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Abstract— When a robot uses an imperfect system model to
plan its actions, a key challenge is the exploration-exploitation
trade-off between two sometimes conflicting objectives: (i)
learning and improving the model, and (ii) immediate progress
towards the goal, according to the current model. To address
model uncertainty systematically, we propose to use Bayesian
reinforcement learning and cast it as a partially observable
Markov decision process (POMDP). We present a simple algo-
rithm for offline POMDP planning in the continuous state space.
Offline planning produces a POMDP policy, which can be exe-
cuted efficiently online as a finite-state controller. This approach
seamlessly integrates planning and learning: it incorporates
learning objectives in the computed plan, which then enables
the robot to learn nearly optimally online and reach the goal.
We evaluated the approach in simulations on two distinct tasks,
acrobot swing-up and autonomous vehicle navigation amidst
pedestrians, and obtained interesting preliminary results.

I. INTRODUCTION

Planning under uncertainty is critical for improving the
robustness of robotic systems. There has been significant
progress recently on robot motion planning algorithms that
deal with robot control uncertainty, sensing uncertainty, and
environment changes (e.g., [1], [32], [9], [15], [16], [21],
[22], [25], [26]). Model uncertainty, however, has received
relatively little attention. Consider acrobot, a well-studied
example in robot control (Fig. 1). If the acrobot’s dynamic
model is known accurately, we can plan a sequence of
actions for the robot to swing up from its natural resting
configuration to the stand-up configuration. What shall we
do if the dynamic model is imperfect, for example, the
link masses or lengths are unknown? Is it worth gathering
information to learn and improve the model, at the cost of
possibly slowing down immediate progress towards the goal?
Or shall we act according to the current model and possibly
suffer the consequences of model errors?

This illustrates the classic trade-off between exploration
and exploitation, a major challenge in robot planning and
learning under uncertainty. It occurs in a wide variety of
robotic tasks where we must rely on incomplete or inaccurate
models, including, for example, integrated exploration, where
a mobile robot navigates through an unknown environment
towards a goal, with an imperfect map.

To integrate planning and model learning, we propose
to use model-based Bayesian reinforcement learning (RL).
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Fig. 1. The acrobot is a two-link articulated robot actuated only at the joint
connecting the two links and thus underactuated. It resembles a gymnast
swing on a high bar.

Bayesian RL explicitly represents model uncertainty as a
probability distribution over the space of all possible models
and chooses actions that maximize a robot’s expected long-
term performance with respect to this distribution.

One approach to Bayesian RL is to cast it as a partially
observable Markov decision process (POMDP) [11]. The
POMDP state is a pair (s, θ), where s is the robot state
and θ represents unknown model parameters. A probability
distribution on θ captures the uncertainty in the model pa-
rameters. POMDP planning occurs offline. It aims to achieve
optimal trade-off between exploration and exploitation by
analyzing both aspects of each action: (i) the immediate
benefit of moving the robot state towards the goal and (ii) the
contribution towards learning the unknown model parameters
and reducing model uncertainty. The result is a POMDP
policy, which can be represented as a finite-state controller
(FSC) and executed very efficiently online. In short, POMDP
planning evaluates offline many action plans conditioned on
future observations and chooses one that enables the robot
to learn as efficiently as possible online and reach the goal.

Example. In the acrobot example, let s = (q1, q2, q̇1, q̇2) de-
note the acrobot state, where q1 and q2 are joint angles, and
q̇1 and q̇2 are angular velocities. The acrobot is controlled by
the torque τ at the joint connecting the two links. Applying
the standard laws of mechanics, we can derive a dynamic
model for the acrobot. Suppose now that the mass m of the
second link is unknown in advance. The dynamic model must
then depend explicitly on the unknown parameter m:

ṡ = f(s, τ ;m).

The acrobot receives noisy observations of the system state.
Our goal is to choose τ that brings up the tip of the acrobot
above a specified height.

Standard controller design approaches cannot be easily
applied here, as not all model parameters are known. Instead,
we treat the entire system as a POMDP and form the aug-
mented state (s,m). We maintain a probability distribution b
on (s,m) to capture the uncertainty, in particular, in m



explicitly. We update b by incorporating the observations
through Bayesian filtering. A robot action, i.e., the torque
applied, may immediately push the acrobot’s tip higher
towards the goal. At the same time, the action and the
ensuing observation lead to an update of b and reduce the
uncertainty in m, thus enabling more effective robot actions
in the future. Intuitively, when the uncertainty in m is high,
the acrobot must act cautiously at the beginning and hedge
against different possibilities. As the uncertainty decreases,
it then chooses more aggressive actions tailored to specific
values of m. POMDP planning analyzes both aspects of each
action quantitatively and computes a plan for the acrobot to
learn the model parameter and reach the goal simultaneously.

The acrobot must act fast. To meet the demand of efficient
online execution, we compute the plan offline and represent
the plan as an FSC. The FSC states are labeled with output
actions, and the transition edges are labeled with input
observations. C

This approach provides several key advantages:
• It seamlessly integrates planning and learning in a

single unified framework. Offline planning incorporates
learning objectives in the computed plan, which then
enables nearly optimal online model parameter learning.

• In contrast to standard RL, the model-based Bayesian
approach allows us to easily incorporate prior knowl-
edge on the model and reduce the difficulty of online
learning. In the acrobot example, although the mass pa-
rameter may be unknown, the basic laws of motion and
an estimate on the parameter can be used to construct a
prior model, leaving online learning the simplified task
of reducing uncertainty on the unknown parameter. Such
prior knowledge, which is often available for robotic
systems, is crucial for efficient online learning.

• This approach is general and flexible. In addition to
model uncertainty, it can accommodate control and
sensing uncertainty naturally.

One limitation of the approach is the computational com-
plexity of solving POMDPs. In recent years, there have been
significant progress in computing approximate solutions to
discrete POMDPs [15], [20], [28], [27] as well as more
limited progress on continuous POMDPs [3], [24], [22],
[31]. These general-purpose algorithms often incur high
computational cost for robotic tasks with long planning
horizons.

For computational efficiency, we consider a subclass of
POMDPs with continuous states, but discrete actions and
observations. We also assume deterministic dynamics. For
this subclass of models, we provide a simple and effec-
tive algorithm that finds approximate solutions. We have
evaluated the algorithm in simulation on two distinct tasks,
acrobot swing-up and autonomous vehicle navigation amidst
pedestrians, and obtained interesting preliminary results.

II. RELATED WORK

Our work addresses the problem of motion planning with
model uncertainty. When the model for planning is inaccu-

rate or incomplete, a robot must take action to learn and im-
prove the model. Integrated planning and learning have been
studied in various contexts, including model-based RL [10],
adaptive dual control [8], integrated exploration [18], and
active perception [6]. Our work focuses on model parameter
uncertainty and adopts the Bayesian approach to model-
based RL. The history of this approach goes back to the
work of Bellman [4] and that of Fel’dbaum [7], but efficient
algorithms appeared only in recent years.

Several successful algorithms have been proposed for
Bayesian RL (e.g., [2], [14]). However, they assume fully
observable discrete system states. They also require sub-
stantial online computation and are thus not suitable for
robotic tasks that require fast response. We argue that the
approach of casting a Bayesian RL task as a POMDP [5],
[23] and solving for a policy is better suited for a variety
of robotic tasks. The offline POMDP policy computation
optimally balances model learning and goal achievement.
Once a policy is computed, it can be executed efficiently
online for robot action selection.

Although solving POMDPs exactly is computationally in-
tractable [19], point-based algorithms have made significant
progress in computing approximate solutions. Today the
fastest algorithms, such as HSVI [27] and SARSOP [15], can
solve discrete POMDPs with hundreds of thousands states
in reasonable time. Some recent point-based algorithms deal
with continuous state space [3], [22], [33], but their perfor-
mance on robotic tasks, which often involve long planning
horizons, requires further investigation.

The base model that we use is similar to that of earlier
work on Bayesian RL [3], [22], [33]. However, none of
the earlier algorithms deal with continuous states and long
planning horizons together, which are often required for
robot motion planning tasks.

III. PROBLEM FORMULATION

A. Background on POMDPs

Formally a POMDP is a tuple (S,A,O, T, Z,R, γ), where
S is a set of system states, A is a set of control actions, and
O is a set of observations. The transition function T (s, a, s′)
for s, s′ ∈ S, a ∈ A specifies the probability of reaching state
s′ when the system takes action a in state s. The observation
function Z(s′, a, o) = p(o|s′, a) specifies the probability of
receiving observation o when the system is in state s′. The
reward function R(s, a) specifies the reward received when
the system takes action a in state s. Finally, γ is a discount
factor that reflects the preference of immediate rewards over
future ones.

In a POMDP, the exact state is unknown because of
observation noise. The current state is represented as a belief
b(s), which is a probability distribution over S. We specify
an initial belief b0(s) as an estimate of the initial system
state. At each time step, the system executes an action a and
receives an observation o. It then updates the belief:

b′(s′) = ηZ(s′, a, o)

∫
s∈S

b(s)T (s, a, s′) ds, (1)



where η is a normalizing factor.
The solution to a POMDP is a policy π, which can be

represented as a policy graph and executed on an FSC. A
policy graph has nodes labeled with actions and directed
edges labeled with observations. To execute a policy, the FSC
starts at an initial node and takes the associated action. It then
moves to the next node by following the edge corresponding
to the observation received. The process then repeats. The
value of a policy π is the expected total reward with respect
to the initial belief b0:

E
( ∞∑
t=0

γtR(st, at)
)
,

where st and at denote the state and the action at time t,
respectively. POMDP planning aims to find an optimal policy
π∗ with the maximum value.

B. Planning How to Learn

POMDPs can model a variety of robotic systems with
control uncertainty, sensing uncertainty, and environment
changes. Let P be the POMDP model of a robotic system.
When some system parameters θ are unknown, we denote the
model by Pθ to indicate the parameter dependence explicitly.
Pθ is a tuple (S,A,O, Tθ, Zθ, Rθ, γ), where Tθ, Zθ, and Rθ
are parameterized by θ. The set of parametrized POMDP
models forms the model space M = {Pθ | θ ∈ Θ}, where
Θ is the space of all parameter values. The true model is
an element of M, but the controller does not know this true
model a priori and must learn the parameters while trying
to complete the specified task.

We take the approach of Bayesian RL, which captures
the model parameter uncertainty explicitly in a probability
distribution. Initially, we have a prior distribution over model
parameters. It represents our prior knowledge on the model
parameters, if there is any. We iteratively update the distribu-
tion by incorporating the observations received. Our goal is
to compute a policy that enables the robot to complete its task
as efficiently as possible, despite the model uncertainty. More
precisely, we want to find an optimal policy that maximizes
its value with respect to the prior parameter distribution.

Interestingly, our learning problem above can be cast as
an augmented POMDP P ′ = (S′, A,O, T ′, Z ′, R′, γ). The
augmented state space S′ = S × Θ is the cross product of
the system state space S and the model parameter space Θ.
The action space A and the observation space O of P ′ remain
unchanged. Since the parameters do not change over time,
the transition function T ′ is defined as

T ′(s, θ, a, s′, θ′) = p(s′, θ′|s, θ, a)

= p(s′|s, θ, a, θ′)p(θ′|s, θ, a)

= Tθ(s, a, s
′)δθθ′ ,

where the Kronecker delta function δθθ′ is 1 if θ = θ′ and
0 otherwise. For the observation function Z ′ and the reward
function R′, we have simply Z ′(s′, θ, a, o) = Zθ(s

′, a, o)
and R′(s′, θ, a) = Rθ(s, a).

A belief in P ′ is a joint probability distribution over S×Θ.
After executing an action a and receiving an observation o,
the controller updates the belief:

b′(s′, θ′) = τ(b, a, o)

= ηZ′(s′, θ′, a, o)

∫
s∈S,θ∈Θ

b(s, θ)T ′(s, θ, a, s′, θ′) dsdθ

= ηZθ′(s
′, a, o)

∫
s∈S

b(s, θ′)Tθ′(s, a, s
′) ds. (2)

A belief in P ′ completely captures the uncertainty in both
the system states and the model parameters.

We then perform offline POMDP planning and solve
P ′ for an optimal or near-optimal policy. Offline planning
systematically generates and evaluates many action plans
conditioned on future observations. It optimally balances
exploration and exploitation by reasoning in the space of
beliefs and optimizing the expected total reward. Through
this process of offline optimization, we obtain a policy, which
can be executed efficiently online on a FSC. The controller
learns and adapts to different model parameters and enables
the robot to complete the task efficiently.

IV. ALGORITHM

Here we consider a subclass of POMDPs with continuous
states, but discrete actions and observations. We also assume
deterministic dynamics. Despite the restrictions, our algo-
rithm is well suited for some quite interesting robotic tasks
(Section V), including the acrobot. Simultaneously, we are
developing a more general POMDP algorithm that removes
many of these restrictions. Results on this new algorithm will
be available soon.

To compute a policy for P ′ offline, our current algorithm
makes use of the QMDP heuristic [17] and leverages the
recent advances in motion planning. QMDP is an effective
heuristic for solving large discrete POMDPs approximately.
It performs a one-step exploration: it reasons about the effect
of uncertainty by looking ahead one step and assumes full
observability beyond the first step. Specifically, given a belief
b, QMDP chooses the action a∗ ∈ A that maximizes the
Q-value Q(b, a), which is computed by assuming full ob-
servability and solving the Markov decision process (MDP)
corresponding to P ′. Although the QMDP heuristic may
produce suboptimal actions as it does not actively gather
information, it often performs well in practice [17].

Solving an MDP with a continuous state space, however,
remains difficult. We approximate the Q-value by exploiting
our assumption of deterministic system dynamics:

Q(b, a) =

∫
s∈S,θ∈Θ

b(s, θ)QMP(s, θ, a) dsdθ, (3)

where QMP(s, θ, a) is the discounted reward of the best
plan for the state s and the parameter value θ starting
with the action a. We can compute QMP(s, θ, a) efficiently
with any motion planning algorithms, such as PRM [13],
RRT∗ [12], or A∗ search, as this is a fully deterministic
planning problem. In our experiments (Section V), we use
a breadth-first search in which the states are clustered into
equally spaced bins and each bin is visited only once.



Algorithm 1 Build a policy tree with the QMDP heuristic.
BUILDPOLICYTREE(b)

1: if all states s ∈ S with b(s, θ) > 0 for some θ ∈ Θ are
terminal then

2: Create an empty tree T with a single node labeled
with NIL action and no children.

3: else
4: a∗ ← arg maxa∈A

∫
s∈S,θ∈Θ

b(s, θ)QMP(s, θ, a) dsdθ.
5: for each o ∈ O with p(o|b, a∗) > 0 do
6: b′ ← τ(b, a∗, o).
7: To ← BUILDPOLICYTREE(b′).
8: Create a new tree T whose root node is labeled with

action a∗. An outgoing edge of the root is labeled with
o ∈ O and points to the child To.

9: return T .

Algorithm 1 gives an outline of our algorithm. Although
the QMDP heuristic appears typically in online planning, our
algorithm uses it in the offline setting to construct recursively
a policy graph (see Section III), in fact, a policy tree, for a
given belief b.

The recursion ends, and an empty tree is returned, when
all states s ∈ S such that b(s, θ) > 0 for some θ ∈ Θ are
terminal. A terminal state indicates that the robot has either
completed the task or failed.

If there is a non-terminal state s and θ with non-zero
probability b(s, θ), we choose the action a∗ with the maxi-
mum heuristic value Q(b, a), which is computed according
to (3) by evaluating each QMP(s, θ, a) on demand with
a motion planning algorithm. For each possible observa-
tion o ∈ O with p(o|b, a∗) > 0, we then compute a
new belief b′ = τ(b, a∗, o) according to (2) and invoke
BUILDPOLICYTREE(b′) recursively to construct a sub-tree
To.

We represent a belief as a particle set. The initial be-
lief is obtained by sampling a set of N values from the
model parameter space according to the prior b0(θ). This
effectively creates a sampled model space, and the algorithm
operates on this space only. It performs the belief update in
(2) through particle filtering and approximates the integral
in (3) through Monte-Carlo sampling. The particle belief
representation does not require parametric models of b0(θ)
and the state transition function T , thus simplifying the
model construction. The approximation error, as a result of
sampling, decreases at the rate O(1/

√
N) [33].

Each call to BUILDPOLICYTREE(b) constructs one policy
tree node by calling the motion planning procedure O(N)
times, as at most N samples represent the belief b. Thus,
constructing a policy tree T with |T | nodes requiresO(N |T |)
calls to the motion planning procedure. In the worst case,
each node in T has |O| children, and |T | grows exponentially
with the planning horizon. However, a small policy may
exist for many problems. In our setting, system dynamics is
deterministic. Once the policy gathers sufficient information,
it can act according to the estimated model without further
branching on observations. Empirical results in Table I show
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Fig. 2. The acrobot dynamics is sensitive to model parameters. With the
same open-loop policy, the acrobot may succeed or fail, as a result of 1%
difference in the model parameters.

that the running time and |T | are usually sub-linear to N .

V. EXPERIMENTS

We experimented with two distinct robotic tasks in sim-
ulation: acrobot swing-up and pedestrian avoidance for au-
tonomous vehicles. The results indicate that our approach
can potentially be applied to a broad class of robotic tasks.

A. Acrobot

Recall the acrobot example we introduced in Section I.
We estimate that the unknown parameter m, the mass of the
second link, is in a range m ∈ [0.9, 1.1]. All other parameters
are known exactly and the same as those in [30]. We simulate
the dynamics with laws of mechanics, and each step of the
simulation is ∆t = 0.05s.

Our goal is to swing up the tip to a height above 1.95. The
swing-up task is solved as a deterministic motion planning
problem if m is known [29]. However, when there is model
uncertainty, a conditional control policy is necessary because
the system dynamics is very sensitive to the value of m. An
open loop policy successfully swinging up for m = 1.0 fails
for m = 1.01 (Fig. 2).

We formulate the acrobot swing-up task with unknown
m as Bayesian RL. The prior is an uniform distribution
m ∼ U(0.9, 1.1). The controller receives a positive reward
R when it reaches the goal, and gets a zero reward for
the other states and actions. The controller applies torques
on the second link of the acrobot, and it can choose a
different torque every 10∆t = 0.5s. We restrict the torque
to τ ∈ {+1, 0,−1}. The discount factor is γ = 0.95.

The controller receives discretized values of state
(q1, q2, q̇1, q̇2) as observations. The 4-dimensional continu-
ous states are discretized to equally spaced bins, and each
bin is a hyper-cube with the width 0.5. The discretization
resembles the limited sensor resolution.

To solve the Bayesian RL POMDP, we sample N pa-
rameters from the model prior for the initial belief and
computed three POMDP policies with varying N . Each
policy is evaluated with 10, 000 simulation episodes with a
randomly sampled m for each episode.

Table I shows the performance of POMDP policies with
respect to N . We compares POMDP policies with an oracle
policy which calculates a control sequence according to the
true value of m in each episode. In the table, the second
column shows the time spent on offline policy computation;
the third column shows the size of the computed policy tree;



TABLE I
COMPARISON OF POLICIES FOR ACROBOT SWING-UP.

Policy Planning Time (s) |T | Average Height (m) Average Reward
N = 1, 000 2, 550 4,992 1.799± 0.010 0.623± 0.006
N = 10, 000 16, 247 33,441 1.830± 0.010 0.671± 0.005
N = 50, 000 57, 931 109,371 1.877± 0.009 0.710± 0.004
Oracle - - 1.970± 0.000 0.756± 0.000

Fig. 3. Acrobot trajectories corresponding to various m values under a
same POMDP policy. The colors indicate different m values.

the fourth column shows the final height the tip reached,
averaged over all simulations; and the final column shows
the average discounted reward. The quality of the POMDP
policy improves with an increasing N , as the average reward
is getting closer to the oracle policy. This indicates that the
POMDP policy can learn m and reach the goal efficiently.

We computed the policies and run simulations on a desk-
top computer with a 2.83GHz CPU and a 4GB memory.
The simulations can be run at 30 KHz for each step, which
is sufficient for the requirement of controlling acrobots in
real-time.

Fig. 3 shows the behavior of the POMDP policy with
N = 50, 000. It shows 30 trajectories which are generated by
using the POMDP policy to control acrobots with m varying
from 0.9 to 1.1. For the sake of visualization, we only show
(q1, q2) changing with time. The trajectories start at (0, 0)
and end in regions around either (π, 0) or (−π, 0), which are
the goal regions. These trajectories suggest that the POMDP
policy can adapt to different m. When m is low, the acrobot
approaches the goal with a counter-clockwise final swing and
ends around (π, 0). When m is high, it performs one more
swing and approaches the goal with a clockwise final swing
that ends around (−π, 0). The additional swing accounts
for the heavier mass of the second link, which needs more
energy to reach the same height. We encode the knowledge of
system dynamics and model parameter prior into a POMDP
model, and solving this POMDP produces a policy that can
fully exploit these knowledge. Therefore, when executed
online, the policy learns the model quickly, and once its
knowledge of model parameters become sufficient, it can
complete the task efficiently.

Fig. 4 shows the behavior of a POMDP policy at different
uncertainty levels. It shows the average belief entropy and the
variance of the torque τ at time t. The results are collected
from 100 simulations. The entropy reduces over time as the
POMDP policy receives more and more observations. The

Fig. 4. The average belief entropy and the torque variance over time for
a POMDP policy in simulation.

Fig. 5. Pedestrian avoidance.

variance of τ is zero at the beginning, reflecting that the
policy has no information about m and always applies the
same torques. The variance of τ increases as the entropy
decreases, because the policy tends to apply torques more
specific to the current parameter estimation whenever it is
necessary. Therefore, after acquiring new knowledge with
online learning, the policy can exploit them to improve its
performance.

For comparison, we tried earlier Bayesian RL algorithms
on this task. None of the online algorithms (e.g., [2], [14])
can be applied here, because they cannot meet the real-time
requirement of acrobot control. The offline algorithms [23],
[33] require discrete POMDP models. The acrobot dynamics
is, however, very sensitive (see Fig. 2). A coarse discretiza-
tion does not capture the main dynamic features, and a fine
discretization generates so many states, which are beyond
even the fastest discrete POMDP algorithms.

B. Pedestrian Avoidance

In the pedestrian avoidance task, an autonomous vehicle
driving on the road should avoid a pedestrian who is also
crossing the road (Fig. 5). The vehicle has relatively pre-
cise control for itself, but does not know the pedestrian’s
intention, which we treat as an unknown model parameter.
To ensure driving safety while avoiding unnecessary stops,
the vehicle has to learn the pedestrian’s intention from noisy
observations of her movements.

We model the vehicle’s state by its position and speed.
Position y0 is the distance traveled by the vehicle from time
t = 0. The vehicle’s speed v0 is ranging from 0 m/s (full
stop) to 2 m/s. At every time step, the vehicle can take



TABLE II
COMPARISON OF POLICIES FOR PEDESTRIAN AVOIDANCE.

Policy Planning Time (s) |T | Time Accident
C = 1 163 1401 6.74 0.000957
C = 10 165 1416 6.74 0.000054
C = 100 162 1441 6.77 0.0
Oracle - - 6.42 0.0
Bayes averaging - - 6.55 0.442

one of the three actions to control its speed: ACCELERATE

(1 m/s2), MAINTAIN (0 m/s2) and DECELERATE (−1 m/s2).
The pedestrian’s position is (x1, y1) and her intention is
modeled by the walking direction φ ∈ [−π/12, π/12] and
the speed v1 ∈ [0.8, 1.2]. The vehicle cannot directly observe
φ and v1. The only observation is the pedestrian’s position,
and is discretized to 0.5m× 0.5m grids, which resembles a
limited sensor resolution.

At each episode, the vehicle’s initial state is y0 = 0 and
v0 = 2.0; the pedestrian’s initial position is (x1, y1) =
(−1.0, 5.0) but her intention is randomly drawn from an
uniform prior: φ ∼ U(−π/12, π/12) and v1 ∼ U(0.8, 1.2).
An episode will finish when the vehicle successfully drives
to y0 = 7.0 or a collision happens. The vehicle will get
a positive reward +1 when it succeeds, and a negative
reward −C for collisions. The rewards are discounted with
γ = 0.95. Each time step has a duration of 0.5 seconds.

We model the task as a continuous-state POMDP and use
our algorithm to solve it. We choose the number of sampled
model parameters N = 1, 000, 000 and compute policies for
three POMDP models with different collision costs: C = 1,
C = 10 and C = 100.

We compare the computed POMDP policies with the
oracle policy and the Bayes model averaging policy. The
oracle policy always chooses the best action with respect to
the pedestrian’s true intention. The Bayes averaging policy
monitors beliefs online and calculates the expected state
s̄ = E(s) with respect to the current belief b. It then
chooses the best action for s̄ by querying a motion planner.
POMDP policies are evaluated with 1, 000, 000 simulations.
The oracle and Bayes averaging policies are evaluated with
1, 000 simulations due to their higher computational cost as
online algorithms.

In Table II, the second column shows the time spent on
offline planning; the third column shows the size of the
policy tree; the fourth column shows the averaged time for
the vehicle to pass the road; and the last column shows the
accident rate in simulations. With a larger collision cost, the
POMDP policy becomes more conservative: it passes the
road slower and gets a lower accident rate. With C = 100,
it achieves a zero accident rate, which is comparable to the
oracle policy in terms of safety. POMDP policies drive a
little slower than the oracle policy, because to ensure safety,
it takes more time to estimate the pedestrian’s intention. The
Bayes averaging policy results a much higher accident rate.

Why does the POMDP policy perform as well as the oracle
policy and much better than the Bayes averaging policy?
Fig. 6 shows the average belief entropy profile of POMDP

Fig. 6. The average belief entropy and the average vehicle speed for
pedestrian avoidance in simulations.

policy, and the speed profiles of the POMDP, oracle, and
Bayes averaging policy. The results are obtained from 200
simulations. These profiles show the change of uncertainty
and speed over time for each policy. All policies decelerate
to nearly a full stop to wait the pedestrian to pass. But the
POMDP policy slows down earlier than the oracle policy to
hedge against uncertainty. Before time t = 2, the entropy
profile indicates a high level of uncertainty, so the POMDP
policy decelerates faster than the oracle policy. After t = 2,
the entropy decreases quickly and the POMDP policy begins
to accelerate. As the entropy decreases, the POMDP policy
further accelerates and eventually reaches a speed similar
to the oracle policy. The Bayes averaging policy and oracle
policy have similar speed profiles, because both policies are
planning against a single state at each time step: the ground
truth state for the oracle policy and the averaged state s̄ for
the Bayes averaging policy. However, s̄ does not represent
full information as in the belief. By planning against s̄, the
Bayes averaging policy neglects some states that possibly
lead to collisions, thus resulting in a high collision rate.
Therefore, planning in the belief space is necessary for
learning the pedestrian’s intention and avoiding collisions.

VI. CONCLUSION

We treat robot motion planning under model uncertainty
as Bayesian reinforcement learning and solve it by construct-
ing an augmented POMDP over the joint space of robot
states and model parameter values. This approach integrates
planning and learning seamlessly: offline POMDP planning
incorporates learning objectives in the computed plan, which
then enables a robot to learn the true model online and
complete the task efficiently.

A large number of unknown parameters may pose diffi-
culty for offline POMDP planning, as both the planning time
and the size of resulting policies grow. In this case, online
planning can help reduce computational complexity. In the
future, we will investigate ways to bring together the benefits
of offline and online planning.
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