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Abstract

Deep probabilistic programming (DPP) combines three fields: Bayesian statistics and machine learn-
ing, deep learning, and probabilistic programming. Many applications in trading and risk management
involve uncertainty quantification such as portfolio optimization and risk estimation. DPP provides a
general purpose Bayesian framework for fitting high dimensional models to large datasets. Wielded cor-
rectly, it provides a richer set of statistical properties and more explanatory power over deterministic
models such as deep learning. Furthermore, increasing low-cost compute power made available through
many-core processors, can be readily exploited by open-source DPP packages such as Edward. This
short positional article provides a brief and informal background on deep probabilistic programming and
discusses its implications for trading, risk management and financial stability modeling.

1 Introduction

Deep probabilistic programming (DPP) combines three fields: Bayesian statistics and machine learning, deep
learning (DL), and probabilistic programming. Although in its infancy, DPP is a powerful combination of
a number of different probabilist modeling approaches and inference techniques that have historically been
treated as separate mathematical ideas in the financial modeling literature. Modeling approaches includes
Bayesian neural networks (BNNs, Bayesian NNs), directed graphical models and the broad availability of a
wide range of techniques for efficient and robust model training. DPP can be regarded as a compositional
modeling framework, composing previously disparate modeling concepts and algorithms over a scalable
computational graph implementation. Just as TensorFlow’s (Abadi et al., 2016) computational graphs have
made DL synonymous with modeling high dimensional input spaces with very large data sets, so to is Edward
(Tran et al., 2017) poised to make DPP a tool of choice along side STAN (Carpenter et al., 2017) and PyMC3

(Salvatier, Wiecki, & Fonnesbeck, 2016b) for Bayesian modeling and inference of computationally intractable
problems.

1.1 Gaussian Processes

In order to explore some of the key capabilities of DPP for financial modeling and uncertainty quantification,
we shall first revisit more familiar territory - Gaussian processes (GPs). The idea of GPs is to, without
parameterizing F (X), place a prior P[F (x)] directly on the space of functions (MacKay, 1998). Gaussian
processes can hence be viewed as a generalization of Gaussian distributions from finite dimensional vector
spaces to infinite dimensional function spaces. The main advantage of using GPs is modeling co-movements
of time series. GPs learn the relationship between the time series directly building up an empirical model of
the co-movements rather than assuming linear correlations between stochastic processes.

1.2 Bayesian Neural Networks

Gaussian processes have been shown to be a limiting case of Bayesian Neural networks (BNNs). These offer
a probabilistic interpretation of neural network models by inferring distributions over the models’ weights.
To model uncertainty, BNNs assume that model parameters (weights and biases) are random variables. A
prior distribution is placed over the weights and biases, which induces a distribution over a parametric set
of functions. As the number of weights goes to infinity (Neal, 2012; Williams, 1997) show that the Bayesian
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neural networks converge to GPs when a standard matrix of Gaussian prior distributions is placed over
the weights and point estimates used for the priors. Of course, there is no reason to restrict modeling
assumptions to these limiting conditions and, in fact, one of the main benefits of either approach is the
flexibility to combine different distributions and include interaction effects.

2 Deep Learning

DL has shown remarkable success in a wide field of applications, including Artificial Intelligence (AI)
(DeepMind, 2016; Kubota, 2017; Esteva et al., 2017), image processing (Simonyan & Zisserman, 2014),
learning in games (DeepMind, 2017), neuroscience (Poggio, 2016), energy conservation (DeepMind, 2016),
skin cancer diagnostics (Kubota, 2017; Esteva et al., 2017). Current advances in hardware (GPU/TPU) and
software (Theano/TensorFLow) allow for developing scalable deep learners to find a deterministic approxi-
mation to an unknown nonlinear function. However, in many trading and risk management applications, it is
necessary to model uncertainty of a predictive model. Deep learners are typically used to build deterministic
approximations to an unknown nonlinear function and are largely unusable when uncertainty needs to be
explicitly represented. And so deep probabilistic programming builds on deep learners by providing infer-
ential techniques to estimate the posterior distribution and hence characterize the uncertainty in a model
estimate.

2.1 Bayesian Computations

As a Bayesian approach, the choice of architecture of a deep network, combined with regularization, can be
viewed as defining a prior probability distribution over non-linear functions and deep learning can be viewed
as finding the posterior probability distribution of the unknown function over the network weights (Gal,
2016). In general, the posterior distribution is analytically intractable and Bayesian computational methods
are required to approximate it. One common class of solution approaches, referred to as variational inference,
solves an optimization problem by minimizing the Kullback-Leiber (KL) distance between an approximating
variational distribution and the posterior obtained from the original model. Bayes’ filtering techniques, such
as Kalman filters, HMMs and particle filters, are examples of variational inference techniques common place
in trading and risk management, albeit for low dimensional input spaces. The other well known class of
posterior approximation techniques use sampling techniques, rather than variational techniques - a prime
example being the use of MCMC simulation. Neither of these inference engines, however, scale well with
respect to model and data size.

Recent advances in variational inference techniques and software can now represent probabilistic models
as a computational graph (Blundell, Cornebise, Kavukcuoglu, & Wierstra, 2015; Tran et al., 2017; Salvatier,
Wiecki, & Fonnesbeck, 2016a). The key benefit here is the ability to build scalable probabilistic deep learners
can, without having to perform testing (forward propagation) or inference (gradient-based optimization,
with back propagation and automatic differentiation) from scratch. Alternatives to variational and MCMC
algorithms were recently proposed by (Gal, 2016) and build on efficient Dropout regularization techniques,
a variable selection approach which has fueled the popularity of DL.

The combination of Edward and TensorFlow is the first time that we have seen large-scale Bayesian
modeling fused with AI and HPC and that’s likely to spawn critical developments in applications where
uncertainty and model risk play a central role, such as finance. The remainder of this article briefly discusses
some areas which are likely suitable financial modeling applications for DPP.

3 Financial Applications

Predictive Modeling Oftentimes, an automated decision to trade or a price forecast may be shrouded in
uncertainty arising from noisy data or model risk, either through incorrect model assumptions or parameter
error. This uncertainty should be accounted for in predictions so that the model output can be more clearly
interpreted. DPP thrives in high dimensional input spaces. In trading and risk management applications,
high dimensionality may arise naturally where there is spatial structure in the data. Examples include deep
portfolios (Heaton, Polson, & Witte, 2017), large scale loan modeling (Sirignano, Tsoukalas, & Giesecke,
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2016), predictors for prices using the many depth levels in the limit order book (Dixon, Polson, & Sokolov,
2017; Dixon, 2017; Sirignano, 2016), predictors arising from combining several data sets as in mortgage
risk (Sirignano, Sadhwani, & Giesecke, 2016) or consumer lending (Dixon, Giesecke, Sheshardi, & Troha,
2017), or from text mining and natural language processing of news and other documents (Glasserman &
Mamaysky, 2015).

Portfolio Optimization and Market Risk For some of these applications, we need look no further
than existing applications of Gaussian processes to finance. (da Barrosa, Salles, & de Oliveira Ribeiro, 2016)
present a spatio-temporal GP method for optimizing financial asset portfolios which allows for approximating
the risk surface. (Cousin, Maatouk, & Rulliere, 2016) propose a new term-structure interpolation method
that extends classical spline techniques by quantifying uncertainty. Other examples of GPs include spatial
meta-modeling for Expected Shortfall through nested simulation (Liu & Staum, 2012). Spatio-temporal
GPs are used to infer portfolio values in a scenario based on inner-level simulation of nearby scenarios. This
significantly reduces the required computational effort by avoiding inner-level simulation in every scenario
and takes account of the variance that arises from inner-level simulation. DPP could improve these existing
applications through Bayesian neural networks and robust regularization techniques for generalizing modeling
and improving robustness and scalability.

Contagion and Credit Risk Capturing dependencies between financial institutions is a significant aspect
of contagion and counterparty credit risk modeling. Examples in contagion modeling include the inter-
dependency between banks participating in Federal Reserve System’s emergency programs (Battiston, Puliga,
Kaushik, Tasca, & Caldarelli, 2012), joint dependencies of banks and other institutional investors through
transactions in the repurchase agreement market or through various other channels of systemic risk (Bisias,
Flood, Lo, & Valavanis, 2012). Other examples in counterparty credit risk modeling include wrong way
risk assessment of OTC portfolios. It is well known that the dependence structure between variables can
be explicitly model with a directed graph. Given this capability, a promising research direction is how to
use probabilistic graphical programming to build Bayesian network copulas (Elidan, 2010) for contagion and
credit risk?

3.1 Summary

Deep probabilistic programming (DPP) combines three fields: Bayesian statistics and machine learning,
deep learning, and probabilistic programming. Many applications in trading and risk management involve
uncertainty quantification such as portfolio optimization and risk estimation. DPP provides a general purpose
Bayesian framework for fitting high dimensional models to large datasets to provide a richer set of statistical
properties and more explanatory power.

This article provides some background on deep probabilistic programming and discusses its implications
for trading and risk management. In particular, we see merit in exploring high dimensional modeling
problems arising in large-scale portfolios, systemic risk and contagion in financial networks and where spatial
structure is present in the application, such as limit order book modeling. Tools such as Edward lower the
barrier to entry and add salt to the fire ignited by TensorFlow. The barrier to entry is deceptively simple
however and some discipline is needed. The programming convenience of Keras for TensorFlow is alluring,
but the ability to build effective and interpretable financial models is still in its infancy and should be
investigated more fully by cross-disciplinary researchers in computational science, statistics and finance,
before any definitive and practical conclusions can be drawn.
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