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Abstract

The Discontinuous Galerkin method is an accurate and efficient way to numerically solve the time-dependent Maxwell

equations. In this paper, we extend the basic, two-dimensional formulation for isotropic materials to allow anisotropic permittivity

tensors. Using a reference system with an analytical solution, we demonstrate that our extensions do not alter the superior

convergence characteristics of the fundamental algorithm. We further apply our method to cylindrical invisibility cloaks to

investigate the performance which can be achieved in experiments.
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1. Introduction

Scientists and engineers in the photonics community

use numerical simulations on a daily basis to design new

devices, optimize existing ones, and explain findings in

their experiments. The demands simulation tools have

to face are simply stated, but difficult to fulfil. The

results should be accurate with only moderate require-

ments concerning computational resources. Besides

tools specialised for certain problem classes, a number

of general purpose solvers have gained popularity, as

they can treat a variety of different systems within the

same framework. Among these, we find the widely used

Finite-Difference Time-Domain (FDTD) algorithm and

Finite Element Methods (FEM).

FDTD is a very fast and simple solver for the time-

domain formulation of Maxwell’s equations [1].
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However, the simplicity comes at the price of only

second-order accuracy. In addition, one is restricted to

an inflexible orthogonal spatial discretisation, the so-

called Yee-grid. On the other hand, FEM allows a

flexible discretisation of the physical system in order to

resolve small geometrical features or curved shapes [2].

Furthermore, the spatial order of accuracy can be

improved by using higher order basis functions. Then

again, conventional FEM strongly relies on the solution

of a sparse system of linear equations. Thus, it suffers

from a large computational overhead as compared to

FDTD, rendering FEM cumbersome for time-domain

computations.

In 2002, Hesthaven and Warburton adapted the

Discontinuous Galerkin Time-Domain (DGTD) method

to electrodynamics [3,4]. In principle, DGTD is a

variant of conventional FEM. The main difference is

that the basis functions are only defined on a single

element without any overlap with the neighbouring

elements. This effectively decouples the elements. After

having performed all expensive operations on each
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element separately, the coupling between the elements

is reintroduced via the so-called numerical flux. With

this trick, the mathematical complexity is significantly

reduced, thus allowing DGTD to effectively treat time-

dependent problems.

Until now, however, most formulations of the DGTD

method were restricted to isotropic – and in some cases

dispersive – materials [3,5–8]. This excludes a wide

class of interesting materials and related physics. For

example, anisotropic materials provide a way to achieve

so-called invisibility cloaking using carpets, cylindrical

structures or more general geometries [9–11]. The

treatment of anisotropic materials within a DGTD

approach was discussed in Ref. [12], where the authors

employed a so-called central flux to interconnect

neighbouring elements. However, a central flux may

reduce the accuracy because spurious modes are not

sufficiently damped. Furthermore, it may introduce

instabilities when used in combination with perfectly

matched layers [13]. In this paper, we extend the DGTD

method to anisotropic materials and derive an upwind

flux for two-dimensional systems. We validate the

resulting algorithm using an analytical reference

solution. Finally, we present simulations of cylindrical

cloaking structures.

2. The Discontinuous Galerkin method

To simplify the problem, we restrict ourselves to the

important case of two-dimensional systems in TE-

polarisation, i.e., the only non-vanishing components of

the electromagnetic fields are Ex, Ey, and Hz.

Furthermore, we assume an anisotropic permittivity

tensor:

e ¼ exx exy

eyx eyy

� �

and an isotropic permeability m. The derivation is

roughly devided into two parts. First, a semi-discrete

form, i.e., a form where the spatial derivatives are

discretised, of Maxwell’s curl equations is derived.

Secondly, we solve the Riemann problem for anisotro-

pic materials to get the correct expression for the

numerical flux. As the first part of the derivation is

very similar to – and shares notation with – the one

presented in Ref. [7], we briefly repeat the key ideas and

state the final result.

We start by tesselating the two-dimensional compu-

tational domain into elements, e.g., triangles. Then, we

multiply Maxwell’s curl equations in conservation form

by Lagrange polynomials Lið~xÞ and integrate over an
individual element Vk. Integration by parts of the

resulting integral yields a surface integral over the flux
~F through the element boundary. Replacing this flux by

the numerical flux ~F
�

and reversing the integration by

parts yieldsZ
Vk
Q@t qþr �~FðqÞ
� �

Lið~rÞ d~r

¼
Z

@Vk
n̂ � ~FðqÞ �~F�ðqÞ
� �

Lið~rÞ d~r

as an intermediate result. Here, n̂ is the outwardly

directed normal vector of the element and we have

defined:

Qð~rÞ ¼ e 0

0 m

� �
; qð~r; tÞ ¼

Ex

Ey

Hz

0
@

1
A; and

n̂ �~Fð~r; tÞ�
�nyHz

nxHz

nxEy � nyEx

0
@

1
A:

If we expand the electromagnetic fields in terms of

time-dependent expansion coefficients and space-

dependent Lagrange polynomials L jð~xÞ, the time and

space variables separate. After introducing differentia-

tion matrices Dk
x and Dk

y, the mass matrixMk, and the

face matrix F k on the element Vk, we obtain:

@tE
k
x ¼ hxxDk

yHk
z � hxyDk

xHk
z þ ðMkÞ�1F k

� ðhxx½n̂ � ð~F �~F
�Þ�x þ hxy½n̂ � ð~F �~F

�Þ�yÞ

@tE
k
y ¼ hyxDk

yHk
z � hyyDk

xHk
z þ ðMkÞ�1F k

� ðhyx½n̂ � ð~F �~F
�Þ�x þ hyy½n̂ � ð~F �~F

�Þ�yÞ:

The definitions of the matrices are given in Ref. [7]

and shall not be repeated here. The variables Ek
x , Ek

y , and

Hk
z represent the expansion coefficients of the respective

electromagnetic field components. Furthermore, we

have defined:

h ¼ hxx hxy

hyx hyy

� �
� e�1

as the inverse permittivity. As the permeability m is still

assumed to be a scalar quantity, the semi-explicit form

for @tH
k
z is identical to the isotropic case (see Ref. [7]).

3. An upwind flux for anisotropic materials

To complete our extension to anisotropic materials,

we have to obtain an upwind expression for

n̂ � ð~F �~F�Þ. To this end, we have to solve the Riemann
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Fig. 1. Physical interpretation of the effective permittivity. We con-

sider the electric field component parellel to an edge of a triangle.

Rotating the system in a way that the normal vector coincides with the

x-axis allows us to connect the projection of e�1 on ~Ek with the

effective permittivity we need for the numerical flux.
problem [4,14]:

c�Q� q� � q�ð Þ þ n̂ � ~F
� �~F�

� �
¼ 0

n̂ � ~F
� �~F��

� �
¼ 0

�cþQþ qþ � q��ð Þ þ n̂ � ~F
þ �~F��

� �
¼ 0;

where

c� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂Te�n̂

m� � det ðe�Þ

s
(1)

denotes the speed with which a wave travels along the

direction of the unit normal. The superscript ‘‘�’’ (‘‘+’’)

denotes quantities within the local (neighbouring) ele-

ment. We note that ~F
� �~F. After some tedious alge-

braic manipulations we find:

H�z � H�z ¼
1

d
� c� � det e�ð Þ � n̂Teþn̂ � DHz

� c�cþ e�ð Þ � det eþð Þðn̂� D~EÞz

0
B@

1
CA

and

n̂ � ½~F� �~F��
� �

z

¼
c�m�ðn̂� D~EÞz � c�cþm�mþDHz

c�m� þ cþmþ
;

where

DHz ¼ H�z � Hþz ;

D~E ¼ ðE�x � Eþx Þ � êx þ ðE�y � Eþy Þ � êy;

and

d ¼ c� � det e�ð Þ � n̂Teþn̂
� �

þ cþ � det eþð Þ � n̂Te�n̂
� �

:

This intermediate result can be simplified by

eliminating det e�ð Þ and n̂Te�n̂ using the square of

(1). Finally, the numerical flux reads:

n̂ � ð~F �~F�Þ

¼

�ny

Zþ þ Z�
ZþDHz � ½nxDEy � nyDEx�
� �

nx

Zþ þ Z�
ZþDHz � ½nxDEy � nyDEx�
� �

1

Yþ þ Y�
Yþ½nxDEy � nyDEx� � DHz

� �

0
BBBB@

1
CCCCA; (2)

where we have defined Z� ¼ m�c� and Y� ¼ ðZ�Þ�1
.

Comparing Eq. (2) with the result for the numerical flux

in isotropic media (see Ref. [7]), we note that the

permittivity tensor modifies the flux only via c�. Thus,

concerning the numerical flux, we can define an effec-
tive permittivity

eeff ¼
det e

n̂Ten̂

which accounts for all necessary modifications.

Besides this rigorous derivation, an easy physical

interpretation is readily available. Consider the numer-

ical flux through an edge of a triangle as shown in Fig. 1.

The vector normal to this edge is given by

n̂ ¼ cos ðfÞ
sin ðfÞ

� �

We are interested in the propagation of fields along

the normal. Hence, we identify the electric field

component Ek parallel to the edge as the relevant

component for the propagation. After a rotation of the

system around the z-axis by �f, the normal vector is

parallel to the x-axis. For the inverse permittivity in the

new system we obtain:

ẽ�1 ¼ Rð�fÞ e�1RTð�fÞ

¼ 1

det ðeÞ � Rð�fÞ eyy �exy

�eyx exx

� �
RTð�fÞ:

Here Rð�fÞ denotes the two-dimensional rotation

matrix for the angle �f. After evaluating the matrix

products, we find the identity

eeff �
1

ẽ�1
� �

22

:

Thus, the inverse effective permittivity is essentially

the projection of the inverse epsilon tensor on the

direction of the electric field component parallel to the

edge of an element.

Please note that the rigorous derivation can be

applied to three-dimensional systems as well. However,



M. König et al. / Photonics and Nanostructures – Fundamentals and Applications 8 (2010) 303–309306

Fig. 2. The setup used for the validation of our implementation of anisotropic materials. The left-hand side shows a square cavity of side length L

filled with a material with permittivity e which is bounded by a perfect electric conductor. The cavity is tesselated into a number of congruent

triangles characterized by a side length h. This system translates into the own shown at the right-hand side by rotating it hrough an angle f. Thereby,

the permittivity tensor changes and acquires off-diagonal components. In turn, this provides us with a robust test case for a general anisotropy.

Fig. 3. Numerical errors for the Hz component of the ð1; 1Þ-mode in a

cavity rotated by 30	. For the material we used exx ¼ 4 and eyy ¼ 2:0

and transfered the permittivity tensor into the rotated system. The

crosses indicate the deviations from the numerical solution to the

analytical one for different element sizes h (as defined in Fig. 2). The

colours represent different orders p of Lagrange polynomials. The

dashed lines are the results of linear fitting procedures which favour

smaller values of h. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of the

article.)
one has to account for two distinct polarisations normal

to a propagation direction n̂, which significantly

complicates matters. In particular, the physical inter-

pretation cannot hold in its current form as polarisation

effects are not considered so far. Nevertheless, ongoing

investigations hint that these can be accounted for by

minor modifications.

4. Validation

To verify our method for anisotropic materials, we

investigate the square cavity ðx; yÞ 2 ½0; L�2 as shown in

Fig. 2. The cavity is filled with an anisotropic material

characterized by

e ¼ exx 0

0 eyy

� �
:

The boundary of the cavity is a perfect electric

conductor, i.e., the electrical field component tangential

to the boundary vanishes. For any given time t, the field

distribution within the cavity for the ð1; 1Þ-mode is

given by

Exð~x; tÞ ¼ �p

vLexx
�cos

p

L
x

� �
� sin

p

L
y

� �
� sin ðvtÞ

Eyð~x; tÞ ¼ p

vLeyy
�sin

p

L
x

� �
� cos

p

L
y

� �
� sin ðvtÞ

Hzð~x; tÞ ¼ cos
p

L
x

� �
� cos

p

L
y

� �
� cos ðvtÞ;

(3)

where

v ¼ p

L
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

exx
þ 1

eyy

s
:

However, with this simple test we can only validate

our method for diagonal permittivity tensors. For a full
validation, we rotate the entire system by an angle f. In

the rotated system, the cavity is filled with a material

e0 ¼ RðfÞ eRðfÞT :

Again,RðfÞ denotes the rotation matrix. Thus, in the

x-y coordinate system the rotated cavity is filled with an

anisotropic material with (in general) non-vanishing,

identical off-diagonal elements. The analytical solution

of this system is given by a mere rotation of (3).

We initialize the fields in our numerical simulation

with the respective analytical values for the ð1; 1Þ-mode

at t ¼ 0. Using the DGTD method, we evolve the fields

in time for various orders p of the Lagrange polynomials

and different element sizes h. For the time stepping, we
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Fig. 4. Left panel: Sketch of the simulation setup. Using the total-field/scattered-field technique, a plane wave is launched onto a cylindrical cloak

which surrounds a perfect magnetic conductor. Right panel: The upper part shows the triangular mesh used for the simulation. The cloak is composed

by 20 rings of decreasing width. The lower part shows the magnetic field for a plane wave with l ¼ a ¼ 632:8 nm. The colours indicate the strength

of the magnetic field, where H0 is the amplitude of the incident plane wave. A good fraction of the wave is reflected into the scattered-field region.
use a fourth-order Runge–Kutta solver. Due to the

explicit nature of this solver, the time step is bounded by

Dtmax to maintain numerical stability. To minimise the

error of the time integration, we choose a small time

step Dt ¼ 0:05 � Dtmax and simulate about 14 optical

cycles. At each time step, we calculate the error as the

maximum deviation of the numerically obtained

magnetic field and the analytical reference within the

cavity. The total error of the simulation is then defined

by

Error ¼ max
i

max
~x2 ½0; L�2

Hnum
z ð~x; iDtÞ � Hana

z ð~x; iDtÞ
		 		 !

:

Fig. 3 shows the error in dependence of h and p. We

observe that the exponentional convergence of the

isotropic case [3],

Error/ h pþ1;

is nicely reproduced even for anisotropic materials.

Thus, we conclude that our algorithm is at least working

for experimentally relevant symmetric permittivity ten-

sors. Nevertheless, as in the course of the derivation we

only assume that e is invertible, the extension should

hold for even more general permittivities.

5. Optical cloaking

As a stress test for our method we want to apply it to

optical cloaking [9,10]. The idea is to coat an obstacle

with a specially tailored material layer which guides
light around it. Ideally, the shape of the incident light

wave is recovered behind the scatterer. As an observer

cannot distinguish between the recovered wave and the

original one, the object is invisible.

In order to achieve optical cloaking, the material

layer usually has uncommon properties. In particular,

the permittivity of the material continually changes with

position. Furthermore, the materials generally show

anisotropic behaviour. However, such materials do not

exist in nature. Therefore, one relies on artifically

created metamaterials, whose substructures cannot be

resolved by incident radiation and, hence, act as

effective media. A variation of the substructure allows

for a change in the material parameters, rendering

intriguing properties possible. While this problem is

experimentally very challenging, it also imposes great

problems on numerical simulations.

Let us consider a cylindrical shell of inner radius a

and outer radius b as shown in Fig. 4. The shell consists

of a material with [10]:

mz ¼ 1; ef ¼
b

b� a

� �2

; and

er ¼
b

b� a

� �2
r � a

r

� �2
(4)

and is illuminated by TE-polarised light. We note that

the permittivity is given in a cylindrical coordinate

system whose origin coincides with the shell’s centre

with azimuthal and radial components ef and er, re-

spectively. Most strikingly, er vanishes as the distance r
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to the center of the shell approaches a. As a conse-

quence, the phase speed diverges to infinity. Further-

more, Eq. (4) describes a non-dispersive material. In

principle, the inclusion of dispersive materials in the

DGTD framework is straightforward via auxiliary dif-

ferential equations [1]. However, such an extension is

beyond the scope of this paper, which focusses on the

technical challenges of the dielectric, numerical flux-

modifying contributions of anisotropic materials.

In our simulations, we model the cylindrical cloak by

a series of 20 rings. Each ring is approximated by

homogeneously filled triangles, i.e., the anisotropic

material properties are constant within a triangle and are

determined by the position of its centre according to (4).

Though this does not represent ideal, continuously

varying parameters, we argue that this is a good

approximation to the experimental situation, where one

would change the material by varying the material

composition of finite-sized unit cells. The outermost

ring is five times as thick as the innermost ring to

account for the drastic changes near the inner boundary.

As an obstacle, we fill the inside of the shell with a

perfect magnetic conductor (PMC). We illuminate our

system by a plane wave of wavelength l via the

established total-field/scattered-field technique [1].

Perfectly matched layers [5] absorb light which is

scattered by the cloak/PMC system. For the geometrical

parameters we choose l ¼ a ¼ 632:8 nm and

b ¼ a=0:314.

To speed up the simulations, we exploit the mirror

symmetry of the system. Our mesh is depicted in Fig. 4.

Third-order Lagrange polynomials are used as local basis

functions. To maintain numerical stability, the time step

is reduced by the maximum phase speed in the system

according to the CFL criterion [1]. For our discretisation,

this is a factor of about 50.

Fig. 4 also features a colour plot of the magnetic

field. The total-field region shows what an observer

would see. The scattered-field region reveals all

deviations of the resulting field to an ideal plane wave

due to scattering off the optical cloak and the enclosed

PMC. In the case of perfect cloaking, an undisturbed

plane wave would be expected in the total-field region,

while no field should be present in the scattered-field

region. Though deviations are obvious, the overall

performance of the cloak seems acceptable as the plane

wave shape is approximately recovered once the wave

has passed the scatterer. To further quantify the quality

of the cloak, we calculate its scattering cross-section

per unit length by integrating the energy flux on a

closed contour in the scattered-field region and

compare it to that of the PMC alone, i.e., without the
cloak. We obtain

CPMC
scat 
 2890 nm; and Ccloak

scat 
 464 nm:

Thus, the cloak reduces the amount of scattered light

by a factor of approximately 6.2. The performance of

the cloak is fundamentally limited by the chosen

material parameters (4), which are impedance mis-

matched at the outer cloak boundary [10]. Hence, some

light is scattered away before the cloak can actually start

to guide the light around the obstacle. Secondly, the

performance of the cloak is further limited by the size of

the unit cells used to generate the desired material

parameters. As the permittivity abruptly changes from

unit cell to unit cell, inter-cell scattering inevitably

occurs and impedes the cloaking effect. Finally, the

diverging material parameters at the inner boundary

cannot be achieved in practice. To assess the dominant

contribution to the scattering cross-section, we repeat

our simulations for 10, 15, and 25 rings. We find that the

scattering cross-section is nearly independent of the

number of rings with the relative difference between the

maximum and the minimum cross-section being below

0.3%. We conclude that the impedance mismatch at the

outer boundary is the main factor which impairs the

performance of the cylindrical cloak. The overall

cloaking effect is still visible for surprisingly few rings.

As a last note, we want to mention that time-domain

simulations might not be ideal for such kinds of

simulations. Tests with radially independent material

parameters indicate that it is crucial to properly resolve

the material parameters at the inner boundary. The

critical time step Dt is limited by the smallest triangle

size h and the (inverse) maximum speed of light c. As

we increase the resolution near the inner cylinder, the

triangle centres approach the boundary as well. Thus, h

decreases at the same time as c increases. Both effects

decrease the time step and drastically increase the

computational overhead. For such situations, fre-

quency-domain calculations are more appropriate. To

this end, we have developed a frequency-domain

version of our Discontinuous Galerkin method, details

of which will be published elsewhere.

6. Conclusion and outlook

We have presented an extension to the DGTD

method for Maxwell’s equations to include anisotropic

materials in two-dimensional transverse-electric polar-

isation. We have shown that the update equations

undergo simple modifications. Changes to the numer-

ical flux are accounted for by an effective permittivity
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for the electric field component tangential to the edge of

an element. Our extension conserves the superior

convergence properties of the original method. We have

applied our method to an optical cloaking device and

have observed pronounced scattering for realistic setups.

For the future, a three-dimensional formulation and the

application to other physical problems will be interesting.
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