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In this Ph.D. thesis we discuss 3 different problems in analysis: (a) best

approximations by functions with compactly supported Fourier transform for

a variety of functions in one and several variables; (b) reconstruction of entire

functions of exponential type via interpolation formulas involving derivatives;

(c) a central limit theorem for operators, which characterizes the operators

given by centered Gaussian kernels as the limiting family.

Nesta tese de Doutorado discutimos 3 problemas diferentes em análise:

(a) melhores aproximações por funções com transformada de Fourier suportada

em compactos para uma grande variedade de funções de uma e várias variáveis;

(b) reconstrução de funções inteiras de tipo exponencial através de fórmulas de

interpolação envolvendo derivadas; (c) um teorema central do limite para oper-

adores, que caracteriza os operadores dados por núcleos Gaussianos centrados

como a famı́lia limite.
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Chapter 1

Introduction

This Ph.D. thesis is composed by four independent chapters that are

embedded in two central themes: Approximation and Reconstruction. This

thesis compiles the developments of the following research articles:

[A1] Extremal Problems in de Branges Spaces: The Case of Truncated and

Odd Functions (with Emanuel Carneiro), Mathematische Zeitschrift 280

(2015), 17–45.

[A2] Interpolation Formulas with Derivatives in de Branges Spaces, Trans.

Amer. Math. Soc. (to appear).

[A3] One–Sided Band–Limited Approximations in Euclidean Spaces of Some

Radial Functions (with Michael Kelly and José Madrid), Bull. Braz.

Math. Soc. 46 (2015), no. 4, 563–599.

[A4] Interpolation Formulas with Derivatives in de Branges Spaces II (with

Friedrich Littmann), Preprint (2015).

[A5] On Selberg’s Box–Minorant Problem (with Jacob Carruth and Michael

Kelly), Preprint (2015).

[A6] A Central Limit Theorem for Operators, Preprint (2015).
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In Chapter 2 we find extremal one–sided approximations of exponen-

tial type for a class of truncated and odd functions with a certain exponential

subordination. These approximations optimize the L1(R, |E(x)|−2dx)–error,

where E(z) is an arbitrary Hermite–Biehler entire function. This extends the

work of Holt and Vaaler [47] for the signum function. We also provide peri-

odic analogues of these results, finding optimal one–sided approximations by

trigonometric polynomials of a given degree to a class of periodic functions

with exponential subordination. These extremal trigonometric polynomials

optimize the L1(R/Z, dϑ)–error, where dϑ is an arbitrary nontrivial measure

on R/Z. The periodic results extend the work of Li and Vaaler [51], who

considered this problem for the sawtooth function with respect to Jacobi mea-

sures. This chapter describes the results of article [A1] which is a joint work

with Emanuel Carneiro (IMPA – Brazil).

In Chapter 3 we derive interpolation formulas involving derivatives for

entire functions in reproducing kernel Hilbert spaces. We extend the inter-

polation formula derived by Vaaler in [73, Theorem 9] to de Branges spaces.

We extensively use techniques from de Branges’ theory of Hilbert spaces of

entire functions, but a crucial passage involves the Hilbert–type inequalities

as derived in [18]. Next, we extend our interpolation result to Lp de Branges

spaces for which the structure function E(z) of Hermite–Biehler class satisfies

an additional hypothesis. Finally, we give three applications: (1) we derive an

interpolation formula for entire functions of exponential type where the nodes

of interpolation are the zeros of Bessel functions; (2) we prove a uniqueness

result for extremal one–sided band–limited approximations of radial functions

in Euclidean spaces; (3) we derive a condition for sampling and interpolation

with derivatives in Paley–Wiener spaces in analogy with the work of Ortega–

Cerdà and Seip [64]. This chapter compiles the results of articles [A2] and

2



[A4], the last one being a joint work with Friedrich Littmann (North Dakota

State Univ. – USA).

Chapter 4 is separated in two independent, but correlated parts. In

the first part we construct best approximations by band–limited functions in

many variables for a class of functions that are subordinated to Gaussians. The

majorants that we construct are shown to be extremal and our minorants are

shown to be asymptotically extremal as the type becomes uniformly large. We

then use our methods to derive periodic analogues of the main results. In the

second part we study the problem of minorizing the indicator function of a box

by a function with Fourier transform supported in the same box in such a way

that the integral is maximized. This problem dates back to the work of Selberg,

in which he developed a method to construct minorants of the box by using

one–dimensional minorants and majorants of the same box. The drawback is

that Selberg’s minorant usually have negative integrals. First, we show that

the interpolation strategy, which is very powerful in the one–dimensional case,

fails to provide candidates in higher dimensions. Secondly, we prove that the

integral of the best approximation decreases as the dimension N increases,

and converges to zero as N → ∞. Finally, we derive explicit positive lower

bounds for dimension N ≤ 5 and we estimate the critical N such that a

quantity related to Selberg’s construction vanishes. This chapter summarizes

the results of articles [A3] and [A5]. The first one is a joint work with Michael

Kelly (Univ. of Michigan – USA) and José Madrid (IMPA – Brazil), while the

second one is a joint work with Jacob Carruth (The Univ. of Texas at Austin

– USA) and Michael Kelly.

In Chapter 5 we prove an analogue of the Central Limit Theorem for

operators. For every operator K defined on C[x] we construct a sequence of

operators KN defined on C[x1, ..., xN ] and show that, under certain orthogo-

3



nality conditions, this sequence converges in a weak sense to a unique operator.

We show that the family of limiting operators C coincides with the family of

operators given by centered Gaussian Kernels. Inspired in the approximation

method used by Beckner in [4] to prove the sharp form of the Hausdorff–Young

inequality, we show that Beckner’s method is a special case of this general ap-

proximation method for operators. In particular, we characterize the Hermite

semi–group as the family of limiting operators C associated with any multi-

plicative semi–group of operators. This chapter contains the results of article

[A6].
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Chapter 2

Extremal Functions of Exponential Type

2.1 Preliminaries

An entire function F : C → C, not identically zero, is said to be of

exponential type if

τ(F ) = lim sup
|z|→∞

|z|−1 log |F (z)| <∞.

In this case, the non–negative number τ(F ) is called the exponential type of

F (z). We say that F (z) is real entire if F (z) restricted to R is real valued.

Given a function f : R → R, a non–negative Borel measure dσ on R, and a

parameter δ > 0, we address here the problem of finding a pair of real entire

functions L : C→ C and M : C→ C of exponential type at most δ such that

L(x) ≤ f(x) ≤M(x) (2.1)

for all x ∈ R, minimizing the integral∫
R

{
M(x)− L(x)

}
dσ(x). (2.2)

In the case of Lebesgue measure, this problem dates back to the work

of Beurling in the 1930’s (see [73]), where the function f(x) = sgn(x) was

considered. Further developments of this theory provide the solution of this

extremal problem for a wide class of functions f(x) that includes, for instance,

even, odd and truncated functions subject to a certain exponential or Gaussian
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subordination [14, 15, 18, 19, 20, 26, 40, 53, 55, 56, 73]. Several applications

of these extremal functions arise in analytic number theory and analysis, for

instance in connection to: large sieve inequalities [47, 60, 67, 68, 73], Erdös-

Turán inequalities [19, 45, 51, 73], Hilbert–type inequalities [16, 18, 19, 40,

55, 62, 63, 73], Tauberian theorems [40], inequalities in signal processing [26],

and bounds in the theory of the Riemann zeta–function [8, 10, 9, 22, 32, 34].

Similar approximation problems are treated, for instance, in [41, 33].

In the case of general measures dσ, the problem (2.1) - (2.2) is still

vastly open. In the remarkable paper [47], Holt and Vaaler considered the

situation f(x) = sgn(x) and dσ(x) = |x|2α+1 dx with α > −1. They solved

this problem (in fact, for a more general class of measures) by establishing an

interesting connection with the theory of de Branges spaces of entire functions

[6]. This idea was further developed in [16] for a class of even functions f(x)

with exponential subordination and in [9, 56] for characteristic functions of

intervals, both with respect to general de Branges measures. In particular,

the optimal construction in [9] was used to improve the existing bounds for

the pair correlation of zeros of the Riemann zeta–function, under the Riemann

hypothesis, extending a classical result of Gallagher [32].

The purpose of this chapter is to complete the framework initiated

in [16], where the case of even functions was treated. Here we develop an

analogous extremal theory for a wide class of truncated and odd functions

with exponential subordination, with respect to general de Branges measures

(these are described below). In particular, this extends the work of Holt and

Vaaler [47] for the signum function.
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2.1.1 De Branges Spaces

In order to properly state our results, we need to briefly review the main

concepts and terminology of the theory of Hilbert spaces of entire functions

developed by de Branges [6]. More information about these spaces and their

Lp version can be found in Appendix 6.1.

We briefly review the basics of de Branges’ theory of Hilbert spaces of

entire functions [6]. A function F (z) analytic in the open upper half–plane

C+ = {z ∈ C : Im (z) > 0}

has bounded type if it can be written as the quotient of two functions that are

analytic and bounded in C+. If F (z) has bounded type in C+ then, according

to [6, Theorems 9 and 10], we have

lim sup
y→∞

y−1 log |F (iy)| = v(F ) ∈ R.

The number v(F ) is called the mean type of F (z). We say that an entire

function F : C→ C, not identically zero, has exponential type if

lim sup
|z|→∞

|z|−1 log |F (z)| = τ(F ) <∞.

In this case, the non-negative number τ(F ) is called the exponential type of

F (z). If F : C → C is entire we define F ∗ : C → C by F ∗(z) = F (z) and if

F (z) = F ∗(z) we say that it is real entire.

A Hermite–Biehler function E : C → C is an entire function that

satisfies the inequality

|E(z)| < |E(z)|

7



for all z ∈ C+. We define the de Branges space1 H2(E) to be the space of

entire functions F : C→ C such that

‖F‖2
E :=

∫
R
|F (x)|2 |E(x)|−2 dx <∞ , (2.3)

and such that F/E and F ∗/E have bounded type and non–positive mean type

in C+. This is a Hilbert space with respect to the inner product

〈F,G〉E :=

∫
R
F (x)G(x) |E(x)|−2 dx.

The Hilbert space H2(E) has the special property that, for each w ∈ C, the

map F 7→ F (w) is a continuous linear functional on H2(E). Therefore, there

exists a function z 7→ K(w, z) in H2(E) such that

F (w) = 〈F,K(w, ·)〉E . (2.4)

The function K(w, z) is called the reproducing kernel of H2(E). If we write

A(z) :=
1

2

{
E(z) + E∗(z)

}
and B(z) :=

i

2

{
E(z)− E∗(z)

}
, (2.5)

then A(z) and B(z) are real entire functions with only real zeros and E(z) =

A(z)− iB(z). The reproducing kernel is then given by [6, Theorem 19]

K(w, z) =
E(z)E∗(w)− E∗(z)E(w)

2πi(w − z)
=
B(z)A(w)− A(z)B(w)

π(z − w)
. (2.6)

When z = w we have

πK(z, z) = B′(z)A(z)− A′(z)B(z). (2.7)

We may apply the Cauchy-Schwarz inequality in (2.4) to obtain that

|F (w)|2 ≤ ‖F‖2
EK(w,w), (2.8)

1In the next Chapter we will be dealing with Lp de Branges spaces which we denote by
Hp(E). For this reason we use the notation H2(E) instead of H(E), which is the usual
notation for an de Branges space.

8



for every F ∈ H2(E). By the reproducing kernel property (2.4) we have

K(w, z) = 〈K(w, ·), K(z, ·)〉E.

Thus, K(w,w) ≥ 0 and |K(w, z)|2 ≤ K(w,w)K(z, z). Also, it is not hard to

show that K(w,w) = 0 if and only if w ∈ R and E(w) = 0 (see [47, Lemma

11]).

We denote by ϕ(z) a phase function associated to E(z). This is an

analytic function in a neighborhood of R defined by the condition eiϕ(x)E(x) ∈
R for all real x. Using (2.6) we obtain that

ϕ′(x) = π
K(x, x)

|E(x)|2
> 0 (2.9)

for all real x and thus ϕ(x) is an increasing function of real x (see [6, Problem

48]). We also have that

e2iϕ(x) =
A(x)2

|E(x)|2
− B(x)2

|E(x)|2
+ 2i

A(x)B(x)

|E(x)|2

for all real x. As a consequence, the points t ∈ R such that ϕ(t) ≡ 0 mod π

coincide with the real zeros of B(z)/E(z) and the points s ∈ R such that

ϕ(s) ≡ π/2 mod π coincide with the real zeros of A(z)/E(z) and by (2.9),

these zeros are simple. In other words, the function B(z)/A(z) has only simple

real zeros and simple real poles that interlace.

The zero set of the function B(z) plays a special role in the theory of

de Branges associated with a function E(z) with no real zeros. In this case,

the zeros of B(z) coincide with the points t ∈ R such that ϕ(t) ≡ 0 mod π.

The following result can be found in [6, Theorem 22].

Theorem 2.1.1 (de Branges). Let E(z) be a Hermite–Biehler function with

no real zeros. Then the set of functions {B(z)/(z− t)}t, where t varies among

9



the real zeros of B(z), is an orthogonal set in H2(E) and for every F ∈ H2(E)

there is a constant c(F ) ≥ 0 such that∫
R

∣∣∣∣F (x)

E(x)

∣∣∣∣2dx =
∑
B(t)=0

|F (t)|2

K(t, t)
+ c(F ). (2.10)

Moreover, c(F ) = 0 for every F ∈ H2(E) if and only if B /∈ H2(E). In this

case we have

F (z) = B(z)
∑
B(t)=0

F (t)

B′(t)(z − t)

where the convergence is in the norm of the space.

Remark. An analogous result holds for the function A(z), or more general,

to any function of the form eiθE∗(z)− e−iθE(z), θ ∈ R.

2.1.2 Main Results

For our purposes we let E(z) be a Hermite–Biehler function of bounded

type in C+. In this case, a classical result of Krein (see [50] or [47, Lemma

9]) guarantees that E has exponential type and τ(E) = v(E). Moreover, an

entire function F (z) belongs to H2(E) if and only if it has exponential type

at most τ(E) and satisfies (2.3) (see [47, Lemma 12]).

Let dµ be a (locally finite) signed Borel measure on R and denote by

µ(x) = dµ((−∞, x])) its distribution function. Assume that it satisfies the

following properties:

(H1) The measure dµ has support bounded by below (or equivalently, µ(x) = 0

for all x ≤ C for some C ∈ R).

(H2) The function µ(x) verifies

0 ≤ µ(x) ≤ 1 (2.11)

10



for all real x.

In some instances we require a third property:

(H3) The average value of the distribution function µ(x) is 1, that is

lim
y→∞

1

y

∫ y

−∞
µ(x) dx = 1. (2.12)

Remark. We remark that the constant 1 appearing on the right-hand sides

of (2.11) and (2.12) could be replaced by any constant C > 0. For simplicity,

we normalize the measure (by dilating) to work with C = 1. Observe that

any probability measure dµ on R satisfying (H1) automatically satisfies (H2)

and (H3). Measures like dµ(λ) = χ(0,∞)(λ) sin aλ dλ, for a > 0, which were

considered by Littmann and Spanier in [57] (giving the truncated and odd

Poisson kernels in the construction below), satisfy (H1) - (H2) but not (H3).

Let dµ be a signed Borel measure on R satisfying (H1) - (H2). We

define the function fµ(z), the truncated Laplace transform of this measure, by

fµ(z) =


∫
R
e−λz dµ(λ), if Re (z) > 0;

0, if Re (z) ≤ 0.

(2.13)

Observe that fµ is a well–defined analytic function in Re (z) > 0 since

fµ(z) =

∫
R
e−λz dµ(λ) =

∫
R
ze−λzµ(λ) dλ, (2.14)

where we have used integration by parts. If we write

µ(−1)(y) :=

∫ y

−∞
µ(x) dx,

11



under the additional condition (H3) we find that (below we let supp(dµ) ⊂
(a,∞))

fµ(0+) = lim
x→0+

fµ(x) = lim
x→0+

∫ ∞
a

xe−λxµ(λ) dλ = lim
x→0+

∫ ∞
a

x2e−λxµ(−1)(λ) dλ

= lim
x→0+

∫ ∞
ax

xe−tµ(−1)(t/x) dt =

∫ ∞
0

te−t dt

= 1,

(2.15)

by dominated convergence. Our first result is the following.

Theorem 2.1.2. Let E(z) be a Hermite–Biehler function of bounded type in

C+ such that E(0) 6= 0. Let dµ be a signed Borel measure on R satisfying (H1)

- (H2) - (H3). Assume that supp(dµ) ⊂ [−2τ(E),∞) and let fµ be defined by

(2.13). If L : C → C and M : C → C are real entire functions of exponential

type at most 2τ(E) such that

L(x) ≤ fµ(x) ≤M(x) (2.16)

for all x ∈ R, then∫
R

{
M(x)− L(x)

}
|E(x)|−2 dx ≥ 1

K(0, 0)
. (2.17)

Moreover, there is a unique pair of real entire functions Lµ : C → C and

Mµ : C→ C of exponential type at most 2τ(E) satisfying (2.16) for which the

equality in (2.17) holds.

Our second result is the analogous of Theorem 2.1.2 for the odd function

f̃µ(z) := fµ(z)− fµ(−z). (2.18)

Note that if dµ is the Dirac delta measure we have f̃µ(x) = sgn(x).

12



Theorem 2.1.3. Let E(z) be a Hermite–Biehler function of bounded type in

C+ such that E(0) 6= 0. Let dµ be a signed Borel measure on R satisfying (H1)

- (H2) - (H3). Assume that supp(dµ) ⊂ [−2τ(E),∞) and let f̃µ be defined by

(2.18). If L : C → C and M : C → C are real entire functions of exponential

type at most 2τ(E) such that

L(x) ≤ f̃µ(x) ≤M(x) (2.19)

for all x ∈ R, then∫
R

{
M(x)− L(x)

}
|E(x)|−2 dx ≥ 2

K(0, 0)
. (2.20)

Moreover, there is a unique pair of real entire functions L̃µ : C → C and

M̃µ : C→ C of exponential type at most 2τ(E) satisfying (2.19) for which the

equality in (2.20) holds.

Remarks.

(1) There is no loss of generality in assuming E(0) 6= 0 and supp(dµ) ⊂
[−2τ(E),∞) in Theorems 2.1.2 and 2.1.3. In fact, since fµ(x) and f̃µ(x)

are discontinuous at x = 0, if E(0) = 0 the integrals on the left-hand

sides of (2.17) and (2.20) always diverge. Given ε > 0, if the set {x ∈
R; µ(x) > 0}∩ (−∞,−2τ(E)− ε) has nonzero Lebesgue measure, we find

by (2.14) that fµ(x) ≥ Cε x e
(2τ(E)+ε)x for x > 0, and there is no entire

function M(z) of exponential type at most 2τ(E) satisfying (2.16).

(2) The minorant problem for fµ(z) can be solved without the hypothesis

(H3). We give the details in Corollary 2.3.1 below.
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(3) Note that we are allowing the measure dµ to have part of its support on the

negative axis. In principle, our function fµ(x) could increase exponentially

as x → ∞ and does not necessarily belong to L1(R, |E(x)|−2 dx) (the

same holds for L(z) and M(z)). When fµ ∈ L1(R, |E(x)|−2 dx) (resp.

f̃µ ∈ L1(R, |E(x)|−2 dx)) it is possible to determine the corresponding

optimal values of∫
R
M(x) |E(x)|−2 dx and

∫
R
L(x) |E(x)|−2 dx

separately. This is detailed in Corollaries 2.3.2 and 2.4.1.

Remark. We use two main tools in the proofs of Theorems 2.1.2 and 2.1.3.

The first is a basic Cauchy-Schwarz inequality in the Hilbert space H2(E)

that shows that the optimal choice for M(z) − L(z) must be the square of

the reproducing kernel at the origin (divided by a constant). The second tool,

used to show the existence of such optimal majorants and minorants, is the

construction of suitable entire functions that interpolate fµ(x) at the zeros

of a given Laguerre-Pólya function. The latter is detailed in Section 2.2 and

extends the construction of Holt and Vaaler [47, Section 2], that was tailored

specifically for the signum function.

There is a variety of examples of de Branges spaces [6, Chapter 3] for

which Theorems 2.1.2 and 2.1.3 can be directly applied. Another interesting

family arises in the discussion of [47, Section 5]. In the terminology of de

Branges [6, Section 50], these are examples of homogeneous spaces and their

definition can be found in Appendix 6.2.

For a given α > −1 there exists a Hermite–Biehler function Eα(z)

satisfying the estimate

c|x|2α+1 ≤ |Eα(x)|−2 ≤ C|x|2α+1 for all |x| ≥ 1, (2.21)
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for some c, C > 0 and such that for each F ∈ H2(Eα) we have the remarkable

identity ∫
R
|F (x)|2 |Eα(x)|−2 dx = cα

∫
R
|F (x)|2 |x|2α+1 dx , (2.22)

with cα = π 2−2α−1 Γ(α + 1)−2. Also, by the discussion in Appendix 6.2 we

have that F ∈ H2(Eα) if and only if F (z) has exponential type at most 1 and

either side of (2.22) is finite.

Identity (2.22) makes H2(Eα) the suitable de Branges space to treat

the extremal problem (2.1) - (2.2) for the power measure dσ(x) = |x|2α+1 dx.

In order to do so, we define

∆α(δ, µ) = inf

∫
R

{
M(x)− L(x)

}
|x|2α+1 dx ,

where the infimum is taken over all pairs of real entire functions L : C → C
and M : C→ C of exponential type at most δ such that L(x) ≤ fµ(x) ≤M(x)

for all x ∈ R. If there is no such a pair we set ∆α(δ, µ) =∞. Define ∆̃α(δ, µ)

considering the analogous extremal problem for the odd function f̃µ. The

following result follows from Theorems 2.1.2 and 2.1.3.

Theorem 2.1.4. Let α > −1 and δ > 0. Let dµ be a signed Borel measure

on R satisfying (H1) - (H2) - (H3), and let fµ be defined by (2.13) (resp. f̃µ

be defined by (2.18)). We have

∆α(δ, µ) =

{
Γ(α + 1) Γ(α + 2)

(
4
δ

)2α+2
, if supp(dµ) ⊂ [−δ,∞);

∞, otherwise;
(2.23)

and

∆̃α(δ, µ) =

{
2 Γ(α + 1) Γ(α + 2)

(
4
δ

)2α+2
, if supp(dµ) ⊂ [−δ,∞);

∞, otherwise.

(2.24)

If ∆α(δ, µ) (resp. ∆̃α(δ, µ)) is finite, there exists a unique pair of corresponding

extremal functions.
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Proof. To see why Theorem 2.1.4 is indeed a consequence of Theorems 2.1.2

and 2.1.3 we proceed as follows. For κ > 0, we consider the measure dµκ

defined by dµκ(Ω) = dµ(kΩ), where Ω is any Borel measurable set and κΩ =

{κλ; λ ∈ Ω}. A simple dilation argument shows that

∆α(δ, µ) = κ2α+2 ∆α

(
κδ, µκ−1

)
and ∆̃α(δ, µ) = κ2α+2 ∆̃α

(
κδ, µκ−1

)
,

and we can reduce matters to the case δ = 2. Now let L(z) and M(z) be a

pair of real entire functions of exponential type at most 2 such that L(x) ≤
fµ(x) ≤ M(x) for all x ∈ R, and such that (M − L) ∈ L1(R, |x|2α+1 dx). By

(2.21) we have that (M − L) ∈ L1(R, |Eα(x)|−2 dx). Since (M(x) − L(x)) is

non–negative on R, according to [47, Theorem 15] (see also [16, Lemma 14])

we can write M(z) − L(z) = U(z)U∗(z) with U ∈ H2(Eα). Therefore, by

identity (2.22) and Theorem 2.1.2, we have∫
R

{
M(x)− L(x)

}
|x|2α+1 dx =

∫
R
|U(x)|2 |x|2α+1 dx

= c−1
α

∫
R
|U(x)|2 |Eα(x)|−2 dx

= c−1
α

∫
R

{
M(x)− L(x)

}
|Eα(x)|−2 dx

≥ c−1
α Kα(0, 0)−1,

where cα = π 2−2α−1 Γ(α + 1)−2 and

Kα(0, 0) =
B′α(0)Aα(0)

π
=

1

2π(α + 1)
.

This establishes (2.23). A similar argument using Theorem 2.1.3 gives (2.24).

As illustrated in the argument above, in order to use the general ma-

chinery of Theorems 2.1.2 and 2.1.3 to solve the extremal problem (2.1) - (2.2)
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for a given measure dσ, one has to first construct an appropriate de Branges

space H2(E) that is isometrically contained in L2(R, dσ). In particular, this

construction was carried out in [9] for the measure

dσ(x) =

{
1−

(
sin πx

πx

)2
}

dx,

that appears in connection to Montgomery’s formula and the pair correlation

of zeros of the Riemann zeta–function (see [61]), and in [57, 59] for the measure

dσ(x) = (x2 + a2) dx,

where a ≥ 0, that appears in connection to extremal problems with prescribed

vanishing conditions.

2.2 Interpolation Tools

2.2.1 Laplace Transforms and Laguerre-Pólya Functions

In this subsection we review some basic facts concerning Laguerre-Pólya

functions and the representation of their inverses as Laplace transforms as in

[46, Chapters II to V]. The selected material we need is already well organized

in [16, Section 2] and we follow closely their notation.

We say that an entire function F : C → C belongs to the Laguerre-

Pólya class if it has only real zeros and its Hadamard factorization is given

by

F (z) =
F (r)(0)

r!
zr e−az

2+bz

∞∏
j=1

(
1− z

xj

)
ez/xj , (2.25)

where r ∈ Z+, a, b, xj ∈ R, with a ≥ 0, xj 6= 0 and
∑∞

j=1 x
−2
j < ∞ (with

the appropriate change of notation in case of a finite number of zeros). Such

functions are the uniform limits (in compact sets) of polynomials with only
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real zeros. We say that a Laguerre-Pólya function F (z) represented by (2.25)

has finite degree N = N (F ) when a = 0 and F (z) has exactly N zeros counted

with multiplicity. Otherwise we set N (F ) =∞.

If F (z) is a Laguerre-Pólya function with N (F ) ≥ 2, and c ∈ R is such

that F (c) 6= 0, we henceforth denote by gc(t) the frequency function given by

gc(t) =
1

2πi

∫ c+i∞

c−i∞

ets

F (s)
ds. (2.26)

Observe that the integral in (2.26) is absolutely convergent since the condition

N (F ) ≥ 2 implies that 1/|F (c + iy)| = O(|y|−2) as |y| → ∞. If (τ1, τ2) ⊂ R
is the largest open interval containing no zeros of F (z) such that c ∈ (τ1, τ2),

the residue theorem implies that gc(t) = gd(t) for any d ∈ (τ1, τ2). Moreover,

the Laplace transform representation

1

F (z)
=

∫
R
gc(t) e

−tz dt (2.27)

holds in the strip τ1 < Re (z) < τ2 (the integral in (2.27) is in fact absolutely

convergent due to Lemma 2.2.1 below). IfN (F ) = 0 or 1, we can still represent

F (z)−1 as a Laplace transform on vertical strips. In fact, if N (F ) = 1, we let

τ be the zero of F (z), written in the form (2.25). If τ = 0 then (2.27) holds

with

gc(t) =

{
F ′(0)−1 χ(b,∞)(t), for c > 0;

−F ′(0)−1 χ(−∞,b)(t), for c < 0.

If τ 6= 0 then (2.27) holds with

gc(t) =

{
−τ F (0)−1 eτ(t−b)−1χ(b+τ−1,∞)(t), for c > τ ;

τ F (0)−1 eτ(t−b)−1χ(−∞,b+τ−1)(t), for c < τ.

If N (F ) = 0 then (2.27) holds with

gc(t) = F (0)−1 δ(t− b),
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for any c ∈ R, where δ denotes the Dirac delta measure.

The fundamental tool for the development of our interpolation theory

in this section is the precise qualitative knowledge of the frequency functions

gc(t). This is extensively discussed in [46, Chapters II to V] and we collect the

relevant facts for our purposes in the next lemma.

Lemma 2.2.1. Let F (z) be a Laguerre–Pólya function of degree N ≥ 2 and let

gc be defined by (2.26), where c ∈ R and F (c) 6= 0. The following propositions

hold:

(i) The function gc ∈ CN−2(R) and is real valued.

(ii) The function gc(t) is of one sign, and its sign equals the sign of F (c).

(iii) If (τ1, τ2) ⊂ R is the largest open interval containing no zeros of F (z)

such that c ∈ (τ1, τ2), then for any τ ∈ (τ1, τ2) we have the following

estimate ∣∣g(n)
c (t)

∣∣�τ,n e
τt ∀ t ∈ R, (2.28)

where 0 ≤ n ≤ N − 2.

Proof. Parts (i) and (ii) follow from [46, Chapter IV, Theorems 5.1 and 5.3].

Part (iii) follows from [46, Chapter II, Theorem 8.2 and Chapter V, Theorem

2.1].

2.2.2 Interpolation at the Zeros of Laguerre-Pólya Functions

In this subsection we construct suitable entire functions that interpolate

our fµ(x) at the zeros of a given Laguerre-Pólya function. In order to accom-

plish this, we make use of the representation in (2.27) and Lemma 2.2.1. The
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material in this subsection extends the classical work of Graham and Vaaler in

[40, Section 3], where this construction was achieved for the particular function

F (x) = (sin πx)2 of Laguerre-Pólya class.

If F (z) is a Laguerre-Pólya function, we henceforth denote by αF the

smallest positive zero of F (z) (if no such zero exists, we set αF = ∞). Let

g(t) = gαF /2(t) (if αF =∞ take g(t) = g1(t)). If dµ is a signed Borel measure

on R satisfying (H1) - (H2), it is clear that the function

g ∗ dµ(t) =

∫
R
g(t− λ) dµ(λ) =

∫
R
g′(t− λ)µ(λ) dλ = g′ ∗ µ(t) (2.29)

satisfies the same growth conditions as in (2.28) for τ ∈ (0, αF ), for 0 ≤ n ≤
N − 3, with the implied constants now depending also on dµ. We are now in

position to define the building blocks of our interpolation.

Proposition 2.2.2. Let F (z) be a Laguerre-Pólya function with N (F ) ≥ 2.

Let g(t) = gαF /2(t) and assume that F (αF/2) > 0 (in case αF = +∞, let

g(t) = g1(t) and assume F (1) > 0). Let dµ be a signed Borel measure on R
satisfying (H1) - (H2), and let fµ(z) be defined by (2.13). Define

A1(F, µ, z) = F (z)

∫ 0

−∞
g ∗ dµ(t) e−tz dt for Re (z) < αF , (2.30)

A2(F, µ, z) = fµ(z)− F (z)

∫ ∞
0

g ∗ dµ(t) e−tz dt for Re (z) > 0. (2.31)

Then z 7→ A1(F, µ, z) is analytic in Re (z) < αF , z 7→ A2(F, µ, z) is analytic

in Re (z) > 0, and these functions are restrictions of an entire function, which

we will denote by A(F, µ, z). Moreover, if supp(dµ) ⊂ [−τ,∞), there exists

c > 0 so that

|A(F, µ, z)| ≤ c
(
|z| eτx χ(0,∞)(x) + |F (z)|

)
(2.32)

for all z = x+ iy ∈ C, and

A(F, µ, ξ) = fµ(ξ) (2.33)
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for all ξ ∈ R with F (ξ) = 0.

Proof. We have already noted in (2.14) that z 7→ fµ(z) is analytic in Re (z) > 0

when dµ satisfies (H1) - (H2). If N (F ) ≥ 3, from (2.29) and Lemma 2.2.1

(iii) we see that the integrals on the right-hand sides of (2.30) and (2.31)

converge absolutely and define analytic functions in the stated half–planes.

If N (F ) = 2, it can be verified directly that g(t) is continuous and C1 by

parts, and that the function g′(t) thus obtained has at most one discontinuity

and still satisfies the growth condition (2.28). Therefore (2.29) holds and, as

before, this suffices to establish the absolute convergence and analiticity of

(2.30) and (2.31) in the stated half–planes.

Now let 0 < x < αF . Using (2.29), (2.27) and (2.14) we get

A1(F, µ, x)−A2(F, µ, x) = −fµ(x) + F (x)

∫
R
g′ ∗ µ(t) e−tx dt

= −fµ(x) + F (x)

∫
R

∫
R
g′(t− λ)µ(λ) e−tx dλ dt

= −fµ(x) + F (x)

∫
R

(∫
R
g′(t− λ) e−tx dt

)
µ(λ) dλ

= −fµ(x) + F (x)

∫
R

(∫
R
g′(s) e−sx ds

)
e−λx µ(λ) dλ

= −fµ(x) +

∫
R
x e−λx µ(λ) dλ

= 0.

This implies that A1(F, µ, z) = A2(F, µ, z) in the strip 0 < Re (z) < αF .

Hence, z 7→ A1(F, µ, z) and z 7→ A2(F, µ, z) are analytic continuations of

each other and this defines the entire function z 7→ A(F, λ, z). The integral
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representations for A and (2.29) imply, for Re (z) ≤ αF/2, that

|A(F, µ, z)| ≤ |F (z)|
∫ 0

−∞
|g′| ∗ µ(t) e−tRe (z) dt

≤ |F (z)|
∫ 0

−∞
|g′| ∗ µ(t) e−t αF /2 dt ,

(2.34)

while for Re (z) ≥ αF/2 we have

|A(F, µ, z)| ≤ |fµ(z)|+ |F (z)|
∫ ∞

0

|g′| ∗ µ(t) e−t αF /2 dt. (2.35)

Since supp(dµ) ⊂ [−τ,∞) we use (2.14) and (H2) to obtain, for Re (z) ≥ αF/2,

|fµ(z)| =
∣∣∣∣∫ ∞
−τ

z e−λz µ(λ) dλ

∣∣∣∣ ≤ |z| ∣∣∣∣∫ ∞
−τ

e−λRe (z) dλ

∣∣∣∣
=
|z|

Re (z)
eτ Re (z) ≤ 2|z|

αF
eτ Re (z).

(2.36)

Estimates (2.34), (2.35) and (2.36) plainly verify (2.32). The remaining iden-

tity (2.33) follows from the definition of A.

Proposition 2.2.3. Let F (z) be a Laguerre-Pólya function that has a double

zero at the origin. Let g(t) = gαF /2(t) and assume that F (αF/2) > 0 (in

case αF = +∞, let g(t) = g1(t) and assume F (1) > 0 ). Let dµ be a signed

Borel measure on R satisfying (H1) - (H2), and let fµ be defined by (2.13).

With z 7→ A(F, µ, z) defined by Proposition 2.2.2, consider the entire functions

z 7→ L(F, µ, z) and z 7→M(F, µ, z) defined by

L(F, µ, z) = A(F, µ, z) + g ∗ dµ(0)
F (z)

z
(2.37)

and

M(F, µ, z) = L(F, µ, z) +
2F (z)

F ′′(0)z2
. (2.38)

The following propositions hold:
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(i) We have

F (x)
{
fµ(x)− L(F, µ, x)

}
≥ 0 (2.39)

for all x ∈ R and

L(F, µ, ξ) = fµ(ξ) (2.40)

for all ξ ∈ R with F (ξ) = 0.

(ii) We have

F (x)
{
M(F, µ, x)− fµ(x)

}
≥ 0 (2.41)

for all x ∈ R and

M(F, µ, ξ) = fµ(ξ) (2.42)

for all ξ ∈ R \ {0} with F (ξ) = 0. At ξ = 0 we have

M(F, µ, 0) = 1.

(iii) The equality∣∣M(F, µ, x)− fµ(x)
∣∣+
∣∣fµ(x)− L(F, µ, x)

∣∣ =
2|F (x)|
x2F ′′(0)

(2.43)

holds for all x ∈ R.

Proof. Part (i). For x < 0, using (2.29), (2.30) and (2.37) we get

fµ(x)− L(F, µ, x) = −F (x)

∫ 0

−∞

{
g′ ∗ µ(t)− g′ ∗ µ(0)

}
e−tx dt, (2.44)

and, for x > 0, using (2.29), (2.31) and (2.37) we get

fµ(x)− L(F, µ, x) = F (x)

∫ ∞
0

{
g′ ∗ µ(t)− g′ ∗ µ(0)

}
e−tx dt. (2.45)
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If N (F ) ≥ 4, integration by parts in (2.27) shows that the Laplace transforms

of g′(t) and g′′(t) in the strip 0 < Re (z) < αF are z/F (z) and z2/F (z),

respectively (here we use Lemma 2.2.1 (iii) to eliminate the boundary terms).

Since F (αF/2) > 0, we conclude by Lemma 2.2.1 (ii) that g′(t) and g′′(t)

are non–negative on R. In particular, g′(t) is also non–decreasing on R. If

N (F ) = 2 or 3, it can be verified directly that g′(t) is non–decreasing on R. In

either case, this implies that g′ ∗ µ(t) is non–decreasing, and (2.39) and (2.40)

(for ξ 6= 0) then follow from (2.44) and (2.45). For ξ = 0 we see directly from

(2.33) and (2.37) that L(F, µ, 0) = 0.

Part (ii). For x < 0, using (2.29), (2.30) and (2.38) we get

M(F, µ, x)− fµ(x) = F (x)

∫ 0

−∞

{
g′ ∗ µ(t)− g′ ∗ µ(0)− 2t

F ′′(0)

}
e−tx dt,

(2.46)

and, for x > 0, using (2.29), (2.31) and (2.38) we get

M(F, µ, x)− fµ(x) = −F (x)

∫ ∞
0

{
g′ ∗ µ(t)− g′ ∗ µ(0)− 2t

F ′′(0)

}
e−tx dt.

(2.47)

In order to prove (2.41) it suffices to verify that∣∣g′ ∗ µ(t)− g′ ∗ µ(0)
∣∣ ≤ 2|t|

F ′′(0)
(2.48)

for all t ∈ R.

If N (F ) ≥ 4, we have already noted that the Laplace transform of g′′(t)

in the strip 0 < Re (z) < αF is z2/F (z). Since F (z)/z2 does not vanish at

the origin, we see from Lemma 2.2.1 that g′′(t) is non–negative and decays

exponentially as |t| → ∞. By a direct verification, the same holds for N (F ) =

3, where g′′(t) might have one discontinuity. Thus g′′(t) is integrable on R and

by (2.27) we find ∫
R
g′′(t) dt = 2F ′′(0)−1. (2.49)
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We are now in position to prove (2.48) for N (F ) ≥ 3. We have already noted

in part (i) that g′(t) is a non–decreasing function. Therefore, for t > 0, we use

(H2) and (2.49) to get

g′ ∗ µ(t)− g′ ∗ µ(0) =

∫
R

{
g′(t− λ)− g′(−λ)

}
µ(λ) dλ

≤
∫
R

∫ t

0

g′′(s− λ) ds dλ

= 2 t F ′′(0)−1.

An analogous argument holds for t < 0. If N (F ) = 2, we have F (z) =
1
2
F ′′(0) ebz z2 and g(t) = 2

F ′′(0)
(t−b)χ(b,∞)(t), and (2.48) can be verified directly.

For ξ 6= 0, the interpolation property (2.42) follows directly from (2.46)

and (2.47). At ξ = 0, since L(F, µ, 0) = 0, it follows from (2.38) that

M(F, µ, 0) = 1.

Part (iii). Identity (2.43) follows easily from (2.37), (2.38), (2.39) and (2.41).

2.3 Proof of Theorem 2.1.2

Recall from (2.15) that under (H3) we have

fµ(0+) = lim
x→0+

fµ(x) = 1.

Optimality. Let L(z) and M(z) be real entire functions of exponential type

at most 2τ(E) such that L(x) ≤ fµ(x) ≤M(x) for all x ∈ R and∫
R

{
M(x)− L(x)

}
|E(x)|−2 dx <∞.

Since (M(z)−L(z)) is non–negative on R, by [47, Theorem 15] (or alternatively

[16, Lemma 14]) we may write

M(z)− L(z) = U(z)U∗(z)
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with U ∈ H2(E). Since fµ(0−) = 0 and fµ(0+) = 1, we find that |U(0)|2 =

M(0) − L(0) ≥ 1. From the reproducing kernel identity and the Cauchy-

Schwarz inequality, it follows that

1 ≤ |U(0)|2 =
∣∣〈U,K(0, ·)〉E

∣∣2 ≤ ‖U‖2
E ‖K(0, ·)‖2

E = ‖U‖2
EK(0, 0), (2.50)

and therefore∫
R

{
M(x)− L(x)

}
|E(x)|−2 dx =

∫
R
|U(x)|2 |E(x)|−2 dx

= ‖U‖2
E ≥

1

K(0, 0)
.

(2.51)

This establishes (2.17). Moreover, equality in (2.50) (and thus in (2.51)) hap-

pens if and only if U(z) = cK(0, z) with |c| = K(0, 0)−1. This implies that

we must have

M(z)− L(z) =
K(0, z)2

K(0, 0)2
. (2.52)

Existence. By multiplying E(z) by a complex constant of absolute value

1, we may assume without loss of generality that E(0) ∈ R. Since E(z) is a

Hermite–Biehler function of bounded type, we see that E∗(z) also has bounded

type. The companion function B(z) defined by (2.5) is then a real entire

function of bounded type with only real zeros. By [6, Problem 34] (see [49] for

a generalization) we conclude that B(z) belongs to the Laguerre-Pólya class.

The function B(z) has exponential type and it is clear that τ(B) ≤ τ(E). Note

also that B(z) has a simple zero at z = 0 (since E(0) 6= 0 we have K(0, 0) > 0

and, by (2.7), z = 0 cannot be a double zero of B(z)).

Applying Proposition 2.2.3 to the function B2(z), we construct the

entire functions

Lµ(z) = L(B2, µ, z) (2.53)

and

Mµ(z) = M(B2, µ, z). (2.54)
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It follows from (2.39) and (2.41) that

Lµ(x) ≤ fµ(x) ≤Mµ(x)

for all x ∈ R. From (2.32), (2.37) and (2.38) if follows that Lµ(z) and Mµ(z)

have exponential type at most 2τ(E). Finally, from (2.6), (2.7), (2.37) and

(2.38) we have that

Mµ(z)− Lµ(z) =
B2(z)

B′(0)2 z2
=
K(0, z)2

K(0, 0)2
,

and as we have seen in (2.52), this is the condition for equality in (2.17).

Uniqueness. From the equality condition (2.52) and the existence of an

optimal pair {Lµ(z),Mµ(z)} we conclude that this pair must be unique.

2.3.1 Further Results

Without assuming (H3) it is possible to solve the minorant problem

for fµ(x). However, we do have to assume that the companion function that

generates the nodes of interpolation does not belong to the space H2(E).

Corollary 2.3.1. Let E(z) be a Hermite–Biehler function of bounded type in

C+ such that E(0) > 0. Let dµ be a signed Borel measure on R satisfying

(H1) - (H2). Assume that supp(dµ) ⊂ [−2τ(E),∞) and let fµ(x) be defined

by (2.13). Assume that B /∈ H2(E). Let Lµ(z) be the real entire function of

exponential type at most 2τ(E) defined by (2.53). If L : C→ C is a real entire

function of exponential type at most 2τ(E) such that

L(x) ≤ fµ(x)

for all x ∈ R, then∫
R

{
fµ(x)− L(x)

}
|E(x)|−2 dx ≥

∫
R

{
fµ(x)− Lµ(x)

}
|E(x)|−2 dx. (2.55)
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Proof. From (2.43) and (2.53) we observe first that the right-hand side of

(2.55) is indeed finite. If the left-hand side of (2.55) is +∞ there is nothing to

prove. Assume then that (fµ − L) ∈ L1(R, |E(x)|−2 dx). We use the fact that

there exists a majorant Mµ(z) (not necessarily extremal anymore) defined by

(2.54), and from (2.43) we see that (Mµ − fµ) ∈ L1(R, |E(x)|−2 dx). By the

triangle inequality we get (Mµ − Lµ) ∈ L1(R, |E(x)|−2 dx) and (Mµ − L) ∈
L1(R, |E(x)|−2 dx). Since the last two functions are non–negative on R, from

[47, Theorem 15] (or alternatively [16, Lemma 14]) we can write

Mµ(z)− L(z) = U(z)U∗(z)

and

Mµ(z)− Lµ(z) = V (z)V ∗(z),

with U, V ∈ H2(E). This gives us

Lµ(z)− L(z) = U(z)U∗(z)− V (z)V ∗(z).

Since B /∈ H2(E), from [6, Theorem 22] the set {z 7→ E(ξ)−1K(ξ, z); B(ξ) =

0} is an orthogonal basis for H2(E) (note here that if E(ξ) = 0, the function

E(ξ)−1K(ξ, z) has to be interpreted as the appropriate limit). We now use

Parseval’s identity and the the fact that Lµ(z) interpolates fµ(x) at the zeros

of B(z) to get∫
R

{
Lµ(x)− L(x)

}
|E(x)|−2 dx =

∫
R

{
|U(x)|2 − |V (x)|2

}
|E(x)|−2 dx

=
∑
B(ξ)=0

{
|U(ξ)|2 − |V (ξ)|2

}
K(ξ, ξ)

=
∑
B(ξ)=0

{
Lµ(ξ)− L(ξ)

}
K(ξ, ξ)

=
∑
B(ξ)=0

{
fµ(ξ)− L(ξ)

}
K(ξ, ξ)

≥ 0.

This concludes the proof of the corollary.
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When fµ ∈ L1(R, |E(x)|−2 dx) it is possible to determine the precise

values of the optimal integrals in our extremal problem separately.

Corollary 2.3.2. Let E(z) be a Hermite–Biehler function of bounded type in

C+ such that E(0) > 0. Let dµ be a signed Borel measure on R satisfying

(H1) - (H2). Assume that supp(dµ) ⊂ [−2τ(E),∞) and let fµ(x) be defined

by (2.13). Assume that ∫
R
|fµ(x)| |E(x)|−2 dx <∞ (2.56)

and that B /∈ H2(E).

(i) Let Lµ(z) be the extremal minorant of exponential type at most 2τ(E)

defined by (2.53). We have∫
R
Lµ(x) |E(x)|−2 dx =

∑
ξ>0

B(ξ)=0

fµ(ξ)

K(ξ, ξ)
. (2.57)

(ii) Assuming (H3), let Mµ(z) be the extremal majorant of exponential type

at most 2τ(E) defined by (2.54). We have∫
R
Mµ(x) |E(x)|−2 dx =

1

K(0, 0)
+
∑
ξ>0

B(ξ)=0

fµ(ξ)

K(ξ, ξ)
. (2.58)

Proof. We first prove (ii). The function Mµ(z) is non–negative on R and

belongs to L1(R, |E(x)|−2 dx) from (2.56) (observe in particular that E can-

not have non–negative zeros in this situation). From [47, Theorem 15] (or

alternatively [16, Lemma 14]) we can write

Mµ(z) = U(z)U∗(z) (2.59)

with U ∈ H2(E). We use again the fact that the set {z 7→ K(ξ,z)

E(ξ)
;B(ξ) = 0}

is an orthogonal basis for H2(E) since B /∈ H2(E) [6, Theorem 22]. From
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Parseval’s identity and the the fact that Mµ(z) interpolates fµ(x) at the zeros

of B(z) (with Mµ(0) = 1) we arrive at∫
R
Mµ(x) |E(x)|−2 dx =

∫
R
|U(x)|2 |E(x)|−2 dx =

∑
B(ξ)=0

|U(ξ)|2

K(ξ, ξ)

=
∑
B(ξ)=0

Mµ(ξ)

K(ξ, ξ)
=

1

K(0, 0)
+
∑
ξ>0

B(ξ)=0

fµ(ξ)

K(ξ, ξ)
.

This establishes (2.58).

We now prove (i). In this case, we still have a majorant Mµ(z) (not

necessarily extremal anymore) and the factorization (2.59) still holds. From

(2.43) we see that (Mµ − Lµ) ∈ L1(R, |E(x)|−2 dx) and we can write again

Mµ(z)− Lµ(z) = V (z)V ∗(z), with V ∈ H2(E). This gives us

Lµ(z) = U(z)U∗(z)− V (z)V ∗(z). (2.60)

Using Parseval’s identity again, and the fact that Lµ(z) interpolates fµ(x) at

the zeros of B, we arrive at∫
R
Lµ(x) |E(x)|−2 dx =

∫
R

{
|U(x)|2 − |V (x)|2

}
|E(x)|−2 dx

=
∑
B(ξ)=0

|U(ξ)|2 − |V (ξ)|2

K(ξ, ξ)
=
∑
B(ξ)=0

Lµ(ξ)

K(ξ, ξ)

=
∑
ξ>0

B(ξ)=0

fµ(ξ)

K(ξ, ξ)
.

This establishes (2.57) and completes the proof.

2.4 Proof of Theorem 2.1.3

Optimality. This follows as in the optimality part of Theorem 2.1.2, just

observing that

f̃µ(0−) = −1 and f̃µ(0+) = 1.
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Existence. We use Proposition 2.2.3 with the Laguerre-Pólya functions B2(z)

and its reflection B2(−z) to define

L̃µ(z) = L(B2(z), µ, z)−M(B2(−z), µ,−z) (2.61)

and

M̃µ(z) = M(B2(z), µ, z)− L(B2(−z), µ,−z). (2.62)

These are real entire functions of exponential type at most 2τ(E) that satisfy

L̃µ(x) ≤ f̃µ(x) ≤ M̃µ(x)

for all x ∈ R. As before, from (2.6), (2.7), (2.37) and (2.38) we find that

M̃µ(z)− L̃µ(z) =
2B2(z)

B′(0)2 z2
=

2K(0, z)2

K(0, 0)2
,

and this is the condition for equality in (2.20).

Uniqueness. It follows as in the proof of Theorem 2.1.2.

2.4.1 Further Results

Corollary 2.4.1. Let E(z) be a Hermite–Biehler function of bounded type in

C+ such that E(0) > 0. Let dµ be a signed Borel measure on R satisfying (H1)

- (H2) - (H3). Assume that supp(dµ) ⊂ [−2τ(E),∞) and let f̃µ be defined by

(2.18). Assume that ∫
R
|f̃µ(x)| |E(x)|−2 dx <∞ (2.63)

and that B /∈ H2(E). Let L̃µ(z) and M̃µ(z) be the extremal functions of

exponential type at most 2τ(E) defined by (2.61) and (2.62), respectively. We

have ∫
R
L̃µ(x) |E(x)|−2 dx = − 1

K(0, 0)
+
∑
ξ 6=0

B(ξ)=0

f̃µ(ξ)

K(ξ, ξ)
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and ∫
R
M̃µ(x) |E(x)|−2 dx =

1

K(0, 0)
+
∑
ξ 6=0

B(ξ)=0

f̃µ(ξ)

K(ξ, ξ)
.

Proof. From the integrability condition (2.63) we see that E(z) cannot have

real zeros and we may use (2.61), (2.62), (2.59) and (2.60) to write

L̃µ(z) =
(
U1(z)U∗1 (z)− V1(z)V ∗1 (z)

)
− U2(z)U∗2 (z)

and

M̃µ(z) = U3(z)U∗3 (z)−
(
U4(z)U∗4 (z)− V4(z)V ∗4 (z)

)
,

where Ui, Vj ∈ H2(E). Once we have completed this passage from L1 to L2,

the remaining steps are analogous to the proof of Corollary 2.3.2.

2.5 Periodic Analogues

In this section we consider the periodic version of this extremal problem.

Throughout this section we write e(z) = e2πiz for z ∈ C. A trigonometric

polynomial of degree at most N is an entire function of the form

W(z) =
N∑

k=−N

ak e(kz),

where ak ∈ C. We say that W(z) is a real trigonometric polynomial if W(z) is

real for z real. Given a periodic function F : R/Z→ R, a probability measure

dϑ on R/Z and a degree N ∈ Z+, we address the problem of finding a pair of

real trigonometric polynomials L : C → C and M : C → C of degree at most

N such that

L(x) ≤ F(x) ≤M(x) (2.64)
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for all x ∈ R/Z, minimizing the integral∫
R/Z

{
M(x)− L(x)

}
dϑ(x). (2.65)

When dϑ is the Lebesgue measure, this problem was considered, for instance,

in [7, 19, 51, 73] in connection to discrepancy inequalities of Erdös-Turán

type. For general even measures dϑ, the case of even periodic functions with

exponential subordination was considered in [5, 16]. In [51], Li and Vaaler

solved this extremal problem for the sawtooth function

ψ(x) =

{
x− bxc − 1

2
, if x /∈ Z;

0 , if x ∈ Z;

with respect to the Jacobi measures.

The purpose of Section 2.5 is to extend the work [51], solving this

problem for a general class of functions with exponential subordination (which

are the periodizations of our functions fµ(x) and f̃µ(x), including the sawtooth

function as a particular case) with respect to arbitrary nontrivial probability

measures dϑ (we say that dϑ is trivial if it has support on a finite number

of points). The main tools we use here are the theory of reproducing kernel

Hilbert spaces of polynomials and the theory of orthogonal polynomials in the

unit circle, and we start by reviewing the terminology and the basic facts of

these two well–established subjects. In doing so, we follow the notation of

[16, 52, 69] to facilitate some of the references.

2.5.1 Reproducing Kernel Hilbert Spaces of Polynomials

We write D = {z ∈ C; |z| < 1} for the open unit disc and ∂D for the

unit circle. Let n ∈ Z+ and let Pn be the set of polynomials of degree at most

n with complex coefficients. If Q ∈ Pn we define the conjugate polynomial

Q∗,n(z) by

Q∗,n(z) = znQ
(
z̄ −1

)
. (2.66)
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If Q(z) has exact degree n, we sometimes omit the superscript n and write

Q∗(z) for simplicity.

Let P (z) be a polynomial of exact degree n + 1 with no zeros on ∂D
such that

|P ∗(z)| < |P (z)| (2.67)

for all z ∈ D. We consider the Hilbert space Hn(P ) consisting of the elements

in Pn with scalar product

〈Q,R〉Hn(P ) =

∫
R/Z

Q(e(x))R(e(x)) |P (e(x))|−2 dx.

From Cauchy’s integral formula, it follows easily that the reproducing kernel

for this finite–dimensional Hilbert space is given by

K(w, z) =
P (z)P (w)− P ∗(z)P ∗(w)

1− w̄z
,

that is, for every w ∈ C we have the identity

〈Q,K(w, ·)〉Hn(P ) = Q(w).

As before, we define the companion polynomials

A(z) :=
1

2

{
P (z) + P ∗(z)

}
and B(z) :=

i

2

{
P (z)− P ∗(z)

}
,

and we find that A(z) = A∗(z), B = B∗(z) and P (z) = A(z) − iB(z). Since

the coefficients of z0 and zn+1 of P (z) do not have the same absolute value

(this would contradict (2.67) at z = 0) the polynomials A(z) and B(z) have

exact degree n + 1. From (2.67) we also see that A(z) and B(z) have all of

their zeros in ∂D.

The reproducing kernel has the alternative representation

K(w, z) =
2

i

(
B(z)A(w)−A(z)B(w)

1− w̄z

)
. (2.68)
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Observe that

K(w,w) = 〈K(w, ·),K(w, ·)〉Hn(P ) ≥ 0

for all w ∈ C. If there is w ∈ C such that K(w,w) = 0, then K(w, ·) ≡ 0

and Q(w) = 0 for every Q ∈ Pn, a contradiction. Therefore K(w,w) > 0 for

all w ∈ C. From the representation (2.68) it follows that A(z) and B(z) have

only simple zeros and their zeros never agree.

From (2.68) we see that the sets {z 7→ K(ζ, z); A(ζ) = 0} and {z 7→
K(ζ, z); B(ζ) = 0} are orthogonal bases for Hn(P ) and, in particular, we

arrive at Parseval’s formula (see [52, Theorem 2])

||Q||2Hn(P ) =
∑

A(ζ)=0

|Q(ζ)|2

K(ζ, ζ)
=
∑

B(ζ)=0

|Q(ζ)|2

K(ζ, ζ)
. (2.69)

2.5.2 Orthogonal Polynomials in the Unit Circle

The map x 7→ e(x) allows us to identify measures on R/Z with measures

on the unit circle ∂D. Let dϑ be a nontrivial probability measure on R/Z ∼ ∂D
(recall that dϑ is trivial if it has support on a finite number of points) and

consider the space L2(∂D, dϑ) with inner product given by

〈f, g〉L2(∂D,dϑ) =

∫
∂D
f(z) g(z) dϑ(z) =

∫
R/Z

f(e(x)) g(e(x)) dϑ(x).

We define the monic orthogonal polynomials Φn(z) = Φn(z; dϑ) by the condi-

tions

Φn(z) = zn + lower order terms ; 〈Φn, z
j〉L2(∂D,dϑ) = 0 (0 ≤ j < n);

and we define the orthonormal polynomials by ϕn(z) = cnΦn(z)/||Φn||2, where

cn is a complex number of absolute value one such that ϕn(1) ∈ R (this

normalization will be used later). Observe that

〈Q∗,n, R∗,n〉L2(∂D,dϑ) = 〈R,Q〉L2(∂D,dϑ)
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for all polynomials Q,R ∈ Pn, where the conjugation map ∗ was defined

in (2.66). The next lemma collects the relevant facts for our purposes from

Simon’s survey article [69].

Lemma 2.5.1. Let dϑ be a nontrivial probability measure on R/Z.

(i) ϕn(z) has all its zeros in D and ϕ∗n(z) has all its zeros in C\D.

(ii) Define a new measure dϑn on R/Z by

dϑn(x) =
dx∣∣ϕn(e(x); dϑ)

∣∣2 ,
Then dϑn is a probability measure on R/Z, ϕj(z; dϑ) = ϕj(z; dϑn) for

j = 0, 1, . . . , n and for all Q,R ∈ Pn we have

〈Q,R〉L2(∂D,dϑ) = 〈Q,R〉L2(∂D,dϑn). (2.70)

Proof. (i) This is [69, Theorem 4.1].

(ii) This follows from [69, Theorem 2.4, Proposition 4.2 and Theorem 4.3].

Let n ≥ 0 and ϕn+1(z) = ϕn+1(z; dϑ). By Lemma 2.5.1 (i) and the

maximum principle we have

|ϕn+1(z)| < |ϕ∗n+1(z)|

for all z ∈ D. By Lemma 2.5.1 (ii) we note (Christoffel–Darboux formula)

that Pn with the scalar product 〈·, ·〉L2(∂D,dϑ) is a reproducing kernel Hilbert

space with reproducing kernel given by

Kn(w, z) =
ϕ∗n+1(z)ϕ∗n+1(w)− ϕn+1(z)ϕn+1(w)

1− w̄z
. (2.71)
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Observe that ϕ∗n+1(z) plays the role of P (z) in Section 2.5.1. As before, we

define the two companion polynomials (here we use the subscript according to

the degree of the polynomial)

An+1(z) =
1

2

{
ϕ∗n+1(z) + ϕn+1(z)

}
and Bn+1(z) =

i

2

{
ϕ∗n+1(z)− ϕn+1(z)

}
,

(2.72)

and we note that (2.69) holds.

We now derive the quadrature formula that is suitable for our purposes.

This result appears in [16, Corollary 26] and we present a short proof here for

convenience.

Proposition 2.5.2. Let dϑ be a nontrivial probability measure on R/Z and

let W : C → C be a trigonometric polynomial of degree at most N . Let

ϕN+1(z) = ϕN+1(z; dϑ) be the (N + 1)-th orthonormal polynomial in the

unit circle with respect to this measure and consider KN(w, z), AN+1(z) and

BN+1(z) as defined in (2.71) and (2.72). Then we have∫
R/Z

W(x) dϑ(x) =
∑
ξ∈R/Z

AN+1(e(ξ))=0

W(ξ)

KN(e(ξ), e(ξ))
=

∑
ξ∈R/Z

BN+1(e(ξ))=0

W(ξ)

KN(e(ξ), e(ξ))
.

Proof. Write

W(z) =
N∑

k=−N

ak e(kz)

and assume first that W(z) is real valued on R, that is, ak = a−k. Let τ =

minx∈R W(x). Then z 7→W(z)−τ is a real trigonometric polynomial of degree

at most N that is non–negative on R. By the Riesz-Féjer theorem there exists

a polynomial Q ∈ PN such that

W(z)− τ = Q(e(z))Q(e(z))
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for all z ∈ C. Writing τ = |τ1|2 − |τ2|2, and using (2.70) and (2.69), we obtain∫
R/Z

W(x) dϑ(x) =

∫
R/Z

{
|Q(e(x))|2 + |τ1|2 − |τ2|2

}
dϑ(x)

=

∫
R/Z

|Q(e(x))|2 + |τ1|2 − |τ2|2∣∣ϕN+1(e(x))
∣∣2 dx

=
∑
ξ∈R/Z

BN+1(e(ξ))=0

|Q(e(ξ))|2 + |τ1|2 − |τ2|2

KN(e(ξ), e(ξ))

=
∑
ξ∈R/Z

BN+1(e(ξ))=0

W(ξ)

KN(e(ξ), e(ξ))
,

and analogously at the nodes given by the roots of AN+1(z). The general case

follows by writing W(z) = W1(z)− iW2(z), with W1(z) =
∑N

k=−N bk e(kz) and

W2(z) =
∑N

k=−N ck e(kz), where bk = 1
2
(ak + a−k) and ck = i

2
(ak − a−k).

2.5.3 Main Results

We now present the solution of the extremal problem (2.64) - (2.65)

for a class of periodic functions with a certain exponential subordination. As

described below, this class comes from the periodization of the functions fµ(x)

and f̃µ(x) defined in (2.13) and (2.18).

Throughout this section we let dµ be a (locally finite) signed Borel

measure on R satisfying conditions (H1’) - (H2). The condition (H1’) is simply

a restriction of our current (H1), namely:

(H1’) The measure dµ has support on [0,∞).

When convenient, we may require additional properties on dµ. The first one

is our usual (H3), and we now introduce the following summability condition:
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(H4) The distribution function µ(x) := µ((−∞, x]) verifies

∫ ∞
0

1

λ2
µ(λ) dλ <∞.

For λ > 0 we consider the following truncated function that appears on the

right-hand side of (2.14):

v(λ, x) =

{
xe−λx if x > 0;

0, if x ≤ 0,

and define the 1–periodic function

h(λ, x) :=
∑
n∈Z

v(λ, x+ n)

=
e−λ(x−bxc− 1

2
)
{

2 sinh(λ/2)(x− bxc − 1
2
) + cosh(λ/2)

}
4 sinh(λ/2)2

.

If dµ is a signed Borel measure satisfying (H1’) - (H2) - (H4) we define the

1-periodic function

Fµ(x) :=

∫ ∞
0

h(λ, x)µ(λ) dλ =
∑
n∈Z

fµ(x+ n), (2.73)

where the last equality follows from (2.14) and Fubini’s theorem. We observe

that Fµ(x) is differentiable for x /∈ Z and that

Fµ(0−) = Fµ(0).

For 0 ≤ x ≤ 1 we have

h(λ, x) = xe−λx +
e−λ(

1− e−λ
)2

(
xe−λx

(
1− e−λ

)
+ e−λx

)
,

and we see from dominated convergence and the computation in (2.15) that

lim sup
x→0+

Fµ(x) ≤ Fµ(0) + 1,
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and under the additional condition (H3) we have

Fµ(0+) = Fµ(0−) + 1 = Fµ(0) + 1. (2.74)

We now define the odd counterpart. First we let, for λ > 0,

ṽ(λ, x) := v(λ, x)− v(λ,−x)

and consider the 1-periodic function

h̃(λ, x) :=
∑
n∈Z

ṽ(λ, x+ n)

=
−1

2
cosh(λ/2) sinh(λψ(x)) + ψ(x) sinh(λ/2) cosh(λψ(x))

sinh(λ/2)2
.

where

ψ(x) =

{
x− bxc − 1

2
, if x /∈ Z;

0 , if x ∈ Z;

is the sawtooth function. If dµ is a signed Borel measure satisfying (H1’) -

(H2) we define the odd 1-periodic function

F̃µ(x) :=

∫ ∞
0

h̃(λ, x)µ(λ) dλ. (2.75)

Note that we do not have to assume (H4) in order to define F̃µ(x) in (2.75)

since, for all x ∈ R, the function λ 7→ h̃(λ, x) is O(λ) as λ → 0. If, however,

we have (H4), the function Fµ(x) is well-defined and we have

F̃µ(x) = Fµ(x)− Fµ(−x) =
∑
n∈Z

f̃µ(x+ n),

verifying that F̃µ(x) is in fact the periodization of f̃µ(x). We note that F̃µ(x)

is differentiable for x /∈ Z. For 0 ≤ x ≤ 1 we may write alternatively

h̃(λ, x) = h(λ, x)− h(λ, 1− x)

= xe−λx − (1− x)e−λ(1−x) +
e−λ(

1− e−λ
)2

(
xe−λx

(
1− e−λ

)
+ e−λx − (1− x)e−λ(1−x)

(
1− e−λ

)
− e−λ(1−x)

)
,

(2.76)
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and we may use dominated convergence in (2.75) together with the computa-

tion in (2.15) to conclude that, under (H1’) - (H2) - (H3), we have

F̃µ(0±) = ±1.

We highlight the fact that when dµ is the Dirac delta measure, we

recover the sawtooth function (multiplied by −2) in (2.75). In fact, observing

that for x /∈ Z we have

h̃(λ, x) = − ∂

∂λ

(
sinh

(
− λ(x− bxc − 1

2
)
)

sinh(λ/2)

)
,

we find, for x /∈ Z,

F̃µ(x) =

∫ ∞
0

h̃(λ, x) dλ = −2(x− bxc − 1
2
).

This is expected since the corresponding f̃µ(x) is the signum function. In

particular, the results we present below extend the work of Li and Vaaler [51]

on the sawtooth function.

The following two results provide a complete solution of the extremal

problem (2.64) - (2.65) for the periodic functions Fµ(x) and F̃µ(x) defined in

(2.73) and (2.75), with respect to arbitrary nontrivial probability measures dϑ.

This completes the framework initiated in [16], where this extremal problem

was solved for an analogous class of even periodic functions with exponential

subordination. In what follows we let ϕN+1(z) = ϕN+1(z; dϑ) be the (N + 1)-

th orthonormal polynomial in the unit circle with respect to this measure and

consider KN(w, z),AN+1(z),BN+1(z) as defined in (2.71) and (2.72).

Theorem 2.5.3. Let dµ be a signed Borel measure on R satisfying (H1’) - (H2)

- (H4), and let Fµ(x) be defined by (2.73). Let dϑ be a nontrivial probability

measure on R/Z and N ∈ Z+.
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(i) If L : C → C is a real trigonometric polynomial of degree at most N

such that

L(x) ≤ Fµ(x) (2.77)

for all x ∈ R/Z, then∫
R/Z

L(x) dϑ(x) ≤ Fµ(0)

KN(1, 1)
+

∑
ξ∈R/Z ; ξ 6=0

BN+1(e(ξ))=0

Fµ(ξ)

KN(e(ξ), e(ξ))
. (2.78)

Moreover, there is a unique real trigonometric polynomial Lµ : C→ C of

degree at most N satisfying (2.77) for which the equality in (2.78) holds.

(ii) Assume that dµ also satisfies (H3). If M : C→ C is a real trigonometric

polynomial of degree at most N such that

Fµ(x) ≤M(x) (2.79)

for all x ∈ R/Z, then∫
R/Z

M(x) dϑ(x) ≥ Fµ(0+)

KN(1, 1)
+

∑
ξ∈R/Z ; ξ 6=0

BN+1(e(ξ))=0

Fµ(ξ)

KN(e(ξ), e(ξ))
. (2.80)

Moreover, there is a unique real trigonometric polynomial Mµ : C → C
of degree at most N satisfying (2.79) for which the equality in (2.80)

holds.

Theorem 2.5.4. Let dµ be a signed Borel measure on R satisfying (H1’) - (H2)

- (H3), and let F̃µ(x) be defined by (2.75). Let dϑ be a nontrivial probability

measure on R/Z and N ∈ Z+.

(i) If L : C → C is a real trigonometric polynomial of degree at most N

such that

L(x) ≤ F̃µ(x) (2.81)
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for all x ∈ R/Z, then∫
R/Z

L(x) dϑ(x) ≤ − 1

KN(1, 1)
+

∑
ξ∈R/Z ; ξ 6=0

BN+1(e(ξ))=0

F̃µ(ξ)

KN(e(ξ), e(ξ))
. (2.82)

Moreover, there is a unique real trigonometric polynomial L̃µ : C→ C of

degree at most N satisfying (2.81) for which the equality in (2.82) holds.

(ii) If M : C → C is a real trigonometric polynomial of degree at most N

such that

Fµ(x) ≤M(x) (2.83)

for all x ∈ R/Z, then∫
R/Z

M(x) dϑ(x) ≥ 1

KN(1, 1)
+

∑
ξ∈R/Z ; ξ 6=0

BN+1(e(ξ))=0

F̃µ(ξ)

KN(e(ξ), e(ξ))
. (2.84)

Moreover, there is a unique real trigonometric polynomial M̃µ : C → C
of degree at most N satisfying (2.83) for which the equality in (2.84)

holds.

2.5.4 Periodic Interpolation

Before we proceed to the proofs of Theorems 2.5.3 and 2.5.4 we state

and prove the periodic version of Proposition 2.2.3. Below we keep the notation

already used in Section 2.2.

Proposition 2.5.5. Let F (z) be a 1-periodic Laguerre-Pólya function of ex-

ponential type τ(F ). Assume that F (z) has a double zero at the origin and

that F (αF/2) > 0. Let dµ be a signed Borel measure on R satisfying (H1’) -

(H2) - (H4), and let Fµ(x) be defined by (2.73).
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(i) The functions x 7→ L(F, µ, x) and x 7→M(F, µ, x) belong to L1(R).

(ii) Define the trigonometric polynomials

L(F, µ, z) =
∑
|k|< τ(F )

2π

L̂(F, µ, k) e(kz) (2.85)

and

M(F, µ, z) =
∑
|k|< τ(F )

2π

M̂(F, µ, k) e(kz). (2.86)

Then we have

F (x)L(F, µ, x) ≤ F (x)Fµ(x) ≤ F (x)M(F, µ, x) (2.87)

for all x ∈ R.

(iii) Moreover,

L(F, µ, ξ) = Fµ(ξ) = M(F, µ, ξ) (2.88)

for all ξ ∈ R \ Z with F (ξ) = 0. At ξ ∈ Z we have

L(F, µ, ξ) = Fµ(0) and M(F, µ, ξ) = Fµ(0) + 1. (2.89)

Proof. We have already noted, from (2.32), that z 7→ L(F, µ, z) and z 7→
M(F, µ, z) are entire functions of exponential type at most τ(F ). From (2.43)

we find that

|L(F, µ, x)|+ |M(F, µ, x)| � fµ(x) +
1 + |F (x)|

1 + x2

for x ∈ R. Since F (z) is 1-periodic, it is bounded on the real line. Hence,

in order to prove (i), it suffices to verify that fµ ∈ L1(R). This is a simple

application of Fubini’s theorem and conditions (H1’) - (H2) - (H4). In fact,∫ ∞
0

fµ(x) dx =

∫ ∞
0

∫ ∞
0

xe−λx µ(λ) dλ dx =

∫ ∞
0

1

λ2
µ(λ) dλ <∞.
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This establishes (i). The Paley–Wiener theorem implies that the Fourier trans-

forms

L̂(F, µ, t) =

∫
R
L(F, µ, x) e(−tx) dx

and

M̂(F, µ, t) =

∫
R
M(F, µ, x) e(−tx) dx

are continuous functions supported in the compact interval [− τ(F )
2π
, τ(F )

2π
]. By a

classical result of Plancherel and Pólya [65], the functions z 7→ L′(F, µ, z) and

z 7→M ′(F, µ, z) also have exponential type at most τ(F ) and belong to L1(R).

Therefore, the Poisson summation formula holds as a pointwise identity and

we have

L(F, µ, x) =
∑
|k|< τ(F )

2π

L̂(F, µ, k) e(kx) =
∑
n∈Z

L(F, µ, x+ n) (2.90)

and

M(F, µ, x) =
∑
|k|< τ(F )

2π

M̂(F, µ, k) e(kx) =
∑
n∈Z

M(F, µ, x+ n). (2.91)

Using the fact that

Fµ(x) =
∑
n∈Z

fµ(x+ n)

for all x ∈ R, (2.87), (2.88) and (2.89) now follow from (2.90), (2.91) and

Proposition 2.2.3, since F (z) is 1-periodic . This establishes (ii) and (iii).

2.5.5 Proof of Theorem 2.5.3

Recall that we have normalized our orthonormal polynomials ϕN+1(z)

in order to have ϕN+1(1) ∈ R. This implies that BN+1(1) = 0.
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Optimality. If L : C → C is a real trigonometric polynomial of degree at

most N such that

L(x) ≤ Fµ(x)

for all x ∈ R/Z, from Proposition 2.5.2 we find that∫
R/Z

L(x) dϑ(x) =
∑
ξ∈R/Z

BN+1(e(ξ))=0

L(ξ)

KN(e(ξ), e(ξ))

≤ Fµ(0)

KN(1, 1)
+

∑
ξ∈R/Z ; ξ 6=0

BN+1(e(ξ))=0

Fµ(ξ)

KN(e(ξ), e(ξ))
.

(2.92)

This establishes (2.78). Under (H3) recall that we have

Fµ(0+) = Fµ(0−) + 1 = Fµ(0) + 1.

In an analogous way, using Proposition 2.5.2, it follows that if M : C → C is

a real trigonometric polynomial of degree at most N such that

Fµ(x) ≤M(x)

for all x ∈ R/Z then∫
R/Z

M(x) dϑ(x) =
∑
ξ∈R/Z

BN+1(e(ξ))=0

M(ξ)

KN(e(ξ), e(ξ))

≥ Fµ(0+)

KN(1, 1)
+

∑
ξ∈R/Z ; ξ 6=0

BN+1(e(ξ))=0

Fµ(ξ)

KN(e(ξ), e(ξ))
.

This establishes (2.80).

Existence. Define the trigonometric polynomial

BN+1(z) = BN+1(e(z))BN+1(e(z)). (2.93)
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Since the polynomial BN+1(z) has degree N + 1 and has only simple zeros in

the unit circle, we conclude that the trigonometric polynomial BN+1(z) has

degree N+1, is non–negative on R and has only double real zeros. Since every

trigonometric polynomial is of bounded type in the upper half–plane C+, it

follows by [6, Problem 34] that BN+1(z) is a Laguerre-Pólya function.

We now use Proposition 2.5.5 to construct the functions

Lµ(z) := L(BN+1, µ, z);

Mµ(z) := M(BN+1, µ, z).

Since BN+1(z) has exponential type 2π(N + 1) we see from (2.85) and (2.86)

that Lµ(z) and Mµ(z) are trigonometric polynomials of degree at most N .

Since BN+1(z) is non–negative on R we conclude from (2.87) that

Lµ(x) ≤ Fµ(x) ≤Mµ(x)

for all x ∈ R/Z. Moreover, from (2.88), (2.89) and the quadrature formula

given by Proposition 2.5.2, we conclude that the equality in (2.78) holds. Un-

der the additional condition (H3), we use (2.74) to see that the equality in

(2.80) also holds.

Uniqueness. If L : C → C is a real trigonometric polynomial of degree at

most N satisfying (2.77) for which the equality in (2.78) holds, from (2.92) we

must have

L(ξ) = Fµ(ξ) = Lµ(ξ)

for all ξ ∈ R/Z such that BN+1(e(ξ)) = 0. Since Fµ(x) is differentiable at

R/Z− {0}, from (2.77) we must also have

L′(ξ) = F′µ(ξ) = L′µ(ξ)

for all ξ ∈ R/Z − {0} such that BN+1(e(ξ)) = 0. These 2N + 1 conditions

completely determine a trigonometric polynomial of degree at most N , hence

L(z) = Lµ(z). The proof for the majorant is analogous.
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2.5.6 Proof of Theorem 2.5.4

Optimality and Uniqueness. These follow exactly as in the proof of The-

orem 2.5.3 using the fact that

F̃µ(0±) = ±1.

Existence. We proceed with the construction of the extremal trigonometric

polynomials in two steps:

Step 1. Suppose that µ(λ) satisfies (H4).

In this case we know that

F̃µ(x) = Fµ(x)− Fµ(−x) (2.94)

for all x ∈ R. With the notation of Proposition 2.5.5 and BN+1(z) given by

(2.93), we define

L̃µ(z) = L(BN+1(z), µ, z)−M(BN+1(−z), µ,−z) (2.95)

and

M̃µ(z) = M(BN+1(z), µ, z)− L(BN+1(−z), µ,−z). (2.96)

It is clear from (2.94) and (2.87) that

L̃µ(x) ≤ F̃µ(x) ≤ M̃µ(x) (2.97)

for all x ∈ R/Z. Moreover, from (2.88) and (2.89) we find that

L̃µ(ξ) = F̃µ(ξ) = M̃µ(ξ) (2.98)

for all ξ ∈ R/Z− {0} such that BN+1(e(ξ)) = 0 and

L̃µ(0) = −1 and M̃µ(0) = 1. (2.99)
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Using the quadrature formula given by Proposition 2.5.2, we see that equality

holds in (2.82) and (2.84).

Step 2. The case of general dµ.

For every n ∈ N we define a measure dµn given by

dµn(Ω) := dµ
(
Ω− 1

n

)
,

where Ω ⊂ R is a Borel set. Note that dµn satisfies (H1’) - (H2) - (H3) - (H4).

Let F̃n(x) := F̃µn(x), and L̃n(z) := L̃µn(z) and M̃n(z) := M̃µn(z) as in (2.95)

and (2.96). Since properties (2.97), (2.98) and (2.99) hold for each n ∈ N, in

order to conclude, it suffices to prove that F̃n(x) converges pointwise to F̃µ(x)

and that L̃n(z) and M̃n(z) converge pointwise (passing to a subsequence, if

necessary) to trigonometric polynomials L̃µ(z) and M̃µ(z).

Observe first that

F̃n(x) =

∫ ∞
0

h̃
(
λ+ 1

n
, x
)
µ(λ) dλ (2.100)

for all x ∈ R. From (2.76) we see that, for 0 ≤ x ≤ 1,∣∣∣h̃(λ+ 1
n
, x
)∣∣∣ ≤ xe−λx + (1− x)e−λ(1−x) + r(λ), (2.101)

where r(λ) is O(1) for λ < 1 and O(e−λ) for λ ≥ 1, uniformly in x ∈ [0, 1]

and n ∈ N. For any x ∈ [0, 1) the right-hand side of (2.101) belongs to

L1(R+, µ(λ) dλ), and therefore we may use dominated convergence in (2.100)

to conclude that F̃n(x)→ F̃µ(x) as n→∞.

From (2.43), (2.90) and (2.91) we find that

M̃n(x)− L̃n(x) =
4BN+1(x)

B′′N+1(0)

∑
k∈Z

1

(x+ k)2
. (2.102)
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for all x ∈ R. Note that the right-hand side of (2.102) is bounded since

BN+1(z) is a trigonometric polynomial with a double zero at the integers.

Therefore, we arrive at

−4BN+1(x)

B′′N+1(0)

∑
k∈Z

1

(x+ k)2
+ F̃n(x) ≤ L̃n(x) ≤ F̃n(x)

and

F̃n(x) ≤ M̃n(x) ≤ F̃n(x) +
4BN+1(x)

B′′N+1(0)

∑
k∈Z

1

(x+ k)2
.

From (2.100) and (2.101) we see that

∣∣F̃n(x)
∣∣ ≤ ∫ ∞

0

xe−λx µ(λ) dλ+

∫ ∞
0

(1− x)e−λ(1−x) µ(λ) dλ+

∫ ∞
0

r(λ)µ(λ) dλ

≤ C

for all x ∈ [0, 1] and n ∈ N, since each of the first two integrals is a continuous

function of x ∈ (0, 1), with finite side limits as x → 0 and x → 1, due to

condition (H3) and the computation in (2.15). This implies that L̃n(z) and

M̃n(z) are uniformly bounded on R. The 2N + 1 Fourier coefficients of L̃n(z)

and M̃n(z) are then uniformly bounded on R and we can extract a subsequence

{nk} such that L̃nk(z) → L̃µ(z) and M̃nk(z) → M̃µ(z) uniformly in compact

sets, where L̃µ(z) and M̃µ(z) are trigonometric polynomials of degree at most

N . This completes the proof.
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Chapter 3

Reconstruction Formulas in de Branges Spaces

3.1 Preliminaries

One of the classical problems in complex analysis is to reconstruct an

entire function from a countable set of data. For example, the Weierstrass

factorization reconstructs a given entire function F (z) using its set of zeros.

In this chapter we study another type of reconstruction based on inter-

polation. We consider the problem of reconstructing an entire function F (z)

from its values and the values of its derivatives up to a specified order at a

discrete set of points on the real line. To accomplish this we use an interpola-

tion formula. Some assumptions about the growth of F (z) at infinity will be

required in order to achieve complete characterizations.

Given two real numbers p ∈ [1,∞) and τ > 0 the Paley–Wiener space

PW p(τ) is defined as the space of entire functions of exponential type at most

τ such that their restriction to the real axis belongs to Lp(R). The space

PW p(τ) is a Banach space, and it is a Hilbert space for p = 2. These are

special spaces with a reproducing kernel structure. The reproducing kernel of

PW p(τ) is given by

K(w, z) =
sin τ(z − w)

π(z − w)

and

F (w) =

∫
R
F (x)K(w, x)dx

for every F ∈ PW p(τ) and w ∈ C.
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A basic result of the theory of Paley–Wiener spaces is that for all F ∈
PW p(τ) we have

F (z) =
sin(τz)

τ

∑
n∈Z

(−1)n
F (πn/τ)

(z − πn/τ)
, (3.1)

where the sum converges uniformly in compact sets of C and also in the norm

of the space if p = 2 (this is sometimes called the Shannon-Whittaker interpo-

lation formula). The reproducing kernel structure is intrinsically related with

the above formula by the fact that, when p = 2, the functions {K(πn/τ, z)}n∈Z
form an orthogonal basis of the space and formula (3.1) is a simple represen-

tation of the function in terms of this basis.

The existence of interpolation formulas using derivatives is also known

in Paley–Wiener spaces. In [73, Theorem 9] Vaaler proved that

F (z) =

(
sin τz

τ

)2∑
n∈Z

(
F (πn/τ)

(z − πn/τ)2
+

F ′(πn/τ)

(z − πn/τ)

)
(3.2)

for every F ∈ PW p(2τ). We highlight that Vaaler’s proof of (3.2) is based on

Fourier Analysis, and his method does not generalize to the function spaces

that we consider in this chapter. We aim to generalize this classical interpola-

tion formula for PW p(τ) to the setting of de Branges spaces.

The Paley–Wiener spaces are a special family of a wider class of spaces

of entire functions Hp(E) called de Branges spaces. Intuitively, a de Branges

space can be seen as a weighted Paley–Wiener space. Given a Hermite–Biehler

function E(z) (see the definition in Section 2.1.1) and a number p ∈ [1,∞),

the space Hp(E) is defined as the space of entire functions F (z) that satisfy

a certain growth condition relatively to E(z) and such that F/E belongs to

Lp(R). These spaces are uniquely determined by the structure function E(z)

of Hermite–Biehler class and they contain the Paley–Wiener space PW p(τ) as

a special case that can be recovered by using the function E(z) = e−iτz.
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Formula (3.2) is useful in many applications to approximation the-

ory. In [40], Graham and Vaaler used this formula to construct extremal

one–sided approximations of exponential type to a given real–valued func-

tion g(x). Under certain restrictions on g(x), they characterized the pair of

entire functions M(z) and L(z) of exponential type at most 2π that satisfy

L(x) ≤ g(x) ≤M(x) for all real x and minimize the quantities∫
R
{M(x)− g(x)} dx and

∫
R
{g(x)− L(x)} dx.

In [18], Carneiro, Littmann and Vaaler applied the same methods to

produce extremal one–sided band–limited approximations for functions g(x)

that are in some sense subordinated to the Gaussian function. Other important

works that apply such interpolation formulas are [14, 19, 73]. If, instead of the

L1(R, dx)-norm, one decides to minimize a weighted norm L1(R, dµ(x)), where

dµ is a non-negative Borel measure on the real line, the Fourier transform tools

are no longer available. The alternative theory to approach these new extremal

problems is the theory of de Branges spaces. Several works have been done in

this direction, see [9, 13, 16, 17, 47, 54, 57]. The methods used in these later

works were very different than the previous ones, since generalizations of the

formula (3.2) to de Branges spaces were not known at the time. As already

mentioned in Section 2.1, these special functions M(z) and L(z) have been

used in a variety of interesting applications in number theory and analysis,

for instance in connection to: large sieve inequalities [47, 67, 68, 73], Erdös-

Turán inequalities [19, 73], Hilbert–type inequalities [16, 18, 19, 40, 55, 62,

63, 73], Tauberian theorems [40] and bounds in the theory of the Riemann

zeta–function and L–functions [8, 9, 10, 11, 12, 22, 32, 34].
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3.1.1 Problem Formulation

This work deals with reproducing kernel Hilbert spaces H2 of entire

functions F (z) with reproducing kernel K(w, z). We require that the space

H2 is closed under differentiation, that is, F ′ ∈ H2 whenever F ∈ H2. This

last assumption will imply that the function

∂jwK(w, z)

is the reproducing kernel for the differential operator ∂jz , that is,

F (j)(w) = 〈F (·), ∂jwK(w, ·)〉H2

for all F ∈ H2.

We recall that a system {ϕn}n∈Z in H2 is called a weighted frame if

there exists C > 0 and λn > 0 such that

C−1‖F‖2
H2 ≤

∑
n∈Z

λn|〈F, ϕn〉H2|2 ≤ C‖F‖2
H2 (3.3)

for all F ∈ H2, and the frame is called exact if (3.3) fails to hold for any C > 0

if one of the terms in the series is removed.

In this terminology, for a given integer ν > 0 we seek to find a discrete

set of points Tν ⊆ R such that the collection Dν of functions Dν,j(z, t) defined

by

Dν,j(z, t) = ∂jwK(w, z)
∣∣∣
w=t

t ∈ Tν , j = 0, . . . , ν − 1 (3.4)

forms an exact, weighted frame ofH2. In order to obtain an interpolation series

we also seek to find a dual frame Gν consisting of functions z 7→ Gν,j(z, t) ∈ H2

such that an inequality of the form (3.3) holds for Gν , and

F (z) =
∑
t∈Tν

ν−1∑
j=0

F (j)(t)Gν,j(z, t)

for all F ∈ H2, where the convergence of the series to F (z) is in the norm of

H2.
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3.1.2 Main Results

A Hermite-Biehler function E : C → C is an entire function which

satisfies the fundamental inequality

|E(z)| < |E(z)|

for all z ∈ C+. For every Hermite-Biehler function E(z) we can associate the

de Branges space H2(E), which is a reproducing kernel Hilbert space of entire

functions. Recall the definition of H2(E), with reproducing kernel K(w, z)

and companion function A(z) and B(z) defined in Section 2.1.1.

We say that H2(E) is closed under differentiation if F ′ ∈ H2(E) when-

ever F ∈ H2(E). Inequality (2.8) together with the fact that w ∈ C 7→
K(w,w) is a continuous function implies that convergence in the norm of

H2(E) implies uniform convergence in compact sets of C. As a consequence,

differentiation defines a closed linear operator on H2(E) and therefore by the

Closed Graph Theorem defines a bounded linear operator on H2(E).

Let ν > 0 be an integer and E(z) be a Hermite–Biehler function with

no real zeros (hence the zeros of B(z) are simple). In order to obtain the

desired interpolation series, we need to work in H2(Eν), which has the proper

structure. Denote by Aν(z) and Bν(z) the real entire functions that satisfy

E(z)ν = Aν(z) − iBν(z) and by Kν(w, z) the reproducing kernel associated

with H2(Eν). We define the collection Bν of functions z 7→ Bν,j(z, t) given by

Bν,j(z, t) =
B(z)ν

(z − t)j
, (3.5)

where t varies among the real zeros of B(z) and 1 ≤ j ≤ ν. For an integer

` ≥ 0 we denote by Pν,`(z, t) the Taylor polynomial of degree ` of Bν,ν(z, t)
−1

expanded into a power series at z = t as a function of z, that is

(z − t)ν

B(z)ν
= Pν,`(z, t) +O(|z − t|`+1).
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Finally, we denote by Gν the collection of functions z 7→ Gν,j(z, t) defined by

Gν,j(z, t) = Bν,ν−j(z, t)
Pν,ν−j−1(z, t)

j!
(3.6)

for j = 0, . . . , ν − 1 and B(t) = 0. We note that

Gν,j(z, t) =
(z − t)j

j!
− B(z)ν

j!

∑
n≥ν−j

aν,n(t)(z − t)n+j−ν

where the quantity aν,n(t) is the coefficient of (z− t)n in the Taylor expansion

of 1/Bν,ν(z, t) about the point z = t. We easily see that these functions satisfy

the following property

G
(`)
ν,j(s, t) = δ0(s− t)δ0(`− j) (3.7)

for any `, j = 0, . . . , ν − 1 and s, t zeros of B(z).

The next result essentially says that Dν defined in (3.4) is an exact,

weighted frame for H2(Eν) with dual frame Gν . As part of the proof we will

also show that Bν is a frame (not weighted) for H2(Eν). We emphasize that

K(w, z) is the reproducing kernel of H2(E) while Kν(w, z) is the reproducing

kernel of H2(Eν).

Theorem 3.1.1. Let E(z) be a Hermite–Biehler function with phase function

ϕ(z). Let ν ≥ 2 be an integer with the property that the space H2(Eν) is closed

under differentiation and denote by D the norm of the differentiation operator.

Assume also that B /∈ H2(E) and that there exists δ > 0 such that ϕ′(t) ≥ δ

whenever B(t) = 0. Then the following statements hold:

(1) For every F ∈ H2(Eν)

F (z) =
∑
B(t)=0

ν−1∑
j=0

F (j)(t)Gν,j(z, t) (3.8)

where the series converges to F (z) in the norm of H2(Eν).
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(2) There exists a positive constant C = C(ν,D, δ) > 0 such that

C−1‖F‖H2(Eν) ≤
∑
B(t)=0

ν−1∑
j=0

|F (j)(t)|2

Kν(t, t)
≤ C‖F‖H2(Eν) (3.9)

and

C−1‖F‖H2(Eν) ≤
∑
B(t)=0

ν−1∑
j=0

Kν(t, t)|〈F,Gν,j(·, t)〉H2(Eν)|2 ≤ C‖F‖H2(Eν)

(3.10)

for all F ∈ H2(Eν).

(3) If any of the terms of the series in (3.9) (respect. (3.10)) is removed, the

modified inequality fails to hold for some F ∈ H2(Eν), for any choice of

C > 0 (that is, the frames are exact).

Remarks.

(1) The requirement B /∈ H2(E) is necessary, otherwise Bν ∈ H2(Eν) and

estimate (3.9) would not be valid for F (z) = B(z)ν . Also, the proof is

based on an induction argument in which this condition is necessary for

the base case.

(2) For ν = 1 the two frames agree, and (3.9) holds with C = 1 without any

assumption on the phase and the differentiation operator (see [6, Theorem

22]).

(3) Conditions for the boundedness of the differentiation operator were given

by Baranov in [1, 2]. It was also shown there that E(z) has exponential

type and no real zeros if H2(Eν) is closed under differentiation.

(4) The fact that every zero of B(z) is also a zero of Bν(z) for every ν ≥ 1 is

a crucial ingredient in the proof of the proposed theorem.
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The next theorem extends the previous interpolation result for Hp(Eν)

with p 6= 2. However, the convergence of the formula is only uniformly in

compact sets of C.

Given a function E(z) of Hermite–Biehler class and p ∈ [1,∞) the de

Branges space Hp(E) is defined as the space of entire functions F (z) such that

F (z)/E(z) and F ∗(z)/E(z) are of bounded type with non–positive mean type

and F (x)/E(x) ∈ Lp(R) when restricted to the real axis (see Appendix 6.1 for

a detailed discussion of these spaces and their connection with Hardy spaces).

In what follows we will need E(z) to satisfy some special conditions,

namely:

(C1) The mean type of E∗(z)/E(z) is negative, that is,

v(E∗/E) = lim sup
y→∞

log |E(−iy)/E(iy)|
y

< 0.

(C2) There exists some h > 0 such that all the zeros of E(z) lie in the half–

plane Im z ≤ −h.

Theorem 3.1.2. Assume all the hypotheses of Theorem 3.1.1. Then for every

p ∈ [1, 2) and F ∈ Hp(Eν) we have

F (z) =
∑
B(t)=0

ν−1∑
j=0

F (j)(t)Gν,j(z, t), (3.11)

where the formula converges uniformly in compact sets of C. Furthermore,

formula (3.11) is also valid for F ∈ Hp(Eν) with p ∈ (2,∞) if we additionally

assume that E(z) satisfies condition (C1) or condition (C2).

Remarks.
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(1) We note that closure under differentiation of the space Hp(E) does not

imply, in general, closure under differentiation of the spaceHq(E) with q 6=
p. However, this implication will be true if E(z) satisfies condition (C1)

or (C2) (see Theorem 3.3.4). Moreover, the proof of the above theorem

relies heavily on the case p = 2, in which a reduction argument is used,

and for this reason we only need to assume closure under differentiation

of the space H2(Eν).

(2) The functions E(z) that satisfy all the properties of the previous theo-

rem in general do not have simple analytic expressions. A better way to

construct such functions is via their Weierstrass factorization formula. A

special subfamily of Hermite–Biehler functions with a manageable Weier-

strass factorization formula is the Pólya class. This class is defined as

those entire functions that can be arbitrarily approximated in any com-

pact set of C by polynomials with no zeros in the upper half–plane (see

[6, Section 7]). In fact, a function of Pólya class can be characterized by

its Hadamard factorization formula. A function E(z) with nonzero zeros

wn = xn− iyn, belongs to the Pólya class if and only if it has the following

factorization

E(z) = E(r)(0)(zr/r!)e−az
2−ibz

∏
n

(
1− z

wn

)
ezhn ,

where a ≥ 0, Re b ≥ 0, hn = xn
|wn|2 , yn ≥ 0 and∑
n

1 + yn
|wn|2

<∞.

In this situation, condition (C1) is equivalent to Re b > 0.

Notation Remark. Given two non-negative quantities Q and Q′ and N ele-

ments r1, . . . , rN of a set Ω we write Q�r1,...,rN Q′ when Q ≤ C(r1, . . . , rN)Q′,
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where C : Ω → (0,∞) is some function. We also write Q 'r1,...,rN Q′ when

both Q �r1,...,rN Q′ and Q′ �r1,...,rN Q hold. Often, the quantities Q and Q′

will depend on a function F (z) and other quantities. We write Q(F )� Q′(F )

when there exists a constant C > 0, which does not depend on F (z), such that

Q(F ) ≤ CQ′(F ).

3.2 The L2–case

The recipe for the proof of Theorem 3.1.1 is the following.

(1) We show that the span of the collection Gν is dense in H2(Eν), which in

turn by (3.7) implies that there exists a dense set of functions in H2(Eν)

for which (3.8) holds.

(2) We derive estimates involving the inner products of the collection Gν in

order to prove Theorem 3.1.1 item (2) for a dense set of functions (and

hence for the whole space).

First we prove density statements for the classes Bν and Gν .

Lemma 3.2.1. Let E(z) be a Hermite–Biehler function with no real zeros and

assume that B 6∈ H2(E). Then the span of Bν and the span of Gν defined in

(3.5) and (3.6) are both dense in H2(Eν) for every integer ν ≥ 1.

Proof. First we show via induction on ν that the span of the collection Bν is

dense in H2(Eν). Recall that in this scenario the zeros of A(z) and B(z) are

simple and interlace.

It follows from Theorem 2.1.1 that the span of B1 is dense in H2(E).

Let ν > 0 be an integer and assume that the span of Bν is dense in H2(Eν).
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By [1, Lemma 4.1], if Ea(z) and Eb(z) are two Hermite–Biehler functions then

H2(EaEb) = E∗aH2(Eb)⊕⊥ EbH2(Ea),

where the sum is orthogonal. This implies that

H2(Eν+1) = AH2(Eν)⊕BH2(Eν),

where the sum is direct. Therefore, the span of the collection C = ABν ∪BBν
is dense in H2(Eν+1). Evidently BBν is a subset of Bν+1, and it remains to

show that the collection ABν can be arbitrarily approximated in the norm of

H2(Eν+1) by elements of the span of Bν+1.

Now note that if t is a zero of B(z) then

A(z)Bν,ν(z, t) =
A(t)

B′(t)
[Bν+1,ν+1(z, t)−B(z)G(z, t)],

where

G(z, t) = Bν−1,ν−1(z, t)
A(t)B(z)−B′(t)(z − t)A(z)

A(t)(z − t)2
.

Evidently G(z, t) ∈ H2(Eν) for each zero t of B(z). Hence, for any given ε > 0

there exists H(z) belonging to the span of Bν such that

‖G(z, t)−H(z)‖Eν < εB′(t)/A(t).

It follows that [Bν+1,ν+1(z, t)−B(z)H(z)] belongs to the span of Bν+1 and∥∥∥∥A(z)Bν,ν(z, t)−
A(t)

B′(t)
[Bν+1,ν+1(z, t)−B(z)H(z)]

∥∥∥∥
Eν+1

=
A(t)

B′(t)
‖B(z)[G(z, t)−H(z)]‖Eν+1

≤ A(t)

B′(t)
‖G(z, t)−H(z)‖Eν < ε.
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We conclude that A(z)Bν,ν(z, t) is an element of the closure of the span of Bν+1.

If 1 ≤ j < ν then evidently A(z)Bν,j(z, t) = B(z)H(z) for some H ∈ H2(Eν)

and the same argument above could be replicated. This proves the first part

of the lemma.

Now, denote by aν,j(t) the coefficient of (z − t)j in the Taylor series

representation of 1/Bν,ν(z, t) as a function of z about z = t. Then the function

Gν,k(z, t) may be represented as

Gν,k(z, t) =
1

k!

ν−k−1∑
j=0

aν,j(t)Bν,ν−j−k(z, t)

=
1

k!

ν−k∑
m=1

aν,ν−m−k(t)Bν,m(z, t).

Suppressing the arguments t and z, this is in matrix notation

(Gν,k)0≤k≤ν−1 =


aν,ν−1

0!
. . . aν,1

0!

aν,0
0!

aν,ν−2

1!
. . . aν,0

1!
0

... 0 0
aν,0

(ν−1)!
. . . 0 0

 (Bν,m)1≤m≤ν .

Since aν,0(t) = 1/B′(t)ν 6= 0, it follows that the above matrix is invertible and,

in particular, any element of Bν is a linear combination of elements from Gν
and vice versa. This concludes the lemma.

For the proof of item (2) of Theorem 3.1.1 we will need to estimate the

norm of a linear combination of elements from Bν . The following four lemmas

collect the necessary upper bounds for each term that will appear.

Lemma 3.2.2. Let ν ≥ 2 be an integer and let E(z) be a Hermite–Biehler

function such that H2(Eν) is closed under differentiation and denote by D the

norm of the differentiation operator on H2(Eν). Then:
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(1) The derivative of the phase function is bounded. In fact we have

ϕ′(x) ≤ D
√
ν (3.12)

for all real x.

(2) The zeros of B(z) are separated. In fact, if t > s are two consecutive real

zeros of B(z) then

t− s ≥ π√
νD

.

(3) For all real x and real t with B(t) = 0 we have∣∣∣∣ B(x)

E(x)(x− t)

∣∣∣∣ ≤ D
√
ν.

Proof. Item (1). Recall that, by the remarks after Theorem 3.1.1 the function

E(z) has no real zeros. Using the reproducing kernel definition (2.6) we deduce

that

Kν(x, x) = ν|E(x)|2(ν−1)K(x, x)

for all real x, where Kν(w, z) and K(w, z) are respectively the reproducing

kernels associated with H2(Eν) and H2(E). This implies that

Kν(t, t) =
ν

π
A(t)2ν−1B′(t)

whenever B(t) = 0. We prove first (3.12) for x = t where t is a zero of B(z).

Consider the entire function F (z) defined by

F (z) = πE(z)ν−2B(z)K(t, z).

Evidently, F ∈ H2(Eν) and by (2.8) we obtain

|F ′(t)|2 ≤ ‖F ′‖2
EνKν(t, t) ≤ D2‖F‖2

EνKν(t, t).
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Now observe that

‖F‖2
Eν ≤ π2‖K(t, z)‖2

E = πB′(t)A(t)

and that F ′(t) = A(t)ν−1B′(t)2. By identity (2.9), ϕ′(t) = B′(t)/A(t) and we

obtain (3.12) for x = t.

Now, let θ ∈ R be arbitrary and denote by ϕθ(x) the phase of E(θ)(z) =

eiθE(z) = A(θ)(z) − B(θ)(z). Observe that ϕθ(x) and ϕ(x) − θ differ only by

an integer multiple of 2π, hence ϕ′(x) = ϕ′θ(x). Moreover, the functions E(z)ν

and (E(θ)(z))ν generate the same space and the real zeros of B(θ)(z) coincide

with the points ϕ(x) ≡ θ mod π. Hence, the above argument for the space

H2(Eν
(θ)) gives the claim for arbitrary x ∈ R.

Item (2). Since the zeros of B(z) coincide with the points t such that

ϕ(t) ≡ 0 mod π we deduce that

π = ϕ(t)− ϕ(s) ≤ D
√
ν(t− s)

if t > s are two consecutive zeros of B(z).

Item (3). By inequality (2.8) we obtain |K(w, z)|2 ≤ K(w,w)K(z, z)

for all w, z ∈ C. We obtain∣∣∣∣ B(x)

E(x)(x− t)

∣∣∣∣2 = π2 K(t, x)2

|E(t)|2|E(x)|2
≤ π2K(x, x)K(t, t)

|E(t)|2|E(x)|2
= ϕ′(t)ϕ′(x) ≤ D2ν.

This concludes the lemma.

Lemma 3.2.3. Let E(z) be a Hermite–Biehler function with no real zeros,

and let ν ≥ 1 be an integer. Then for any two distinct zeros s, t of B(z) we

have

〈Bν,1(·, s), Bν,1(·, t)〉Eν = 0.
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Proof. Define an entire function I(z) by

I(z) =
B(z)2ν

(E(z)E∗(z))ν(z − s)(z − t)
,

where s and t are two zeros of B(z). We need to show that∫
R
I(x)dx = 0.

Let K > 0. Define a contour ΓK in C by replacing in [−K,K] the

segments [t− δ, t+ δ] and [s− δ, s+ δ] with semicircles in the lower half–plane

of radius δ and centers s and t, respectively, traced counterclockwise (here δ

is chosen so small that the disks of radius δ about s and t contain no zero of

E(z) or E∗(z)). Since I(z) is analytic in a neighborhood of R, the integrals of

I(z) over [−K,K] and over ΓK are equal by the residue theorem.

We note that

B(z)2ν

(E(z)E∗(z))ν
=
iν

2ν

2ν∑
j=0

(
2ν

j

)
E(z)jE∗(z)2ν−j

(E(z)E∗(z))ν

=
iν

2ν

2ν∑
j=0

(
2ν

j

)(
E(z)

E∗(z)

)j−ν
.

Define Ij(z) for j ∈ {0, . . . , 2ν} by

Ij(z) =
1

(z − s)(z − t)

(
E(z)

E∗(z)

)j−ν
.

Each Ij(z) is a meromorphic function in C with poles at z = s and z = t, and

with additional poles in the lower or upper half–plane depending on whether

j < ν or j > ν. For j > ν the function (z − t)(z − s)Ij(z) is bounded and

analytic in the lower half–plane. We close the contour ΓK by a semicircle with

center at the origin and radius K in the lower half–plane, traced clockwise.
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Since none of the poles of Ij(z) are contained in the region enclosed by this

contour, the integral of Ij(z) over this contour is equal to zero.

For j < ν (where (z − s)(z − t)Ij(z) is bounded in the upper half–

plane) we close the contour in the upper half–plane with a semicircle of radius

K and center at the origin traced counterclockwise. We call this contour

CK . The poles at s and t of Ij are in the region enclosed by CK , while all

other poles are in the unbounded component of C\CK . A partial fraction

decomposition, the residue theorem, and the identities E(s) = E∗(s) = A(s)

and E(t) = E∗(t) = A(t) give

1

2πi

∫
CK

Ij(z)dz =
1

s− t

[(
E(s)

E∗(s)

)j−ν
−
(
E(t)

E∗(t)

)j−ν]
= 0.

An analogous calculation shows that the integral of Iν(z) over CK equals zero.

Letting K go to infinity gives the claim.

Lemma 3.2.4. Assume all hypotheses of Theorem 3.1.1. Then the following

statements hold:

(1) For all s 6= t with B(s) = B(t) = 0 and any j = 2, . . . , ν we have

|〈Bν,j(·, s), Bν,j(·, t)〉Eν | �D,ν
1

(s− t)2
.

(2) For all t with B(t) = 0 and j = 1, . . . , ν we have

‖Bν,j(·, t)‖Eν �D,ν 1.

(3) Denote by aν,j(t) the coefficient of (z − t)j in the Taylor series expansion

of Bν,ν(z, t)
−1 about the point z = t. Then

|aν,j(t)|2 �D,ν,δ
1

Kν(t, t)
.
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Proof. Item (1). Using the fact that |B(x)| ≤ |E(x)| for all real x we deduce

that

〈B2,2(·, s), B2,2(·, t)〉E2 ≤
∥∥∥∥ B(·)

(· − t)(· − s)

∥∥∥∥2

E

= π

(
ϕ′(t) + ϕ′(s)

(t− s)2

)
�D,ν (t− s)−2,

where the identity above is due to formula (2.10) and the last inequality due to

(3.12). Now, for any j = 2, . . . , ν we have the following sequence of estimates∣∣∣∣Bν,j(x, t)Bν,j(x, s)

|E(x)|2ν

∣∣∣∣ =
B(x)2ν

|x− t|j|x− s|j|E(x)|2ν

≤ B(x)2j

|x− t|j|x− s|j|E(x)|2j

�D,ν
B(x)4

|x− t|2|x− s|2|E(x)|4
,

where the last inequality above is due to item (3) of Lemma 3.2.2. We conclude

that

|〈Bν,j(·, s), Bν,t(·, t)〉Eν | �D,ν 〈B2,2(·, s), B2,2(·, t)〉E2 �D,ν (t− s)−2.

Item (2). We can apply item (2) of Lemma 3.2.2 to deduce that∣∣∣∣ B(x)ν

(x− t)jE(x)ν

∣∣∣∣�D,ν

∣∣∣∣ B(x)

(x− t)E(x)

∣∣∣∣
for all real x and j = 1, . . . , ν. Since B(z)/(z − t) = πK(t, z)/A(t), it follows

that

‖Bν,j(z, t)‖2
Eν �D,ν ‖πK(t, z)/A(t)‖2

E = πB′(t)/A(t) = πϕ′(t) ≤ πD
√
ν.

Item (3). Denote by bν,j(t) the coefficients of the power series expansion

of Bν,ν(z, t) as a function of z about z = t. The assumption that ϕ′(t) ≥ δ

whenever B(t) = 0 in conjunction with (3.12) implies that

|bν,0(t)|2 = |B′(t)ν |2 'D,ν,δ Kν(t, t).
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Also, for j = 1, . . . , ν we have

|bν,j(t)|2 =
1

(j!)2
|B(j)(t, t)|2 ≤ 1

(j!)2
‖B(j)

ν,ν(·, t)‖2
EνKν(t, t)�D,ν Kν(t, t).

(3.13)

We obtain

|bν,j(t)|2

|bν,0(t)|2
�D,ν,δ 1. (3.14)

Now note that for ` = 1, . . . , ν − 1

0 = ∂`z

[
Bν,ν(z, t)

Bν,ν(z, t)

]
z=t

= `!
∑̀
j=0

aν,j(t)bν,`−j(t).

Hence the relation between aν,j(t) and bν,j(t) is given by a triangular matrix

with diagonal terms equal to bν,0(t). Using (3.13) and (3.14) we conclude that

|aν,j(t)|2 �D,ν,δ 1/Kν(t, t).

This concludes the lemma.

For the sake of completeness we state here a result about Hilbert–type inequal-

ities proved in [18, Corollary 22].

Proposition 3.2.5 (Carneiro, Littmann and Vaaler). Let λ1, λ2, . . . , λN be

real numbers such that |λn − λm| ≥ σ whenever m 6= n, for some σ > 0. Let

a1, a2, . . . , aN be complex numbers. Then

− π2

6σ2

N∑
n=1

|an|2 ≤
N∑

m,n=1

m6=n

anam
(λn − λm)2

≤ π2

3σ2

N∑
n=1

|an|2.

The constants appearing in these inequalities are the best possible (as N →∞).
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The next lemma estimates the norm of the linear combination of ele-

ments from Gν . This is one of the two inequalities needed to show that this

collection is a (weighted) frame.

Lemma 3.2.6. Assume all hypotheses of Theorem 3.1.1. Let cj(t) ∈ C for

every zero t of B(z) and j ∈ {0, . . . , ν − 1} be such that

∑
B(t)=0

ν−1∑
j=0

|cj(t)|2

Kν(t, t)
<∞.

Then ∥∥∥ ∑
B(t)=0

ν−1∑
j=0

cj(t)Gν,j(·, t)
∥∥∥
H2(Eν)

�D,ν,δ

∑
B(t)=0

ν−1∑
j=0

|cj(t)|2

Kν(t, t)
.

Proof. Define

dm(t) =
ν−m∑
j=0

aν,ν−m−j(t)
cj(t)

j!
,

where aν,j(t) denotes the coefficient of (z − t)j in the Taylor series expansion

of Bν,ν(z, t)
−1 about the point z = t. By item (3) of Lemma 3.2.4 we trivially

obtain

ν∑
m=1

|dm(t)|2 �D,ν,δ

ν−1∑
j=0

|cj(t)|2

Kν(t, t)
. (3.15)
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For a given T > 0 we obtain

∥∥∥ ∑
B(t)=0
|t|≤T

ν−1∑
j=0

cj(t)Gν,j(z, t)
∥∥∥2

Eν
=
∥∥∥ ∑
B(t)=0
|t|≤T

ν−1∑
j=0

cj(t)

j!

ν−j∑
m=1

aν,ν−m−j(t)Bν,m(z, t)
∥∥∥2

Eν

=
∥∥∥ ∑
B(t)=0
|t|≤T

ν∑
m=1

dm(t)Bν,m(z, t)
∥∥∥2

Eν

�
ν∑

m=1

∑
B(t)=0
|t|≤T

|dm(t)|2 +
ν∑

m=2

∑
B(s)=0
B(t)=0
|s|,|t|≤T
s 6=t

|dm(t)||dm(s)|
(t− s)2

�
ν∑

m=1

∑
B(t)=0
|t|≤T

|dm(t)|2

�
∑
B(t)=0
|t|≤T

ν−1∑
j=0

|cj(t)|2

Kν(t, t)
,

where the first inequality is due to Lemmas 3.2.3 and 3.2.4, and the third

inequality follows from (3.15). The second term on the right–hand side of the

third line in the above calculation is in the form of a Hilbert–type inequal-

ity. By item (2) of Lemma 3.2.2 the zeros of B(z) are uniformly separated,

hence the second inequality above follows by Proposition 3.2.5. The implied

constants above depend only on D, ν and δ. The statement follows by letting

T to infinity.

3.2.1 Proof of Theorem 3.1.1

Step 1. Let F ∈ H2(Eν). Since H2(Eν) is closed under differentiation, it

follows that F (j) ∈ H2(Eν) for every j ≥ 0 and using the fact that every zero
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of B(z) is also a zero of Bν(z), we may apply Theorem 2.1.1 to obtain

ν−1∑
j=0

∑
B(t)=0

|F (j)(t)|2

Kν(t, t)
�D ‖F‖2

Eν . (3.16)

Thus, we may apply Lemma 3.2.6 to deduce that the interpolation

formula (3.8) converges in H2(Eν) to a function F0(z), hence also uniformly

in compact sets of C. We also conclude by Lemma 3.2.6 and property (3.7)

that for every function H ∈ H2(Eν) such that the interpolation formula (3.8)

holds we must have

‖H‖Eν �D,ν,δ

ν−1∑
j=0

∑
B(t)=0

|H(j)(t)|2

Kν(t, t)
. (3.17)

We claim that F0(z) = F (z). By Lemma 3.2.1 the span of Gν is dense in

H2(Eν), hence for any given ε > 0 there exists a function H ∈ H2(Eν) such

that the interpolation formula holds and ‖F −H‖Eν < ε. We obtain

‖F − F0‖2
Eν ≤ 2ε2 + 2‖H − F0‖2

Eν

� ε2 +
ν−1∑
j=0

∑
B(t)=0

|H(j)(t)− F (j)(t)|2

Kν(t, t)

� ε2 + ‖H − F‖2
Eν

< 2ε2,

where the second inequality is due to (3.17) and the third one due to (3.16).

Since ε > 0 is arbitrarily, the claim follows. This proves item (1) and inequality

(3.9) of item (2).

Step 2. We prove next inequality (3.10) of Item (2). Define

∆ν,j,t(z) = Kν(t, t)
− 1

2Dν,j(z, t).

Equation (3.9) implies that {∆ν,j,t : j = 0, . . . , ν − 1;B(t) = 0} is an (un-

weighted) frame for H2(Eν). Consider the frame operator U : H2(Eν) →
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H2(Eν) defined by

UF (z) =
∑
B(t)=0

ν−1∑
j=0

〈F,∆ν,j,t〉H2(Eν)∆ν,j,t(z).

It is a basic result of frame theory (see [41, Corollary 5.1.3]) that U

is invertible and positive, and that the collection {U−1∆ν,j,t : j = 0, . . . , ν −
1;B(t) = 0} is also a frame, sometimes called the canonical dual frame. It

follows immediately from (3.7) that

UGν,j = Kν(t, t)
− 1

2 ∆ν,j,t(z),

which implies that {Kν(t, t)
1
2Gν,j(·, t) : j = 0, . . . , ν − 1;B(t) = 0} is the dual

frame of Dν . This implies (3.10). We remark that since for every fixed t

the functions Gν,j(z, t) and Bν,j(z, t) are connected via an invertible matrix

transformation, the inequalities can also be shown from the bounds for Bν es-

tablished in Lemma 3.2.4. Finally, Item (3) is a direct consequence of property

(3.7). The proof of Theorem 3.1.1 is complete.

3.3 The Lp–case

Before proving Theorem 3.1.2 we need some technical lemmas. We refer

to Appendix 6.1 for further information about the Lp version of de Branges

spaces and its connection with Hardy spaces. The next results indicate that

when the derivative of the associated phase function is bounded, the Lp de

Branges space in question behaves similarly to a Paley–Wiener space with

respect to inclusion and summability issues.

Lemma 3.3.1. Let E(z) be a Hermite–Biehler function such that the associ-

ated phase function ϕ(x) has bounded derivative on R. Then for 1 ≤ p < q <

∞ we have Hp(E) ⊂ Hq(E) continuously. Also, if p > 1 then Hp(E) is dense

in Hq(E).
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Proof. Recall that ϕ′(x) = πK(x, x)/|E(x)|2 and denote by τ its supremum.

By the reproducing kernel property we obtain∫
R

∣∣∣∣K(ξ, x)

E(x)

∣∣∣∣2dx = K(ξ, ξ) ≤ τ |E(ξ)|2/π

and

K(ξ, x)2 ≤ K(ξ, ξ)K(x, x) ≤ |τE(ξ)E(x)/π|2.

Thus, we obtain that for all q ∈ [2,∞)∫
R

∣∣∣∣K(ξ, x)

E(x)

∣∣∣∣qdx ≤ (τ/π)q−1|E(ξ)|q.

If p ∈ [1, 2] and F ∈ Hp(E), we can apply (6.7) to obtain that

|F (ξ)/E(ξ)| ≤ ‖F‖E,p‖K(ξ, ·)‖E,p′/|E(ξ)| ≤ ‖F‖E,p(τ/π)1/p

for all ξ ∈ R.

This implies the proposed inclusions for 1 ≤ p < q <∞ and p ≤ 2. By

(6.8) the dual space of Hp(E) can be identified with Hp′(E) if 1 < p < ∞.

This implies the remaining inclusions. Since convergence in the space implies

convergence on compacts sets of C we conclude that the identity map from

Hp(E) to Hq(E) is closed, hence continuous by the Closed Graph Theorem.

The density part follows by an application of the Hahn-Banach Theo-

rem in conjunction with the duality characterization (6.8) and the reproducing

kernel property (6.6).

Lemma 3.3.2. Let E(z) be a Hermite–Biehler function with no real zeros and

such that τ = supx ϕ
′(x) <∞. Then for p ∈ [1, 2] and F ∈ Hp(E) we have∑
B(t)=0

|F (t)|
(1 + |t|)K(t, t)1/2

�τ,p ‖F‖E,p.

The above estimate is also valid in the case p ∈ (2,∞) if we additionally

assume that E(z) satisfies condition (C1) (that is v(E∗/E) < 0).
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Proof. Step 1. We start with the case 1 ≤ p ≤ 2. By Lemma 3.3.1 we have

Hp(E) ⊂ H2(E) continuously, thus the case p < 2 follows directly from the

case p = 2.

The boundedness of ϕ′(x) implies that the zeros of B(z) are separated,

because they coincide with the set of points t such that ϕ(t) ≡ 0 mod π. Let

F ∈ H2(E), by the Cauchy-Schwarz inequality we have

∑
B(t)=0

|F (t)|
(1 + |t|)K(t, t)1/2

≤
( ∑
B(t)=0

|F (t)|2

K(t, t)

)1/2( ∑
B(t)=0

(1+|t|)−2

)1/2

�τ ‖F‖E,

where the last inequality is due to (2.10) and the separability of the zeros of

B(z).

Step 2. We now deal with the case p > 2. By hypothesis we have v(E∗/E) =

−2a < 0. Fix a real number α such that α ∈ (−1/p, 0). Let Eα(z) be the

function defined in Section 6.2 associated with homogeneous spaces and define

the operator L : Hp(E) → H2(E2) by LF (z) = e−iazEα(az)E∗(z)F (z). By

the properties described in Section 6.2 we have:

(i) v(E∗α) ≤ v(Eα) = τ(Eα) = 1;

(ii) |Eα(t)| ' 1/|t|α+1/2 , for |t| ≥ 1.

Hence, if G(z) = LF (z) we obtain

v(G/E2) = v(F/E) + v(E∗/E) + v(Eα(az)) + v(e−iaz) ≤ 0− 2a+ a+ a = 0

and

v(G∗/E2) = v(F ∗/E) + v(E∗α(az)) + v(eiaz) ≤ 0 + a− a = 0.

By Holder’s inequality we also have∫
R
|G(x)/E(x)2|2 dx ≤

(∫
R
|Eα(ax)|2qdx

)1/q

‖F‖2
E,p �a,p ‖F‖2

E,p, (3.18)

74



where q = (p/2)′ = p/(p− 2). Note that q > p > 2 and 2q(α + 1/2) > 1.

We conclude that the operator L is well-defined and continuous. Denot-

ing by K2(w, z) the reproducing kernel of H2(E2) and K(w, z) the reproducing

kernel of H2(E) we obtain K2(t, t) = 2|E(t)|2K(t, t). We have

∑
B(t)=0

|F (t)|
(1 + |t|)K(t, t)1/2

=
∑
B(t)=0

√
2|G(t)|

|Eα(at)|(1 + |t|)K2(t, t)1/2

≤
( ∑
B(t)=0

2|G(t)|2

K2(t, t)

)1
2
( ∑
B(t)=0

1

|Eα(at)|2(1 + |t|)2)

)1
2

�τ,a,p ‖G‖E2

�τ,a,p ‖F‖E,p ,

where the first inequality is due to the Cauchy-Schwarz inequality, the second

inequality due to (2.10) together with the choice of α < 0 and the last one is

due to (3.18).

We now prove a generalized (weighted) version of the Pólya-Plancherel theorem

(see [65]).

Proposition 3.3.3. Let E(z) be a Hermite–Biehler function satisfying condi-

tion (C2) for some h > 0 and such that τ = supx ϕ
′(x) < ∞. Let {λn} be a

sequence of real numbers such that |λn − λm| ≥ σ whenever n 6= m, for some

σ > 0. Then for any p ∈ [1,∞) and F ∈ Hp(E) we have∑
n

∣∣∣∣F (λn)

E(λn)

∣∣∣∣p ≤ 2
1 + e4τpη

πη

∫
R

∣∣∣∣F (x)

E(x)

∣∣∣∣pdx,
where η = min{σ, h}.

Proof. Step 1. Since E∗/E is bounded on the upper half–plane and has

modulo one in the real line, by Nevanlinna’s factorization (see [6, Theorem 8])
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we obtain

Θ(z) :=
E∗(z)

E(z)
= e2aiz

∏
n

1− z/wn
1− z/wn

where wn = xn− iyn with yn ≥ h are the zeros of E(z) and 2a = −ν(E∗/E) ≥
0. If z = x+ iy with y ≥ 0 we have the following identity

1

2
∂y log |Θ∗(z)| =a+

∑
n

yn[(x− xn)2 + y2
n − y2]

|z − wn|2|z − wn|2
.

If 0 ≤ y ≤ h/2 then y2
n − y2 ≤ 4(yn − y)2 and we deduce that

1

2
∂y log |Θ∗(z)| ≤ a+ 4

∑
n

yn
(x− x2

n) + y2
n

= −3a+ 4
1

2
∂y log |Θ∗(x)|

= −3a+ 4ϕ′(x) ≤ 4τ.

Integrating in y we obtain |Θ∗(z)| ≤ e8τy if 0 ≤ y ≤ h/2.

Step 2. Let η = min{h, σ}. Since the function |F (z)/E(z)|p is sub-harmonic

in the half–plane Im z > −h, its value at the center of a disk is not greater

than its mean value over the disk. We obtain

|F (λn)/E(λn)|p ≤ 4

πη2

∫ η/2

0

∫ 2π

0

|F (λn + ρeiθ)/E(λn + ρeiθ)|pdθρdρ

≤ 4

πη2

∫ η/2

−η/2

∫ λn+η/2

λn−η/2
|F (x+ iy)/E(x+ iy)|pdxdy.

Using the separability of {λn} we can sum the above inequality for all values

of n to obtain∑
n

|F (λn)/E(λn)|p ≤ 4

πη2

∫ η/2

−η/2

∫
R
|F (x+ iy)/E(x+ iy)|pdxdy

=
4

πη2

∫ η/2

0

∫
R
|F (x+ iy)/E(x+ iy)|pdxdy

+
4

πη2

∫ η/2

0

∫
R
|F ∗(x+ iy)/E∗(x+ iy)|pdxdy.
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Since |Θ∗(z)| ≤ e8τy for 0 < y < h/2 we conclude that

∑
n

|F (λn)/E(λn)|p ≤ 4

πη2

∫ η/2

0

∫
R

|F (x+ iy)|p + e4τpη|F ∗(x+ iy)|p

|E(x+ iy)|p
dxdy.

By the discussion of Appendix 6.1, F/E and F ∗/E belong to the Hardy space

Hp(C+). We can apply (6.5) to deduce that∫
R

|F (x+ iy)|p + e4τpη|F ∗(x+ iy)|p

|E(x+ iy)|p
dx ≤ (1 + e4τpη)

∫
R

∣∣∣∣F (x)

E(x)

∣∣∣∣pdx
for every y > 0. This concludes the proof.

For the sake of completeness we state a result about boundeness of

the differentiation operator due to Baranov (see [2, Theorem A]). For similar

results in model spaces of Hardy spaces we refer to Dyakonov papers [28, 29].

Theorem 3.3.4 (Baranov). Let E(z) be a Hermite–Biehler function satisfying

condition (C1) or (C2). For p ∈ (1,∞) the following statements are equivalent:

(1) Hp(E) is closed under differentiation.

(2) E(z) is of exponential type and E ′(z)/E(z) ∈ H∞(C+).

Remark. The fact that condition (2) above is independent of p ∈ (1,∞)

implies that if E(z) satisfies condition (C1) or (C2) then Hp(E) is closed

under differentiation if and only if H2(E) is closed under differentiation.

3.3.1 Proof of Theorem 3.1.2

The following is a very technical proof and for this reason we split the

proof into several steps. Steps 0, 1 and 2 are the crucial ones.
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Step 0. A simple, but crucial consequence of formula (3.8) is that the singular

part of the function F (z)/B(z)ν at a given zero t of B(z) is

ν−1∑
j=0

F (j)(t)
Gν,j(z, t)

Bν(z)
=

ν−1∑
j=0

F (j)(t)
Pν,ν−j−1(z, t)

j!(z − t)ν−j
.

To see this, define for any complex number w a linear operator Sw on the space

of meromorphic functions G(z) by

Sw(G)(z) =
∑
n≤−1

gn
(z − w)n

if G(z) has the series representation

G(z) =
∑
n∈Z

gn
(z − w)n

about z = w. That is, Sw(G) is defined as the singular part of the function

G(z) at the point z = w. Since G(z) is meromorphic, Sw(G)(z) is always a

rational function. It is a simple, but useful characterization that Sw(G)(z) is

the unique rational function R(z) having exactly one pole which is located at

z = w, such that G(z)− R(z) has a removable singularity at the point z = w

and

lim
|z|→∞

R(z)

zj
= 0 (3.19)

for every integer j ≥ 0. Recalling that

(z − t)ν

B(z)ν
=
∞∑
n=0

aν,n(t)(z − t)n and Pν,j(z, t) =

j∑
n=0

aν,n(t)(z − t)n

we obtain

St
(
F

Bν

)
(z) =

ν−1∑
j=0

F (j)(t)
Pν,ν−j−1(z, t)

j!(z − t)ν−j
=

ν−1∑
j=0

F (j)(t)
Gν,j(z, t)

B(z)ν
. (3.20)
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Now, given a complex number w ∈ C we define another linear operator

Mw on the space of entire functions F (z) by

Mw(F )(z) =
F (z)B(w)ν −B(z)νF (w)

z − w
.

We observe that for every zero t of B(z) and every w ∈ C not a zero of B(z)

we have

St
(
Mw(F )(·)
B(w)νB(·)ν

)
(z) =

St(F/Bν)(z)− St(F/Bν)(w)

z − w
. (3.21)

One can deduce this last identity by observing that

Mw(F )(z)

B(w)νB(z)ν
− St(F/B

ν)(z)− St(F/Bν)(w)

z − w
has a removable singularity at the point z = w and also that the right–hand

side of (3.21) is a rational function in the variable z with exactly one pole,

which is located at z = t and satisfies condition (3.19).

Step 1. We begin with the case p ∈ [1, 2]. By Lemma 3.2.2, the assumption

that H2(Eν) is closed under differentiation implies that τ = supx ϕ
′(x) < ∞.

We can apply Lemma 3.3.1 to conclude that Hp(Eν) ⊂ H2(Eν), hence formula

(3.11) is a direct consequence of Theorem 3.1.1.

Step 2. Now, we deal with the case p ∈ (2,∞). A crucial observation is that

if F ∈ Hp(Eν) then Mw(F ) ∈ H2(Eν). Thus, we can apply Theorem 3.1.1

together with (3.20) to obtain

Mw(F )(z) =
∑
B(t)=0

B(z)νSt
(
Mw(F )(·)
B(·)ν

)
(z),

where the last sum converges uniformly in the variable z in every compact

subset of C for every w ∈ C. By (3.20) and (3.21) we conclude that

F (z)

B(z)ν
− F (w)

B(w)ν
=
∑
B(t)=0

{ ν−1∑
j=0

F (j)(t)
Gν,j(z, t)

B(z)ν
−

ν−1∑
j=0

F (j)(t)
Gν,j(w, t)

B(w)ν

}
(3.22)
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for every w, z ∈ C that are not zeros of B(z).

We claim that

F (z) = Λ(F )B(z)ν +
∑
B(t)=0

ν−1∑
j=0

F (j)(t)Gν,j(z, t) (3.23)

for some constant Λ(F ), where the sum converges uniformly in compact sets

of C. In Steps 4 and 5 we show that under condition (C1) or (C2) the formula

(3.23) holds and that F 7→ Λ(F ) defines a continuous functional that vanishes

in a dense set of functions in Hp(Eν) hence it vanishes identically. In either

case, Λ is identically zero which concludes the proof.

Step 3. Recall that aν,j(t) are defined as the coefficients of the Taylor expan-

sion of Bν,ν(z, t)
−1 at the point z = t. By Lemma 3 these coefficients satisfy

the estimate

|aν,j(t)|2 �D,ν
1

Kν(t, t)

for j = 0, . . . , ν − 1, where D is the norm of the differentiation operator in

H2(Eν) and Kν(w, z) is the reproducing kernel associated with E(z)ν . Since

Gν,j(z, t) =
B(z)ν

j!

ν−j−1∑
`=0

aν,`(t)

(z − t)ν−`−j
,

we obtain

Kν(t, t)|Gν,j(i, t)|2 �D,ν
1

1 + t2
(3.24)

for every zero t of B(z) and j = 0, . . . , ν − 1.

Step 4. Assume that E(z) satisfies condition (C2) for some h > 0. By the

remark after Theorem 3.3.4 we have that Hp(Eν) is closed under differentia-

tion. Also, the assumption that ϕ′(t) ≥ δ whenever B(t) = 0 in conjunction

with formula (2.9) implies that

|E(t)|2ν �δ Kν(t, t) (3.25)
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whenever B(t) = 0. By Lemma 3.2.2 items (1) and (2) we have that ϕ′(x)� 1

and that the zeros of B(z) are separated. Thus, we can apply Proposition 3.3.3

together with (3.25) to obtain∑
B(t)=0

∣∣∣∣ F (t)

Kν(t, t)1/2

∣∣∣∣p �D,δ,h,p

∫
R

∣∣∣∣ F (x)

E(x)ν

∣∣∣∣pdx (3.26)

for every F ∈ Hp(Eν). Finally, we obtain the following estimate

ν−1∑
j=0

∑
B(t)=0

|F (j)(t)Gν,j(i, t)| ≤
ν−1∑
j=0

( ∑
B(t)=0

|F (j)(t)|p

Kν(t, t)p/2

)1
p
( ∑
B(t)=0

|Gν,j(i, t)|p
′

Kν(t, t)−p
′/2

) 1
p′

�
ν−1∑
j=0

( ∑
B(t)=0

|F (j)|p(t)

Kν(t, t)p/2

)1
p

� ‖F/Eν‖Lp(R),

(3.27)

where the first inequality is Holder’s inequality, the second one is due to (3.24)

and the separation of the zeros of B(z), the third one is due to (3.26) and the

closure under differentiation of Hp(Eν).

Estimate (3.27) together with formula (3.22) clearly implies that (3.23)

is valid and, by using estimate (6.7) we can easily deduce that F 7→ Λ(F ) is

a continuous functional over Hp(Eν). By Lemmas 3.2.1 and 3.3.1 the span of

the functions {Gν,j(z, t)} for j = 0, . . . , ν− 1 and B(t) = 0 is dense in Hp(Eν)

and trivially Λ(Gν,j(·, t)) = 0. Hence Λ vanishes identically.

Step 5. Assume that E(z) satisfies (C1) with −a = v(E∗/E). By Theorem

3.3.4 we again conclude that Hp(Eν) is closed under differentiation. We can

apply Lemma 3.3.2 together with (3.24) to deduce that

ν−1∑
j=0

∑
B(t)=0

|F (j)(t)Gν,j(i, t)| � ‖F (x)/E(x)ν‖Lp(R) (3.28)
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for every F ∈ Hp(Eν). In the same way as in the previous step, we deduce

that formula (3.23) is valid and F 7→ Λ(F ) is a continuous functional over

Hp(Eν) that is identically zero in a dense set of functions. Hence Λ vanishes

identically. This concludes the proof.

Remark. We note that due to estimate (3.24), whenever the space H2(Eν)

is closed by differentiation, the estimate (3.26) implies estimate (3.28) by an

application of Holder’s inequality. Therefore, we conclude that the result of

Theorem 3.1.2 (for some p > 2) will remain valid if we drop conditions (C1)

and (C2) and replace them by the following by condition

ν−1∑
j=0

∑
B(t)=0

|F (j)(t)|
Kν(t, t)1/2(1 + t2)

� ‖F (x)/E(x)ν‖Lp(R) (3.29)

for all F ∈ Hp(Eν).

3.4 Applications

3.4.1 Weights Given by Powers of |x|

There is a variety of examples of de Branges spaces [6, Chapter 3] for

which Theorems 3.1.1 and 3.1.2 may be applied. A basic example would be

the classical Paley–Wiener space H2(e−iτz) which gives us the previous results

obtained by Vaaler in [73, Theorem 9]. Another interesting family arises in

the discussion of [47, Section 5]. These are called homogeneous spaces. The

definition of such spaces and some crucial results are presented in Appendix

6.2. In what follows we only define the objects needed to state our results.

Let α > −1 be a parameter and consider the real entire function Aα(z)

given by

Aα(z) =
∞∑
n=0

(−1)n
(

1
2
z
)2n

n!(α + 1)(α + 2) . . . (α + n)
= Γ(α + 1)

(
1
2
z
)−α

Jα(z),
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where Jα(z) denotes the classical Bessel function of the first kind. For a given

integer ν > 0 define the functions Gν,j(α; z, t) as in (3.6) by replacing the

function B(z) by Aα(z) and the zeros of B(z) by the zeros of Aα(z). Notice

that these zeros are nothing but the positive real zeros of Jα(z) symmetrized

about the origin. Also, define the following weight

ωα,ν(x) =

{
|x|ν(α+1/2), if |x| > 1;

1, if |x| ≤ 1.

The following results are applications of Theorems 3.1.1 and 3.1.2 to

homogeneous spaces as described in Appendix 6.2. For the case p > 2 we

use the alternative condition (3.29) pointed out by the remark in the end of

Section 3.3.1 and which is proved in Lemma 6.2.1.

Theorem 3.4.1. Let α > −1 be a real number and ν > 0 be an integer. Then

there exists a constant C > 0 such that

1

C

∫
R
|F (x)ωα,ν(x)|2dx ≤

∑
Aα(t)=0

ν−1∑
j=0

|F (j)(t)ωα,ν(t)|2 ≤ C

∫
R
|F (x)ωα,ν(x)|2dx

for every entire function F (z) of exponential type at most ν. Furthermore, if

the above quantity is finite then

F (z) =
∑

Aα(t)=0

ν−1∑
j=0

F (j)(t)Gν,j(α; z, t),

where this series converges to F (z) uniformly in compact sets of C and in the

L2(R, ωα,ν(x)2dx)–norm.

Theorem 3.4.2. Let α > −1 be a real number and ν > 0 be an integer. Let

F (z) be an entire function of exponential type at most ν such that∫
R

∣∣F (x)ωα,ν(x)|pdx <∞
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for some p ∈ [1,∞). Then

F (z) =
∑

Aα(t)=0

ν−1∑
j=0

F (j)(t)Gν,j(α; z, t),

where this series converges uniformly in compact sets of C.

3.4.2 Extremal Band–limited Functions

The purpose of this section is to prove a uniqueness result for some

extremal problems described below. A set K ⊂ RN is called a convex body

if it is compact, convex, symmetric around the origin and with non-empty

interior. Let | · | denote the Euclidean norm in RN and BN the compact

Euclidean unit ball. Given a non-negative Borel measure dµ on RN and a

real–valued function g(x) we denote by M(g,K, dµ) the set of measurable

real–valued functions M(x) defined on RN satisfying the following conditions:

(i) M(x) defines a tempered distribution such that its distributional Fourier

transform M̂ is supported on K.

(ii) g(x) ≤M(x) for all x ∈ RN .

(iii) M − g ∈ L1(RN , dµ).

In this case, we say that M(x) is a band–limited majorant of g(x). In an

analogous way we define L(g,K, dµ) as the set of minorants. We are asked to

minimize the quantities∫
RN

{
M(x)− g(x)

}
dµ(x) and

∫
RN

{
g(x)− L(x)

}
dµ(x) (3.30)

among all functions M ∈ M(g,K, dµ) and L ∈ L(g,K, dµ). And, if the

minimum is attained, characterize the set of extremal functions. We call M(x)

(or L(x)) an extremal function if it minimizes the quantity (3.30).
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The problem becomes treatable if we consider radial functions. For

instance, we consider the situation where K = BN , the function g(x) is radial,

and

dµE(x) = 2

(
|E(|x|)|2|x|N−1

∣∣SN−1
∣∣)−1

dx , (3.31)

where
∣∣SN−1

∣∣ denotes the area of the (N − 1)-dimensional sphere and E(z) is

of Hermite–Biehler class.

In this section E(z) = A(z)−iB(z) will denote a Hermite–Biehler func-

tion of bounded type and mean type equal to π. Moreover, we also assume

that H2(E2) is closed under differentiation and 1 � ϕ′(t) over the zero set

of A(z) and B(z). We also assume that E∗(−z) = E(z) and A,B /∈ H2(E).

These assumptions imply that the companion functions A(z) and B(z) are re-

spectively even and odd and, by Krein’s Theorem 6.1.2, E(z) is of exponential

type with τ(E) = v(E) = π. Moreover, F ∈ H2(E) if and only if F (z) is of

exponential type at most π and F/E ∈ L2(R, dx).

These restrictions allow us to reduce the multidimensional problem to

an one–dimensional problem and to use de Branges space techniques. Con-

structions of extremal band–limited approximations of radial functions in sev-

eral variables were studied in [16, 17, 47]. In particular, Carneiro and Littmann

[16, 17] were able to explicitly construct a pair of radial functions M ∈
M(g,BN , dµE) and L ∈ L(g,BN , dµE) that minimize the quantities in (3.30),

where dµE is given by (3.31) with E(z) = Eα(z) (see Appendix 6.2) and

g(x) belongs to a vast class of radial functions with exponential or Gaussian

subordination.

For the sake of completeness we state here a classical theorem about

tempered distributions with Fourier transform supported on a ball (see [48,

Theorem 7.3.1]).
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Theorem 3.4.3 (Paley–Wiener–Schwartz). Let F be a tempered distribution

such that the support of F̂ is contained in BN . Then F : Cd → C is an entire

function and there exists C > 0 such that

|F (x+ iy)| ≤ C(1 + |x+ iy|)Ce2π|y|

for every x+iy ∈ Cd. Conversely, every entire function F : Cd → C satisfying

an estimate of this form defines a tempered distribution with Fourier transform

supported on BN .

The next propositions give an interpolation condition for a majorant or

minorant to be extremal and unique in the radial case. We highlight the fact

that the uniqueness part below is a novelty in this multidimensional theory,

and makes a crucial use of our interpolation formulas. This enhances the

extremal results obtained in [16, 17].

Proposition 3.4.4. Let g(x) be a radial function that is differentiable for

x 6= 0. Suppose that M(g,BN , dµE) 6= ∅ and there exists a radial function

L ∈ L(g,BN , dµE) such that L(x) = g(x) whenever A(|x|) = 0. Then L(x) is

extremal and unique among the set of entire functions on Cd whose restriction

to RN is radial.

Proposition 3.4.5. Let g(x) be a radial function that is differentiable for

x 6= 0. Suppose that L(g,BN , dµE) 6= ∅ and there exists a radial function

M ∈ M(g,BN , dµE) such that M(x) = g(x) whenever B(|x|) = 0. Then

M(x) is extremal and unique among the set of entire functions on Cd whose

restriction to RN is radial.

We only prove Proposition 3.4.5 since the other is analogous.
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Proof. Optimality. Fix L ∈ L(g,BN , dµE). Let SO(N) denote the compact

topological group of real orthogonal N ×N matrices with determinant 1, with

associated Haar probability measure dσ.

For a given function F (x) define its radial symmetrization by

Fr(x) =

∫
SO(N)

F (ρx) dσ(ρ).

It is not difficult to see that if F ∈M(g,BN , dµE) then Fr ∈M(g,BN , dµE).

Furthermore, since M(x) is radial we also have∫
RN

{
F (x)−M(x)

}
dµE(x) =

∫
RN

{
Fr(x)−M(x)

}
dµE(x). (3.32)

Let F ∈ M(g,BN , dµE) be given. Define m(s) = M(se1), `(s) =

Lr(se1) and f(s) = Fr(se1) for all real s, where e1 = (1, 0, . . . , 0). We can

apply the Paley–Wiener-Schwartz Theorem to conclude that these functions

extend to C as entire functions of exponential type at most 2π. By (3.31) and

(3.32) we obtain that∫
RN

{
F (x)−M(x)

}
dµE(x) =

∫
R
{f(s)−m(s)}/|E(s)|2 ds. (3.33)

We claim that f(s) − m(s) = |p(s)|2 − |q(s)|2 for all real s for some

p, q ∈ H2(E). Since m(s)−`(s) ≥ 0 and f(s)−`(s) ≥ 0 for all real s and these

functions belong to H1(E2), we conclude that there exist two entire functions

p, q ∈ H2(E) such that m(s) − `(s) = |p(s)|2 and r(s) − l(s) = |q(s)|2 for all

real s (see [6, Theorem 13]). We can apply formula (2.10) to obtain that

∫
R
{f(s)−m(s)}|E(s)|−2dt =

∫
R

|p(s)|2 − |q(s)|2

|E(s)|2
dt =

∑
B(t)=0

|p(t)|2 − |q(t)|2

K(t, t)

=
∑
B(t)=0

f(t)−m(t)

K(t, t)
=
∑
B(t)=0

f(t)− g(te1)

K(t, t)
≥ 0 ,

(3.34)
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where the last equality is due to the interpolation condition of M(x), that is,

M(x) = g(x) whenever B(|x|) = 0. By (3.33) and (3.34) we conclude that

M(x) is extremal.

Uniqueness. Let F ∈ M(g,BN , dµE) be radial and extremal. Inequality

(3.34) implies that f(t) := F (te1) = g(te1) whenever B(t) = 0. Since x ∈
RN 7→ g(x) is radial and differentiable for x 6= 0 we conclude that f ′(t) =

∂1g(te1) if B(t) = 0 and t 6= 0 (recall that B(z) is odd). Since f(t) is even we

also have f ′(0) = 0. Since f(s)−m(s) belongs to H1(E2) and f(t) = m(t) and

f ′(t) = m′(t) whenever B(t) = 0, by Theorem 3.1.2, we conclude that f ≡ m

and this concludes the proof.

Remark. In some cases g(x) may have a singularity at x = 0, for instance

if limx→0 g(x) = ∞. Thus, only the minorant problem is well-posed, that is

M(g,BN , dµE) = ∅. However, in the case of homogeneous spaces the previous

proposition will still hold. In [16, Corollary 23], E. Carneiro and F. Littmann

proved that every f ∈ H1(E2
α), not necessarily non-negative on the real axis,

can be represented as f = pp∗ − qq∗ for p, q ∈ H2(Eα). We can easily see that

this representation is sufficient to prove the previous propositions.

3.4.3 Sampling and Interpolation in Paley–Wiener Spaces

We give here one application of the results obtained for the L2 case

related to sampling/interpolation theory in Paley–Wiener spaces. We say that

a sequence of real numbers {λm} is sampling of order ν for PW 2(τ) if the norm

ην(F ) =

[ ν−1∑
j=0

∑
m

|F (j)(λm)|2
]1/2

defines an equivalent norm in PW 2(τ) (that is, equivalent to the L2(R)–norm).

Recall that PW 2(τ) is defined as the space of entire functions F (z) of expo-

nential type at most τ > 0 that belong to L2(R) when restricted to the real
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line. We say that {λm} is a non-redundant sampling sequence if by extracting

one element of {λm} the norm ην is no longer equivalent to the L2(R)–norm.

We say that {λm} is interpolating of order ν in PW 2(τ) if the system

F (j)(λm) = fj,m

has a solution F ∈ PW 2(τ) for any

({f0,m}, {f1,m}, . . . , {fν−1,m}) ∈
ν times︷ ︸︸ ︷

`2(Z)× . . .× `2(Z) .

We say that {λm} is a complete interpolating sequence if the solution is unique.

In [64, Theorem 1], Ortega–Cerdà and Seip gave necessary and sufficient

conditions for a sequence be sampling with no derivatives in PW 2(τ). Their

characterization relies heavily upon the representation PW 2(τ) = H2(E) for

some Hermite–Biehler function E(z). They proved the following result.

Theorem 3.4.6 (Ortega–Cerdà and Seip). Let {λm} be a separated sequence

of points. The following are equivalent:

(i) {λm} is a sampling sequence without derivatives for PW 2(τ).

(ii) There exists a Hermite–Biehler function E(z) and an entire function

W (z) with |W (z)| ≤ |W (z)| for all z ∈ C+, and such that PW 2(τ) =

H2(E) as sets and {λm} coincides with the real zeros of E∗W ∗ − EW .

Remark. Ortega–Cerdà and Seip also proved that if {λm} is a complete

interpolating sequence without derivatives then there exists a Hermite–Biehler

function E(z) = A(z)− iB(z) such that PW 2(τ) = H2(E) and {λm} are the

real zeros of the function B(z).

In this direction we derive the following result.
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Theorem 3.4.7. Let E(z) = A(z) − iB(z) be a Hermite–Biehler function,

ν ≥ 2 be an integer and denote by {tn}n∈Z the real zeros of B(z). Assume that

PW 2(τ) = H2(Eν) as sets and there exists C > 0 such that |A(tn)| ≤ C for

all n. Then the map

F (z) 7→ (F (tn), F ′(tn), · · · , F (ν−1)(tn))

defines a continuous linear isomorphism from PW 2(τ) to

ν times︷ ︸︸ ︷
`2(Z)× . . .× `2(Z).

In particular, {tn} is a complete interpolating and a non-redundant sampling

sequence of order ν.

Proof. Since convergence in the space implies uniform convergence in compacts

of C, we can apply the Closed Graph Theorem to obtain that∫
R
|F (x)/E(x)ν |2dx '

∫
R
|F (x)|2dx

for all F ∈ PW 2(τ) = H2(Eν). Also, it is a known fact that the Paley–Wiener

spaces are closed under differentiation (one can use Fourier inversion to see

that). Thus, we can apply Lemma 3.2.2 to deduce that ϕ′(x) ≤ D
√
ν, where

D is the norm of the differentiation operator in PW 2(τ).

Write E(z)ν = Aν(z) − iBν(z). Note that the zeros of Bν(z) coincide

with the points ϕ(s) ≡ 0 mod π/ν. Thus, if s1 < s2 are two consecutive zeros

of Bν(z) we obtain that

π/ν = ϕ(s2)− ϕ(s1) ≤ D
√
ν(s1 − s2).

Hence the zeros of Bν(z) are separated. By Theorem 3.4.6, the identification

H2(Eν) = PW2(τ) implies that the zeros of the function Bν(z) form a sampling

sequence without derivates in PW2(τ), that is,∑
Bν(t)=0

|F (t)|2 '
∫
R
|F (x)|2dx (3.35)
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for every F ∈ PW 2(τ). We conclude that B /∈ H2(E), otherwise, since

Bν(z) =
ν∑
k=1

bkA(z)ν−kB(z)k

for some coefficients bk, this would imply that Bν(z) ∈ H2(Eν) and, by (3.35),

Bν(z) would have zero norm, a contradiction.

Finally, this theorem will follow from Theorem 3.1.1 items (1) and (2)

once we verify the estimates

1� ϕ′(tn)

and

Kν(tn, tn) ' 1

for all n. Using the reproducing kernel structure of PW 2(τ) one can show that

Kν(x, x) = sup
‖F/Eν‖L2≤1

|F (x)|2 ' sup
‖F‖L2≤1

|F (x)|2 = τ/π

for all real x. This last fact in conjunction with formula

νϕ′(x)|E(x)|2ν = πKν(x, x)

and the hypothesis that |A(tn)| ≤ C for all n, proves the desired estimates

and concludes the proof.

Remark. In [64, Theorem 4], Lyubarskii and Seip give necessary and sufficient

conditions for the representation PW 2(τ) = H2(E).
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Chapter 4

Band–limited Approximations in Many

Variables

4.1 Approximations of Functions Subordinated to
Gaussians

In this section we study the Beurling–Selberg problem for multivariate

Gaussian functions. We then generalize the Gaussian subordination and dis-

tribution method, originally developed in [18], to higher dimensions and apply

the method to study the Beurling–Selberg problem for a class of radial func-

tions. We conclude our investigations by adapting the construction to periodic

functions (see Section 4.5.1). For further applications we refer to [37].

To state the first of our main results we will use the following notation

(see Section 4.3.1 for additional information). For a = (a1, . . . , aN) and λ =

(λ1, . . . , λN) with only positive entries let

x ∈ RN 7→ Gλ(x) = exp

{
−

N∑
j=1

λjπx
2
j

}
.

and let

Q(a) =
N∏
j=1

[−aj, aj].

We also use the notation Q(R) = Q((R, . . . , R)) for a given R > 0 and RN
+ =

(0,∞)N .
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Our first result is a solution to the Beurling–Selberg extremal problem

of determining optimal majorants of the Gaussian function Gλ(x) that have

Fourier transform supported in Q(a).

Theorem 4.1.1. Let a,λ ∈ RN
+ . If F : RN → R is an integrable function

that satisfies:

(i) F (x) ≥ Gλ(x) for each x ∈ RN , and

(ii) F̂ (ξ) = 0 for each ξ /∈ Q(a),

then ∫
RN
F (x)dx ≥

N∏
j=1

λ
−1

2
j Θ(0; ia2

j/λj).

where Θ(v; τ) is Jacobi’s theta function (see §4.3.1). Moreover, equality holds

if F (x) = Mλ,a(x) where Mλ,a(x) is defined by (4.23).

Remark. This theorem is essentially a corollary of Theorem 3 of [18]. The

proof simply uses the product structure and positivity of Gλ(x) in conjunction

with Theorem 3 of [18] and for this reason we omit the proof. However, it can

be found in [37].

It would be interesting to determine the analogue of the above theorem

for minorants of Gλ(x) (that is, the high dimensional analogue of Theorem 2

of [18]), where the extremal functions cannot be obtained by a tensor product

of lower dimensional extremal functions. In our second result we address this

problem by constructing minorants of the Gaussian function Gλ(x) that have

Fourier transform supported in Q(a) and that are asymptotically extremal as

a becomes uniformly large in each coordinate.

Theorem 4.1.2. Let a,λ ∈ RN
+ . If F : RN → R is an integrable function

that satisfies
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(i) F (x) ≤ Gλ(x) for each x ∈ RN , and

(ii) F̂ (ξ) = 0 for each ξ 6∈ Q(a),

then ∫
RN
F (x)dx ≤

N∏
j=1

λ
−1

2
j Θ(1

2
; ia2

j/λj). (4.1)

Furthermore, there exists a positive constant γ0 = γ0(N) such that if γ :=

minj{a2
j/λj} ≥ γ0, then

N∏
j=1

λ
−1

2
j Θ(1

2
; ia2

j/λj) ≤ (1 + 5Ne−πγ)

∫
RN
Lλ,a(x)dx (4.2)

where Lλ,a(x) is the minorant defined by (4.22).

Remark.

(1) For a fixed a, if λ is large enough then the right–hand side of (4.2) would

be negative and the inequality would not hold, but this is not true for

large values of γ. In fact, this happens because the zero function would

be a better minorant.

(2) Inequality (4.2) implies that if λ is fixed and a is large, then
∫
RN Lλ,a(x)dx

approaches exponentially fast the optimal answer. In this sense, we say

that Lλ,a(x) is asymptotically optimal with respect to the type.

4.1.1 Gaussian Subordination Method

Our next set of results are Theorems 4.1.3, 4.1.4, and 4.1.5. These theo-

rems generalize the so called distribution and Gaussian subordination methods

of [18]. The main idea behind these methods goes back to the paper of Graham
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and Vaaler [40]. We will describe a “watered down” version of the approach

here. Let us begin with the inequality

Gλ(x) ≤Mλ(x)

where Fλ(x) is defined by (4.23). The idea is to integrate the free parameter λ

in the functionGλ(x) with respect to a (positive) measure dµ on RN
+ = (0,∞)N

to obtain a pair of new functions of x:

G(x) =

∫
RN+
Gλ(x)dµ(λ) ≤

∫
RN+
Mλ(x)dµ(λ) =M(x).

The process simultaneously produces a function G(x) and a majorant M(x)

having M̂(ξ) supported in Q(a). The difference of the functions in L1−norm

is similarly obtained by integrating against dµ.

Our next result is a generalization of the distribution method developed

in [18] for existence of majorants and minorants. In what follows we say that an

entire function F : CN → C is of exponential type with respect to a compact

convex set K ⊂ RN if it has Fourier transform (in the sense of tempered

distribution) supported in K.

Theorem 4.1.3 (Distribution Method – Existence). Let K ⊂ RN be a compact

convex set, Λ be a measurable space of parameters, and for each λ ∈ Λ let

G(x;λ) ∈ L1(RN) be a real–valued function. For each λ let F (z;λ) be an

entire function defined for z ∈ CN of exponential type with respect to K. Let

dµ be a non–negative measure on Λ that satisfies∫
Λ

∫
RN
|F (x;λ)−G(x;λ)|dxdµ(λ) <∞. (4.3)

and ∫
Λ

∫
RN
|Ĝ(x;λ)ϕ(x)|dxdµ(λ) <∞ (4.4)
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for all ϕ ∈ S(RN) supported in Kc.

Let G ∈ S ′(RN) be a real–valued continuous function such that

Ĝ(ϕ) =

∫
RN

∫
Λ

Ĝ(x;λ)dµ(λ)ϕ(x)dx (4.5)

for all ϕ ∈ S(RN) supported in Kc.

(i) If G(x;λ) ≤ F (x;λ) for each x ∈ RN and λ ∈ Λ, then there exists a

real entire majorant M(x) for G(x) of exponential type with respect to

K and ∫
RN
{M(x)− G(x)}dx

is equal to the quantity in (4.3).

(ii) If F (x;λ) ≤ G(x;λ) for each x ∈ RN and λ ∈ Λ, then there exists a

real entire minorant L(x) for G(x) of exponential type with respect to K

and ∫
RN
{G(x)− L(x)}dx

is equal to the quantity in (4.3).

Remark. With the exception of Theorem 4.1.3, Λ will always stand for

(0,∞)N .

For a given a ∈ RN
+ define GN

+ (a) as the set of ordered pairs (G, dµ)

where G : RN → R is a function and dµ is a non-negative Borel measure in

RN
+ such that:

(C1) G(x) is a continuous function that also defines a tempered distribution

(that is, G ∈ S ′(RN)).
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(C2) For all ϕ ∈ S(RN) supported in Q(a)c we have∫
RN

∫
RN+
|Ĝλ(x)ϕ(x)|dµ(λ)dx <∞.

(C3) For all ϕ ∈ S(RN) supported in Q(a)c we have

∫
RN
G(x)ϕ̂(x)dx =

∫
RN

∫
RN+
Ĝλ(x)dµ(λ)ϕ(x)dx.

(C4+) The following integrability condition holds∫
RN+

N∏
k=1

λ
−1

2
k

{ N∏
j=1

Θ(0; ia2
j/λj)− 1

}
dµ(λ) <∞.

In an analogous way, we define the class GN
− (a) by replacing condition (C4+)

by

(C4-) The following integrability condition holds∫
RN+

{
1−

(
N∑
j=1

Θ(1
2
; ia2

j/λj)

Θ(0; ia2
j/λj)

− (N − 1)

)
N∏
j=1

Θ(0; ia2
j/λj)

}
N∏
j=1

λ
−1

2
j dµ(λ)

<∞.
(4.6)

Theorem 4.1.4 offers an optimal resolution of the Majorization Problem

for the class of functions GN
+ (a) and Theorem 4.1.5 offers an asymptotically op-

timal resolution of the Minorization Problem for the class of functions GN
− (a).

In what follows we use the notation of Section 4.3.1.

Theorem 4.1.4 (Gaussian Subordination – Majorant). For a given a ∈ RN
+ ,

let (G, dµ) ∈ GN
+ (a). Then there exists an extremal majorant Ma(x) of expo-

nential type with respect to Q(a) for G(x). Furthermore, Ma(x) interpolates

G(x) on ZN/a and satisfies∫
RN
M(x)− G(x)dx =

∫
RN+

N∏
k=1

λ
−1

2
k

{ N∏
j=1

Θ(0; ia2
j/λj)− 1

}
dµ(λ).
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Theorem 4.1.5 (Gaussian Subordination – Minorant). For a given a ∈ RN
+ ,

let (G, dµ) ∈ GN
− (a). Then, if F(z) is a real entire minorant of G(x) of

exponential type with respect to Q(a), we have∫
RN
{G(x)−F(x)}dx ≥

∫
RN+

N∏
j=1

λ
−1

2
k

{
1−

N∏
j=1

Θ(1
2
; ia2

j/λj)

}
dµ(λ).

Furthermore, there exists a family of minorants {La(z) : a ∈ RN
+} where La(z)

is of exponential type with respect to Q(a) such that∫
RN
{G(x)− La(x)}dx

is equal to the left-hand side of (4.6). Also

lim
a↑∞

∫
RN
{G(x)− La(x)}dx = 0,

where a ↑ ∞ means aj ↑ ∞ for each j.

Corollary 4.1.6. Assume all the hypotheses of Theorem 4.1.5. Suppose also

that exists a positive number R > 0 such that supp(dµ) ⊂ RN
+ ∩ Q(R), G ∈

L1(RN) and ∫
RN
G(x)dx =

∫
RN+

N∏
j=1

λ
−1

2
j dµ(λ) <∞.

Then, there exists a constant α0 > 0 such that, if α := minj{aj} ≥ α0 and

if F(x) is a real entire minorant of G(x) of exponential type with respect to

Q(a), then ∫
RN
F(x)dx ≤ (1 + 5Ne−πα

2/R)

∫
RN
La(x)dx.

Remark. We will prove only Theorem 4.1.3, since the other ones are a direct

application of Theorems 4.1.1, 4.1.2 and 4.1.3. For the interested reader we

refer to [37] for the complete proofs.
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4.1.2 The Class of Admissible Functions

We define the class

GN =
⋂
a∈RN+

GN
− (a) ∩GN

+ (a).

This is the class of pairs such that Theorems 4.1.4 and 4.1.5 are applicable

for every a ∈ RN
+ . In this subsection we present conditions for a pair (G, dµ)

to belong to this class. Some interesting properties arise when the measure

dµ is concentrated in the diagonal of RN
+ . For every η ∈ [0, 1] we define

(RN
+ )η = {λ ∈ RN

+ : ηλj ≤ λk ∀j, k} and we note that (RN
+ )0 = RN

+ and

(RN
+ )1 = {(t, . . . , t) : t > 0} is the diagonal.

Proposition 4.1.7. Let (G, dµ) be a pair that satisfies conditions (C1), (C2)

and (C3) for every a ∈ RN
+ . Suppose that supp(dµ) ⊂ (RN

+ )η for some η ∈
(0, 1] and dµ((RN

+ )η \Q(R)) <∞ for every R > 0. Then (G, dµ) ∈ GN .

Proof. We only prove that condition (C4-) holds, the condition (C4+) is

analogous. For a given a ∈ RN
+ , define the function

φa : λ ∈ RN
+ 7→

( N∑
j=1

Θ(1
2
; ia2

j/λj)

Θ(0; ia2
j/λj)

− (N − 1)

) N∏
j=1

Θ(0; ia2
j/λj).

By (4.15) and the Poisson summation formula, we have the following estimates

1−Θ(1
2
; i/t) ∼ 2e−π/t as t→ 0,

Θ(1
2
; i/t) ∼ 2t

1
2 e−πt/4 as t→∞

(4.7)

and

Θ(0; i/t)− 1 ∼ 2e−π/t as t→ 0,

Θ(0; i/t) ∼ t
1
2 as t→∞,

(4.8)
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where the symbol ∼ means that the quotient converges to 1. Using the left-

hand side inequality of Lemma 4.3.4 we conclude that exists an R > 0 and a

C > 0 such that

φa(λ) ≥ 1− C
N∑
j=1

e−πa
2
j/λj

for every λ ∈ RN
+ ∩Q(R). Choose ` ∈ {1, . . . , N} such that a` ≤ aj for every

j. If λ ∈ (RN
+ )η ∩Q(R) we have

{
1− φa(λ)

} N∏
j=1

λ
−1

2
j ≤ C

( N∑
j=1

e−πa
2
j/λj

) N∏
j=1

λ
−1

2
j ≤ dCe−πa

2
`η/λ`

N∏
j=1

λ
−1

2
j

≤ NC
N∏
j=1

e−πa
2
`η

2/(Nλj)

N∏
j=1

λ
−1

2
j = NCĜλ(βu),

where β = a`ηN
−1/2 and u = (1, . . . , 1).

By estimates (4.7)-(4.8) we see that the functions Θ(1
2
; i/t)t−

1
2 and

Θ(0; i/t)t−
1
2 are bounded for t ∈ [ηR,∞), and thus, we conclude that the

function

λ ∈ RN
+ 7→ φa(λ)

N∏
j=1

λ
−1

2
j

is bounded on (RN
+ )η \Q(R), since it is a finite sum of products of these theta

functions. Since η > 0, we obtain that the function

λ ∈ RN
+ 7→

{
1− φa(λ)

} N∏
j=1

λ
−1

2
j

is bounded in (RN
+ )η \Q(R) by a constant C ′. Therefore, we have∫

(RN+ )η

{
1− φa(λ)

} N∏
j=1

λ
−1

2
j dµ(λ)

≤ NC

∫
(RN+ )η∩Q(R)

Ĝλ(βu)dµ(λ) + C ′dµ((RN
+ )η \Q(R)) <∞,
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which is finite by condition (C2) and the hypotheses of this lemma. Thus dµ

satisfies condition (C4-) and this concludes the proof.

Corollary 4.1.8. Let dµ be a probability measure on RN
+ with supp(dµ) ⊂

(RN
+ )η for some η ∈ (0, 1]. Define the function

G(x) =

∫
RN+
Gλ(x)dµ(λ) (4.9)

for all x ∈ RN . Then (G, dµ) ∈ GN .

Due to a classical result of Schoenberg (see [66]), a radial function

G(x) = G(|x|) admits the representation (4.9) for a probability dµ supported

on the diagonal (RN
+ )1 if and only if the radial extension to Rn of G(r) is

positive definite, for all n > 0. And this occurs if and only if the function

G(
√
r) is completely monotone. As a consequence of this fact and Corollary

4.1.8 the following multidimensional versions of the functions in [18, Section

11] are admissible

Example 1.

G(x) = e−α|x|
r ∈ GN , α > 0 and 0 < r ≤ 2.

Example 2.

G(x) = (|x|2 + α2)−β ∈ GN , α > 0 and β > 0.

Example 3.

G(x) = − log

(
|x|2 + α2

|x|2 + β2

)
∈ GN , for 0 < α < β.

The next example is a high dimensional analogue of [18, Corollary 21] which

is admissible by using Proposition 4.1.7 with the measure dµ(t) = t−σ/2−1

restricted to the diagonal (RN
+ )1.
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Example 4.

Gσ(x) = |x|σ, for σ ∈ (0,∞) \ 2Z+

For further examples and details we refer to [37].

4.2 Selberg’s Box–Minorant Problem

In the 1970’s Selberg introduced some approximations to the indicator

function of an interval that quickly inherited the name “Selberg’s magic func-

tions”. If I is an interval in R of finite length, 1I(x) is the indicator of I, and

δ > 0, then Selberg’s functions x ∈ R 7→M(x) and x ∈ R 7→ L(x) satisfy:

(i) M̂(ξ) = L̂(ξ) = 0 if |ξ| > δ,

(ii) L(x) ≤ 1I(x) ≤M(x) for each x ∈ R,

(iii)
∫
R{M(x)− 1I(x)}dx =

∫
R{1I(x)− L(x)}dx = δ−1.

Furthermore, among all functions that satisfy (i) and (ii) above, Selberg’s

functions minimize the integrals appearing in (iii) if and only if δ|I| ∈ Z.

When I = [0,∞) is a half-open integral, the analogous result was proven

40 years before by Beurling, and Beurling’s functions are always extremal,

regardless of the value of δ. See [69, 73] for a survey.

Selberg originally constructed his functions so that he could use them

to prove a sharp form of the large sieve inequality. Today, however, there is a

large number of applications of Selberg’s functions (and their generalizations)

in various areas of mathematics, including number theory, dynamical systems,

optics, combinatorics, sampling theory, and beyond. While the single variable
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Beurling–Selberg extremal theory is relatively well understood, the multivari-

able theory in its current state is much less so (see [39]).

In unpublished work, Selberg was able to use his functions M(x) and

L(x) to construct majorants and minorants of the box I × · · · × I ⊂ RN

whose Fourier transforms are supported in the box [−δ, δ]N . The multivariable

majorant M(x) is just tensors of M(x), however the multivariable minorant

Selberg obtained was

L(x) = −(N − 1)
N∏
n=1

M(xn) +
N∑
n=1

L(xn)
∏
m6=n

M(xm). (4.10)

A simple calculation shows that∫
RN
L(x)dx = (|I|+ δ−1)N−1

(
|I| − δ−1(2N − 1)

)
.

We see that, when N is sufficiently large, or |I| and δ are sufficiently small,

then Selberg’s minorants have negative integrals. Therefore, the zero function

is a better minorant. Nevertheless, it can be shown that Selberg’s minorants

are asymptotically extremal as δ →∞.

These questions beg us to study the simplest version of Selberg’s mi-

norant problem in several variables, that we call the Box–Minorant problem,

and which is described as follows:

Let QN = [−1, 1]N denote the N–dimensional box in RN and 1QN (x)

denote the indicator function of QN . For every integer N ≥ 1 define the

following quantity

ν(N) = sup

∫
RN
F (x)dx, (4.11)

where the supremum is taken over functions F ∈ PW 1(QN) (that is, F ∈
L1(RN) and F̂ (ξ) is supported in QN) that satisfy

F (x) ≤ 1QN (x) (4.12)
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for (almost) every x ∈ RN .

A function F (x) satisfying the above conditions will be called admissi-

ble for ν(N) (or ν(N)–admissible) and if it achieves equality in (4.11), then it

is said to be extremal. It is shown in Lemma 4.4.4 that extremal functions for

ν(N) always exist. Moreover, by condition (4.12) and an application of the

Poisson summation formula (4.35) we obtain the trivial bound

ν(N) ≤ 1,

for all N ≥ 1. Selberg (see [69, 73]) was able to show that ν(1) = 1 and that

sin2 πx

(πx)2(1− x2)
(4.13)

is an extremal function (this is not the unique extremal function).

Our first result states that in fact ν(N) is a decreasing function of N that

converges to zero as N →∞.

Theorem 4.2.1. The following statements hold:

(i) ν(2) < 1.

(ii) If ν(N) > 0 then ν(N + 1) < ν(N).

(iii) limN→∞ ν(N) = 0.

We deduce Theorem 4.2.1 from a much more unexpected fact regard-

ing the behavior of the values F (0) for ν(N)–admissible functions F (x). To

motivate the result we observe that if an extremal function F (x) has positive

integral (F̂ (0) > 0), then its maximum must be equal to 1. To see this, suppose

ρ ∈ (0, 1] is the maximum of F (x), then the function ρ−1F (x) would then be

ν(N)–admissible and, seeing that F (x) is extremal, it must have integral equal
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to F (x) and so the ρ = 1. Intuitively one might guess that this maximum

will occur at the origin, which is the center of mass of QN . However, as often

happens in mathematics, our next theorem demonstrates a counter-intuitive

result. It shows that, for large N , no admissible function for ν(N) can achieve

its maximum at the origin.

Theorem 4.2.2. For every ε > 0 there exists a dimension N(ε) > 0 such that

for every N ≥ N(ε), any ν(N)–admissible function F (x) with non-negative

integral satisfies F (0) < ε.

Remark. It was not previously known, however, whether ν(N) > 0 for any

N > 1. One of our main contributions of is the development of a method (Sec-

tion 4.5.2) to produce non-trivial admissible functions for ν(N), and thereby

establishing that ν(N) ≥ 0.12 for N ≤ 5.

Let F (x) be a ν(N)–admissible function. It follows from the Poisson

summation formula (4.35) that

F̂ (0) =
∑
n∈ZN

F̂ (n) =
∑
n∈ZN

F (n) ≤ F (0).

Thus we have the fundamental inequality

F̂ (0) ≤ F (0). (4.14)

Evidently, there is equality in (4.14) if, and only if, F (n) = 0 for each nonzero

n ∈ ZN . If N = 1 then, by using the interpolation formula (4.36), this is

precisely how Selberg was able to construct the minorant (4.13) and show

that ν(1) = 1. Another one of our main results demonstrates that this line of

attack fails in higher dimensions.
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Theorem 4.2.3. Let N > 1. Let F (x) be an admissible function for ν(N).

Assume that F (n) = 0 for every nonzero n ∈ ZN and F (0) ≥ 0 (or equiva-

lently, F̂ (0) = F (0) ≥ 0). Then F (x) = 0 for any x ∈ RN that has N − 2

integers entries. We conclude that F̂ (0) = F (0) = 0.

Remark. The proof of the above theorem follows easily by Proposition 4.4.6,

where we deal with the case N = 2, in conjunction with a slicing argument

presented in Lemma 4.4.2.

It would be interesting to know the rate at which ν(N) tends to 0.

Indeed, as a first step it would be interesting to know whether ν(N) > 0 for

all N > 1. In this direction we have the following result.

Theorem 4.2.4. We have the following lower bounds for ν(N):

(i) ν(2) ≥ 63
64

= 0.984375,

(ii) ν(3) ≥ 119
128

= 0.9296875,

(iii) ν(4) ≥ 95
128

= 0.7421875,

(iv) ν(5) ≥ 31
256

= 0.12109375.

Remark. The above result is a direct consequence of Theorem 4.5.6.

The above results lead to the important question on whether or not

ν(N) vanishes in finite time. In Section 4.5.2 we estimate the critical dimension

for which a quantity closely related to ν(N) vanishes. However, at the present

moment we do not have sufficient information to state any conjecture.
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4.3 Proofs of Theorems 4.1.2, 4.1.1 and 4.1.3

4.3.1 Background

One of the main objects of study in this chapter is the Fourier trans-

form. Given an integrable function F (x) on RN , we define the Fourier trans-

form of F (x) by

F̂ (ξ) =

∫
RN
e(x · ξ)F (x)dx,

where ξ ∈ RN and e(θ) = e−2πiθ. We extend the definition in the usual way to

tempered distributions (see for instance [71]). We will mainly be considering

functions whose Fourier transforms are supported in a bounded subset of RN .

Such functions are called band–limited. It is well-known that band–limited

functions can be extended to an entire functions on CN satisfying an exponen-

tial growth condition. We will now state a generalization of the Paley–Wiener

theorem which can be found in [48, Theorem 7.3.1].

Theorem 4.3.1 (Paley–Wiener–Schwartz). Let K be a convex compact subset

of RN with supporting function

H(x) = sup
y∈K
|x · y|.

If F is a tempered distribution such that the support of F̂ is contained in K,

then F : CN → C is an entire function and exists C > 0 such that

|F (x+ iy)| ≤ C(1 + |x+ iy|)Ce2πH(y).

for every x + iy ∈ CN . Conversely, every entire function F : CN → C
satisfying an estimate of this form defines a tempered distribution with Fourier

transform supported on K.

We will now define and compile some results about Gaussians and theta

functions that we will need in the sequel. Given a positive real number δ > 0
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the Gaussian gδ : R→ R is defined by

gδ(t) = e−δπt
2

,

and its Fourier transform is given by ĝδ(ξ) = δ−1/2g1/δ(ξ). For τ = σ+ it with

t > 0, denote q = eπiτ . The Jacobi’s theta function (see [23]) is defined by

Θ(v; τ) =
∑
n∈Z

e(nv)qn
2

. (4.15)

These functions are related through the Poisson summation formula by∑
m∈Z

gδ(v +m) =
∑
n∈Z

e(nv)ĝδ(n) = δ−1/2Θ(v; iδ−1). (4.16)

The one dimensional case of Theorems 4.1.1 and 4.1.2 were proven in

[18]. They showed that the functions

`δ(z) =
(cosπz

π

)2
{∑

k∈Z

gδ(k + 1
2
)

(z − k − 1
2
)2

+
∑
k∈Z

g′δ(k + 1
2
)

(z − k − 1
2
)

}
(4.17)

and

mδ(z) =
(sin πz

π

)2
{∑

k∈Z

gδ(k)

(z − k)2
+
∑
k∈Z

g′δ(k)

(z − k)

}
(4.18)

are entire functions of exponential type at most 2π (that is, their Fourier

transforms are supported in [−1, 1]) and they satisfy

`δ(x) ≤ gδ(x) ≤ mδ(x) (4.19)

for all real x. Moreover, ∫
R
mδ(x)dx = δ−

1
2 Θ(0; i/δ) (4.20)

and ∫
R
`δ(x)dx = δ−

1
2 Θ(1

2
; i/δ). (4.21)
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Also, in view of (4.16)–(4.21), the functions `δ(z) and mδ(z) are the best one–

sided L1−approximations of gδ(x) having exponential type at most 2π.

To construct a minorant of the Gaussian, we begin with the functions

mδ(z) and `δ(z) defined by (4.17) and (4.18) and use Selberg’s bootstrapping

technique to obtain multidimensional minorants. The majorant is constructed

by taking mδ(z) tensored with itself N times.

The following proposition is due to Selberg, but it was never published.

We call it Selberg’s bootstrapping method because it enables us to construct a

minorant for a tensor product of functions provided that we have majorants

and minorants of each component at our disposal. This method has been used

in [3, 27, 43, 44, 45].

Proposition 4.3.2. Let N > 0 be natural number and fj : R → (0,∞) be

functions for every j = 1, . . . , N . Let lj,mj : R → R be real–valued functions

such that

lj(x) ≤ fj(x) ≤ mj(x)

for every real x and j. Then

−(N − 1)
N∏
k=1

mk(xk) +
N∑
k=1

lk(xk)
N∏
j=1

j 6=k

mj(xj) ≤
N∏
k=1

fk(xk).

This proposition is easily deduced from the following inequality.

Lemma 4.3.3. If β1, . . . , βN ≥ 1, then

N∑
k=1

N∏
j=1

j 6=k

βj ≤ 1 + (N − 1)
N∏
k=1

βk.
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Proof. We give a proof by induction, starting with the inductive step since

the base case is simple. Suppose that the claim is true for N = 1, . . . , L. Let

β1, . . . , βL, βL+1 be a sequence of real numbers not less than one and write

βj = 1 + εj. We obtain

L+1∑
k=1

L+1∏
j=1

j 6=k

βj =
L∏
j=1

βj + (1 + εL+1)
L∑
k=1

L∏
j=1

j 6=k

βj

≤
L∏
j=1

βj + (1 + εL+1)

{
1 + (L− 1)

L∏
j=1

βj

}

= 1 + εL+1 +
L∏
j=1

βj + (L− 1)
L+1∏
j=1

βj

≤ 1 + εL+1

L∏
j=1

βj +
L∏
j=1

βj + (L− 1)
L+1∏
j=1

βj

= 1 + L
L+1∏
j=1

βj.

Now we can define our candidates for majorant and minorant of Gλ(x).

For a given λ ∈ RN
+ define the functions

z ∈ CN 7→ Lλ(z) = −(N − 1)
N∏
j=1

mλj(zj) +
N∑
k=1

`λk(zk)
N∏
j=1

j 6=k

mλj(zj) (4.22)

and

z ∈ CN 7→Mλ(z) =
N∏
j=1

mλj(zj). (4.23)

It follows from Proposition 4.3.2 and (4.19) that

Lλ(x) ≤ Gλ(x) ≤Mλ(x) for all x ∈ RN . (4.24)
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Moreover, since `δ(x) andmδ(x) have exponential type at most 2π, we conclude

that the Fourier transforms of Lλ(x) and Mλ(x) are supported on Q(1). We

modify Lλ(z) and Mλ(z) to have exponential type with respect to Q(a) in

the following way. Given a,λ ∈ RN
+ we define the functions

Lλ,a(z) = Lλ/a2(az) (4.25)

and

Mλ,a(z) = Mλ/a2(az). (4.26)

Here we use the (non-standard) notation xy = (x1y1, . . . , xNyN) for x,y ∈
RN . We also write x/y = (x1/y1, . . . , xN/yN) if all the entries of y are nonzero.

By (4.24) we obtain

Lλ,a(x) ≤ Gλ(x) ≤Mλ,a(x) for all x ∈ RN

and using the scaling properties of the Fourier transform, we conclude that

Lλ,a(x) and Mλ,a(x) have exponential type with respect to Q(a). By formula

(4.18), we have mδ(k) = gδ(k) for all integers k, hence we obtain

Mλ,a(k/a) = Gλ(k/a)

for all k ∈ ZN (recall that k/a = (k1/a1, . . . , kd/ad)).

We are now in a position to prove Theorems 4.1.1 and 4.1.2.

Proof of Theorem 4.1.1. It follows from (4.24) and (4.26) that the function

Mλ,a(x) is majorant of Gλ(x) of exponential type with respect to Q(a). Define

α = a1 . . . aN . Using definition (4.23) and (4.26) we obtain∫
RN
Mλ,a(x)dx = α−1

∫
RN
Mλ/a2(x)dx = α−1

N∏
j=1

∫
RN
mλj/a2j

(xj)dxj

=
N∏
j=1

λ
−1

2
j Θ(0; ia2

j/λj),
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where the first equality is due to a change of variables, the second one due to

the product structure and the third one due to (4.20).

Now we will prove that (4.26) is extremal. Suppose that F (z) is an en-

tire majorant of Gλ(x) of exponential type with respect to Q(a) and integrable

on RN (and therefore absolutely integrable on RN). We then have∫
RN
F (x)dx = α−1

∑
k∈ZN

F (k/a) ≥ α−1
∑
k∈ZN

Gλ(k/a)

=
N∏
j=1

λ
−1

2
j Θ(0; ia2

j/λj)

because Mλ,a(x) majorizes Gλ(x), and the rightmost equality is given by

(4.16).

Proof of Theorem 4.1.2. Before we turn to the proof of Theorem 4.1.2 we

need a technical lemma whose proof we postpone.

Lemma 4.3.4. For all t > 0 we have

1− 4q/(1− q)2 <
Θ(1

2
; it)

Θ(0; it)
< e−2q, (4.27)

where q = e−πt.

Suppose that F (z) is an entire minorant of exponential type with re-

spect to Q(a) and absolutely integrable on RN . Denote u = (1, . . . , 1) and

α = a1 . . . aN . We can apply the Poisson summation formula to deduce that∫
RN
F (x)dx = α−1

∑
k∈ZN

F (k/a+ u/2a) ≤ α−1
∑
k∈ZN

Gλ(k/a+ u/2a)

=
N∏
j=1

λ
−1

2
j Θ(1

2
; ia2

j/λj),
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where the last equality is given by (4.16). This proves (4.1). By construction,

Lλ,a(z) is an entire minorant of exponential type with respect to Q(a). Using

definitions (4.22) and (4.25) we conclude that∫
RN
Lλ,a(x)dx =

{ N∑
j=1

Θ(1
2
; ia2

j/λj)

Θ(0; ia2
j/λj)

− (N − 1)

} N∏
j=1

Θ(0; ia2
j/λj)λ

−1
2

j .

Thus, to deduce (4.2), we only need to prove that

(1 + 5Ne−πγ)

{ N∑
j=1

Θ(1
2
; ia2

j/λj)

Θ(0; ia2
j/λj)

− (N − 1)

}
≥

N∏
j=1

Θ(1
2
; ia2

j/λj)

Θ(0; ia2
j/λj)

(4.28)

for large γ (recall that γ = min{λj/a2
j}).

If we let qj = e−πa
2
j/λj and γ sufficiently large such that (1 − e−πγ)2 >

4/5, we can use Lemma 4.3.4 to obtain

N∑
j=1

Θ(1
2
; ia2

j/λj)

Θ(0; ia2
j/λj)

− (N − 1) ≥ 1− 4
N∑
j=1

qj/(1− qj)2 ≥ 1− 5
N∑
j=1

qj. (4.29)

Applying Lemma 4.3.4 for a sufficiently large γ we obtain

N∏
j=1

Θ(1
2
; ia2

j/λj)

Θ(0; ia2
j/λj)

≤ exp

{
− 2

N∑
j=1

qj

}
≤ 1−

N∑
j=1

qj, (4.30)

where the last inequality holds if
∑N

j=1 qj < log 2. Write β =
∑N

j=1 qj and note

that

1− β ≤ (1− 5β)(1 + 5β)

if β is sufficiently small, for instance if β ∈ [0, 1/25). Therefore, if γ is suffi-

ciently large such that
∑N

j=1 qj < 1/25 we obtain

1−
N∑
j=1

qj ≤
(
1− 5

N∑
j=1

qj
)(

1 + 5
N∑
j=1

qj
)
<
(
1− 5

N∑
j=1

qj
)
(1 + 5Ne−πγ). (4.31)

By (4.29), (4.30) and (4.31) we conclude that there exists γ0 = γ0(N) >

0 such that if γ ≥ γ0 then (4.28) holds. This completes the proof.
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We now prove Lemma 4.3.4.

Proof of Lemma 4.3.4. Recall that e(v) = e2πiv and q = eπiτ . By [70, Chapter

10, Theorem 1.3] the theta function has the following product representation

Θ(v; τ) =
∞∏
n=1

(
1− q2n

)(
1 + q2n−1e(v)

)(
1 + q2n−1e(−v)

)
. (4.32)

It follows from (4.32) that

Θ(1
2
; it)

Θ(0; it)
=
∞∏
n=1

(
1− q2n−1

1 + q2n−1

)2

= exp

{
2
∞∑
n=0

log

(
1− 2q2n+1

1 + q2n+1

)}
.

Using the inequality log(1− x) ≥ −x/(1− x) for all x ∈ [0, 1) we obtain

Θ(1
2
; it)

Θ(0; it)
≥ exp

{
− 4

∞∑
n=0

q2n+1

1− q2n+1

}
≥ exp

{
− 4

1− q

∞∑
n=0

q2n+1

}
= exp

{
− 4q

(1− q)(1− q2)

}
> e−4q/(1−q)2

> 1− 4q/(1− q)2

and this proves the left-hand side inequality in (4.27). The right-hand side

inequality in (4.27) is deduced by a similar argument using the inequality

log(1− x) ≤ −x for all x ∈ [0, 1).

Proof of theorem 4.1.3. We follow the proof of [18, Theorem 14] proving

only the majorant case, since the minorant case is nearly identical. Let

D(x;λ) = F (x;λ)−G(x;λ) ≥ 0.

By condition (4.3) and Fubini’s theorem the function

D(x) =

∫
Λ

D(x;λ)dµ(λ) ≥ 0
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is defined for almost all x ∈ RN and D ∈ L1(RN). The Fourier transform of

D(x) is a continuous function given by

D̂(ξ) =

∫
Λ

D̂(ξ;λ)dµ(λ),

and, due to (4.4), for almost every ξ 6∈ K we have the alternative representa-

tion

D̂(ξ) = −
∫

Λ

Ĝ(ξ;λ)dµ(λ). (4.33)

Let M be the tempered distribution given by

M(ϕ) =

∫
RN
{D(x) + G(x)}ϕ(x)dx.

Now for any ϕ ∈ S(RN) supported in Kc, we have by combining (4.5) and

(4.33)

M̂(ϕ) = D̂(ϕ) + Ĝ(ϕ) = 0.

Hence M̂ is supported on K, in the distributional sense. By the Theorem

4.3.1, it follows that the distribution M is identified with an entire function

M : Cd → C of exponential type with respect to K and that

M(ϕ) =

∫
RN
M(x)ϕ(x)dx (4.34)

for every ϕ ∈ S(RN). It then follows from the definition ofM and (4.34) that

for almost every x ∈ RN

M(x) = D(x) + G(x),

which implies M(x) ≥ G(x) for all x ∈ RN since G(x) is continuous, and

∫
RN
{M(x)− G(x)}dx =

∫
Λ

∫
RN
{F (x;λ)−G(x;λ)}dxdµ(λ) <∞.
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4.4 Proofs of Theorems 4.2.1, 4.2.2 and 4.2.3

4.4.1 Preliminary Results

In this section we recall the crucial results needed to demonstrate our

main results as well as some basic facts about the theory of Paley–Wiener

spaces and extremal functions.

For a given function F : RN → R we define its Fourier transform as

F̂ (ξ) =

∫
RN
F (x)e−2πix·ξdx.

In this part we will almost always deal with functions F (x) that are integrable

and whose Fourier transforms are supported in the box

QN = [−1, 1]N .

For this reason, given a p ∈ [1, 2] we define PW p(QN) as the set of functions

F ∈ Lp(RN) such that their Fourier transform is supported in QN . By Fourier

inversion these functions can be identified with analytic functions that extend

to CN as entire functions.

The following is a special case of Stein’s generalization of the Paley–Wiener

theorem (see [71]).

Theorem 4.4.1 (Stein). Let p ∈ [1, 2] and F ∈ Lp(RN). The following

statements are equivalent:

(i) F ∈ PW p(QN).

(ii) F (x) is the restriction to RN of an entire function defined in CN with

the property that there exists a constant C > 0 such that

|F (x+ iy)| ≤ C exp

[
2π

N∑
n=1

|yn|

]
for all x,y ∈ RN .
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Remark. In particular the theorem implies that PW 1(QN) ⊂ PW 2(QN).

The Pólya-Plancharel Theorem [65], states that if ξ1, ξ2, . . . is a se-

quence in RN satisfying that |ξn − ξm|`∞ ≥ ε for all m 6= n for some ε > 0

then ∑
n

|F (ξn)|p ≤ C(p, ε)

∫
RN
|F (ξ)|pdξ

for every F ∈ PW p(QN). The Poisson summation formula states that for all

F ∈ PW 1(QN) we have ∫
RN
F (x)dx =

∑
n∈ZN

F (n). (4.35)

Let F ∈ PW 2(QN). If t ∈ CN−k, then the function y ∈ Rk 7→ Gt(y) =

F (y, t) is the inverse Fourier transform of the following function

ξ ∈ Rk 7→
∫
QN−k

F̂ (ξ,u)e2πit·udu.

Since F̂ ∈ L2(RN), we conclude that the above function has finite L2(Rk)–

norm and as a consequence Gt ∈ PW 2(Qk). A similar result is valid for p = 1

but only for ν(N)–admissible functions.

Lemma 4.4.2. Let N > k > 0 be integers. If F (x) is ν(N)–admissible then

the function y ∈ Rk 7→ F (y,0) with 0 ∈ RN−k is ν(k)-admissible and∫
RN
F (x)dx ≤

∫
Rk
F (y,0)dy.

Proof. We give a proof only for the case N = 2 since it will be clear that the

general case follows by an adaption of the following argument.

Let F (x, y) be a function admissible for ν(2) and define G(x) = F (x, 0).

Clearly G(x) is a minorant of 1Q1(x). By Fourier inversion we obtain that

G(x) =

∫ 1

−1

(∫ 1

−1

F̂ (s, t)dt

)
e2πisxds.
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This shows that G ∈ PW 2(Q1). Now, for every a ∈ (0, 1) define the functions

Ga(x) = G((1− a)x)

(
sin(aπx)

aπx

)2

and

Fa(x, y) = F ((1− a)x, y)

(
sin(aπx)

aπx

)2

.

By an application of Holder’s inequality and Theorem 4.4.1, we deduce that

Ga ∈ PW 1(Q1) and Fa ∈ PW 1(Q2) for all a ∈ (0, 1). Hence, we can apply

Poisson summation to conclude that∫
R
Ga(x)dx =

∑
n∈Z

G((1− a)n)

(
sin(aπn)

aπn

)2

≥
∑

(n,m)∈Z2

F ((1− a)n,m)

(
sin(aπn)

aπn

)2

=

∫
R2

F ((1− a)x, y)

(
sin(aπx)

aπx

)2

dxdy,

where the above inequality is valid because the function F (x, y) is a minorant

of the box Q2. Observing that Ga(x) ≤ 1Q1/(1−a)(x) for every x ∈ R, we can

apply Fatou’s lemma to conclude that∫
R
[1Q1(x)−G(x)]dx

≤ lim inf
a→0

∫
R
[1Q1/(1−a)(x)−Ga(x)]dx

≤
∫
R

1Q1(x)dx− lim sup
a→0

∫
R2

F ((1− a)x, y)

(
sin(aπx)

aπx

)2

dxdy

=

∫
R

1Q1(x)dx−
∫
R2

F (x, y)dxdy <∞.

This concludes the proof.

We now introduce an interpolation theorem which has proven indispensable

throughout our investigations.
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Theorem 4.4.3. For all F ∈ PW 2(QN) we have

F (x) =
N∏
n=1

{
sin πxn
π

}2 ∑
n∈ZN

∑
j∈{0,1}N

∂jF (n)

(x− n)2−j
(4.36)

where ∂j = ∂j1...jN and (x − n)2−j = (x1 − n1)2−j1 . . . (xN − nN)2−jN and the

right–hand side of (4.36) converges uniformly in compact subsets of RN .

Proof (by induction). The base case N = 1 was established by Vaaler [73].

Suppose the theorem is valid for N = 1, 2, . . . , L − 1, we need to show that

it is valid for N = L. Suppose F ∈ L2(RL) and that F̂ (ξ) is supported in

QL. Write F (x, xL) where x ∈ RL−1 and xL ∈ R. By Lemma 4.4.2 and the

inductive hypothesis

F (x, xL) =
L−1∏
n=1

{
sin πxn
π

}2 ∑
n∈ZL−1

∑
j∈{0,1}L−1

∂jF (n, xL)

(x− n)2−j
. (4.37)

By Fourier inversion (x, t) 7→ ∂jF (x, t) is in L2(RL) and its Fourier trans-

form is supported in QL. Thus, by another application of Lemma 4.4.2 and

the inductive hypothesis (but this time with respect to t = xL and N = 1,

respectively) we have for each n ∈ ZL−1

∂jF (n, xL) =

{
sin πxL
π

}2 ∑
nL∈Z

∑
j∈{0,1}

∂j∂
j
xL
F (n, nL)

(xL − nL)2−j . (4.38)

Combining (4.37) with (4.38) yields (4.36), completing the induction.

The theorem of Pólya-Plancherel [65] guarantees that the sequence

{∂jF (n) : n ∈ ZN} is square summable for every j ∈ ZN+ . Therefore the

sum on the right–hand side of (4.36) converges uniformly in compact subsets

of RN .

Finally, the next lemma demonstrates that extremal functions always exist for

ν(N).
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Lemma 4.4.4. Suppose G ∈ L1(RN) is a real valued function. Let {F`(x)}`
be a sequence in PW 1(QN) such that F`(x) ≤ G(x) for each x ∈ RN , and

there exists A > 0 such that F̂`(0) ≥ −A for each `. Then there exists a

subsequence F`k(x) and a function F ∈ PW 1(QN) such that F`k(x) converges

to F (x) for all x ∈ RN as k tends to infinity. In particular, we deduce that

F (x) ≤ G(x) for each x ∈ RN and lim supk→∞ F̂`k(0) ≤ F̂ (0).

Proof. By the remark after Theorem 4.4.1 each Fk ∈ PW 2(QN) and we can

bound their L2(RN)- norms in the following way. Observe that

‖Fk‖2 = ‖F̂k‖2 ≤ volN(QN)1/2‖F̂k‖∞ ≤ 2N/2‖Fk‖1

and

‖Fk‖1 ≤ ‖G− Fk‖1 + ‖G‖1 =

∫
RN

(G(x)− Fk(x))dx+ ‖G‖1 ≤ 2‖G‖1 + A.

Hence the sequence F1(x), F2(x), . . . is uniformly bounded in L2(RN) and, by

the Banach-Alaoglu Theorem, we may extract a subsequence (that we still de-

note by Fk) that converges weakly to a function F ∈ PW 2(QN). By Theorem

4.4.1 we can assume that F (x) is continuous. Also, by using Fourier inversion

in conjunction with weak convergence we deduce that Fk(x) converges to F (x)

for all x ∈ RN . We conclude that G(x) ≥ F (x) for each x ∈ RN . By applying

Fatou’s lemma to the sequence of functions G(x) − F1(x), G(x) − F2(x), . . .

we find that F ∈ L1(RN) and

lim sup
k→∞

∫
RN
Fk(x)dx ≤

∫
RN
F (x)dx.

This concludes the lemma.

Corollary 4.4.5. There are ν(N)–admissible functions which verify the equal-

ity in (4.11). That is, extremal functions for ν(N) exist.
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The next theorem is the cornerstone in the proof of our main results.

This theorem is in stark contrast with the one dimensional case. In the one

dimensional case, Selberg’s function interpolates at all lattice points, and is

therefore extremal. In two dimensions, on the other hand, if a minorant inter-

polates everywhere except for possibly the origin, then it is identically zero.

This theorem is therefore troublesome because it seems to disallow the possi-

bility of using interpolation (in conjunction with Poisson summation) to prove

an extremality result.

Theorem 4.4.6. If F (x, y) is admissible for ν(2) and F (0, 0) = F̂ (0, 0) ≥ 0

then F (x, y) vanishes identically.

Proof. Step 1. First we assume that the function F (x, y) is invariant under

the symmetries of the square, that is,

F (x, y) = F (y, x) = F (|x|, |y|) (4.39)

for all x, y ∈ R. We claim that for any (m,n) ∈ Z2 we have:

(a) ∂xF (m,n) = 0 if (m,n) 6= (±1, 0) and ∂yF (m,n) = 0 if (m,n) 6= (0,±1),

(b) ∂xxF (m,n) = 0 if n 6= 0 and ∂yyF (m,n) = 0 if m 6= 0,

(c) ∂xyF (m,n) = 0 if n 6= ±1 or m 6= ±1.

First notice that the identity F (0, 0) = F̂ (0, 0) is equivalent, by Poisson

summation, to F (m,n) = 0 for all nonzero pairs (m,n) ∈ Z2. Thus, we can

apply Theorem 4.4.2 to deduce that, for each fixed nonzero integer m, the

function x ∈ R 7→ F (m,x) is a non–positive function belonging to PW 1(Q1)

that vanishes in the integers, hence identically zero by formula (4.36). Also

note that the points (m, 0) for m ∈ Z with |m| > 1 are local maxima of the
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function x ∈ R 7→ F (x, 0). These facts in conjunction with the invariance

property (4.39) imply items (a) and (b).

Finally, note that a point (m,n) with |n| > 1 has to be a local maximum

of the function F (x, y). Thus, the Jacobian determinant of F (x, y) at such a

point has to be non-negative. That is,

JF (m,n) := ∂xxF (m,n)∂yyF (m,n)− [∂xyF (m,n)]2 ≥ 0.

However, by item (b), ∂xxF (m,n) = 0 and we conclude that ∂xyF (m,n) = 0.

This proves item (c) after using again the property (4.39).

Step 2. We can now apply formula (4.36) and deduce that F (x, y) has to

have the following form

F (x, y) =

(
sin(πx) sin(πy)

π2xy

)2{
F (0, 0)− ax2

x2 − 1
− ay2

y2 − 1
− bx2y2

(x2 − 1)(y2 − 1)

}
,

where a = −2∂xF (1, 0) and b = −4∂xyF (1, 1). Denote by B(x, y) the expres-

sion in the brackets above and note that it should be non–positive if |x| ≥ 1

or |y| ≥ 1. We deduce that

F (0, 0)− a− (a+ b)
x2

x2 − 1
= B(x,∞) ≤ 0

for all real x. We conclude that a+ b = 0, F (0, 0) ≤ a and

B(x, y) = F (0, 0)− a
[
1− 1

(x2 − 1)(y2 − 1)

]
.

For each t > 0, the set of points (x, y) ∈ R2\Q2 such that (x2−1)(y2−1) = 1/t

is non-empty and B(x, y) = F (0, 0)− a+ at at such a point. Therefore a ≤ 0

and we deduce that F (0, 0) ≤ 0. We conclude that F (0, 0) = 0, which in turn

implies that a = 0. Thus F (x, y) vanishes identically.
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Step 3. We now finish the proof. Let F (x, y) be a ν(2)–admissible function

such that F (0, 0) = F̂ (0, 0) ≥ 0. Define the function

G1(x, y) =
F (x, y) + F (−x, y) + F (x,−y) + F (−x,−y)

4
.

Clearly, the following function

G0(x, y) =
G1(x, y) +G1(y, x)

2

is also ν(2)–admissible and G0(0, 0) = Ĝ0(0, 0) ≥ 0. Moreover, G0(x, y) sat-

isfies the symmetry property (4.39). By steps 1 and 2 the function G0(x, y)

must vanish identically. Thus, we obtain that

G1(x, y) = −G1(y, x).

However, since G1(x, y) is also ν(2)–admissible we conclude that G1(x, y) is

identically zero outside the box Q2, hence it vanishes identically. An analogous

argument can be applied to the function G2(x, y) = [F (x, y) + F (−x, y)]/2 to

conclude that this function is identically zero outside the box Q2, hence it

vanishes identically. Using the same procedure again we finally conclude that

F (x, y) vanishes identically and the proof of the theorem is complete.

Proof of Theorem 4.2.2. The theorem is proven by contradiction. Assume,

by contradiction, that for some ε > 0 there exists a sequence FNk(x) of ν(Nk)–

admissible functions such that F̂Nk(0) ≥ 0 and FNk(0) ≥ ε for all integers Nk.

We can assume (by making a mean of FNk(x) over the set of symmetries of

the box QNk if necessary) that FNk(x) is invariant under the symmetries of

QNk for each Nk, that is, FNk(x) is a symmetric function which is also even in

each variable.

Define the slicing functions

GNk(x, y) = FNk(x, y,0Nk−2),
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for (x, y) ∈ R2. By Lemma 4.4.2, the functions GNk(x, y) are admissible for

ν(2) and ĜNk(0, 0) ≥ F̂Nk(0) ≥ 0. Also GNk(0, 0) = FNk(0) ≥ ε for all Nk. We

can now apply Lemma 4.4.4 to conclude that (by taking a further subsequence

of the Nk’s if necessary) there exists a function G(x, y) which is admissible for

ν(2) and such that

lim
k→∞

GNk(x, y) = G(x, y)

for all (x, y) ∈ R2.

Now, since FNk(x) is invariant under the symmetries of QNk , we can

apply Poisson summation to obtain that for every nonzero (m,n) ∈ Z2 we

have

F̂Nk(0) =
∑
n∈ZNk

FNk(n) ≤ 1 + # {σ(m,n,0Nk−2) : σ ∈ Sym(QNk)}GNk(m,n),

where Sym(QN) is the symmetry group of QN . Since GNk(m,n) ≤ 0 for a

nonzero (m,n) ∈ Z2 and

# {σ(m,n,0N−2) : σ ∈ Sym(QN)} → ∞

as N → ∞, we conclude that GNk(m,n) → 0 for each nonzero (m,n) ∈
Z2. We deduce that G(m,n) = 0 for each nonzero (m,n) ∈ Z2 and, by

Theorem 4.4.6, we conclude that the function G(x, y) vanishes identically. We

have a contradiction, because G(0, 0) ≥ ε. This completes the proof of the

theorem.

Proof of Theorem 4.2.1. Suppose that ν(N) = ν(N + 1). Let (x, t) ∈
RN×R 7→ F (x, t) be an extremal function for ν(N+1). Let Gm(x) = F (x,m)

for each m ∈ Z. Lemma 4.4.2 implies that Gm(x) is also admissible for ν(N).

By the Poisson summation formula we have for each nonzero m ∈ Z

F̂ (0) =
∑
n∈ZN

∑
k∈Z

F (n, k) ≤
∑
n∈ZN

(F (n,m)+F (n, 0)) = Ĝm(0)+Ĝ0(0). (4.40)
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By assumption

Ĝ0(0) ≤ ν(N) = ν(N + 1) = F̂ (0) (4.41)

Combining (4.40) and (4.41) yields 0 ≤ Ĝm(0) for each m 6= 0. However,

Gm(x) ≤ 0 for each x ∈ RN whenever m is a nonzero integer. Consequently,

Gm(x) vanishes identically. It follows that F (n) = 0 for each nonzero n ∈
ZN+1. By Theorem 4.4.6, F (0) = F̂ (0) = 0. Therefore ν(N + 1) = ν(N) =

0. This proves item (ii). Item (i) is a direct consequence of item (ii) since

ν(1) = 1. Item (iii) is a consequence of Theorem 4.2.2 and the fundamental

inequality (4.14).

4.5 Further Results

4.5.1 Periodic Functions Subordinated to Theta Functions

In this subsection we find the best approximations by trigonometric

polynomials for functions that are, in some sense, subordinated to theta func-

tions. The proofs of the theorems in this section are almost identical to the

proofs of the Section 4.3, and thus we state the theorems without proof. for

details see [37].

Let a = (a1, a2, . . . , ad) ∈ ZN+ (that is, aj ≥ 1 ∀j). We will say that the

degree of a trigonometric polynomial P (x) is less than a (degree P < a ) if

P (x) =
∑

−a<n<a

P̂ (n)e(n · x).

Here we use the the notation x < y to say that xj < yj for every j = 1, . . . , N .

The problems we are interested to solve have the following general form.

Periodic Majorization Problem. Fix an a ∈ ZN+ (called the degree) and a

Lebesgue measurable real periodic function g : TN → R. Determine the value
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of

inf

∫
TN
|F (x)− g(x)|dx,

where the infimum is taken over functions F : TN → R satisfing:

(i) F (x) is a real trigonometric polynomial.

(ii) Degree of F (x) is less than a.

(iii) F (x) ≥ g(x) for every x ∈ TN .

If the infimum is achieved, then identify the extremal functions F (x). Simi-

larly, we consider the minorant problem.

Periodic Minorization Problem. Solve the previous problem with condition

(iii) replaced by the condition

(iii′) F (x) ≤ g(x) for every x ∈ TN .

Now we define for every λ ∈ RN
+ , the periodization of the Gaussian

function Gλ(x) by

fλ(x) :=
∑
n∈ZN

Gλ(x+ n) =
∑
n∈ZN

N∏
j=1

e−λjπ(xj+nj)
2

=
N∏
j=1

Θ(xj; i/λj)λ
− 1

2
j .

Theorem 4.5.1 (Existence). For a given a = (a1, a2, . . . , ad) ∈ ZN+ , let Λ be

a measurable space of parameters, and for each λ ∈ Λ, let Rλ(x) be a real

trigonometric polynomial with degree less than a. Let dµ be a non–negative

measure in Λ that satisfies∫
Λ

∫
TN
|Rλ(x)− fλ(x)|dxdµ(λ) <∞. (4.42)

Suppose that g : TN → R is a continuous periodic function such that

ĝ(k) =

∫
Λ

Ĝλ(k)dµ(λ),

for all k ∈ ZN such that |kj| ≥ aj for some j ∈ {1, 2, . . . , N}. Then:
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(i) If fλ(x) ≤ Rλ(x) for each x ∈ TN and λ ∈ Λ, then there exists a trigono-

metric polynomial ma(x) with degree ma < a, such that of ma(x) ≥ g(x)

for all x ∈ TN and ∫
TN
{ma(x)− g(x)}dx

is equal to the left-hand side of (4.42).

(ii) If Rλ(x) ≤ fλ(x) for each x ∈ TN and λ ∈ Λ, then there exists a

trigonometric polynomial `a(x) with degree `a < a, such that `a(x) ≤
g(x) in TN , and ∫

TN
{g(x)− `a(x)}dx

is equal to the left-hand side of (4.42).

Before we state the main theorems of this section we need some def-

initions. The functions Mλ,a(x) and Lλ,a(x), defined in (4.23) and (4.22),

belong to L1(RN), thus, by the Plancharel–Pólya theorem (see [65]) and the

periodic Fourier inversion formula, their respective periodizations are trigono-

metric polynomials of degree less than a, that is

mλ,a(x) :=
∑
n∈ZN

Mλ,a(x+ n) =
∑

−a<n<a

M̂λ,a(n)e2πin·x

and

`λ,a(x) :=
∑
n∈ZN

Lλ,a(x+ n) =
∑

−a<n<a

L̂λ,a(n)e2πin·x

hold for each x ∈ TN . The following theorem offers a resolution to the Ma-

jorization Problem for a specific class of functions.

Theorem 4.5.2 (Gaussian Subordination – Periodic Majorant). Let a ∈ ZN+
and dµ be non-negative Borel measure on RN

+ that satisfies∫
RN+

N∏
j=1

λ
−1

2
k

{ N∏
j=1

Θ(0; ia2
j/λj)− 1

}
dµ(λ) <∞.
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Let g : TN → R be a continuous periodic function such that

ĝ(k) =

∫
RN+
Ĝλ(k)dµ(λ),

for all k ∈ ZN such that |kj| ≥ aj for some j ∈ {1, 2, . . . , N}. Then for every

real trigonometric polynomial P (x), with degree P < a and P (x) ≥ g(x) for

all x ∈ TN , we have∫
TN
{P (x)− g(x)dx} ≥

∫
RN+

N∏
j=1

λ
−1

2
k

{ N∏
j=1

Θ(0; ia2
j/λj)− 1

}
dµ(λ). (4.43)

Moreover, there exists a real trigonometric polynomial ma, with degree ma <

a, such that ma(x) is a majorant of g(x) that interpolates g(x) on the lattice

ZN/a and equality at (4.43) holds.

Recall that ZN/a = Z/a1 × . . .× Z/aN .

Theorem 4.5.3 (Gaussian Subordination – Periodic Minorant). Let a ∈ ZN+
and dµ be non-negative Borel measure on RN

+ such that

∫
RN+

{
1−
{ N∑

j=1

Θ(1
2
; ia2

j/λj)

Θ(0; ia2
j/λj)

− (N −1)

} N∏
j=1

Θ(0; ia2
j/λj)

} N∏
j=1

λ
−1

2
j dµ(λ) <∞.

(4.44)

Let g : TN → R be continuous periodic function such that

ĝ(k) =

∫
RN+
Ĝλ(k)dµ(λ)

for all k ∈ ZN such that |kj| ≥ aj for some j ∈ {1, 2, . . . , N}. Then, if P (x)

is a real trigonometric polynomial with degree less than a that minorizes g(x),

we have∫
TN
{g(x)− P (x)}dx ≥

∫
RN+

N∏
j=1

λ
−1

2
k

{
1−

N∏
j=1

Θ(1
2
; ia2

j/λj)

}
dµ(λ).
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Moreover, there exists a family of trigonometric polynomials minorants {`a(x) :

a ∈ ZN+} with degree `a < a, such that the integral∫
TN
{g(x)− `a(x)}dx

is equal to the quantity in (4.44), and

lim
a↑∞

∫
TN
{g(x)− `a(x)}dx = 0,

where a ↑ ∞ means aj ↑ ∞ for every j.

Corollary 4.5.4. Assume all the hypotheses of Theorem 4.5.3. Suppose also

that there exists R > 0 such that supp(dµ) ⊂ RN
+ ∩Q(R), and∫

TN
g(x)dx =

∫
RN+

N∏
j=1

λ
−1

2
j dµ(λ) <∞.

Then, there exists a constant α0 > 0, such that if α := minj{aj} ≥ α0 and if

P (x) is a trigonometric polynomial with degree P < a that minorizes g(x),

we have ∫
TN
P (x)dx ≤ (1 + 5Ne−α

2/R)

∫
TN
`a(x)dx.

Given a pair (G, dµ) ∈ GN , suppose that G ∈ L1(RN) and the peri-

odization

g(x) :=
∑
n∈ZN

G(n+ x)

is equal almost everywhere to a continuous function. We easily see that the

pair (g, dµ) is admissible by the Theorems 4.5.2 and 4.5.3 for every degree

a ∈ ZN+ . Thus, the periodic method contemplates the following functions

Example 5.

g(x) =
N∏
j=1

λ
−1/2
j Θ(xj; i/λj), for all λ ∈ RN

+ .
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Example 6.

g(x) =
∑
n∈ZN

e−α|n+x|r , for all α > 0 and 0 < r ≤ 2.

However, we cannot use this construction for the case of the functions

Gσ(x) = |x|σ of Example 4. The next proposition tell us that if the Fourier

coefficients of G(x) decay sufficiently fast, then the periodization of G(x) via

Poisson summation formula is admissible by the periodic method.

Proposition 4.5.5. Let (G, dµ) ∈ GN . Suppose that exist constants C > 0

and δ > N such that ∫
RN+
Ĝλ(x)dµ(λ) ≤ C|x|−δ

if |x| ≥ 1. Define the function

g(x) =
∑

n∈ZN\{0}

∫
RN+
Ĝλ(n)dµ(λ)e(n · x).

Then the pair (g, dµ) satisfies all the conditions of Theorems 4.5.2 and 4.5.3

for every a ∈ ZN+ .

With this last proposition we see that the following example is contem-

plated by the periodic method.

Example 7.

gσ(x) =
∑
n∈ZN
n 6=0

|n|−N−σe(n · x), for all σ > 0.
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4.5.2 Explicit Lower Bounds for the Box–Minorant Problem

Lower Bounds for ν(N) is Low Dimensions

We define an auxiliary variational quantity λ(N) defined over a more

restrictive set of admissible functions than ν(N). Let

λ(N) = sup

∫
RN
F (x)dx,

where the supremum is taken over functions F (x) that are admissible for ν(N)

and, in addition, F (0) = 1, and

F (n) = 0

for each nonzero n ∈ ZN unless n is a corner of the box QN . Here, a corner of

the box QN is a vector n ∈ ∂QN ∩ ZN that does not belong to a smooth part

of the boundary of the box, that is, there exists at most N − 2 zero entries

in n and all the nonzero entries are equal to ±1. This definition makes any

k–dimensional slice of an admissible function for λ(N) (k < N) admissible for

λ(k), which in turn implies that

λ(N + 1) ≤ λ(N)

for all N . We note that Selberg’s functions constructed via (4.10) are al-

ways admissible for λ(N) but have negative integral. In this way, we want to

construct minorants that resemble Selberg’s construction but do a better job.

Making use of the interpolation formula (4.36) we conclude that every

function F (x) admissible for λ(N) has the following useful representation

F (x) = S(x)P (x), (4.45)

where

S(x) =
N∏
n=1

(
sin(πxn)

πxn(x2
n − 1)

)2
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and P (x) is a polynomial such that each variable xn appearing in its expression

has an exponent not greater than 4. Notice that, by Poisson summation, if

F (x) is admissible for λ(N) and is also invariant under the symmetries of QN

then ∫
RN
F (x)dx = 1 +

N∑
k=2

(
N

k

)
2−kP (uk), (4.46)

where uk = (

k times︷ ︸︸ ︷
1, 1, 1, .., 1, 0, . . . , 0).

In what follows will be useful to use a particular family of symmetric

functions. For given integers N ≥ k ≥ 1 we define

σN,k(x) =
∑

1≤n1<n2<...<nk≤N

x2
n1
x2
n2
. . . x2

nk

and

σ̃N,k(x) =
∑

1≤n1<n2<...<nk≤N

x4
n1
x4
n2
. . . x4

nk
.

Theorem 4.5.6. Define the functions F2(x1, x2), F3(x1, x2, x3), F4(x1, . . . , x4)

and F5(x1, . . . , x5) by using representation (4.45) and the following polynomi-

als respectively:

• P2(x1, x2) = (1− x2
1)(1− x2

2)− 1
16
σ̃2,2(x1, x2),

• P3(x1, x2, x3) =
3∏

n=1

(1− x2
n)− 1

16
σ̃3,2(x1, x2, x3),

• P4(x1, . . . , x4) =
4∏

n=1

(1− x2
n)− 3

4
σ4,4(x1, . . . , x4)− 1

16
σ̃4,2(x1, . . . , x4),

• P5(x1, . . . , x5) =
5∏

n=1

(1− x2
n)− 3

4
σ5,4(x1, . . . , x5)− 1

16
σ̃5,2(x1, . . . , x5).
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These functions are admissible for λ(2), λ(3), λ(4) and λ(5) respectively and

their respective integrals are equal to: 63/64 = 0.984375, 119/128 = 0.9296875,

95/128 = 0.7421975 and 31/256 = 0.12109375.

Proof. The integrals of these functions can be easily calculated using formula

(4.46), we prove only their admissibility. We start with F2(x). Clearly, if

|x1| > 1 > |x2| then P2(x1, x2) < 0. Also, writing t = |x1x2| we obtain

P2(x1, x2) = 1 + x2
1x

2
2 − x2

1 − x2
2 − x4

1x
4
2/16

≤ 1 + x2
1x

2
2 − 2|x1x2| − x4

1x
4
2/16

= 1 + t2 − 2t− t4/16.

On the other hand, we have

1 + t2 − 2t− t4/16 = (1− t)2 − t4/16 (4.47)

and

1 + t2 − 2t− t4/16 = (t− 2)2(4− 4t− t2)/16. (4.48)

If |x1|, |x2| < 1 then 0 ≤ t < 1, and by (4.47) we deduce that P2(x1, x2) < 1.

If |x1|, |x2| > 1 then t > 1, and by (4.48) we deduce that P2(x1, x2) ≤ 0. This

proves that F2(x) is λ(2)-admissible.

Observe that P3(x1, x2, x3) < 1 inside the box Q3 and P3(x1, x2, x2) < 0

if exactly one or three variables have modulus greater than one. If exactly two

variables have modulus greater than one, suppose for instance that |x1|, |x2| >
1 > |x3|, then

P3(x1, x2, x3) ≤ P2(x1, x2) ≤ 0.

This proves that F3(x) is admissible for λ(3).
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In the same way, clearly P4(x1, . . . , x4) < 1 if all the variables have

modulus less than one. If an odd number of variables have modulus greater

than one then the function is trivially negative. If |x1|, |x2| > 1 > |x3|, |x4|
then

P4(x1, x2, x3, x4) ≤ P2(x1, x2) ≤ 0.

On the other hand, if |x1|, |x2|, |x3|, |x4| > 1 then, suppressing the variables,

we have

P4 = 1− σ4,1 + σ4,2 − σ4,3 + 1
4
σ4,4 − 1

16
σ̃4,2.

Observing that

σ4,2 − σ4,3 ≤ x2
1x

2
2 + x2

3x
2
4,

we obtain

1− σ4,1 + σ4,2 − σ4,3 − 1
16
σ̃4,2 ≤− 1 + P2(x1, x2) + P2(x3, x4)

− 1
16

[x4
1x

4
3 + x4

1x
4
4 + x4

2x
4
3 + x4

2x
4
4].

Since P2(x1, x2) ≤ 0 and P2(x3, x4) ≤ 0, we deduce that

P3(x1, . . . , x4) ≤ −1 + 1
4
x2

1x
2
2x

2
3x

2
4 − 1

16
[x4

1x
4
3 + x4

1x
4
4 + x4

2x
4
3 + x4

2x
4
4]

≤ −1 + 1
16

(x4
1 + x4

2)(x4
3 + x4

4)− 1
16

[x4
1x

4
3 + x4

1x
4
4 + x4

2x
4
3 + x4

2x
4
4]

= −1.

This proves that F4(x) is admissible for λ(4). By a similar argument one can

prove that F5(x) is admissible for λ(5).

Remark. We note that the following function

S(x)
N∏
n=1

(1− x2
n) (4.49)

is the N–fold product of Selberg’s one–dimensional minorant, which is not a

minorant for N > 1. In this sense, the minorants we have constructed above

can be seen as corrections of (4.49) by subtracting higher order terms.
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Vanishing in Finite Time

In this part we estimate the critical dimension N at which a quantity

related to ν(N) vanishes. For a given integer N > 0 denote by µ(N) the

supremum of ∫
RN
F (x)dx

over the set of functions admissible for ν(N) that also satisfy that

F (0) = 1.

Clearly λ(N) ≤ µ(N) ≤ ν(N) and µ(N) is a non-increasing function of N .

Also, Theorem 4.2.2 demonstrates that no such function will exist if N is

sufficiently large. The next proposition estimates the critical dimension.

Proposition 4.5.7. We have µ(N) = 0 if

N ≥ 1

1− µ(2)
.

Proof. Let FN(x) be admissible for µ(N) and invariant under the symmetries

of QN . Then GN(x, y) = FN(x, y, 0, . . . , 0) is admissible for µ(2) and we have∫
RN
FN(x)dx = 1 +

∑
n∈ZN\{0}

F (n)

≤ 1 +N
∑

k∈Z\{0}

GN(k, 0) +

(
N

2

) ∑
(k,`)∈Z2
k, 6̀=0

GN(k, `)

≤ 1 +N
∑

(n,m)∈Z2\{(0,0)}

GN(n,m)

= 1 +N

(∫
R2

GN(x, y)dxdy − 1

)
≤ 1 +N(µ(2)− 1)

We conclude that

µ(N) ≤ 1 +N (µ(2)− 1) ,

and this finishes the proof.
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Chapter 5

A Central Limit Theorem for Operators

5.1 Preliminaries

In this chapter we study the intrinsic nature of the approximation

method used by Beckner in [4] to prove the sharp form of the Hausdorff–Young

inequality. Inspired by Beckner’s approach, we demonstrate that Beckner’s

method is a special instance of a general approximation method (Theorem

5.1.1) that we see as an analogue of the Central Limit Theorem for operators

and which leads to (Theorem 5.1.2) a transference principle for operators and

hyper–contractive estimates. In particular, we characterize the Hermite semi–

group as the limiting family of operators associated with any semi–group of

operators.

For a given function f : R → C, recall that the Fourier Transform of

f(x) is defined by

Ff(ξ) =

∫
R
f(x)e−2πixξdx.

The Hausdorff–Young inequalitystates that F maps Lp(R) to Lp
′
(R) bound-

edly if 1 ≤ p ≤ 2. In 1975, Beckner was able to show that

‖Ff‖Lp′ ≤
[
p1/p/p′

1/p′
]1/2

‖f‖Lp (5.1)

for all f ∈ Lp(R) and that equality occurs if f(x) is a Gaussian . To prove

this result, first he reduced the problem to a hyper–contractive estimate for
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the Hermite semi–group. He demonstrated that inequality (5.1) is equivalent

to the fact that the following Hermite semi–group operator

Tω : H`(x) 7→ ω`H`(x) (5.2)

with ω = i
√
p− 1 defines a contraction from Lp(R, dγ) to Lp

′
(R, dγ), where

dγ is the normal distribution on the real line and {H`(x)} is the set of Hermite

polynomials associated with dγ.

To prove this contraction estimate he proposed a new type of approxi-

mation method. Using the following two-point probability measure

dα =
δ−1 + δ1

2
(5.3)

and the operator

K(f)(x) =

∫
R
f(t)dα(t) + xi

√
p− 1

∫
R
tf(t)dα(t), (5.4)

defined for all f ∈ C[x], he constructed a sequence of operators {KN} (K1 =

K) and showed that KN converges in some sense to the operator Tω. Moreover,

by using the approximating sequence {KN} in conjunction with the Central

Limit Theorem he showed that if

‖Kf‖Lp′ (R,dα) ≤ ‖f‖Lp(R,dα) (5.5)

for all f ∈ C[x] then Tω defines a contraction from Lp(R, dγ) to Lp
′
(R, dγ).

Finally, he proved inequality (5.5), which became known as Beckner’s two-

point inequality [4, Lemma 2].

Our main result, Theorem 5.1.1, generalizes Beckner’s approximation

method in the following way. We show that for any given standardized proba-

bility measure dα defined on R (that is, dα has zero mean, unit variance and
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finite moments of all orders) and any linear operator K defined in C[x] satisfy-

ing a certain orthogonality condition, the sequence of operators {KN} defined

in Section 5.1.2 converges in a weak sense to a unique operator C, also defined

in C[x], that belongs to a particular family of operators denoted by C that we

call Centered Gaussian Operators. As a particular case, we show that if K is a

semi–group operator associated with the orthogonal polynomials generated by

a given probability measure dα, then the mentioned orthogonality conditions

are met and the Centered Gaussian Operator associated with K is a Hermite

semi–group operator Tω defined in (5.2).

5.1.1 Notation

Here we define the notation used throughout this chapter. We use the

word standardized to say that a given probability measure has zero mean, unit

variance and finite moments of all orders. We denote by

dγ(x) = (2π)−1/2 exp(−x2/2)dx

the normal distribution. For a given probability measure dα defined on R and

every positive integer N we denote by

dαN(x) = dα(x1)× . . .× dα(xN)

(with a sub-index) the N -fold product of dα with itself which is defined on

RN . On the other hand, we denote by

dαN(x) = dα ∗ . . . ∗ dα(x)︸ ︷︷ ︸
N times

(with a super-index) the N -fold convolution of dα with itself defined on R.

We always use bold letters to denote N–dimensional vectors when convenient,

for instance x = (x1, . . . , xN) or y = (y1, . . . , yN).
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Given a function f(x) defined for real x we write

f+(x) = f(x1 + . . .+ xN)

(the dimension N will be clear by the context). We also denote by C[x] the

ring of polynomials with complex coefficients and by C[x1, . . . , xN ] the several

variables analogue.

5.1.2 The Aproximating Sequence

Let dα be a standardized probability measure, q > 1 and K : C[x] →
Lq(R, dα) be a linear operator. For a given integer N > 0 we define a linear

operator KN : C[x1, . . . , xN ]→ Lq(RN , dαN(
√
Nx)) as follows

KN = SN,
√
NKN,NKN,N−1 . . . KN,1SN,1/

√
N , (5.6)

where KN,n denotes the operator K applied only to the nth variable and

SN,λ : f(x1, . . . , xN) 7→ f(λx1, . . . , λxN) (5.7)

is a scaling operator defined for all λ ∈ C. In particular, if pj(x) = xj for all

real x and f(x) = pj1(x1) . . . pjN (xN) we have

KN(f)(x) =
K(pj1)(

√
Nx1) . . . K(pjN )(

√
NxN)

N
j1+...+jN

2

.

The sequence {KN}N>0 defined by (5.6) is of a special type, it is gener-

ated by independently applying the given operator K in each variable, resem-

bling the process of convolving a measure with itself or, in the point of view

of probability theory, of making a normalized sum of random variables.
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5.1.3 The Family of Centered Gaussian Operators

Here we define a family of operators that we call Centered Gaussian

Operators. Let {H`(x)}`≥0 denote the sequence of Hermite polynomials asso-

ciated with dγ(x) (see Appendix 6.3). The Hermite semi–group is a family of

operators parametrized by ω ∈ C and defined by

Tw : H`(x) 7→ ω`H`(x).

Often this semi–group is denoted by e−zH where ω = e−z.

We also need two other operators: the one–dimensional scaling operator

Sλ := S1,λ already defined in (5.7) and a multiplication operator defined below

Mτ : f(x) 7→
√

1 + τe−τx
2/2f(x).

Here we need the technical condition: Re τ > −1, which guarantees that

Mτ (C[x]) ⊂ L1+ε(R, dγ) for some small ε > 0.

The family of Centered Gaussian operators will be denoted by C and

defined by

C = {MτTωSλ : λ, ω, τ ∈ C, Re τ > −1} .

We now explain how this family coincides with the family operators given by

centered Gaussian kernels. Let C ∈ C with C = MτTωSλ. Using the relation

TωSλ = SbTa if ab = ωλ and λ2(1− ω2) = 1− a2, together with fact that the

operator Tω is given by the following Mehler kernel (see [4, p. 163])

Tω(x, y) =
1√

1− ω2
exp

[
−ω

2(x2 + y2)

2(1− ω2)
+

ωxy

1− ω2

]
,

we conclude that

Cf(x) =

∫
R
C(x, y)f(y)dγ(y)
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for every f ∈ C[x], where

C(x, y)

=

√
1 + τ

λ2(1− ω2)
exp

[
−τ + (1− τ)ω2

2(1− ω2)
x2 − 1− λ2(1− ω2)

2λ2(1− ω2)
y2 +

ωxy

λ(1− ω2)

]
.

Therefore, by inverting the following system of equations

A =
τ + (1− τ)ω2

(1− ω2)
, B =

1− λ2(1− ω2)

λ2(1− ω2)
and C =

ω

λ(1− ω2)

we deduce that the class of Centered Gaussian Operators C coincides with the

class of operators given by centered Gaussian kernels of the following form

G(x, y) = exp[−(A/2)x2 − (B/2)y2 + Cxy +D].

Remark. An interesting problem within this theory consists of studying

for which parameters A,B and C an operator of this form is bounded from

Lp(R, dγ) to Lq(R, dγ) and, if that is the case, classify the set of maximizers.

This problem was studied by Lieb [52] where he showed that (in a much more

general context) in most cases if C is bounded from Lp(R, dγ) to Lq(R, dγ)

then it is a contraction.

5.1.4 Main Results

The following is the main result of this chapter.

Theorem 5.1.1. Let dα be a standardized probability measure defined on R,

let q > 1 be a real number and K : C[x] → Lq(R, dα) be a linear operator.

Define the numbers

K`,m =

∫
R
K(H`)(x)Hm(x)dα(x).

Assume that:
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(1) K0,0 = 1 and K0,1 = K1,0 = 0,

(2) ReK0,2 > −1.

Then there exists a unique operator C ∈ C such that

lim
N→∞

∫
RN
KN(f+)(x)g+(x)dαN(

√
Nx) =

∫
R
C(f)(x)g(x)dγ(x) (5.8)

for every f, g ∈ C[x], where KN is the sequence of operators defined by (5.6).

Furthermore, the representation C = MτTωSλ is valid if and only if:

(i) τ = −K0,2

1+K0,2
,

(ii) λ2 = 1 +K2,0 + τ(1 + τ)K2
1,1,

(iii) λω = (1 + τ)K1,1.

Remarks.

(1) Observe that if λ2 6= 0 then the system (i)–(iii) always has two solutions of

the form (τ,±ω,±λ). However, these two triples define the same operator

C since TωSλ = T−ωS−λ. If λ2 = 0 then the operator C is still uniquely

defined since TωS0 = S0 for every ω ∈ C. We also note that TωSλ = SbTa

if ab = ωλ and λ2(1− ω2) = 1− a2.

(2) Condition (1) in the previous theorem is what we call orthogonality con-

dition. This assumption is necessary for the existence and non-vanishing

of the limit at (5.8) for f(x) and g(x) of the form ax + b. We also note

that by equation (i), condition (2) is equivalent to Re τ > −1.
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(3) In [4], Beckner proved the convergence result (5.8) only for the two-point

measure dα defined in (5.3) and the operator Kω defined in (5.4). His

proof, however, is very different than our proof (which works in the general

setting). He exploited a special relation between Hermite polynomials and

symmetric functions that does not exist in the general framework.

The next result shows that if the initial operator K is a contraction then its

associated Centered Gaussian Operator C is also a contraction.

Theorem 5.1.2 (Transference Principle). Assume all the hypotheses of The-

orem 5.1.1. Suppose in addition that there exists a standardized probability

measure dβ and a real number p ∈ [1, q] such that

‖Kf‖Lq(dα) ≤ ‖f‖Lp(dβ)

for every f ∈ C[x]. Then C extends to a bounded operator from Lp(R, dγ)

to Lq(R, dγ) of unit norm. Moreover, τ = 0 (or equivalently C(1) = 1) and

the limit (5.8) is also valid for all f ∈ C[x] and all continuous functions g(x)

satisfying an estimate of the form: |g(x)| ≤ A(1 + |x|A), for some A > 0.

The problem of hyper–contractive estimates for the Hermite semi–

group was partially solved by Weissler in [76] and then completely solved

by Epperson in [30]. They proved that for all p, q > 0 with 1 ≤ p ≤ q < ∞,

the Hermite semi–group operator Tω defines a contraction from Lp(R, dγ) to

Lq(R, dγ) if and only if

|p− 2− ω2(q − 2)| ≤ p− |ω|2q. (5.9)

We also refer to [25, 42] for more results on hypercontractivity.

The next corollary is a straightforward application of Theorem 5.1.2 to semi–

groups.
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Corollary 5.1.3 (Transference Principle for Semi–groups). Let dα be a stan-

dardized probability measure and denote by {P`(x)}`≥0 the set of monic orthog-

onal polynomials associated with dα (see [72, Chapter 2]). Define the following

semi–group operator

Kω : P`(x) 7→ ω`P`(x)

for ω ∈ C. Then Kω satisfies all the hypotheses of Theorem 5.1.1 and C = Tω

is the Centered Gaussian Operator associated with Kω. Furthermore, if for

some ω ∈ C and p, q > 0 with 1 ≤ p ≤ q <∞ we have an estimate of the form

‖Kωf‖Lq(dα) ≤ ‖f‖Lp(dα)

for every f ∈ C[x], then the operator Tω satisfies the analogous estimate

‖Tωf‖Lq(dγ) ≤ ‖f‖Lp(dγ)

for every f ∈ C[x] and condition (5.9) must be satisfied.

5.2 Representation in Terms of Hermite Polynomials

The proof of Theorem 5.1.1 relies on the formal representation in terms

of Hermite polynomials of an operator C ∈ C. The next lemmas deal first with

the convergence issues. We begin by compiling useful estimates.

Lemma 5.2.1. We have the following estimates:

(1) For every q ≥ 1 and B > 0 we have

lim
N→∞

BN

N !

∥∥|x+ iy|NeB|x|
∥∥
Lq(R2,dγ(x)×dγ(y))

= 0. (5.10)

(2) For every t, x ∈ C we have

L∑
`=0

∣∣∣∣t``!H`(x)

∣∣∣∣ ≤ e|tx|
∫
R
e|ty|dγ(y).
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(3) For every t, x ∈ C we have∑
`>L

∣∣∣∣t``!H`(x)

∣∣∣∣ ≤ e|tx|
∫
R

|t(x+ iy)|L+1

(L+ 1)!
dγ(y).

Proof. Estimates (2) and (3) are consequences of the integral formula (6.20)

and the following inequalities respectively

L∑
`=0

s`

`!
≤ es and

∑
`>L

s`

`!
≤ es

sL+1

(L+ 1)!
, (s ≥ 0). (5.11)

Using the following inequalities

(a+ b)t ≤ 2t−1(at + bt) and ab ≤ 2a3/2

3
+
b3

3
, (a, b ≥ 0, t ≥ 1)

we deduce that∫
R

∫
R
|x+ iy|NqeBq|x|dγ(x)dγ(y)� 2Nq

(
1 +

∫
R
|x|3Nq/2dγ(x)

)
= 2Nq

(
1 + π−1/223Nq/4Γ(3Nq/4 + 1/2)

)
� 4Nq (1 + Γ(3Nq/4 + 1/2)) ,

where the implied constants depend only on B and q. Using Stirling’s formula

Γ(1 + t) ∼
√

2π tt+1/2e−t, t→∞

the limit (5.10) follows. This completes the proof.

Now we prove a useful inequality.

Lemma 5.2.2. Let ω, λ ∈ C. Then for every L′ < L and every t, x ∈ C we

have∣∣∣∣ exp
[
xωλt− (1− λ2 + ω2λ2)t2/2

]
−

L∑
`=0

t`

`!
TωSλ(H`)(x)

∣∣∣∣
≤
{∫

R

|t(x+ iy)|L+1

(L+ 1)!
dγ(y) +

|(λ2 − 1)t2/2|b(L−L′)/2c+1

(b(L− L′)/2c+ 1)!

∫
R
e|ωλty|dγ(y)

+

∫
R

|ωλt(x+ iy)|L′+1

(L′ + 1)!
dγ(y)

}
exp

[
|(λ2 − 1)t2/2|+ (1 + |ωλ|)|tx|

]
.
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Proof. Using the generating function (6.19) one can deduce that

H`(λx) =
∑̀
k=0

(
`

k

)
λk(1− λ2)

`−k
2 H`−k(0)Hk(x).

Now, we can use (6.18) to obtain

L∑
`=0

t`

`!
TωSλ(H`)(x) =

L∑
k=0


⌊
L−k

2

⌋∑
`=0

((λ2 − 1)t2/2)`

`!

 (ωλt)k

k!
Hk(x)

= e(λ2−1)t2/2

L∑
k=0

(ωλt)k

k!
Hk(x)

−
L∑
k=0

 ∑
`>

⌊
L−k

2

⌋
((λ2 − 1)t2/2)`

`!

 (ωλt)k

k!
Hk(x).

Thus, we have

exp[xωλt− (1− λ2 + ω2λ2)t2/2]−
L∑
`=0

t`

`!
TωSλ(H`)(x)

= e(λ2−1)t2/2
∑
`>L

t`

`!
H`(x) +

L∑
k=0

 ∑
`>

⌊
L−k

2

⌋
((λ2 − 1)t2/2)`

`!

 (ωλt)k

k!
Hk(x)

=: I1(t, x, L) + I2(t, x, L).

We now estimate quantities I1 and I2. Using the estimate (3) of Lemma 5.2.1

we obtain

|I1(t, x, L)| ≤ e|(λ
2−1)t2/2|+|tx|

∫
R

|t(x+ iy)|L+1

(L+ 1)!
dγ(y). (5.12)

Now, we split quantity I2 into two parts

I2(t, x, L) = J1(t, x, L′, L) + J2(t, x, L′, L),
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where J1(t, x, L′, L) denotes the sum from k = 0 to k = L′ and J2(t, x, L′, L)

the sum from k = L′ + 1 to L. Applying estimate (2) of Lemma 5.2.1 and

inequality (5.11) we obtain

J1(t, x, L′, L) ≤

(
L′∑
`=0

|ωλt|k

k!
|Hk(x)|

) ∑
`>

⌊
L−L′

2

⌋
|(λ2 − 1)t2/2|`

`!

≤ e|(λ
2−1)t2/2|+|ωλtx| |(λ2 − 1)t2/2|b(L−L′)/2c+1

(b(L− L′)/2c+ 1)!

∫
R
e|ωλty|dγ(y).

(5.13)

By a similar method we obtain

J2(t, x, L′, L) ≤ e|(λ
2−1)t2/2|+|ωλtx|

∫
R

|ωλt(x+ iy)|L′+1

(L′ + 1)!
dγ(y). (5.14)

The lemma follows from (5.12), (5.13) and (5.14).

Remark. Notice that, by taking L′ = bL/2c, the previous lemma implies that

lim
L→∞

L∑
`=0

t`

`!
TωSλ(H`)(x) = exp

[
xωλt− (1− λ2 + ω2λ2)t2/2

]
,

where the convergence is uniform for t and x in any fixed compact set of C.

Let C ∈ C with C = MτTωSλ. Since Re τ > −1, we can easily see

that C(C[x]) ⊂ L1+ε(R, dγ) for some small ε > 0. Therefore, the following

coefficients

c`,m =

∫
R
C(H`)(x)Hm(x)dγ(x) (5.15)

are well defined and if Re τ > −1/2

C(H`)(x) =
∑
m≥0

c`,m
m!

Hm(x)

in the L2(R, dγ)−sense. The next lemma gives an exact analytic expression

for these coefficients. Below the operation ∧ represents the minimum between

two given numbers and ∨ represents the maximum.
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Lemma 5.2.3. Let τ, ω, λ ∈ C with Re τ > −1. Then

c`,m
`!m!

=
`∧m∑
n=0
n even

( −τ
τ+1

) `∨m−`+n
2 (−a)

`∨m−m+n
2 b`∧m−n

2
|`−m|

2
+n(n/2)!

(
|m−`|+n

2

)
!(` ∧m− n)!

(5.16)

if `+m is even and c`,m = 0 if `+m is odd. The quantities a and b are given

by

a = 1− λ2 + λ2ω2 τ

τ + 1
, b =

λω

τ + 1
. (5.17)

Proof. Step 1. Define for every N > 0 the following function

FN(s, t)

=
N∑

`,m=0

c`,m
t`sm

`!m!
=

∫
R
MτTωSλ

(
N∑
`=0

t`

`!
H`

)
(x)

(
N∑
m=0

sm

m!
Hm(x)

)
dγ(x)

(5.18)

for every s, t ∈ C. We claim that if Re τ ≥ 0 and q ∈ [1,∞) then∥∥∥∥√1 + τ exp
[
xωλt−(1− λ2 + ω2λ2)t2/2− τx2/2

]
−

L∑
`=0

t`

`!
MτTωSλ(H`)(x)

∥∥∥∥
Lq(dγ(x))

(5.19)

converges to zero uniformly in the variable t in any fixed compact set of C.

Assuming the claim is true, we prove the lemma. First we deal with

the case Re τ ≥ 0. In this case, by an application of Hölder’s inequality in

(5.18) we deduce that

F (s, t) := lim
N→∞

FN(s, t)

=
√

1 + τ

∫
R

exp
[
x(ωλt+ s)− (1− λ2 + ω2λ2)t2/2− s2/2− τx2/2

]
dγ(x),
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where the limit is uniform in compact sets of C in the variables s and t. Using

the following identity ∫
R
e−A(x−B)2dx =

√
π

A
,

which holds for every A,B ∈ C with ReA > 0 we conclude that

F (s, t) = exp

[
−at2/2− τ

τ + 1
s2/2 + bts

]
,

with a and b given by (5.17). We can now use the generating function (6.19)

to obtain

F (s, t) =

(∑
i≥0

ai/2ti

i!
Hi(0)

)(∑
j≥0

(
τ

τ + 1

)j/2
sj

j!
Hj(0)

)(∑
k≥0

(bts)k

k!

)

=
∑
i,j,k≥0

ti+ksj+k

i!j!k!
ai/2

(
τ

τ + 1

)j/2
bkHi(0)Hj(0)

=
∑
`,m≥0

t`sm
`∧m∑
n=0

(
τ
τ+1

) `∨m−`+n
2 a

`∨m−m+n
2 b`∧m−n

n!(|m− `|+ n)!(` ∧m− n)!
Hn(0)H|`−m|+n(0),

where in the last identity we made the following change of variables: ` = i+ k

and m = j + k.

Using identity (6.18) in conjunction with the fact that FN(s, t) con-

verges uniformly in compact sets to F (s, t) we deduce that the coefficients of

their Taylor series must match and thus the representation (5.16) follows for

Re τ ≥ 0. However, expressions (5.16) and (5.15) clearly define analytic func-

tions in the variable τ for Re τ > −1. Thus, by analytic continuation, (5.16)

also holds for Re τ > −1.

Step 2. It remains to prove the claim stated in (5.19) for Re τ ≥ 0. Let

t0 > 0 and assume that |t| ≤ t0. Using Lemma 5.2.2 and Jensen’s inequality
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we obtain∥∥∥∥√1 + τ exp
[
xωλt− 1−λ2+ω2λ2

2
t2 − τ

2
x2
]
−

L∑
`=0

t`

`!
MτTωSλ(H`)(x)

∥∥∥∥
Lq(dγ(x))

≤ |1 + τ |1/2B

{
BL+1

(L+ 1)!

∥∥∥∥|x+ iy|L+1eB|x|
∥∥∥∥
Lq(dγ(x)×dγ(y))

+
Bb(L−L

′)/2c+1

(b(L− L′)/2c+ 1)!

∥∥∥∥eB(|y|+|x|)
∥∥∥∥
Lq(dγ(x)×dγ(y))

+
BL′+1

(L′ + 1)!

∥∥∥∥|x+ iy|L′+1eB|x|
∥∥∥∥
Lq(dγ(x)×dγ(y))

}
(5.20)

for all L′ < L, where B is a constant which depends only on |λ|, |ω| and t0.

Choosing L′ = bL/2c and using item (1) of Lemma 5.2.1 one can easily see that

the right–hand side of (5.20) converges to zero when L → ∞. This finishes

the proof.

5.3 Proof of Theorem 5.1.1

The main ingredient of the proof is the multiplication formula (6.21).

By the fact the any polynomial can be uniquely written as a linear combination

of Hermite polynomials and by Lemma 5.2.3, it is sufficient to prove that

c`,m(N) :=

∫
RN
KN([H`]+)(x)[Hm]+(x)dαN(

√
Nx)→ c`,m, N →∞

where c`,m is given by (5.16) with the parameters τ, ω, λ given by equations

(i), (ii) and (iii) in Theorem 5.1.1. Applying identity (6.21) we obtain

c`,m(N) =
`!m!

N
`+m

2

∑
`1+...+`N=`

m1+...+mN=m

K`1,m1

`1!m1!
. . .

K`N ,mN

`N !mN !
.
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By doing a change of variables that counts the number of appearances of each

term
Ki,j
i!j!

we obtain that

c`,m(N) =
`!m!

N
`+m

2

∑
[Pi,j ]

N !∏
i,j Pi,j!

∏
i,j

(
Ki,j

i!j!

)Pi,j
,

where the last sum is over the subset of matrices [Pi,j], i = 0, . . . , ` and j =

0, . . . ,m with non-negative integer entries satisfying the conditions below:

(I)
∑

i,j iPi,j = `,

(II)
∑

i,j jPi,j = m,

(III)
∑

i,j Pi,j = N .

These conditions imply that Pi,j ≤ max{`,m} if (i, j) 6= (0, 0) and

N ≥ P0,0 ≥ N −max{`,m}[(`+ 1)(m+ 1)− 1].

Thus, the subset of matrices determined by (I)–(III) is finite and the number

of elements does not depend on N . Also, since K0,0 = 1 we obtain

c`,m(N) =
`!m!

N
`+m

2

∑
[Pi,j ]

{
N !

(N −
∑′

i,j Pi,j)!
∏′

i,j Pi,j!

′∏
i,j

(
Ki,j

i!j!

)Pi,j}
, (5.21)

where the symbols
∏′ and

∑′ mean that the term (i, j) = (0, 0) is excluded.

We also obtain that for every [Pi,j] satisfying (I)–(III) we have

N !

(N −
∑′

i,j Pi,j)!
∏′

i,j Pi,j!
∼ N

∑′
i,j Pi,j∏′

i,j Pi,j!

when N →∞ (the symbol∼means that the quotient goes to 1 when N →∞).

We now investigate the possible values for
∑′

i,j Pi,j. Notice that if P0,1

or P1,0 is not zero then the quantity in the brackets at (5.21) is zero because
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K0,1 = K1,0 = 0. If P0,1 = P1,0 = 0, then by equations (I) and (II) we conclude

that
`+m

2
=
∑
i,j

′ i+ j

2
Pi,j ≥

∑
i,j

′
Pi,j

with equality occurring if and only if ` + m = 2(P0,2 + P2,0 + P1,1), ` + m is

even and Pi,j = 0 if (i, j) /∈ {(0, 2), (2, 0), (1, 1), (0, 0)}.

We conclude that the limit of (5.21) when N → ∞ is zero if ` + m is

odd and is equal to

`!m!
∑ K

P0,2

0,2 K
P2,0

2,0 K
P1,1

1,1

2P0,2+P2,0P0,2!P2,0!P1,1!
(5.22)

if `+m is even, where the above sum is over the set of non-negative integers

P0,2, P2,0, P1,1 satisfying:

(IV) 2P2,0 + P1,1 = `,

(V) 2P0,2 + P1,1 = m.

Depending on whether ` is greater than m or not, one can do an appropriate

change of variables (for instance if m ≥ ` choose n = 2P2,0) to deduce that

(5.22) equals to

`!m!
`∧m∑
n=0
n even

K`∧m−n
1,1 K

`∨m−m+n
2

2,0 K
`∨m−`+n

2
0,2

2
|`−m|

2
+n(` ∧m− n)!(n/2)!

(
|`−m|+n

2

)
!

.

Finally, we can apply Lemma 5.2.3 to conclude that the above quantity equals

to ∫
R
C(H`)(x)Hm(x)dγ(x)

if K0,2 = −τ/(1 + τ), K2,0 = λ2 − 1 − λ2ω2τ/(τ + 1) and K1,1 = λω/(1 + τ).

This finishes the proof.
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5.4 Proof of Theorem 5.1.2

Step 1. First, we claim that for every N > 0 the operator KN defined in

Section 5.1.3 satisfies

‖KN(f)(x)‖Lq(RN ,dαN (
√
Nx)) ≤ ‖f(x)‖Lp(RN ,dβN (

√
Nx)) (5.23)

for every polynomial f ∈ C[x1, . . . , xN ] (recall the notation in Section 5.1.1).

Denoting by

g(x1, . . . , xN−1, yN) = Ky1Ky2 . . . KyN−1

[
f(y/

√
N)
]

(
√
Nx1, . . . ,

√
Nxn−1),

where Kyj denotes the restriction to the yj variable of the operator K, we

conclude that

KN(f)(x1, . . . , xN) = KyN [g(x1, . . . , xN , yN/
√
N)](
√
NxN).

We obtain

‖KNf(x)‖Lq(dα(
√
Nx1)×...×dα(

√
NxN ))

= ‖‖KyN [g(x1, . . . , xN−1,
yN√
N

)](
√
NxN)‖Lq(dα(

√
NxN )) ‖Lq(dα(

√
Nx1)×...×dα(

√
NxN−1))

≤ ‖‖g(x1, . . . , xN−1, yN)]‖Lp(dβ(
√
NyN )) ‖Lq(dα(

√
Nx1)×...×dα(

√
NxN−1))

≤ ‖‖g(x1, . . . , xN−1, yN)] ‖Lq(dα(
√
Nx1)×...×dα(

√
NxN−1)) ‖Lp(dβ(

√
NyN )),

where the second inequality is Minkowski’s inequality since q ≥ p. We now

can apply the same argument to estimate the quantity

‖g(x1, . . . , xN−1, yN) ‖Lq(RN−1,dα(
√
Nx1)×...×dα(

√
NxN−1))

for fixed yN and conclude by induction that (5.23) is valid (see also [4, Lemma

2]).
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Step 2. Now, let C ∈ C be the Centered Gaussian operator associated with

K and f ∈ C[x] with ‖f‖Lp(R,dγ) = 1. Since C[x] is dense in Lq(R, dγ), for

every ε > 0 we can find g ∈ C[x] with ‖g‖Lq′ (R,dγ) = 1 such that

‖C(f)‖Lq(R,dγ) ≤
∣∣∣∣∫

R
C(f)(x)g(x)dγ(x)

∣∣∣∣+ ε.

However, for N sufficiently large we have∣∣∣∣ ∫
R
C(f)(x)g(x)dγ(x)

∣∣∣∣
≤
∣∣∣∣∫

RN
KN(f+)(x)g+(x)dαN(

√
Nx)

∣∣∣∣+ ε

≤ ‖KN(f+)(x)‖Lq(RN ,dαN (
√
Nx)) ‖g+(x)‖Lq′ (RN ,dαN (

√
Nx)) + ε

≤ ‖f+(x)‖Lp(RN ,dβN (
√
Nx)) ‖g+(x)‖Lq′ (RN ,dαN (

√
Nx)) + ε

= ‖f(x)‖Lp(R,dβN (
√
Nx)) ‖g(x)‖Lq′ (R,dαN (

√
Nx)) + ε,

(5.24)

where the second inequality is Hölder’s inequality and the third one is due to

(5.23).

Since dα is a standardized probability measure, Fatou’s lemma for

weakly convergent probabilities [31, Theorem 1.1] together with the conver-

gence of the absolute moments in the Central Limit Theorem [74, Theorem 2]

imply that

lim
N→∞

∫
R
h(x)dαN(

√
Nx) =

∫
R
h(x)dγ(x) (5.25)

for every continuous function h(x) satisfying an estimate of the form |h(x)| ≤
A(1 + |x|A), for some A > 0. Thus, we conclude that the right–hand side of

(5.24) converges to 1 + ε when N → ∞. By the arbitrariness of ε > 0 we

conclude that ‖C(f)‖Lq(dγ) ≤ 1. By the density of C[x] in Lp(R, dγ) for finite

p ≥ 1, we conclude that C extends to a bounded linear operator of norm not

greater than one.
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Step 3. Now, observe that since K0,0 = 1 we have∫
RN
KN(1)(x)dαN(

√
Nx) = 1

for every N > 0. Thus, we obtain

1 =

∫
R
C(1)(x)dγ(x) ≤ ‖C(1)‖Lq(R,dγ) ≤ 1.

This implies that |C(1)(x)| = 1 for every real x. We conclude that τ = 0 or,

equivalently, C(1) = 1.

Now, let f ∈ C[x] and let g(x) be a continuous function satisfying an

estimate of the form |g(x)| ≤ A(1+|x|A). Given ε > 0, take h ∈ C[x] such that

‖g − h‖Lq′ (R,dγ) < ε. By estimate (5.23) and Holder’s inequality we conclude

that∣∣∣∣ ∫
R
C(f)(x)g(x)dγ(x)−

∫
RN
KN(f+)(x)g+(x)dαN(

√
Nx)

∣∣∣∣
≤ ε‖C(f)‖Lq(dγ) + ‖f(x)‖Lp(dαN (

√
Nx))‖g(x)− h(x)‖Lq′ (dαN (

√
Nx))

+

∣∣∣∣ ∫
R
C(f)(x)h(x)dγ(x)−

∫
RN
KN(f+)(x)h+(x)dαN(

√
Nx)

∣∣∣∣.
We can now use the Central Limit Theorem as stated in (5.25) to obtain that

lim sup
N→∞

∣∣∣∣ ∫
R
C(f)(x)g(x)dγ(x)−

∫
RN
KN(f+)(x)g+(x)dαN(

√
Nx)

∣∣∣∣
≤ ε

(
‖C(f)‖Lq(dγ) + ‖f(x)‖Lp(dγ)

)
.

The proof is complete once we let ε→ 0.
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Chapter 6

Appendix

6.1 Lp de Branges Spaces

De Branges spaces are closely related to Hardy spaces in the upper

half–plane C+ = {Im z > 0}. For a given p ∈ [1,∞) the Hardy space Hp(C+)

is defined as the space of holomorphic functions F : C+ → C such that

sup
y>0
‖F (x+ iy)‖Lp <∞, (6.1)

where ‖ · ‖Lp denotes the standard Lp-norm in the variable x. This space

endowed with the norm (6.1) defines a Banach space of holomorphic functions

on the upper half–plane.

It can be proven that for every F ∈ Hp(C+) the limit

F (x) = lim
y→0

F (x+ iy)

exists for almost every real x and defines a function in Lp(R). Moreover, we

have the following Poisson representation

ReF (x+ iy) =
y

π

∫
R

ReF (s)

(x− s)2 + y2
ds if y > 0, (6.2)

and the following Cauchy integral formula:

1

2πi

∫
R

F (s)

s− z
ds = F (z), if z ∈ C+ (6.3)

and

1

2πi

∫
R

F (s)

s− z
ds = 0, if z ∈ C+. (6.4)
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Using the Poisson representation (6.2) and Young’s inequality for convolutions,

one can deduce that

sup
y>0
‖F (·+ iy)‖p = ‖F‖p. (6.5)

Using (6.3) one can show that Hp(C+) is indeed a Banach space. All these

facts are contained in [58].

Proposition 6.1.1. Let F (z) be an holomorphic function in C+ that has a

continuous extension to the closed upper half–plane. The following are equiv-

alent:

(1) supy>0 ‖F (·+ iy)‖p <∞.

(2) F (z) is of bounded type in C+, v(F ) ≤ 0 and

‖F‖p <∞.

Proof. First we prove that (2) implies (1). Since F (z) is of bounded type with

non–positive mean type we have (see [6, Problem 27])

log |F (z)| ≤ y

π

∫
R

log |F (t)|
(x− t)2 + y2

dt.

Jensen’s inequality implies that

|F (z)| ≤ y

π

∫
R

|F (t)|
(x− t)2 + y2

dt.

Applying Young’s inequality for convolutions and Fatou’s lemma we conclude

that

sup
y>0
‖F (·+ iy)‖p = ‖F‖p.
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Now we show that (1) implies (2). Write ReF (t) = g(t)− h(t), where

g(t) = max{ReF (t), 0} and h(t) = max{−ReF (t), 0}. Let G(z) and H(z) be

holomorphic functions in C+ such that

ReG(z) =
y

π

∫
R

g(t)

(x− t)2 + y2
dt

and

ReH(z) =
y

π

∫
R

h(t)

(x− t)2 + y2
dt

for all z ∈ C+.

Since ReH(z) > 0 and ReG(z) > 0 in C+, we conclude that G(z) and

H(z) are of bounded type with non–positive mean type (see [6, Problem 20]).

By representation (6.2) F (z) differs from G(z)−H(z) by a constant, and we

deduce that F (z) is of bounded type with non–positive mean type.

The de Branges space Hp(E) is defined as the space of entire functions

F (z) such that F (z)/E(z) and F ∗(z)/E(z) are of bounded type with non–

positive mean type and F (x)/E(x) ∈ Lp(R) when restricted to the real axis.

The above proposition shows that F ∈ Hp(E) if and only if

sup
y∈R
‖F (·+ iy)/E(·+ i|y|)‖p <∞,

or equivalently, if F/E and F ∗/E belong to Hp(C+). Using the Cauchy rep-

resentation (6.3) and (6.4) one can deduce that

F (w) =

∫
R

F (x)K(w, x)

|E(x)|2
dx (6.6)

for all w ∈ C+, where K(w, z) is the kernel defined in (2.6). Using the repro-

ducing kernel property (6.6) together with the completeness of Hardy spaces
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it can be proven that the spaces Hp(E) are indeed Banach spaces with norm

given by

‖F‖E,p =

(∫
R

∣∣∣∣F (x)

E(x)

∣∣∣∣pdx)1/p

.

Evidently ‖K(w, .)‖E,q < ∞ for every 1 < q ≤ ∞ and w ∈ C. Using

Hölder’s inequality we obtain an important estimate

|F (w)| ≤ ‖F‖E,p‖K(w, ·)‖E,p′ , (6.7)

where p′ is the conjugate exponent of p. Using the known fact that the space

Hp′(C+) can be identified with the dual space of Hp(C+) for p ∈ (1,∞) one

can deduce that

Hp(E)′ = Hp′(E) for p ∈ (1,∞). (6.8)

That is, if Λ is a bounded functional over Hp(E) then there exists a function

Λ ∈ Hp′(E) such that

〈Λ, F 〉 =

∫
R

F (x)Λ(x)

|E(x)|2
dx

for all F ∈ Hp(E). The proof of this duality result deals with model spaces for

Hp(C+) which diverges from the purposes of this section. For the interested

reader we refer to [2, Proposition 1.1] and [24, Lemma 4.2].

Another important result in this theory is a theorem of Krein [50].

Theorem 6.1.2 (Krein). Let F (z) be an entire function. The following are

equivalent:

(1) F (z) is of exponential type and∫
R

log+ |F (x)|
1 + x2

dx <∞.
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(2) F (z) and F ∗(z) are of bounded type in C+.

In this situation we have τ(F ) = max{v(F ), v(F ∗)}.

Remark. An application of this theorem can show that if a Hermite–Biehler

function E(z) is also of bounded type in C+ then E(z) is of exponential type

and F ∈ Hp(E) if and only if τ(F ) ≤ τ(E) and F/E ∈ Lp(R).

6.2 Homogeneous Spaces

In what follows we briefly review the construction of a special family

of de Branges spaces called homogeneous spaces which were introduced by de

Branges (see [6, Section 50] and [47]).

Let α > −1 be a parameter and consider the real entire functions Aα(z)

and Bα(z) given by

Aα(z) =
∞∑
n=0

(−1)n
(

1
2
z
)2n

n!(α + 1)(α + 2) . . . (α + n)
= Γ(α + 1)

(
1
2
z
)−α

Jα(z) (6.9)

and

Bα(z) =
∞∑
n=0

(−1)n
(

1
2
z
)2n+1

n!(α + 1)(α + 2) . . . (α + n+ 1)
= Γ(α + 1)

(
1
2
z
)−α

Jα+1(z),

(6.10)

where Jα(z) denotes the classical Bessel function of the first kind given by

Jα(z) =
∑
n≥0

(−1)n(1
2
z)2n+α

n! Γ(α + n+ 1)
.

If we write z = x+ iy then, for every α > −1, we have

Jα(z) =

√
2

πz

(
cos(z − απ/2− π/4) + e|y|O(1/|z|)

)
(6.11)
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for x > 0. This estimate can be found in [75, Section 7.21].

If we write

Eα(z) = Aα(z)− iBα(z),

then the function Eα(z) is a Hermite–Biehler function with no real zeros.

Moreover, it is of bounded type in C+ and of exponential type in C, with

v(Eα) = τ(Eα) = 1. Observe that when α = −1/2 we have simply A−1/2(z) =

cos z and B−1/2(z) = sin z.

These special functions also satisfy the following differential equations

A′α(z) = −Bα(z)

B′α(z) = Aα(z)− (2α + 1)Bα(z)/z.
(6.12)

By (6.9), (6.10) and (6.11) we have

|Eα(x)|−2 'α |x|2α+1 (6.13)

and

|x|2α+1|Aα(x)Bα(x)| = Cα
(
| sin(2x− απ)|+O(1/|x|)

)
for |x| ≥ 1. We conclude that AαBα /∈ H2(E2

α), hence Bα /∈ H2(Eα). Also, by

(6.12) we have

i
E ′α(z)

Eα(z)
= 1− (2α + 1)

Bα(z)

zEα(z)
. (6.14)

for all real z ∈ C+. Hence [E ′α(z)/Eα(z)] ∈ H∞(C+).

Denoting by ϕα(z) the phase function associated with Eα(z) and using

the fact that ϕ′α(t) = Re [iE ′α(t)/Eα(t)] for all real t, we can use (6.14) to

obtain

ϕ′α(t) = 1− (2α + 1)Aα(t)Bα(t)

t|Eα(t)|2
.

Hence,

ϕ′α(t) 'α 1 for all real t. (6.15)
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For each F ∈ H2(Eα) we have the remarkable identity∫
R
|F (x)|2 |Eα(x)|−2 dx = cα

∫
R
|F (x)|2 |x|2α+1 dx , (6.16)

with cα = π 2−2α−1 Γ(α+1)−2. Using the fact that Eα(z) is of bounded type, we

can apply Krein’s Theorem 6.1.2 together with (6.13) and (6.16) to conclude

that F ∈ H2(Eα) if and only if F (z) has exponential type at most 1 and either

side of (6.16) is finite. Again, by Krein’s Theorem, for any integer ν > 0 and

p ∈ [1,∞) we have that F ∈ Hp(Eν
α) if and only if F (z) has exponential type

at most ν and F/Eν
α ∈ Lp(R).

For α > −1/2, the Hankel’s integral for Jα(z) is given by

Jα(z) =
(z/2)α

Γ(α + 1/2)
√
π

∫ 1

−1

eisz(1− s2)α−
1
2 ds.

Using (6.9) and (6.10) and an integration by parts, we deduce the following

integral representation for α > −1/2

Eα(z) =
Γ(α + 1)

Γ(α + 1/2)
√
π

∫ 1

−1

eisz(1− s2)α−
1
2 (1− s) ds.

By simple estimates, we deduce from the above representation that v(E∗α) =

v(Eα) = 1 for α > −1/2. Also, it is not known if the zeros of Eα(z) have

a positive distance from the real axis. Thus, we cannot directly apply Theo-

rem 3.1.2 for homogeneous spaces in the case p > 2. Nevertheless, Theorem

3.4.2 will follow for these homogeneous spaces by verifying that the alternative

condition (3.29) holds, as pointed out in the remark in the end of Section 3.3.1.

Lemma 6.2.1. Let α > −1 be a real number and ν > 0 be an integer. The

space Hp(Eν
α) satisfies the following properties:

(1) Hp(Eν
α) ⊂ Hq(Eν

α) if 1 ≤ p < q <∞.
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(2) Hp(Eν
α) is closed by differentiation for every p ∈ [1,∞).

(3) If p ∈ [1,∞) there exists a constant Cα,p > 0 such that∑
Aα(t)=0

|F (t)|
(1 + |t|)Kν,α(t, t)1/2

≤ Cα,p‖F‖Eνα,p for every F ∈ Hp(Eν
α),

where the function Kν,α(w, z) denotes the reproducing kernel of H2(Eν
α).

Proof. Item (1). The desired inclusions follow by the previous discussion about

the properties of homogeneous spaces and Lemma 3.3.1.

Item (2). Define an auxiliary function Ψ(z) in the following way. If α <

0 write Ψ(z) = E−1−α(z)ν . If α ≥ 0, let k ≥ 1 be an integer such that |1/2 +

α − k| ≤ 1/2 and define Ψ(z) = [E−3/4(z)4(k+1)Ek−α(z)]ν . We conclude that

Ψ(z) is of exponential type and, by (6.13), |Ψ(x)| ' |x|ν(α+1/2) ' |Eα(x)|−ν for

|x| ≥ 1. By (6.14) and some simple calculations we have |Ψ′(x)| � |Ψ(x)| for

all real x. Also, by redefining Ψ̃(z) = Ψ(az) for some a > 0, we can assume

that Ψ(z) has exponential type 1. We conclude that F ∈ Hp(Eν
α) if and only

if F (z) if of exponential type at most ν and FΨ ∈ Lp(R, dx).

If F ∈ Hp(Eν
α) has a finite number of zeros then a simple calculation

would show that F ′(z) is a finite combination of functions in Hp(Eν
α). If F (z)

has an infinite number of zeros, let k = d|ν(α + 1/2)|e + 2 and w1, . . . , wk be

zeros of F (z). Define then G(z) = F (z)/[(z − w1) . . . (z − wk)]. Clearly, G(z)

if of exponential type at most ν and, by an application of Holder’s inequality,

G ∈ L1(R, dx). Since the Paley–Wiener spaces are closed by differentiation

we deuce that G′ ∈ L1(R, dx) and has exponential type at most ν. Hence

F ′(z) has exponential type at most ν. On the other hand, FΨ ∈ Lp(R, dx)

and again this implies that (FΨ)′ ∈ Lp(R, dx). Since F ′Ψ = (FΨ)′ − FΨ′

and |Ψ′(x)| � |Ψ(x)| for all real x, we conclude that F ′Ψ ∈ Lp(R, dx). Hence

F ′ ∈ Hp(Eν
α).
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Item (3). By item (2) it is sufficient to prove that∑
Aα(t)=0

|F (t)|
(1 + |t|)Kν,α(t, t)1/2

�p,α,ν ‖F‖Eνα,p, for every F ∈ Hp(Eν
α).

By (6.15) we conclude that Kν,α(x, x)1/2 ' |Eα(x)|ν for all real x and the zeros

of Aα(z) are separated. We can use Hölder’s inequality to conclude that

∑
Aα(t)=0

|F (t)|
(1 + |t|)Kν,α(t, t)1/2

�p,α,ν

( ∑
Aα(t)=0

∣∣∣∣ F (t)

Eα(t)ν

∣∣∣∣p)1/p

.

Hence, we only need to show that∑
Aα(t)=0

∣∣∣∣ F (t)

Eα(t)ν

∣∣∣∣p �p,α,ν

∫
R

∣∣∣∣ F (t)

Eα(t)ν

∣∣∣∣pdt (6.17)

for all F ∈ Hp(Eν
α). Since ΨF ∈ Lp(R, dx) we can apply the Plancherel-Pólya

Theorem to obtain∑
Aα(t)=0

|F (t)Ψ(t)|p �p,α,ν

∫
R
|F (t)Ψ(t)|p dt

for every F ∈ Hp(Eν
α). This implies (6.17) and concludes the proof.

Remark. The proof of item (2) is inspired in the proof of [16, Theorem 20].

6.3 Hermite Polynomials

The Hermite polynomials {H`(x)}`≥0 are the orthogonal polynomial

associated with the normal distribution dγ. They are recursively defined in

the following way: H0(x) = 1, H1(x) = x and H`(x) is defined as the unique

monic polynomial of degree ` that is orthogonal to {H0, . . . , H`−1} with respect

to the inner product generated by dγ, that is,∫
R
H`(x)Hm(x)dγ(x) = 0
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if ` > m. It is known that they form a complete orthogonal basis for L2(R, dγ)

and are dense in Lq(R, dγ) for every q ∈ [1,∞).

They satisfy the following recursion relation

H`+1(x) = H1(x)H`(x)− `H`−1(x)

for every ` ≥ 1. By an application of this last formula we obtain two useful

identities ∫
R
|H`(x)|2dγ(x) = `! ∀` ≥ 0

and

H`(0) =
(−1)`/2`!

(`/2)!2`/2
(6.18)

if ` is even and H`(0) = 0 if ` is odd. The associated generating function is

given by

ext−t
2/2 =

∑
`≥0

t`

`!
H`(x), (6.19)

where the convergence is uniform for t, x in any fixed compact set of C (see

Lemma 5.2.2). We also have the following integral representation

H`(x) =

∫
R
(x+ iy)`dγ(y). (6.20)

A very important formula for our purposes is the multiplication formula

below

H`(x1 + . . .+ xN)

`!
=

1

N `/2

∑
`1+...+`N=`

H`1(
√
Nx1)

`1!
. . .

H`N (
√
NxN)

`N !
, (6.21)

which holds for every (x1, . . . , xN) ∈ CN . This last formula can be deduced by

using formula (6.20) and the fact that dγ(x) = dγN(
√
Nx) for every N > 0

(see the notation Section 5.1.1).

All these facts about Hermite polynomials can be found in [72, Chapter

5].
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[48] L. Hörmander, The Analysis of Linear Partial Differential Operators I,

Springer-Verlag, 1983.
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