, as before, by 5 =
(π1, . . . , πT ) a policy of Player 1, where πt :Ht → U , with πt (x1, . . . , xt ) ∈ Ut (xt ).
Similarly, Γ = (γ1, . . . , γT ) is a policy of Player 2, where γt : Ht × U → M .
The feasible set of Player 2 depends on the policy of Player 1: G(Π) = {Γ :
γt (x1, . . . , xt , ut ) ∈ St (xt , ut ), t = 1, 2, . . . }. The min–max control problem is
defined as follows:

min
Π

max
Γ ∈G(Π)

E

[ T∑
t=1

ct (xt , ut )+ cT+1(xT+1)

]
, (53)

where for each t we have ut = πt (x1, . . . , xt ), and the conditional distribution of xt+1
given {x1, . . . , xt , ut } is µt = γt (x1, . . . , xt , ut ).

Corollary 2 Suppose all assumptions of Theorem 2 are satisfied. Then every optimal
solution of problem (20) is also an optimal solution of problem (53). Furthermore, for
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every Markov optimal policy 5̂ = {π̂1, . . . , π̂T } of Player 1, the sequence of transition
kernels {µ̂1, . . . , µ̂T } such that

µ̂t (x) ∈ argmax
µ∈St (x,π̂t (x))

〈v̂t+1, µ〉, x ∈X , t = 1, . . . , T,

is an optimal Markov policy of Player 2.

Proof. The min–max control problem (53) is a special case of the problem analyzed in
[20, Sec. 3]. Assumptions of Theorem 2 imply assumptions of [20, Thm. 3.1], and the
dynamic programming equations (21)–(22) coincide with Eq. (3.11) in [20]. Therefore
solutions of both problems are identical. �

Similar observation hold true for the stationary infinite horizon discounted problem.
A policy of Player 1 is a sequence5 = (π1, π2, . . . )with each πt :Ht → U such that
πt (x1, . . . , xt ) ∈ U (xt ). A policy of Player 2 is a sequence Γ = (γ1, γ2, . . . )with each
γt : Ht ×U →M . The feasible set of Player 2, G(Π), is defined by the conditions
γt (x1, . . . , xt , ut ) ∈ S (xt , ut ) = A (xt , Q(xt , ut )), t = 1, 2, . . . , and depends on the
policy of Player 1. For a given α ∈ (0, 1), our aim is to find a policy Π = {πt }

∞
t=1 so

as to minimize the worst expected discounted cost:

min
Π

max
Γ ∈G(Π)

E

[
∞∑

t=1

αt−1c(xt , ut )

]
. (54)

In the problem above, for each t the control of Player 1 equals ut = πt (x1, . . . , xt ),
and the conditional distribution of xt+1 given x1, . . . , xt , ut is the control of Player 2:
µt = γt (x1, . . . , xt , ut ).

Corollary 3 Suppose all assumptions of Theorem 4 are satisfied. Then every optimal
solution of problem (32) is also an optimal solution of problem (54). Furthermore, for
every stationary Markov optimal policy 5̂ = {π̂ , π̂ , . . . } of Player 1, the sequence of
transition kernels {µ̂, µ̂, . . . } such that

µ̂(x) ∈ argmax
µ∈S (x,π̂(x))

〈v̂, µ〉, x ∈X ,

is an optimal stationary Markov policy of Player 2.

Proof. Problem (54) is a special case of the problem analyzed in [20, Sec. 4]. Assump-
tions of Theorem 4 imply assumptions of [20, Thm. 4.2], and the dynamic programming
equation (33) is the same as Eq. (4.4) in [20]. This implies that the solutions of both
problems are identical. �

It may be worth stressing that the min-max problems (53) and (54) are specific in
the sense that the feasible sets of the actions of Player 2 depend on the actions of Player
1. Therefore the “min” and the “max” operators cannot be, in general, interchanged,
even if we allow mixed strategies of the players.

Our nonsmooth Newton method within the policy iteration exploits the specific
structure of the risk-averse model. However, we hope that our ideas may be useful for
developing policy iteration for other min–max Markov decision models.
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