
Chapter 8

Understanding Inheritance

The �rst step in learning object-oriented programming is understanding the basic philosophy
of organizing a computer program as the interaction of loosely coupled software components.
This idea was the central lesson in the case studies presented in the �rst part of the book.
The next step in learning object-oriented programming is organizing classes into a hierar-
chical structure based on the concept of inheritance. By inheritance, we mean the property
that instances of a child class (or subclass) can access both data and behavior (methods)
associated with a parent class (or superclass).

Although in Java the term inheritance is correctly applied only to the creation of new
classes using subclassing (the extends keyword), there are numerous correspondences be-
tween subclassing and the designation that classes satisfy an interface (the implements key-
word). The latter is sometimes termed \inheritance of speci�cation," contrasted with the
\inheritance of code" provided by subclassing. In this chapter we will use the word in a
general fashion, meaning both mechanisms.

While the intuitive meaning of inheritance is clear, and we have used inheritance in many
of our earlier case studies, and the mechanics of using inheritance are relatively simple,
there are nevertheless subtle features involved in the use of inheritance in Java. In this and
subsequent chapters we will explore some of these issues.

8.1 An Intuitive Description of Inheritance

Let us return to Flora the orist from the �rst chapter. There is a certain behavior we expect
orists to perform, not because they are orists but simply because they are shopkeepers.
For example, we expect Flora to request money for the transaction and in turn give us
a receipt. These activities are not unique to orists, but are common to bakers, grocers,
stationers, car dealers, and other merchants. It is as though we have associated certain
behavior with the general category Shopkeeper, and as Florists are a specialized form of

133



134 CHAPTER 8. UNDERSTANDING INHERITANCE

shopkeepers, the behavior is automatically identi�ed with the subclass.
In programming languages, inheritance means that the behavior and data associated

with child classes are always an extension (that is, a larger set) of the properties associated
with parent classes. A child class will be given all the properties of the parent class, and
may in addition de�ne new properties. On the other hand, since a child class is a more
specialized (or restricted) form of the parent class, it is also, in a certain sense, a contraction
of the parent type. For example, the Java library Frame represents any type of window, but
a PinBallGame frame is restricted to a single type of game. This tension between inheritance
as expansion and inheritance as contraction is a source for much of the power inherent in
the technique, but at the same time it causes much confusion as to its proper employment.
We will see this when we examine a few of the uses of inheritance in a subsequent section.

Inheritance is always transitive, so that a class can inherit features from superclasses
many levels away. That is, if class Dog is a subclass of class Mammal, and class Mammal
is a subclass of class Animal, then Dog will inherit attributes both from Mammal and from
Animal.

A complicating factor in our intuitive description of inheritance is the fact that subclasses
can override behavior inherited from parent classes. For example, the class Platypus overrides
the reproduction behavior inherited from class Mammal, since platypuses lay eggs. We will
briey mention the mechanics of overriding in this chapter, then return to a more detailed
discussion of the semantics of overriding in Chapter 11.

8.2 The base class Object

In Java all classes use inheritance. Unless speci�ed otherwise, all classes are derived from a
single root class, named Object. If no parent class is explicitly provided, the class Object is
implicitly assumed. Thus, the class declaration for FirstProgram (Chapter 4, Figure 4.1) is
the same as the following:

class FirstProgram extends Object f
// ...

g;

The class Object provides minimal functionality guaranteed to be common to all objects.
These include the following methods:

equals (Object obj) Determine whether the argument object is the same as the receiver. This
method is often overridden to change the equality test for di�erent classes.

getClass () Returns the name of the class of the receiver as a string.

hashCode () Returns a hash value for this object (see Section 19.7). This method should
also be overridden when the equals method is changed.



8.3. SUBCLASS, SUBTYPE, AND SUBSTITUTABILITY 135

toString () Converts object into a string value. This method is also often overridden.

8.3 Subclass, Subtype, and Substitutability

The concept of substitutability is fundamental to many of the most powerful software devel-
opment techniques in object-oriented programming. The idea of substitutability is that the
type given in a declaration of a variable may not match the type associated with a value
the variable is holding. Note that this is never true in conventional programming languages,
but is a common occurrence in object-oriented programs.

We have seen several examples of substitutability in our earlier case studies. In the Pin
Ball game program described in Chapter 7, the variable target was declared as a PinBallTar-
get, but in fact held a variety of di�erent types of values that were created using subclasses
of PinBallTarget. (These target values were held in the vector named targets).

PinBallTarget target = (PinBallTarget) targets.elementAt(j);

Substitutability can also occur through the use of interfaces. An example is the instance
of the class FireButtonListener created in the Cannon-ball game (Chapter 6). The class from
which this value was de�ned was declared as implementing the interface ActionListener.
Because it implements the ActionListener interface, we can use this value as a parameter to
a function (in this case, addActionListener) that expects an ActionListener value.

class CannonWorld extends Frame f

...

private class FireButtonListener implements ActionListener f

public void actionPerformed (ActionEvent e) f

...

g

g

public CannonWorld () f

...

fire.addActionListener(new FireButtonListener());

g

g

Because Object is a parent class to all objects, a variable declared using this type can
hold any non-primitive value. The collection class Vector makes use of this property, holding
its values in an array of Object values. Because the array is declared as Object, any object
value can be stored in a Vector.



136 CHAPTER 8. UNDERSTANDING INHERITANCE

When new classes are constructed using inheritance from existing classes, the argument
used to justify the validity of substitutability is as follows:

� Instances of the subclass must possess all data areas associated with the parent class.

� Instances of the subclass must implement, through inheritance at least (if not explicitly
overridden) all functionality de�ned for the parent class. (They can also de�ne new
functionality, but that is unimportant for the argument).

� Thus, an instance of a child class can mimic the behavior of the parent class and
should be indistinguishable from an instance of the parent class if substituted in a
similar situation.

We will see later in this chapter, when we examine the various ways in which inheritance
can be used, that this is not always a valid argument. Thus, not all subclasses formed using
inheritance are candidates for substitution.

The term subtype is used to describe the relationship between types that explicitly rec-
ognizes the principle of substitution. That is, a type B is considered to be a subtype of A if
two conditions hold. The �rst is that an instance of B can legally be assigned to a variable
declared as type A. And the second is that this value can then be used by the variable with
no observable change in behavior.

The term subclass refers merely to the mechanics of constructing a new class using
inheritance, and is easy to recognize from the source description of a program by the presence
of the keyword extends. The subtype relationship is more abstract, and is only loosely
documented directly by the program source. In the majority of situations a subclass is also
a subtype. However, later in this chapter we will discover ways in which subclasses can be
formed that are not subtypes. In addition, subtypes can be formed using interfaces, linking
types that have no inheritance relationship whatsoever. So it is important to understand
both the similarities and the di�erences between these two concepts.

8.4 Forms of Inheritance

Inheritance is employed in a surprising variety of ways. In this section we will describe a few
of its more common uses. Note that the following list represents general abstract categories
and is not intended to be exhaustive. Furthermore, it sometime happens that two or more
descriptions are applicable to a single situation, because some methods in a single class
use inheritance in one way while others use it in another. In the following list, pay careful
attention to which uses of inheritance support the subtyping relationship and which do not.

8.4.1 Inheritance for Specialization

Probably the most common use of inheritance and subclassing is for specialization. In this
form, the new class is a specialized variety of the parent class but satis�es the speci�cations



8.4. FORMS OF INHERITANCE 137

of the parent in all relevant respects. Thus, this form always creates a subtype, and the
principle of substitutability is explicitly upheld. Along with the following category (sub-
classing for speci�cation) this is the most ideal form of inheritance, and something that a
good design should strive for.

The creation of application window classes using inheritance from the Java library class
Frame is an example of subclassing for specialization. The following is from the PinBall
Game program in Chapter 7.

public class PinBallGame extends Frame f
...

g

To run such an application an instance of PinBallGame is �rst created. Various methods
inherited from class Frame, such as setSize, setTitle, and show, are then invoked. These
methods do not realize they are manipulating an instance of PinBallGame, but instead act
as if they were operating on an instance of Frame. The actions they perform would be the
same for any instance of class Frame.

Where application speci�c behavior is necessary, for example, in repainting the window,
a method is invoked that is overridden by the application class. For example, the method in
the parent class will invoke the method repaint. Although the parent class Frame possesses
a method of this name, the parent method is not the one executed. Instead, the function
de�ned in the child class is executed.

We say that subclassing for specialization is occurring in this example because the child
class (in this example, PinBallGame) satis�es all the properties that we expect of the parent
class (Frame). In addition, the new class overrides one or more methods, specializing them
with application-speci�c behavior.

8.4.2 Inheritance for Speci�cation

Another frequent use for inheritance is to guarantee that classes maintain a certain common
interface{that is, they implement the same methods. The parent class can be a combination
of implemented operations and operations that are deferred to the child classes. Often,
there is no interface change of any sort between the parent class and the child class{the
child merely implements behavior described, but not implemented, in the parent.

This is actually a special case of subclassing for specialization, except that the subclasses
are not re�nements of an existing type but rather realizations of an incomplete abstract
speci�cation. That is, the parent class de�nes the operation, but has no implementation.
It is only the child class that provides an implementation. In such cases the parent class is
sometimes known as an abstract speci�cation class.

There are two di�erent mechanisms provided by the Java language to support the idea
of inheritance of speci�cation. The most obvious technique is the use of interfaces. We
have seen examples of this in the way that events are handled by the Java library. For



138 CHAPTER 8. UNDERSTANDING INHERITANCE

instance, the characteristics needed for an ActionListener (the object type that responds to
button presses) can be described by a single method, and the implementation of that method
cannot be predicted, since it di�ers from one application to another. Thus, an interface is
used to describe only the necessary requirements, and no actual behavior is inherited by a
subclass that implements the behavior.

interface ActionListener f
public void actionPerformed (ActionEvent e);

g

When a button is created, an associated listener class is de�ned. The listener class
provides the speci�c behavior for the method in the context of the current application.

class CannonWorld extends Frame f
...

// a �re button listener implements the action listener interface

private class FireButtonListener implements ActionListener f
public void actionPerformed (ActionEvent e) f
... // action to perform in response to button press

g
g

g

Subclassing for speci�cation can also take place with inheritance of classes formed using
extension. One way to guarantee that a subclass must be constructed is to use the keyword
abstract. A class declared as abstract must be subclassed; it is not possible to create an
instance of such a class using the operator new. In addition, individual methods can also be
declared as abstract, and they, too, must be overridden before instances can be constructed.

An example abstract class in the Java library is Number, a parent class for the numeric
wrapper classes Integer, Long, Double and so on. The class description is as follows:

public abstract class Number f

public abstract int intValue();

public abstract long longValue();

public abstract float floatValue();

public abstract double doubleValue();

public byte byteValue()



8.4. FORMS OF INHERITANCE 139

f return (byte) intValue(); g

public short shortValue()

f return (short) intValue(); g
g

Subclasses of Number must override the methods intValue, longValue, oatValue and
doubleValue. Notice that not all methods in an abstract class must themselves be declared
abstract. Subclasses of Number need not override byteValue or shortValue, as these methods
are provided with an implementation that can be inherited without change.

In general, subclassing for speci�cation can be recognized when the parent class does
not implement actual behavior but merely de�nes the behavior that must be implemented
in child classes.

8.4.3 Inheritance for Construction

A class can often inherit almost all of its desired functionality from a parent class, perhaps
changing only the names of the methods used to interface to the class, or modifying the
arguments. This may be true even if the new class and the parent class fail to share any
relationship as abstract concepts.

An example of subclassing for construction occurred in the Pin ball game application
described in Chapter 7. In that program, the class Hole was declared as a subclass of
Ball. There is no logical relationship between the concepts of a Ball and a Hole, but from a
practical point of view much of the behavior needed for the Hole abstraction matches the
behavior of the class Ball. Thus, using inheritance in this situation reduces the amount of
work necessary to develop the class Hole.

class Hole extends Ball implements PinBallTarget f

public Hole (int x, int y) f
super (x, y, 12);

setColor (Color.black);

g

public boolean intersects (Ball aBall)

f return location.intersects(aBall.location); g

public void hitBy (Ball aBall) f
// move ball totally o� frame

aBall.moveTo (0, PinBallGame.FrameHeight + 30);

// stop motion of ball

aBall.setMotion(0, 0);



140 CHAPTER 8. UNDERSTANDING INHERITANCE

g
g

Another example of inheritance for construction occurs in the Java Library. There, the
class Stack is constructed using inheritance from the class Vector:

class Stack extends Vector f

public Object push(Object item)

f addElement(item); return item; g

public boolean empty ()

f return isEmpty(); g

public synchronized Object pop() f
Object obj = peek();

removeElementAt(size() - 1);

return obj;

g

public synchronized Object peek()

f return elementAt(size() - 1); g
g

As abstractions, the concept of the stack and the concept of a vector have little in
common; however from a pragmatic point of view using the Vector class as a parent greatly
simpli�es the implementation of the stack.

Inheritance for construction is sometimes frowned upon, since it often directly breaks
the principle of substitutability (forming subclasses that are not subtypes). On the other
hand, because it is often a fast and easy route to developing new data abstractions, it
is nevertheless widely used. In Chapter 10 we will discuss the construction of the Stack
abstraction in more detail.

8.4.4 Inheritance for Extension

Subclassing for extension occurs when a child class only adds new behavior to the parent
class, and does not modify or alter any of the inherited attributes. An example of inheritance
for extension in the Java library is the class Properties, which inherits from class HashTable.
A hash table is a dictionary structure (see Section 19.7). A dictionary stores a collection
of key/value pairs, and allows the user to retrieve the value associated with a given key.
Properties represent information concerning the current execution environment. Examples
of properties are the name of the user running the Java program, the version of the Java



8.4. FORMS OF INHERITANCE 141

interpreter being used, the name of the operating system under which the Java program
is running, and so on. The class Properties uses the parent class, HashTable, to store and
retrieve the actual property name/value pairs. In addition, the class de�nes a few methods
speci�c to the task of managing properties, such as reading or writing properties to or from
a �le.

class Properties extends Hashtable f
...

public synchronized void load(InputStream in) throws IOException f ... g

public synchronized void save(OutputStream out, String header) f ... g

public String getProperty(String key) f ... g

public Enumeration propertyNames() f ... g

public void list(PrintStream out) f ... g
g

As the functionality of the parent remains available and untouched, subclassing for
extension does not contravene the principle of substitutability and so such subclasses are
always subtypes.

8.4.5 Inheritance for Limitation

Subclassing for limitation occurs when the behavior of the subclass is smaller or more
restrictive than the behavior of the parent class. Like subclassing for extension, subclassing
for limitation occurs most frequently when a programmer is building on a base of existing
classes that should not, or cannot, be modi�ed.

There are no examples of subclassing for limitation in the Java library, however we could
imagine the following. Suppose one wanted to create the class Set, in a fashion similar to
the way the class Stack is subclassed from Vector. However, you also wanted to ensure that
only Set operations were used on the set, and not vector operations. One way to accomplish
this would be to override the undesired methods, so that if they were executed they would
generate an exception.1

class Set extends Vector f
// methods addElement, removeElement, contains

1In actuality, the methods indexOf and elementAt are declared as �nal in class Vector, so this example
will not compile. But it does illustrate the concept.



142 CHAPTER 8. UNDERSTANDING INHERITANCE

// isEmpty and size

// are all inherited from vector

public int indexOf (Object obj)

f throw new IllegalOperation("indexOf"); g

public int elementAt (int index)

f throw new IllegalOperation("indexOf"); g
g

Where IllegalOperation is a subclass of Exception:

class IllegalOperation extends Exception f
IllegalOperation (String str) f super(str); g
g

Subclassing for limitation is characterized by the presence of methods that take a pre-
viously permitted operation and makes it illegal. Because subclassing for limitation is an
explicit contravention of the principle of substitutability, and because it builds subclasses
that are not subtypes, it should be avoided whenever possible.

8.4.6 Inheritance for Combination

When discussion abstract concepts, it is common for a new abstraction to be formed as a
combination of features from two or more abstractions. A teaching assistant, for example,
may have characteristics of both a teacher and a student, and can therefore logically behave
as both. The ability of a class to inherit from two or more parent classes is known asmultiple
inheritance.

Although the Java language does not permit a subclass to be formed by inheritance
from more than one parent class, several approximations to the concept are possible. For
example, it is common for a new class to both extend an existing class and implement an
interface. We saw this in the example of the class Hole that both extended class Ball and
implemented the interface for PinBallTarget.

class Hole extends Ball implements PinBallTarget f
...

g

It is also possible for classes to implement more than one interface, and thus be viewed
as a combination of the two categories. Many examples occur in the input/output sections
of the Java Library. A RandomAccessFile, for example, implements both the DataInput and
DataOutput protocols.



8.5. MODIFIERS AND INHERITANCE 143

8.4.7 Summary of the Forms of Inheritance

We can summarize the various forms of inheritance by the following table:

� Specialization. The child class is a special case of the parent class; in other words, the
child class is a subtype of the parent class.

� Speci�cation. The parent class de�nes behavior that is implemented in the child class
but not in the parent class.

� Construction. The child class makes use of the behavior provided by the parent class,
but is not a subtype of the parent class.

� Extension. The child class adds new functionality to the parent class, but does not
change any inherited behavior.

� Limitation. The child class restricts the use of some of the behavior inherited from the
parent class.

� Combination. The child class inherits features from more than one parent class. Al-
though multiple inheritance is not supported directly by Java, it can be simulated
in part by classes that use both inheritance and implementation of an interface, or
implement two or more interfaces.

The Java language implicitly assumes that subclasses are also subtypes. This means that
an instance of a subclass can be assigned to a variable declared as the parent class type.
Methods in the child class that have the same name as those in the parent class override the
inherited behavior. We have seen that this assumption that subclasses are subtypes is not
always valid, and creating subclasses that are not subtypes is a possible source of program
error.

8.5 Modi�ers and Inheritance

The language Java provides several modi�ers that can be used to alter aspects of the inher-
itance process. For example, in the case studies in earlier chapters, we made extensive use
of the visibility (or access control) modi�ers public, protected and private.

� A public feature (data �eld or method) can be accessed outside the class de�nition. A
public class can be accessed outside the package in which it is declared.

� A protected feature can be accessed only within the class de�nition in which it appears,
or within the de�nition of subclasses.

� A private feature can be accessed only within the class de�nition in which it appears.



144 CHAPTER 8. UNDERSTANDING INHERITANCE

We have seen from our �rst case studies how both methods and data �elds can be
declared as static. A static �eld is shared by all instances of a class. A static method can be
invoked even when no instance of the class has been created. Static data �elds and methods
are inherited in the same manner as non-static items, except that static methods cannot be
overridden.

Both methods and classes can be declared to be abstract. An abstract class cannot be
instanciated. That is, it is not legal to create an instance of an abstraction class using the
operator new. Such a class can only be used as a parent class, to create a new type of object.
Similarly, an abstract method must be overridden by a subclass.

An alternative modi�er, �nal, is the opposite of abstract. When applied to a class, the
keyword indicates that the class cannot be subclassed. Similarly, when applied to a method,
the keyword indicates that the method cannot be overridden. Thus, the user is guaranteed
that the behavior of the class will be as de�ned and not modi�ed by a later subclass.

final class newClass extends oldClass f
...

g

We have seen that program constants are generally de�ned by variables that are both
static and �nal:

class CannonGame extends Frame f
...

public static final int FrameWidth = 600;

public static final int FrameHeight = 400;

...

g

Optimizing compilers can sometimes make use of the fact that a data �eld, class or
method is declared as �nal, and generate better code than would otherwise be possible.

8.6 Programming as a Multi Person Activity

When programs are constructed out of reusable, o�-the-shelf components, programming
moves from an individual activity (one programmer and the computer) to a community
e�ort. A programmer may operate both as the developer of new abstractions, and as the
user of a software system created by an earlier programmer. The reader should not confuse
the term user when applied to a programmer with the same term denoting the application
end-user. Similarly, we will often speak of the organization of several objects by describing
a client object, that is requesting the services of a provider. Again, the client in this case
is likely a programmer (or the code being developed by a programmer) making use of the



8.7. THE BENEFITS OF INHERITANCE 145

services developed by an earlier programmer. This should not be confused with the idea of
client/sever computing, as described in Chapter 2.

8.7 The Bene�ts of Inheritance

In this section we will describe some of the many important bene�ts of the proper use of
inheritance.

8.7.1 Software Reusability

When behavior is inherited from another class, the code that provides that behavior does
not have to be rewritten. This may seem obvious, but the implications are important.
Many programmers spend much of their time rewriting code they have written many times
before{for example, to search for a pattern in a string or to insert a new element into a
table. With object-oriented techniques, these functions can be written once and reused.

8.7.2 Increased Reliability

Code that is executed frequently will tend to have fewer bugs then code that executed
infrequently. When the same components are used in two or more applications, the code
will be exercised more than code that is developed for a single application. Thus, bugs
in such code tend to be more quickly discovered, and latter applications gain the bene�t
of using components are more error free. Similarly, the costs of maintenance of shared
components can be split among many projects.

8.7.3 Code Sharing

Code sharing can occur on several levels with object-oriented techniques. On one level,
many users or projects can use the same classes. (Brad Cox [Cox 1986] calls these software-
ICs, in analogy to the integrated circuits used in hardware design). Another form of sharing
occurs when two or more classes developed by a single programmer as part of a project
inherit from a single parent class. For example, a Set and an Array may both be considered
a form of Collection. When this happens, two or more types of objects will share the code
that they inherit. This code needs to be written only once and will contribute only once to
the size of the resulting program.

8.7.4 Consistency of Interface

When two or more classes inherit from the same superclass, we are assured that the behavior
they inherit will be the same in all cases. Thus, it is easier to guarantee that interfaces to
similar objects are in fact similar, and that the user is not presented with a confusing



146 CHAPTER 8. UNDERSTANDING INHERITANCE

collection of objects that are almost the same but behave, and are interacted with, very
di�erently.

8.7.5 Software Components

Inheritance provides programmers with the ability to construct reusable software compo-
nents. The goal is to permit the development of new and novel applications that nevertheless
require little or no actual coding. The Java library provides a rich collection of software
components for use in the development of applications.

8.7.6 Rapid Prototyping

When a software system is constructed largely out of reusable components, development
time can be concentrated on understanding the new and unusual portion of the system.
Thus, software systems can be generated more quickly and easily, leading to a style of
programming known as rapid prototyping or exploratory programming. A prototype system is
developed, users experiment with it, a second system is produced that is based on experience
with the �rst, further experimentation takes place, and so on for several iterations. Such
programming is particularly useful in situations where the goals and requirements of the
system are only vaguely understood when the project begins.

8.7.7 Polymorphism and Frameworks

Software produced conventionally is generally written from the bottom up, although it may
be designed from the top down. That is, the lower-level routines are written, and on top
of these slightly higher abstractions are produced, and on top of these even more abstract
elements are generated. This process is like building a wall, where every brick must be laid
on top of an already laid brick.

Normally, code portability decreases as one moves up the levels of abstraction. That
is, the lowest-level routines may be used in several di�erent projects, and perhaps even
the next level of abstraction may be reused, but the higher-level routines are intimately
tied to a particular application. The lower-level pieces can be carried to a new system and
generally make sense standing on their own; the higher-level components generally make
sense (because of declarations or data dependencies) only when they are built on top of
speci�c lower-level units.

Polymorphism in programming languages permits the programmer to generate high-level
reusable components that can be tailored to �t di�erent applications by changes in their
low-level parts. The Java AWT is an example of a large software framework that relies on
inheritance and substitutability for its operation.



8.8. THE COSTS OF INHERITANCE 147

8.7.8 Information Hiding

A programmer who reuses a software component needs only to understand the nature of
the component and its interface. It is not necessary for the programmer to have detailed
information concerning matters such as the techniques used to implement the component.
Thus, the interconnectedness between software systems is reduced. We earlier identi�ed
the interconnected nature of conventional software as being one of the principle causes of
software complexity.

8.8 The Costs of Inheritance

Although the bene�ts of inheritance in object-oriented programming are great, almost noth-
ing is without cost of one sort or another. For this reason, we must consider the cost of
object-oriented programming techniques, and in particular the cost of inheritance.

8.8.1 Execution Speed

It is seldom possible for general-purpose software tools to be as fast as carefully hand-
crafted systems. Thus, inherited methods, which must deal with arbitrary subclasses, are
often slower than specialized code.

Yet, concern about e�ciency is often misplaced.2 First, the di�erence is often small.
Second, the reduction in execution speed may be balanced by an increase in the speed of
software development. Finally, most programmers actually have little idea of how execution
time is being used in their programs. It is far better to develop a working system, monitor
it to discover where execution time is being used, and improve those sections, than to spend
an inordinate amount of time worrying about e�ciency early in a project.

8.8.2 Program Size

The use of any software library frequently imposes a size penalty not imposed by systems
constructed for a speci�c project. Although this expense may be substantial, as memory
costs decrease the size of programs becomes less important. Containing development costs
and producing high-quality and error-free code rapidly are now more important than limiting
the size of programs.

8.8.3 Message-Passing Overhead

Much has been made of the fact that message passing is by nature a more costly operation
than simple procedure invocation. As with overall execution speed, however, overconcern

2The following quote from an article by Bill Wulf o�ers some apt remarks on the importance of e�ciency:
\More computing sins are committed in the name of e�ciency (without necessarily achieving it) than for
any other single reason{including blind stupidity" [Wulf 1972].



148 CHAPTER 8. UNDERSTANDING INHERITANCE

about the cost of message passing is frequently penny-wise and pound-foolish. For one thing,
the increased cost is often marginal{perhaps two or three additional assembly-language
instructions and a total time penalty of 10 percent. This increased cost, like others, must
be weighed against the many bene�ts of the object-oriented technique.

8.8.4 Program Complexity

Although object-oriented programming is often touted as a solution to software complexity,
in fact, overuse of inheritance can often simply replace one form of complexity with another.
Understanding the control ow of a program that uses inheritance may require several
multiple scans up and down the inheritance graph. This is what is known as the yo-yo
problem, which we will discuss in more detail in a later chapter.

8.9 Chapter Summary

Inheritance is a mechanism for relating a new software abstraction being developed to an
older, existing abstraction. By stating that the new component inherits (or extends) the
older abstraction, the programmer means that all the public and protected properties of
the original class are also now part of the new abstraction. In addition, the new class can
add new data �elds and behavior, and can override methods that are inherited from the
original class. Interfaces are a closely related mechanism, which tie the concrete realization
of behavior to an abstract description.

All classes in Java use inheritance. If not explicitly stated, classes are assumed to inherit
from the fundamental root class Object.

Inheritance is tied to the principle of substitutability. A variable that is declared as one
class can be assigned a value that created from a child class. A similar mechanism also works
with interfaces. A class that can be used in lieu of another class is said to be a subtype.
Java implicitly assumes that all subclasses are subtypes. However, this need not be true (a
subclass can override a method in an incompatible fashion, for example). Subtypes can also
be constructed from interfaces, avoiding subclasses altogether.

There are many di�erent types of inheritance, used for di�erent purposes. Variations
include specialization, speci�cation, construction, extension, limitation, and combination.

A variety of modi�ers alter the meaning of inheritance. A private feature is not inherited
by subclasses. A static feature (data �eld or method) is shared by all instances. An abstract
method must be overridden. A �nal feature (data �eld or method) cannot be overridden.

Study Questions

1. Give an intuitive description of inheritance.

2. What does it mean for a method to override an inherited method?



EXERCISES 149

3. What is the name of the root class for all objects in Java?

4. What behavior is provided by the root class in Java?

5. What does it mean to say that child classes are substitutable for parent classes in
Java?

6. What is the di�erence between a subclass and a subtype?

7. What are the characteristics of inheritance for specialization?

8. What are the characteristics of inheritance for speci�cation? How does this di�er from
inheritance for specialization?

9. What are the characteristics of inheritance for construction? Why is this not generally
considered to be a good use of inheritance?

10. What are the characteristics of inheritance for extension?

11. What are the characteristics of inheritance for limitation? Why is this not generally
considered to be a good use of inheritance?

12. Why would it not make sense for a method in Java to be declared both abstract and
�nal ?

13. What are some of the bene�ts of developing classes using inheritance, rather than
developing each new class from scratch?

14. What are some of the costs of using inheritance for software development?

Exercises

1. Suppose you were required to program a project in a non-object oriented language,
such as Pascal or C. How would you simulate the notion of classes and methods? How
would you simulate inheritance? Could you support multiple inheritance? Explain
your answer.

2. We noted that the execution overhead associated with message passing is typically
greater than the overhead associated with a conventional procedure call. How might
you measure these overheads? For a language that supports both classes and proce-
dures (such as C++ or Object Pascal), devise an experiment to determine the actual
performance penalty of message passing.



150 CHAPTER 8. UNDERSTANDING INHERITANCE

3. Consider the three geometric concepts of a line (in�nite in both directions), a ray
(�xed at a point, in�nite in one direction), and a segment (a portion of a line with
�xed end points). How might you structure classes representing these three concepts
in an inheritance hierarchy? Would your answer di�er if you concentrated more on
the data representation or more on the behavior? Characterize the type of inheritance
you would use. Explain the reasoning behind your design.

4. Why is the example used in the following explanation not a valid illustration of inher-
itance?

Perhaps the most powerful concept in object-oriented programming sys-
tems is inheritance. Objects can be created by inheriting the properties of
other objects, thus removing the need to write any code whatsoever! Sup-
pose, for example, a program is to process complex numbers consisting of
real and imaginary parts. In a complex number, the real and imaginary
parts behave like real numbers, so all of the operations (+, -, /, *, sqrt,
sin, cos, etc.) can be inherited from the class of objects call REAL, instead
of having to be written in code. This has a major impact on programmer
productivity.


