
Tools for inventing organizations:
Toward a handbook of organizational processes

Thomas W. Malone
Kevin Crowston l

Jintae Lee 2

Brian Pentland3

CCS WP #141, Sloan School WP # 3562-93

May 1993

In Proceedings of the 2nd IEEE Workshop on Enabling Technologies Infrastructure for
Collaborative Enterprises, Morgantown, WV, April 20-22, 1993.

1 University of Michigan
2 University of Hawaii
3 University of California at Los Angeles

Tools for inventing organizations:

Toward a handbook of organizational
processes

Thomas W. Malone
Kevin Crowston

Jintae Lee2

Brian Pentland3

Working Paper

Centerfor Coordination Science
Massachusetts Institute of Technology

May 1993

In Proceedings of the 2nd IEEE Workshop on Enabling Technologies Infrastructure for

Collaborative Enterprises, Morgantown, WV, April 20-22, 1993.

1 University of Michigan
2 University of Hawaii
3 University of California at Los Angeles

ABSTRACT

This paper describes a new project intended to provide a firmer theoretical and empirical foundation

for such tasks as enterprise modeling, enterprise integration, and process re-engineering.

The project includes (1) collecting examples of how different organizations perform similar

processes, and (2) representing these examples in an on-line "process handbook" which includes

the relative advantages of the alternatives. The handbook is intended to help (a) redesign existing

organizational processes, (b) invent new organizational processes that take advantage of

information technology, and perhaps (c) automatically generate software to support organizational

processes.

A key element of the work is a novel approach to representing processes at various levels of

abstraction. This approach uses ideas from computer science about inheritance and from

coordination theory about managing dependencies. Its primary advantage is that it allows users to

explicitly represent the similarities (and differences) among related processes and to easily find or

generate sensible alternatives for how a given process could be performed.

III

Tools for inventing organizations:
Toward a handbook of organizational processes

There is much talk today about "new organizations" and new managerial tools like "total quality

management," "process re-engineering," and "information-based organizations." Even though
there is real value in the ideas summarized by these slogans, much of the talk about them relies on

vague descriptions of the new organizations and provides little guidance about how we might go

beyond the innovations already being advocated.

For instance, for a long time, most American manufacturing firms organized their design efforts as

a kind of pipeline with the results of one step in the design process being "thrown over the wall" to

the next step. Marketing specialists gave customer requirements to designers who created a

product design. Then the product design was given to process engineers who specified the

manufacturing process and eventually to purchasing specialists who selected vendors for the parts.

Recently, most manufacturing managers have come to believe that there is a much better way to

organize this process: as "concurrent engineering" where all these functions are performed

concurrently and iteratively by design teams with specialists from all the relevant functional areas

(e.g., Carter & Baker, 1991).

Similarly, many American firms are now trying to adopt "Just In Time" (JIT) inventory control

methods that are already widely used in Japan. In this approach, parts are delivered just before

they are needed, and the customer avoids having to store and pay for significant inventories of the

parts.

How can we move beyond these best practices of today (borrowed from Japan or elsewhere) to

"invent" the next set of organizational innovations? And where will we keep getting new ideas for

new organizational processes to adapt to a continually changing world? For instance, how can we

understand and exploit the new organizational possibilities enabled by the continuing, dramatic

improvements in information technology.

We believe our best hope for progress on these problems is to develop a much more systematic

theoretical and empirical foundation. For instance, if we are ever to understand successful

organizational practices, we must be able to recognize and represent the organizational practices we

see. And in order to improve organizational practice in a particular situation, we must also be able

to imagine alternative ways of accomplishing the same things. Finally, we need some way of

judging which alternatives are likely to be useful in which situations.

This paper describes a new project at the MIT Center for Coordination Science to address these

problems by (1) developing methodologies and software support for representing and codifying

organizational processes and structures at varying levels of abstraction and (2) collecting,

organizing, and analyzing numerous examples of how different groups and companies perform

similar functions.

We expect the result of this work to be a kind of on-line "process handbook" which organizations

can consult to find a variety of alternative ways for performing particular processes, along with

experiences and guidelines about which alternatives work best in which situations. We hope this

handbook will be useful in (a) inventing new organizational processes, (b) redesigning existing

organizations, (c) educating students about organizational practices, and possibly (d) automatically

generating software to support organizations.

Goals

Even though we hope our process handbook will eventually have many different uses, this project

initially focuses primarily on (1) helping theoreticians imagine new organizations and (2) helping

consultants, managers, and others redesign existing organizations.

Primary goal: Theoretical tools to help "invent" new organizational processes, especially those

enabled by information technology

Our primary goal is to develop a representation technique, database, and methods that will help

theoreticians make systematic, empirically-grounded suggestions about possible new

organizational processes.

One of the most dramatic changes visible in the business world today is the increasing

pervasiveness of information technology in more and more business processes. Therefore, we

will focus especially on using our conceptual tools to predict new organizational processes that will

be enabled by pervasive information technology.

For example, we hope to systematically generalize the kinds of arguments we made in previous

work about how decreasing coordination costs caused by information technology leads to new

II

3

coordination-intensive organizational structures (Malone, et al., 1987; Malone & Rockart, 1991).

Our previous work, for instance, predicts that information technology will favor external

coordination through markets rather than internal coordination within firms and thus will lead

companies to "buy" rather than "make" more of the goods and services they use (Malone, Yates

and Benjamin, 1987). Our preliminary econometric results are consistent with this prediction

(Brynjolfsson, et al., 1989), and we hope that the work proposed here will allow us to make

similar predictions about other coordination structures.

In addition to analyzing organizational uses of information technology, we expect that the same

conceptual tools will also be useful for suggesting responses to other environmental changes such

as those in employees' skills, legal constraints, or production technologies.

Secondary goal: Practical tools to help (re)design organizations rapidly and effectively

Many observers of modern organizations have noted that organizations appear to be changing more

and more rapidly, and if anything, this trend appears to be accelerating (Toffler, 1970; Toffler,

1990). Reorganizations are becoming a common fact of life rather than rare events involving

primarily senior managers and outside consultants. If this is true, it will become increasingly

important for organizations to have better tools for suggesting and keeping track of their numerous

reorganizations and changes.

We hope that the kinds of insights and examples our handbook contains will be useful in many of

these organizational redesign efforts. Possible users for the handbook include: (a) consultants

(either internal or external) who are helping redesign organizations (e.g., re-engineering

consultants, "quality" consultants, etc.), (b) managers designing the processes they supervise, and

(c) employees at all levels who are designing their own work processes.

Of these primary kinds of possible users, our initial target audience is organizational redesign

consultants. Since they specialize in this topic, we believe they will be willing to invest more time

in learning to use the concepts and the system than managers or employees, who have other

responsibilities as well. Therefore, we believe consultants are an "easier" target. Our hope,

however, is to develop a system that is easy enough to use that it can be used by the other groups

as well.

Other goals

In addition to the above goals, two other uses for our handbook seem particularly attractive:

Teaching students about organizations and organizational design. The handbook has the potential

to be useful to students at various levels. For undergraduates unfamiliar with basic organizational

functions (e.g., marketing, personnel, accounting, purchasing, sales, manufacturing), the process

handbook would provide an interactive overview. For more advanced students, it would provide a

way of learning about and comparing alternative designs for various organizational functions in

different industries. Because it contains a database of processes, and an analytical framework with

which to compare those processes, the handbook would provide a valuable resource for creating

and analyzing so-called "best practices."

Automatically generating software to support the processes. One of the most ambitious (and most

interesting) possible uses of the kind of knowledge we hope to capture in our handbook is

automatically generating software to support the processes represented (see Marques, et al., in

press; Dallemagne, et al., 1991). For instance, we can imagine that when a group of employees

recognizes that they all need to share use of the same machine, they might consult the handbook for

a variety of alternative processes for scheduling shared resources (e.g., "first come/first serve",

"priority order", "bidding", and "managerial decision"). After the group selects one of these

processes and specializes it for their own particular situation, it might be possible to automatically

generate a customized scheduling application specifically tailored to the needs of this group.

Software to support many other workflow processes (such as approval processes, hiring

procedures, and equipment ordering methods) might also be easily generated using this approach.

Example

To see how a handbook like this might work, consider the following hypothetical scenario.

Imagine that you are a consultant to the general manager of a new division of a large computer

hardware vendor. This vendor has traditionally used a highly skilled direct sales force, but the

mission of the new division is to sell personal computers and software by direct mail. A small

publishing group has existed in this company for years, distributing documentation and other

technical reference material by mail order. This publishing group will also be incorporated into the

new division.

11

Your job is to help the new manager decide how to staff and structure this new division. Should

you simply adopt and scale up the processes already in use in the mail order publishing group?

What new problems might arise when you try to scale up these processes to sales volumes 50 to

100 times what they have been? Are there other processes that might be better suited for the

volumes, products, and customers you are targeting? What is the "best practice" among mail order

vendors in other industries? Can you exploit advanced information technology to organize a highly

efficient mail order service? For instance, would it be possible to guarantee customers overnight

delivery of the products they order?

In order to investigate these questions using the handbook, you would take the following steps:

(1) First, you specify the general situation from a list of "generic" processes that are available in the

handbook. You can select at a rather high level of abstraction (e.g., "Selling a product") or a more

specific level ("Direct mail sales"). This provides an "anchor" or point of entry into the space of

possible processes catalogued in the handbook. Choosing the more generic level will open up a

wider range of comparative alternatives, which may or may not be relevant to your objectives.

(2) Within that general situation, you may select specific features or goals of interest to you. For

example, in this case, you are already constrained to sell three classes of products: computer

hardware, software, and reference material. Two of these products (hardware and software)

require a relatively large amount of customer service. Furthermore, you would like a very short

response time (even overnight delivery, if possible).

(3) At this point, the handbook retrieves (or generates) a set of alternative organizational forms and

displays them in a matrix with each alternative rated in terms of goals such as "cost of sales",

"response time", and "quality of customer service". In cases where it is difficult to evaluate an

alternative reliably, the range of possibilities or the degree of uncertainty is indicated.

(4) The handbook also provides a variety of interactive ways to explore, compare, combine, and

redesign the alternatives. For example, you can: (a) view a flow diagram for each process, (b)

examine the basis for the evaluation on each goal, (c) see "tips" for success in using the processes,

and (d) find examples of specific companies that use the processes. For instance, the processes

used by Lands End, a widely admired mail order clothing company, might be described along with

references to documents and other sources of more information.

6
(5) Eventually, you may want to relax some of the initial constraints and let the system suggest

more radical innovations. For instance, what if you distributed through your own new chain of

retail stores? What if you let customers place orders through PC-based programs or through

touch-tone telephone systems? Would it even be possible for all employees of the division to work

at home, or for all the "employees" to work as independent contractors?

Of course, the desirability of these alternative processes will often depend on factors in the actual

situation that are not represented in the handbook, and we will rely on intelligent users to take these

other factors into account. The handbook, however, can help these users systematically examine

many possibilities they might never otherwise have considered.

The key intellectual challenge: How to represent organizational processes?

A key to this project is developing techniques for representing processes. Fortunately, the last

several decades of research in computer science and other disciplines has resulted in a number of

well-developed approaches to representing processes (see section below titled "Process models"),

and we expect to draw extensively upon this work. Several of these approaches have been applied

to representing specific processes in particular organizations. It is clear, therefore, that we could

use these techniques to assemble a large set of individual process descriptions, collected from

many different organizations. Such a "library" of process descriptions would be of immediate use

to managers and consultants, and provides a kind of "baseline" for the contribution this project

could make.

We hope, however, to make an additional and much more significant intellectual contribution. To

do this, we are developing a language for describing organizational processes that explicitly

represents the similarities (and the differences) among a collection of related processes. For

example, with this approach, we can represent a generic "sales process" and then represent

variations from this process by simply indicating how they differ from the generic process. Then,

instead of having to analyze each new organizational situation "from scratch," we should be able to

go into a new situation, and by noting only a few features of the situation (such as the goals to be

achieved and the type of organization), we could immediately bring to bear a great deal of related

knowledge about alternative processes that might be used in this situation.

This goal is similar, in some ways, to that of the few previous organizational analysts who have

developed representations of "generic" organizational processes (e.g., Winograd & Flores, 1986;

Carlson, 1979). In most cases, however, these previous approaches have focused on representing

11

7
a single high-level abstraction of a common process. By representing processes at many different
levels of abstraction, and by representing alternative processes for achieving specific goals, we

hope to provide more useful conceptual tools than this previous work.

In order to do this, we are exploiting two key sources of intellectual leverage: (1) notions of
inheritance from knowledge representation, and (2) concepts about managing dependencies from
coordination theory.

Inheritance

In the traditional notion of inheritance, as used in object-oriented programming and knowledge
representation (e.g., Stefik & Bobrow, 1986; Wegner, 1987; Brachman & Levesque, 1985),

objects in the world are arranged in a hierarchical network with general categories at the top and
increasingly specialized kinds of objects at lower levels. For example, "Products" might be
specialized into categories like "Goods" and "Services", and "Goods" might be specialized into
categories like "Automobiles" and "Furniture". At each of these levels, objects may "inherit"
characteristics from higher levels, and add or change characteristics of their own. For instance, all
"Goods" might have a "Weight" and "Size", and "Automobiles" might also have a "Miles per
gallon" characteristic.

In contrast to this traditional notion of inheritance, which is organized around a hierarchy of
increasingly specialized objects, we propose to develop a hierarchy of increasingly specialized
processes. It is important to note that this notion of process specialization is different from (but

complementary to) the conventional notion of process decomposition. Figure 1 shows an
example of how decomposition and specialization can work together using the preliminary
representational scheme we have developed.

In this figure, the generic activity of "Selling a product" is decomposed into subactivities like
"Identify prospects" and "Inform prospects about product". The generic activity is also specialized

into more focused activities like "Direct mail sales" and "Retail storefront sales". These specialized
activities automatically inherit the subactivities and other characteristics of their "parent" process.
In some cases, however, the specialized processes add to or change the characteristics they inherit.
For instance, in direct mail selling the subactivities of obtaining an order and delivering a product
are inherited without modification. But identifying prospects is replaced by the more specialized
activity of obtaining mailing lists, and the sales person talking to prospects is omitted altogether.

S 4

I =
-T3 m

X,.t < E._J .-FHI'-77 R
08

Q .2.4 "
-< NC) *~;Cu,-

. u~

c.F1 E'.

; SE

*EtI

0C

.

Cu
-0m

C)

C)

. o
-

Q .U
nC)
r-
, C

0o

0 _

C c

C;

- o
cz

,t3

c

cn

.Cu

O A(C) c

Cu
a

I
l

-

8
In general, specialization can be used to indicate alternative ways of performing an activity. For
instance, Figure 1 shows that "Selling a product" can be specialized into "Direct mail sales" or
"Retail storefront sales" with a different set of modifications to the inherited subactivities in each
case. In cases like this, where there are multiple alternative specializations for an activity, our
handbook will be able to include a tradeoff matrix that compares the different alternatives in terms
of their ratings on various goals. As in the Sibyl system (Lee, 1990), this tradeoff matrix can also
include detailed justifications for the various ratings. In some cases, these tradeoff matrices may
be the result of systematic studies; in others, they may be simply rough guesses by knowledgeable
managers or consultants (with appropriate indications of their preliminary nature); and, of course,
in some cases, there may not be enough information to include any tradeoff matrices at all.

These techniques of decomposition and alternative specialization can, of course, be used for
activities at any level. For instance, Figure 1 shows that "Obtain mailing lists" can be further
decomposed and "Inform prospects about product" can be specialized into "Advertising" or "Sales
person talks to prospects". In general, we use decomposition to indicate "and" relationships, and
specialization to indicate "or" relationships. This seems sensible, intutitively, because the notion of
specialization implies that the specialized thing is "complete in itself', not just a part of something
else.

Even though the examples in Figure 1 only show one "parent" for the activities that are
specializations, it is also often useful to have multiple inheritance in which a single activity is a
specialization of several parents. For example, "TV ads" might be a specialization, not only of
"Advertising", but also of "TV broadcasts", and it might, therefore, inherit subactivities or other
characteristics from both of these parents.

A refinement: "Bundles" of alternatives. Our preliminary work with this representation scheme

has suggested that it is also useful to combine groups of alternative specializations into "bundles"
of related alternatives. For instance, one bundle of specializations for "Sell product" is related to
how the sale is made: direct mail, retail storefront, or telemarketing. Another bundle of
specializations has to do with what is being sold: shampoo, computers, newspapers, or consulting
services. And another bundle has to do with who is being sold to: consumers, hotels,
manufacturing companies, and so forth. These bundles are used in two ways:

(1) Comparing alternatives in a tradeoff matrix is appropriate only within a bundle of
related alternatives. For example, comparing "retail storefront sales" to "selling
shampoo" doesn't make much sense.

(2) Alternatives in a bundle should automatically inherit alternatives from the other

bundles but not the other alternatives in their own bundle. For instance, it makes

sense for someone selling shampoo to be automatically presented with alternatives

for direct mail, retail storefront, and telemarketing, but it does not make much sense

for this person to be automatically presented with alternatives of selling computers,

newspapers, and consulting. Users who identify their interest as selling shampoo

could also always move up to the more generic activity of "Selling a product" to see

other possible products.

Advantages of this approach. This method of representing processes using a combination of

decomposition and alternative specializations has a number of significant benefits over previous

process representation techniques. First, it can substantially reduce the amount of work necessary

to represent a new process. By simply identifying a more general process that the new process is

intended to specialize, most of the information about the new process can be automatically inherited

and only the changes need to be explicitly entered. Second, changes made at a high level can be

automatically inherited by more specialized processes, thus greatly simplifying the process of

maintaining the process descriptions. Third, by explicitly representing alternative processes and

their relative advantages and disadvantages, the task of selecting appropriate processes is

facilitated.

Fourth, and perhaps most importantly, by arranging the alternative processes in a specialization

hierarchy, the process of finding, combining, and generating relevant alternatives is greatly

enhanced. Depending on their goals, users of the system can browse at various levels of

abstraction, finding alternatives that are related according to the principles embodied in the

specialization structure. For instance, merely collecting descriptions of how different companies

sell consulting services would probably identify numerous examples of direct sales and perhaps

mail advertising techniques. But the specialization hierarchy we have proposed would quickly lead

users who were interested in more radical alternatives to consider options like retail storefront

selling, even if no cases of consulting firms using this method had been observed. Thus, the

system helps users generate new alternatives by creating new specializations of alternatives at

higher levels of abstraction.

Coordination theory

The second key concept we are using is the notion from coordination theory (e.g., Malone &

Crowston, 1991) that coordination processes can be thought of as ways of managing dependencies

III

10
Dependency Examples of coordination processes

for managing dependency

Shared resources "First come/first serve", priority order,
budgets, managerial decision, market-like
bidding

Task assignments (same as for "Shared resources")

Producer / consumer relationships

Prerequisite constraints Notification, sequencing, tracking

Inventory Inventory management (e.g., "Just In
Time", "Economic Order Quantity")

Usability Standardization, ask users, participatory
design

Design for manufacturability Concurrent engineering

Simultaneity constraints Scheduling, synchronization

Task / subtask Goal selection, task decomposition

Table 1.
Examples of common dependencies between activities and alternative
coordination processes for managing them. (Indentations in the left
column indicate more specialized versions of general dependency types.)

between activities. We assume that all processes can be thought of as a set of activities (e.g.,

"steps", "tasks", or "subprocesses"). From this perspective, further progress should be possible

by characterizing different kinds of dependencies and identifying the coordination processes that

can be used to manage them.

Table 1 suggests the beginnings of such an analysis. For example, the table shows that shared

resource constraints can be managed by a variety of coordination processes such as "first come /

first serve", priority order, budgets, managerial decision, and market-like bidding. If three job

shop workers need to use the same machine, for instance, they could use a simple "first come /

first serve" mechanism. Alternatively, they could use a form of budgeting with each worker

having pre-assigned time slots, or a manager could explicitly decide what to do whenever two

workers wanted to use the machine at the same time. In some cases, they might even want to "bid"

for use of the machine and the person willing to pay the most would get it.

As Table 1 suggests, some dependencies can be viewed as specializations of others. For instance,

task assignment can be seen as a special case of allocating shared resources. In this case, the
"resource" being allocated is the time of people who can do the tasks. This implies that the

coordination processes for allocating resources in general can be specialized to apply to task

assignment.

It is important to note that the lists of dependencies and coordination processes shown in Table 1
are by no means intended to be exhaustive. However, many specific processes that arise in
particular kinds of systems (such as "design for manufacturability") can be seen as instances of

more generic processes (such as managing "usability" constraints between adjacent steps in a

process).

By identifying various types of dependencies possible between activities and the associated

coordination processes for managing them, we believe we will obtain several representational

benefits in the process handbook. Two of the most important potential benefits are: conciseness

and generativity.

Concise representations. Coordination theory suggests a new set of abstractions that can be used

(together with inheritance) to provide a more concise representation of processes. Instead of

having to explicitly list all the coordination activities separately in each different process, we will be

able to simply indicate that "the dependency between activities A and B is managed by an instance

of coordination process X".

For example, Figure 1 shows one very important kind of dependency between activities:
prerequisite constraints. Note that no prerequisites are shown at the generic level of "Sell

product", suggesting that the generic activities can, in principle, be performed in any order. The

specializations of Direct mail sales" and "Retail storefront sales", however, both include

prerequisite constraints between activities. For instance, in direct mail, we assume that the order

and the payment must both be received before the product is delivered.

Referring to Table 1, we see that these prerequisite dependencies can be managed, in part, by

notification and tracking processes. Figure 2 suggests further decompositions and specializations

of these processes. A typical order entry system, for instance, specializes both a notification

process and a tracking process. When an order entry system prints a packing list of orders ready

to be shipped, it notifies the packers that the prerequisites for shipping have been fulfilled and it
helps managers track the orders for which payments have been received but that have not yet been

packed.

III

12
By developing generic process representations for each of the coordination processes listed in

Table 1, and by extending Table 1 to include many more dependencies and coordination processes,

it should be possible to concisely represent much of the coordination activity that occurs in

organizations as specializations of these generic processes. In addition to its contribution to the

process handbook, therefore, this work will also provide an empirically driven opportunity to

advance a central theoretical task of coordination theory: identifying and analyzing generic

coordination processes.

Prerequisite management

__.

Tracking
| ~~Tracking [

I i
-- -.-- ¥-------i -- -

Useda Use order Use Find status Find all cases Find all cases
system | entry system of specific with specific that are

case status delayed

Use Use Use
RDB ~ sradox Notes |.--------------I

! I I

Enter Enter Print Print orders
crds payment packing awaiting

arecords list payment

Figure 2. Alternative coordination processes for managing a prerequisite dependency.

Generative representations. Since coordination activities are often those most susceptible to being

changed by information technology, a second, and potentially more important benefit of this

approach is that it can help us generate new possibilities for coordination processes. If we know

that, in general, there are several possible coordination processes for managing a given

dependency, then we can automatically generate all of them as possibilities for managing that

dependency in any new process we analyze. Some of these possibilities may be new or non-

obvious, and their generation requires no specific knowledge of the process other than the type of

dependencies it involves.

For example, Figure 1 shows prerequisite relationships among the sub-activities of obtaining

mailing lists: selecting, ordering, and receiving the lists. Based only upon the existence of these

prerequisite relationships, Figure 2 sugests that the designers of this process should consider how

to track the status of various mailing lists that have been ordered. Figure 2 also suggests

alternatives for how to do this tracking, including various kinds of database systems.

13

Note that our system would generate only alternatives that were "sensible" according to the

constraints reflected in the system, but it could not rule out alternatives that are inappropriate

because of other factors. Instead, we hope to organize knowledge so that human users can quickly

scan numerous alternatives, all of which have some relationship to the situation being considered,

but many of which can be quickly eliminated. By systematically presenting related alternatives, we

expect that the system will often surprise its users with possible, but non-obvious, alternatives they

might not have considered.

Related work

The project described in this proposal draws upon and has analogies with many strands of work

from many different disciplines. In this section, we briefly review a few of these areas.

Process models

One of the simplest and most common ways of representing processes in computer programs and

elsewhere is with flow charts. Flow charts represent a process as a series of steps with arrows

between them representing the order in which the steps can be performed. Some of the steps are

decision points, so depending on the circumstances, different sets of steps might be performed.

Similarly, a data-flow diagram represents the steps of a process but focuses on the ordering

relationships imposed by the fact that data produced by some steps must be used by others (e.g.,

Yourdon, 1989).

A state transition diagram orfinite state machine represents a process in terms of the possible states

of the system; the steps taken in the process are the transitions that move the system from one state

to another (e.g., Lewis & Papadimitriou, 1981). For example, Winograd and Flores (1986)

analyzed the patterns in people's "Conversations for Action" in terms of the states and transitions

involved.

Another approach to representing processes is as steps arranged in "strings" like those in languages

of various sorts. Computer science and linguistics have developed a number of formalisms for

representing languages, ranging in power (i.e., the number of lanuages that can be represented)

from finite state machines (or regular expressions) to push-down machines (or phrase-structure or

context-free grammars) to the most most powerful representation, Turing machines (or context-

III

14
sensitive grammars) (e.g., Lewis and Papadimitriou, 1981). Turing machines are equivalent in

power to a program written in any computer programming language.

Multiple actors. To represent processes involving multiple actors, we may want to focus on the

interactions between the actors. One approach to doing this is suggested by Petri nets (Peterson,

1977) and various representations derived from them (e.g., Holt, 1988; Singh & Rein, 1992). A

Petri net is similar to a finite state machine, but allows multiple states to be "marked"

simultaneously. Transitions between states may be synchrononized, since multiple states may

have to be marked at the same time for a particular transition to occur.

A second approach to representing multiple actors is to represent the process followed by each

individual separately, using any of the techniques described above, and explicitly modeling the

exchange of information or objects between them. For example, the modelling technique

developed by (Crowston, 1991) represents individual actors by programs written in logic. These

actors can perform a variety of actions to achieve their goals, including speech actions to change

the states of other actors.

Specialization. We also expect to use ideas from Tenenberg's (1986) technique for "planning with

abstraction." This technique automatically generates plans (sequences of actions) using

information about preconditions and effects of actions at different levels of abstraction in a

specialization hierarchy.

Generic taxonomies

Identifying families of processes and their similarities and differences is analogous to developing

taxonomies of species in biology. McKelvey (1982) argues that the study of organizations is at a

"pre-Linnaean" stage, awaiting a more systematic taxonomy (like the one we propose to develop)

to enable further scientific progress.

For instance, researchers in artificial intelligence have begun to identify "generic processes" for

tasks commonly done by artificial intelligence programs such as diagnosis, design, and planning

(Chandrasekaran, 1983; Clancey, 1983; Marques, et al., in press). An essential idea here is that, if

we recognize the commonalities in a whole class of systems, we can understand and develop such

systems much more effectively. In particular, the "task-structure analysis" described in

(Chandrasekaran, et al., 1992) is very similar in spirit to the approach we are taking. Earlier work

by Schank and colleagues also used a similar kind of generic process descriptions (called "scripts"

15
and "MOPs") to explain how people remember events and how computer programs might do so,

too (Schank & Abelson, 1977; Schank, 1982).

Our work is also similar, in some ways, to Lenat's attempt (Lenat & Guha, 1990) to formally

represent a great deal of "common sense" knowledge about the world. In our case, of course, the

domain of interest is not all of "common sense", but only organizational processes, and we expect

to represent much more than just "common sense" about this domain.

Organization theorists have developed a number of taxonomies for organizations. For example,

Mintzberg (1979) identifies five basic kinds of organizations: simple hierarchies, machine

bureaucracies, functional hierarchies, multidivisional hierarchies, and adhocracies. Others have

used technology (Woodward, 1965), formalization (Bums & Stalker, 1961), or other features to

create a taxonomy. Following the methodological lead of biologists, McKelvey (1982) proposed a

more general approach to the classification of organizations which takes into account not only the

current features of an organizational form, but also its historical genesis. However, these

taxonomies classify organizations according to very high level characteristics of the organization as

a whole, rather than classifying specific processes within an organization. Even those theorists

who have classified lower level processes have only done so at an extremely general level. For

example, Thompson (1967) identifies standardization, planning, and mutual adjustment as three

kinds of processes which deal with varying degrees of interdependence between organizational

subunits. While these categories provide some theoretical insight, they offer little guidance as to

how one might standardize, plan, or adjust in a particular situation.

More closely related to our approach is the work of Salancik and Leblebici (1988) on generating

organizational processes using "grammars" that describe the possible ways a set of tasks can be

sequenced. Using restaurants as their example, Salancik and Leblebici examine all of the possible

sequences of the basic tasks to be performed (order, cook, serve, eat, and pay), and the

combinations of persons who might perform these tasks. Each possible sequence of tasks

corresponds to an organizational form (e.g., many cafeterias use the sequence: cook, order, pay,

eat). We also plan to create models of real organizational processes, and to suggest alternative

processes to accomplish a given objective. We expect our work to extend Salancik and Leblebici's

(1988) basic approach by representing processes at varying levels of abstraction, and by

identifying generic coordination processes that manage interdependencies between other tasks.

III

16
Design tools

Our "handbook" is analogous to design tools in a number of different disciplines. For example,

engineers often have engineering handbooks that describe and evaluate different alternative design

components for a specific goal. A mechanical engineer, for instance, might consult a handbook to

find the density, tensile strength, and other properties of different materials to use in a new device.

Of particular relevance to our work are systems that automatically generate organizational designs

or recommendations based on descriptions of the organizational tasks and other factors (e.g.,

Baligh, et al., 1990; Majchrzak & Gasser, in press). For instance, Baligh, Burton, and Obel

(1990) are codifying "textbook" knowledge about organizational design in an "expert system" that

will make recommendations based on rules like "If the environment is stable, then a formal

organization is appropriate."

Our work differs from these approaches in at least two ways: (1) We are interested not only in

providing "conventional" guidance for "traditional" organizations, but also in providing tools to

help "invent" new organizations. (2) We are not attempting to provide completely automated

advice based on simple input parameters (the traditional "expert systems" approach). Instead, we

are attempting to provide conceptual frameworks and partly automated tools to help intelligent

people organize and use a large amount of information. That is, we want to provide a "handbook"

for use by human experts, not an "automated expert" that tells humans what to do.

Methodology

In the first phase of the project, we are focusing on refining the representational methodology and

software support. To do this, we are collecting and representing a relatively small number of

process descriptions. Some of these processes are relatively circumscribed and specific (e.g., how

software support "hot lines" are organized). Other processes will be broader and more abstract
processes as well (e.g., how customer requirements are communicated from marketing to

engineering).

As we become increasingly confident that our representational methodology is satisfactory, we

expect to collect increasing numbers of examples from different organizations and for different
processes. We also hope to involve many more people and organizations in contributing and

sharing knowledge through the handbook. Part of our eventual goal will be to "institutionalize" the
collection and maintenance of this database so that other organizations can take it over. A possible

17
analogy for this process, for instance, is the maintenance of the Human Genome Bank (e.g.,

Frenkel, 1991).

As shown in Figure 5, the primary approach we are using is one of iterative development. That is,

we will repeatedly cycle between the following four activities: (a) developing representational

techniques, (b) collecting examples of organizational processes, (c) representing these example

processes in the handbook, and (d) trial use of the handbook. In some cases, merely trying to

represent a process in our handbook will suggest new processes to include or changes needed in

the representation. In other cases, trying to use the handbook will also suggest changes or

additions needed.

*
Renresent examnle |I

I rocesse in I Trial use of handbook L
I . I"- I I

I _ nanuo I

Figure 5. Iterative development process for the handbook.

Current status

Software. The first primitive prototype of the handbook software was developed using the Oval
system (Malone, et al., 1992) (a "radically tailorable" collaborative work tool). Later, rudimentary

data collection environments were developed using commercial outliners and flow-charting

packages on a Macintosh. We are currently implementing a more extensive prototype using the

Kappa-PC commercial knowledge-base tool on a personal computer.

Process descriptions. To date, we have collected descriptions of over 150 processes at varying
levels of detail. Some of these process descriptions are based on extensive previous fieldwork
(e.g., Crowston, 1991; Pentland, 1991, 1992). Others are based on our personal knowledge of
other organizations and on several published process descriptions (e.g., Swanson & Beath, 1990).

Develop
representation

techniques

4

Collect examples
nf nGaaniatinnal

processes
Us U s sUU

.1P_

III

18
Conclusion

If this research is successful, it will provide a set of powerful intellectual tools and an extensive

database to help invent new kinds of organizations, improve existing organizational processes,

and, perhaps, automatically generate software. It will also contribute to developing a central part

of coordination theory: the understanding of generic coordination processes and how they occur in

organizations. Perhaps most importantly, we hope it will help us understand the possibilities that

information technology provides for creating organizations that are not only more effective, but

also more fulfilling for their members.

Acknowledgements

Chris Dellarocas is the primary implementor of the current prototype of the handbook software.

This work was supported, in part, by Digital Equipment Corporation, the National Science

Foundation (Grant No. IRI-8903034), and other sponsors of the MIT Center for Coordination

Science.

REFERENCES

Baligh, H. H., Burton, R. M. and Obel, B. (1990). Devising expert systems in organization
theory: The Organizational Consultant. In M. Masuch (Ed.), Organization, Management, and
Expert Systems (pp. 35-57). Berlin: Walter de Gruyter.

Brachman, R. J. and Levesque, H. J. (Eds.). (1985). Readings in Knowledge Representation.
Los Altos, CA: Morgan Kaufmann.

Brynjolfsson, E., Malone, T., Gurbaxani, J. and Kambil, A. (1989). Does Information
Technology Lead to Smaller Firms? (Technical report 106). Center for Coordination Science,
MIT.

Burns, T. and Stalker, G. M. (1961). The Management of Innovation. London: Tavistock.

Carlson, W. M. (1979). Business Information Analysis and Integration Technique (BIAIT) --
The new horizon. Database, Spring, 3-9.

Carter, D. E. and Baker, B. S. (1991). Concurrent Engineering: The Product Development
Environmentfor the 1990's. Reading, MA: Addison-Wesley.

Chandrasekaran, B. (1983). Towards a taxonomy of problem solving types. AI Magazine, 4(1),
9-17.

Chandrasekaran, B., Johnson, T. R. and Smith, J. W. (1992). Task-structure analysis for
knowledge modeling. Communications of the ACM, 35(9), 124-137.

19
Clancey, W. J. (1983). The epistemology of a rule-based expert system -- A framework for

explanation. Artificial Intelligence, 20(3), 215-251.

Crowston, K. (1991). Towards a Coordination Cookbook: Recipes for Multi-Agent Action.
Ph.D. Dissertation, MIT Sloan School of Management, Cambridge, MA.

Dallemagne, G., Klinker, G., Marques, D., McDermott, J. and Tung, D. (1991). Making
application programming more worthwhile. In F. Schmalhofer and G. Strube (Ed.),
Contemporary Knowledge Engineering and Cognition. Heidelberg: Springer-Verlag.

Frenkel, K. A. (1991). The Human Genome Project and informatics. Communications of the
ACM, 34(11), 40-51.

Holt, A. W. (1988). Diplans: A new language for the study and implementation of coordination.
ACM Transactions on Office Information Systems, 6(2), 109-125.

Lee, J. (1990). Sibyl: A tool for managing group decision rationale. In ACM Conference on
Computer-Supported Cooperative Work (CSCW '90). Los Angeles, CA.

Lenat, D. B. and Guha, R. V. (1990). Building Large Knowledge-Based Systems:
Representation and Inference in the Cyc Project. Reading, Mass.: Addision-Wesley.

Lewis, H. R. and Papadimitriou, C. H. (1981). Elements of the Theory of Computation. New
York: Prentice-Hall.

Majchrzak, A. and Gasser, L. (in press). HITOP-A: A tool to facilitate interdisciplinary
manufacturing systems design. International Journal of Human Factors in Manufacturing, .

Malone, T. W. and Crowston, K. G. (1991). Toward an interdisciplinary theory of coordination
(Technical report #120). Cambridge, MA: Massachusetts Institute of Technology, Center for
Coordination Science.

Malone, T. W., Lai, K.-Y. and Fry, C. (1992). Experiments with Oval: A radically tailorable
tool for cooperative work. In Proceedings of the ACM Conference on Computer-Supported
Cooperative Work (CSCW '92). Toronto, Ontario.

Malone, T. W. and Rockart, J. F. (1991). Computers, networks, and the corporation. Scientific
American, 265(3 (Sept.)), 128-136.

Malone, T. W., Yates, J. and Benjamin, R. I. (1987). Electronic markets and electronic
hierarchies. Communications of the ACM, 30, 484-497.

Marques, D., Dallemagne, G., Klinker, G., McDermott, J. and Tung, D. (in press). Easy
programming: Empowering people to build their own applications. IEEE Expert,.

McKelvey, B. (1982). Organizational Systematics--Taxonomy, Evolution, Classification.
Berkeley: University of California Press.

Mintzberg, H. (1979). The Structuring of Organizations. Englewood Cliffs, NJ: Prentice-Hall.

Pentland, B. (1991). Making the right moves: Toward a social grammar of software support hot
lines. Ph.D. thesis, Sloan School of Management, Massachusetts Institute of Technology,
Cambridge, MA.

11

