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Preface
Hello, data scientists and AI enthusiasts. For many years I've created online courses 
on Artificial Intelligence (AI), which have been very successful and contributed well 
to the AI community. However, something essential was missing. At one point, 
so many AI courses were made that most of my students asked me for guidance 
on how to take the courses. So instead of providing an order in which to take the 
courses, I decided to create an all-in-one full guide to AI as a book, which would 
include in a perfect structure all the best explanations and real-world practical 
activities from my courses.

You see, my goal is to democratize AI and raise awareness among everyone of the 
fact that AI is an accessible technology that can make a difference for the better in 
this world. I am trying my best to spread knowledge around the world to get people 
prepared for the future jobs and opportunities of this 21st century. And I thought 
some people would learn AI much more efficiently from an all-in-one book they 
can take anywhere, rather than completing tens of online courses that can be hard 
to navigate. That being said, this book is also a great additional resource for those 
people who do prefer, and take, online courses.

My simple hope for this book is that more people learn AI the right way, as a result 
of me offering them this efficient alternative to online courses. I've succeeded at the 
challenge of including the best of my training in a single book, and today I'm truly 
happy to release it. I sincerely hope it will help more people land their dream job, 
grow an amazing career in data science or AI, and bring beautiful solutions to the 
tough challenges of this 21st century.
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Who this book is for
Anyone interested in machine learning, deep learning, or AI.

People who aren't that comfortable with coding, but who are interested in AI 
and want to apply it easily to real-world problems.

College or university students who want to start a career in data science or AI.

Data analysts who want to level up in AI.

Anyone who isn't satisfied with their job and wants to take the first steps toward a 
career in data science.

Business owners who want to add value to their business by using powerful AI tools.

Entrepreneurs who are eager to learn how to leverage AI to optimize their business, 
maximize profitability, and increase efficiency.

AI practitioners who want to know what projects they can offer to their employees.

Aspiring data scientists, looking for business cases to add to their portfolio.

Technology enthusiasts interested in leveraging machine learning and AI to solve 
business problems.

Consultants who want to transition companies into being AI-driven businesses.

Students with at least high school knowledge in math, who want to start learning AI.

What this book covers
Chapter 1, Welcome to the Robot World, introduces you to the world of Artificial 
Intelligence.

Chapter 2, Discover Your AI Toolkit, uncovers an easy-to-use toolkit of all the AI 
models as Python files, ready to run thanks to the amazing Google Colaboratory 
platform.

Chapter 3, Python Fundamentals – Learn How to Code in Python, provides the right 
Python fundamentals and teaches you how to code in Python.

Chapter 4, AI Foundation Techniques, introduces you to reinforcement learning and its 
five fundamental principles.
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Chapter 5, Your First AI Model – Beware the Bandits!, teaches the theory of the multi-
armed bandit problem and how to solve it in the best way with the Thompson 
Sampling AI model.

Chapter 6, AI for Sales and Advertising – Sell like the Wolf of AI Street, applies the 
Thompson Sampling AI model of Chapter 5 to solve a real-world business problem 
related to sales and advertising.

Chapter 7, Welcome to Q-Learning, introduces the theory of the Q-learning AI model.

Chapter 8, AI for Logistics – Robots in a Warehouse, applies the Q-learning AI model of 
Chapter 7 to solve a real-world business problem related to logistics optimization.

Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning, introduces the 
fundamentals of deep learning and the theory of the deep Q-learning AI model.

Chapter 10, AI for Autonomous Vehicles – Build a Self-Driving Car, applies the deep 
Q-learning AI model of Chapter 9 to build a virtual self-driving car.

Chapter 11, AI for Business – Minimize Cost with Deep Q-Learning, applies the deep
Q-learning AI model of Chapter 9 to solve a real-world business problem related
to cost optimization.

Chapter 12, Deep Convolutional Q-Learning, introduces the fundamentals of 
convolutional neural networks and the theory of the deep convolutional Q-learning 
AI model.

Chapter 13, AI for Games – Become the Master at Snake, applies the deep convolutional 
Q-learning AI model of Chapter 12 to beat the famous Snake video game

Chapter 14, Recap and Conclusion, concludes the book with a recap of how to create 
an AI framework and some final words from the author about your future in the 
world of AI.

To get the most out of this book
• You don't need to know much before we begin; the book contains refreshers

on all the prerequisites needed to understand the AI models. There's also
a full chapter on Python fundamentals to help you learn, if you need to,
how to code in Python.

• There are no required prior installations, since all the practical instructions
are provided from scratch in the book. You only need to have your computer
ready and switched on.
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• I recommend you have Google open while reading the book, so that you can 
visit the links provided in the book as resources, and to check out the math 
concepts behind the AI models of this book in more detail.

Download the example code files
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files emailed directly 
to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen 

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/AI-Crash-Course. We also have other code bundles 
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams 
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838645359_ColorImages.pdf.
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Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter 
handles. For example; "To get these numbers you can add together the lists 
nPosReward and nNegReward."

A block of code is set as follows:

# Creating the dataset
X = np.zeros((N, d))
for i in range(N):
    for j in range(d):
        if np.random.rand() < conversionRates[j]:
            X[i][j] = 1

When we wish to draw your attention to a particular line in a code block, we have 
included the line numbers so that we can refer to them with precision:

80         self.last_state = new_state

81         self.last_action = new_action

82         self.last_reward = new_reward

83         return new_action

Any command-line input or output is written as follows:

conda install -c conda-forge keras

Bold: Indicates a new term, an important word, or words that you see on the screen, 
for example, in menus or dialog boxes, also appear in the text like this. For example: 
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.
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Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title 
in the subject of your message. If you have questions about any aspect of this book, 
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book we would be grateful 
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and 
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you would provide us with the location address 
or website name. Please contact us at copyright@packtpub.com with a link to the 
material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, 
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a 
review on the site that you purchased it from? Potential readers can then see and use 
your unbiased opinion to make purchase decisions, we at Packt can understand what 
you think about our products, and our authors can see your feedback on their book. 
Thank you!

For more information about Packt, please visit packtpub.com.

WOW! eBook 
www.wowebook.org

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/


[ 1 ]

Welcome to the Robot World
"We are truly living in the most exciting time to be alive!" These words, by the great 
tech entrepreneur Peter Diamandis, are even more true for people working in the 
artificial intelligence (AI) ecosystem. There is a reason why AI jobs are considered 
the sexiest jobs of the 21st century: besides being very well paid, AI is a fantastic 
topic to work on.

AI is taking a more and more important place in the world, and today we can 
find applications of it in almost all industries. This is not a temporary trend; 
AI is here to stay. As the top AI leader and influencer Andrew Ng said, AI is the 
new electricity. Just like the industrial revolution transformed lives and jobs in the 
19th century, AI is about to do the same in this 21st century. Hence, the more you 
understand and know how to use it, the more opportunities will open up to you.

To give you some important figures, according to a study done by 
PricewaterhouseCoopers (PwC), AI could contribute up to $15.7 trillion to the 
global economy by 2030, which is more than the current output of China and India 
combined. So, you've definitely made a great choice to study this field. Welcome 
to the incredible world of Artificial Intelligence!

In this chapter, you will begin your AI journey with a top-level view of everything 
you'll learn from this book as you read and work through the chapters ahead with 
me. Then, I'll help you understand where learning AI can take you, by going through 
a variety of top industry applications for Artificial Intelligence.

Beginning the AI journey
Being a young AI scientist, I remember my first days in AI very well. This is 
important because this book is a crash course in AI. You don't need any prior 
knowledge of the field to work through the chapters.
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In this book, I will explain the solid foundations of AI, while making sure to answer 
all the questions that I had back when I started in this field in detail. This means that 
everything will be explained step by step, and your learning process will follow a 
smooth path, supported by the relevant logic.

Having the right information at your fingertips is not enough to successfully break into 
the AI world. What you also need is energy, enthusiasm, and excitement. Even better, 
you need passion, and ideally obsession, about the subject. As an experienced tutor of 
online courses, I hope to pass on my knowledge and, most importantly, my passion.

In this book, you will go on a journey together with me, taking a path through 
a world of exciting AI applications, including many real-world case studies in 
the chapters. The applications will follow an increasing level of difficulty, from 
the simplest model in AI, to a much more advanced level.

For each of the AI applications, I will focus mostly on the intuition needed to 
understand them, and then, for those interested in the mathematics and pure theory 
behind the application, I will provide those as an option. The reason why I choose to 
focus on intuition rather than math is not only because I want to make this book easy 
to understand for everyone, but also because, in order to perform well in AI today, it 
is extremely important to have the right intuition. When you're solving a problem with 
AI, you have to figure out which model best fits your problem environment, and you 
can only do that when you have the proper intuition of how each AI model works. 

Four different AI models
These AI models were chosen to be part of this book because they are used in a great 
variety of industry applications and can solve many different real-world problems. 
I'll just reveal their names here before we study them in depth across the book. The 
four AI models you will learn everything about in this book are the following:

1. Thompson Sampling
2. Q-learning
3. Deep Q-learning
4. Deep convolutional Q-learning

For each of these four models, we will follow the same three-step approach:

1. Get an intuitive understanding of how it works.
2. Get all the math behind the theory.
3. Implement the model from scratch in Python.
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I have followed this structure many times with my students, and I can tell you 
that it works the best. The idea is simple: because you start with your intuition, 
you won't get overwhelmed by the math, but will instead understand it more 
easily. You'll also feel comfortable coding some models of which you both have 
an intuitive understanding and in-depth theoretical knowledge.

The models in practice
All the way through this book you'll find practical examples to learn from or 
implement yourself. Here's a list of the AI implementations you'll find in the 
chapters of this course, which start in Chapter 3 after you get the tools you need 
for your AI journey in Chapter 2.

Fundamentals
Chapter 3, Python Fundamentals – Learn How to Code in Python, contains the Python 
coding fundamentals you'll need for this book. You can remind yourself, or learn 
from scratch, how to code in Python.

Chapter 4, AI Foundation Techniques, contains a pseudocode example to illustrate 
the five core principles of Artificial Intelligence.

Thompson Sampling
Chapter 5, Your First AI Model – Beware the Bandits!, contains introductory 
code to illustrate the theory behind the Thompson Sampling AI model.

Chapter 6, AI for Sales and Advertising – Sell like the Wolf of AI Street, contains  
a real-world implementation of the Thompson Sampling model, applied to 
online advertising.

Q-learning
Chapter 7, Welcome to Q-Learning, contains pseudocode to illustrate the theory of the
Q-learning AI model.

Chapter 8, AI for Logistics – Robots in a Warehouse, contains a real-world 
implementation of the Q-learning model, applied to process automation and 
optimization.

Deep Q-learning
Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning, contains introductory 
code to illustrate the theory behind Artificial Neural Networks.
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Chapter 10, AI for Autonomous Vehicles – Build a Self-Driving Car, contains a real-world 
implementation of the deep Q-learning model, applied to self-driving cars.

Chapter 11, AI for Business – Minimize Costs with Deep Q-Learning, contains another 
real-world implementation of the deep Q-learning model, applied to energy and 
business.

Deep convolutional Q-learning
Chapter 12, Deep Convolution Q-Learning, contains introductory code to illustrate the 
implementation of a Convolutional Neural Network (CNN).

Chapter 13, AI for Video Games – Become the Master at Snake, contains a real-world 
implementation of the deep convolutional Q-learning model applied to a game.

As you can see, every time you're introduced to a new model, you learn the intuition 
first, then the math, and then you move to an implementation of the model. So, why 
is learning how to implement these models worth your while?

Where can learning AI take you?
I'd like to motivate you by showing you that you made the right choice to learn 
AI. To do this, I'll take you on a tour of all the incredible applications AI can and will 
have in the 21st century. I have a vision of how AI can transform the world, and this 
vision is structured around 10 areas.

Energy
In 2016, Google used AI to reduce energy consumption in its data centers by more 
than 30%. If Google has done it for data centers, it could be done for an entire 
city. By building a smart AI platform using Internet of Things (IoT) technology, 
the consumption and distribution of energy can be optimized on a large scale.

Healthcare
AI has enormous promise for healthcare. It can already diagnose diseases, make 
prescriptions, and design new drug formulas. Combining all these skills into a smart 
healthcare platform will allow people to benefit from truly personalized medical 
care. This would be amazing for society. The challenges in achieving this are not 
only present in the technology, but also in getting access to anonymous patient 
data, which so far is protected by regulations.

WOW! eBook 
www.wowebook.org



Chapter 1

[ 5 ]

Transport and logistics
Self-driving vehicles are becoming a reality. There is still a lot to achieve, but the 
technology is constantly improving. By building smart digital infrastructures, AI 
will help reduce the number of accidents and considerably reduce traffic. Also, self-
driving delivery trucks and drones will speed up logistic processes, therefore boosting 
the economy; mostly through one of its bigger engines, the e-commerce industry.

Education
Today, we live in the era of Massive Open Online Courses. Anyone can learn 
anything online. This is great because the whole world can get access to an 
education; but it's definitely not enough. A significant improvement would be the 
personalization of education; everyone learns differently, and at different paces. 
Some, namely extroverts, will prefer the classroom, while others, introverts, will 
learn better at home. Some are more visual, while others are more auditory. Taking 
these and other factors into account, AI is a powerful technology that could deliver 
personalized training, optimizing everyone's learning curve.

Security
Computer vision has made tremendous technological progress. AI can now detect 
faces with a high level of accuracy. Not only that, the number of security cameras is 
increasing significantly. All this could be integrated into a global security platform 
to reduce crime, increase public safety, and disincentivize people from breaking the 
law. Besides this, AI and Machine Learning are powerful technologies already used 
in fraud detection and prevention.

Employment
AI can build powerful recommender systems. We already see platforms of digital 
recruitment, where AI matches the best candidates to jobs. This not only has a 
positive impact on the economy, but also on people's happiness, since work makes 
up more than half of a person's life.

Smart homes and robots
Smart homes, IoT, and connected objects are developing massively. Robots will assist 
people in their homes, allowing humans to focus on more important activities like 
their work or spending quality time with their family. They will also help elderly 
people to live in their home independently, or even allow them to stay active at 
work, for much longer.
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Entertainment and happiness
One downside of technology today is that despite the fact people are so virtually 
connected, they feel more and more lonely. Loneliness is something we must fight 
against in this century, as it is very unhealthy for people. AI has a great role to play 
in this fight, since it is again a powerful recommender system, which can not only 
recommend relevant movies and songs to users, but also connect people through 
recommended activities based on their past experiences and common interests.

Through a global smart platform of entertainment, AI technology could help like-
minded people to socialize and meet physically instead of virtually.

Another idea to fight loneliness is companion robots, which will be entering 
homes more and more over the next decade. One branch of AI in the Research 
and Development phase is emotion creation. This is the branch of AI that will 
allow robots to show emotions and empathy, and therefore interact more 
successfully with humans.

Environment
Using computer vision, machines could optimize waste sorting and redistribute the 
cycles of trash more efficiently. Combining pure AI models with IoT can optimize 
power and water consumption by individuals. Programs already exist on some 
platforms that allow people to track their consumption in real time, therefore 
collecting data. Integrating AI could minimize this consumption, or optimize the 
distribution cycles for beneficial reuse. Combined with traffic reduction and the 
development of autonomous vehicles, this will considerably reduce pollution, 
which will create a healthier environment.

Economy, business, and finance
AI is taking the business world by storm. Earlier, I mentioned the study done 
by PwC showing how AI could contribute up to $15 trillion to the global 
economy in 2030 (https://www.pwc.com/gx/en/issues/data-and-analytics/
publications/artificial-intelligence-study.html). But how can AI 
generate so much income? AI can bring significant added value to businesses 
in three different ways: process automation, profit optimization, and innovation. 
In my vision of an AI-driven economy, I see the majority of companies adopting 
at least one AI technology, or having an AI department. In finance, we can already 
see some jobs being replaced by robots. For example, the number of financial traders 
was significantly reduced after the development of trading robots that perform well 
on high-frequency trades.
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As you can see, the robot world has a lot of great directions for you to take. AI 
is already in a dynamic place and it's picking up strong momentum as it moves 
forward. My professional purpose is to democratize AI and incentivize people 
to make a positive impact in this world thanks to AI—who knows, perhaps your 
purpose will be to work with AI for the good of humanity. I'm sure that at least 
one of these 10 applications resonates in you; if that's the case, work hard to become 
an AI master and you will have the chance to make a difference.

If you are ready to break into AI, or simply want to increase your knowledge, 
let's begin!

Summary
In this chapter, you began your AI journey and saw the vast land of opportunities 
that will open to you. Perhaps you can already think of which industry application 
might resonate the most in you, so you can become even more passionate about what 
you do with AI and understand why you're doing it. In the next chapter, you will 
uncover the AI toolkit you will use in this book.
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Discover Your AI Toolkit
In the previous chapter, you began your AI journey. Before you continue it, you need 
your AI toolkit. This book is not just theory; it also contains an easy-to-use toolkit 
of all the AI models as Python files, ready to run thanks to the amazing Google 
Colaboratory platform that you will also be introduced to in this chapter.

To fill your AI toolkit, I've prepared a GitHub page containing all the AI 
implementations for you to download, and Google Colab links of the Python 
notebooks containing the implementations, all ready to execute via an easy plug 
and play process.

The GitHub page
You will find all the code for this book ready for you to download from the following 
GitHub page:

https://github.com/PacktPublishing/AI-Crash-Course
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To download the code, you simply need to click the Clone or download button, 
and then Download Zip:

Figure 1: The GitHub repository

Then, once you've downloaded these codes, feel free to open them with your favorite 
Python Integrated Development Environment (IDE), whether it's Jupyter Notebook, 
Spyder, a simple text editor, or even your terminal. 
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If you've never coded with Python before and have no idea of how to open the files 
with a Python editor, then no problem; I've prepared the best and simplest solution 
for you: Colaboratory (or Google Colab).

Colaboratory
Colaboratory is a free and open source environment for Python development that 
requires no setup and runs entirely on the cloud. It contains all the pre-installed 
packages required for your AI implementations so that they are ready to run with 
a simple plug and play process. By plug, I just mean to copy and paste the code 
inside a new Colab file (I'll explain how to open one next), and by play, I just mean 
to click on the play button (an example of that follows).

Here is the link to the main page of Colaboratory:

https://colab.research.google.com/notebooks/welcome.ipynb

You should get a page like this:

Figure 2: Colaboratory – main page
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Click File in the upper left, and then click New Python 3 notebook:

Figure 3: Colaboratory – opening a notebook

Then you will get this view. Paste your Python code inside the cell (red arrow). 
That's the "plug" part:

Figure 4: Colaboratory – the "plug" part

I recommend using separate Colaboratory notebooks for each model in this book.

Now let's see the "play" part. Open the Thompson Sampling model in the Chapter 
06 folder, implemented inside the thompson_sampling.py file:
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Figure 5: GitHub – opening Thompson Sampling

Copy the whole code from inside the Python file; don't worry about understanding 
the code (or the results) for now. It will all be explained, step by step, in Chapter 6, 
AI for Sales and Advertising – Sell like the Wolf of AI Street:

Figure 6: GitHub – copying Thompson Sampling
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Next, paste it into Colaboratory (in the cell highlighted by the arrow in Figure 4). 
Then we get this:

Figure 7: Pasting Thompson Sampling

And now we are ready for the "play" part! Just click the "play" button below:

Figure 8: The "play" part
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And the code will execute. Don't pay attention to the result now, as this will all 
be explained in Chapter 6, AI for Sales and Advertising – Sell like the Wolf of AI Street.

You are all set! You now have an AI toolkit that will enable you to follow along 
with every example in the book.

Before you begin your AI journey in earnest, you must make sure that you have 
the right basic coding knowledge. This is truly important before becoming a master 
at AI. If you have little or no experience with Python, make sure that you learn 
Python in Chapter 3, Python Fundamentals – Learn How to Code in Python, as a last 
preparation phase before you begin exploring the robot world.

Summary
In this chapter, you packed your luggage with our AI toolkit, which included 
not only the many AI models of this book, but also the very user-friendly Google 
Colaboratory environment. You saw how easy it was to plug and play our models 
from GitHub to Colaboratory. Now you just need coding skills to make you ready 
to begin the real journey. In the next chapter, you will have a chance to learn—
or brush up on—your Python fundamentals.
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Python Fundamentals – 
Learn How to Code in Python

This chapter is for people who have little or no experience with the Python 
programming language. If you already know how to use for/while loops, 
methods, and classes in Python, you can skip this chapter and you shouldn't have 
any problems later on.

If, however, you have not used Python before, or have only barely used it, I strongly 
recommend that you follow this guide. You'll learn how to code the elements of 
Python I mentioned in the previous paragraph, you'll fully understand the codes 
included in this book and you'll be able to code in Python on your own. I'll also give 
you some additional exercises, called "homework" throughout the chapter, which 
I strongly recommend that you do.

Before you begin, open your Python editor. I recommend using the Google Colab 
notebook, introduced to you as part of your AI Toolkit in the previous chapter. All 
the code, along with homework solutions, are provided on the GitHub page of this 
book in Chapter 3 in their corresponding section folders. Inside them, you will 
find two Python files: one (named the same as the section) is the code used in this 
book, while the homework.py file is the solution to the exercise. Instructions for each 
homework exercise will be provided at the end of each section.

In this chapter, we'll cover the following topics:

• Displaying text
• Variables and operations
• Lists and arrays
• if statements and conditions
• for and while loops
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• Functions
• Classes and objects

Especially if you're starting from scratch, cover each section in the order they're 
presented here, and remember to try your hand at the homework. Let's get started!

Displaying text
We'll begin with the most popular way of introducing any programming language; 
you'll learn how to display some text in the Python console. The console is a tool 
that's part of every Python editor, which shows the information we want or displays 
any errors that occurred (let's hope not to get any!).

The easiest way to show something in our console is to use the print() method, just 
like this:

# Displaying text
print('Hello world!')

The text above print, starting with #, is called a comment. Comments are excluded 
when executing code and are only visible to you.

After running this short code in Google Colab, you'll see this displayed:

Hello world!

In conclusion, just put what you want to display into the brackets of the print 
method – text surrounded by quotes, as in this example, or variables.

If you're curious about what variables are, that's great – you'll learn about them after 
this exercise.

Exercise
Using only one print() method, try to display two or more lines.

Hint: Try using the \n symbol.

The solution is provided in the Chapter 03/Displaying Text/homework.py file on 
the GitHub page.
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Variables and operations
Variables are simply values that are allocated somewhere in the memory of our 
computer. They are similar to variables in mathematics. They can be anything: text, 
integers, or floats (a number with precision after the decimal point, such as 2.33).

To create a new variable, you only need to write this:

x = 2

In this case, we have named a variable x and set its value to 2.

As in mathematics, you can perform some operations on these variables. The most 
common operations are addition, subtraction, multiplication, and division. The way 
to write them in Python is like this:

x = x + 5   #x += 5

x = x - 3   #x -= 3

x = x * 2.5 #x *= 2.5

x = x / 3   #x /= 3

If you look at it for the first time, it doesn't make much sense—how can we write that 
x = x + 5?

In Python, and in most code, the "=" notation doesn't mean the two terms are equal. 
It means that we associate the new x value with the value of the old x, plus 5. It is 
crucial to understand that this is not an equation, but rather the creation of a new 
variable with the same name as the previous one.

You can also write these operations as shown on the right side, in the comments. 
You'll usually see them written in this way, since it's more space efficient.

You can also perform these operations on other variables, for example:

y = 3
x += y
print(x)

Here, we created a new variable y and set it to 3. Then, we added it to our existing x. 
Also, x will be displayed when you run this code.
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So, what does x turn out to be after all these operations? If you run the code, you'll 
get this:

6.333333333333334

If you calculate these operations by hand, you will see that x does indeed equal 6.33.

Exercise
Try to find a way to raise one number to the power of another.

Hint: Try using the pow() built-in function for Python.

The solution is provided in the Chapter 03/Variables/homework.py file on the 
GitHub page.

Lists and arrays
Lists and arrays can be represented with a table. Imagine a one-dimensional (1D) 
vector or a matrix, and you have just imagined a list/array.

Lists and arrays can contain data in them. Data can be anything – variables, other 
lists or arrays (these are called multi-dimensional lists/arrays), or objects of some 
classes (we will learn about them later).

For example, this is a 1D list/array containing integers:
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And this is an example of a two-dimensional (2D) list/array, also containing 
integers:

In order to create a 2D list, you have to create a list of lists. Creating a list is very 
simple, just like this:

L1 = list()
L2 = []

L3 = [3,4,1,6,7,5]
L4 = [[2, 9, -5], [-1, 0, 4], [3, 1, 2]]

Here we create four lists: L1, L2, L3 and L4. The first two lists are empty – they have 
zero elements. The two subsequent lists have some predefined values in them. L3 
is a one-dimensional list, same as the one in the first image. L4 is a two-dimensional 
list, the same as in the second image. As you can see, L4 actually consists of three 
smaller 1D lists.

Whenever I mention an array, I usually mean a "NumPy" array. NumPy is a Python 
library (a library is a collection of pre-coded programs that allows you to perform 
many actions without writing your code from scratch), widely used for list/array 
operations. You can think of a NumPy  array as a special kind of list, with lots of 
additional functions.

To create a NumPy array, you have to specify a size and use an initialization method. 
Here's an example:

import numpy as np
nparray = np.zeros((5,5))

In the first line, we import the NumPy library (as you can see, to import a library, 
you need to write import) and by using as, we give NumPy the abbreviation np 
to make it easier to use. Then, we create a new array that we call nparray, which 
is a 2D array of size 5 x 5, full of zeros. The initialization method is the part after the 
"."; in this case, we initialize this array as full of zeros, by using the function zeros.
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In order to get access to the values in a list or array, you need to give the index of 
this value. For example, if you wanted to change the first element in the L3 list, you 
would have to get its index. In Python, indexes start at 0, so you would need to write 
L3[0]. In fact, you can write print(L3[0])and execute it, and you will see that, 
as you might hope, the number 3 will be displayed.

Accessing a single value in a multi-dimensional list/array requires you to input 
as many indexes as there are dimensions. For example, to get 0 from our L4 list, 
we would have to write L4[1][1]. L4[1] would return the entire second row, 
which is a list.

Exercise
Try to find the mean of all the numbers in the L4 list. There are multiple solutions.

Hint: The simplest solution makes use of the NumPy library. Check out some 
of its functions here: https://docs.scipy.org/doc/numpy/reference/

The solution is provided in the Chapter 03/Lists and Arrays/homework.py 
file on the GitHub page.

if statements and conditions
Now I would like to introduce you to a very useful tool in programming – 
if conditions!

They are widely used to check whether a statement is true or not. If the given 
statement is true, then some instructions for our code are followed.

I'll present this subject to you with some simple code that will tell us whether 
a number is positive, negative, or equal to 0. The code's very short, so I'll show 
you all of it at once:

a = 5
if a > 0:
    print('a is greater than 0')
elif a == 0:
    print('a is equal to 0')
else:
    print('a is lower than 0')

In the first line, we introduce a new variable called a and we give it a value of 5. 
This is the variable whose value we are going to check.
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In the next line we check if this variable is greater than 0. We do this by using an 
if condition. If a is greater than 0, then we follow the instructions written in the 
indented block; in this case, it is only displaying the message a is greater than 0.

Then, if the first condition fails, that is, if a is lower than or equal to 0, we go to the 
next condition, which is introduced with elif (which is short for else if). This 
statement will check whether a is equal to zero or not. If it is, we follow the indented 
instruction, which will display a message displaying: a is equal to 0.

The final condition is introduced via else. Instructions included in an else 
condition will always be followed when all other conditions fail. In this case, failing 
both conditions would mean that a < 0, and therefore we would display a is lower 
than 0.

It's easy to predict what our code will return. It will be the first instruction, 
print('a is greater than 0'). And, in fact, once you run this code, this is what 
you will get:

a is greater than 0

In brief, if is used to introduce statement checking and the first condition, elif is 
used to check as many further conditions as we want, and else is a true statement 
when all other statements fail.

It's also important to know that once one condition is true, no other conditions are 
checked. So, in this case, once we enter the first condition and we see that it is true, 
we no longer check other statements. If you would like to check other conditions, 
you would need to replace the elif and else statements with new if statements. 
A new if always checks a new condition; therefore, a condition included in an if is 
always checked.

Exercise
Build a condition that will check if a number is divisible by 3 or not.

Hint: You can use a mathematical expression called modulo, which when used, 
returns the remainder from the division between two numbers. In Python, modulo 
is represented by %. For example:

5 % 3 = 2

71 % 5 = 1

The solution is provided in the Chapter 03/If Statements/homework.py file on 
the GitHub page.
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for and while loops
You can think of a loop as continuously repeating the same instructions over and 
over until some condition is satisfied that breaks this loop. For example, the previous 
code was not a loop; since it was only executed once, we only checked a once.

There are two types of loops in Python:

• for loops
• while loops

for loops have a specific number of iterations. You can think of an iteration as 
a single execution of the specific instructions included in the for loop. The number 
of iterations tells the program how many times the instruction inside the loop should 
be performed.

So, how do you create a for loop? Simply, just like this:

for i in range(1, 20):
    print(i)

We initialize this loop by writing for to specify the type of loop. Then we create 
a variable i, that will be associated with integer values from range (1,20). This 
means that when we enter this loop for the first time, i will be equal to 1, the second 
time it will be equal to 2, and so on, all the way to 19. Why 19? That's because in 
Python, upper bounds are excluded, so at the final iteration i will be equal to 19. 
As for our instruction, in this case it's just showing the current i in our console 
by using the print() method. It's also important to understand that the main 
code does not progress until the for loop is finished.

This is what we get once we execute our code:

1

2

3

4

5

6

7

8

9

10

11
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12

13

14

15

16

17

18

19

You can see that our code displayed every integer higher than 0 and lower than 20.

You can also use a for loop to iterate through elements of a list, in the following 
way:

L3 = [3,4,1,6,7,5]
for element in L3:
    print(element)

Here we come back to our L3 1D list. This code iterates through every element in the 
L3 list and displays it. If you run it, you will see all the elements of this array from 3 
to 5.

while loops, on the other hand, need a condition to stop. They go on as long as 
the given condition is satisfied. Take this while loop, for example:

stop = False
i = 0
while stop == False:  # alternatively it can be "while not stop:"
    i += 1
    print(i)
    if i >= 19:
        stop = True

Here, we create a new variable called stop. This type of variable is called a bool, 
since it can be assigned only two values – True or False. Then, we create a variable 
called i that we'll use to count how many times our while loop is executed. Next, we 
create a while loop that will go on as long as the variable stop is False; only once 
stop is changed to True will the loop stop.

In the loop, we increase i by 1, display it, and check if it is greater or equal to 19. If it 
is greater or equal to 19, we change stop to True; and as soon as we change stop to 
True, the loop will break!

WOW! eBook 
www.wowebook.org



Python Fundamentals – Learn How to Code in Python

[ 26 ]

After executing this code, you will see the exact same output as in the for loop 
example, that is:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

It's also very important to know that you can stack for and while loops inside 
each other. For example, to display all the elements from the 2D list L4 we created 
previously, one after another, you would have to make one for loop that iterates 
through every row, and then another for loop (inside the previous one) that iterates 
through every value in this row. Something like this:

L4 = [[2, 9, -5], [-1, 0, 4], [3, 1, 2]]
for row in L4:
    for element in row:
        print(element)

And running this yields the following output:

2

9

-5

-1
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0

4

3

1

2

This matches the L4 list.

In conclusion, for and while loops let us perform repetitive tasks with ease. for 
loops always work on a predefined range; you know exactly when they will stop. 
while loops work on an undefined range; just by looking at their stop condition, 
you may not be able to judge how many iterations will happen. while loops work 
as long as their particular condition is satisfied.

Exercise
Build both for and while loops that can calculate the factorial of a positive integer 
variable.

Hint: Factorial is a mathematical function that returns the product of all positive 
integers lower or equal to the argument of this function. This is the equation:

f(n) = n * (n – 1) * (n – 2) *...* 1

Where:

• f(n) – the factorial function
• n – the integer in question, the factorial of which we are searching for

This function is represented by ! in mathematics, for example:

5! = 5 * 4 * 3 * 2 * 1 = 120

4! = 4 * 3 * 2 * 1 = 24

The solution is provided in the Chapter 03/For and While Loops/homework.py 
file on the GitHub page.

Functions
Functions are incredibly useful when you want to increase code readability. You can 
think of them as blocks of code outside the main flow of code. Functions are executed 
once they are called in the main code.
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You write a function like this:

def division(a, b):
    result = a / b
    return result

d = division(3, 5)
print(d)

The first three lines are a newly created function called division, and the last two 
lines are part of the main code.

You can create a function by writing def and then writing the function's name. After 
the name, you put brackets and within them write the arguments of the function; 
these are some variables that you will be able to use inside of your function and 
are a part of the connection between the main code and the function. In this case, 
our function takes two arguments: a and b.

Then, once we enter our function, what we do is calculate a divided by b and call this 
division result. Then, in the last line of our function, we say return so that when 
we call this function in code, it will return a value. In this case, the returned value 
is result.

Next, we go back to our main code and call our function. We do that by writing 
division and then in the brackets we input two numbers that we would like to 
divide. Remember, the division function returns a result of this division;  
therefore, we create a variable, d, that will hold this returned value. In the last 
line, we simply display d to see whether this code really works. If you run it, 
you'll get the output:

0.6

As you can confirm by hand, 3 divided by 5 is indeed 0.6; you can test it on other 
numbers as well.

In real-world code, functions can be much longer, and sometimes even call other 
functions. You will see them used a lot, even in the other chapters of this book. They 
also increase code readability, as you will see later; the code I've provided would be 
impossible to understand without functions.

Exercise
Build a function to calculate the distance between two points on an x,y plane: 
one with coordinates x1 and y1, and the other with coordinates x2 and y2.
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Hint: You can use the following formula: 

( ) ( )2 21 2 1 2distance x x y y= − + −

The solution is provided in the Chapter 03/Functions/homework.py file on the 
GitHub page.

Classes and objects
Classes, like functions, are another part of code that sits outside of the main code, 
executed only when called in the main flow of code. Objects are instances of a 
corresponding class, existing within the main flow of our code. To better understand 
it, think of a class as a plan of something, for example, a plan of a car. It contains 
information on how certain components look and work with each other. A class in 
Python is a general plan of something.

You can think of objects as real-life constructions based on the plan. For example, 
a real, working, and self-driving car would be an example of an object. You create 
a plan of a car (which is a class) and then you build a car based on this plan (which 
is an object). And of course, when you have a plan of something, you can create 
as many copies as you want; for example, you can run a production line to 
produce cars.

To give you more insight into classes, we will create a simple bot. We begin with 
writing a class, like this:

class Bot():
    
    def __init__(self, posx, posy):
        self.posx = posx
        self.posy = posy
    
    def move(self, speedx, speedy):
        self.posx += speedx
        self.posy += speedy

We write class to specify that we are creating a new class, which we name Bot. 
Then, a very important step is to write an __init__() method, which is a necessity 
when creating a class. This function is called automatically whenever an object of this 
class is created in the main flow of the code. 
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All functions in a class need to take self as one argument. So, what is self? This 
parameter specifies that this function and its variables, whose names are preceded by 
self, are a part of this class. We will be able to call the self variables once we have 
an object of this class. Our bot's __init__() method also takes two arguments, posx 
and posy, which will be the initial position of our bot.

We have also created a method that will move our bot, by increasing or decreasing 
its posx and posy. A method is a function tucked inside a class. You can think of it 
as an instruction on how something has to work when we have a plan. For example, 
going back to the example of a car, a method could define the way our engine or 
gearbox works.

Now, you can create an object of this class. Remember, this will be a real-life object, 
constructed on the basis of a plan (class). Before, the class was predefined and 
didn't work along with your code. After you create an object, the class becomes an 
integral part of your main code. We can achieve this by doing:

bot = Bot(3, 4)

This will create a new object of class Bot; we called this object bot. We also need 
to specify the two arguments that the __init__() method of class Bot takes, which 
are posx and posy. This isn't optional; when creating an object, you always have to 
specify all the arguments given in the __init__() method.

Now, in the main code, you can move the bot and display its new position, like this:

bot.move(2, -1)
print(bot.posx, bot.posy)

In the first line, we use the move method from our Bot class. As you can see in its 
definition, move takes two arguments. These two arguments specify, respectively, by 
how much we will increase posx and posy. Then we just display the new posx and 
posy. This is where self comes into action; if the variables posx and posy were not 
preceded by self in our Bot class, we wouldn't have access to them via the method. 
Running this code gives us this result:

5 3

As you can see from the result, our bot moved two units forward on the x axis and 
one unit backward on the y axis. Remember, posx was set to 3 initially and has now 
been increased by 2 using the move method from the Bot class; posy was set to 4 
initially and has now been decreased by 1, with the use of the same move method.

One great advantage of taking the time to code a Bot class is that now we are able 
to create as many bots as we want without making our code any longer. Simply 
put, objects are copies of a class and we can create as many of them as we want.
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In conclusion, you can think of a class as a collection of predefined instructions and 
closed in methods, and you can think of an object as an instance of this class that 
is accessible in our code and that runs along with it.

Exercise
Your final challenge will be to build a very simple car class. As arguments, a car 
object should take the maximum velocity at which the car can move (unit in m/s), as 
well as the acceleration at which the car is accelerating (unit in m/s2). I also challenge 
you to build a method that will calculate the time it will take for the car to accelerate 
from the current speed to the maximum speed, knowing the acceleration (use the 
current speed as the argument of this method).

Hint: To calculate the time required, you can use the following equation:

( )max currentV V
t

a
−

=

Where:

• t – time required to achieve the top speed
• maxV  – maximum speed
• currentV  – current speed
• a – acceleration

The solution is provided in the Chapter 03/Classes/homework.py file on the 
GitHub page.

Summary
In this chapter, we covered the Python fundamentals that you'll need to keep up 
with the code presented in this book, from sending a simple text display to the 
console to writing your very first class in Python. You've now got all the skills you 
need to continue on your AI journey; in Chapter 4, AI Foundation Techniques, we will 
begin to study the foundational techniques of AI.
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AI Foundation Techniques
In this chapter, you'll begin your study of AI theory in earnest. You'll start with an 
introduction to a major branch of AI, called Reinforcement Learning, and the five 
principles that underpin every Reinforcement Learning model. Those principles will 
give you the theoretical understanding to make sense of every forthcoming AI model 
in this book.

What is Reinforcement Learning?
When people refer to AI today, some of them think of Machine Learning, 
while others think of Reinforcement Learning. I fall into the second category. 
I always saw Machine Learning as statistical models that have the ability to learn 
some correlations, from which they make predictions without being explicitly 
programmed.

While this is, in some way, a form of AI, Machine Learning does not include the 
process of taking actions and interacting with an environment like we humans do. 
Indeed, as intelligent human beings, what we constantly keep doing is the following:

1. We observe some input, whether it's what we see with our eyes, what 
we hear with our ears, or what we remember in our memory.

2. These inputs are then processed in our brain.
3. Eventually, we make decisions and take actions.

This process of interacting with an environment is what we are trying to reproduce 
in terms of Artificial Intelligence. And to that extent, the branch of AI that works on 
this is Reinforcement Learning. This is the closest match to the way we think; the 
most advanced form of Artificial Intelligence, if we see AI as the science that tries to 
mimic (or surpass) human intelligence.
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Reinforcement Learning also has the most impressive results in business applications 
of AI. For example, Alibaba leveraged Reinforcement Learning to increase its ROI 
in online advertising by 240% without increasing their advertising budget (see 
https://arxiv.org/pdf/1802.09756.pdf, page 9, Table 1 last row (DCMAB)). 
We'll tackle the same industry application in this book!

The five principles of Reinforcement 
Learning
Let's begin building the first pillars of your intuition into how Reinforcement 
Learning works. These are the fundamental principles of Reinforcement Learning, 
which will get you started with the right, solid basics in AI.

Here are the five principles:

1. Principle #1: The input and output system
2. Principle #2: The reward
3. Principle #3: The AI environment
4. Principle #4: The Markov decision process
5. Principle #5: Training and inference

In the following sections, you can read about each one in turn.

Principle #1 – The input and output system
The first step is to understand that today, all AI models are based on the common 
principle of inputs and outputs. Every single form of Artificial Intelligence, including 
Machine Learning models, ChatBots, recommender systems, robots, and of course 
Reinforcement Learning models, will take something as input, and will return 
another thing as output.

Figure 1: The input and output system
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In Reinforcement Learning, these inputs and outputs have a specific name: the input 
is called the state, or input state. The output is the action performed by the AI. And 
in the middle, we have nothing other than a function that takes a state as input and 
returns an action as output. That function is called a policy. Remember the name, 
"policy," because you will often see it in AI literature.

As an example, consider a self-driving car. Try to imagine what the input and output 
would be in that case. 

The input would be what the embedded computer vision system sees, and the 
output would be the next move of the car: accelerate, slow down, turn left, turn 
right, or brake. Note that the output at any time (t) could very well be several actions 
performed at the same time. For instance, the self-driving car can accelerate while 
at the same time turning left. In the same way, the input at each time (t) can be 
composed of several elements: mainly the image observed by the computer vision 
system, but also some parameters of the car such as the current speed, the amount 
of gas remaining in the tank, and so on.

That's the very first important principle in Artificial Intelligence: it is an intelligent 
system (a policy) that takes some elements as input, does its magic in the middle, 
and returns some actions to perform as output. Remember that the inputs are also 
called the states.

The next important principle is the reward.

Principle #2 – The reward
Every AI has its performance measured by a reward system. There's nothing 
confusing about this; the reward is simply a metric that will tell the AI how well it 
does over time.

The simplest example is a binary reward: 0 or 1. Imagine an AI that has to guess 
an outcome. If the guess is right, the reward will be 1, and if the guess is wrong, 
the reward will be 0. This could very well be the reward system defined for an 
AI; it really can be as simple as that!
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A reward doesn't have to be binary, however. It can be continuous. Consider 
the famous game of Breakout:

Figure 2: The Breakout game

Imagine an AI playing this game. Try to work out what the reward would be 
in that case. It could simply be the score; more precisely, the score would be the 
accumulated reward over time in one game, and the rewards could be defined 
as the derivative of that score.

This is one of the many ways we could define a reward system for that game. 
Different AIs will have different reward structures; we will build five rewards 
systems for five different real-world applications in this book.

With that in mind, remember this as well: the ultimate goal of the AI will always 
be to maximize the accumulated reward over time.

Those are the first two basic, but fundamental, principles of Artificial Intelligence 
as it exists today; the input and output system, and the reward. The next thing 
to consider is the AI environment.

WOW! eBook 
www.wowebook.org



Chapter 4

[ 37 ]

Principle #3 – The AI environment
The third principle is what we call an "AI environment." It is a very simple 
framework where you define three things at each time (t):

• The input (the state)
• The output (the action)
• The reward (the performance metric)

For each and every single AI based on Reinforcement Learning that is built today, 
we always define an environment composed of the preceding elements. It is, 
however, important to understand that there are more than these three elements 
in a given AI environment.

For example, if you are building an AI to beat a car racing game, the environment 
will also contain the map and the gameplay of that game. Or, in the example of 
a self-driving car, the environment will also contain all the roads along which the 
AI is driving and the objects that surround those roads. But what you will always 
find in common when building any AI, are the three elements of state, action, and 
reward. The next principle, the Markov decision process, covers how they work 
in practice.

Principle #4 – The Markov decision process
The Markov decision process, or MDP, is simply a process that models how the 
AI interacts with the environment over time. The process starts at t = 0, and then, 
at each next iteration, meaning at t = 1, t = 2, … t = n units of time (where the unit 
can be anything, for example, 1 second), the AI follows the same format of transition:

1. The AI observes the current state, ts .
2. The AI performs the action, ta .
3. The AI receives the reward, ( ),t t tr R s a= .
4. The AI enters the following state, 𝑠𝑠𝑡𝑡+1 .

The goal of the AI is always the same in Reinforcement Learning: it is to maximize 
the accumulated rewards over time, that is, the sum of all the ( ),t t tr R s a=  received 
at each transition.
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The following graphic will help you visualize and remember an MDP better, 
the basis of Reinforcement Learning models:

Figure 3: The Markov decision process

Now four essential pillars are already shaping your intuition of AI. Adding 
a last important one completes the foundation of your understanding of AI. 
The last principle is training and inference; in training, the AI learns, and in 
inference, it predicts.

Principle #5 – Training and inference
The final principle you have to understand is the difference between training and 
inference. When building an AI, there is a time for the training mode, and a separate 
time for inference mode. I'll explain what that means starting with the training mode.

Training mode
Now you understand, from the three first principles, that the very first step of 
building an AI is to build an environment in which the input states, the output 
actions, and a system of rewards are clearly defined. From the fourth principle, 
you also understand that inside this environment we will build an AI to interact 
with it, trying to maximize the total reward accumulated over time.
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To put it simply, there will be a preliminary (and long) period of time during which 
the AI will be trained to do that. That period of time is called the training; we can 
also say that the AI is in training mode. During that time, the AI tries to accomplish 
a certain goal over and over again until it succeeds. After each attempt, the 
parameters of the AI model are modified in order to do better at the next attempt.

For example, let's say you're building a self-driving car and you want it to go from 
point A to point B. Let's also imagine that there are some obstacles that you want 
your self-driving car to avoid. Here is how the training process happens:

1. You choose an AI model, which can be Thompson Sampling (Chapters 5 and 
6), Q-learning (Chapters 7 and 8), deep Q-learning (Chapters 9, 10, and 11) 
or even deep convolutional Q-learning (Chapters 12 and 13).

2. You initialize the parameters of the model.
3. Your AI tries to go from A to B (by observing the states and performing its 

actions). During this first attempt, the closer it gets to B, the higher reward 
you give to the AI. If it fails reaching B or hits an obstacle, you give the AI 
a very bad reward. If it manages to reach B without hitting any obstacle, 
you give the AI an extremely good reward. It's just like you would train 
a dog to sit: you give the dog a treat or say "good boy" (positive reward) if 
the dog sits. And you give the dog whatever small punishment you need to 
if the dog disobeys (negative reward). That process is training, and it works 
the same way in Reinforcement Learning.

4. At the end of the attempt (also called an episode), you modify the parameters 
of the model in order to do better next time. The parameters are modified 
intelligently, either iteratively through equations (Q-Learning), or by using 
Machine Learning and Deep Learning techniques such as stochastic gradient 
descent or backpropagation. All these techniques will be covered in this 
book.

5. You repeat steps 3 and 4 again, and again, until you reach the desired 
performance; that is, until you have your fully non-dangerous autonomous 
car!

So, that's training. Now, how about inference?

Inference mode
Inference mode simply comes after your AI is fully trained and ready to perform 
well. It will simply consist of interacting with the environment by performing the 
actions to accomplish the goal the AI was trained to achieve before in training mode. 
In inference mode, no parameters are modified at the end of each episode. 

WOW! eBook 
www.wowebook.org



AI Foundation Techniques

[ 40 ]

For example, imagine you have an AI company that builds customized AI solutions 
for businesses, and one of your clients asked you to build an AI to optimize the flows 
in a smart grid. First, you'd enter an R&D phase during which you would train your 
AI to optimize these flows (training mode), and as soon as you reached a good level 
of performance, you'd deliver your AI to your client and go into production. Your AI 
would regulate the flows in the smart grid only by observing the current states of the 
grid and performing the actions it has been trained to do. That's inference mode.

Sometimes, the environment is subject to change, in which case you have to alternate 
fast between training and inference modes so that your AI can adapt to the new 
changes in the environment. An even better solution is to train your AI model 
every day, and go into inference mode with the most recently trained model.

That was the last fundamental principle common to every AI. Congratulations – 
now you already have a solid basic understanding of Artificial Intelligence! Since 
you have that, you are ready to tackle your very first AI model in the next chapter: 
a simple yet very powerful one, still widely used today in business and marketing, 
to solve a problem that has the delightful name of the multi-armed bandit problem.

Summary
In this chapter, you learned the five fundamental principles of Artificial Intelligence 
from a Reinforcement Learning perspective. Firstly, an AI is a system that takes an 
observation (values, images, or any data) as input, and returns an action to perform 
as output (principle #1). Then, there is a reward system that helps it measure its 
performance. The AI will learn through trial and error based on the reward it gets 
over time (principle #2). The input (state), the output (action), and the reward system 
define the AI environment (principle #3). The AI interacts with this environment 
through the Markov decision process (principle #4). Finally, in training mode, the 
AI learns how to maximize its total reward by updating its parameters through 
the iterations, and in inference mode, the AI simply performs its actions over full 
episodes without updating any of its parameters – that is to say, without learning 
(principle #5).

In the next chapter, you will learn about Thompson Sampling, a simple 
Reinforcement Learning model, and use it to solve the multi-armed bandit problem.
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Your First AI Model – 
Beware the Bandits!

In this chapter, you'll get to grips with your very first AI model! You're going to 
make a model that will solve the very well-known multi-armed bandit problem. 
This is a classic problem in AI, and it's also widely encountered in many real-world 
business problems.

The multi-armed bandit problem
Imagine you are in Las Vegas, in your favorite casino. You are in a room containing 
five slot machines. For each of them the game is the same: you bet a certain amount 
of money, say 1 dollar, you pull the arm, and then the machine will either take your 
money, or give you twice your money back. Remember the rewards we talked about 
in the previous chapter? Let's say that if the machine takes your money, your reward 
is -1, and if the machine returns you twice your money, your reward is +1.

As you can see, you're already starting to define an AI environment, which I'll 
remind you is absolutely fundamental when solving a problem with AI. So far, the 
AI isn't there, but it will come soon. You always start by defining the environment.

You've defined the rewards; you'll define the states (inputs) and actions (outputs) 
later. Now, still in the process of defining the environment, let's say that you know, 
somehow, that one of these machines has a higher probability of giving you a +1 
reward than the others when you pull its arm. It doesn't matter how you know this 
info, but it must be part of the problem assumptions. Rest assured, this assumption 
is always naturally verified in the real-world business problems mentioned above 
where the multi-armed bandit problem can be applied.
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Your goal, as in any AI environment, is to obtain the highest accumulated reward 
during your time of play. Let's say you are going to bet 1,000 dollars in total, 
meaning that you are going to bet 1 dollar, 1,000 times, each time by pulling the arm 
of any of these five slot machines. The question is:

What should be your strategy, so that after having played 1,000 times, you get the 
maximum amount of money to take home with you?

The first step of your strategy must be to figure out, in the minimum number of 
plays, which of these five slot machines has the highest chance of giving you a 1 
reward. In other words, you have to quickly figure out the slot machine with the 
highest success rate. Then, as soon as you figure it out, you simply need to keep 
playing on that most successful slot machine.

Finding the most successful slot machine is not hard; one simple strategy could be to 
play 100 times on each of these five slot machines and then, at the end, look at which 
of them gave you more money. Statistically, this gives you a good chance of finding 
that most generous slot machine.

All the challenge is in "quickly". The hardest part is to find the best slot machine 
in a minimum number of trials. This is where your first AI model comes into play.

The Thompson Sampling model
You're going to build this model straight away. Right now, you'll build a simple 
implementation of this method, and later you will be shown the theory behind it. 
Let's get right into it!

As we defined previously, our problem is trying to find the best slot machine with 
the highest winning chance out of many. A not-so-optimal solution would be to play 
100 rounds on each of our slot machines and see which one has the highest winning 
rate. A better solution is a method called Thompson Sampling.

I won't go too deeply into the theory behind it; we'll cover that later. For now, it is 
enough to say that Thompson Sampling uses a distribution function (distributions 
will be explained further in this chapter), called Beta, that takes two arguments. For 
simplicity's sake, let's say that the higher the first argument is, the better our slot 
machine is, and the higher the second argument is, the worse our slot machine is.

Therefore, we can define this function as:

𝑥𝑥 = 𝛽𝛽(𝑎𝑎, 𝑏𝑏) 
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where:

• x – a random choice from our Beta distribution
• β  – our Beta function
• a – the first argument
• b – the second argument

Don't worry if you don't understand this entirely quite yet; you'll read all about  
it later.

Coding the model
Let's start coding our solution. All this code is also available on the GitHub page 
of this book in the Chapter 05 folder. Here we go with the first code section:

# Importing the libraries
import numpy as np

You'll only need one library, called NumPy. This is a very useful library, helping 
when we are dealing with multi-dimensional arrays and lists in general. Give it the 
abbreviation np, which is the industry standard, so that it will be easier to use.

Now we have to understand something very important. You are creating a simulation 
whose aim is to simulate real-life situations. In reality, every slot machine gives us 
some chance of winning, and some machines have it higher than others. Therefore, 
when simulating this environment, you have to do the same thing. It is important 
to remember, however, that our AI will not know these predefined winning rates. 
It cannot just read them and judge, based on these rates, which machine is the best.

For this example, let's call this list of winning chances conversionRates.

# Setting conversion rates and the number of samples
conversionRates = [0.15, 0.04, 0.13, 0.11, 0.05]
N = 10000
d = len(conversionRates)

Here, you have five slot machines. They have some win chance; for example, slot 
machine no. 1 offers a 15% chance of a win. Then you create a number of samples, 
N. Remember, you are performing a simulation, so you need to have a predefined 
dataset that will tell you whether you won or not when you're playing. You also 
introduce a variable, d, which is the length of your conversion rates list; that is, the 
number of slot machines. It's useful to use short variable names like that, because the 
code would be longer and less readable otherwise.
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Do you have an idea of what you should do next? You are running a simulation, so 
you need to have a predefined set of wins and losses for every slot machine for every 
sample. I highly recommend that you try to do this on your own. You need to have 
a set that will tell you if at some timestep i you have won or not by playing a certain 
slot machine. The answer is in the next snippet of code.

# Creating the dataset
X = np.zeros((N, d))
for i in range(N):
    for j in range(d):
        if np.random.rand() < conversionRates[j]:
            X[i][j] = 1

In the first line, you create a 2d-array full of zeros, of size N * d. This means 
that you've created an array with N (in this case 10000) rows and d (in this case 
5) columns. Then, in a for loop, you iterate through every row in that 2d-array 
X. In a nested for loop, you iterate through each column in that row. In line 5 of 
the preceding code snippet, for each slot machine (each column), we check if a 
random float number from range (0,1) is smaller than the conversion rate for the 
corresponding slot machine.

That's just like playing the slot machine; since there is an equal chance of getting any 
float number from this range, the chances of getting a number smaller than x (where 
x is also in range (0,1)) is equal to x. For example, for d = 0.15, there are 15 instances 
out of 100 of getting a smaller float number than 0.15, and thus a 15% chance of 
returning a high reward for slot machine 1. In other words, if the random float is 
smaller, then that means you will win if you play this certain machine at this certain 
timestep.

To make sure you understand, if one of the N samples from your dataset X looks like 
this: [0, 1, 0, 0, 1], you would win at that point in time by playing slot machine 
no. 2 or no. 5.

Next, you need to create two arrays that will count how many times you have lost 
and won by playing each slot machine, like this:

# Making arrays to count our losses and wins
nPosReward = np.zeros(d)
nNegReward = np.zeros(d)
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Name them nPosReward (number of wins) and nNegReward (number of losses).

Now that you have made a simulation set and these two counters, you can start 
coding some Thompson Sampling. Keep in mind that the theory, as well as another 
example, will be covered later.

Next, initialize a for loop that will iterate through every sample in our dataset 
and choose the best slot machine. Initially, only create two variables, one called 
selected, which will tell you which slot machine was chosen, and maxRandom, 
which you will use to get the highest Beta distribution guess across all slot machines:

# Taking our best slot machine through beta distribution and updating 
its losses and wins
for i in range(N):
    selected = 0
    maxRandom = 0

So now you can get to the core of Thompson Sampling. You'll take random guesses 
from our Beta distribution and find the highest value across all your slot machines.

You can use a method taken from NumPy, called np.random.beta(a,b), that 
returns this random guess. Knowing that, try to find the highest guess and the best 
machine on your own! It is totally fine if you fail—we haven't covered the theory 
yet—and I will provide you with an answer. Good luck!

I hope you've given it a try. Whether it's worked out for you or not, here's my 
answer:

    for j in range(d):
        randomBeta = np.random.beta(nPosReward[j] + 1, nNegReward[j] + 
1)
        if randomBeta > maxRandom:
            maxRandom = randomBeta
            selected = j
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You haven't missed anything—this is all the code needed for this task. You create 
a for loop to iterate through every slot machine and find the best one. For each slot 
machine of index j (remember that you are still in the bigger for loop with index i), 
you take a random draw, called randomBeta, from our Beta distribution, and check if 
it is greater than maxRandom.

If it is, then you reassign maxRandom to be equal to randomBeta, and set selected 
to be equal to the index of this new highest-guess slot machine j. It is also worth 
mentioning what the a and b arguments of the Beta function are in this case; they're 
the number of wins and losses we've had on the specific slot machine. Remember, 
the bigger the first argument, the better, and the higher our random guess will be; 
the bigger the second argument, the worse, and the lower our random guess will be.

Now that you have selected the best slot machine, what do you think you should  
do next?

You have to update your nPosReward or nNegReward depending on whether you 
have won or not. We can do that with this code:

    if X[i][selected] == 1:
        nPosReward[selected] += 1
    else:
        nNegReward[selected] += 1

Here, you can see the use of the X array you created earlier. You check if you have 
won this round by checking if there's a 1 in the appropriate place in your X array. If 
you win, you update the index corresponding to the selected machine in nPosReward 
by adding 1. If you lose, however, you update nNegReward by adding 1 in the same 
index there. You can clearly see that if you win, next time, your random guess from 
the Beta distribution for that machine will be higher; and if you lose, it will be lower.

This code works already, although it is worth adding a few lines of code to display 
which slot machine your code considers the best:

# Showing which slot machine is considered the best
nSelected = nPosReward + nNegReward 
for i in range(d):
    print('Machine number ' + str(i + 1) + ' was selected ' + 
str(nSelected[i]) + ' times')
print('Conclusion: Best machine is machine number ' + str(np.
argmax(nSelected) + 1))

WOW! eBook 
www.wowebook.org



Chapter 5

[ 47 ]

Here, you simply display how many times each slot machine was chosen by your 
algorithm. To get these numbers you can add together the lists nPosReward and 
nNegReward. In the final line, you show which machine was chosen the highest 
number of times, making it the slot machine that is considered the best.

Now, you can just run your code and see the results:

Machine number 1 was selected 7927.0 times

Machine number 2 was selected 82.0 times

Machine number 3 was selected 1622.0 times

Machine number 4 was selected 306.0 times

Machine number 5 was selected 63.0 times

Conclusion: Best machine is machine number 1

As we can see, your algorithm quickly found out that machine no. 1 is the best. It did 
it in around 2,000 rounds (2,000 samples in your X set).

Understanding the model
Thompson Sampling is, by far, the best model for this kind of problem; at the end of 
this chapter, you will see a comparison with another method. Here's how it works its 
magic. The first thing we do, when finding the best slot machine, is obviously to play 
the arm of each of the five slot machines one by one. So here we go:

Round 1: We play the arm of slot machine number 1. Let's say we get reward 0.

Round 2: We play the arm of slot machine number 2. Let's say we get reward 1.

Round 3: We play the arm of slot machine number 3. Let's say we get reward 0.

Round 4: We play the arm of slot machine number 4. Let's say we get reward 0.

Round 5: We play the arm of slot machine number 5. Let's say we get reward 1.

Now, why do you think we had to do this? We only did that to collect some starting 
information from each of the slot machines. This information will be needed in 
future rounds.

Now, things start to get interesting. What are we going to do at round 6? Which arm 
are we going to play?
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Well, we need to look back at what happened during the first five rounds. For each 
slot machine, we introduce two new variables, one that counts the number of times 
the slot machine returned a 0 reward, and another one that counts the number of 
times the slot machine returned a 1 reward.

Let's denote these variables as ( )0
iN n  and ( )1

iN n , where ( )0
iN n  is the number of times 

slot machine number i returned reward 0 up to round n, and ( )1
iN n  is the number of 

times slot machine number i returned reward 1 up to round n. These two variables 
are denoted by nNegReward and nPosReward in our code. So, based on what we've 
obtained so far at round 5, let's give some values examples of these variables:

( )0
1 1 1N =  means that slot machine 1 has returned 1 loss over 1 round.

( )1
1 1 0N =  means that slot machine 1 has returned 0 wins over 1 round.

( )0
2 1 0N =  means that slot machine 2 has returned 0 losses over 1 round.

( )1
2 1 1N =  means that slot machine 2 has returned 1 win over 1 round.

( )0
5 4 0N =  means that slot machine 5 has returned 0 losses over 4 rounds.

( )1
5 4 0N =  means that slot machine 5 has returned 0 wins over 4 rounds.

( )0
5 5 0N =  means that slot machine 5 has returned 0 losses over 5 rounds.

( )1
5 5 1N =  means that slot machine 5 has returned 1 win over 5 rounds.

Alright, that was the easy part. The good news is that we've created all the variables 
we needed for our AI. The bad news is that now comes the hard part, the math. If 
you think math is good news, I like your spirit; but don't worry if you don't like 
math, I won't let you down.

What is a distribution?
The next step of our AI journey is to introduce distributions in mathematics. For 
this, I'll give you a simple definition with my own words, not the very formal ones 
you find in math books. I want to make sure everybody understands. Here it is: the 
distribution of a variable is a function that will give, for each value in the possible 
range of values the variable could take, the probability that this variable is equal to 
that value.
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Let's really understand what it is through an example:

Figure 1: The normal distribution

In the preceding graph, you can see an example of a distribution. Now, remember 
in the definition I gave you, I mentioned two measures: "range of values the variable 
could take", and "probability that this variable is equal to that value". In any 
distribution, on the x-axis you have the range of values the variable could take, and 
on the y-axis you have the probability that the variable is equal to each value.

Don't worry if this isn't clear yet. To extend our example, let's say that on the 
preceding graph, this variable is the annual salary people have in a specific country.

On the x-axis, we would have the range of annual salaries from the minimum wage 
to the maximum wage, let's say from 15,000 dollars to 150,000 dollars. And on the 
y-axis, we would have the probabilities that a person would have that salary.

Now it should make more sense. For the low salaries, the curve is low, meaning that 
the probability that an individual earns a salary of around 15,000 dollars is low.

Then, up to the center of the x-axis, marked as µ, which is the average of the salaries, 
the probabilities of people's salaries increase. Let's say that µ is equal to 45,000 
dollars. We intuitively understand that the probability that an individual in a specific 
country earns 45,000 dollars per year is the highest, simply because the majority of 
people earn something in the region of 45,000 dollars per year. And that's exactly 
why the distribution in the graph is the highest at this salary.
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The higher we go above an annual salary of 45,000 dollars, the fewer people we'll 
find earning such salaries, and therefore the probability of people earning such 
salaries will decrease, until we go beyond an annual salary of 150,000 dollars, where 
very few people earn that much, therefore leading to a close-to-zero probability.

Alright, that was the distribution explained intuitively. Now, you have to know 
that there are many types of distributions: Gaussian distributions (that look like 
the preceding graph), normal distributions (Gaussian distribution of mean 0 and 
variance 1), Beta distributions, and many more.

That's the next step: Beta distributions. The Beta distribution is at the heart of the 
AI we built to solve our bandit problem. Here are what Beta distributions look like:

Figure 2: Three Beta distributions

Let's do some practice to make sure you understand how distributions work. 
Imagine these three distributions correspond to three different countries, and again 
let's say that they are the distributions of salaries in these countries. Which country 
has the highest salaries? Is it the purple one, the green one, or the yellow one? 
The answer is the yellow one, of course! It is in this country that we have positive 
probabilities for the highest salaries (remember, the salaries are on the x-axis, and the 
probabilities are on the y-axis).

That was just a quick test to make sure you were with me. Now, you don't have to 
remember the exact formula of a Beta distribution, but you do have to know that it 
has two parameters and how they impact the distribution. Don't forget that this was 
already mentioned when we solved the problem in practice, now it is explained in 
much more detail.

If we denote these two parameters as a and b again, we can denote the Beta 
distribution with the following:

𝑦𝑦 = 𝛽𝛽(𝑥𝑥, 𝑎𝑎, 𝑏𝑏) 
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You might be asking what just happened—Why did x appear? Don't worry, we 
will demystify all this. In the formula above, y is the probability, β  is a function of x 
only, x is the salary, and ,a b are the two parameters present in any Beta distribution. 
Again, you don't have to know the exact definition of the function β , but just keep in 
mind the shape of its curve as given in the preceding graph.

However, what is really important for you to understand now is the role of the two 
parameters a and b. Following are the two points that you must know and visualize 
in your head:

1. Given two Beta distributions with the same parameter b, the one having 
a larger parameter a will be shifted more to the right.

2. Given two Beta distributions with the same parameter a, the one having 
a larger parameter b will be shifted more to the left.

That's it! That's enough to have an intuitive understanding of how our AI will solve 
the Bandit problem. In other words, the larger the parameter a, the more it will shift 
the Beta distribution to the right, and the larger the parameter b, the more it will shift 
the Beta distribution to the left.

Let's practice this! If I give you the following three Beta distributions:

1. ( )1,5β

2. ( )5,1β

3. ( )3,3β

Could you tell me which of the three Beta distributions in the following graph they 
would approximately look like?

Figure 3: Three Beta distributions

Based on the two statements above, ( )1,5β  is the purple one, ( )5,1β  is the yellow one, 
and ( )3,3β  is the green one. Congratulations to you if you guessed that right!

Now you are ready to solve our bandit problem. But let me ask you a question first, 
which might lead you to understand the magic faster than this book:
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If, instead of the salaries in a country, the x-axis contained the success rates of the 
machines in the casino, and if each of the three Beta distributions represented one 
particular slot machine, which one would you choose to bet your 1,000 dollars?

You would choose the yellow one!

Of course! This distribution has positive probabilities for the highest conversion 
rates, since it is the one most shifted to the right.

This was already discussed in the previous code section of this chapter; I told you 
there that the higher the first parameter, the better the slot machine. Indeed, the Beta 
distribution will be shifted more to the right, meaning that this slot machine has a 
higher chance of giving us a win. Additionally, the higher the second parameter, the 
worse the slot machine is and now, the Beta distribution will be shifted to the left, 
meaning that this machine has a lower chance of us winning.

And now another question, before we solve our bandit problem. Remembering that 
you have five slot machines to play with, try to answer this question: if the five slot 
machines are associated with the following five Beta distributions of success rates:

( )1,3β , ( )1,5β , ( )3,3β , ( )5,3β , and ( )5,1β ,

Which one would you pick to bet your 1,000 dollars?

The answer is ( )5,1β !

Of course, again! Because it is the one with the largest parameter a and the lowest 
parameter b, therefore the most shifted to the right, and hence the one having the 
positive probabilities for the highest conversion rates.

If you are still with me, you are definitely ready to understand the AI magic. If not, 
please read through this section again. In the next section, I will finally reveal what 
happens next after Round 5.

Tackling the MABP
What we are going to do from now on before playing each round is to associate each 
slot machine with a specific Beta distribution. At each round n, the slot machine 
number i (i=1,2,3,4,5) will be associated with the following Beta distribution:

( ) ( )( )1 01, 1i iN n N nβ + +
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Here, you should recall the following:

• ( )1
iN n  is the number of times the slot machine number i returned a 1 reward 

up to round n.
• ( )0

iN n  is the number of times the slot machine number i returned a 0 reward 
up to round n.

Remember, in the Beta distribution ( ),a bβ , the higher the parameter a, the more that 
shifts the distribution to the right. The higher the parameter b, the more that shifts 
the distribution to the left. Therefore, since at each round n and for each slot machine, 
the parameter a is the number of times (plus 1) it returned 1 up to round n, 
and the parameter b is the number of times (plus 1) it returned 0 up to round n, then 
that means the following: the more the slot machine returns 1 (success), the more 
its distribution will be shifted to the right; and the more the slot machine returns 0 
(failure), the more its distribution will be shifted to the left.

Congratulations if you figured out what a and b should be on your own. We already 
used them in the practical tutorial above; we had two arrays, nPosReward and 
nNegReward, that correspond to ( )1

iN n  and ( )0
iN n  respectively.

Once you understand this, try to figure out the strategy before I give you the 
solution.

Alright, you are about to see the magic. What we are going to do, before playing 
the arm at each round, is take a random draw from each of the five distributions 
corresponding to the five slot machines. In case you're not clear what that means, I'll 
explain. Let me show you again the graph of the three Beta distributions:

Figure 4: Three Beta distributions

What did I mean by taking a random draw? First, remember that for our bandit 
problem, on the x-axis, we have the success rates from 0 to 1. For example, x = 0.25 
means that the machine returns a 1 reward (success) 25% of the time. Then, on the 
y-axis, we still have the probabilities to have these success rates.
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Let's focus on one distribution, for example, the purple one. What would it mean to 
take a random draw from that distribution? That would mean very simply that we 
randomly pick a value on the x-axis where the distribution is positive, such that the x 
values where the probability is the highest will get the highest chance to be picked. 
For example, let's say the top of the purple curve corresponds to x = 0.2 and  
y = 0.35.

Then, taking a random draw from that purple distribution means that we will have 
a 35% chance to pick a success rate of 20%. To generalize this, let's say that ( )purpley xβ=  
is the function associated with the purple distribution, so taking a random draw 
from that purple distribution means that for each success rate x on the x-axis, we 
will have ( )purple xβ  chance of picking x. That is what "to take a random draw from a 
distribution" means, and this is also called "to sample a distribution".

Now that you understand this, let's see where we left off. We said that before playing 
the arm at each round, we were going to take a random draw from each of the five 
distributions corresponding to the five slot machines. We thus obtain five values 
on the x-axis, each one corresponding to each of the five slot machines. Then, here 
comes the crucial question, the one that will tell whether you have the right intuition 
about the strategy.

According to you, which slot machine are you going to play, based on the 
observation of these five values? I really want you to take some time to answer this 
question, because right now, we are at the heart of the strategy (you can also have a 
look at our previously written code). The answer can be found in the next paragraph.

I really hope you tried figuring this out by yourself: the slot machine that you are 
going to play next is the one for which we got the highest of the five random draws. 
Why? Because the highest random draws correspond to the highest success rate, and 
for this highest success rate, the Beta distribution associated with the slot machine 
picked has positive probabilities around that highest success rate.

Since we want to maximize the success rate of the machines we play (because we 
want to make money), we must pick the slot machine for which the Beta distribution 
has positive probabilities around the highest success rates. In the following graph, 
that's the yellow distribution.
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Figure 5: Three Beta distributions

Now, we must take a step back. I've been in your situation many times when I am 
learning something new and technical, which sometimes felt overwhelming. In that 
case, the best move is to take a step back, which is exactly what we are going to do 
now by giving a recap of the strategy and its intuition.

The Thompson Sampling strategy in three 
steps
After we play each of the five slot machines over the first five rounds, here's what the 
AI will do at each round n:

1. For each slot machine i (i=1,2,3,4,5), we take a random draw ( )i nθ  from its 
Beta distribution:
( ) ( ) ( )( )1 01, 1i i in N n N nθ β + +∼

where:
( )1

iN n  is the number of times the slot machine number i returned a 1 reward 
up to round n.

( )0
iN n  is the number of times the slot machine number i returned a 0 reward 

up to round n.

2. We pull the arm of the slot machine ( )s n  that has the highest sampled ( )i nθ :
𝑠𝑠(𝑛𝑛) = argmax

𝑖𝑖=1,2,3,4,5
(𝜃𝜃𝑖𝑖(𝑛𝑛)) 

3. We don't forget to update ( ) ( )1
s nN n  or ( ) ( )0

s nN n :

If the played slot machine ( )s n  returned a 1 reward:

( ) ( ) ( ) ( )1 1: 1s n s nN n N n= +

If the played slot machine ( )s n  returned a 0 reward:

( ) ( ) ( ) ( )0 0: 1s n s nN n N n= +
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Then, we repeat these three steps at each round until we spend our 1,000 dollars. 
This strategy, called Thompson Sampling, is a basic but powerful model of a specific 
branch of AI, called Reinforcement Learning.

The final touch of shaping your Thompson 
Sampling  
intuition
Your intuition about why and how this works should be as follows (try to keep it in 
mind or visualize it on the graphic):

Each slot machine has its own Beta distribution. Over the rounds, the Beta 
distribution of the slot machine with the highest conversion rate will be 
progressively shifted to the right, and the Beta distributions of the strategies with 
lower conversion rates will be progressively shifted to the left (Steps 1 and 3). 
Therefore, because of Step 2, the slot machine with the highest conversion rate will 
be selected more and more.

And voilà! Congratulations—you just learned about a powerful AI model, a massive 
step in your journey. To see Thompson Sampling in action and check that it indeed 
works, I won't force you to go to a casino and try it out; We'll apply it to another real-
life model in Chapter 6, AI for Sales and Advertising – Sell like the Wolf of AI Street. 

Finally, let me finish this theory tutorial with a question for you. Remember earlier 
in the book I told you that any AI we build today takes as input a state, returns 
as output an action to play, and, after playing the action, gets a reward (positive 
or negative). For this particular bandit problem, what are the input states, the 
actions played, and the rewards received? Think about this before reading the 
next paragraph.

Here we go with the answer:

• The input state is the exact round we've reached, including the information 
of the two parameters ( ) ( )1

s nN n  and ( ) ( )0
s nN n .

• The output action is the arm we pull from the selected slot machine.
• The reward is 1 or 0, 1 if the slot machine returns twice our dollar invested, 

and 0 if we lose our dollar.
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Congratulations to you if you answered that one correctly, and for tackling this 
first AI model, Thompson Sampling. And don't forget, in Chapter 6, AI for Sales and 
Advertising – Sell like the Wolf of AI Street, we put this into practice to solve a real-
world business problem.

Thompson Sampling against the standard 
model
When I learned Thompson Sampling for the first time, I had one main question in 
my mind: is it really that good? In fact, if you were to run the standard model (by 
"standard model" I mean playing every slot machine a certain number of times) and 
Thompson Sampling separately you might not see much difference; you would likely 
come to the conclusion that they work pretty much as well as each other.

To check whether it is true that Thompson Sampling isn't any better, I implemented 
a code to test both solutions on many different scenarios. The changes included: 
number of samples (200 or 1,000 or 5,000), number of slot machines (from 3 to 20), and 
conversion rate ranges (ranges in which conversion rates could be set: 0-0.1; 0-0.3; 0-0.5).

Every scenario was tested 100 times to compute the accuracy of each model.

The results and the code used are provided in the resultsModified.xlsx and 
comparison.py files, respectively, in Chapter 05 of this book's GitHub page. Here, 
you can see some graphs taken from this Excel file that show the performance of both 
models:

Figure 6: Accuracy vs. Number of slot machines (200 samples)
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This first graph in Figure 6 illustrates the accuracy of both models depending on the 
number of slot machines. The number of samples was set to 200 and the conversion 
rate ranges were set to 0-0.1, meaning that the differences between these rates were 
minor. This is the toughest setting for this comparison. Overall, Thompson Sampling 
performed better than the standard model (22% better).

Figure 7: Accuracy vs. Number of slot machines (5,000 samples)

This second graph in Figure 7 shows the performance under the easiest conditions. 
The number of samples was set to 5,000 and the conversion rate ranges were set to 
0-0.5, meaning that the differences were clearly visible. The overall drop of accuracy 
for Thompson Sampling is smaller than the drop in accuracy for the standard 
solution. Thompson Sampling performed significantly better this time (41% better).

Taking all scenarios into consideration, Thompson Sampling achieved a mean 
accuracy of 57% and the standard model achieved 43% accuracy. This is a significant 
difference taking into account the fact that very tough scenarios were tested (for 
example, only 200 samples, a range of 0-0.1, and 20 slot machines).

Summary
Thompson Sampling is a powerful sampling technique that enables you to quickly 
figure out the highest of a number of unknown conversion rates. It is always applied 
in the same frame, called the multi-armed bandit problem, which in the classic sense 
is composed of several slot machines, each one having a different conversion rate of 
positive outcomes. We had a first glance at how this AI solves this problem better 
and faster than standard methods.

In the next chapter, we will perform a full practical activity where we will see 
how the multi-armed bandit frame can easily model a business problem—online 
advertising—and how Thompson Sampling can bring significant added value.

WOW! eBook 
www.wowebook.org



[ 59 ]

AI for Sales and Advertising – 
Sell like the Wolf of AI Street

Now it's time to put your new skills into practice, start coding, and shape up your AI 
skills! You've learned all about Thompson Sampling, and now it's time to implement 
this AI model to solve a real-world problem, maximizing the sales of an e-commerce 
business.

In this practical exercise, you'll really take action and build the AI yourself to solve 
the problem. It's really important that you stay active in this chapter, because this is 
where you will have the chance to learn by doing, which is the most effective way 
to learn something; practice truly makes perfect. In other words, I want you to be 
the hero of this AI adventure. You, and not me. Ready?

Problem to solve
Imagine an e-commerce business that has millions of customers. These customers 
are people buying products on the website from time to time, getting those products 
delivered to their homes. The business is doing well, but the board of executives has 
decided to follow an action plan to maximize revenue.

This plan consists of offering the customers the option to subscribe to a premium 
plan, which will give them benefits like reduced prices, special deals, and so on. This 
premium plan is offered at a yearly price of $200, and the goal of this e-commerce 
business is, of course, to get the maximum number of customers to subscribe to this 
premium plan. Let's do some quick math to give us some motivation for building an 
AI to maximize the revenue of this business.
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Let's say that this e-commerce business has 100 million customers. Now consider 
two strategies to convert the customers to the premium plan: a bad one, with a 
conversion rate of 1%, and a good one, with a conversion rate of 11%. If the business 
deploys the bad strategy, in one year it will make a total of: 100,000,000 × 0.01 × 200 = 
$200,000,000 in extra revenue from the premium plan subscriptions.

On the other hand, if the business deploys the good strategy, in one year it will 
make a total of: 100,000,000 × 0.11 × 200 = $2,200,000,000 in extra revenue from the 
premium plan subscriptions. By figuring out the best strategy to deploy, the business 
maximizes its revenue by making 2 billion extra dollars.

In this Utopian example, we only had two strategies, and besides, we knew their 
conversion rates. In our case study, we will be facing nine different strategies. Our 
AI will have no idea of which is the best one, and absolutely no prior information 
on any of their conversion rates.

We will, however, make the assumption that each of these nine strategies does have 
a fixed conversion rate. These strategies were carefully and smartly elaborated by the 
marketing team, and each of them has the same goal: convert the maximum number 
of clients to the premium plan. However, these nine strategies are all different. They 
have different forms, different packages, different ads, and different special deals to 
convince and persuade the clients to subscribe to the premium plan. Of course, the 
marketing team has no idea of which of these nine strategies will turn out to be the 
best one. Let's sum up the differences in features of these nine strategies:

Figure 1: The nine strategies – Which one sells best?
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The marketing team wants to figure out which strategy has the highest conversion 
rate as soon as possible, and by spending the minimum amount. They know that 
finding and deploying the best strategy can significantly increase the business's 
revenue. The marketing experts have also chosen not to send an email directly to 
their 100 million customers, because that would be costly and would risk spamming 
too many customers. Instead, they will subtly look for that best strategy through 
online learning. What is online learning? It consists of deploying a different strategy 
each time a customer browses the e-commerce website.

As the customer navigates the website, they will suddenly get a pop-up ad, suggesting 
to them that they subscribe to the premium plan. For each customer browsing the 
website, only one of the nine strategies will be displayed. Then the user will choose, 
or not, to take action and subscribe to the premium plan. If the customer subscribes, 
the strategy is a success; otherwise, it is a failure. The more customers we do this with, 
the more feedback we collect, and the better idea we get of what the best strategy is.

But of course, we will not figure this out manually, visually, or with some simple 
math. Instead we want to implement the smartest algorithm that will figure out 
what the best strategy is in the shortest time. That's for the same two reasons: firstly, 
because deploying each strategy has a cost (for example, coming from the pop-up 
ad); and secondly, because the company wants to annoy the fewest customers with 
their ad.

Building the environment inside 
a simulation
This section is quite special, because there's something crucial to understand which 
is not obvious at first sight. The reason for this warning is my experience in teaching 
this subject; many of my students had issues understanding why we have to do 
a simulation here, for this whole problem.

It was the same for me when I started! If you already understand why we have to 
make a simulation, that's great—it means you already have online learning under 
your skin. If not, follow me here and let me explain carefully.

To understand, let's start by explaining what would happen in real life: you 
would simply display the "call to action" pop-up ad of one of the nine strategies to 
customers who are navigating the website, and you'd do this one customer at a time. 
You'd have to do it one customer at a time, customer after customer, because for each 
customer you need to collect their response: whether or not the customer subscribes 
to the premium plan. If the customer does, the reward is 1. If not, the reward is 0. It 
would go like this:
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Round 1: We display Ad 1 of Strategy 1 to a customer, Customer 1, and we check to 
see if the customer chooses to subscribe. If yes, we get a 1 reward, if no, we get a 0 
reward. After collecting our reward, we move on to the next customer (next round).

Round 2: We display Ad 2 of Strategy 2 to a new customer, Customer 2, and we check 
to see if the customer chooses to subscribe. If yes, we get a 1 reward, if no, we get a 0 
reward. After collecting our reward, we move on to the next customer (next round).

… 

Round 9: We display Ad 9 of Strategy 9 to a new customer, Customer 9, and we check 
to see if the customer chooses to subscribe. If yes, we get a 1 reward, if no, we get a 0 
reward. After collecting our reward, we move on to the next customer (next round).

Round 10: We finally start activating Thompson Sampling! We use the Thompson 
Sampling AI to tell us which ad has the strongest magic touch to convert the 
maximum customers to subscribe to the premium plan. We want that extra revenue! 
The AI (powered by Thompson Sampling) selects one of the 9 ads to display to a new 
customer, Customer 10, and then checks to see if the customer chooses to subscribe. 
If yes, we get a 1 reward, if no, we get a 0 reward. After collecting our reward, we 
move on to the next customer (next round).

Round 11: The AI (powered by Thompson Sampling) selects one of the 9 ads to 
display to a new customer, say Customer 11, and then checks to see if the customer 
chooses to subscribe. If yes, we get a 1 reward, if no, we get a 0 reward. After 
collecting our reward, we move on to the next customer (next round).

OK, I'll stop! You get the idea. That continues on and on for hundreds of rounds, or 
at least until the AI has found the best ad—the one with the highest conversion rate.

This is what would happen in real life. We don't need anything else at each round; 
if you look at the Thompson Sampling algorithm, at each round it only needs the 
number of times each ad has received a 1 reward in the previous rounds, and the 
number of times each ad has received a 0 reward in the previous rounds. In conclusion, 
and this is a very important conclusion: Thompson Sampling absolutely does not need 
to know the conversion rates of the ads in order to figure out the best ad.

However, in order to simulate this application, we will need to attribute a conversion 
rate to each of these ads. That's for the simple reason that if we don't do this, we will 
never be able to verify that Thompson Sampling indeed found the best ad. This is 
just to check that the AI works!
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What we will do is attribute a different conversion rate to each of the nine strategies. 
The purpose of this simulation will only be to check that the AI manages to catch 
the best ad, with the highest conversion rate. Let me rephrase this as two essential 
points:

1. Thompson Sampling at no time needs to know the conversion rates in order 
to figure out the highest one.

2. The only reason we know the conversion rates in advance is because we are 
doing a simulation, just to check that Thompson Sampling actually manages 
to figure out the ad that has the highest conversion rate.

Now we've got that covered, let's finally set these conversion rates. We will assume 
the nine strategies have the following conversion rates:

Figure 2: Conversion rates of the 9 strategies

Now, we behind the scenes know in advance which strategy has the highest 
conversion rate: Strategy number 7. However, Thompson Sampling doesn't 
know it. If you pay attention, you can see the fact that at no time does Thompson 
Sampling use the conversion rates when running its algorithm over the rounds. It 
only knows the number of successes (subscriptions) and failures (no subscriptions) 
that have been accumulated over the previous rounds. You can see that most clearly 
in the code.
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Lastly, please make sure to keep in mind that in a real-life situation we would 
have no idea of what these conversion rates might be. We only know them here for 
simulation purposes, so that we can check in the end that our AI has managed to 
figure out the best strategy—which in our simulation here is Strategy 7.

The next question is: how exactly are we going to run that simulation?

Running the simulation
First, let's recap the different components of the environment (state, action,  
and reward):

1. The state is simply a specific customer onto whom we deploy a strategy and 
show them the ad of that strategy.

2. The action is the strategy selected to be deployed on the customer.
3. The reward is 1 if the customer subscribes to the premium plan, and 0 

otherwise.

Then, let's say that this e-commerce business wants to run the experiment of figuring 
out the best strategy on 10,000 customers. Why the choice of 10,000? Because 
statistically, this is a large enough sample size to represent the whole base of 
customers. So, how are we going to simulate the response of 10,000 customers, based 
on the conversion rates of the ads established before? We don't have a choice other 
than to take a spreadsheet like Excel, or Google Sheets, and simulate how the 10,000 
customers would respond to each of the 9 ads. Here's how we are going to do this; 
it's a pretty nice trick.

We are going to create a matrix of 10,000 rows and 9 columns. Each row will 
correspond to a specific customer, and each column will correspond to a specific 
strategy. To be clear, let's say that:

Row 1 corresponds to Customer 1.

Row 2 corresponds to Customer 2.

…

Row 10000 corresponds to Customer 10000.

Column 1 corresponds to Strategy 1.

Column 2 corresponds to Strategy 2.

…

Column 9 corresponds to Strategy 9.
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In the cells of this matrix, we'll place a reward of 1 or 0 depending on whether each 
of these 10,000 customers would respond positively (subscription) or negatively (no 
subscription) to each of the 9 strategies. Here's where the "pretty nice trick" comes 
into play. In order to simulate the response of these 10,000 customers to the 9 ads 
while considering the conversion rates of these ads, here is what we do:

For each customer (row) and for each strategy (column), we draw a random number 
between 0 and 1. If this random number is lower than the conversion rate of the 
strategy, the reward is 1. If this random number is higher than the conversion rate 
of the strategy, the reward is 0. Why does that work? Because by doing so, we will 
always have a p% chance of getting a 1, where p is the conversion rate of the strategy 
deployed to that customer.

For example, let's take Strategy 4, which has a conversion rate of 0.16. For each of the 
customers, we draw a random number between 0 and 1. That random number has 
a 16% chance of being between 0 and 0.16, and a (100 – 16) = 84% chance of being 
between 0.16 and 1. Therefore, since we get a 1 when our random number is between 
0 and 0.16, and we get a 0 when our random number is between 0.16 and 1, then that 
means we have a 16% chance of getting a 1, and an 84% chance of getting a zero.

That simulates exactly the fact that when Strategy 4 is deployed on a customer, that 
same customer will have a 16% chance of subscribing to the premium plan; that 
exactly corresponds to getting a 1 reward.

I hope you like the trick. It's pretty classic, but it's used very often in AI; it's 
important for you to know about it. We apply that trick to each of the 10,000 x 9 pairs 
of (customer, strategy) and we get the following matrix (this image only shows the 
first 10 rows):

Figure 3: Simulated matrix of rewards
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Let's go through the three first rows in detail:

1. The first customer (row of index 0) would not subscribe to the premium plan 
after being approached by any strategy.

2. The second customer (row of index 1) would subscribe to the premium plan 
after being approached by Strategy 5 or Strategy 7 only.

3. The third customer (row of index 2) would not subscribe to the premium 
plan after being approached by any strategy.

We can already see in this preview that our little trick works; the ads with the 
lowest conversion rates (Strategies 1, 6, and 9) have only 0 rewards for the 11 first 
customers, while the ads with the highest conversion rates (Strategies 4 and 7) have 
some 1 rewards already. Note that the indexes here in this Python table start at 0; it's 
always like that in Python, and unfortunately there is nothing we can do about it. 
Don't worry, though, you'll get used to it!

If you're a code lover, the code that generated this simulation is presented a little 
further along in the chapter.

Our next step is to take a step back and recap.

Recap
We're ready to simulate the actions of Thompson Sampling on 10,000 customers 
successively being approached by one of the 9 strategies, thanks to the preceding 
matrix, which will exactly simulate the decision of the customer to subscribe or not 
to the premium plan.

If the cell corresponding to a specific customer and a specific selected strategy has 
a 1, that simulates a conversion by the customer to the premium plan. If the cell 
has a 0, that simulates a rejection. Thompson Sampling will collect the feedback 
of whether or not each of these customers subscribes to the premium plan, one 
customer after the other. Then, thanks to its powerful algorithm, it will quickly 
figure out the strategy with the highest conversion rate.

That strategy is the best one to be deployed on millions of customers, maximizing the 
company's income from this new revenue stream.

AI solution and intuition refresher
Before you enjoy seeing your AI in action, let's refresh our memories and adapt the 
whole Thompson Sampling AI model to this new problem.
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By the way, if you don't like this e-commerce business application, feel totally free 
to imagine yourself back into the casino, surrounded by nine slot machines having 
the same conversion rates as the ones given to our strategies. It's exactly the same 
scenario; the 9 strategies could very well be nine slot machines giving with the same 
conversion rates either a 1 reward (making you money) or a 0 reward (taking your 
money). Your goal would be to figure out as quickly as possible which slot machine 
has the highest chance of giving you the jackpot! It's up to you. Feel free to either go 
for Vegas or the AI Street, but as far as this chapter is concerned, I'll stick with our 
e-commerce business.

For starters, let's remind ourselves that each time we show an ad to a new customer, 
that's considered a new round, n, and we select one of our 9 strategies to attempt 
a conversion (subscription to the premium plan). The goal is to figure out the best 
strategy (associated with the ad with the highest conversion rate) in the lowest 
number of rounds. Here's how Thompson Sampling does that:

AI solution
For each round n over 10,000 rounds, repeat the following three steps:

Step 1: For each strategy i, take a random draw from the following distribution:

( ) ( ) ( )( )1 01, 1i i in N n N nθ β + +∼

where:

1. ( )1
iN n  is the number of times the strategy i has received a 1 reward up to  

round n.
2. ( )0

iN n  is the number of times the strategy i has received a 0 reward up to 
round n.

Step 2: Select the strategy ( )s n  that has the highest ( )i nθ :

( )
{ }

( )( )
1, ,9

argmax i
i

s n nθ
∈

=
…

Step 3: Update ( ) ( )1
s nN n  and ( ) ( )0

s nN n  according to the following conditions:

1. If the strategy selected ( )s n  received a 1 reward:

𝑁𝑁𝑠𝑠(𝑛𝑛)1 (𝑛𝑛) ≔ 𝑁𝑁𝑠𝑠(𝑛𝑛)1 (𝑛𝑛) + 1 
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2. If the strategy selected ( )s n  received a 0 reward:

( ) ( ) ( ) ( )0 0: 1s n s nN n N n= +

Now we've seen the mathematical steps, let's remind ourselves of the intuition 
behind them.

Intuition
Each strategy has its own Beta distribution. Over the rounds, the Beta distribution 
of the strategy with the highest conversion rate will progressively be shifted to the 
right, and the Beta distributions of the strategies with lower conversion rates will be 
progressively shifted to the left (Steps 1 and 3). Therefore, in Step 2, the strategy with 
the highest conversion rate will be selected more and more often. Here is a graph 
displaying three Beta distributions of three strategies to help you visualize this:

Figure 4: Three Beta distributions

You've taken a step back and you've had a refresher; I think you're ready for the 
implementation! In the next section, you'll put all that theory into practice—in other 
words, into code.

Implementation
You'll develop the code as you work along this chapter, but keep in mind that I've 
provided the whole implementation of Thompson Sampling for this application; you 
have it available on the GitHub page (https://github.com/PacktPublishing/
AI-Crash-Course) of this book. If you want to try and run the code, you can do it 
on Colaboratory, Spyder in Anaconda, or simply your favorite IDE.

WOW! eBook 
www.wowebook.org

https://github.com/PacktPublishing/AI-Crash-Course
https://github.com/PacktPublishing/AI-Crash-Course


Chapter 6

[ 69 ]

Thompson Sampling vs. Random Selection
While implementing Thompson Sampling, you'll also implement the Random 
Selection algorithm, which will simply select a random strategy at each round. This 
will be your benchmark to evaluate the performance of your Thompson Sampling 
model. Of course, Thompson Sampling and the Random Selection algorithm will be 
competing on the same simulation, that is, on the same environment matrix.

Performance measure
In the end, after the whole simulation is done, you can assess the performance of 
Thompson Sampling by computing the relative return, defined by the following 
formula:

( ) ( )TotalRewardof ThompsonSampling TotalRewardof RandomSelection
RelativeReturn

TotalRewardof RandomSelection
−

=

You'll also have the chance to plot the histogram of selected ads, just to check that the 
strategy with the highest conversion rate (Strategy 7) was the one selected the most.

Let's start coding
First, import the three following required libraries:

1. numpy, which you will use to build the environment matrix.
2. matplotlib.pyplot, which you will use to plot the histogram.
3. random, which you will use to generate the random numbers needed for the 

simulation.

Here is the extracted code from GitHub:

# AI for Sales & Advertizing - Sell like the Wolf of AI Street

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import random

Then set the parameters for the number of customers and strategies:

1. N = 10,000 customers.
2. d = 9 strategies.

WOW! eBook 
www.wowebook.org



AI for Sales and Advertising – Sell like the Wolf of AI Street

[ 70 ]

Code:

# Setting the parameters
N = 10000
d = 9

Then, create the simulation by building the environment matrix of 10,000 rows 
corresponding to the customers and 9 columns corresponding to the strategies. At 
each round, and for each strategy, you draw a random number between 0 and 1. If 
this random number is lower than the conversion rate of the strategy, the reward will 
be 1. Otherwise, it will be 0. The environment matrix is named X in the code.

Code:

# Building the environment inside a simulation
conversion_rates = [0.05,0.13,0.09,0.16,0.11,0.04,0.20,0.08,0.01]
X = np.array(np.zeros([N,d]))
for i in range(N):
    for j in range(d):
        if np.random.rand() <= conversion_rates[j]:
            X[i,j] = 1

Now that the environment is ready, you can start implementing the AI. To do 
so, the first step is to introduce and initialize the variables you will need for the 
implementation:

1. strategies_selected_rs: A list that will contain the strategies selected 
over the rounds by the Random Selection algorithm. Initialize it as an  
empty list.

2. strategies_selected_ts: A list that will contain the strategies selected 
over the rounds by the Thompson Sampling AI model. Initialize it as an 
empty list.

3. total_rewards_rs: The total reward accumulated over the rounds by the 
Random Selection algorithm. Initialize it as 0.

4. total_rewards_ts: The total reward accumulated over the rounds by the 
Thompson Sampling AI model. Initialize it as 0.

5. number_of_rewards_1: A list of 9 elements which will contain for each 
strategy the number of times it received a 1 reward. Initialize it as a list  
of 9 zeros.

6. number_of_rewards_0: A list of 9 elements which will contain for each 
strategy the number of times it received a 0 reward. Initialize it as a list  
of 9 zeros.
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Code:

# Implementing Random Selection and Thompson Sampling
strategies_selected_rs = []
strategies_selected_ts = []
total_reward_rs = 0
total_reward_ts = 0
numbers_of_rewards_1 = [0] * d
numbers_of_rewards_0 = [0] * d

Then you need to begin the for loop that will iterate the 10,000 rows (that is, 
the customers) of this environment matrix. At each round you'll get two separate 
selections of the deployed strategy; one from the Random Selection algorithm, and 
one from Thompson Sampling.

Let's start with the Random Selection algorithm, which simply selects a random 
strategy in each round.

Code:

for n in range(0, N):
    # Random Selection
    strategy_rs = random.randrange(d)
    strategies_selected_rs.append(strategy_rs)
    reward_rs = X[n, strategy_rs]
    total_reward_rs = total_reward_rs + reward_rs

Next, you need to implement Thompson Sampling following exactly Steps 1, 2, and 
3 provided previously. I recommend looking at these steps again before coding the 
next part, and try to code by yourself before seeing my solution. That's the best way 
you can progress; practice makes perfect. You have all the elements required to 
code this; you even have similar code in Chapter 5, Your First AI Model – Beware the 
Bandits!. Good luck! Here is the solution.

You should implement Thompson Sampling step by step, starting with the first step. 
Let's remind ourselves of it:

Step 1: For each strategy i, take a random draw from the following distribution:

( ) ( ) ( )( )1 01, 1i i in N n N nθ β + +∼
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where:

1. ( )1
iN n  is the number of times the strategy i has received a 1 reward up to 

round n
2. ( )0

iN n  is the number of times the strategy i has received a 0 reward up to 
round n

Let's see how Step 1 is implemented.

Code a second for loop that iterates the 9 strategies, because you have to take a 
random draw from the Beta distribution of each of the 9 strategies.

The random draws from the Beta distributions are generated by the betavariate() 
function taken from the random library, which you imported at the beginning.

Code:

    # Thompson Sampling
    strategy_ts = 0
    max_random = 0
    for i in range(0, d):
        random_beta = random.betavariate(numbers_of_rewards_1[i] + 1, 
numbers_of_rewards_0[i] + 1)

Now implement Step 2, that is:

Step 2: Select the strategy ( )s n  that has the highest ( )i nθ :

( )
{ }

( )( )
1, ,9

argmax i
i

s n nθ
∈

=
…

To implement Step 2, you stay in the second for loop which iterates the 9 strategies, 
and use a simple trick with an if condition that will figure out the highest ( )i nθ .

The trick is the following: while iterating the strategies, if you find a random draw 
(random_beta) that is higher than the maximum of the random draws obtained so 
far (max_random), then that maximum becomes equal to that higher random draw.

Code:

    # Thompson Sampling
    strategy_ts = 0
    max_random = 0
    for i in range(0, d):
        random_beta = random.betavariate(numbers_of_rewards_1[i] + 1, 
numbers_of_rewards_0[i] + 1)
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        if random_beta > max_random:
            max_random = random_beta
            strategy_ts = i
    reward_ts = X[n, strategy_ts]

And finally, let's implement Step 3, the easiest one:

Step 3: Update ( ) ( )1
s nN n  and ( ) ( )0

s nN n  according to the following conditions:

1. If the strategy selected ( )s n  received a 1 reward:

( ) ( ) ( ) ( )1 1: 1s n s nN n N n= +

2. If the strategy selected ( )s n  received a 0 reward:

( ) ( ) ( ) ( )0 0: 1s n s nN n N n= +

Implement that simply with the exact same two if conditions, translated into code.

Code:

    # Thompson Sampling
    strategy_ts = 0
    max_random = 0
    for i in range(0, d):
        random_beta = random.betavariate(numbers_of_rewards_1[i] + 1, 
numbers_of_rewards_0[i] + 1)
        if random_beta > max_random:
            max_random = random_beta
            strategy_ts = i
    reward_ts = X[n, strategy_ts]
    if reward_ts == 1:
        numbers_of_rewards_1[strategy_ts] = numbers_of_
rewards_1[strategy_ts] + 1
    else:
        numbers_of_rewards_0[strategy_ts] = numbers_of_
rewards_0[strategy_ts] + 1

Next, don't forget to add the strategy selected in Step 2 to our list of strategies 
(strategies_selected_ts), and also to compute the total reward accumulated over 
the rounds by Thompson Sampling (total_reward_ts).
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Code:

    # Thompson Sampling
    strategy_ts = 0
    max_random = 0
    for i in range(0, d):
        random_beta = random.betavariate(numbers_of_rewards_1[i] + 1, 
numbers_of_rewards_0[i] + 1)
        if random_beta > max_random:
            max_random = random_beta
            strategy_ts = i
    reward_ts = X[n, strategy_ts]
    if reward_ts == 1:
        numbers_of_rewards_1[strategy_ts] = numbers_of_
rewards_1[strategy_ts] + 1
    else:
        numbers_of_rewards_0[strategy_ts] = numbers_of_
rewards_0[strategy_ts] + 1
    strategies_selected_ts.append(strategy_ts)
    total_reward_ts = total_reward_ts + reward_ts

Then compute the final score, which is the relative return of Thompson Sampling 
with respect to our benchmark, which is Random Selection:

Code:

# Computing the Relative Return
relative_return = (total_reward_ts - total_reward_rs) / total_reward_
rs * 100
print("Relative Return: {:.0f} %".format(relative_return))

The final result
By executing this code, I obtained a final relative return of 91%. In other words, 
Thompson Sampling almost doubled the performance of my Random Selection 
benchmark. Not too bad!

Finally, plot a histogram of the selected strategies to check that Strategy 7 (at  
index 6) was the one most selected, since it is the one with the highest conversion 
rate. To do this, use the hist() function from the matplotlib library.

Code:

# Plotting the Histogram of Selections
plt.hist(strategies_selected_ts)
plt.title('Histogram of Selections')
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plt.xlabel('Strategy')
plt.ylabel('Number of times the strategy was selected')
plt.show()

This is the most exciting time—the code is complete (congrats by the way), and you 
can enjoy the results. Having the final relative return is nice, but finishing with a 
clean visualization plot is even better. And that's what you get by executing the  
final code:

Figure 5: Histogram of Selections

You can see that the strategy at index 6, Strategy 7, was by far selected the most. 
Thompson Sampling was quickly able to identify it as the best strategy. In fact, if 
you re-run the same code but with only 1,000 customers, you'll see that Thompson 
Sampling is still able to identify Strategy 7 as the best one.

Thompson Sampling did an amazing job for this e-commerce business. Not only was 
it able to identify the best strategy in a small number of rounds—that means fewer 
customers, which saves on advertising and operating costs—but also it was able to 
clearly figure out the strategy with the highest conversion rate.
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If this e-commerce business has, for example, 50 million customers, and if the 
premium plan has a price of $200 per year, then deploying this best strategy with a 
conversion rate of 20 % would lead to generate an extra revenue of 50,000,000 × 0.2 × 
$200 = $2 billion!

In other words, Thompson Sampling clearly and quickly smashed the sales and 
advertising for this e-commerce business, so much so that we really can call it the 
wolf of AI Street.

Now, take a break, you deserve it. Get refreshed, and as soon as you are recharged 
and all set for a new AI adventure, I'll be here ready as well to start the next chapter. 
See you back soon!

Summary
In this first practical tutorial, you implemented Thompson Sampling to solve the 
multi-armed bandit problem as applied to an advertising campaign. Thompson 
Sampling was able to find the best business strategy quickly, something which 
Random Selection was unable to do. In total you generated 91% of relative return, 
which, after making some assumptions, would generate an extra 2 billion dollars in 
revenue. You did that in just one file in less than 60 lines of code. Quite astounding, 
right?
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Welcome to Q-Learning
Ladies and gentlemen, things are about to get even more interesting than before. 
The next model we are about to tackle is at the heart of many AIs built today; robots, 
autonomous vehicles, and even AI players of video games. They all use Q-learning at 
the core of their model. Some of them even combine Q-learning with deep learning, 
making a highly advanced version of Q-learning called deep Q-learning, which we 
will cover in Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning.

All of the AI fundamentals still apply to Q-learning, as follows:

1. Q-learning is a Reinforcement Learning model.
2. Q-learning works on the inputs (states) and outputs (actions) principle.
3. Q-learning works on a predefined environment, including the states 

(the inputs), the actions (the outputs), and the rewards.
4. Q-learning is modeled by a Markov decision process.
5. Q-learning uses a training mode, during which the parameters that are 

learned are called the Q-values, and an inference mode.

Now we can add two more fundamentals, this time specific to Q-learning:

1. There are a finite number of states (there is not an infinity of possible inputs).
2. There are a finite number of actions (only a certain number of actions can 

be performed).

That's all! There are no more fundamentals to keep in mind; now we can really 
dig into Q-learning, which you'll see is not that hard and really quite intuitive.
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To explain Q-learning, we'll use an example so that you won't get lost inside pure 
theory, and so that you can visualize what's happening. On that note: welcome to 
the Maze.

The Maze
You are going to learn how Q-learning works inside a maze. Let's draw our maze 
right away; here it is:

Figure 1: The Maze

I know, it's the simplest maze you have ever seen. That's important for the sake of 
simplicity, so that you can mostly focus on how the AI works its magic. Imagine if 
you got lost in this chapter because of the maze and not because of the AI formulas! 
The important thing is that you have a clear maze, and you can visualize how the 
AI might manage to find its way from the beginning to the end.

Speaking of the beginning and the end, imagine a little robot inside this maze, 
starting at point E (Entrance). Its goal is to find the quickest way to point G (Goal). 
We humans can figure that out in no time, but that's only because our maze is 
so simple. What you are going to build is an AI that can go from a starting point 
to an ending point, regardless of how complex the maze is. Let's get started!

Beginnings
Here is a question for you: what do you think is going to be the very first step?

I'll give you three possible answers:

1. We start writing some math equations.
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2. We build the environment.
3. We try to make it work with Thompson Sampling (the AI model of the 

previous chapter).

The correct answer is…

2. We build the environment.

That was easy, but I wanted to highlight that in a question to make sure you keep 
in mind that this must always be the first step when building an AI. After clearly 
understanding the problem, the first step of building your AI solution is always 
to set up the environment.

That begs a further question:

What steps, exactly, are you going to take when building that environment?

Try to remember the answer—you've already learned this—and then read on for 
a recap.

1. Firstly, you'll define the states (the inputs of your AI).
2. Secondly, you'll define the actions that can be performed (the outputs 

of your AI).
3. Thirdly, you'll define the rewards. Remember, the reward is what the 

AI gets after performing an action in a certain state.

Now we've secured the basics, so you can tackle that first step of defining the 
environment.

Building the environment
To build the environment, we need to define the states, the actions, and the rewards.

The states
Let's begin with the states. What do you think are going to be the states for this 
problem? Remember, the states are the inputs of your AI. And they should contain 
enough information for the AI to be able to take an action that will lead it to its final 
goal (reaching point E).

In this model, we don't have too much of a choice. The state, at a specific time or 
specific iteration, is simply going to be the position of the AI at that time. In other 
words, it is going to be the letter of the location, from A to L, where the AI is in at 
a specific time.
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As you might guess, the next step after building the environment will be writing the 
mathematical equations at the heart of the AI, and to help you with that, it makes 
it much easier to encode the states into unique integers instead of keeping them 
as letters. That's exactly what we are going to do, with the following mapping:

Figure 2: Location to state mapping

Notice that we abide by the first specific fundamental of Q-learning, that is: there are 
a finite number of states.

Let's move on to the actions.

The actions
The actions are simply going to be the next moves the AI can make to go from one 
location to the next. For example, let's say the AI is in location J; the possible actions 
that the AI can perform are to go to I, to F, or to K. Again, since you'll be working 
with math equations, you can encode these actions with the same indexes as for 
the states.

Following the example where the AI is in location J at a specific time, the possible 
actions that the AI can perform are 5, 8, and 10, according to our previous mapping 
above: the index 5 corresponds to F, the index 8 corresponds to I, and the index 
10 corresponds to K.
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Hence, the possible actions are simply the indexes of the different locations that 
can be reached:

Possible actions = {0,1,2,3,4,5,6,7,8,9,10,11}

Notice that again, we abide by the second specific fundamental of Q-learning, that is: 
there are a finite number of actions.

Now obviously, when in a specific location, there are some actions that the AI cannot 
perform. Taking the same previous example, if the AI is in location J, it can perform 
the actions 5, 8, and 10, but it cannot perform the other actions. You can make sure to 
specify that by attributing a 0 reward to the actions it cannot perform, and a 1 reward 
to the actions it can perform. That brings us to the rewards.

The rewards
You're almost done with your environment—last, but not least, you have to define 
a system of rewards. More specifically, you have to define a reward function R that 
takes as input a state s and an action a, and returns a numerical reward r that the 
AI will get by performing the action a in the state s:

R: (s, a) � r∈R

So, how can you build such a function for our case study? Here, it is simple. Since 
there are a discrete and finite number of states (the indexes from 0 to 11), as well 
as a discrete and finite number of actions (same indexes from 0 to 11), the best way 
to build your reward function R is to simply make a matrix. 

Your reward function will be a matrix of exactly 12 rows and 12 columns, where the 
rows correspond to the states, and the columns correspond to the actions. That way, 
in your function R: (s, a) � r∈R, s will be the row index of the matrix, a will be the 
column index of the matrix, and r will be the cell of index (s, a) in the matrix.

To build this reward matrix, what you first have to do is attribute, for each of the 
12 locations, a 0 reward to the actions that the robot cannot perform, and a 1 reward 
to the actions the robot can perform. By doing that for each of the 12 locations, you 
will end up with a matrix of rewards. Let's build it step by step, starting with the 
first location: location A.
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When in location A, the robot can only go to location B. Therefore, since location 
A has index 0 (first row of the matrix) and location B has index 1 (second column of 
the matrix), the first row of the matrix of rewards will get a 1 on the second column, 
and a 0 on all the other columns, like so:

Figure 3: Rewards matrix – Step 1

Let's move on to location B. When in location B, the robot can only go to three 
different locations: A, C, and F. Since B has index 1 (second row), and A, C, and 
F have respective indexes 0, 2, and 5 (1st, 3rd, and 6th column), then the second 
row of the matrix of rewards will get a 1 on the 1st, 3rd, and 6th columns, and  
0 on all the other columns:

Figure 4: Rewards matrix – Step 2
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C (of index 2) is only connected to B and G (of indexes 1 and 6) so the third row of 
the matrix of rewards is:

Figure 5: Rewards matrix – Step 3

By doing the same for all the other locations, you eventually get your final matrix 
of rewards:

Figure 6: Rewards matrix - Step 4

WOW! eBook 
www.wowebook.org



Welcome to Q-Learning

[ 84 ]

And that's how you initialize the matrix of rewards.

But wait—you're not actually finished. There is one final thing you need to do. 
It's a step that's crucial to understand. In fact, let me ask you another question, 
the ultimate one, which will check if your intuition is already shaping up:

How can you let the AI know that it has to go to that top priority location G?

It's easy—you do it simply by playing with the rewards. You must keep in mind that 
with Reinforcement Learning, everything works from the rewards. If you attribute 
a high reward to location G, for example 1000, then the AI will automatically try to 
go and catch that high reward, simply because it is larger than the rewards of the 
other locations.

In short, and it's a fundamental point to understand and remember in Reinforcement 
Learning in general, the AI is always looking for the highest reward. That's why 
the trick to reach location G is simply to attribute it a higher reward than the other 
locations.

For now, manually put a high reward (1000) inside the cell corresponding to location 
G, because it is the goal location where we want our AI to go. Since location G has an 
index of 6, we put a 1000 reward on the cell of row 6 and column 6. Accordingly, our 
matrix of rewards becomes:

Figure 7: Rewards matrix - Step 5

You have defined the rewards! You did it by simply building this matrix of rewards. 
It is important to understand that this is usually the way we define the system of 
rewards when doing Q-learning. 
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In Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning, which is about 
deep Q-learning, you will see that we will proceed very differently and build the 
environment much more easily. In fact, deep Q-learning is the advanced version 
of Q-learning that is widely used today in AI, far more than the simple Q-learning 
model itself. But you have to tackle Q-learning first, in depth, in order to be ready for 
deep Q-learning.

Since you've defined the states, the actions, and the rewards, you have finished 
building the environment. This means you are ready to tackle the next step, where 
you will build the AI itself that will do its magic inside this environment that you've 
just defined.

Building the AI
Now that you have built an environment in which you clearly defined the goal with 
a relevant system of rewards, it's time to build the AI. I hope you're ready for a little 
math.

I'll break down this second step into several sub-steps, leading you to the final 
Q-learning model. To that end, we'll cover three important concepts at the heart 
of Q-learning, in the following order:

1. The Q-value
2. The temporal difference
3. The Bellman equation

Let's get started by learning about the Q-value.

The Q-value
Before you start getting into the details of Q-learning, I need to explain the concept of 
the Q-value. Here's how it works:

To each couple of state and action (s, a), we are going to associate a numeric value 
Q(s, a):

( ) ( ): , ,Q s S a A Q s a∈ ∈ ∈� �

We will say that Q(s, a) is "the Q-value of the action a performed in the state s."

Now I know the sort of questions you might be asking in your head: What does this 
Q-value mean? What does it represent? How do I even compute it? These were some 
of the questions I had in my mind when I first learned Q-learning.

In order to answer these questions, I need to introduce the temporal difference.
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The temporal difference
This is where the math really comes in. Let's say we are in a specific state ts , 
at a specific time t. Let's just perform an action randomly, any of them. That brings us 
to the next state 𝑠𝑠𝑡𝑡+1  and we get the reward ( ),t tR s a .

The temporal difference at time t, denoted by ( ),t t tTD s a , is the difference between:

1. ( ) ( )( )1, max ,t t t
a

R s a Q s a++ γ , that is, the reward ( ),t tR s a  obtained by 

performing the action ta  in the state ts , plus the Q-value of the best action 
performed in the future state 𝑠𝑠𝑡𝑡+1 , discounted by a factor [ ]0,1γ∈ , called 
the discount factor

2. and ( ),t tQ s a , that is, the Q-value of the action ta  performed in the state ts .

This leads to:

( ) ( ) ( )( ) ( )1, , max , ,t t t t t t t t
a

TD s a R s a Q s a Q s a+= + γ −

You might think that's great, that you understand all the terms, but you're probably 
also thinking "But what does that all mean?" Don't worry—that's exactly what I was 
thinking when I was learning this.

I'm going to explain while at the same time improving your AI intuition. The first 
thing to understand is that the temporal difference represents how well the AI is 
learning. Here's how it works exactly, with respect to the training process (during 
which the Q-values are learned):

1. At the beginning of the training, the Q-values are set to zero. Since the AI 
is looking to get the good rewards (here 1 or 1000), it is looking for the 
high temporal differences (see the formula of TD). Accordingly, if in the 
first iterations, ( ),t t tTD s a  is high, the AI gets a "pleasant surprise" because 
that means the AI was able to find a good reward. On the other hand,  
if ( ),t t tTD s a  is small, the AI gets a "frustration."

2. When the AI gets a great reward, the specific Q-value of the (state, action) 
that led to that great reward increases, so the AI can remember how it got to 
that high reward (you'll see exactly how it increases in the next section). For 
example, let's say that it was the action ta  performed in the state ts  that led to 
that high reward ( ),t tR s a . That would mean the Q-value ( ),t tQ s a  increases 
automatically (remember, you'll see how in the next section). Those increased 
Q-values are important information, because they indicate to the AI which 
transitions lead to the good rewards.
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3. The next step of the AI is not only to look for the great rewards, but also to 
look at the same time for the high Q-values. Why? Because the high Q-values 
are the ones that lead to the great reward. In fact, the high Q-values are 
the ones that lead to higher Q-values, themselves leading to even higher 
Q-values, themselves leading eventually to the highest reward (1000). That's 
the role of ( )( )1max ,t

a
Q s a+γ  in the temporal difference formula. Everything 

will become crystal clear when you put this into practice. The AI looks for the 
high Q-values, and as soon as it finds them, the Q-values of the (state, action) 
that led to these high Q-values will increase again, since they indicate the 
right path towards the goal.

4. At some point, the AI will know all the transitions that lead to the good 
rewards and high Q-values. Since the Q-values of these transitions have 
already been increased over time, the temporal differences decrease in the 
end. In fact, the closer we get to the final goal, the smaller the temporal 
differences become.

In conclusion, the temporal difference is like a temporary intrinsic reward, of which 
the AI will try to find the large values at the beginning of the training. Eventually, 
the AI will minimize this reward as it gets to the end of the training—that is, as it 
gets closer to the final goal.

That's exactly the intuition of the temporal difference you must have in mind, 
because it will really help you understand the magic of Q-learning. Speaking 
of that magic, we are about to reveal the last piece of the puzzle.

Now you understand that the AI will iterate some updates of the Q-values towards 
the high temporal differences, which are ultimately decreased. But how does it do 
that? There is a specific answer to that question—the Bellman equation, the most 
famous equation in Reinforcement Learning.

The Bellman equation
In order to perform better and better actions that will lead the AI to reach its 
goal, you have to increase the Q-values of actions when you find high temporal 
differences. Only one question remains: How will the AI update these Q-values? 
Richard Bellman, a pioneer of Reinforcement Learning, created the answer. At each 
iteration, you update the Q-values from time t-1 (previous iteration) to t (current 
iteration) through the following equation, called the Bellman equation:

𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑇𝑇𝐷𝐷𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) 
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where 𝛼𝛼 ϵ ℝ  is the learning rate, which dictates how fast the learning of the Q-values 
goes. Its value is usually between 0 and 1, for example, 0.75. The lower the value of 𝛼𝛼 ,  
the smaller the updates of the Q-values, and the longer the Q-learning will take. The 
higher its value, the bigger the updates of the Q-values and the faster the Q-learning 
will be. As you can clearly see in this equation, when the temporal difference 

( ),t t tTD s a  is high, the Q-value ( ),t t tQ s a  increases.

Reinforcement intuition
Now you have all the elements of Q-learning—congratulations, by the way—
let's connect the dots between all these elements to reinforce your AI intuition.

The Q-values measure the accumulation of "good surprise" or "frustration" associated 
with the couple of action and state ( ),t ts a .

In the "good surprise" case of a high temporal difference, the AI is reinforced, 
and in the "frustration" case of a low temporal difference, the AI is weakened.

We want to learn the Q-values that will give the AI the maximum "good surprise," 
and that's exactly what the Bellman equation does by updating the Q-values at 
each iteration.

You've learned quite a lot of new information, and even though you've finished with 
an intuition section that connects the dots, that's not enough to get a really solid 
grasp of Q-learning. The next step is to take a step back, and the best way to do that 
is to go through the whole Q-learning process from start to finish so that it becomes 
crystal clear in your head.

The whole Q-learning process
Let's summarize the different steps of the whole Q-learning process. To be clear, 
the only purpose of this process is to update the Q-values over a certain number of 
iterations until they are no longer updated (we refer to that point as convergence).

The number of iterations depends on the complexity of the problem. For our 
problem, 1,000 will be enough, but for more complex problems you might want 
to consider higher numbers such as 10,000. In short, the Q-learning process is 
the part where we train our AI, and it's called Q-learning because it's the process 
during which the Q-values are learned. Then I'll explain what happens for the 
inference part (pure predictions), which comes, as always, after the training. The 
full Q-learning process starts with training mode.
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Training mode
Initialization (First iteration):

For all couples of states s and actions a, the Q-values are initialized to 0.

Next iterations:

At each iteration t ≥ 1, you repeat for a certain number of times (chosen by you the 
developer) the following steps:

1. You select a random state ts  from the possible states.
2. From that state, you perform a random action ta  that can lead to a next 

possible state, that is, such that ( ), 0t tR s a > .
3. You reach the next state 𝑠𝑠𝑡𝑡+1  and you get the reward ( ),t tR s a .
4. You compute the temporal difference ( ),t t tTD s a :

( ) ( ) ( )( ) ( )1, , max , ,t t t t t t t t
a

TD s a R s a Q s a Q s a+= + γ −

5. You update the Q-value by applying the Bellman equation:

𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑇𝑇𝐷𝐷𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) 

At the end of this process, you have obtained Q-values that no longer update. That 
means only one thing; you are ready to hack the maze by going into inference mode.

Inference mode
The training is complete, and now begins the inference. To remind you, the inference 
part is when you have a fully trained model with which you are going to make 
predictions. In our maze, the predictions that you are going to make are the actions to 
perform to take you from start (Location E) to finish (Location G). So, the question is:

How are you going to use the learned Q-values to perform the actions?

Good news; for Q-learning this is very simple. When in a certain state ts , you simply 
perform the action ta  that has the highest Q-value for that state ts :

( )( )argmax ,t t
a

a Q s a=

WOW! eBook 
www.wowebook.org



Welcome to Q-Learning

[ 90 ]

That's all—by doing this at each location (each state), you get to your final 
destination through the shortest route. We'll implement this and see the result 
in the practical activities or the next chapter.

Summary
In this chapter we studied the Q-learning model, which is only applied to 
environments that have a finite number of input states and a finite number 
of possible actions to perform.

When performing Q-learning, the AI learns Q-values through an iterative process, 
so that the higher the Q-value of a (state, action) pair, the closer the AI gets to the 
top reward.

At each iteration the Q-values are updated through the Bellman equation, which 
simply consists of adding the temporal difference, discounted by a learning rate 
factor. We will get to work on a full practical Q-learning activity in the next chapter, 
applied to a real-world business problem.
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AI for Logistics – Robots  
in a Warehouse

It's time for the next step on our AI journey. I told you at the beginning of this book 
that AI has tremendous value to bring to transport and logistics, with self-driving 
delivery vehicles that speed up logistical processes. They're a huge boost to the 
economy through the e-commerce industry.

In this new chapter, we'll build an AI for just that kind of application. The model 
we'll use for this will, of course, be Q-learning (we're saving deep Q-learning for the 
self-driving car). Q-learning is a simple, but powerful, AI model that can optimize 
the flows of movement in a warehouse, which is the real-world problem you'll solve 
here. In order to facilitate this journey, you'll work on an environment you're already 
familiar with: the maze we saw in the previous chapter.

The difference is that, this time, the maze will actually be the warehouse of 
a business. It could be any business: an e-commerce business, a retail business, 
or any business that sells products to customers and that has a warehouse to store 
large amounts of products to be sold.
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Let's have a look again at this maze, now a warehouse:

Figure 1: The warehouse

Inside this warehouse, the products are stored in 12 different locations, labeled by 
the following letters from A to L:

Figure 2: Locations in the warehouse
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When orders are placed by customers, a robot moves around the warehouse to 
collect the products for delivery. That will be your AI! Here's what it looks like:

Figure 3: Warehouse robot

The 12 locations are all connected to a computer system, which ranks in real time the 
product collection priorities for these 12 locations. As an example, let's say that at 
a specific time, t, it returns the following ranking:

Figure 4: Top priority locations
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Location G has priority 1, which means it's the top priority, as it contains a product 
that must be collected and delivered immediately. Our robot must move to location 
G by the shortest route depending on where it is. Our goal is to actually build an 
AI that will return that shortest route, wherever the robot is.

But we could do even better. Here, locations K and L are in the top 3 priorities. 
Hence, it would be great to implement an option for our robot to go via some 
intermediary locations before reaching its final top priority location.

The way the system computes the priorities of the locations is outside the scope of 
this case study. The reason for this is that there can be many ways, from simple rules 
or algorithms, to deterministic computations, to machine learning, to compute these 
priorities. But most of these ways would not be AI as we know it today. What we 
really want to focus on in this exercise is the core AI, encompassing Reinforcement 
Learning and Q-learning. We can just say for the purposes of this example that 
location G is the top priority because one of the most loyal platinum-level customers 
of the company placed an urgent order of a product stored in location G, which 
therefore must be delivered as soon as possible.

In conclusion, our mission is to build an AI that will always take the shortest route 
to the top priority location, whatever the location it starts from, and have the option 
to go by an intermediary location which is in the top three priorities.

Building the environment
When building an AI, the first thing we always have to do is define the environment. 
Defining an environment always requires the following three elements:

• Defining the states
• Defining the actions
• Defining the rewards

These three elements have already been defined in the previous chapter on 
Q-learning, but let's quickly remind ourselves what they are.

The states
The state, at a specific time t, is the location where the robot is at that time t. 
However, remember, you have to encode the location names so that our AI can 
do the math. 
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At the risk of disappointing you, given all the crazy hype about AI, let's remain 
realistic and understand that Q-learning is nothing more than a bunch of math 
equations; just like any other AI model. Let's make the encoding integers start at 0, 
simply because indexes in Python start at 0:

Figure 5: Location to state mapping

The actions
The actions are the next possible destinations to which the robot can go. You can 
encode these destinations with the same indexes as the states. Hence, the total list 
of actions that the AI can perform is the following:

actions = [0,1,2,3,4,5,6,7,8,9,10,11]

The rewards
Remember, when in a specific location, there are some actions that the robot cannot 
perform. For example, if the robot is in location J, it can perform the actions 5, 8, 
and 10, but it cannot perform the other actions. You can specify that by attributing 
a reward of 0 to the actions it cannot perform, and a reward of 1 to the actions it can 
perform. 
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That brings you to building the following matrix of rewards:

Figure 6: Rewards matrix

AI solution refresher
It never hurts to get a little refresher of a model before implementing it! Let's remind 
ourselves of the steps of the Q-learning process; this time, adapting it to your new 
problem. Let's welcome Q-learning back on stage:

Initialization (first iteration)
For all pairs of states s and actions a, the Q-values are initialized to 0:

( )For allstates 0, ,11and actions 0, ,11: , 0s a Q s a= = =… …

Next iterations
At each iteration t ≥ 1, the AI will repeat the following steps:

1. It selects a random state ts  from the possible states:

( )random 0,1,2,3,4,5,6,7,8,9,10,11ts =
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2. It performs a random action ta  that can lead to a next possible state, that 
is, such that ( ), 0t tR s a > :

( ) ( )random 0,1,2,3,4,5,6,7,8,9,10,11 s.t. , 0t t ta R s a= >

3. It reaches the next state 1ts +  and gets the reward ( ),t tR s a .
4. It computes the temporal difference ( ),t t tTD s a :

( ) ( ) ( )( ) ( )1, , max , ,t t t t t t t t
a

TD s a R s a Q s a Q s a+= + γ −

5. It updates the Q-value by applying the Bellman equation:

𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑇𝑇𝐷𝐷𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) 

We repeat these steps over 1,000 iterations. Why 1,000? The choice of 1,000 comes 
from my experimentation with this particular environment. I chose a number that's 
large enough for the Q-values to converge over the training. 100 wasn't large enough, 
but 1,000 was. Usually, you can just pick a very large number, for example, 5,000, 
and you will get convergence (that is, the Q-values will no longer update). However, 
that depends on the complexity of the problem. If you are dealing with a much 
more complex environment, for example, if you had hundreds of locations in the 
warehouse, you'd need a much higher number of training iterations.

That's the whole process. Now, you're going to implement it in Python from scratch!

Are you ready? Let's do this.

Implementation
Alright, let's smash this. But first, try to smash this yourself without me. Of course, 
this is a journey we'll take together, but I really don't mind if you take some steps 
ahead of me. The faster you become independent in AI, the sooner you'll do wonders 
with it. Try to implement the Q-learning process mentioned previously, exactly as it 
is. It's okay if you don't implement everything; what matters is that you try.

That's enough coaching; no matter how successful you were, let's go through the 
solution.
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First, start by importing the libraries that you'll use in this implementation. There's 
only one needed this time: the numpy library, which offers a practical way of working 
with arrays and mathematical operations. Give it the shortcut np.

# AI for Logistics - Robots in a warehouse

# Importing the libraries
import numpy as np

Then, set the parameters of your model. These include the discount factor γ and the 
learning rate 𝛼𝛼 , which are the only parameters of the Q-learning model. Give them 
the values of 0.75 and 0.9 respectively, which I've arbitrarily picked but are usually 
a good choice. These are decent values to start with if you don't know what to use. 
However, you'll get the same result with similar values.

# Setting the parameters gamma and alpha for the Q-Learning
gamma = 0.75
alpha = 0.9

The two previous code sections were simply the introductory sections, before you 
really start to build your AI model. The next step is to start the first part of our 
implementation.

Try to remember what you have to do now, as a first general step of building an AI.

You build the environment!

I just wanted to highlight that, once again; it's really compulsory. The environment 
will be the first part of your code:

Part 1 – Building the environment
Let's look at the whole structure of this implementation so that you can take a step 
back already. Your code will be structured in three parts:

• Part 1 – Building the environment
• Part 2 – Building the AI solution with Q-learning (training)
• Part 3 – Going into production (inference)
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Let's start with part 1. For that, you define the states, the actions, and the rewards. 
Begin by defining the states, with a Python dictionary mapping the location's names 
(in letters from A to L) into the states (in indexes from 0 to 11). Call this dictionary 
location_to_state:

# PART 1 - BUILDING THE ENVIRONMENT

# Defining the states
location_to_state = {'A': 0,
                     'B': 1,
                     'C': 2,
                     'D': 3,
                     'E': 4,
                     'F': 5,
                     'G': 6,
                     'H': 7,
                     'I': 8,
                     'J': 9,
                     'K': 10,
                     'L': 11}

Then, define the actions with a simple list of indexes from 0 to 11. Remember that 
each action index corresponds to the next location where that action leads to:

# Defining the actions
actions = [0,1,2,3,4,5,6,7,8,9,10,11]

Finally, define the rewards, by creating a matrix of rewards where the rows 
correspond to the current states ts , the columns correspond to the actions ta  leading 
to the next state 1ts + , and the cells contain the rewards ( ),t tR s a . If a cell ( ),t ts a  
contains a 1, that means the AI can perform the action ta  from the current state, ts  
to reach the next state 1ts + . If a cell ( ),t ts a  contains a 0, that means the AI cannot 
perform the action ta  from the current state ts  to reach any next state 1ts + .

Now, you might remember this very important question, the answer of which is at 
the heart of Reinforcement Learning.

How will you let the AI know that it has to go to that top priority location G?

Everything works with the reward.
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I must insist, again, that you remember this. If you attribute a high reward to 
location G, then the AI, through the Q-learning process, will learn to catch that high 
reward in the most efficient way because it is larger than the rewards of getting to 
the other locations.

Remember this very important rule: the AI, when it is powered by Q-learning 
(or deep Q-learning, as you'll soon learn), will always learn to reach the highest 
reward by the quickest route that does not penalize the AI with negative rewards. 
That's why the trick to reach location G is simply to attribute it a higher reward than 
the other locations.

Start by manually putting a high reward, which can be any high number as long as 
it is larger than 1, inside the cell corresponding to location G; location G is the top 
priority location where the robot has to go in order to collect the products.

Since location G has encoded index state 6, put a 1000 reward in the cell of row 6 and 
column 6. Later on, we will improve your solution by implementing an automatic 
way of going to the top priority location, without having to manually update the 
matrix of rewards and leaving it initialized with 0s and 1s just as it should be. For 
now, here's your matrix of rewards, including the manual update.

# Defining the rewards
R = np.array([[0,1,0,0,0,0,0,0,0,0,0,0],
              [1,0,1,0,0,1,0,0,0,0,0,0],
              [0,1,0,0,0,0,1,0,0,0,0,0],
              [0,0,0,0,0,0,0,1,0,0,0,0],
              [0,0,0,0,0,0,0,0,1,0,0,0],
              [0,1,0,0,0,0,0,0,0,1,0,0],
              [0,0,1,0,0,0,1000,1,0,0,0,0],
              [0,0,0,1,0,0,1,0,0,0,0,1],
              [0,0,0,0,1,0,0,0,0,1,0,0],
              [0,0,0,0,0,1,0,0,1,0,1,0],
              [0,0,0,0,0,0,0,0,0,1,0,1],
              [0,0,0,0,0,0,0,1,0,0,1,0]])

That completes this first part. Now, let's begin the second part of your 
implementation.
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Part 2 – Building the AI Solution with 
Q-learning
To build your AI solution, follow the Q-learning algorithm exactly as it was provided 
previously. If you had any trouble when you tried implementing Q-learning on your 
own, now is your chance for revenge. Literally, all that's about to follow is only and 
exactly the same Q-learning process translated into code.

Now you've got that in your mind, try coding it on your own again. You can do it!

Congratulations if you tried, no matter how it came out. Next, let's check if you got 
it right.

First, initialize all the Q-values by creating your matrix of Q-values full of 0s, in 
which the rows correspond to the current states ts , the columns correspond to the 
actions ta  leading to the next state 1ts + , and the cells contain the Q-values 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) .

# PART 2 - BUILDING THE AI SOLUTION WITH Q-LEARNING

# Initializing the Q-values
Q = np.array(np.zeros([12,12]))

Then implement the Q-learning process with a for loop over 1,000 iterations, 
repeating the exact same steps of the Q-learning process 1,000 times.

# Implementing the Q-Learning process
for i in range(1000):
    current_state = np.random.randint(0,12)
    playable_actions = []
    for j in range(12):
        if R[current_state, j] > 0:
            playable_actions.append(j)
    next_state = np.random.choice(playable_actions)
    TD = R[current_state, next_state] + gamma * Q[next_state, 
np.argmax(Q[next_state,])] - Q[current_state, next_state]
    Q[current_state, next_state] = Q[current_state, next_state] + 
alpha * TD
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Now you've reached the first really exciting step of the journey. You're actually ready 
to launch the Q-learning process and get your final Q-values. Execute the whole code 
you've implemented so far, and visualize the Q-values with the following simple 
print statements:

print("Q-values:")
print(Q.astype(int))

Here's what I got:

Q-values:

[[   0 1661    0    0    0    0    0    0    0    0    0    0]

 [1246    0 2213    0    0 1246    0    0    0    0    0    0]

 [   0 1661    0    0    0    0 2970    0    0    0    0    0]

 [   0    0    0    0    0    0    0 2225    0    0    0    0]

 [   0    0    0    0    0    0    0    0  703    0    0    0]

 [   0 1661    0    0    0    0    0    0    0  931    0    0]

 [   0    0 2213    0    0    0 3968 2225    0    0    0    0]

 [   0    0    0 1661    0    0 2968    0    0    0    0 1670]

 [   0    0    0    0  528    0    0    0    0  936    0    0]

 [   0    0    0    0    0 1246    0    0  703    0 1246    0]

 [   0    0    0    0    0    0    0    0    0  936    0 1661]

 [   0    0    0    0    0    0    0 2225    0    0 1246    0]]

If you're working on Spyder in Anaconda, then for more visual clarity you can even 
check the matrix of Q-values directly in Variable Explorer, by double-clicking on 
Q. Then, to get the Q-values as integers, you can click on Format and enter a float 
formatting of %.0f. You get the following, which is a bit clearer since you can see 
the indexes of the rows and columns in your Q matrix:

Figure 7: Matrix of Q-values
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Now that you have your matrix of Q-values, you're ready to go into production—
you can move on to the third part of the implementation.

Part 3 – Going into production
In other words, you're going into inference mode! In this part, you'll compute the 
optimal path from any starting location to any ending top priority location. The idea 
here is to implement a route function, that takes as inputs a starting location and 
an ending location and that returns as output the shortest route inside a Python list. 
The starting location corresponds to wherever our autonomous warehouse robot is 
at a given time, and the ending location corresponds to where the robot has to go as 
a top priority.

Since you'll want to input the locations with their names (in letters), as opposed 
to their states (in indexes), you'll need a dictionary that maps the location states 
(in indexes) to the location names (in letters). That's the first thing to do here in this 
third part, using a trick to invert your previous dictionary, location_to_state, 
since you simply want to get the exact inverse mapping from this dictionary:

# PART 3 - GOING INTO PRODUCTION

# Making a mapping from the states to the locations
state_to_location = {state: location for location, state in location_
to_state.items()}

Now, please focus— if the dots haven't perfectly connected in your mind, now is the 
time when they will. I'll show you the exact steps of how the robot manages to figure 
out the shortest route.

Your robot is going to go from location E to location G. Here's the explanation of 
exactly how it does that—I'll enumerate the different steps of the process. Follow 
along on the matrix of Q-values as I explain:

1. The AI starts at the starting location E.
2. The AI gets the state of location E, which according to your location_to_

state mapping is 0 4s = .
3. On the row of index 0 4s =  in our matrix of Q-values, the AI chooses the 

column that has the maximum Q-value (703).
4. This column has index 8, so the AI performs the action of index 8, which 

leads it to the next state 1 8ts + = .
5. The AI gets the location of state 8, which according to our state_to_

location mapping is location I. Since the next location is location I, I is 
appended to the AI's list containing the optimal path.
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6. Then, starting from the new location I, the AI repeats the same previous five 
steps until it reaches our final destination, location G.

That's it! That's exactly what you have to implement. You have to generalize this to 
any starting and ending locations, and the best way to do that is through a function 
taking two inputs:

1. starting_location: The location at which the AI starts
2. ending_location: The top priority location to which it has to go

and returning the optimal route. Since we're talking about a route, you can call 
that function route().

An important thing to understand inside this route() function is that since you 
don't know how many locations the AI will have to go through between the starting 
and ending locations, you have to make a while loop which will repeat the 5-step 
process described previously, and that will stop as soon as it reaches the top priority 
end location.

# Making the final function that will return the optimal route
def route(starting_location, ending_location):
    route = [starting_location]
    next_location = starting_location
    while (next_location != ending_location):
        starting_state = location_to_state[starting_location]
        next_state = np.argmax(Q[starting_state,])
        next_location = state_to_location[next_state]
        route.append(next_location)
        starting_location = next_location
    return route

Congratulations! Your AI is now ready. Not only does it have the training process 
implemented, but also the code to run in inference mode. The only thing that's not 
great so far is that you still have to manually update the matrix of rewards; but no 
worries, we'll get to that later on. Before we get to that, let's first check that you have 
an intermediary victory here, and then we can get to work on improvements.

# Printing the final route
print('Route:')
route('E', 'G')
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The following is the output:

Route:

Out[1]: ['E', 'I', 'J', 'F', 'B', 'C', 'G']

Out[2]: ['E', 'I', 'J', 'K', 'L', 'H', 'G']

That's perfect—I ran the code twice when testing it to go from E to G, which is why 
you see the two preceding outputs. The two possible optimal paths were returned: 
one passing by F, and the other one passing by K.

That's a good start. You have a first version of your AI model that functions well. 
Now let's improve your AI, and take it to the next level.

You can improve the AI in two ways. Firstly, by automating the reward attribution 
to the top priority location so that you don't have to do it manually. Secondly, by 
adding a feature that gives the AI the option to go by an intermediate location before 
going to the top priority location—that intermediate location should be in the top 
three priority locations.

In our top priority locations ranking, the second top priority location is location K. 
Therefore, in order to optimize the warehouse flows, your autonomous warehouse 
robot must go via location K to collect products on its way to the top priority location 
G. One way to do this is to have the option to go by an intermediate location in the 
process of your route() function. This is exactly what you'll implement as a second 
improvement.

First, let's implement the first improvement, the one that automates the reward 
attribution.

Improvement 1 – Automating reward 
attribution
The way to do this is in three steps.

Step 1: Go back to the original matrix of rewards, as it was before with only 1s and 
0s. Part 1 of the code becomes the following, and will be included in the final code:

# PART 1 - BUILDING THE ENVIRONMENT

# Defining the states
location_to_state = {'A': 0,
                     'B': 1,
                     'C': 2,
                     'D': 3,
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                     'E': 4,
                     'F': 5,
                     'G': 6,
                     'H': 7,
                     'I': 8,
                     'J': 9,
                     'K': 10,
                     'L': 11}

# Defining the actions
actions = [0,1,2,3,4,5,6,7,8,9,10,11]

# Defining the rewards
R = np.array([[0,1,0,0,0,0,0,0,0,0,0,0],
              [1,0,1,0,0,1,0,0,0,0,0,0],
              [0,1,0,0,0,0,1,0,0,0,0,0],
              [0,0,0,0,0,0,0,1,0,0,0,0],
              [0,0,0,0,0,0,0,0,1,0,0,0],
              [0,1,0,0,0,0,0,0,0,1,0,0],
              [0,0,1,0,0,0,1,1,0,0,0,0],
              [0,0,0,1,0,0,1,0,0,0,0,1],
              [0,0,0,0,1,0,0,0,0,1,0,0],
              [0,0,0,0,0,1,0,0,1,0,1,0],
              [0,0,0,0,0,0,0,0,0,1,0,1],
              [0,0,0,0,0,0,0,1,0,0,1,0]])

Step 2: In part 2 of the code, make a copy (call it R_new) of your rewards matrix, 
inside which the route() function can automatically update the reward in the cell 
of the ending location.

Why do you have to make a copy? Because you have to keep the original matrix of 
rewards initialized with 1s and 0s for future modifications when you want to go to 
a new priority location. So, how will the route() function automatically update 
the reward in the cell of the ending location? That's an easy one: since the ending 
location is one of the inputs of the route() function, then by using your location_
to_state dictionary, you can very easily find that cell and update its reward to 
1000. Here's how you do that:

# Making a function that returns the shortest route from a starting 
to ending location
def route(starting_location, ending_location):
    R_new = np.copy(R)
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    ending_state = location_to_state[ending_location]
    R_new[ending_state, ending_state] = 1000

Step 3: You must include the whole Q-learning algorithm (including the initialization 
step) inside the route() function, right after we make that update of the reward 
in your copy (R_new) of the rewards matrix. In your previous implementation, 
the Q-learning process happened on the original version of the rewards matrix. 
Now that original version needs to stay as it is, that is, initialized to 1s and 0s only. 
Therefore, you must include the Q-learning process inside the route() function, and 
make it happen on your copy of the rewards matrix R_new, instead of the original 
rewards matrix R. Here's how you do that:

# Making a function that returns the shortest route from a starting to 
ending location
def route(starting_location, ending_location):
    R_new = np.copy(R)
    ending_state = location_to_state[ending_location]
    R_new[ending_state, ending_state] = 1000
    Q = np.array(np.zeros([12,12]))
    for i in range(1000):
        current_state = np.random.randint(0,12)
        playable_actions = []
        for j in range(12):
            if R_new[current_state, j] > 0:
                playable_actions.append(j)
        next_state = np.random.choice(playable_actions)
        TD = R_new[current_state, next_state] + gamma * Q[next_state, 
np.argmax(Q[next_state,])] - Q[current_state, next_state]
        Q[current_state, next_state] = Q[current_state, next_state] + 
alpha * TD
    route = [starting_location]
    next_location = starting_location
    while (next_location != ending_location):
        starting_state = location_to_state[starting_location]
        next_state = np.argmax(Q[starting_state,])
        next_location = state_to_location[next_state]
        route.append(next_location)
        starting_location = next_location
    return route
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Perfect; part 2 is now ready! Here's part 2 of the final code in full:

# PART 2 - BUILDING THE AI SOLUTION WITH Q-LEARNING

# Making a mapping from the states to the locations
state_to_location = {state: location for location, state in location_
to_state.items()}

# Making a function that returns the shortest route from a starting to 
ending location
def route(starting_location, ending_location):
    R_new = np.copy(R)
    ending_state = location_to_state[ending_location]
    R_new[ending_state, ending_state] = 1000
    Q = np.array(np.zeros([12,12]))
    for i in range(1000):
        current_state = np.random.randint(0,12)
        playable_actions = []
        for j in range(12):
            if R_new[current_state, j] > 0:
                playable_actions.append(j)
        next_state = np.random.choice(playable_actions)
        TD = R_new[current_state, next_state] + gamma * Q[next_state, 
np.argmax(Q[next_state,])] - Q[current_state, next_state]
        Q[current_state, next_state] = Q[current_state, next_state] + 
alpha * TD
    route = [starting_location]
    next_location = starting_location
    while (next_location != ending_location):
        starting_state = location_to_state[starting_location]
        next_state = np.argmax(Q[starting_state,])
        next_location = state_to_location[next_state]
        route.append(next_location)
        starting_location = next_location
    return route

If you execute this new code several times with the start and end points of E and G, 
you'll get the same two possible optimal paths as before. You can also play around 
with the route() function and try out different starting and ending points. Try it out!

Improvement 2 – Adding an intermediate goal
Now, let's tackle the second improvement. There are three possible solutions to the 
problem of adding the option to go by the intermediate location K, the second top 
priority location. When you see them, you'll understand what I meant when I told 
you that everything in Reinforcement Learning works by the rewards. 
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Only one of the solutions works from every starting point, but I'd like to give you all 
three solutions to help reinforce your intuition. To help with that, here's a reminder 
of our warehouse layout:

Figure 8: Locations in the warehouse

Solution 1: Give a high reward to the action leading from location J to location K. 
This high reward must be larger than 1, and below 1,000. It must be larger than 1 so 
that the Q-learning process favors the action leading from J to K, as opposed to the 
action leading from J to F, which has a reward of 1. It must also be below 1,000 so 
that the highest reward stays on the top priority location, to make sure the AI ends 
up there. For example, in your rewards matrix you can give a high reward of 500 to 
the cell in the row of index 9 and the column of index 10, since that cell corresponds 
to the action leading from location J (state index 9) to location K (state index 10). 
That way, your AI robot will always go by location K when going from location 
E to location G. Here's how the matrix of rewards would look in that case:

# Defining the rewards
R = np.array([[0,1,0,0,0,0,0,0,0,0,0,0],
              [1,0,1,0,0,1,0,0,0,0,0,0],
              [0,1,0,0,0,0,1,0,0,0,0,0],
              [0,0,0,0,0,0,0,1,0,0,0,0],
              [0,0,0,0,0,0,0,0,1,0,0,0],
              [0,1,0,0,0,0,0,0,0,1,0,0],
              [0,0,1,0,0,0,1,1,0,0,0,0],
              [0,0,0,1,0,0,1,0,0,0,0,1],
              [0,0,0,0,1,0,0,0,0,1,0,0],
              [0,0,0,0,0,1,0,0,1,0,500,0],
              [0,0,0,0,0,0,0,0,0,1,0,1],
              [0,0,0,0,0,0,0,1,0,0,1,0]])
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This solution does not work in every case, and actually only works for starting points 
E, I, and J. That's because the 500 weight can only affect the decision of the AI as to 
whether or not it should go from J to K; it doesn't change how likely it is for the AI 
to go to J in the first place.

Solution 2: Give a bad reward to the action leading from location J to location F. 
This bad reward just has to be below 0. By punishing this action with a bad reward, 
the Q-learning process will never favor the action leading from J to F. For example, 
in your rewards matrix, you can give a bad reward of -500 to the cell in the row 
of index 9 and the column of index 5, since that cell corresponds to the action 
leading from location J (state index 9) to location F (state index 5). That way, your 
autonomous warehouse robot will never go from location J to location F on its way 
to location G. Here's how the matrix of rewards would look in that case:

# Defining the rewards
R = np.array([[0,1,0,0,0,0,0,0,0,0,0,0],
              [1,0,1,0,0,1,0,0,0,0,0,0],
              [0,1,0,0,0,0,1,0,0,0,0,0],
              [0,0,0,0,0,0,0,1,0,0,0,0],
              [0,0,0,0,0,0,0,0,1,0,0,0],
              [0,1,0,0,0,0,0,0,0,1,0,0],
              [0,0,1,0,0,0,1,1,0,0,0,0],
              [0,0,0,1,0,0,1,0,0,0,0,1],
              [0,0,0,0,1,0,0,0,0,1,0,0],
              [0,0,0,0,0,-500,0,0,1,0,1,0],
              [0,0,0,0,0,0,0,0,0,1,0,1],
              [0,0,0,0,0,0,0,1,0,0,1,0]])

This solution does not work in every case, and actually only works for starting points 
E, I, and J. Just as in solution 1, that's because the -500 weight can only affect the 
decision of the AI as to whether or not it should go from J to F; it doesn't change 
how likely it is for the AI to go to J in the first place.

Solution 3: Make an additional best_route() function, taking as inputs the three 
starting, intermediary, and ending locations, which will call your previous route() 
function twice; the first time from the starting location to the intermediary location, 
and a second time from the intermediary location to the ending location.

The first two solutions are easy to implement manually, but tricky to implement 
automatically. It is easy to automatically get the index of the intermediary location 
via which you want the AI to go, but it's difficult to get the index of the location that 
leads to that intermediary location, since it depends on the starting location and 
ending location. If you try to implement either the first or second solution, you'll 
see what I mean. Besides, solutions 1 and 2 do not work as global solutions. 
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Only solution 3 guarantees that the AI will visit an intermediate location before 
going to the final location.

Accordingly, we'll implement solution 3, which can be coded in just two extra lines 
of code, and which I included in Part 3 – Going into production:

# PART 3 - GOING INTO PRODUCTION

# Making the final function that returns the optimal route
def best_route(starting_location, intermediary_location, ending_
location):
    return route(starting_location, intermediary_location) + 
route(intermediary_location, ending_location)[1:]

# Printing the final route
print('Route:')
best_route('E', 'K', 'G')

Easy, right? Sometimes, the best solutions are the simplest ones. That's definitely the 
case here. As you can see, included in Part 3 is the code that runs the ultimate test. 
This test will be successful if the AI goes through location K while taking the shortest 
route from location E to location G. To test it, execute this whole new code as many 
times as you want; you'll always get the same, expected output:

Route:

['E', 'I', 'J', 'K', 'L', 'H', 'G']

Congratulations! You've developed a fully functional AI, powered by Q-learning, 
which solves an optimization problem for logistics. Using this AI robot, we can now 
go from any location to any new top priority location, while optimizing our paths 
to collect products in a second priority intermediary location. Not bad! If you get 
bored with logistics, feel free to imagine yourself back in the maze, and try the best_
route() function with whatever starting and ending points you would like, so you 
can see how flexible the AI you've created is. Have fun with it! And, of course, you 
have the full code available for you on the GitHub page.

Summary
In this chapter, you've implemented a Q-learning solution to a business problem. 
You had to find the best route to a certain location in your warehouse. Not only 
have you done that, but you've also implemented additional code that allowed 
your AI to make as many intermediary stops as you wanted. Based on the obtained 
rewards, your AI was able to find the best route going through these stops. That was 
Q-learning for warehouse robots. Now, let's move on to deep Q-learning!
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Going Pro with Artificial 
Brains – Deep Q-Learning

This next AI model is fantastic, because it is the first AI model that is really inspired 
by human intelligence. I hope you're ready to go pro on the next exciting step in your 
AI journey; this book is not only a crash course on AI, but also an introduction to 
deep learning.

Today, some of the top AI models integrate deep learning. They form a new branch 
of AI called deep Reinforcement Learning. The model we'll cover in this chapter 
belongs to that branch, and is called deep Q-learning. You already know what 
Q-learning is all about, but you might not know anything about deep learning and 
Artificial Neural Networks (ANNs); we'll start with them. Of course, if you are an 
expert in deep learning, you can skip the first sections of this chapter, but consider 
that a little refresher never hurt anyone.

Before we start going through the theory, you'll begin with real, working code 
written in Python. You'll create some AI first, and then I'll help you understand it 
afterwards. Right now, we're going to build an ANN to predict house prices.
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Predicting house prices
What we want to do is predict how much a certain house might cost, based on some 
variables. In order to do so you need to follow these four steps:

1. Get some historical data on house sales; for this example, you'll use a dataset 
of about 20,000 houses in Seattle.

2. Import this data to your code while applying some scaling to your variables 
(I'll explain scaling to you as we go).

3. Build an Artificial Neural Network using any library—you'll use Keras, as it 
is simple and reliable.

4. Train your ANN and get the results.

Now that you know the structure of your future code, you can start writing it. Since 
all the libraries that you'll use are available in Google Colab, you can easily use it to 
perform this task.

Uploading the dataset
Start by creating a new Google Colab notebook. Once we have created your new 
notebook, before you start coding anything, you have to upload your dataset. You 
can find this dataset, called kc_house_data.csv, on the GitHub repository in the 
Chapter 09 folder.

Figure 1: GitHub – Chapter 09
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Once you have done that, you can upload it to Colab by doing the following:

1. Click this little arrow here:

Figure 2: Google Colab – Uploading files (1/3)

2. In the window that pops up, go to Files. You should get something like this:

Figure 3: Google Colab – Uploading files (2/3)

3. Click on UPLOAD and then select the file location where you saved the  
kc_house_data dataset.
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4. After you have done that, you should get a new folder with our dataset,  
like this:

Figure 4: Google Colab – Uploading files (3/3)

Great! Now you can start coding.

Importing libraries
Every time you start coding something you ought to begin by importing the 
necessary libraries. Therefore, we start our code with these lines:

3 # Importing the libraries

4 import pandas as pd

5 import numpy as np

6 import keras

7 from sklearn.model_selection import train_test_split

8 from sklearn.preprocessing import MinMaxScaler

9 from keras.layers import Dense, Dropout

10 from keras.models import Sequential

11 from keras.optimizers import Adam

In lines 4 and 5, after the comment, you import the pandas and numpy libraries. 
Pandas will help you read the dataset and NumPy is very useful when you're 
dealing with arrays or lists; you'll use it to drop some unnecessary columns from 
your dataset.

In the two subsequent lines you import two useful tools from the Scikit-Learn 
library. The first one is a tool that will help split the dataset into a training set and 
a test set (you should always have both of them; the AI model is trained on the 
training set and then tested on the test set) and the second one is a scaler that will 
help you later when scaling values.
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Lines 9, 10, and 11 are responsible for importing the keras library, which you'll use 
in order to build a neural network. Each of these tools is used later in the code.

Now that you have imported your libraries you can read the dataset. Do it by using 
the Pandas library you imported before, with this one line:

13 # Importing the dataset

14 dataset = pd.read_csv('kc_house_data.csv')

Since you used pd as an abbreviation for the Pandas library when you imported it, 
you can use it to shorten your code. After you call the Pandas library with pd, you 
can use one of its functions, read_csv, which, as the name suggests, reads csv files. 
Then in the brackets you input the file name, which in your case is kc_house_data.
csv. No other arguments are needed.

Now I have a little exercise for you! Have a look at the dataset and try to judge which 
of the variables will matter for our price prediction. Believe me, not all of them are 
relevant. I strongly suggest that you try to do it alone even though we'll discuss them 
in the next section.

Excluding variables
Were you able to discern which variables are necessary and which are not? Don't 
worry if not; we'll explain them and their relevance right now.

The following table explains every column in our dataset:

Variable Description

Id Unique ID for each household

Date Date when the house was sold

Price How much the house cost when sold

Bedrooms Number of bedrooms

Bathrooms Number of bathrooms; 0.5 represents room with a toilet 
but no shower

Sqft_living Square footage of the apartment's interior living space

Sqft_lot Square footage of the land space

Floors Number of floors

Waterfront 0 if the apartment doesn't overlooking the waterfront, 1 
if it does
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Variable Description

View Value in the range 0-4 depending on how good the view 
of the property is

Condition Value from 1-5 defining the condition of the property

Grade Value from 1-13 indicating the design and construction 
of the building

Sqft_above The square footage of the interior housing space that is 
above ground level

Sqft_basement The square footage of the basement

Yr_built Year when the house was built 

Yr_renovated Year when the house was renovated (0 if wasn't)

Zipcode Zip code of the area house is located in

Lat Latitude

Long Longitude

Sqft_living15 The square footage of the interior housing living space 
for the nearest 15 neighbors

Sqft_lot15 Square footage of the land lots of the nearest 15 
neighbors

It turns out that from those 21 variables, only 18 count. That is because unique, 
category-like values do not have any impact on your prediction. That includes Id, 
Date, and Zipcode. Price is the target of your prediction, and therefore you should 
get rid of that from your variables as well. After all that, you have 17 independent 
variables.

Now that we have explained all the variables and decided which are relevant 
and which are not, you can go back to your code. You're going to exclude these 
unnecessary variables and split the dataset into the features and the target (in our 
case the target is price).

16 # Getting separately the features and the targets

17 X = dataset.iloc[:, 3:].values

18 X = X[:, np.r_[0:13,14:18]]

19 y = dataset.iloc[:, 2].values
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On line 17, you take all rows and all columns starting with the fourth one (since 
you're excluding Id, Date, Price) from your dataset and call this new set X. You use 
.iloc to slice the dataset, and then take .values to change it to a NumPy object. 
These will be your features.

Next you need to exclude Zipcode, which quite unfortunately is in the middle of the 
features set. That's why you have to use a NumPy function (np.r_) that separates 
X, excludes the columns you choose (in this case it is column 14. 13 is the index of 
this column, since indexes in Python start with zero; it's also worth mentioning that 
upper bounds are excluded in Python notation, which is why we write 0:13), and 
then connects them once again to form a new array. In the next line, you get the 
target of your prediction and call it y. This corresponds to the third column in your 
dataset, that is, Price.

Data preparation
Now that you've separated your important features and target, you can split your 
X and y into training and test sets. We do that with the following line:

21 # Splitting the dataset into a training set and a test set

22 X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size = 0.2, random_state = 0)

This is very important when doing any kind of machine learning. You always have 
to have a training set on which you train your model, and a test set on which you test 
it. You perform that operation using the train_test_split function you imported 
before. After doing that, you get X_train, which is of equal size to y_train, and 
each of them are exactly 80% of our previous X and y set. X_test and y_test are 
made up of the remaining 20% of X and y.

Now that you have both a training set and a test set, what do you think the next step 
is? Well, you have to scale your data.

Scaling data
Now you might be wondering why on earth you have to perform such an operation. 
You already have the data, so why not build and train the neural network already?

There's a problem with that; if we leave the data as it is, you'll notice that your ANN 
does not learn. The reason for that is because different variables will impact your 
prediction more or less depending on their values.
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Take this graph illustrating what I mean, based on a property that has 3 bedrooms 
and 1,350 square feet of living area.

Figure 5: Example for 3 bedrooms and 1350 square feet of living area

You can clearly see that the number of bedrooms won't affect the prediction as 
much as Sqft_living will. Even we humans cannot see any difference between zero 
bedrooms and three bedrooms on this graph. 

One of many solutions to this problem is to scale all variables to be in a range 
between 0 and 1. We achieve this by calculating this equation:

min
scaled

max min

x xx
x x
−

=
−

where:

• x – the value we are scaling in our case every value in a column
• xmin – minimum value across all in a column
• xmax – maximum value across all in a column
• xscaled – x after performing scaling
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After performing this scaling, our previous graph now looks something like this:

Figure 6: Same graph after scaling

Now we can undoubtedly say that the number of bedrooms will have a similar 
impact to Sqft_living. We can clearly see the difference between zero bedrooms  
and three bedrooms.

So, how do we implement that in code? Since you know the equation, I recommend 
that you try to do it yourself. Don't worry if you fail; I'll show you a very simple way 
to do it in the next paragraph.

If you were able to scale the data on your own, then congratulations! If not, follow 
along through this next section to see the answer. You might have noticed that you 
imported a class of Scikit-learn library called MinMaxScaler. You can use that class 
to scale the variables with the following code:

24 # Scaling the features

25 xscaler = MinMaxScaler(feature_range = (0,1))

26 X_train = xscaler.fit_transform(X_train)

27 X_test = xscaler.transform(X_test)

28

29 # Scaling the target

30 yscaler = MinMaxScaler(feature_range = (0,1))

31 y_train = yscaler.fit_transform(y_train.reshape(-1,1))

32 y_test = yscaler.transform(y_test.reshape(-1,1))
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This code creates two scalers, one to scale the features and one to scale the targets. 
Call them xscaler and yscaler. The feature_range argument is the range to 
which you want your data to be scaled (from 0 to 1 in your case).

Then you use the fit_transform method, which scales X_train and y_train and 
adjusts the scalers based on these sets (fit part of this method sets xmin and xmax). 
After that you use the transform method to scale X_test and y_test without 
adjusting yscaler and xscaler.

When scaling the y variables, you have to reshape them by using .reshape(-1,1) in 
order to create a fake second dimension (so the code can treat this one-dimensional 
array as a two-dimensional array with one column). We need this fake second 
dimension to avoid a format error.

If you still do not understand why we have to use scaling, please read this section 
once again. It'll also get clearer once we go through the theory.

Finally, you can proceed to building a neural network! Keep in mind that all the 
theory behind it will be covered later in the chapter, so don't be scared if you have 
trouble understanding something.

Building the neural network
To build the neural network, you can use a highly reliable and easy to use library 
called Keras. Let's get straight into coding it:

34 # Building the Artificial Neural Network

35 model = Sequential()

36 model.add(Dense(units = 64, kernel_initializer = 'uniform', 
activation = 'relu', input_dim = 17))

37 model.add(Dense(units = 16, kernel_initializer = 'uniform', 
activation = 'relu'))

38 model.add(Dense(units = 1, kernel_initializer = 'uniform', 
activation = 'relu'))

39 model.compile(optimizer = Adam(lr = 0.001), loss = 'mse', 
metrics = ['mean_absolute_error'])

In line 35 of the code block you instantiate your model by using the Sequential 
class from the Keras library. 

Next, you add a line that adds a new layer with 64 neurons to your neural network. 
kernel_initializer is an argument that defines the way the initial weights are 
created in the layer, activation is the activation function of this layer and input_
dim is the size of the input; in your case, these are the 17 features that define how 
much a house costs.
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Next, you add two more layers, one with 16 neurons and one with 1 neuron that will 
be the output of the neural network.

In the final line of this snippet you use the compile method, which describes how 
you want to train your net. Inside this compile method, optimizer is the tool that 
performs backpropagation, lr is the learning rate—the speed at which the weights 
in the ANN are updated. loss is how you want to calculate the error of the output (I 
have decided to go for the mean squared error mse), and metrics is just a value that 
will help you visualize performance—you can use mean absolute error.

If you don't know what I'm talking about right now, what activations, losses, and 
optimizers are, you don't have to worry. You'll understand them soon, when we get 
to the theory later in the chapter.

Training the neural network
Now that you've built your model, you can finally train it!

41 # Training the Artificial Neural Network

42 model.fit(X_train, y_train, batch_size = 32, epochs = 100, 
validation_data = (X_test, y_test))

This simple one-liner is responsible for learning.

As the first two arguments of this fit method, you input X_train and y_train which 
are the sets your model will be trained on. Then you have an argument called batch_
size; this defines after how many records in your dataset you update your weights 
(loss is summed up and back-propagated after batch_size inputs). Next you have 
epochs, and this value defines how many times you teach your model on the entire 
X_train and y_train set. The final argument is validation_data, and there, as you 
can see, you put X_test and y_test. This means that after every epoch, your model 
will be tested on this set, but it won't learn from it.

Displaying results
You're nearly there; you have just one last non-obligatory step to take. You calculate 
the absolute error on the test set and see its real, unscaled predictions (actual prices, 
not in the range (0,1)).

44 # Making predictions on the test set while reversing the scaling

45 y_test = yscaler.inverse_transform(y_test)

46 prediction = yscaler.inverse_transform(model.predict(X_test))

47

WOW! eBook 
www.wowebook.org



Going Pro with Artificial Brains – Deep Q-Learning

[ 124 ]

48 # Computing the error rate

49 error = abs(prediction - y_test)/y_test

50 print(np.mean(error))

You rescale back your y_test on line 45. Then, you make a prediction on your test 
set of features and rescale it back too, since the predictions are also scaled down.

In the last two lines you calculate the absolute error using the formula:

100%
prediction actualValue

Error
actualValue

−
= ∗

Since both prediction and y_test are NumPy arrays, you can divide them by simply 
using the / symbol. In the last line, you calculate the mean error using a NumPy 
function.

Superb! Now that you have it all finished, you can finally run this code and see  
the results.

Figure 7: Results

As you can see in the last line, your result is shown. In my case the average error was 
13.5%. That is a really good result!

Now we can get into the theory behind deep learning, and find out how a neural 
network really works.
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Deep learning theory
Here is our plan of attack to go pro and tackle deep learning:

1. The neuron
2. The activation function
3. How do neural networks work?
4. How do neural networks learn?
5. Forward-propagation and back-propagation
6. Gradient descent, including Batch, Stochastic, and Mini-Batch methods

I hope you're excited about this section—deep learning is an awesome and powerful 
field to study.

The neuron
The neuron is the basic building block of Artificial Neural Networks, and they are 
based on the neuron cells found the brain.

Biological neurons
In the following images are real-life neurons that have been smeared onto a slide, 
colored a little bit, and observed through a microscope:

Figure 8: The neuron

WOW! eBook 
www.wowebook.org



Going Pro with Artificial Brains – Deep Q-Learning

[ 126 ]

As you can see, they have the structure of a central body with lots of different 
branches coming out of it. The question is: How can we recreate that in a machine? 
We really want to recreate it in a machine, since the whole purpose of deep learning 
is to mimic how the human brain works in the hope that by doing so we create 
something amazing: a powerful infrastructure for learning machines.

Why do we hope for that? Because the human brain just happens to be one of the 
most powerful learning tools on the planet. We hope that if we recreate it, then we'll 
have something just as awesome as that.

Our challenge right now, our very first step in creating artificial neural networks, is 
to recreate a neuron. So how do we do it? Well, first of all let's take a closer look at 
what a neuron actually is. 

In 1899, the neuroscientist Santiago Ramón y Cajal dyed neurons in actual brain 
tissue, and looked at them under a microscope. While he was looking at them, he 
drew what he saw, which was something very much like the slides we looked at 
before. Today, technology has advanced quite a lot, allowing us to see neurons much 
more closely and in more detail. That means that we can draw what they look like 
diagrammatically:

Figure 9: The neuron's structure

This neuron exchanges signals between its neighbor neurons. The dendrites are the 
receivers of the signal and the axon is the transmitter of the signal.

The dendrites of the neuron are connected to the axons of other neurons above 
it. When the neuron fires, the signal travels down its axon and passes on to the 
dendrites of the next neuron. That is how they are connected, and how a neuron 
works. Now we can move from neuroscience to technology.
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Artificial neurons
Here's how a neuron is represented inside an Artificial Neural Network:

Figure 10: An Artificial Neural Network with a single neuron

Just like a human neuron, it gets some input signals and it has an output signal. The 
blue arrow connecting the input signals to the neuron, and the neuron to the output 
signal, are like the synapses in the human neuron.

Here in the artificial neuron, what exactly are the input and output signals going 
to be? The input signals are the scaled independent variables composing the 
states of the environment. For example, in the server cooling practical example 
we'll code later in this book (Chapter 11, AI for Business – Minimize Costs with Deep 
Q-Learning), these are the temperature of the server, the number of users, and the 
rate of data transmission. The output signal is the output values, which in a deep 
Q-learning model are always the Q-Values. Knowing all that, we can make a general 
representation of a neuron for machines:

Figure 11: Neuron – The output values

To finish describing the neuron, we need to add the last element missing from this 
representation, which is also the most important one: the weights.
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Each synapse (blue arrow) is attributed a weight. The larger the weight, the stronger 
the signal is through the synapse. What is fundamental to understand is that these 
weights are what the machine updates over time to improve its predictions. Let's add 
them to the previous graphic, to make sure you can visualize them well:

Figure 12: Neuron – The weights

That's the neuron. The next thing to understand is the activation function; the way 
the neuron decides what output to produce given a set of inputs.

The activation function
The activation function is the function � , operating inside the neuron, that takes 
as inputs the linear sum of the input values multiplied by their associated weights, 
and that returns the output value as shown in the following graphic:

Figure 13: The activation function
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such that:
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Your next question is probably: what exactly is the function �?

There can be many of them, but here we'll describe the three most used ones, 
including the one you'll use in the practical activity:

1. The threshold activation function
2. The sigmoid activation function
3. The rectifier activation function

Let's push your expertise further by having a look at them one by one.

The threshold activation function
The threshold activation function is simply defined by the following:

𝜙𝜙(𝑥𝑥) = 1 if 𝑥𝑥 ≥ 0

𝜙𝜙(𝑥𝑥) = 0 if 𝑥𝑥 < 0
 

and can be represented by the following curve:

Figure 14: The threshold activation function
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This means that the signal passing through the neuron is discontinuous, and will 
only be activated if:

∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 0
𝑚𝑚

𝑖𝑖=1
 

Now let's have a look at the next activation function: the sigmoid activation 
function. The sigmoid activation function is the most effective and widely used one 
in Artificial Neural Networks, but mostly in the last hidden layer that leads to the 
output layer.

The sigmoid activation function
The sigmoid activation function is defined by the following:

( ) 1
1 xx
e

φ −=
+

and can be represented by the following curve:

Figure 15: The sigmoid activation function
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This means that the signal passing through the neuron is continuous and will always 
be activated. And the higher the value of:

1

m

i i
i
w x

=
∑

the stronger the signal.

Now let's have a look at another widely used activation function: the rectifier 
activation function. You'll find it in most of the deep neural networks, but mostly 
inside the early hidden layers, as opposed to the sigmoid function, which is rather 
used for the last hidden layer leading to the output layer.

The rectifier activation function
The rectifier activation function is simply defined by the following:

( ) ( )max ,0x xφ =

and is therefore represented by the following curve:

Figure 16: The rectifier activation function
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This means that the signal passing through the neuron is continuous, and will only 
be activated if:

∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 0
𝑚𝑚

𝑖𝑖=1
 

The higher the weighted sum of inputs, the stronger the signal.

That raises the question: which activation function should you choose, or, as it's 
more frequently asked, how do you know which one to choose?

The good news is that the answer is simple. It actually depends on what gets 
returned as the dependent variable. If it's a binary outcome, 0 or 1, then a good 
choice would be the threshold activation function. If what you want returned is the 
probability that the dependent variable is 1, then the sigmoid activation function is 
an excellent choice, since its sigmoid curve is a perfect fit to model probabilities.

To recap, here's the small blueprint highlighted in this figure:

Figure 17: Activation function blueprint

Remember, the rectifier activation function should be used within the hidden layers of 
a deep neural network with more than one hidden layer, and the sigmoid activation 
function should be used in the last hidden layer leading to the output layer.
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Let's highlight this in the following figure so that you can visualize it and remember 
it better:

Figure 18: Different activation functions in different layers

We're progressing fast! You already know quite a lot about deep learning. It's not 
over yet though—let's move on to the next section to explain how neural networks 
actually work.

How do neural networks work?
To explain this, let's go back to the problem of predicting real estate prices. We had 
some independent variables which we were using to predict the price of houses and 
apartments. For simplicity's sake, and to be able to represent everything in a graph, 
let's say that our only independent variables (our predictors) are the following:

1. Area (square feet)
2. Number of bedrooms
3. Distance to city (miles)
4. Age
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Our dependent variable is the apartment price that we're predicting. Here's how the 
magic works in deep learning.

A weight is attributed to each of the independent, scaled variables in such a way that 
the higher the weight is, the more of an effect the independent variable will have on 
the dependent variable; that is, the stronger a predictor it will be of the dependent 
variable.

As soon as new inputs enter the neural network, the signals are forward-propagated 
from each of the inputs, reaching the neurons of the hidden layer.

Inside each neuron of the hidden layer, the activation function is applied, so that 
the lower the weight of the input, the more the activation function blocks the signal 
coming from that input, and the higher the weight of that input, the more the 
activation function lets that signal go through. 

Finally, all the signals coming from the hidden neurons, more or less blocked by the 
activation functions, are forward propagated to the output layer, to return the final 
outcome: the price prediction.

Here's a visualization of how that neural network works:

Figure 19: How Neural Networks work – Example in real estate price prediction

That covers half of the story. Now we know how a neural network works, we need 
to find out how it learns.
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How do neural networks learn?
Neural networks learn by updating, over many iterations, the weights of all the 
inputs and hidden neurons (when having several hidden layers), always towards the 
same goal: to reduce the loss error between the predictions and the actual values.

In order for neural networks to learn, we need the actual values, which are also 
called the targets. In our preceding example about real estate pricing, the actual 
values are the real prices of the houses and apartments taken from our dataset. These 
real prices depend on the independent variables listed previously (area, number of 
bedrooms, distance to city, and age), and the neural network learns to make better 
predictions of these prices, by running the following process:

1. The neural network forward propagates the signals coming from the inputs; 
independent variables 1x , 2x , 3x  and 4x .

2. Then it gets the predicted price ŷ in the output layer.
3. Then it computes the loss error, C, between the predicted price ŷ (prediction) 

and the actual price y (target):

( )21 ˆ
2

C y y= −

4. Then this loss error is back-propagated inside the neural network, from right 
to left in our representation.

5. Then, on each of the neurons, the neural network runs a technique called 
gradient descent (which we will discuss in the next section) to update the 
weights in the direction of loss reduction, that is, into new weights which 
reduce the loss error C.

6. Then this whole process is repeated many times, with each time new inputs 
and new targets, until we get the desired performance (early stopping) or the 
last iteration (the number of iterations chosen in the implementation).

Let's show the two main phases, forward-propagation and back-propagation, of this 
whole process in two separate graphics in the next section.

WOW! eBook 
www.wowebook.org



Going Pro with Artificial Brains – Deep Q-Learning

[ 136 ]

Forward-propagation and back-propagation
Phase 1: Forward-propagation:

Here's how the signal is forward-propagated throughout the artificial neural 
network, from the inputs to the output:

Figure 20: Forward-propagation

Once the signal's been propagated through the entire network, the loss error C is 
calculated so that it can be back-propagated.

Phase 2: Back-propagation:

And after forward-propagation comes back-propagation, during which the loss error 
C is propagated back into the neural network from the output to the inputs.

Figure 21: Back-propagation
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During back-propagation, the weights are updated to reduce the loss error C 
between the predictions (output value) and the targets (actual value). How are they 
updated? This is where gradient descent comes into play.

Gradient Descent
Gradient descent is an optimization technique that helps us find the minimum of a 
cost function, like the preceding loss error C we had:

( )21 ˆ
2

C y y= −

Let's visualize it in the most intuitive way, like the following ball in a bowl (with 
a little math sprinkled on top):

Figure 22: Gradient Descent (1/4)

Imagine this is a cross section of a bowl, into which we drop a small red ball and let 
it find its way down to the bottom of the bowl. After some time, it will stop rolling, 
when it finds the sweet spot at the bottom of the bowl.

You can think about gradient descent in the same way. It starts somewhere in the 
bowl (initial values of parameters) and tries to find the bottom of the bowl, or in 
other words, the minimum of a cost function.

Let's go through the example that is shown in the preceding image. The initial values 
of the parameters have set our ball at the position shown. Based on that we get some 
predictions, which we compare to our target values. The difference between these 
two sets is our loss for the current set of parameters.
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Then we calculate the first derivative of the cost function, with respect to the 
parameters. This is where the name gradient comes from. Here, this first derivative 
gives us the slope of the tangent to the curve where the ball is. If the gradient of the 
slope is negative, like on the preceding image, we take the next step to the right side. 
If the gradient of the slope is positive, we take the next step to the left side.

The name descent thus comes from the fact that we always take the next step that 
points downhill, as represented in the following graphic:

Figure 23: Gradient Descent (2/4)

In the next position our ball rests on a positive slope, so we have to take the next step 
to the left:

Figure 24: Gradient Descent (3/4)
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Eventually, by repeating the same steps, the ball will end up at the bottom of the bowl:

Figure 25: Gradient Descent (4/4)

And that's it! That's how gradient descent operates in one dimension (one parameter). 
Now you might ask: "Great, but how does this scale?" We saw an example of  
one-dimensional optimization, but what about two or even three dimensions?

It's an excellent question. gradient descent guarantees that this approach scales on 
as many dimensions as needed, provided the cost function is convex. In fact, if the 
cost function is convex, gradient descent will find the absolute minimum of the cost 
function. Following is an example in two dimensions:

Figure 26: Gradient Descent – Convergence guaranteed for convex cost functions
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However, if the cost function is not convex, gradient descent will only find a local 
minimum. Here is an example in three dimensions:

Figure 27: Example of non-convergence (right) for a non-convex function (left)

Now that we understand what gradient descent is all about, we can study the most 
advanced and most effective versions of it:

1. Batch gradient descent
2. Stochastic gradient descent
3. Mini-batch gradient descent

"Gradient descent", "batch gradient descent", "mini batch gradient descent", 
"stochastic gradient descent," there are so many terms and someone like you who's 
just starting may find themselves very confused. Don't worry—I've got your back.

The main difference between all of these versions of gradient descent is just the way 
we feed our data to a model, and how often we update our parameters (weights) to 
move our small red ball. Let's start by explaining batch gradient descent.

Batch gradient descent
Batch gradient descent is when we have a batch of inputs (as opposed to a single input) 
feeding the neural network, forward-propagating them to obtain in the end a batch of 
predictions, which themselves are compared to a batch of targets. The global loss error 
between the predictions and the targets of the two batches is then computed as the 
sum of the loss errors between each prediction and its associated target.
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That global loss is back-propagated into the neural network, where gradient descent 
or stochastic gradient descent is performed to update all the weights, according to 
how much they were responsible for that global loss error.

Here is an example of batch gradient descent. The problem to solve is about 
predicting the score (from 0 to 100 %) students get in an exam, based on the time 
spent studying (Study Hrs) and the time spent sleeping (Sleep Hrs):

Figure 28: Batch Gradient Descent

An important thing to note on this preceding graphic is that these are not multiple 
neural networks, but a single one represented by separate weight updates. As we can 
see in this example of batch gradient descent, we feed all of our data into the model 
at once.

This produces collective updates of the weights and fast optimization of the network. 
However, there is a bad side to this as well. There is, once again, the possibility of 
getting stuck in a local minimum, as we can see in the following graphic:

Figure 29: Getting stuck in a local minimum
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We explained the reason why this happens a bit earlier: it is because the cost function 
in the preceding graphic is not convex, and this type of optimization (simple gradient 
descent) requires the cost function to be convex. If that is not the case, we can find 
ourselves stuck in a local minimum and never find the global minimum with the 
optimal parameters. On the other hand, here is an example of a convex cost function, 
the same one as we saw earlier:

Figure 30: An example of a convex function

In simple terms, a function is convex if it has only one global minimum. And 
the graph of a convex function has the bowl shape. However, in most problems, 
including business problems, the cost function will not be convex (as in the following 
graphic example in 3D), and thus not allow simple gradient descent to perform well. 
This is where stochastic gradient descent comes into play.

Figure 31: Example of non-convergence (right) for a non-convex function (left)
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Stochastic gradient descent
Stochastic Gradient Descent (SGD) comes to save the day. It provides better results 
overall, preventing the algorithm from getting stuck in a local minimum. However, 
as its name suggests, it is stochastic, or in other words, random.

Because of this property, no matter how many times you run the algorithm, the 
process will always be slightly different, regardless of the initialization.

SGD does not run on the whole dataset at once, but instead input by input. The 
process goes like this:

1. Input a single observation.
2. Forward propagate that input to get a single prediction.
3. Compute the loss error between the prediction (output) and the target (actual 

value).
4. Back-propagate the loss error into the neural network.
5. Update the weights with gradient descent.
6. Repeat steps 1 to 5 through the whole dataset.

Let's show the first three iterations on the first three single inputs for the example we 
looked at earlier, predicting the scores in an exam:

First input row of observation:

Figure 32: Stochastic Gradient Descent – First input row of observation
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Second input row of observation:

Figure 33: Stochastic Gradient Descent – Second input row of observation

Third input row of observation:

Figure 34: Stochastic Gradient Descent – Third input row of observation

Each of the preceding three graphics is an example of one weight's update run by 
SGD. As we can see, each time we only input a single row of observation from our 
dataset to the neural network, then we update the weights accordingly and proceed 
to the next input row of observation.

At first glance, SGD seems slower, because we input each row separately. In reality, 
it's much faster, because we don't have to load the whole dataset in the memory, nor 
wait for the whole dataset to pass through the model updating the weights.
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To finish this section, let's recap the difference between batch gradient descent and 
SGD with the following graphic:

Figure 35: Batch Gradient Descent vs. Stochastic Gradient Descent

Now we can consider a middle-ground approach; mini-batch gradient descent.

Mini-batch gradient descent
Mini-batch gradient descent uses the best from both worlds, combining batch 
gradient descent with SGD. This is done by feeding the artificial neural network 
with small batches of data, instead of feeding single input rows of observations 
one by one or the whole dataset at once.

This approach is faster than classic SGD, and still prevents you from getting stuck 
in a local minimum. Mini-batch gradient descent also helps if you don't have enough 
computing resources to load the whole dataset in the memory, or enough processing 
power to get the full benefit of SGD.

That's all for neural networks! Now you're ready to combine your knowledge of 
neural networks with your knowledge of Q-learning.

Deep Q-learning
You've toured the foundations of deep learning, and you already know Q-learning; 
since deep Q-learning consists of combining Q-learning and deep learning, you're 
ready to get an intuitive grasp of deep Q-learning and crush it.

Before we start, try to guess some of how this is going to work. I would like you to 
take a moment and think about how you could integrate Q-learning into an ANN.
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First things first, you might have guessed what the inputs and outputs of the neural 
network are going to be. The input of the artificial neural network is of course 
going to be the input state, which could be a 1-dimensional vector encoding what 
is happening in the environment, or an image (like the ones seen by a self-driving 
car). And the output is going to be the set of Q-values for each action, meaning it is 
going to be a 1-dimensional vector of several Q-values, one for each action that can 
be performed. Then, just like before, the AI takes the action that has the maximum 
Q-value, and performs it.

Very simply, that means that instead of predicting the Q-values through iterative 
updates with the Bellman equation (simple Q-learning), we'll predict them with an 
ANN that takes as inputs the input states, and returns as output the Q-values of the 
different actions.

That raises the question: it's good that we know what to predict, but what are going 
to be the targets (actual values) of these predictions when we are training the AI? 
As a reminder, the target is the actual value, or what you want your prediction to be 
ideally: the closer your prediction is to the target, the more it is correct. That's why 
we compute the loss error C between the prediction and the target, in order to reduce 
it through back-propagation with stochastic or mini-batch gradient descent.

When we were doing simple property price prediction, it was obvious what the 
targets were. They were simply the prices in the dataset that were available to us. 
But what about the targets of Q-values when you are training a self-driving car, for 
example? It's not that obvious, even though it is an explicit function of the Q-values 
and the reward.

The answer is a fundamental formula in deep Q-learning. The target of an input state 
ts  is:

( ) ( )( )1, max ,t t t
a

R s a Q s a++ γ

where ( ),t tR s a  is the last reward obtained and γ is the discount factor, as seen 
previously.

Do you recognize the formula of the target? If you remember Q-learning, you should 
have no problem answering this question.
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It's in the temporal difference, of course! Remember, the temporal difference is 
defined by:

( ) ( ) ( )( ) ( )1, , max , ,t t t t t t t t
a

TD s a R s a Q s a Q s a+= + γ −

So now it's obvious. The target is simply the first element at the left of the temporal 
difference:

( ) ( )( )1Target = , max ,t t t
a

R s a Q s a++ γ

so that we get:

( ) ( ), Target , Target Predictiont t t t tTD s a Q s a= − = −

Note that at the beginning, the Q-values are null, so the target is simply the reward.

There's one more piece to the puzzle before we can say that we really understand 
deep Q-learning; the Softmax method.

The Softmax method
This is the missing piece before we're ready to assemble everything for deep 
Q-learning. The Softmax method is the way we're going to select the action to 
perform after predicting the Q-values. In Q-learning, that was simple; the action 
performed was the one with the highest Q-value. That was the argmax method. 
In deep Q-learning, things are different. The problems are usually more complex,  
and so, in order to find an optimal solution, we must go through a process  
called Exploration.

Exploration consists of the following: instead of performing the action that has 
the maximum Q-value (which is called Exploitation), we're going to give each action 
a probability proportional to its Q-value, such that the higher the Q-value, the higher 
the probability. This creates, exactly, a distribution of the performable actions. 
Then finally, the action performed will be selected as a random draw from that 
distribution. Let me explain with an example.

Let's imagine we are building a self-driving car (we actually will, in Chapter 10, AI 
for Autonomous Vehicles - Build a Self-Driving Car). Let's say that the possible actions 
to perform are simple: move forward, turn left or turn right.
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Then, at a specific time, let's say that our AI predicts the following Q-values:

Move Forward Turn Left Turn Right

24 38 11

The way we can create the distribution of probabilities we need is by dividing each 
Q-value by the sum of the three Q-values, which results each time in the probability 
of a particular action. Let's perform those sums:

Probability of Moving Forward = 24
24 + 38 + 11 = 33% 

Probability of Turning Left = 38
24 + 38 + 11 = 52% 

11Probability of TurningRight 15%
24 38 11

= =
+ +

Perfect—the probabilities sum to 1 and they are proportional to the Q-values. That 
gives us a distribution of the actions. To perform an action, the Softmax method 
takes a random draw from this distribution, such that:

• The action of Moving Forward has a 33% chance of being selected.
• The action of Turning Left has a 52% chance of being selected.
• The action of Turning Right has a 15% chance of being selected.

Can you feel the difference between Softmax and argmax, and do you understand 
why it is called Exploration instead of Exploitation? With argmax, the action Turn 
Left would be the one performed with absolute certainty. That's Exploitation. But 
with Softmax, even though the action Turn Left is the one with the highest chance 
of being selected, there's still a chance that the other actions might be selected.

Now, of course, the question is: why do we want to do that? It's simply because 
we want to explore the other actions, in case they lead to transitions resulting in 
higher rewards than we would obtain with pure exploitation. That often happens 
with complex problems, which are the ones for which deep Q-learning is used to 
find a solution. deep Q-learning finds that solution thanks to its advanced model, 
but also through exploration of the actions. This is a technique in AI called Policy 
Exploration.

As before, the next step is a step back. We're going to recap how deep Q-learning 
works.
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Deep Q-learning recap
Deep Q-learning consists of combining Q-learning with an ANN.

Inputs are encoded vectors, each one defining a state of the environment. These 
inputs go into an ANN, where the output contains the predicted Q-values for each 
action.

More precisely, if there are n possible actions the AI could take, the output of 
the artificial neural network is a 1D vector comprised of n elements, each one 
corresponding to the Q-values of each action that could be performed in the current 
state. Then, the action performed is chosen via the Softmax method.

Hence, in each state ts :

1. The prediction is the Q-value ( ),t tQ s a , where ta  is performed by the Softmax 
method.

2. The target is ( ) ( )( )1, max ,t t t
a

R s a Q s a++ γ .

3. The loss error between the prediction and the target is the square of the 
temporal difference:

( ) ( )( ) ( ) ( )
2

2
1

1 1Loss = , max , , ,
2 2t t t t t t t t

a
R s a Q s a Q s a TD s a+
 + γ − = 
 

This loss error is back-propagated into the neural network, and the weights are 
updated according to how much they contributed to the error, through stochastic 
or mini-batch gradient descent.

Experience replay
You might noticed that so far we have only considered transitions from one state 

ts  to the next state 1ts + . The problem with this is that ts  is most of the time very 
correlated with 1ts + ; therefore, the neural network is not learning much.

This could be improved if, instead of only considering the last transition each time, 
we considered the last m transitions, where m is a large number. This set of the last m 
transitions is what is called the experience replay memory, or simply memory. From 
this memory we sample some random transitions into small batches. Then we train 
the neural network with these batches to then update the weights through mini-
batch gradient descent.
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The whole deep Q-learning algorithm
Let's summarize the different steps of the whole deep Q-learning process.

Initialization:

1. Initialize the memory of the experience replay to an empty list M.
2. Choose a maximum size for the memory.

At each time t, we repeat the following process, until the end of the epoch:

1. Predict the Q-values of the current state ts .
2. Perform the action selected by the Softmax method:

( ){ }Softmax ,t ta
a Q s a=

3. Get the reward ( ),t tR s a .
4. Reach the next state 1ts + .
5. Append the transition ( )1, , ,t t t ts a r s +  to the memory M.
6. Take a random batch B M⊂  of transitions. For all the transitions 

( )1, , ,
B B B Bt t t ts a r s +  of the random batch B:

 ° Get the predictions: ( ),
B Bt tQ s a

 ° Get the targets: ( ) ( )( )1, max ,
B B Bt t t

a
R s a Q s a++ γ

 ° Compute the loss between the predictions and the targets, over the whole 
batch B:

( ) ( )( ) ( ) ( )
2 2

1
1 1Loss = , max , , ,
2 2B B B B B B B Bt t t t t t t t

aB B
R s a Q s a Q s a TD s a+
 + γ − = 
 ∑ ∑

 ° Back-propagate this loss error back into the neural network, and through 
stochastic gradient descent, update the weights according to how much 
they contributed to the loss error.
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You've just unlocked the full deep Q-learning process! That means that you are now 
able to build powerful real-world AI applications in many fields. Here's a tour of 
some of the applications where deep Q-learning can create significant added value:

1. Energy: It was a deep Q-learning model that the DeepMind AI used to 
reduce Google's Data Center cooling bill by 40%. Also, deep Q-learning can 
optimize the functioning of smart grids; in other words, it can make smart 
grids even smarter.

2. Transport: Deep Q-learning can optimize traffic light control in order to 
reduce traffic.

3. Autonomous Vehicles: Deep Q-learning can be used to build self-driving 
cars, which we will illustrate in the next chapter of this book.

4. Robotics: Today, many advanced robots are built with deep Q-learning.
5. And much more: Chemistry, recommender systems, advertising, and many 

more—even video games, as you'll discover in Chapter 13, AI for Games – 
Become the Master at Snake, when you use deep convolutional Q-learning 
to train an AI to play Snake.

Summary
You learned a lot in this chapter; we first discussed ANNs. ANNs are built 
from neurons put in multiple layers. Each neuron from one layer is connected 
to every neuron from the previous layer, and every layer has its own activation 
function—a function that decides how much each output signal should be blocked.

The step in which an ANN works out the prediction is called forward-propagation 
and the step in which it learns is called back-propagation. There are three main types 
of back-propagation: batch gradient descent, stochastic gradient descent, and the 
best one, mini-batch gradient descent, which mixes the advantages of both previous 
methods.

The last thing we talked about in this chapter was deep Q-learning. This method 
uses Neural Networks to predict the Q-Values of taking certain actions. We also 
mentioned the experience replay memory, which stores a huge chunk of experience 
for our AI.

In the next chapter, you'll put all of this into practice by coding your very own self-
driving car.

WOW! eBook 
www.wowebook.org



WOW! eBook 
www.wowebook.org



[ 153 ]

AI for Autonomous Vehicles – 
Build a Self-Driving Car

I'm really pumped up for you to start this new chapter. It's probably the most 
challenging, and most fun, adventure we'll have in this book. You're literally 
about to build a self-driving car from scratch, on a 2D map, using the powerful 
deep Q-learning model. I think that's incredibly exciting!

Think fast; what's our first step?

If you answered "building the environment," you're absolutely right. I hope that's 
getting so familiar to you that you answered before I even finished the question. 
Let's start by building an environment in which a car can learn how to drive by itself.

Building the environment
This time, we have much more to define than just the states, actions, and rewards. 
Building a self-driving car is a seriously complex problem. Now, I'm not going to ask 
you to go to your garage and turn yourself into a hybrid AI mechanic; you're simply 
going to build a virtual self-driving car that moves around a 2D map.

You'll build this 2D map inside a Kivy web app. Kivy is a free and open source 
Python framework, used for the development of applications like games, or really 
any kind of mobile app. Check out the website here: https://kivy.org/#home.

The whole environment for this project is built with Kivy, from start to finish. The 
development of the map and the virtual car has nothing to do with AI, so we won't 
go line by line through the code that implements it. 
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However, I am going to describe the features of the map. For those of you curious to 
know about exactly how the map is built, I've provided a fully commented Python 
file in the GitHub named map_commented.py that builds the environment from 
scratch with a full explanation.

Before we look at all the features, let's have a look at this map with the little virtual 
car inside:

Figure 1: The map

The first thing you'll notice is a black screen, which is the Kivy user interface. You 
build your games or apps inside this interface. As you might guess, it's actually the 
container of the whole environment.

You can see something weird inside, a white rectangle with three colored dots 
in front of it. Well, that's the car! My apologies for not being a better artist, but it's 
important to keep things simple. The white little rectangle is the shape of the car, 
and the three little dots are the sensors of the car. Why do we need sensors? Because 
on this map, we will have the option to build roads, delimited by sand, which the car 
will have to avoid going through.

To put some sand on the map, simply keep pressing left with your mouse and draw 
whatever you want. It doesn't have to just be roads; you can add some obstacles as 
well. In any case, the car will have to avoid going through the sand. 
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If you remember that everything works from the rewards, I'm sure you already 
know how to make that happen; it's by penalizing the self-driving car with a bad 
reward when it goes onto the sand. We'll take care of that later. In the meantime, 
let's have a look at one of my nice drawings of roads with sand:

Figure 2: Map with a drawn road

The sensors are there to detect the sand, so the car can avoid it. The blue sensor 
covers an area at the left of the car, the red sensor covers an area at the front of the 
car, and the yellow sensor covers an area at the right of the car.

Finally, there are three buttons to click on at the bottom left corner of the screen, 
which are:

clear: Removes all the sand drawn on the map

save: Saves the weights (parameters) of the AI

load: Loads the last saved weights

Now we've had a look at our little map, let's move on to defining our goals.
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Defining the goal
We understand that our goal is to build a self-driving car. Good. But how are 
we going to formalize that goal, in terms of AI and reinforcement learning? Your 
intuition should hopefully make you think about the rewards we're going to set. 
I agree—we're going to give a high reward to our car if it manages to self-drive. 
But how can we tell that it's managing to self-drive?

We've got plenty of ways to evaluate this. For example, we could simply draw some 
obstacles on the map, and train our self-driving car to move around the map without 
hitting the obstacles. That's a simple challenge, but we could try something a little 
more fun. Remember the road I drew earlier? How about we train our car to go from 
the upper left corner of the map, to the bottom right corner, through any road we 
build between these two spots? That's a real challenge, and that's what we'll do. Let's 
imagine that the map is a city, where the upper left corner is the Airport, and the 
bottom right corner is Downtown:

Figure 3: The two destinations – Airport and Downtown
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Now we can clearly formulate a goal; to train the self-driving car to make round 
trips between the Airport and Downtown. As soon as it reaches the Airport, it will 
then have to go to Downtown, and as soon as it reaches Downtown, it will then 
have to go to the Airport. More than that, it should be able to make these round trips 
along any road connecting these two locations. It should also be able to cope with 
any obstacles along that road it has to avoid. Here is an example of another, more 
challenging road:

Figure 4: A more challenging road
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If you think that road look too easy, here's a more challenging example; this time 
with not only a more difficult road but also many obstacles:

Figure 5: An even more challenging road

As a final example, I want to share this last map, designed by one of my students, 
which could belong in the movie Inception:
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Figure 6: The most challenging road ever

If you look closely, it's still a path that goes from Airport to Downtown and vice 
versa, just much more challenging. The AI we create will be able to cope with any 
of these maps.

I hope you find that as exciting as I do! Keep that level of energy up, because we 
have quite a lot of work to do.
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Setting the parameters
Before you define the input states, the output actions, and the rewards, you must set 
all of the parameters of the map and the car that will be part of your environment. 
The inputs, outputs, and rewards are all functions of these parameters. Let's list them 
all, using the same names as in the code, so that you can easily understand the file 
map.py:

1. angle: The angle between the x-axis of the map and the axis of the car
2. rotation: The last rotation made by the car (we will see later that when 

playing an action, the car makes a rotation)
3. pos = (self.car.x, self.car.y): The position of the car (self.car.x is the 

x-coordinate of the car, self.car.y is the y-coordinate of the car)
4. velocity = (velocity_x, velocity_y): The velocity vector of the car
5. sensor1 = (sensor1_x, sensor1_y): The position of the first sensor
6. sensor2 = (sensor2_x, sensor2_y): The position of the second sensor
7. sensor3 = (sensor3_x, sensor3_y): The position of the third sensor
8. signal1: The signal received by sensor 1
9. signal2: The signal received by sensor 2
10. signal3: The signal received by sensor 3

Now let's slow down; we've got to define how these signals are computed. The 
signals are a measure of the density of sand around their sensor. How are you going 
to compute that density? You start by introducing a new variable, called sand, which 
you initialize as an array that has as many cells as our graphic interface has pixels. 
Simply put, the sand array is the black map itself and the pixels are the cells of the 
array. Then, each cell of the sand array will get a 1 if there is sand, and a 0 if there 
is not.

For example, here the sand array has only 1s in its first few rows, and the rest 
is all 0s:
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Figure 7: The map with only sand in the first rows

I know the border is a little wobbly—like I said, I'm no great artist—and that just 
means those rows of the sand array would have 1s where the sand is and 0s where 
there's no sand.

Now that you have this sand array it's very easy to compute the density of sand 
around each sensor. You surround your sensor by a square of 20 by 20 cells (which 
the sensor reads from the sand array), then you count the number of ones in these 
cells, and finally you divide that number by the total number of cells in that square, 
that is, 20 x 20 = 400 cells.
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Since the sand array only contains 1s (where there's sand) and 0s (where there's no 
sand), we can very easily count the number of 1s by simply summing the cells of the 
sand array in this 20 by 20 square. That gives us exactly the density of sand around 
each sensor, and that's what's computed at lines 81, 82, and 83 in the map.py file:

81         self.signal1 = int(np.sum(sand[int(self.sensor1_x)-
10:int(self.sensor1_x)+10, int(self.sensor1_y)-10:int(self.
sensor1_y)+10]))/400.

82         self.signal2 = int(np.sum(sand[int(self.sensor2_x)-
10:int(self.sensor2_x)+10, int(self.sensor2_y)-10:int(self.
sensor2_y)+10]))/400.

83         self.signal3 = int(np.sum(sand[int(self.sensor3_x)-
10:int(self.sensor3_x)+10, int(self.sensor3_y)-10:int(self.
sensor3_y)+10]))/400.

Now that we've covered how the signals are computed, let's continue with the rest 
of the parameters. The last parameters, which I've highlighted in the list below, are 
important because they're the last pieces that we need to reveal the final input state 
vector. Here they are:

1. goal_x: The x-coordinate of the goal (which can either be the Airport or 
Downtown)

2. goal_y: The y-coordinate of the goal (which can either be the Airport or 
Downtown)

3. xx = (goal_x - self.car.x): The difference of x-coordinates between the goal 
and the car

4. yy = (goal_y - self.car.y): The difference of y-coordinates between the goal 
and the car

5. orientation: The angle that measures the direction of the car with respect 
to the goal

Let's slow down again for a moment. We need to know how orientation is computed; 
it's the angle between the axis of the car (the velocity vector from our first list 
of parameters) and the axis that joins the goal and the center of the car. The goal has 
the coordinates (goal_x, goal_y) and the center of the car has the coordinates (self.
car.x, self.car.y). For example, if the car is heading perfectly toward the goal, 
then orientation = 0°. If you're curious as to how we can compute the angle between 
the two axes in Python, here's the code that gets the orientation (lines 126, 127, and 
128 in the map.py file):

126         xx = goal_x - self.car.x

127         yy = goal_y - self.car.y

128         orientation = Vector(*self.car.velocity).
angle((xx,yy))/180.
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Good news—we're finally ready to define the main pillars of the environment. 
I'm talking, of course, about the input states, the actions, and the rewards.

Before I define them, try to guess what they're going to be. Check out all the 
preceding parameters again, and remember the goal: making round trips between 
two locations, the Airport and Downtown, while avoiding any obstacles along the 
road. The solution's in the next section.

The input states
What do you think the input states are? You might have answered "the position 
of the car." In that case, the input state would be a vector of two elements, the 
coordinates of the car: self.car.x and self.car.y.

That's a good start. From the intuition and foundation techniques of deep Q-learning 
you learned in Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning, you know 
that when you're doing deep Q-learning, the input state doesn't have to be a single 
element as in Q-learning. In fact, in deep Q-learning the input state can be a vector 
of many elements, allowing you to supply many sources of information to your AI 
to help it predict smart actions to play.

We can do better than just supplying the car position coordinates. They tell us where 
the self-driving car is located, but there's another parameter that's better, simpler, 
and more directly related to the goal. I'm talking about the orientation variable. 
The orientation is a single input that directly tells us if we are pointed in the right 
direction, toward the goal. If we have that orientation, we don't need the car position 
coordinates at all to navigate toward the goal; we can just change the orientation by 
a certain angle to point the car more in the direction of the goal. The actions that the 
AI performs will be what changes that orientation. We'll discuss those in the next 
section.

We have the first element of our input state: the orientation.

But that's not enough. Remember that we also have another goal, or, should I say, 
constraint. Our car needs to stay on the road and avoid any obstacles along that road. 

The input state can even be bigger than a simple vector: it can be 
an image! In that case, the AI model is called deep convolutional 
Q-learning. It's the same as deep Q-learning, except that you add a 
convolutional neural network at the entrance of the neural network 
that allows your AI (machine) to visualize images. We'll cover this 
technique in Chapter 12, Deep Convolution Q-Learning.
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In the input state, we need information telling the AI whether it is about to move 
off the road or hit an obstacle. Try and work it out for yourself—do we have a way 
to get this information?

The solution is the sensors. Remember that our car has three sensors giving us 
signals about how much sand is around them. The blue sensor tells us if there's any 
sand at the left of the car, the red sensor tells us if there is any sand in front of the 
car, and the yellow sensor tells us if there is any sand at the right of the car. The 
signals of these sensors are already coded into three variables: signal1, signal2, 
and signal3. These signals will tell the AI if it's about to hit some obstacle or about 
to get out of the road, since the road is delimited by sand. 

That's the rest of the information you need for your input state. With these four 
elements, signal1, signal2, signal3, and orientation, you have everything 
you need to be able to drive from one location to another, while staying on the road, 
and without hitting any obstacles.

In conclusion, here's what the input state is going to be at each time:

Input state = (orientation, signal1, signal2, signal3)

And that's exactly what's coded at line 129 in the map.py file:

129         state = [orientation, self.car.signal1, self.car.
signal2, self.car.signal3]

state is the variable name given to the input state.

We've covered the input state; now let's tackle the actions.

Don't worry too much about the code syntax difference between 
signal, self.signal, and self.car.signal; they're all the 
same. The reason we use these different variables is because the AI 
is coded with classes (as in Object Oriented Programming (OOP)), 
which allows us to create several self-driving cars on the same map. 

If you do want to have several self-driving cars on your map, for 
example, if you want them racing, then you can distinguish the cars 
better thanks to self.car.signal. For example, if you have two 
cars, you can name the two objects car1 and car2 so that you can 
distinguish the first sensor signals of the two cars, by using self.
car1.signal1 and self.car2.signal1. In this chapter, we 
just have one car, so whether we use signal1, car.signal1 or 
self.car.signal1, we get the same thing.
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The output actions
I've already briefly mentioned or suggested what the actions are going to be. Given 
our input state, it's easy to guess. Naturally, since you're building a self-driving car, 
you might think that the actions should be: move forward, turn left, or turn right. 
You'd be absolutely right! That's exactly what the actions are going to be.

Not only is this intuitive, but it aligns extremely well with our choice of input states. 
They contain the orientation variable that tells us if we're aimed in the right 
direction toward the goal. Simply put, if the orientation input tells us our car 
is pointed in the right direction, we perform the action of moving forward. If the 
orientation input tells us that the goal is on the right of our car, we perform the 
action of turning right. Finally, if the orientation tells us that the goal is on the 
left of our car, we perform the action of turning left.

At the same time, if any of the signals spot some sand around the car, the car will 
turn left or right to avoid it. The three possible actions of move forward, turn left, 
and turn right make logical sense with the goal, constraint, and input states we 
have, and we can define them as the three following rotations:

rotations = [turn 0° (that is, move forward), turn 20° to the left, turn 20° to the right]

The choice of 20° is quite arbitrary. You could very well choose 10°, 30°, or 40°. 
I'd avoid more than 40°, because then your car would have twitchy, fidgety 
movements, and wouldn't look like a smoothly moving car.

However, the actions the ANN outputs will not be 0°, 20°, and -20°; they will be 0, 
1 and 2.

actions = [0, 1, 2]

It's always better to use simple categories like those when you're dealing with the 
output of an artificial neural network. Since 0, 1, and 2 will be the actions the AI 
returns, how do you think we end up with the rotations?

You'll use a simple mapping, called action2rotation in our code, which maps the 
actions 0, 1, 2 to the respective rotations of 0°, 20°, -20°. This is exactly what's coded 
on lines 34 and 131 of the map.py file:

34 action2rotation = [0,20,-20]

131         rotation = action2rotation[action]
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Now, let's move on to the rewards. This one's going to be fun, because this is where 
you decide how you want to reward or punish your car. Try to figure out how 
by yourself first, and then take a look at the solution in the following section.

The rewards
To define the system of rewards, we have to answer the following questions:

• In which cases do we give the AI a good reward? How good for each case?
• In which cases do we give the AI a bad reward? How bad for each case?

To answer these questions, we must simply remember what the goal and 
constraints are:

• The goal is to make round trips between the Airport and Downtown.
• The constraints are to stay on the road and avoid obstacles if any. In other 

words, the constraint is to stay away from the sand.

Hence, based on this goal and constraints, the answers to our preceding 
questions are:

1. We give the AI a good reward when it gets closer to the destination.
2. We give the AI a bad reward when it gets further away from the destination.
3. We give the AI a bad reward if it's about to drive onto some sand.

That's it! That should work, because these good and bad rewards have a direct effect 
on the goal and constraints.

To answer the second part of each question, how good and how bad the reward 
should be for each case, we'll play the tough card; it's often more effective. The tough 
card consists of punishing the car more when it makes mistakes than we reward it 
when it does well. In other words, the bad reward is going to be stronger than the 
good reward.

This works well in reinforcement learning, but that doesn't mean you should do 
the same with your dog or your kids. When you're dealing with a biological system, 
the other way around (high good reward and small bad reward) is a much more 
effective way to train or educate. Just food for thought.

On that note, here are the rewards we'll give in each case:

1. The AI gets a bad reward of -1 if it drives onto some sand. Nasty!
2. The AI gets a bad reward of -0.2 if it moves away from the destination.
3. The AI gets a good reward of 0.1 if it moves closer to the destination.
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The reason we attribute the worst reward (-1) to the case when the car drives onto 
some sand makes sense. Driving onto sand is what we absolutely want to avoid. 
The sand on the map represents obstacles in real life; in real life, you would train 
your self-driving car not to hit any obstacle, so as to avoid any accident. To do so, 
we penalize the AI with a highly bad reward when it does hit an obstacle during 
its training.

How's that translated that into code? That's easy; you just take your sand array and 
check if the car has just moved onto a cell that contains a 1. If it does, that means the 
car has moved onto some sand and must therefore get a bad reward of -1. That's 
exactly what's coded here at lines 138, 139, and 140 of the map.py file (including an 
update of the car velocity vector, which not only updates the speed by slowing the 
car down to 1, but also updates the direction of the car by a certain angle, self.car.
angle):

138         if sand[int(self.car.x),int(self.car.y)] > 0:

139             self.car.velocity = Vector(1, 0).rotate(self.car.
angle)

140             reward = -1

Then for the other reward attributions, you just have to complete the if condition 
preceding with an else, which will say what happens in the case where the car has 
not driven onto some sand.

In that case, you start a new if and else condition, saying that if the car has moved 
away from the destination, you give it a bad reward of -0.2, and, if the car has 
moved closer to the destination, you give it a good reward of 0.1. The way you 
measure if the car is getting away from or closer to the goal is by comparing two 
distances put into two separate variables: last_distance, which is the previous 
distance between the car and the destination at time t-1, and distance, which is 
the current distance between the car and the destination at time t. If you put all that 
together, you get the following code, which completes the preceding lines of code:

138         if sand[int(self.car.x),int(self.car.y)] > 0:

139             self.car.velocity = Vector(1, 0).rotate(self.car.
angle)

140             reward = -1

141         else:

142             self.car.velocity = Vector(6, 0).rotate(self.car.
angle)

143             reward = -0.2

144             if distance < last_distance:

145                 reward = 0.1
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To keep the car from trying to veer off the map, lines 147 to 158 of the map.py file 
punish the AI with a bad reward of -1 if the self-driving car gets within 10 pixels 
of any of the map's 4 borders of the map. Finally, lines 160 to 162 of the map.py file 
update the goal, switching it from the Airport to Downtown, or vice versa, anytime 
the car gets within 100 pixels of the current goal.

AI solution refresher
Let's refresh our memory by reminding ourselves of the steps of the deep Q-learning 
process, while adapting them to our self-driving car application.

Initialization:

1. The memory of the experience replay is initialized to an empty list, called 
memory in the code.

2. The maximum size of the memory is set, called capacity in the code.

At each time t, the AI repeats the following process, until the end of the epoch:

1. The AI predicts the Q-values of the current state st. Therefore, since three 
actions can be played (0 <-> 0°, 1 <-> 20°, or 2 <-> -20°), it gets three 
predicted Q-values.

2. The AI performs an action selected by the Softmax method (see Chapter 5, 
Your First AI Model – Beware the Bandits!):

( ){ }Softmax ,t ta
a Q s a=

3. The AI receives a reward ( ),t tR s a , which is one of -1, -0.2 or +0.1.
4. The AI reaches the next state 1ts + , which is composed of the next three signals 

from the three sensors, plus the orientation of the car.
5. The AI appends the transition ( )1, , ,t t t ts a r s +  to the memory.
6. The AI takes a random batch B M⊂  of transitions. For all the transitions 

( )1, , ,
B B B Bt t t ts a r s +  of the random batch B:

 ° The AI gets the predictions: ( ),
B Bt tQ s a

 ° The AI gets the targets: ( ) ( )( )1, max ,
B B Bt t t

a
R s a Q s aγ ++

 ° The AI computes the loss between the predictions and the targets over 
the whole batch B:
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( ) ( )( ) ( ) ( )
2 2

1
1 1, max , , ,
2 2B B B B B B B Bt t t t t t t t

aB B
Loss R s a Q s a Q s a TD s aγ +

 = + − = 
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 ° Finally, the AI backpropagates this loss error into the neural network, 
and through stochastic gradient descent updates the weights according 
to how much they contributed to the loss error.

Implementation
Now it's time for the implementation! The first thing you need is a professional 
toolkit, because you're not going to build an artificial brain with simple Python 
libraries. What you need is an advanced framework, which allows fast computation 
for the training of neural networks.

Today, the best frameworks to build and train AIs are TensorFlow (by Google) 
and PyTorch (by Facebook). How should you choose between the two? They're both 
great to work with and equally powerful. They both have dynamic graphs, which 
allow the fast computation of the gradients of complex functions needed to train the 
model during backpropagation with mini-batch gradient descent. Really, it doesn't 
matter which framework you choose; both work very well for our self-driving 
car. As far as I'm concerned, I have slightly more experience with PyTorch, so I'm 
going to opt for PyTorch and that's how the example in this chapter will continue 
to play out.

To take a step back, our self-driving car implementation is composed of three Python 
files:

1. car.kv, which contains the Kivy objects (rectangle shape of the car and the 
three sensors)

2. map.py, which builds the environment (map, car, input states, output actions, 
rewards)

3. deep_q_learning.py, which builds and trains the AI through deep 
Q-learning

We've already covered the major elements of map.py, and now we're about to tackle 
deep_q_learning.py, where you'll not only build an artificial neural network, but 
also implement the deep Q-learning training process. Let's get started!

WOW! eBook 
www.wowebook.org



AI for Autonomous Vehicles – Build a Self-Driving Car

[ 170 ]

Step 1 – Importing the libraries
As usual, you start by importing the libraries and modules you need to build your 
AI. These include:

1. os: The operating system library, used to load the saved AI models.
2. random: Used to sample some random transitions from the memory for 

experience replay.
3. torch: The main library from PyTorch, which will be used to build our 

neural network with tensors, as opposed to simple matrices like numpy 
arrays. While a matrix is a 2-D array, a tensor can be a n-dimensional array, 
with more than just a single number in its cells. Here's a diagram so you can 
clearly understand the difference between a matrix and a tensor:

1 2 5 6
3 4 7 81 2

3 4 9 10 13 14
11 12 15 16

Matrix Tensor

    
    

      
                 

4. torch.nn: The nn module from the torch library, used to build the fully 
connected layers in the artificial neural network of our AI.

5. torch.nn.functional: The functional sub-module from the nn module, 
used to call the activation functions (rectifier and Softmax), as well as the loss 
function for backpropagation.

6. torch.optim: The optim module from the torch library, used to call the 
Adam optimizer, which computes the gradients of the loss with respect to 
the weights and updates those weights in directions that reduce the loss.

7. torch.autograd: The autograd module from the torch library, used to call 
the Variable class, which associates each tensor and its gradient into the 
same variable.

That makes up your first code section:

1 # AI for Autonomous Vehicles - Build a Self-Driving Car

2

3 # Importing the libraries

4
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5 import os

6 import random

7 import torch

8 import torch.nn as nn

9 import torch.nn.functional as F

10 import torch.optim as optim

11 from torch.autograd import Variable

Step 2 – Creating the architecture of the 
neural network
This code section is where you really become the architect of the brain in your 
AI. You're about to build the input layer, the fully connected layers, and the output 
layer, while choosing some activation functions that will forward-propagate the 
signal inside the brain.

First, you build this brain inside a class, which we are going to call Network.

What is a class? Let's explain that before we explain why you're using one. A class is 
an advanced structure in Python that contains the instructions of an object we want 
to build. Taking the example of your neural network (the object), these instructions 
include how many layers you want, how many neurons you want inside each layer, 
which activation function you choose, and so on. These parameters define your 
artificial brain and are all gathered in what we call the __init__() method, which 
is what we always start with when building a class. But that's not all—a class can 
also contain tools, called methods, which are functions that either perform some 
operations or return something. Your Network class will contain one method, which 
forward-propagates the signal inside the neural network and returns the predicted 
Q-values. Call this method forward.

Now, why use a class? That's because building a class allows you to create as many 
objects (also called instances) as you want, and easily switch from one to another by 
just changing the arguments of the class. For example, your Network class contains 
two arguments: input_size (the number of inputs) and nb_actions (the number 
of actions). If you ever want to build an AI with more inputs (besides the signals 
and the orientation) or more outputs (you could add an action that brakes the car), 
you'll do it in a flash thanks to the advanced structure of the class. It's super practical, 
and if you're not already familiar with classes you'll have to get familiar with them. 
Nearly all AI implementations are done with classes.
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That was just a short technical aside to make sure I don't lose anybody on the way. 
Now let's build this class. As there are many important elements to explain in the 
code, and since you're probably new to PyTorch, I'll show you the code first and then 
explain it line by line from the deep_q_learning.py file:

13 # Creating the architecture of the Neural Network

14

15 class Network(nn.Module):

16     

17     def __init__(self, input_size, nb_action):

18         super(Network, self).__init__()

19         self.input_size = input_size

20         self.nb_action = nb_action

21         self.fc1 = nn.Linear(input_size, 30)

22         self.fc2 = nn.Linear(30, nb_action)

23     

24     def forward(self, state):

25         x = F.relu(self.fc1(state))

26         q_values = self.fc2(x)

27         return q_values

Line 15: You introduce the Network class. In the parenthesis of this class, you can 
see nn.Module. That means you're calling the Module class, which is an existing class 
taken from the nn module, in order to get all the properties and tools of the Module 
class and use them inside your Network class. This trick of calling another existing 
class inside a new class is called inheritance.

Line 17: You start with the __init__() method, which defines all the parameters 
(number of inputs, number of outputs, and so on) of your artificial neural network. 
You can see three arguments: self, input_size, and nb_action.self refer to the 
object, that is, to the future instance of the class that will be created after the class is 
done. Any time you see self before a variable, and separated by a dot (like self.
variable), that means the variable belongs to the object. That should clear up any 
mystery about self!

Then, input_size is the number of inputs in your input state vector (thus 4), and 
nb_action is the number of output actions (thus 3). What's important to understand 
is that the arguments (other than self) of the __init__() method are the ones you 
will enter when creating the future object, which is the future artificial brain of 
your AI.
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Line 18: You use the super() function to activate the inheritance (explained in Line 
15), inside the __init__() method.

Line 19: Here you introduce the first object variable, self.input_size, set equal to 
the argument input_size (which will later be entered as 4, since the input state has 
4 elements).

Line 20: You introduce the second object variable, self.nb_action, set equal to the 
argument nb_action (which will later be entered as 3, since there are three actions 
that can be performed).

Line 21: You introduce the third object variable, self.fc1, which is the first full 
connection between the input layer (composed of the input state) and the hidden 
layer. That first full connection is created as an object of the nn.Linear class, which 
takes two arguments: the first one is the number of elements in the left layer (the 
input layer), so input_size is the right argument to use, and the second one is the 
number of hidden neurons in the right layer (the hidden layer). Here, you choose to 
have 30 neurons, and therefore the second argument is 30. The choice of 30 is purely 
arbitrary, and the self-driving car could work well with any other numbers.

Line 22: You introduce the fourth object variable, self.fc2, which is the second 
full connection between the hidden layer (composed of 30 hidden neurons) and 
the output layer. It could have been a full connection with a new hidden layer, 
but your problem is not complex enough to need more than one hidden layer, so 
you'll just have one hidden layer in your artificial brain. Just like before, that second 
full connection is created as an object of the nn.Linear class, which takes two 
arguments: the first one is the number of elements in the left layer (the hidden layer), 
therefore 30, and the second one is the number of hidden neurons in the right layer 
(the output layer), therefore 3.

Line 24: You start building the first and only method of the class, the forward 
method, which will propagate the signal from the input layer to the output layer, 
after which it will return the predicted Q-values. This forward method takes two 
arguments: self, because you'll use the object variables inside the forward method, 
and state, the input state vector composed of four elements (orientation plus the 
three signals).

Line 25: You forward propagate the signal from the input layer to the hidden layer 
while activating the signal with a rectifier activation function, also called ReLU 
(Rectified Linear Unit). You do this in two steps. First, the forward propagation from 
the input layer to the hidden layer is done by calling the first full connection self.
fc1 with the input state vector state as input: self.fc1(state). 
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That returns the hidden layer. And then we call the relu function with that hidden 
layer as input to break the linearity of the signal the following way:

Figure 8: The Rectifier activation function

The purpose of the ReLU layer is to break linearity by creating non-linear operations 
along the fully connected layers. You'll want to have that, because you're trying to 
solve a nonlinear problem. Finally, F.relu(self.fc1(state)) returns x, the hidden 
layer with a nonlinear signal.

Line 26: You forward-propagate the signal from the hidden layer to the output layer 
containing the Q-values. In the same way as the previous line, this is done by calling 
the second full connection self.fc2 with the hidden layer x as input: self.fc2(x). 
That returns the Q-values, which you name q_values. Here, no activation function is 
needed because you'll select the action to play with Softmax, later, in another class.

Line 27: Finally, here, the forward method returns the Q-values.

Let's have a look at what you've just created!

Figure 9: The neural network (the brain) of our AI
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self.fc1 are all the blue connection lines between the Input Layer and the Hidden 
Layer.

self.fc2 are all the blue connection lines between the Hidden Layer and the 
Output Layer.

That should help you visualize the full connections better. Great job!

Step 3 – Implementing experience replay
Time for the next step! You'll now build another class, which builds the memory 
object for experience replay (as seen in Chapter 5, Your First AI Model – Beware the 
Bandits!). Call this class ReplayMemory. Let's have a look at the code first and then 
I'll explain everything line by line from the deep_q_learning.py file.

29 # Implementing Experience Replay

30

31 class ReplayMemory(object):

32     

33     def __init__(self, capacity):

34         self.capacity = capacity

35         self.memory = []

36     

37     def push(self, event):

38         self.memory.append(event)

39         if len(self.memory) > self.capacity:

40             del self.memory[0]

41     

42     def sample(self, batch_size):

43         samples = zip(*random.sample(self.memory, batch_size))

44         return map(lambda x: Variable(torch.cat(x, 0)), samples)

Line 31: You introduce the ReplayMemory class. This time you don't need to inherit 
from any other class, so just input object in the parenthesis of the class.

Line 33: As always, you start with the __init__() method, which only takes two 
arguments: self, the object, and capacity, the maximum size of the memory.

Line 34: You introduce the first object variable, self.capacity, set equal to the 
argument capacity, which will be entered later when creating an object of the class.

Line 35: You introduce the second object variable, self.memory, initialized as an 
empty list.
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Line 37: You start building the first tool of the class, the push method, which takes 
a transition as input and adds it to the memory. However, if adding that transition 
exceeds the memory's capacity, the push method also deletes the first element of the 
memory. The event argument you can see is the transition to be added.

Line 38: Using the append function, you add the transition to the memory.

Line 39: You start an if condition that checks if the length of the memory 
(meaning its number of transitions) is larger than the capacity.

Line 40: If that is indeed the case, you delete the first element of the memory.

Line 42: You start building the second tool of the class, the sample method, which 
samples some random transitions from the experience replay memory. It takes 
batch_size as input, which is the size of the batches of transitions with which 
you'll train your neural network.

Remember how it works: instead of forward-propagating single input states into 
the neural network and updating the weights after each transition resulting from 
the input state, you forward-propagate small batches of input states and update the 
weights after backpropagating the same whole batches of transitions with mini-batch 
gradient descent. That's different from stochastic gradient descent (weight update 
every single input) and batch gradient descent (weight update every batch of inputs) 
as explained in Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning:

Figure 10: Batch gradient descent versus stochastic gradient descent

Line 43: You sample some random transitions from the memory and put them into 
a batch of size batch_size. For example, if batch_size = 100, you sample 100 
random transitions from the memory. The sampling is done with the sample() 
function from the random library. Then, zip(*list) is used to regroup the states, 
actions, and rewards into separate batches of the same size (batch_size), in order 
to put the sampled transitions into the format expected by PyTorch (the Variable 
format, which comes next in Line 44).
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This is probably a good time to take a step back. Let's see what Line 43 gives you:

Figure 11: The batches of last states, actions, rewards, and next states

Line 44: Using the map() function, wrap each sample into a torch Variable 
object (as Variable() is actually a class), so that each tensor inside the samples is 
associated to a gradient. Simply put, you can see a torch Variable as an advanced 
structure that encompasses a tensor and a gradient.

This is the beauty of PyTorch. These torch Variables are all in a dynamic 
graph which allows fast computation of the gradient of complex functions. 
Those fast computations are required for the weight updates happening during 
backpropagation with mini-batch gradient descent. Inside the Variable class we see 
torch.cat(x,0). That's just a concatenation trick, along the vertical axis, to put the 
samples in the format expected by the Variable class.

The most important thing to remember is this: when training a neural network with 
PyTorch, we always work with torch Variables, as opposed to just tensors. You 
can find more details about this in the PyTorch documentation.

Step 4 – Implementing deep Q-learning
You've made it! You're finally about to start coding the whole deep Q-learning 
process. Again, you'll wrap all of it into a class, this time called Dqn, as in deep 
Q-network. This is your final run before the finish line. Let's smash this.

This time, the class is quite long so I'll show and explain the lines of code method 
by method from the deep_q_learning.py file. Here's the first one, the __init__() 
method:

46 # Implementing Deep Q-Learning
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47

48 class Dqn(object):

49     

50     def __init__(self, input_size, nb_action, gamma):

51         self.gamma = gamma

52         self.model = Network(input_size, nb_action)

53         self.memory = ReplayMemory(capacity = 100000)

54         self.optimizer = optim.Adam(params = self.model.
parameters())

55         self.last_state = torch.Tensor(input_size).unsqueeze(0)

56         self.last_action = 0

57         self.last_reward = 0

Line 48: You introduce the Dqn class. You don't need to inherit from any other class 
so just input object in the parenthesis of the class.

Line 50: As always, you start with the __init__() method, which this time takes 
four arguments:

1. self: The object
2. input_size: The number of inputs in the input state vector (that is, 4)
3. nb_action: The number of actions (that is, 3)
4. gamma: The discount factor in the temporal difference formula

Line 51: You introduce the first object variable, self.gamma, set equal to the 
argument gamma (which will be entered later when you create an object of the 
Dqn class).

Line 52: You introduce the second object variable, self.model, an object of the 
Network class you built before. This object is your neural network; in other words, 
the brain of our AI. When creating this object, you input the two arguments of the 
__init__() method in the Network class, which are input_size and nb_action. 
You'll enter their real values (respectively 4 and 3) later, when creating an object 
of the Dqn class.

Line 53: You introduce the third object variable, self.memory, as an object of the 
ReplayMemory class you built before. This object is the experience replay memory. 
Since the __init__ method of the ReplayMemory class only expects one argument, 
the capacity, that's exactly what you input here as 100,000. In other words, you're 
creating a memory of size 100,000, which means that instead of remembering just the 
last transition, the AI will remember the last 100,000 transitions.
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Line 54: You introduce the fourth object variable, self.optimizer, as an object 
of the Adam class, which is an existing class built in the torch.optim module. This 
object is the optimizer, which updates the weights through mini-batch gradient 
descent during backpropagation. In the arguments, keep most of the default 
parameter values (you can check them in the PyTorch documentation) and only 
enter the model parameters (the params argument), which you access with self.
model.parameters, one of the attributes of the nn.Module class from which the 
Network class inherits.

Line 55: You introduce the fifth object variable, self.last_state, which will be 
the last state in each (last state, action, reward, next state) transition. This last state is 
initialized as an object of the Tensor class from the torch library, into which you only 
have to enter the input_size argument. Then .unsqueeze(0) is used to create an 
additional dimension at index 0, which will correspond to the batch. This allows us 
to do something like this, matching each last state to the appropriate batch:

Figure 12: Adding a dimension for the batch

Line 56: You introduce the sixth object variable, self.last_action, initialized 
as 0, which is the last action played at each iteration.

Line 57: We introduce the last object variable, self.last_reward, initialized as 0, 
which is the last reward received after playing the last action self.last_action, 
in the last state self.last_state.

Now, you're all good for the __init__ method. Let's move on to the next code 
section with the next method: the select_action method, which selects the action 
to play at each iteration using Softmax.

59     def select_action(self, state):

60         probs = F.softmax(self.model(Variable(state))*100)

61         action = probs.multinomial(len(probs))
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62         return action.data[0,0]

Line 59: You start defining the select_action method, which takes as input an 
input state vector (orientation, signal 1, signal 2, signal 3), and returns as output 
the selected action to play.

Line 60: You get the probabilities of the three actions thanks to the Softmax function 
taken from the torch.nn.functional module. This Softmax function takes the 
Q-values as input, which are exactly returned by self.model(Variable(state)). 
Remember, self.model is an object of the Network class, which has the forward 
method, which takes as input an input state tensor wrapped into a torch Variable, 
and returns as output the Q-values for the three actions. 

Multiplying the Q-values by a number (here 100) inside softmax is a good trick to 
remember: it allows you to regulate the Exploration versus Exploitation. The lower 
that number is, the more you'll explore, and therefore the longer it will take to get 
optimized actions. Here, the problem's not too complex, so choose a large number 
(100) in order to have confident actions and a smooth trajectory to the goal. You'll 
clearly see the difference if you remove *100 from the code. Simply put, with the 
*100, you'll see a car sure of itself; without the *100, you'll see a car fidgeting.

Line 61: You take a random draw from the distribution of actions created by the 
softmax function at line 60, by calling the multinomial() function from your 
probabilities probs.

Line 62: You return the selected action to perform, which you access in action.
data[0,0]. The returned action has an advanced tensor structure, and the action 
index (0, 1, or 2) that you're interested in is located in the data attribute of the action 
tensor at the first cell of indexes [0,0].

Let's move on to the next code section, the learn method. This one is pretty 
interesting because it's where the heart of deep Q-learning beats. It's in this method 
that we compute the temporal difference, and accordingly the loss, and update the 
weights with our optimizer in order to reduce that loss. That's why this method is 
called learn, because it is here that the AI learns to perform better and better actions 
that increase the accumulated reward. Let's continue:

Geek note: Usually we would specify that we call the forward 
method this way – self.model.forward(Variable(state)) – 
but since forward is the only method of the Network class, it is 
sufficient to just call self.model.
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64     def learn(self, batch_states, batch_actions, batch_rewards, 
batch_next_states):

65         batch_outputs = self.model(batch_states).gather(1, batch_
actions.unsqueeze(1)).squeeze(1)

66         batch_next_outputs = self.model(batch_next_states).
detach().max(1)[0]

67         batch_targets = batch_rewards + self.gamma * batch_next_
outputs

68         td_loss = F.smooth_l1_loss(batch_outputs, batch_targets)

69         self.optimizer.zero_grad()

70         td_loss.backward()

71         self.optimizer.step()

Line 64: You start by defining the learn() method, which takes as inputs the batches 
of the four elements composing a transition (input state, action, reward, next state):

1. batch_states: A batch of input states.
2. batch_actions: A batch of actions played.
3. batch_rewards: A batch of the rewards received.
4. batch_next_states: A batch of the next states reached.

Before I explain Lines 65, 66, and 67, let's take a step back and see what you'll 
have to do. As you know, the goal of this learn method is to update the weights 
in directions that reduce the back-propagated loss at each iteration of the training. 
First let's remind ourselves of the formula for the loss:

( ) ( )( ) ( ) ( )
2 2

1
1 1, max , , ,
2 2B B B B B B B Bt t t t t t t t

aB B
Loss R s a Q s a Q s a TD s aγ +

 = + − = 
 ∑ ∑

Inside the formula for the loss, we clearly recognize the outputs (predicted Q-values) 
and the targets:

( )Batch of outputs : ,
B Bt tQ s a

( ) ( )( )1Batch of targets : , max ,
B B Bt t t

a
R s a Q s aγ ++

Therefore, to compute the loss, you proceed this way over the next four lines of code:

Line 65: You collect the batch of outputs, ( ),
B Bt tQ s a .
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Line 66: You compute the ( )( )1max ,
Bta

Q s a+  part of the targets, which you call batch_
next_outputs.

Line 67: You get the batch of targets.

Line 68: Since you have the outputs and targets, you're ready to get the loss.

Now let's do this in detail.

Line 65: You collect the batch of outputs ( ),
B Bt tQ s a , meaning the predicted Q-values 

of the input states and the actions played in the batch. Getting them takes several 
steps. First, you call self.model(batch_states), which, as seen in Line 60, returns 
the Q-values of each input state in batch_states and for all the three actions 0, 1, 
and 2. To help you visualize it better, it returns something like this:

Figure 13: What is returned by self.model(batch_states)

You only want the predicted Q-values for the selected actions from the batch of 
outputs, which are found in the batch of actions batch_actions. That's exactly what 
the .gather(1, batch_actions.unsqueeze(1)).squeeze(1) trick does: for each 
input state of the batch, it picks the Q-value that corresponds to the action that was 
selected in the batch of actions. To help visualize this better, let's suppose the batch 
of actions is the following:
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Figure 14: Batch of actions

Then you would get the following batch of outputs composed of the red Q-values:

Figure 15: Batch of outputs

I hope this is clear; I'm doing my best not to lose you along the way.

Line 66: Now you get the ( )( )1max ,
Bta

Q s a+  part of the target. Call this batch_next_
outputs; you get it in two steps. First, call self.model(batch_next_states) to get 
the predicted Q-values for each next state of the batch of next states and for each of 
the three actions. Then, for each next state of the batch, take the maximum of the 
three Q-values using .detach().max(1)[0]. That gives you the batch of the 

( )( )1max ,
Bta

Q s a+
 values part of the targets.
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Line 67: Since you have the batch of rewards ( ),
B Bt tR s a  (it's part of the arguments), 

and since you just got the batch of the ( )( )1max ,
Bta

Q s a+  values part of the targets at 
Line 66, then you're ready to get the batch of targets:

( ) ( )( )1Batch of targets : , max ,
B B Bt t t

a
R s a Q s aγ ++

That's exactly what you do at Line 67, by summing batch_rewards and batch_
next_outputs multiplied by self.gamma, one of the object variables in the Dqn 
class. Now you have both the batch of outputs and the batch of targets, so you're 
ready to get the loss.

Line 68: Let's remind ourselves of the formula for the loss:

( ) ( )( ) ( )
2

1
1 , max , ,
2 B B B B Bt t t t t

aB
Loss R s a Q s a Q s aγ +

 = + − 
 ∑

( )21 Target Output
2 B

Loss = −∑

( )21 ,
2 B B Bt t t

B
Loss TD s a= ∑

Therefore, in order to get the loss, you just have to get the sum of the squared 
differences between our targets and outputs in the batch. That's exactly what the 
smooth_l1_loss function will do. Taken from the torch.nn.functional module, 
it takes as inputs the two batches of outputs and targets and returns the loss as 
given in the preceding formula. In the code, call this loss td_loss as in temporal 
difference loss.

Excellent progress! Now that you have the loss, representing the error between the 
predictions and the targets, you're ready to backpropagate this loss into the neural 
network and update our weights to reduce this loss through mini-batch gradient 
descent. That's why the next step to take here is to use your optimizer, which is the 
tool that will perform the updates to the weights.

Line 69: You first initialize the gradients, by calling the zero_grad() method from 
your self.optimizer object (zero_grad is a method of the Adam class), which will 
basically set all the gradients of the weights to zero.
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Line 70: You backpropagate the loss error td_loss into the neural network by 
calling the backward() function from td_loss.

Line 71: You perform the weights updates by calling the step() method from your 
self.optimizer object (step is a method of the Adam class).

Congratulations! You've built yourself a tool in the Dqn class that will train your car 
to drive better. You've done the toughest part. Now all you have left to do is to wrap 
things up into a last method, called update, which will simply update the weights 
after reaching a new state.

Now, in case you are thinking, "but isn't what I've already done with the learn 
method?," well, you're right; but you need to make an extra function that will 
update the weights at the right time. The right time to update the weights is right 
after our AI reaches a new state. Simply put, this final update method you're about 
to implement will connect the dots between the learn method and the dynamic 
environment.

That's the finish line! Are you ready? Here's the code:

73     def update(self, new_state, new_reward):

74         new_state = torch.Tensor(new_state).float().unsqueeze(0)

75         self.memory.push((self.last_state, torch.
LongTensor([int(self.last_action)]), torch.Tensor([self.last_
reward]), new_state))

76         new_action = self.select_action(new_state)

77         if len(self.memory.memory) > 100:

78             batch_states, batch_actions, batch_rewards, batch_
next_states = self.memory.sample(100)

79             self.learn(batch_states, batch_actions, batch_rewards, 
batch_next_states)

80         self.last_state = new_state

81         self.last_action = new_action

82         self.last_reward = new_reward

83         return new_action

Line 73: You introduce the update() method, which takes as input the new state 
reached and the new reward received right after playing an action. This new state 
entered here will be the state variable you can see in Line 129 of the map.py file and 
this new reward will be the reward variable you can see in Lines 138 to 145 of the 
map.py file. This update method performs some operations including the weights 
updates and, in the end, returns the new action to perform.
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Line 74: You first convert the new state into a torch tensor and unsqueeze it to 
create an additional dimension (placed first in index 0) corresponding to the batch. 
To ease future operations, you also make sure that all the elements of the new state 
(orientation plus the three signals) are converted into floats by adding .float().

Line 75: Using the push() method from your memory object, add a new transition 
to the memory. This new transition is composed of:

1. self.last_state: The last state reached before reaching that new state
2. self.last_action: The last action played that led to that new state
3. self.last_reward: The last reward received after performing that last 

action
4. new_state: The new state that was just reached

All the elements of this new transition are converted into torch tensors.

Line 76: Using the select_action() method from your Dqn class, perform a new 
action from the new state just reached.

Line 77: Check if the size of the memory is larger than 100. In self.memory.memory, 
the first memory is the object created at Line 53 and the second memory is the variable 
object introduced at Line 35.

Line 78: If that's the case, sample 100 transitions from the memory, using the 
sample() method from your self.memory object. This returns four batches 
of size 100:

1. batch_states: The batch of current states (current at the time of the 
transition).

2. batch_actions: The batch of actions performed in the current states.
3. batch_rewards: The batch of rewards received after playing the actions 

of batch_actions in the current states of batch_states.
4. batch_next_states: The batch of next states reached after playing the 

actions of batch_actions in the current states of batch_states.

Line 79: Still in the if condition, proceed to the weights updates using the learn() 
method called from the same Dqn class, with the four previous batches as inputs.

Line 80: Update the last state reached, self.last_state, which becomes new_
state.

Line 81: Update the last action performed, self.last_action, which becomes new_
action.
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Line 82: Update the last reward received, self.last_reward, which becomes new_
reward.

Line 83: Return the new action performed.

That's it for the update() method! I hope you can see how we connected the dots. 
Now, to connect the dots even better, let's see where and how you call that update 
method in the map.py file.

First, before calling that update() method, you have to create an object of the Dqn 
class, which here is called brain. That's exactly what you do in Line 33 of the map.
py file.

33 brain = Dqn(4,3,0.9)

The arguments entered here are the three arguments we see in the __init__() 
method of the Dqn class:

• 4 is the number of elements in the input state (input_size).
• 3 is the number of possible actions (nb_action).
• 0.9 is the discount factor (gamma).

Then, from this brain object, you call on the update() method in Line 130 of the 
map.py file, right after reaching a new state, called state in the code:

129         state = [orientation, self.car.signal1, self.car.
signal2, self.car.signal3]

130         action = brain.update(state, reward)

Going back to your Dqn class, you need two extra methods:

1. The save() method, which saves the weights of the AI's network after their 
last updates. This method will be called as soon as you click the save button 
while running the map. The weights of your AI will be then saved and put 
into a file named last_brain.pth, which will automatically be populated 
in the folder that contains your Python files. That's what allows you to have 
a pre-trained AI.

2. The load() method, which loads the saved weights in the last_brain.pth 
file. This method will be called as soon as you click the load button while 
running the map. It allows you to start the map with a pre-trained self-
driving car, without having to wait for it to train.

These last two methods aren't AI-related, so we won't spend time explaining each 
line of their code. Still, it's good for you to be able to recognize these two tools in 
case you want to use them for another AI model that you build with PyTorch. 
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Here's how they're implemented:

85     def save(self):

86         torch.save({'state_dict': self.model.state_dict(),

87                     'optimizer' : self.optimizer.state_dict(),

88                    }, 'last_brain.pth')

89     

90     def load(self):

91         if os.path.isfile('last_brain.pth'):

92             print("=> loading checkpoint... ")

93             checkpoint = torch.load('last_brain.pth')

94             self.model.load_state_dict(checkpoint['state_dict'])

95             self.optimizer.load_state_
dict(checkpoint['optimizer'])

96             print("done !")

97         else:

98             print("no checkpoint found...")

Congratulations!

That's right! You've finished this 100 lines of code implementation of the AI inside 
our self-driving car. That's quite an accomplishment, especially when coding deep 
Q-learning for the first time. You really can be proud to have gone this far.

After all this hard work, you definitely deserve to have some fun, and I think it'll be 
the most fun to watch the result of your hard work. In other words, you're about to 
see your self-driving car in action! I remember I was so excited the first time I ran 
this. You'll feel it too; it's pretty cool!

The demo
I have some good news and some bad news.

I'll start with the bad news: we can't run the map.py file with a simple plug and play 
on Google Colab. The reason for that is that Kivy is very tricky to install through 
Colab. So, we'll go for the classic method of running a Python file: through the 
terminal.

The good news is that once we install Kivy and PyTorch through the terminal, 
you'll have a fantastic demo!
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Let's install everything we need to run our self-driving car. Here's what we have 
to install, in the following order:

1. Anaconda: A free and open source distribution of Python that offers an easy 
way to install packages thanks to the conda command. This is what we'll use 
to install PyTorch and Kivy.

2. Virtual environment with Python 3.6: Anaconda is installed with Python 3.7 
or higher; however, that 3.7 version is not compatible with Kivy. We'll create 
a virtual environment in which we install Python 3.6, a version compatible 
with both Kivy and our implementation. Don't worry if that sounds 
intimidating, I'll give you all the details you need to set this up.

3. PyTorch: Then, inside the virtual environment, we'll install PyTorch, the AI 
framework used to build our deep Q-network. We'll install a specific version 
of PyTorch that's compatible with our implementation, so that everyone can 
be on the same page and run it with no issues. PyTorch upgrades sometimes 
include changes in the names of the modules, which can make an old 
implementation incompatible with the newest PyTorch versions. Here, 
we know we have the right PyTorch version for our implementation.

4. Kivy: To finish, still inside the virtual environment, we'll install Kivy, 
the open source Python framework on which we will run our map.

Let's start with Anaconda.

Installing Anaconda
On Google, or your favorite browser, go to www.anaconda.com. On the Anaconda 
website, click Download on the upper right corner of the screen. Scroll down and 
you'll find the Python versions to download:

Figure 16: Installing Anaconda – Step 2
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At the top, make sure that your system (Windows, macOS, or Linux) is correctly 
selected. If it is, click the Download button in the Python 3.7 version box. This will 
download Anaconda with Python 3.7.

Then double-click the downloaded file and keep clicking Continue and Agree 
to install, until the end. If you're prompted to choose who or how to install it for, 
choose install for me only.

Creating a virtual environment with 
Python 3.6
Now that Anaconda's installed, you can create a virtual environment, named 
selfdrivingcar, with Python 3.6 installed. To do this you need to open 
a terminal and enter some commands. Here's how to open it for the three systems:

1. For Linux users, just press Ctrl + Alt + T.
2. For Mac users, press Cmd + Space, and then in the Spotlight Search enter 

Terminal.
3. For Windows users, click the Windows button at the lower left corner 

of your screen, find anaconda in the list of programs, and click to open 
Anaconda prompt. A black window will open; that's the terminal you'll 
use to install the packages.

Inside the terminal, enter the following command:

conda create -n selfdrivingcar python=3.6

Just like so:

This command creates a virtual environment called selfdrivingcar with Python 
3.6 and other packages installed.

After pressing Enter, you'll get this in a few seconds:
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Press y to proceed. This will download and extract the packages. After a few 
seconds, you'll get this, which marks the end of the installation:

Then we're going to activate the selfdrivingcar virtual environment, meaning 
we're going to get inside it in order to install PyTorch and Kivy within the 
selfdrivingcar virtual environment.
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As you can see just preceding, to activate the environment, we will enter the 
following command:

conda activate selfdrivingcar

Enter that command, and then you'll get inside the virtual environment:

Now we can see (selfdrivingcar) before my computer's name, hadelins-
macbook-pro, which means we are inside the selfdrivingcar virtual environment.

We're ready for the next steps, which are the installation of PyTorch and Kivy inside 
this virtual environment. Don't close your terminal, or when you open it again you'll 
be back in the main environment.

Installing PyTorch
Now we're going to install PyTorch inside the virtual environment by entering the 
following command:

conda install pytorch==0.3.1 -c pytorch

Just like so:
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After a few seconds, we get this:

Press y again, and then press Enter.
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After a few seconds, PyTorch is installed:

Installing Kivy
Now let's proceed to Kivy. In the same virtual environment, we're going to install 
Kivy by entering the following command:

conda install -c conda-forge/label/cf201901 kivy

Again, we get this:
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Enter y again, and after a few seconds more, Kivy is installed.

Now I have some terrific news for you: you're ready to run the self-driving car! To 
do that, we need to run our code in the terminal, still inside our virtual environment.

If you already closed your terminal, then when you open it again 
enter the conda activate selfdrivingcar command in order 
to get back inside the virtual environment.
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So, let's run the code! If you haven't already, download the whole repository 
by clicking the Clone or download button on the GitHub page:

(https://github.com/PacktPublishing/AI-Crash-Course)

Figure 17: The GitHub repository
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Then unzip it and move the unzipped folder to your desktop, just like so:

Now go into Chapter 10 and select and copy all the files inside:

WOW! eBook 
www.wowebook.org



AI for Autonomous Vehicles – Build a Self-Driving Car

[ 198 ]

Then, because we're only interested in these files right now, and to simplify the 
command lines in the terminal, paste these files inside the main AI-Crash-Course-
master folder and remove all the rest, which we don't need, so that you eventually 
end up with this:

Now we're going to access this folder from the terminal. Since we put the repository 
folder in the desktop, we will find it in a flash. Back into the terminal, enter ls (l as in 
lion) to see in which folder you are in your machine:
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I can see that I'm in my main root folder, which contains the Desktop folder. It 
should usually be the case for you too. So now we're going to go into the Desktop 
folder by entering the following command:

cd Desktop

Enter ls again and check that you indeed see the AI-Crash-Course-master folder:
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Then go into the AI-Crash-Course-master folder by entering the following 
command:

cd AI-Crash-Course-master

Perfect! Now we're in the right spot! By entering ls again, you can see all the files 
of the repo, including the map.py file, which is the one we have to run to see our  
self-driving car in action!

If by any chance you had trouble getting to this point, that may be because your 
main root folder doesn't contain your Desktop folder. If that's the case, just put the 
AI-Crash-Course-master repo folder inside one of the folders that you see when 
entering the ls command in the terminal, and redo the same process.
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What you have to do is just find and enter the AI-Crash-Course-master folder 
with the cd commands. That's it! Don't forget to make sure your AI-Crash-Course-
master folder only contains the self-driving car files:

Now you're only one command line away from running your self-driving car. I hope 
you're excited to see the results of your hard work; I know exactly how you feel, I 
was in your shoes not so long ago!

So, without further ado, let's enter the final command, right now. It's this:

python map.py
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As soon as you enter it, the map with the car will pop up just like so:

Figure 18: The map

For the first minute or so, your self-driving car will explore its actions by performing 
nonsense movements; you might see it spinning around. After each 100 movements, 
the weights inside the neural network of the AI get updated, and the car improves 
its actions to get higher rewards. And suddenly, maybe after another 30 seconds or 
so, you should see your car making round trips between the Airport and Downtown, 
which I highlighted here again:
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Figure 19: The destinations

Now have some fun! Draw some obstacles on the map to see if the car avoids them.

On my side I have just drawn this, and after a few more minutes of training, I can 
clearly see the car avoiding the obstacles:

Figure 20: Road with obstacles
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And you can have even more fun! By, for example, drawing a road like so:

Figure 21: The road of the demo

After a few minutes of training, the car becomes able to self-drive along that road, 
while making many road trips between the Airport and Downtown.

Quick question for you: how did you program the car to travel between the 
destinations?

You did it by giving a small positive reward to the AI when the car gets closer to the 
goal. That's programmed in rows 144 and 145 inside the map.py file:

144             if distance < last_distance:

145                 reward = 0.1

Congratulations to you for completing this massive chapter on this not-so-basic 
self-driving car application! I hope you had fun, and that you feel proud to have 
mastered such an advanced model in deep reinforcement learning.
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Summary
In this chapter, we learned how to build a deep Q-learning model to drive a self-
driving car. As inputs it took the information from the three sensors and its current 
orientation. As outputs it decided the Q-values for each of the actions of going 
straight, turning left, or turning right. As for the rewards, we punished it badly for 
hitting the sand, punished it slightly for going in the wrong direction, and rewarded 
it slightly for going in the right direction. We made the AI implementation in 
PyTorch and used Kivy for the graphics. To run all of this we used the Anaconda 
environment.

Now take a long break, you deserve it! I'll see you in the next chapter for our next 
AI challenge, where this time we will solve a real-world business problem with cost 
implications running into the millions.
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AI for Business – Minimize 
Costs with Deep Q-Learning

It's great that you can implement a deep Q-learning model to build a self-driving 
car. Really, once again, huge congratulations to you for that. But I also want you 
to be able to use deep Q-learning to solve a real-world business problem. With this 
next application, you'll be more than ready to add value to your work or business 
by leveraging AI. Even though we'll once again use a specific application, this 
chapter will provide you with a general AI framework, a blueprint containing the 
general steps of the process you have to follow when solving a real-world problem 
with deep Q-learning. This chapter is very important to you and for your career; 
I don't want you to close this book before you feel confident with the skills you'll 
learn here. Let's smash this next application together!

Problem to solve
When I said we were going to solve a real-world business problem, I didn't overstate 
the problem; the problem we're about to tackle with deep Q-learning is very similar 
to the following, which was solved in the real world via deep Q-learning.

In 2016, DeepMind AI minimized a big part of Google's yearly costs by reducing 
the Google Data Center's cooling bill by 40% using their DQN AI model (deep 
Q-learning). Check the link here:

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-
cooling-bill-40/

In this case study, we'll do something very similar. We'll set up our own server 
environment, and we'll build an AI that controls the cooling and heating of the 
server so that it stays in an optimal range of temperatures while using the minimum 
of energy, therefore minimizing the costs. 
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Just as the DeepMind AI did, our goal will be to achieve at least 40% energy savings! 
Are you ready for this? Let's bring it on!

As ever, my first question to you is: What's our first step?

I'm sure by this point I don't need to spell out the answer. Let's get straight 
to building our environment!

Building the environment
Before we define the states, actions, and rewards, we need to set up the server and 
explain how it operates. We'll do that in several steps:

1. First, we'll list all the environment parameters and variables by which the 
server is controlled.

2. After that we'll set the essential assumptions of the problem, on which your 
AI will rely to provide a solution.

3. Then we'll specify how you'll simulate the whole process.
4. Finally, we'll explain the overall functioning of the server, and how the 

AI plays its role.

Parameters and variables of the server 
environment
Here is a list of all the parameters, which keep their values fixed, of the server 
environment:

1. The average atmospheric temperature for each month.
2. The optimal temperature range of the server, which we'll set as 18 C,24 C  

� � .
3. The minimum temperature, below which the server fails to operate, which 

we'll set as 20 C− � .
4. The maximum temperature, above which the server fails to operate, which 

we'll set as 80 C� .
5. The minimum number of users in the server, which we'll set as 10.
6. The maximum number of users in the server, which we'll set as 100.
7. The maximum change of users in the server per minute, which we'll set as 5; 

so every minute, the server can only have a change of 5 extra users or 5 fewer 
users at most.

8. The minimum rate of data transmission in the server, which we'll set as 20.
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9. The maximum rate of data transmission in the server, which we'll set as 300.
10. The maximum change of the rate of data transmission per minute, which 

we'll set as 10; so every minute, the rate of data transmission can only 
change by a maximum value of 10 in either direction.

Next, we'll list all the variables, which have values that fluctuate over time, of the 
server environment:

1. The temperature of the server at a given minute.
2. The number of users connected to the server at a given minute.
3. The rate of data transmission at a given minute.
4. The energy spent by the AI onto the server (to cool it down or heat it up) 

at a given minute.
5. The energy that would be spent by the server's integrated cooling system 

to automatically bring the server's temperature back to the optimal range, 
whenever the server's temperature goes outside this optimal range. This is 
to keep track of how much energy a non-AI system would use, so we can 
compare our AI system to it.

All these parameters and variables will be part of the environment, and will 
influence the actions of our AI.

Next, we'll explain the two core assumptions of the environment. It's important to 
understand that these assumptions are not AI related, but just used to simplify the 
environment so that we can focus on creating a functional AI solution.

Assumptions of the server environment
We'll rely on the following two essential assumptions:

Assumption 1 – We can approximate the server 
temperature
The temperature of the server can be approximated through Multiple Linear 
Regression, that is, by a linear function of the atmospheric temperature, the number 
of users and the rate of data transmission, like so:

server temperature = 0b  + 1b × atmospheric temperature + 2b × number of users + 3b × rate 
of data transmission

where 0b ∈�, 1 0b > , 2 0b > , and 3 0b > .
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The raison d'être of this assumption and the reason why 1 0b > , 2 0b > , and 3 0b >  
are intuitive to understand. It makes sense that when the atmospheric temperature 
increases, the temperature of the server increases. The more users that are connected 
to the server, the more energy the server has to spend handling them, and therefore 
the higher the temperature of the server will be. Finally, the more data is transmitted 
inside the server, the more energy the server has to spend processing it, and 
therefore the higher the temperature of the server will be.

For simplicity's sake, we can just suppose that these correlations are linear. However, 
you could absolutely run the same simulation by assuming they were quadratic 
or logarithmic, and altering the code to reflect those equations. This is just my 
simulation of a virtual server environment; feel free to tweak it as you like!

Let's assume further that after performing this Multiple Linear Regression, 
we obtained the following values of the coefficients: 0 0b = , 1 1b = , 2 1.25b = , and 
3 1.25b = . Accordingly:

server temperature = atmospheric temperature + 1.25× number of users + 1.25× rate of data 
transmission

Now, if we were facing this problem in real life, we could get the dataset of 
temperatures for our server and calculate these values directly. Here, we're just 
assuming values that are easy to code and understand, because our goal in this 
chapter is not to perfectly model a real server; it's to go through the steps of solving 
a real-world problem with AI.

Assumption 2 – We can approximate the energy 
costs
The energy spent by any cooling system, either our AI or the server's integrated 
cooling system that we'll compare our AI to, that changes the server's temperature 
from tT  to 1tT +  within 1 unit of time (in our case 1 minute), can be approximated again 
through regression by a linear function of the server's absolute temperature change, 
as so:

1t t t tE T T Tα β α β+= ∆ + = − +

where:

1. tE  is the energy spent by the system on the server between times t and 1t +  
minute.

2. tT∆  is the change in the server's temperature caused by the system, between 
times t and 1t +  minute.
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3. tT  is the temperature of the server at time t.
4. 1tT +  is the temperature of the server at time 1t +  minute.
5. 0α > .
6. β ∈�.

Let's explain why it intuitively makes sense to make this assumption with 0α > .  
That's simply because the more the AI or the old-fashioned integrated cooling 
system heats up or cools down the server, the more energy it spends to achieve 
that heat transfer. 

For example, imagine the server suddenly has overheating issues and just reached 
80�C; then within one unit of time (1 minute), either system will need much more 
energy to bring the server's temperature back to its optimal temperature, 24�C, than 
to bring it back to 50�C.

For simplicity's sake, in this example we suppose that these correlations are linear, 
instead of calculating true values from a real dataset. In case you're wondering why 
we take the absolute value, that's simply because when the AI cools down the server, 

1t tT T+ < , so 0T∆ < . Since an energy cost is always positive, we have to take the 
absolute value of T∆ .

Keeping our desired simplicity in mind, we'll assume that the results of the 
regression are 1α =  and 0β = , so that we get the following final equation based 
on Assumption 2:

1t t t tE T T T+= ∆ = −

thus:

1 1ift t t t tE T T T T+ += − > , that is, if the server is heated up,

1 1ift t t t tE T T T T+ += − < , that is, if the server is cooled down.

Now we've got our assumptions covered, let's explain how we'll simulate the 
operation of the server, with users logging on and off and data coming in and out. 

Simulation
The number of users and the rate of data transmission will randomly fluctuate, to 
simulate the unpredictable user activity and data requirements of an actual server. 
This leads to randomness in the temperature. The AI needs to learn how much 
cooling or heating power it should transfer to the server so as to not deteriorate 
the server performance, and at the same time, expend as little energy as possible 
by optimizing its heat transfer.
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Now that we have the full picture, I'll explain the overall functioning of the server 
and the AI inside this environment.

Overall functioning
Inside a data center, we're dealing with a specific server that is controlled by the 
parameters and variables listed previously. Every minute, some new users log on to 
the server and some current users log off, therefore updating the number of active 
users in the server. Also, every minute some new data is transmitted into the server, 
and some existing data is transmitted outside the server, therefore updating the rate 
of data transmission happening inside the server.

Hence, based on Assumption 1 given earlier, the temperature of the server is updated 
every minute. Now please focus, because this is where you'll understand the huge 
role the AI has to play on the server.

Two possible systems can regulate the temperature of the server: the AI, or the 
server's integrated cooling system. The server's integrated cooling system is an 
unintelligent system that automatically brings the server's temperature back 
inside its optimal temperature range.

Every minute, the server's temperature is updated. If the server is using the 
integrated cooling system, that system watches to see what happens; that update can 
either leave the temperature within the range of optimal temperatures ( 18 C,24 C  

� � ), 
or move it outside this range. If it goes outside the optimal range, for example to 30�
C, the server's integrated cooling system automatically brings the temperature back 
to the closest bound of the optimal range, in this case 24�C. For the purposes of our 
simulation, we're assuming that no matter how big the change in temperature is, the 
integrated cooling system can bring it back into the optimal range in under a minute. 
This is, obviously, an unrealistic assumption, but the purpose of this chapter is for 
you to build a functioning AI capable of solving the problem, not to perfectly 
simulate the thermal dynamics of a real server. Once we've completed our example 
together, I highly recommend that you tinker with the code and try to make it more 
realistic; for now, to keep things simple, we'll believe in our magically effective 
integrated cooling system.

If the server is instead using the AI, then in that case the server's integrated cooling 
system is deactivated and it is the AI itself that updates the temperature of the server 
to regulate it the best way. The AI changes the temperature after making some prior 
predictions, not in a purely deterministic way as with the unintelligent integrated 
cooling system. Before there's an update to the number of users and the rate of data 
transmission, causing a change in the temperature of the server, the AI predicts if it 
should cool down the server, do nothing, or heat up the server, and acts. Then the 
temperature change happens and the AI reiterates.
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Since these two systems are distinct from one another, we can evaluate them 
separately to compare their performance; to train or run the AI on a server, while 
keeping track of how much energy the integrated cooling system would have used 
in the same circumstances.

That brings us to the energy. Remember that one primary goal of the AI is to lower 
the energy cost of running this server. Accordingly, our AI has to try and use less 
energy than the unintelligent cooling system would use on the server. Since, based 
on Assumption 2 given preceding, the energy spent on the server (by any system) is 
proportional to the change of temperature within one unit of time:

1t t t tE T T T+= ∆ = −

thus:

1 1ift t t t tE T T T T+ += − > , that is, if the server is heated up,

1 1ift t t t tE T T T T+ += − < , that is, if the server is cooled down,

then that means that the energy saved by the AI at each iteration t (each minute) 
is equal to the difference in absolute changes of temperatures caused in the server 
between the unintelligent server's integrated cooling system and the AI from t and 
1t + :

Energy saved by the AI between t and 1t +

= |∆𝑇𝑇𝑡𝑡
Server′s Integrated Cooling System| − |∆𝑇𝑇𝑡𝑡

AI| 

noAI AI
t tT T= ∆ − ∆

where:

1. noAI
tT∆  is the change of temperature that the server's integrated cooling 

system would cause in the server during the iteration t, that is, from t to 1t +  
minute.

2. AI
tT∆  is the change of temperature that the AI would cause in the server 

during the iteration t, that is, from t to 1t +  minute.

The AIs goal is to save as much as it can every minute, therefore saving the 
maximum total energy over 1 full year of simulation, and eventually saving the 
business the maximum cost possible on their cooling/heating electricity bill. That's 
how we do business in the 21st century; with AI!
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Now that we fully understand how our server environment works, and how it's 
simulated, it's time to proceed with what absolutely must be done when defining 
an AI environment. You know the next steps already:

1. Defining the states.
2. Defining the actions.
3. Defining the rewards.

Defining the states
Remember, when you're doing deep Q-learning, the input state is always a 1D 
vector. (Unless you are doing deep convolutional Q-learning, in which case the 
input state is a 2D image, but that's getting ahead of ourselves! Wait for Chapter 12, 
Deep Convolution Q-Learning). So, what will the input state vector be in this server 
environment? What information will it contain in order to describe well enough 
each state of the environment? These are the questions you must ask yourself 
when modeling an AI problem and building the environment. Try to answer these 
questions first on your own and figure out the input state vector in this case, and you 
can find out what we're using in the next paragraph. Hint: have a look again at the 
variable defined preceding.

The input state ts  at time t is composed of the following three elements:

1. The temperature of the server at time t
2. The number of users in the server at time t
3. The rate of data transmission in the server at time t

Thus, the input state will be an input vector of these three elements. Our future 
AI will take this vector as input, and will return an action to perform at each time, t. 
Speaking of the actions, what are they going to be? Let's find out.

Defining the actions
To figure out which actions to perform, we need to remember the goal, which is to 
optimally regulate the temperature of the server. The actions are simply going to be 
the temperature changes that the AI can cause inside the server, in order to heat it up 
or cool it down. In deep Q-learning, the actions must always be discrete; they can't 
be plucked from a range, we need a defined number of possible actions. Therefore, 
we'll consider five possible temperature changes, from 3− �C to 3+ �C, so that we end 
up with five possible actions that the AI can perform to regulate the temperature of 
the server:
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Figure 1: Defining the actions

Great. Finally, let's see how we're going to reward and punish our AI.

Defining the rewards
You might have guessed from the earlier Overall functioning section what the reward 
is going to be. The reward at iteration t is the energy saved by the AI, with respect to 
how much energy the server's integrated cooling system would have spent; that is, 
the difference between the energy that the unintelligent cooling system would spend 
if the AI was deactivated, and the energy that the AI spends on the server:

noAI AIRewardt t tE E= −

Since according to Assumption 2, the energy spent is equal to the change of 
the temperature induced in the server (by any system, including the AI or the 
unintelligent cooling system):

1t t t tE T T T+= ∆ = −

thus:

1 1ift t t t tE T T T T+ += − > , if the server is heated up,

1 1ift t t t tE T T T T+ += − < , if the server is cooled down,

then we receive a reward at time t that is the difference in the change of temperature 
caused in the server between unintelligent cooling system (that is when there is no 
AI) and the AI:

Energy saved by the AI between t and 1t +

noAI AI
t tE E= −

noAI AI
t tT T= ∆ − ∆
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where:

1. noAI
tT∆  is the change of temperature that the server's integrated cooling 

system would cause in the server during the iteration t, that is, from t to 
1t +  minute.

2. AI
tT∆  is the change of temperature that the AI would cause in the server 

during the iteration t, that is, from t to 1t +  minute.

Important note: It's important to understand that the systems (our AI and the 
server's integrated cooling system) will be evaluated separately, in order to compute 
the rewards. Since at each time point the actions of the two different systems lead to 
different temperatures, we have to keep track of the two temperatures separately, as 
AI
tT  and noAI

tT . In other words, we're performing two separate simulations at the same 
time, following the same fluctuations of users and data; one for the AI, and one for 
the server's integrated cooling system.

To complete this section, we'll do a small simulation of 2 iterations (that is, 
2 minutes) as an example to make everything crystal clear.

Final simulation example
Let's say that we're at time 4 : 00t =  pm, and that the temperature of the server  
is 28tT = �C, both with the AI and without it. At this exact time, the AI predicts an 
action: 0, 1, 2, 3 or 4. Since, right now, the server's temperature is outside the optimal 
temperature range, 18 C,24 C  

� � , the AI will probably predict actions 0, 1 or 2. Let's say 
that it predicts 1, which corresponds to cooling the server down by 1.5�C. Therefore, 
between 4 : 00t =  pm and 1 4 : 01t + =  pm, the AI makes the server's temperature go 
from AI 28 CtT = �  to AI

1 26.5 CtT + = � :

AI
tT∆

AI AI
1t tT T+= −

26.5 28= −

1.5 C= − �

Thus, based on Assumption 2, the energy spent by the AI on the server is:

AI

tE

WOW! eBook 
www.wowebook.org



Chapter 11

[ 217 ]

AI
tT= ∆

1.5Joules=

Now only one piece of information is missing to compute the reward: the energy 
that the server's integrated cooling system would have spent if the AI was 
deactivated between 4:00 pm and 4:01 pm. Remember that this unintelligent cooling 
system automatically brings the server's temperature back to the closest bound of 
the optimal temperature range 18 C,24 C  

� � . Since at 4 : 00t =  pm the temperature 
was 28tT = �C, then the closest bound of the optimal temperature range at that time 
was 24�C. Thus, the server's integrated cooling system would have changed the 
temperature from 28 CtT = �  to 1 24 CtT + = � , and the server's temperature change 
that would have occurred if there was no AI is:

noAI
tT∆

noAI noAI
1t tT T+= −

24 28= −

4 C= − �

Based on Assumption 2, the energy that the unintelligent cooling system would have 
spent if there was no AI is:

noAI
tE

noAI
tT= ∆

noAI
tT= ∆4Joules

In conclusion, the reward the AI gets after playing this action at time 4 : 00t =  pm is:

Reward
noAI AI
t tE E= −

4 1.5= −

2.5=
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I'm sure you'll have noticed that as it stands, our AI system doesn't involve itself 
with the optimal range of temperatures for the server; as I've mentioned before, 
everything comes from the rewards, and the AI doesn't get any reward for being 
inside the optimal range or any penalty for being outside it. Once we've built the AI 
completely, I recommend that you play around with the code and try adding some 
rewards or penalties that get the AI to stick close to the optimal range; but for now, 
to keep things simple and get our AI up and running, we'll leave the reward as 
entirely linked to energy saved.

Then, between 4 : 00t =  pm and 1 4 : 01t + =  pm, new things happen: some new 
users log on to the server, some existing users log off, some new data transmits 
into the server, and some existing data transmits out. Based on Assumption 1, these 
factors make the server's temperature change. Let's say that overall, they increase the 
server's temperature by 5�C:

IntrinsicTemperature 5t C∆ = �

Now, remember that we're evaluating two systems separately: our AI, and the 
server's integrated cooling system. Therefore we must compute the two temperatures 
we would get with each of these two systems separately, one without the other, at 
1 4 : 01t + =  pm. Let's start with the AI.

The temperature we get at 1 4 : 01t + =  pm when the AI is activated is:

AI
1tT +

AI AI IntrinsicTemperaturet t tT T= +∆ + ∆

28 ( 1.5) 5= + − +

31.5 C= �

And the temperature we get at 1 4 : 01t + =  pm if the AI is not activated is:

noAI
1tT +

noAI noAI IntrinsicTemperaturet t tT T= + ∆ + ∆

28 ( 4) 5= + − +

29 C= �
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Now we have our two separate temperatures, which are AI
1 29.5tT C+ = �= 31.5°C when the AI is 

activated, and noAI
1 27tT C+ = �= 29°C when the AI is not activated.

Let's simulate what happens between 1 4 : 01t + =  pm and 2 4 : 02t + =  pm. Again, 
our AI will make a prediction, and since the server is heating up, let's say it predicts 
action 0, which corresponds to cooling down the server by 3 C� , bringing it down to 
AI
2 28.5tT C+ = � . Therefore, the energy spent by the AI between 1 4 : 01t + =  pm and 
2 4 : 02t + =  pm is:

AI
1tE +

AI
1tT += ∆

28.5 31.5= −

3Joules=

Now regarding the server's integrated cooling system (that is, when there is no AI), 
since at 1 4 : 01t + =  pm we had 𝑇𝑇𝑡𝑡+1noAI = 29°𝐶𝐶 , then the closest bound of the optimal 
range of temperatures is still 24 Co , and so the energy that the server's unintelligent 
cooling system would spend between 1 4 : 01t + =  pm and 2 4 : 02t + =  pm is:

noAI
1tE +

noAI
1tT += ∆

24 29= −

5Joules=

Hence the reward obtained between 1 4 : 01t + =  pm and 2 4 : 02t + =  pm, which is 
only and entirely based on the amount of energy saved, is:

Reward
noAI AI
1 1t tE E+ += −

5 3= −

2=
Finally, the total reward obtained between 4 : 00t =  pm and 2 4 : 02t + =  pm is:

TotalReward
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( ) ( )= Reward obtained between t and t+1 + Rewardobtained between t+1and t+2

2.5 2= +

4.5=
That was an example of the whole process happening for two minutes. In our 
implementation we'll run the same process over 1000 epochs of 5-month periods 
for the training, and then, once our AI is trained, we'll run the same process over 
1 full year of simulation for the testing.

Now that we've defined and built the environment in detail, it's time for our AI to 
take action! This is where deep Q-learning comes into play. Our model will be more 
advanced than the previous one because I'm introducing some new tricks, called 
dropout and early stopping, which are great techniques for you to have in your 
toolkit; they usually improve the training performance of deep Q-learning.

Don't forget, you'll also get an AI Blueprint, which will allow you to adapt what we 
do here to any other business problem that you want to solve with deep Q-learning.

Ready? Let's smash this.

AI solution
Let's start by reminding ourselves of the whole deep Q-learning model, while 
adapting it to this case study, so that you don't have to scroll or turn many pages 
back into the previous chapters. Repetition is never bad; it sticks the knowledge 
into our heads more firmly. Here's the deep Q-learning algorithm for you again:

Initialization:

1. The memory of the experience replay is initialized to an empty list, called 
memory in the code (the dqn.py Python file in the Chapter 11 folder of the 
GitHub repo).

2. We choose a maximum size for the memory, called max_memory in the code 
(the dqn.py Python file in the Chapter 11 folder of the GitHub repo).

At each time t (each minute), we repeat the following process, until the end of the 
epoch:

1. We predict the Q-values of the current state ts . Since five actions can be 
performed (0 == Cooling 3°C, 1 == Cooling 1.5°C, 2 == No Heat Transfer, 
3 == Heating 1.5°C, 4 == Heating 3°C), we get five predicted Q-values.
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2. We perform the action selected by the argmax method, which simply consists 
of selecting the action that has the highest of the five predicted Q-values:

( ){ }argmax ,t t
a

a Q s a=

3. We get the reward ( ),t tR s a , which is the difference noAI AI
t tE E− .

4. We reach the next state 𝑠𝑠𝑡𝑡+1 , which is composed of the three following 
elements:
 ° The temperature of the server at time 1t +
 ° The number of users in the server at time 1t +
 ° The rate of data transmission in the server at time 1t +

5. We append the transition ( )1, , ,t t t ts a r s +  in the memory.
6. We take a random batch B M⊂  of transitions. For all the transitions 

( )1, , ,
B B B Bt t t ts a r s +  of the random batch B:

 ° We get the predictions: ( ),
B Bt tQ s a

 ° We get the targets: 𝑅𝑅(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵) + 𝛾𝛾max
𝑎𝑎

(𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵+1, 𝑎𝑎)) 
 ° We compute the loss between the predictions and the targets over the 

whole batch B:

Loss = 1
2∑(𝑅𝑅(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵) + 𝛾𝛾max

𝑎𝑎
(𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵+1, 𝑎𝑎)) − 𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵))

2
= 1
2∑𝑇𝑇𝐷𝐷𝑡𝑡𝐵𝐵(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵)2

𝐵𝐵𝐵𝐵
 

And then finally we backpropagate this loss error back into the neural network, and 
through stochastic gradient descent we update the weights according to how much 
they contributed to the loss error.

I hope the refresher was refreshing! Let's move on to the brain of the outfit.

The brain
By the brain, I mean of course the artificial neural network of our AI.

Our brain will be a fully connected neural network, composed of two hidden layers, 
the first one with 64 neurons, and the second one with 32 neurons. As a reminder, 
this neural network takes as inputs the states of the environment, and returns as 
outputs the Q-values for each of the five possible actions.
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This particular design of a neural network, with two hidden layers of 64 and 
32 neurons respectively, is considered something of a classic architecture. 
It's suitable to solve a lot of problems, and it will work well for us here.

This artificial brain will be trained with a Mean Squared Error (MSE) loss, and 
an Adam optimizer. The choice for the MSE loss is because we want to measure and 
reduce the squared difference between the predicted value and the target value, and 
the Adam optimizer is a classic optimizer used, in practice, by default.

Here is what this artificial brain looks like:

Figure 2: The artificial brain of our AI

This artificial brain looks complex to create, but we can build it very easily thanks 
to the amazing Keras library. In the last chapter, we used PyTorch because it's the 
neural network library I'm more familiar with; but I want you to be able to use as 
many AI tools as possible, so in this chapter we're going to power on with Keras. 
Here's a preview of the full implementation containing the part that builds this 
brain all by itself (taken from the brain_nodropout.py file):

# BUILDING THE BRAIN

class Brain(object):
    
    # BUILDING A FULLY CONNECTED NEURAL NETWORK DIRECTLY INSIDE THE 
INIT METHOD
    
    def __init__(self, learning_rate = 0.001, number_actions = 5):
        self.learning_rate = learning_rate
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        # BUILDING THE INPUT LAYER COMPOSED OF THE INPUT STATE
        states = Input(shape = (3,))
        
        # BUILDING THE FULLY CONNECTED HIDDEN LAYERS
        x = Dense(units = 64, activation = 'sigmoid')(states)
        y = Dense(units = 32, activation = 'sigmoid')(x)
        
        # BUILDING THE OUTPUT LAYER, FULLY CONNECTED TO THE LAST 
HIDDEN LAYER
        q_values = Dense(units = number_actions, activation = 
'softmax')(y)
        
        # ASSEMBLING THE FULL ARCHITECTURE INSIDE A MODEL OBJECT
        self.model = Model(inputs = states, outputs = q_values)
        
        # COMPILING THE MODEL WITH A MEAN-SQUARED ERROR LOSS AND A 
CHOSEN OPTIMIZER
        self.model.compile(loss = 'mse', optimizer = Adam(lr = 
learning_rate))

As you can see, it only takes a couple of lines of code, and I'll explain every line 
of that code to you in a later section. Now let's move on to the implementation.

Implementation
This implementation will be divided into five parts, each part having its own Python 
file. You can find the full implementation in the Chapter 11 folder of the GitHub 
repository. These five parts constitute the general AI framework, or AI Blueprint, 
that should be followed whenever you build an environment to solve any business 
problem with deep reinforcement learning.

Here they are, from Step 1 to Step 5:

• Step 1: Building the environment (environment.py)
• Step 2: Building the brain (brain_nodropout.py or brain_dropout.py)
• Step 3: Implementing the deep reinforcement learning algorithm, which 

in our case is a deep Q-learning model (dqn.py)
• Step 4: Training the AI (training_noearlystopping.py or training_

earlystopping.py)
• Step 5: Testing the AI (testing.py)

In order, those are the main steps of the general AI framework.
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We'll follow this AI Blueprint to implement the AI for our specific case in 
the following five sections, each corresponding to one of these five main steps. 
Within each step, we'll distinguish the sub-steps that are still part of the general 
AI framework from the sub-steps that are specific to our project by writing the 
titles of the code sections in capital letters for all the sub-steps of the general AI 
framework, and in lowercase letters for all the sub-steps specific to our project.

That means that anytime you see a new code section where the title is written in 
capital letters, then it is the next sub-step of the general AI framework, which you 
should also follow when building an AI for your own business problem.

This next step, building the environment, is the largest Python implementation 
file for this project. Make sure you're rested and your batteries are recharged, 
and as soon as you are ready, let's tackle this together!

Step 1 – Building the environment
In this first step, we are going to build the environment inside a class. Why a class? 
Because we would like our environment to be an object which we can easily create 
with any values we choose for some parameters.

For example, we can create one environment object for a server that has a certain 
number of connected users and a certain rate of data at a specific time, and another 
environment object for a different server that has a different number of connected 
users and a different rate of data. Thanks to the advanced structure of this class, 
we can easily plug-and-play the environment objects we create on different servers 
which have their own parameters, regulating their temperatures with several 
different AIs, so that we can minimize the energy consumption of a whole data 
center, just as Google DeepMind did for Google's data centers with its DQN 
(deep Q-learning) algorithm.

This class follows the following sub-steps, which are part of the general AI 
Framework inside Step 1 – Building the environment:

• Step 1-1: Introducing and initializing all the parameters and variables of the 
environment.

• Step 1-2: Making a method that updates the environment right after the 
AI plays an action.

• Step 1-3: Making a method that resets the environment.
• Step 1-4: Making a method that gives us at any time the current state, the last 

reward obtained, and whether the game is over.
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You'll find the whole implementation of this Environment class in this section. 
Remember the most important thing: all the code sections with their titles written 
in capital letters are steps of the general AI framework/Blueprint, and all the code 
sections having their titles written in lowercase letters are specific to our case study.

The implementation of the environment has 144 lines of code. I won't explain each 
line of code for two reasons:

1. It would make this chapter really overwhelming.
2. The code is very simple, is commented on for clarity, and just creates 

everything we've defined so far in this chapter.

I'm confident you'll have no problems understanding it. Besides, the code section 
titles and the chosen variable names are clear enough to understand the structure 
and the flow of the code at face value. I'll walk you through the code broadly. Here 
we go!

First, we start building the Environment class with its first method, the __init__ 
method, which introduces and initializes all the parameters and variables, as we 
described earlier:

# BUILDING THE ENVIRONMENT IN A CLASS

class Environment(object):
    
    # INTRODUCING AND INITIALIZING ALL THE PARAMETERS AND VARIABLES OF 
THE ENVIRONMENT
    
    def __init__(self, optimal_temperature = (18.0, 24.0), initial_
month = 0, initial_number_users = 10, initial_rate_data = 60):
        self.monthly_atmospheric_temperatures = [1.0, 5.0, 7.0, 10.0, 
11.0, 20.0, 23.0, 24.0, 22.0, 10.0, 5.0, 1.0]
        self.initial_month = initial_month
        self.atmospheric_temperature = self.monthly_atmospheric_
temperatures[initial_month]
        self.optimal_temperature = optimal_temperature
        self.min_temperature = -20
        self.max_temperature = 80
        self.min_number_users = 10
        self.max_number_users = 100
        self.max_update_users = 5
        self.min_rate_data = 20
        self.max_rate_data = 300
        self.max_update_data = 10
        self.initial_number_users = initial_number_users
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        self.current_number_users = initial_number_users
        self.initial_rate_data = initial_rate_data
        self.current_rate_data = initial_rate_data
        self.intrinsic_temperature = self.atmospheric_temperature + 
1.25 * self.current_number_users + 1.25 * self.current_rate_data
        self.temperature_ai = self.intrinsic_temperature
        self.temperature_noai = (self.optimal_temperature[0] + self.
optimal_temperature[1]) / 2.0
        self.total_energy_ai = 0.0
        self.total_energy_noai = 0.0
        self.reward = 0.0
        self.game_over = 0
        self.train = 1

You'll notice the self.monthly_atmospheric_temperatures variable; that's a list 
containing the average monthly atmospheric temperatures for each of the 12 months: 
1°C in January, 5°C in February, 7°C in March, and so on. 

The self.atmospheric_temperature variable is the current average atmospheric 
temperature of the month we're in during the simulation, and it's initialized as the 
atmospheric temperature of the initial month, which we'll set later as January.

The self.game_over variable tells the AI whether or not we should reset the 
temperature of the server, in case it goes outside the allowed range of [-20°C, 80°C]. 
If it does, self.game_over will be set equal to 1, otherwise it will remain at 0.

Finally, the self.train variable tells us whether we're in training mode or inference 
mode. If we're in training mode, self.train = 1. If we're in inference mode, self.
train = 0. The rest is just putting into code everything we defined in words at the 
beginning of this chapter.

Let's move on!

Now, we make the second method, update_env, which updates the environment 
after the AI performs an action. This method takes three arguments as inputs:

1. direction: A variable describing the direction of the heat transfer the AI 
imposes on the server, like so: if direction == 1, the AI is heating up the 
server. If direction == -1, the AI is cooling down the server. We'll need to 
have the value of this direction before calling the update_env method, since 
this method is called after the action is performed.
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2. energy_ai: The energy spent by the AI to heat up or cool down the server at 
this specific time when the action is played. Based on assumption 2, it will be 
equal to the temperature change caused by the AI in the server.

3. month: Simply the month we're in at the specific time when the action is 
played.

The first actions the program takes inside this method are to compute the reward. 
Indeed, right after the action is played, we can immediately deduce the reward, 
since it is the difference between the energy that the server's integrated system 
would spend if there was no AI, and the energy spent by the AI:

    # MAKING A METHOD THAT UPDATES THE ENVIRONMENT RIGHT AFTER THE AI 
PLAYS AN ACTION
    
    def update_env(self, direction, energy_ai, month):
        
        # GETTING THE REWARD
        
        # Computing the energy spent by the server's cooling system 
when there is no AI
        energy_noai = 0
        if (self.temperature_noai < self.optimal_temperature[0]):
            energy_noai = self.optimal_temperature[0] - self.
temperature_noai
            self.temperature_noai = self.optimal_temperature[0]
        elif (self.temperature_noai > self.optimal_temperature[1]):
            energy_noai = self.temperature_noai - self.optimal_
temperature[1]
            self.temperature_noai = self.optimal_temperature[1]
        # Computing the Reward
        self.reward = energy_noai - energy_ai
        # Scaling the Reward
        self.reward = 1e-3 * self.reward

You have probably noticed that we choose to scale the reward at the end. In short, 
scaling is bringing the values (here the rewards) down into a short range. For 
example, normalization is a scaling technique where all the values are brought 
down into a range between 0 and 1. Another widely used scaling technique is 
standardization, which will be explained a bit later on.
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Scaling is a common practice that is usually recommended in research papers when 
performing deep reinforcement learning, as it stabilizes training and improves the 
performance of the AI.

After getting the reward, we reach the next state. Remember that each state is 
composed of the following elements:

1. The temperature of the server at time t
2. The number of users in the server at time t
3. The rate of data transmission in the server at time t

So, as we reach the next state, we update each of these elements one by one, 
following the sub-steps highlighted as comments in this next code section:

        # GETTING THE NEXT STATE
        
        # Updating the atmospheric temperature
        self.atmospheric_temperature = self.monthly_atmospheric_
temperatures[month]
        # Updating the number of users
        self.current_number_users += np.random.randint(-self.max_
update_users, self.max_update_users)
        if (self.current_number_users > self.max_number_users):
            self.current_number_users = self.max_number_users
        elif (self.current_number_users < self.min_number_users):
            self.current_number_users = self.min_number_users
        # Updating the rate of data
        self.current_rate_data += np.random.randint(-self.max_update_
data, self.max_update_data)
        if (self.current_rate_data > self.max_rate_data):
            self.current_rate_data = self.max_rate_data
        elif (self.current_rate_data < self.min_rate_data):
            self.current_rate_data = self.min_rate_data
        # Computing the Delta of Intrinsic Temperature
        past_intrinsic_temperature = self.intrinsic_temperature
        self.intrinsic_temperature = self.atmospheric_temperature + 
1.25 * self.current_number_users + 1.25 * self.current_rate_data
        delta_intrinsic_temperature = self.intrinsic_temperature - 
past_intrinsic_temperature
        # Computing the Delta of Temperature caused by the AI
        if (direction == -1):
            delta_temperature_ai = -energy_ai
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        elif (direction == 1):
            delta_temperature_ai = energy_ai
        # Updating the new Server's Temperature when there is the AI
        self.temperature_ai += delta_intrinsic_temperature + delta_
temperature_ai
        # Updating the new Server's Temperature when there is no AI
        self.temperature_noai += delta_intrinsic_temperature

Then, we update the self.game_over variable if needed, that is, if the temperature 
of the server goes outside the allowed range of [-20°C, 80°C]. This can happen if the 
server temperature goes below the minimum temperature of -20°C, or if the server 
temperature goes higher than the maximum temperature of 80°C. Plus we do two 
extra things: we bring the server temperature back into the optimal temperature 
range (closest bound), and since doing this spends some energy, we update the total 
energy spent by the AI (self.total_energy_ai). That's exactly what is coded in the 
next code section:

        # GETTING GAME OVER
        
        if (self.temperature_ai < self.min_temperature):
            if (self.train == 1):
                self.game_over = 1
            else:
                self.total_energy_ai += self.optimal_temperature[0] - 
self.temperature_ai
                self.temperature_ai = self.optimal_temperature[0]
        elif (self.temperature_ai > self.max_temperature):
            if (self.train == 1):
                self.game_over = 1
            else:
                self.total_energy_ai += self.temperature_ai - self.
optimal_temperature[1]
                self.temperature_ai = self.optimal_temperature[1]

Now, I know it seems unrealistic for the server to snap right back to 24 degrees from 
80, or to 18 from -20, but this is an action the magically efficient integrated cooling 
system we defined earlier is perfectly capable of. Think of it as the AI switching to 
the integrated system for a moment in the case of a temperature disaster. Once again, 
this is an area that will benefit enormously from your ongoing tinkering once we've 
got the AI up and running; after that, you can play around with these figures as you 
like in the interests of a more realistic server model.
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Then, we update the two scores coming from the two separate simulations, 
which are:

1. self.total_energy_ai: The total energy spent by the AI
2. self.total_energy_noai: The total energy spent by the server's integrated 

cooling system when there is no AI.

        # UPDATING THE SCORES
        
        # Updating the Total Energy spent by the AI
        self.total_energy_ai += energy_ai
        # Updating the Total Energy spent by the server's cooling 
system when there is no AI
        self.total_energy_noai += energy_noai

Then to improve the performance, we scale the next state by scaling each of its three 
elements (server temperature, number of users, and data transmission rate). To do 
so, we perform a simple standardization scaling technique, which simply consists of 
subtracting the minimum value of the variable, and then dividing by the maximum 
delta of the variable:

        # SCALING THE NEXT STATE
        
        scaled_temperature_ai = (self.temperature_ai - self.min_
temperature) / (self.max_temperature - self.min_temperature)
        scaled_number_users = (self.current_number_users - self.min_
number_users) / (self.max_number_users - self.min_number_users)
        scaled_rate_data = (self.current_rate_data - self.min_rate_
data) / (self.max_rate_data - self.min_rate_data)
        next_state = np.matrix([scaled_temperature_ai, scaled_number_
users, scaled_rate_data])

Finally, we end this update_env method by returning the next state, the reward 
received, and whether the game is over or not:

        # RETURNING THE NEXT STATE, THE REWARD, AND GAME OVER
        
        return next_state, self.reward, self.game_over

Great! We're done with this long, but important, method that updates the 
environment at each time step (each minute). Now there are two final and very easy 
methods to go: one that resets the environment, and one that gives us three pieces 
of information at any time: the current state, the last reward received, and whether 
or not the game is over.
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Here's the reset method, which resets the environment when a new training 
episode starts, by resetting all the variables of the environment to their originally 
initialized values:

    # MAKING A METHOD THAT RESETS THE ENVIRONMENT
    
    def reset(self, new_month):
        self.atmospheric_temperature = self.monthly_atmospheric_
temperatures[new_month]
        self.initial_month = new_month
        self.current_number_users = self.initial_number_users
        self.current_rate_data = self.initial_rate_data
        self.intrinsic_temperature = self.atmospheric_temperature + 
1.25 * self.current_number_users + 1.25 * self.current_rate_data
        self.temperature_ai = self.intrinsic_temperature
        self.temperature_noai = (self.optimal_temperature[0] + self.
optimal_temperature[1]) / 2.0
        self.total_energy_ai = 0.0
        self.total_energy_noai = 0.0
        self.reward = 0.0
        self.game_over = 0
        self.train = 1

Finally, here's the observe method, which lets us know at any given time the current 
state, the last reward received, and whether the game is over:

    # MAKING A METHOD THAT GIVES US AT ANY TIME THE CURRENT STATE, THE 
LAST REWARD AND WHETHER THE GAME IS OVER
    
    def observe(self):
        scaled_temperature_ai = (self.temperature_ai - self.min_
temperature) / (self.max_temperature - self.min_temperature)
        scaled_number_users = (self.current_number_users - self.min_
number_users) / (self.max_number_users - self.min_number_users)
        scaled_rate_data = (self.current_rate_data - self.min_rate_
data) / (self.max_rate_data - self.min_rate_data)
        current_state = np.matrix([scaled_temperature_ai, scaled_
number_users, scaled_rate_data])
        return current_state, self.reward, self.game_over

Awesome! We're done with the first step of the implementation, building the 
environment. Now let's move on to the next step and start building the brain.
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Step 2 – Building the brain
In this step, we're going to build the artificial brain of our AI, which is nothing other 
than a fully connected neural network. Here it is again:

Figure 3: The artificial brain of our AI

We'll build this artificial brain inside a class for the same reason as before, which 
is to allow us to create several artificial brains, for different servers inside a data 
center. Maybe some servers will need different artificial brains with different hyper-
parameters than other servers. That's why, thanks to this class/object advanced 
Python structure, we can easily switch from one brain to another, to regulate the 
temperature of a new server that requires an AI with different neural network 
parameters. That's the beauty of Object-Oriented Programming (OOP).

We're building this artificial brain with the amazing Keras library. From this library, 
we use the Dense() class to create our two fully connected hidden layers, the first 
one from 64 hidden neurons, and the second one from 32 neurons. Remember, this 
is a classic neural network architecture often used by default, as common practice, 
and seen in many research papers. At the end, we use the Dense() class again to 
return the Q-values, which are the outputs of the artificial neural network.

Later on, when we code the training and testing files, we'll use the argmax method 
to select the action that has the maximum Q-value. Then, we assemble all the 
components of the brain, including the inputs and outputs, by creating it as an object 
of the Model() class (which is very useful in that we can save and load a model with 
specific weights). Finally, we'll compile it with a mean squared error loss and an 
Adam optimizer. I'll explain all this in more detail later.
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Here are the new steps of the general AI framework:

• Step 2-1: Build the input layer, composed of the input states.
• Step 2-2: Build a defined number of hidden layers with a defined number 

of neurons inside each layer, fully connected to the input layer and between 
each other.

• Step 2-3: Build the output layer, fully connected to the last hidden layer.
• Step 2-4: Assemble the full architecture inside a model object.
• Step 2-5: Compile the model with a mean squared error loss function and 

a chosen optimizer.

The implementation of this is presented to you in a choice of two different files:

1. brain_nodropout.py: An implementation file that builds the artificial brain 
without the dropout regularization technique (I'll explain what it is very 
soon).

2. brain_dropout.py: An implementation file that builds the artificial brain 
with the dropout regularization technique.

First let me give you the implementation without dropout, and then I'll provide one 
with dropout and explain it.

Without dropout
Here is the full implementation of the artificial brain, without any dropout 
regularization technique:

1 # AI for Business - Minimize cost with Deep Q-Learning

2 # Building the Brain without Dropout

3

4 # Importing the libraries

5 from keras.layers import Input, Dense

6 from keras.models import Model

7 from keras.optimizers import Adam

8

9 # BUILDING THE BRAIN

10

11 class Brain(object):

12     
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13     # BUILDING A FULLY CONNECTED NEURAL NETWORK DIRECTLY INSIDE 
THE INIT METHOD

14     

15     def __init__(self, learning_rate = 0.001, number_actions = 
5):

16         self.learning_rate = learning_rate

17         

18         # BUILDING THE INPUT LAYER COMPOSED OF THE INPUT STATE

19         states = Input(shape = (3,))

20         

21         # BUILDING THE FULLY CONNECTED HIDDEN LAYERS

22         x = Dense(units = 64, activation = 'sigmoid')(states)

23         y = Dense(units = 32, activation = 'sigmoid')(x)

24         

25         # BUILDING THE OUTPUT LAYER, FULLY CONNECTED TO THE LAST 
HIDDEN LAYER

26         q_values = Dense(units = number_actions, activation = 
'softmax')(y)

27         

28         # ASSEMBLING THE FULL ARCHITECTURE INSIDE A MODEL OBJECT

29         self.model = Model(inputs = states, outputs = q_values)

30         

31         # COMPILING THE MODEL WITH A MEAN-SQUARED ERROR LOSS AND 
A CHOSEN OPTIMIZER

32         self.model.compile(loss = 'mse', optimizer = Adam(lr = 
learning_rate))

Now, let's go through the code in detail.

Line 5: We import the Input and Dense classes from the layers module in the 
keras library. The Input class allows us to build the input layer, and the Dense class 
allows us to build the fully-connected layers.

Line 6: We import the Model class from the models module in the keras library. It 
allows us to build the whole neural network model by assembling its different layers.
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Line 7: We import the Adam class from the optimizers module in the keras library. 
It allows us to use the Adam optimizer, used to update the weights of the neural 
network through stochastic gradient descent, when backpropagating the loss error 
in each iteration of the training.

Line 11: We introduce the Brain class, which will contain not only the whole 
architecture of the artificial neural network, but also the connection of the model 
to the loss (Mean-Squared Error) and the Adam optimizer.

Line 15: We introduce the __init__ method, which will be the only method of 
this class. We define the whole architecture of the neural network inside it, just 
by creating successive variables which together assemble the neural network. This 
method takes as inputs two arguments:

1. The learning rate (learning_rate), which is a measure of how fast you want 
the neural network to learn (the higher the learning rate, the faster the neural 
network learns; but at the cost of quality). The default value is 0.001.

2. The number of actions (number_actions), which is of course the number 
of actions that our AI can perform. Now you might be thinking: why do 
we need to put that as an argument? Well that's just in case you want to 
build another AI that can perform more or fewer actions. In which case you 
would simply need to change the value of the argument and that's it. Pretty 
practical, isn't it?

Line 16: We create an object variable for the learning rate, self.learning_rate, 
initialized as the value of the learning_rate argument provided in the __init__ 
method (therefore the argument of the Brain class when we create the object in the 
future).

Line 19: We create the input states layer, called states, as an object of the Input 
class. Into this Input class we enter one argument, shape = (3,), which simply 
tells that the input layer is a 1D vector composed of three elements (the server 
temperature, the number of users, and the data transmission rate).

Line 22: We create the first fully-connected hidden layer, called x, as an object of the 
Dense class, which takes as input two arguments:

1. units: The number of hidden neurons we want to have in this first hidden 
layer. Here, we choose to have 64 hidden neurons.
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2. activation: The activation function used to pass on the signal when 
forward-propagating the inputs into this first hidden layer. Here we choose, 
by default, a sigmoid activation function, which is as follows:

Figure 4: The sigmoid activation function

The ReLU activation function would also have worked well here; I encourage you 
to experiment! Note also how the connection from the input layer to this first hidden 
layer is made by calling the states variable right after the Dense class.

Line 23: We create the second fully-connected hidden layer, called y, as an object 
of the Dense class, which takes as input the same two arguments:

1. units: The number of hidden neurons we want to have in this second hidden 
layer. This time we choose to have 32 hidden neurons.

2. activation: The activation function used to pass on the signal when 
forward-propagating the inputs into this first hidden layer. Here, again, 
we choose a sigmoid activation function.

Note once again how the connection from the first hidden layer to this second hidden 
layer is made by calling the x variable right after the Dense class.

Line 26: We create the output layer, called q_values, fully connected to the second 
hidden layer, as an object of the Dense class. This time, we input number_actions 
units since the output layer contains the actions to play, and a softmax activation 
function, as seen in Chapter 5, Your First AI Model – Beware the Bandits!, on the deep 
Q-learning theory.

Line 29: Using the Model class, we assemble the successive layers of the neural 
network, by just inputting the states as the inputs, and the q_values as the 
outputs.
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Line 32: Using the compile method taken from the Model class, we connect our 
model to the Mean-Squared Error loss and the Adam optimizer. The latter takes 
the learning_rate argument as input.

With dropout
It'll be valuable for you to add one more powerful technique to your toolkit: dropout.

Dropout is a regularization technique that prevents overfitting, which is the situation 
where the AI model performs well on the training set, but poorly on the test set. 
Dropout simply consists of deactivating a randomly selected portion of neurons 
during each step of forward- and back-propagation. That means not all the neurons 
learn the same way, which prevents the neural network from overfitting the training 
data.

Adding dropout is very easy with keras. You simply need to call the Dropout 
class right after the Dense class, and input the proportion of neurons you want 
to deactivate, like so:

# AI for Business - Minimize cost with Deep Q-Learning
# Building the Brain with Dropout

# Importing the libraries
from keras.layers import Input, Dense, Dropout
from keras.models import Model
from keras.optimizers import Adam

# BUILDING THE BRAIN

class Brain(object):
    
    # BUILDING A FULLY CONNECTED NEURAL NETWORK DIRECTLY INSIDE THE 
INIT METHOD
    
    def __init__(self, learning_rate = 0.001, number_actions = 5):
        self.learning_rate = learning_rate
        
        # BUILDING THE INPUT LAYER COMPOSED OF THE INPUT STATE
        states = Input(shape = (3,))
        
        # BUILDING THE FIRST FULLY CONNECTED HIDDEN LAYER WITH DROPOUT 
ACTIVATED
        x = Dense(units = 64, activation = 'sigmoid')(states)
        x = Dropout(rate = 0.1)(x)
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        # BUILDING THE SECOND FULLY CONNECTED HIDDEN LAYER WITH 
DROPOUT ACTIVATED
        y = Dense(units = 32, activation = 'sigmoid')(x)
        y = Dropout(rate = 0.1)(y)
        
        # BUILDING THE OUTPUT LAYER, FULLY CONNECTED TO THE LAST 
HIDDEN LAYER
        q_values = Dense(units = number_actions, activation = 
'softmax')(y)
        
        # ASSEMBLING THE FULL ARCHITECTURE INSIDE A MODEL OBJECT
        self.model = Model(inputs = states, outputs = q_values)
        
        # COMPILING THE MODEL WITH A MEAN-SQUARED ERROR LOSS AND A 
CHOSEN OPTIMIZER
        self.model.compile(loss = 'mse', optimizer = Adam(lr = 
learning_rate))

Here, we apply dropout to the first and second fully-connected layers, by 
deactivating 10% of their neurons each. Now, let's move on to the next step 
of our general AI framework: Step 3 – Implementing the deep reinforcement  
learning algorithm.

Step 3 – Implementing the deep reinforcement 
learning algorithm
In this new implementation (given in the dqn.py file), we simply have to follow the 
deep Q-learning algorithm provided before. Hence, this implementation follows the 
following sub-steps, which are part of the general AI framework:

• Step 3-1: Introduce and initialize all the parameters and variables of the deep 
Q-learning model.

• Step 3-2: Make a method that builds the memory in experience replay.
• Step 3-3: Make a method that builds and returns two batches of 10 inputs 

and 10 targets.

First, have a look at the whole code, and then I'll explain it line by line:

1 # AI for Business - Minimize cost with Deep Q-Learning

2 # Implementing Deep Q-Learning with Experience Replay

3

4 # Importing the libraries

WOW! eBook 
www.wowebook.org



Chapter 11

[ 239 ]

5 import numpy as np

6

7 # IMPLEMENTING DEEP Q-LEARNING WITH EXPERIENCE REPLAY

8

9 class DQN(object):

10     

11     # INTRODUCING AND INITIALIZING ALL THE PARAMETERS AND 
VARIABLES OF THE DQN

12     def __init__(self, max_memory = 100, discount = 0.9):

13         self.memory = list()

14         self.max_memory = max_memory

15         self.discount = discount

16

17     # MAKING A METHOD THAT BUILDS THE MEMORY IN EXPERIENCE 
REPLAY

18     def remember(self, transition, game_over):

19         self.memory.append([transition, game_over])

20         if len(self.memory) > self.max_memory:

21             del self.memory[0]

22

23     # MAKING A METHOD THAT BUILDS TWO BATCHES OF INPUTS AND 
TARGETS BY EXTRACTING TRANSITIONS FROM THE MEMORY

24     def get_batch(self, model, batch_size = 10):

25         len_memory = len(self.memory)

26         num_inputs = self.memory[0][0][0].shape[1]

27         num_outputs = model.output_shape[-1]

28         inputs = np.zeros((min(len_memory, batch_size), num_
inputs))

29         targets = np.zeros((min(len_memory, batch_size), num_
outputs))

30         for i, idx in enumerate(np.random.randint(0, len_memory, 
size = min(len_memory, batch_size))):

31             current_state, action, reward, next_state = self.
memory[idx][0]

32             game_over = self.memory[idx][1]

33             inputs[i] = current_state

34             targets[i] = model.predict(current_state)[0]

35             Q_sa = np.max(model.predict(next_state)[0])
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36             if game_over:

37                 targets[i, action] = reward

38             else:

39                 targets[i, action] = reward + self.discount * 
Q_sa

40         return inputs, targets

Line 5: We import the numpy library, because we'll be working with numpy arrays.

Line 9: We introduce the DQN class (DQN stands for Deep Q-Network), which 
contains the main parts of the deep Q-Learning algorithm, including experience 
replay.

Line 12: We introduce the __init__ method, which creates the three following 
object variables of the DQN model: the experience replay memory, the capacity 
(maximum size of the memory), and the discount factor in the formula of the target. 
It takes as arguments max_memory (the capacity) and discount (the discount factor), 
in case we want to build other experience replay memories with different capacities, 
or if we want to change the value of the discount factor in the computation of the 
target. The default values of these arguments are respectively 100 and 0.9, which 
were chosen arbitrarily and turned out to work quite well; these are good arguments 
to experiment with, to see what difference it makes when you set them differently.

Line 13: We create the experience replay memory object variable, self.memory, and 
we initialize it as an empty list.

Line 14: We create the object variable for the memory capacity, self.max_memory, 
and we initialize it as the value of the max_memory argument.

Line 15: We create the object variable for the discount factor, self.discount, and 
we initialize it as the value of the discount argument.

Line 18: We introduce the remember method, which takes as input a transition to 
be added to the memory, and game_over, which states whether or not this transition 
leads the server's temperature to go outside of the allowed range of temperatures.

Line 19: Using the append function called from the memory list, we add the transition 
with the game_over boolean into the memory (in the last position).

Line 20: If, after adding this transition, the size of the memory exceeds the memory 
capacity (self.max_memory).

Line 21: We delete the first element of the memory.
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Line 24: We introduce the get_batch method, which takes as inputs the model we 
built in the previous Python file (model) and a batch size (batch_size), and builds 
two batches of inputs and targets by extracting 10 transitions from the memory 
(if the batch size is 10).

Line 25: We get the current number of elements in the memory and put it into a new 
variable, len_memory.

Line 26: We get the number of elements in the input state vector (which is 3), but 
instead of directly entering 3, we access this number from the shape attribute of the 
input state vector element of the memory, which we get by taking the [0][0][0] 
indexes. Each element of the memory is structured as follows:

[[current_state, action, reward, next_state], game_over]

Thus in [0][0][0], the first [0] corresponds to the first element of the memory 
(meaning the first transition), the second [0] corresponds to the tuple [current_
state, action, reward, next_state], and so the third [0] corresponds to the 
current_state element of that tuple. Hence, self.memory[0][0][0] corresponds 
to the first current state, and by adding .shape[1] we get the number of elements in 
that input state vector. You might be wondering why we didn't enter 3 directly; that's 
because we want to generalize this code to any input state vector dimension you 
might want to have in your environment. For example, you might want to consider 
an input state with more information about your server, such as the humidity. 
Thanks to this line of code, you won't have to change anything regarding your new 
number of state elements.

Line 27: We get the number of elements of the model output, meaning the number 
of actions. Just like on the previous line, instead of entering directly 5, we generalize 
by accessing this from the shape attribute called from our model object of the Model 
class. -1 means that we get the last index of that shape attribute, where the number 
of actions is contained.

Line 28: We introduce and initialize the batch of inputs as a numpy array, of batch_
size = 10 rows and 3 columns corresponding to input state elements, with only 
zeros. If the memory doesn't have 10 transitions yet, the number of rows will just be 
the length of the memory. 
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If the memory already has at least 10 transitions, what we get with this line of code is 
the following:

Figure 5: Batch of inputs (1/2)

Line 29: We introduce and initialize the batch of targets as a numpy array of batch_
size = 10 rows and 5 columns corresponding to the five possible actions, with only 
zeros. Just like before, if the memory doesn't have 10 transitions yet, the number 
of rows will just be the length of the memory. If the memory already has at least 
10 transitions, what we get with this line of code is the following:

Figure 6: Batch of targets (1/3)

Line 30: We do a double iteration inside the same for loop. The first iterative 
variable i goes from 0 to the batch size (or up to len_memory if len_memory < 
batch_size):

i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

That way, i will iterate each element of the batch. The second iterative variable idx 
takes 10 random indexes of the memory, in order to extract 10 random transitions 
from the memory. Inside the for loop, we populate the two batches of inputs and 
targets with their right values by iterating through each of their elements.
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Line 31: We get the transition of the sampled index idx from the memory, composed 
of the current state, the action, the reward, and the next state. The reason we add [0] 
is because an element of the memory is structured as follows:

[[current_state, action, reward, next_state], game_over]

We'll get the game_over value separately, in the next line of code.

Line 32: We get the game_over value corresponding to that same index idx of the 
memory. As you can see, this time we add [1] on the end to get the second element 
of a memory element:

[[current_state, action, reward, next_state], game_over]

Line 33: We populate the batch of inputs with all the current states, in order to get 
this at the end of the for loop:

Figure 7: Batch of inputs (2/2)

Line 34: Now we start populating the batch of targets with the right values. First, we 
populate it with all the Q-values ( ),

B Bt tQ s a  that the model predicts for the different 
state-action pairs: (current state, action 0), (current state, action 1), (current state, 
action 2), (current state, action 3), and (current state, action 4). Thus we first get this 
(at the end of the for loop):

Figure 8: Batch of targets (2/3)
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Remember that for the action that is played, the formula of the target must be 
this one:

𝑅𝑅(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵) + 𝛾𝛾max
𝑎𝑎

(𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵+1, 𝑎𝑎)) 

What we do in the following lines of code is to put this formula into the column of 
each action that was played within the 10 selected transitions. In other words, we 
get this:

Figure 9: Batch of targets (3/3)

In that example, Action 1 was performed in the first transition (Target 1), Action 
3 was performed in the second transition (Target 2), Action 0 was performed in 
the third transition (Target 3), and so on. Let's populate this in the following lines 
of code.

Line 35: We first start getting the ( )( )1max ,
Bta

Q s a+  part of the formula of the target:

𝑅𝑅(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵) + 𝛾𝛾max
𝑎𝑎

(𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵+1, 𝑎𝑎)) 

Line 36: We check if game_over = 1, meaning that the server has gone outside the 
allowed range of server temperatures. Because if it has, there's actually no next state 
(because we basically reset the environment by putting the server's temperature 
back into the optimal range so we start from a new state); and therefore we shouldn't 
consider ( )( )1max ,

Bta
Q s a+ .

Line 37: In that case, we only keep the ( ),
B Bt tR s a  part of the target.

Line 38: However, if the game is not over (game_over = 0)...
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Line 39: We keep the whole formula of the target, but of course only for the action 
that was performed, meaning 

Bt
a  here:

𝑅𝑅(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵) + 𝛾𝛾max
𝑎𝑎

(𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵+1, 𝑎𝑎)) 

Hence, we get the following batch of targets, as you saw earlier:

Figure 10: Batch of targets (3/3)

Line 40: At last, we return the final batches of inputs and targets.

That was epic—you've successfully created an artificial brain. Now that you've done 
it, we're ready to start the training.

Step 4: Training the AI
Now that our AI has a fully functional brain, it's time to train it. That's exactly what 
we do in this fourth Python implementation. You actually have a choice of two files 
to use for this:

1. training_noearlystopping.py, which trains your AI on a full 1000 epochs 
of 5-months period.

2. training_earlystopping.py, which trains your AI on 1000 epochs as well, 
but which can stop the training early if the performance no longer improves 
over the iterations. This technique is called early stopping.

Both these implementations are long, but very simple. We start by setting all 
the parameters, then we build the environment by creating an object of the 
Environment() class, then we build the brain of the AI by creating an object of the 
Brain() class, then we build the deep Q-learning model by creating an object of the 
DQN() class, and finally we launch the training connecting all these objects together 
over 1000 epochs of 5-month periods.
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You'll notice in the training loop that we also do some exploration when performing 
the actions, performing some random actions from time to time. In our case, this will 
be done 30% of the time, since we use an exploration parameter 0.3∈= , and then we 
force the AI to perform a random action when we draw a random value between 0 
and 1 that is below 0.3∈= . The reason we do some exploration is because it improves 
the deep reinforcement learning process, as we discussed in Chapter 9, Going Pro with 
Artificial Brains – Deep Q-Learning, and the reason we don't use Softmax in this project 
is just to give you a look at how to implement a different exploration method.

Later, you'll be introduced to another little improvement in the training_
noearlystopping.py file, where we use an early stopping technique which stops 
the training early if there's no improvement in the performance.

Let's highlight the new steps which still belong to our general AI framework/
Blueprint:

• Step 4-1: Building the environment by creating an object of the Environment 
class.

• Step 4-2: Building the artificial brain by creating an object of the Brain class.
• Step 4-3: Building the DQN model by creating an object of the DQN class.
• Step 4-4: Selecting the training mode.
• Step 4-5: Starting the training with a for loop over 100 epochs of 5-month 

periods.
• Step 4-6: During each epoch we repeat the whole deep Q-learning process, 

while also doing some exploration 30% of the time.

No early stopping
Ready to implement this? Maybe get a good coffee or tea first because this is going to 
be a bit long (88 lines of code, but easy ones!). We'll start without early stopping and 
then at the end I'll explain how to add the early stopping technique. The file to follow 
along with is training_noearlystopping.py. Since this is pretty long, let's do it 
section by section this time, starting with the first one:

1 # AI for Business - Minimize cost with Deep Q-Learning

2 # Training the AI without Early Stopping

3

4 # Importing the libraries and the other python files

5 import os

6 import numpy as np

7 import random as rn
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8 import environment

9 import brain_nodropout

10 import dqn

Line 5: We import the os library, which will be used to set a seed for reproducibility 
so that if you run the training several times, you'll get the same result each time. 
You can, of course, choose to remove this when you tinker with the code yourself!

Line 6: We import the numpy library, since we'll work with numpy arrays.

Line 7: We import the random library, which we'll use to do some exploration.

Line 8: We import the environment.py file, implemented in Step 1, which contains 
the whole defined environment.

Line 9: We import the brain_nodropout.py file, our artificial brain without dropout 
that we implemented in Step 2. This contains the whole neural network of our AI.

Line 10: We import the dqn.py file implemented in Step 3, which contains the main 
parts of the deep Q-learning algorithm, including experience replay.

Moving on to the next section:

12 # Setting seeds for reproducibility 

13 os.environ['PYTHONHASHSEED'] = '0'

14 np.random.seed(42)

15 rn.seed(12345)

16

17 # SETTING THE PARAMETERS

18 epsilon = .3

19 number_actions = 5

20 direction_boundary = (number_actions - 1) / 2

21 number_epochs = 100

22 max_memory = 3000

23 batch_size = 512

24 temperature_step = 1.5

25

26 # BUILDING THE ENVIRONMENT BY SIMPLY CREATING AN OBJECT OF THE 
ENVIRONMENT CLASS

27 env = environment.Environment(optimal_temperature = (18.0, 
24.0), initial_month = 0, initial_number_users = 20, initial_
rate_data = 30)
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28

29 # BUILDING THE BRAIN BY SIMPLY CREATING AN OBJECT OF THE BRAIN 
CLASS

30 brain = brain_nodropout.Brain(learning_rate = 0.00001, number_
actions = number_actions)

31

32 # BUILDING THE DQN MODEL BY SIMPLY CREATING AN OBJECT OF THE DQN 
CLASS

33 dqn = dqn.DQN(max_memory = max_memory, discount = 0.9)

34

35 # CHOOSING THE MODE

36 train = True

Lines 13, 14, and 15: We set seeds for reproducibility, to get the same results after 
several rounds of training. This is really only important so you can reproduce your 
findings—if you don't need to do that, some people prefer them and others don't. If 
you don't want the seeds you can just remove them.

Line 18: We introduce the exploration factor ∈, and we set it to 0.3, meaning that 
there will be 30% of exploration (performing random actions) vs. 70% of exploitation 
(performing the actions of the AI).

Line 19: We set the number of actions to 5.

Line 20: We set the direction boundary, meaning the action index below which 
we cool down the server, and above which we heat up the server. Since actions 
0 and 1 cool down the server, and actions 3 and 4 heat up the server, that direction 
boundary is (5-1)/2 = 2, which corresponds to the action that transfers no heat to 
the server (action 2).

Line 21: We set the number of training epochs to 100.

Line 22: We set the memory capacity, meaning its maximum size, to 3000.

Line 23: We set the batch size to 512.

Line 24: We introduce the temperature step, meaning the absolute temperature 
change that the AI cause onto the server by playing actions 0, 1, 3, or 4. And that's 
of course 1.5°C.

Line 27: We create the environment object, as an instance of the Environment class 
which we call from the environment file. Inside this Environment class, we enter 
all the arguments of the init method:

WOW! eBook 
www.wowebook.org



Chapter 11

[ 249 ]

optimal_temperature = (18.0, 24.0),
initial_month = 0,
initial_number_users = 20,
initial_rate_data = 30

Line 30: We create the brain object as an instance of the Brain class, which we call 
from the brain_nodropout file. Inside this Brain class, we enter all the arguments 
of the init method:

learning_rate = 0.00001,
number_actions = number_actions

Line 33: We create the dqn object as an instance of the DQN class, which we call from 
the dqn file. Inside this DQN class we enter all the arguments of the init method:

max_memory = max_memory,
discount = 0.9

Line 36: We set the training mode to True, because the next code section will contain 
the big for loop that performs all the training.

All good so far? Don't forget to take a break or a step back by reading the previous 
paragraphs again anytime you feel a bit overwhelmed or lost.

Now let's begin the big training loop; that's the last code section of this file:

38 # TRAINING THE AI

39 env.train = train

40 model = brain.model

41 if (env.train):

42     # STARTING THE LOOP OVER ALL THE EPOCHS (1 Epoch = 5 Months)

43     for epoch in range(1, number_epochs):

44         # INITIALIAZING ALL THE VARIABLES OF BOTH THE 
ENVIRONMENT AND THE TRAINING LOOP

45         total_reward = 0

46         loss = 0.

47         new_month = np.random.randint(0, 12)

48         env.reset(new_month = new_month)

49         game_over = False

50         current_state, _, _ = env.observe()

51         timestep = 0

52         # STARTING THE LOOP OVER ALL THE TIMESTEPS (1 Timestep = 
1 Minute) IN ONE EPOCH
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53         while ((not game_over) and timestep <= 5 * 30 * 24 * 
60):

54             # PLAYING THE NEXT ACTION BY EXPLORATION

55             if np.random.rand() <= epsilon:

56                 action = np.random.randint(0, number_actions)

57                 if (action - direction_boundary < 0):

58                     direction = -1

59                 else:

60                     direction = 1

61                 energy_ai = abs(action - direction_boundary) * 
temperature_step

62             # PLAYING THE NEXT ACTION BY INFERENCE

63             else:

64                 q_values = model.predict(current_state)

65                 action = np.argmax(q_values[0])

66                 if (action - direction_boundary < 0):

67                     direction = -1

68                 else:

69                     direction = 1

70                 energy_ai = abs(action - direction_boundary) * 
temperature_step

71             # UPDATING THE ENVIRONMENT AND REACHING THE NEXT 
STATE

72             next_state, reward, game_over = env.update_
env(direction, energy_ai, ( new_month + int(timestep/(30*24*60)) 
) % 12)

73             total_reward += reward

74             # STORING THIS NEW TRANSITION INTO THE MEMORY

75             dqn.remember([current_state, action, reward, next_
state], game_over)

76             # GATHERING IN TWO SEPARATE BATCHES THE INPUTS AND 
THE TARGETS

77             inputs, targets = dqn.get_batch(model, batch_size = 
batch_size)

78             # COMPUTING THE LOSS OVER THE TWO WHOLE BATCHES OF 
INPUTS AND TARGETS

79             loss += model.train_on_batch(inputs, targets)

80             timestep += 1

81             current_state = next_state

82         # PRINTING THE TRAINING RESULTS FOR EACH EPOCH

83         print("\n")
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84         print("Epoch: {:03d}/{:03d}".format(epoch, number_
epochs))

85         print("Total Energy spent with an AI: {:.0f}".
format(env.total_energy_ai))

86         print("Total Energy spent with no AI: {:.0f}".
format(env.total_energy_noai))

87         # SAVING THE MODEL

88         model.save("model.h5")

Line 39: We set the env.train object variable (this is a variable of our environment 
object) to the value of the train variable entered just before, which is of course equal 
to True, meaning we are indeed in training mode.

Line 40: We get the model from our brain object. This model contains the whole 
architecture of the neural network, plus its optimizer. It also has extra practical 
tools, like for example the save and load methods, which will allow us respectively 
to save the weights after the training or load them anytime in the future.

Line 41: If we are in training mode…

Line 43: We start the main training for loop, iterating the training epochs from 
1 to 100.

Line 45: We set the total reward (total reward accumulated over the training 
iterations) to 0.

Line 46: We set the loss to 0 (0 because the loss will be a float).

Line 47: We set the starting month of the training, called new_month, to a random 
integer between 0 and 11. For example, if the random integer is 2, we start the 
training in March.

Line 48: By calling the reset method from our env object of the Environment 
class built in Step 1, we reset the environment starting from that new_month.

Line 49: We set the game_over variable to False, because we're starting in the 
allowed range of server temperatures.

Line 50: By calling the observe method from our env object of the Environment 
class built in Step 1, we get the current state only, which is our starting state.

Line 51: We set the first timestep to 0. This is the first minute of the training.

Line 53: We start the while loop that will iterate all the timesteps (minutes) for the 
whole period of the epoch, which is 5 months. Therefore, we iterate through 5 * 
30 * 24 * 60 minutes; that is, 216,000 timesteps. 
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If, however, during those timesteps we go outside the allowed range of server 
temperatures (that is, if game_over = 1), then we stop the epoch and we start 
a new one.

Lines 55 to 61 make sure the AI performs a random action 30% of the time. This 
is exploration. The trick to it in this case is to sample a random number between 
0 and 1, and if this random number is between 0 and 0.3, the AI performs a random 
action. That means the AI will perform a random action 30% of the time, because 
this sampled number has a 30% chance to be between 0 and 0.3.

Line 55: If a sampled number between 0 and 1 is below 0.3∈= ...

Line 56: ... we play a random action index from 0 to 4.

Line 57: Now that we've just performed an action, we compute the direction and the 
energy spent; remember that they're are the required arguments of the update_env 
method of the Environment class, which we'll call later to update the environment. 
The AI distinguishes between two cases by checking if the action is below or above 
the direction boundary of 2. If the action is below the direction boundary of 2, 
meaning the AI cools down the server...

Line 58: ...then the heating direction is equal to -1 (cooling down).

Line 59 and 60: Else the heating direction is equal to +1 (heating up).

Line 61: We compute the energy spent by the AI onto the server, which according 
to Assumption 2 is:

|action - direction_boundary| * temperature_step = |action - 2| * 1.5 Joules

For example, if the action is 4, then the AI heats up the server by 3°C, and so 
according to Assumption 2 the energy spent is 3 Joules. And we check indeed that 
|4-2|*1.5 = 3.

Line 63: Now we play the actions by inference, meaning directly from our AI's 
predictions. The inference starts from the else statement, which corresponds to 
the if statement of line 55. This else corresponds to the situation where the sampled 
number is between 0.3 and 1, which happens 70% of the time.

Line 64: By calling the predict method from our model object (predict is a pre-built 
method of the Model class), we get the five predicted Q-values from our AI model.

Line 65: Using the argmax function from numpy, we select the action that has the 
maximum Q-value among the five predicted ones at Line 64.

Lines 66 to 70: We do exactly the same as in Lines 57 to 61, but this time with the 
action performed by inference.
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Line 72: Now we have everything ready to update the environment. We call the 
big update_env method made in the Environment class of Step 1, by inputting the 
heating direction, the energy spent by the AI, and the month we're in at that specific 
timestep of the while loop. We get in return the next state, the reward received, and 
whether the game is over (that is, whether or not we went outside the optimal range 
of server temperatures).

Line 73: We add this last reward received to the total reward.

Line 75: By calling the remember method from our dqn object of the DQN class built in 
Step 3, we store the new transition [[current_state, action, reward, next_state], 
game_over] into the memory.

Line 77: By calling the get_batch method from our dqn object of the DQN class built 
in Step 3, we create two separate batches of inputs and targets, each one having 
512 elements (since batch_size = 512).

Line 79: By calling the train_on_batch method from our model object (train_on_
batch is a pre-built method of the Model class), we compute the loss error between 
the predictions and the targets over the whole batch. As a reminder, this loss error 
is the mean-squared error loss. Then in this same line, we add this loss error to the 
total loss of the epoch, in case we want to check how this total loss evolves over the 
epochs during the training.

Line 80: We increment the timestep.

Line 81: We update the current state, which becomes the new state reached.

Line 83: We print a new line to separate out the training results so we can look them 
over easily.

Line 84: We print the epoch reached (the one we are in at this specific moment of the 
main training for loop).

Line 85: We print the total energy spent by the AI over that specific epoch (the one 
we are in at this specific moment of the main training for loop).

Line 86: We print the total energy spent by the server's integrated cooling system 
over that same specific epoch.

Line 88: We save the model's weights at the end of the training, in order to load them 
in the future, anytime we want to use our pre-trained model to regulate a server's 
temperature.

That's it for training our AI without early stopping; now let's have a look at what 
you'd need to change to implement it.
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Early stopping
Now open the training_earlystopping.py file. Compare it to the previous 
file; all the lines of code from 1 to 40 are the same. Then, in the last code section, 
TRAINING THE AI, we have the same process, to which is added the early stopping 
technique. As a reminder, it consists of stopping the training if there's no more 
improvement of the performance, which could be assessed two different ways:

1. If the total reward of an epoch no longer increases much over the epochs.
2. If the total loss of an epoch no longer decreases much over the epochs.

Let's see how we do this.

First, we introduce four new variables just before the main training for loop:

38 # TRAINING THE AI

39 env.train = train

40 model = brain.model

41 early_stopping = True

42 patience = 10

43 best_total_reward = -np.inf

44 patience_count = 0

45 if (env.train):

46     # STARTING THE LOOP OVER ALL THE EPOCHS (1 Epoch = 5 Months)

47     for epoch in range(1, number_epochs):

Line 41: We introduce a new variable, early_stopping, which is set equal to True 
if we decide to activate the early stopping technique, meaning if we decide to stop 
the training when the performance no longer improves.

Line 42: We introduce a new variable, patience, which is the number of epochs 
we wait without performance improvement before stopping the training. Here we 
choose a patience of 10 epochs, which means that if the best total reward of an epoch 
doesn't increase during the next 10 epochs, we will stop the training.

Line 43: We introduce a new variable, best_total_reward, which is the best total 
reward recorded over a full epoch. If we don't beat that best total reward before 
10 epochs go by, the training stops. It's initialized to -np.inf, which represents 
-infinity. That's just a trick to say that nothing can be lower than that best total 
reward at the beginning. Then as soon as we get the first total reward over the first 
epoch, best_total_reward becomes that first total reward.
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Line 44: We introduce a new variable, patience_count, which is a counter starting 
from 0, and is incremented by 1 each time the total reward of an epoch doesn't beat 
the best total reward. If patience_count reaches 10 (the patience), we stop the 
training. And if one epoch beats the best total reward, patience_count is reset to 0.

Then, the main training for loop is the same as before, but just before saving the 
model we add the following:

91         # EARLY STOPPING

92         if (early_stopping):

93             if (total_reward <= best_total_reward):

94                 patience_count += 1

95             elif (total_reward > best_total_reward):

96                 best_total_reward = total_reward

97                 patience_count = 0

98             if (patience_count >= patience):

99                 print("Early Stopping")

100                 break

101         # SAVING THE MODEL

102         model.save("model.h5")

Line 92: If the early_stopping variable is True, meaning if the early stopping 
technique is activated…

Line 93: And if the total reward of the current epoch (we are still in the main training 
for loop that iterates the epochs) is lower than the best total reward of an epoch 
obtained so far…

Line 94: ...we increment the patience_count variable by 1.

Line 95: However, if the total reward of the current epoch is higher than the best 
total reward of an epoch obtained so far…

Line 96: ...we update the best total reward, which becomes that new total reward 
of the current epoch.

Line 97: ...and we reset the patience_count variable to 0.

Line 98: Then in a new if condition, we check that if the patience_count variable 
goes higher than the patience of 10…

Line 99: ...we print Early Stopping,

Line 100: ...and we stop the main training for loop with a break statement.
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That's the whole thing. Easy and intuitive, right? Now you know how to implement 
early stopping.

After executing the code (I'll explain how to run this in a bit), we'll already see some 
good performances from our AI during the training, spending less energy than the 
server's integrated cooling system most of the time. But that's only training; now 
we need to see if we get good performance from the AI on a new 1-year simulation. 
That's where our next and final Python file comes into play.

Step 5 – Testing the AI
Now we need to test the performance of our AI in a brand-new situation. To 
do so, we run a 1-year simulation in inference mode, meaning that there's no 
training happening at any time. Our AI only returns predictions over a full year 
of simulation. Then, thanks to our environment object, in the end we'll be able to 
see the total energy spent by the AI over the full year, as well as the total energy 
that would have been spent in the exact same year by the server's integrated cooling 
system. Finally, we compare these two total energies spent, by computing their 
relative difference (in %) which shows us precisely the total energy saved by the 
AI. Buckle up for the final results—we'll reveal them very soon!

In terms of the AI blueprint, for the testing implementation we have almost the 
same process as the training implementation, except that this time we don't need to 
create a brain object nor a DQN model object; and, of course, we won't run the deep 
Q-learning process over some training epochs. However, we do have to create a 
new environment object, and instead of creating a brain, we'll load our artificial 
brain with its pre-trained weights from the previous training that we executed in 
Step 4 – Training the AI. Let's take a look at the final sub-steps of this final part of 
the AI framework/Blueprint:

• Step 5-1: Build a new environment by creating an object of the Environment 
class.

• Step 5-2: Load the artificial brain with its pre-trained weights from the 
previous training.

• Step 5-3: Choose the inference mode.
• Step 5-4: Start the 1-year simulation.
• Step 5-5: In each iteration (each minute), our AI only performs the action that 

results from its prediction, and no exploration or deep Q-learning training 
happens whatsoever.
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The implementation is a piece of cake to understand. It's actually the same as the 
training file, except that:

1. Instead of creating a brain object from the Brain class, we load the pre-
trained weights resulting from the training.

2. Instead of running a training loop over 100 epochs of 5-month periods, we 
run an inference loop over a single 12-month period. Inside this inference 
loop, you'll find exactly the same code as the inference part of the training 
for loop. You've got this!

Have a look at the full testing implementation in the following code:

# AI for Business - Minimize cost with Deep Q-Learning
# Testing the AI

# Installing Keras
# conda install -c conda-forge keras

# Importing the libraries and the other python files
import os
import numpy as np
import random as rn
from keras.models import load_model
import environment

# Setting seeds for reproducibility
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(42)
rn.seed(12345)

# SETTING THE PARAMETERS
number_actions = 5
direction_boundary = (number_actions - 1) / 2
temperature_step = 1.5

# BUILDING THE ENVIRONMENT BY SIMPLY CREATING AN OBJECT OF THE 
ENVIRONMENT CLASS
env = environment.Environment(optimal_temperature = (18.0, 24.0), 
initial_month = 0, initial_number_users = 20, initial_rate_data = 30)

# LOADING A PRE-TRAINED BRAIN
model = load_model("model.h5")

# CHOOSING THE MODE
train = False
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# RUNNING A 1 YEAR SIMULATION IN INFERENCE MODE
env.train = train
current_state, _, _ = env.observe()
for timestep in range(0, 12 * 30 * 24 * 60):
    q_values = model.predict(current_state)
    action = np.argmax(q_values[0])
    if (action - direction_boundary < 0):
        direction = -1
    else:
        direction = 1
    energy_ai = abs(action - direction_boundary) * temperature_step
    next_state, reward, game_over = env.update_env(direction, energy_
ai, int(timestep / (30 * 24 * 60)))
    current_state = next_state

# PRINTING THE TRAINING RESULTS FOR EACH EPOCH
print("\n")
print("Total Energy spent with an AI: {:.0f}".format(env.total_energy_
ai))
print("Total Energy spent with no AI: {:.0f}".format(env.total_energy_
noai))
print("ENERGY SAVED: {:.0f} %".format((env.total_energy_noai - env.
total_energy_ai) / env.total_energy_noai * 100))

Everything's more or less the same as before; we just removed the parts related to the 
training.

The demo
Given the different files we have, make sure to understand that there are four 
possible ways to run the program:

1. Without dropout and without early stopping
2. Without dropout and with early stopping
3. With dropout and without early stopping
4. With dropout and with early stopping
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Then, for each of these four combinations, the way to run this is the same: we first 
execute the training file, and then the testing file. In this demo section, we'll execute 
the 4th option, with both dropout and early stopping.

Now how do we run this? We have two options: with or without Google Colab.

I'll explain how to do it on Google Colab, and I'll even give you a Google Colab file 
where you only have to hit the play button. For those of you who want to execute 
this without Colab, on your favorite Python IDE, or through the terminal, let me 
explain how it's done. It's easy; you just need to download the main repository from 
GitHub, then in your Python IDE set the right working directory folder, which is the 
Chapter 11 folder, and then run the following two files in this order:

1. training_earlystopping.py, inside which you should make sure to import 
brain_dropout at line 9. This will execute the training, and you'll have to 
wait until that finishes (which will take about 10 minutes).

2. testing.py, which will test the model on one full year of data.

Now, back to Google Colab. First, open a new Colaboratory file, and call it Deep 
Q-Learning for Business. Then add all your files from the Chapter 11 folder of 
GitHub into this Colaboratory file, right here:

Figure 11: Google Colab – Step 1
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Unfortunately, it's not easy to add the different files manually. You can only do 
this by using the os library, which we won't bother with. Instead, copy-paste the 
five Python implementations in five different cells of our Colaboratory file, in the 
following order:

1. A first cell containing the whole environment.py implementation.
2. A second cell containing the whole brain_dropout.py implementation.
3. A third cell containing the whole dqn.py implementation.
4. A fourth cell containing the whole training_earlystopping.py 

implementation.
5. And a last cell containing the whole testing.py implementation.

Here's what it looks like, after adding some snazzy titles:

Figure 12: Google Colab – Step 2
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Figure 13: Google Colab – Step 3
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Figure 14: Google Colab – Step 4

Figure 15: Google Colab – Step 5
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Figure 16: Google Colab – Step 6

Now before we execute each of these cells in the order one through five, we need to 
remove the import commands of the Python files. The reason for this is that now 
that the implementations are in cells, they're like a single Python implementation, 
and we don't have to import the interdependent files in every single cell. First, 
remove the following three different rows in the training file:

Figure 17: Google Colab – Step 7
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After doing that, we end up with this:

Figure 18: Google Colab – Step 8

Then, since we removed these imports, we also have to remove the three filenames 
for the environment, the brain, and the dqn, when creating the objects:

First the environment:

Figure 19: Google Colab – Step 9

Then the brain:

Figure 20: Google Colab – Step 10

And finally the dqn:
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Figure 21: Google Colab – Step 11

Now the training file's good to go. In the testing file, we just have to remove two 
things, the environment import at line 12:

Figure 22: Google Colab – Step 12

and the environment. at row 25:

Figure 23: Google Colab – Step 13

That's it; now you're all set! You're ready to literally hit the play button on each of the 
cells from top to the bottom.

First, execute the first cell. After executing it, no output is displayed. That's fine!

Then execute the second cell:

Using TensorFlow backend.

After executing it, you can see the output Using TensorFlow backend.

Then execute the third cell, after which no output is displayed.
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Now it gets a bit exciting! You're about to execute the training, and follow the 
training performance in real time. Do this by executing the fourth cell. After 
executing it, the training launches, and you should see the following results:

Figure 24: The output

Don't worry about those warnings, everything's running the way it should. Since 
early stopping is activated, you'll reach the end of the training way before the 100 
epochs, at the 15th epoch:

Figure 25: The output at the 15th epoch
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Note that the pre-trained weights are saved in Files, in the model.h5 file:

Figure 26: The model.h5 file

The training results look promising. Most of the time the AI spends less energy than 
the alternative server's integrated cooling system. Check that this is still the case with 
a full test, on one new year of simulation.

Execute the final cell and when it finishes running, (which takes approximately 
3 minutes), you obtain in the printed results that the total energy consumption 
saved by the AI is…

Total Energy spent with an AI: 261985

Total Energy spent with no AI: 1978293

ENERGY SAVED: 87%

Total Energy saved by the AI = 87%

That's a lot of energy saved! Google DeepMind achieved similarly impressive results 
in 2016. If you look up the results by searching "DeepMind reduces Google cooling 
bill," you'll see that the result they achieved was 40%. Not bad! Of course, let's be 
critical: their server/ data center environment is much more complex than our server 
environment and has many more parameters, so even though they have one of the 
most talented AI teams in the world, they could only reduce the cooling bill by less 
than 50%.

Our environment's very simple, and if you dig into it (which I recommend you do) 
you'll likely find that the variations of users and data, and therefore the variation of 
temperature, follow a uniform distribution. Accordingly, the server's temperature 
usually stays around the optimal range of temperatures. The AI understands that 
well, and thus chooses most of the time to take no action and cause no change of 
temperature, thus consuming very little energy. 
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I highly recommend that you play around with your server cooling model; make 
it as complex as you like, and try out different rewards to see if you can cause 
different behaviors.

Even though our environment is simple, you can be proud of your achievement. 
What matters is that you were able to build a deep Q-learning model for a real-world 
business problem. The environment itself is less important; what's most important 
is that you know how to connect a deep reinforcement learning model to an 
environment, and how to train the model inside.

Now, after your successes with the self-driving car plus this business application, 
you know how to do just that!

What we've built is excellent for our business client, as our AI will seriously 
reduce their costs. Remember that thanks to our object-oriented structure 
(working with classes and objects), we could very easily take the objects created 
in this implementation for one server, and then plug them into other servers, so that 
in the end we end up lowering the total energy consumption of a whole data center! 
That's how Google saved billions of dollars in energy-related costs, thanks to the DQN 
model built by their DeepMind AI.

My heartiest congratulations to you for smashing this new application. You've just 
made huge progress with your AI skills.

Finally, here's the link to the Colaboratory file with this whole implementation as 
promised. You don't have to install anything, Keras and NumPy are already pre-
installed (this is the beauty of Google Colab!):

https://colab.research.google.com/drive/1KGAoT7S60OC3UGHNnrr_
FuN5Hcil0cHk

Before we finish this chapter and move onto the world of deep convolutional 
Q-learning, let me give you a useful recap of the whole general AI blueprint when 
building a deep reinforcement learning model.

Recap – The general AI framework/
Blueprint
Let's recap the whole AI Blueprint, so that you can print it out and put it on your wall.

Step 1: Building the environment

• Step 1-1: Introducing and initializing all the parameters and variables of the 
environment.
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• Step 1-2: Making a method that updates the environment right after the 
AI plays an action.

• Step 1-3: Making a method that resets the environment.
• Step 1-4: Making a method that gives us at any time the current state, 

the last reward obtained, and whether the game is over.

Step 2: Building the brain

• Step 2-1: Building the input layer composed of the input states.
• Step 2-2: Building the hidden layers with a chosen number of these layers 

and neurons inside each, fully connected to the input layer and between each 
other.

• Step 2-3: Building the output layer, fully connected to the last hidden layer.
• Step 2-4: Assembling the full architecture inside a model object.
• Step 2-5: Compiling the model with a mean squared error loss function and a 

chosen optimizer (a good one is Adam).

Step 3: Implementing the deep reinforcement learning algorithm

• Step 3-1: Introducing and initializing all the parameters and variables of the 
DQN model.

• Step 3-2: Making a method that builds the memory in experience replay.
• Step 3-3: Making a method that builds and returns two batches of 10 inputs 

and 10 targets.

Step 4: Training the AI

• Step 4-1: Building the environment by creating an object of the Environment 
class built in Step 1.

• Step 4-2: Building the artificial brain by creating an object of the Brain class 
built in Step 2.

• Step 4-3: Building the DQN model by creating an object of the DQN class built 
in Step 3.

• Step 4-4: Choosing the training mode.
• Step 4-5: Starting the training with a for loop over a chosen number of 

epochs.
• Step 4-6: During each epoch we repeat the whole deep Q-learning process, 

while also doing some exploration 30% of the time.
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Step 5: Testing the AI

• Step 5-1: Building a new environment by creating an object of the 
Environment class built in Step 1.

• Step 5-2: Loading the artificial brain with its pre-trained weights from the 
previous training.

• Step 5-3: Choosing the inference mode.
• Step 5-4: Starting the simulation.
• Step 5-5: At each iteration (each minute), our AI only plays the action that 

results from its prediction, and no exploration or deep Q-learning training 
is happening whatsoever.

Summary
In this chapter you re-applied deep Q-learning to a new business problem. You were 
supposed to find the best strategy to cool down and heat up the server. Before you 
started defining the AI strategy, you had to make some assumptions about your 
environment, for example the way the temperature is calculated. As inputs to your 
ANN, you had information about the server at any given time, like the temperature 
and data transmission. As outputs, your AI predicted whether to cool down or heat 
up our server by a certain amount. The reward was the energy saved with respect 
to the other, traditional cooling system. Your AI was able to save 87% energy.
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Deep Convolutional 
Q-Learning

Now that you understand how Artificial Neural Networks (ANNs) work, 
you're ready to tackle an incredibly useful tool, mostly used when dealing with 
images—Convolutional Neural Networks (CNNs). To put it simply, CNNs allow 
your AI to see images in real time as if it had eyes.

We will tackle them in the following steps:

1. What are CNNs used for?
2. How do CNNs work?
3. Convolution
4. Max pooling
5. Flattening
6. Full connection

Once you've understood those steps, you'll understand CNNs, and how they can 
be used in deep convolutional Q-learning.

What are CNNs used for?
CNNs are mostly used with images or videos, and sometimes with text to tackle 
Natural Language Processing (NLP) problems. They are often used in object 
recognition, for example, predicting whether there is a cat or a dog in a picture or 
video. They are also often used with deep Q-learning (which we will discuss later 
on), when the environment returns 2D states of itself, for example, when we are 
trying to build a self-driving car that reads outputs from cameras around it.
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Remember the example in Chapter 9, Going Pro with Artificial Brains - Deep Q-Learning, 
where we were predicting houses' prices. As inputs, we had all of the values that 
define a house (area, age, number of bedrooms, and so on), and as output, we had 
the price of a house. In the case of CNNs, things are very similar. For example, if we 
wanted to solve the same problem using CNNs, we would have images of houses as 
inputs and the price of a house as output.

This diagram should illustrate what I mean:

Figure 1: Input Image – CNN – Output Label

As you can see, the input is an image that flows through a CNN and comes out 
as an output. In the case of this diagram, the output is a class to which the image 
corresponds. What do I mean by a class? For example, if we wanted to predict 
whether the inputted image is a smiling face or a sad face, then one class would be 
smiling face, and the other would be sad face. Our output should then correctly decide 
to which class the input image corresponds.

Speaking of happy and sad faces, here's a diagram that represents it in more detail:

Figure 2: Two different classes to predict (Happy or Sad)
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In the preceding example, we've run two images through a CNN. The first one is 
a smiling face and the other one is a sad face. As I mentioned before, our network 
predicts whether the image is a happy or a sad face.

I can imagine what you're thinking right now: how does it all work? What's inside 
this black box we call a CNN? I'll answer these questions in the following sections.

How do CNNs work?
Before we can go deep into the structure of CNNs, we need to understand a couple 
of points. I will introduce you to the first point with a question: how many 
dimensions does a colored RGB image have?

The answer may surprise you: it's 3!

Why? Because every RGB image is, in fact, represented by three 2D images, each one 
corresponding to a color in RGB architecture. So, there is one image corresponding 
to red, one corresponding to green, and one to blue. Grayscale images are only 2D, 
because they are represented by only one scale as there are no colors. The following 
diagram should make it clearer:

Figure 3: RGB versus black and white images

As you can see, a colored image is represented by a 3D array. Each color has its own 
layer in the picture, and this layer is called a channel. A grayscale (black and white) 
image only has one channel and is, therefore, a 2D array.
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As you probably know, images are made out of pixels. Each of these is represented 
by a value that ranges from 0 to 255, where 0 is a pixel turned off and 255 is a fully 
bright pixel. It's important to understand that when we say that a pixel has the value 
(255, 255, 0), then that means this pixel is fully bright on the red and green channel 
and turned off on the blue channel.

From now on, to understand everything better, we'll be dealing with very simple 
images. In fact, our images will be grayscale (1 channel, 2D) and the pixels will either 
be fully bright or turned off. In order to make pictures easier to read, we'll assign 1 to 
a turned off pixel (black) and 0 to a fully bright one (white).

Going back to the case of happy and sad faces, this is what our 2D array representing 
a happy face would look like:

Figure 4: The pixel representation

As you can see, we have an array where 0 corresponds to a white pixel and 
1 corresponds to a black pixel. The picture on the right is our smiling face 
represented by an array.

Now that we understand the foundations and that we've simplified the problem, 
we're ready to tackle CNNs. In order to fully understand them, we need to split our 
learning into the four steps that make up a CNN:

1. Convolution
2. Max pooling
3. Flattening
4. Full connection

Now we'll get to know each of these four steps one by one.
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Step 1 – Convolution
This is the first crucial step of every CNN. In convolution, we apply something called 
feature detectors to the inputted image. Why do we have to do so? This is because 
all images contain certain features that define what is in the picture. For example, 
to recognize which face is sad and which one is happy, we need to understand the 
meaning of the shape of the mouth, which is a feature of this image. It's easier to 
understand this from a diagram:

Figure 5: Step 1 – Convolution (1/5)

In the preceding diagram, we applied a feature detector, also known as a filter, to the 
smiling face we had as input. As you can see, a filter is a 2D array with some values 
inside. When we apply this feature detector to the image it covers (in this case it is a 
3 x 3 grid), we check how many pixels from this part of the image match the filter's 
pixels. Then we put this number into a new 2D array called feature map. In other 
words, the more a part of the picture matches the picture detector, the higher the 
number we put into the feature map.

Next, we slide the feature detector across the entire image. In the next iteration, this 
is what will happen:

Figure 6: Step 1 – Convolution (2/5)
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As you can see, we slide the filter one place to the right. This time, one pixel 
matches in both the filter and in this part of the image. That's why we put 1 in 
the feature map.

What do you think happens when we hit the boundary of this image? What would 
you do? I'll show you what happens with these two diagrams:

Figure 7: Step 1 – Convolution (3/5)

Figure 8: Step 1 – Convolution (4/5)

Here, we had this exact situation: in the first image, our filter hits the boundary. It 
turns out that our feature detector simply jumps to the next line.

The whole magic of the convolution wouldn't work if we had only one filter. 
In reality, we use many filters, which produce many different feature maps. This 
set of feature maps is called a convolution layer, or convolutional layer. Here's 
a diagram to recap:

WOW! eBook 
www.wowebook.org



Chapter 12

[ 277 ]

Figure 9: Step 1 – Convolution (5/5)

Here, we can see an input image to which many filters were applied. All together, 
they create a convolutional layer from many feature maps. This is the first step when 
building a CNN.

Now that we understand convolution, we can proceed to another important step—
max pooling.

Step 2 – Max pooling
This step in CNNs is responsible for lowering the size of each feature map. When 
dealing with neural networks, we don't want to have too many inputs, otherwise 
our network wouldn't be able to learn properly because of the high complexity. 
Therefore, a method of reducing the size called max pooling needs to be introduced. 
It lets us reduce the size without losing any important features, and it makes features 
partially invariant to shifts (translations and rotations).

Technically, a max pooling algorithm is also based on an array sliding across the 
entire feature map. In this case, we are not searching for any features but, rather, 
for the maximum value in a specific area of a feature map. 
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Let me show you what I mean with this graphic:

Figure 10: Step 2 – Max pooling (1/5)

In this example, we're taking the feature map, obtained after the convolution step 
we had before, and then we are running it through max pooling. As you can see, 
we have a window of size 2 x 2 looking for the highest values in the part of feature 
map it covers. In this case, it's 1.

Can you tell what will happen in the next iteration?

As you may have suspected, this window will slide to the right, although in 
a slightly different way than before. It moves like this:

Figure 11: Step 2 – Max Pooling (2/5)
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This window jumps its size to the right, which I hope you remember is different from 
the convolution step, where the feature detector slid one cell at a time. In this case, 
the highest value is 1 as well, and therefore we write 1 in the pooled feature map.

What happens this time when we hit the boundary of the feature map? Things look 
slightly different from before once again. This is what happens:

Figure 12: Step 2 – Max pooling (3/5)

The window crosses the boundary and searches for the highest value in the part 
of the feature map that is still inside the max pooling window. Yet again, the highest 
value is 1.

But what happens now? After all, there's no space left to go to the right. There's also 
only one row at the bottom left for max pooling. This is what the algorithm does:

Figure 13: Step 2 – Max pooling (4/5)
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As we can see, it once again crosses the boundary and searches for the highest value 
in what is inside the window. In this case, it is 0. This process is repeated until the 
window hits the bottom right corner of the feature map. To recap what our CNN 
looks like for now, have a look at the following diagram:

Figure 14: Step 2 – Max pooling (5/5)

We had a smiling face as input, then we ran it through convolution to obtain many 
feature maps, called the convolutional layer. Now we've run all the feature maps 
through max pooling and obtained many pooled feature maps, all together called 
the pooling layer.

Now we can continue to the next step, which will let us input the pooling layer into 
a neural network. This step is called flattening.

Step 3 – Flattening
This is a very short step. As the name may suggest, we change all the pooled feature 
maps from 2D arrays to 1D ones. As I mentioned before, this will let us input the 
image into a neural network with ease. So, how exactly will we achieve this? The 
following diagram should help you understand:
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Figure 15: Step 3 – Flattening (1/3)

Here we go back to the pooled feature map we obtained before. To flatten it, we take 
pixel values starting from the top left, finishing at bottom right. An operation like 
this returns a 1D array, containing the same values as the 2D array we started with.

But remember, we don't have one pooled feature map, we have an entire layer 
of them. What do you think we should do with that?

The answer is simple: we put this entire layer into a single 1D flattened array, one 
pooled feature map after another. Why does it have to be 1D? This is because ANNs 
only accept 1D arrays as their inputs. All the layers in a traditional neural network 
are 1D, which means that the input has to be 1D as well. Therefore, we flatten all the 
pooled feature maps, like so:

Figure 16: Step 3 – Flattening (2/3)
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We've taken the entire layer and transformed it into a single flattened 1D array. 
We'll soon use this array as the input of a traditional neural network. 

First, let's remind ourselves of what our model looks like now:

Figure 17: Step 3 – Flattening (3/3)

So, we have a Convolutional Layer, Pooling Layer, and a freshly added, flattened 
1D layer. Now we can go back to a classic ANN, that is, a fully connected neural 
network, and treat this last layer as an input for this network. This leads us to the 
final step, full connection.

Step 4 – Full connection
The final step of creating a CNN is to connect it to a classic fully-connected neural 
network. Remember that we already have a 1D array telling us in a compressed way 
what the image looks like, so why not just use it as an input to a fully-connected 
neural network? After all, it's the latter that's able to make predictions.

That's exactly what we do next, just like this:
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Figure 18: Step 4 – Full connection

After flattening, we input those returned values straight into the fully-connected 
neural network, which then yields the prediction—the output value.

You might be wondering how the back-propagation phase works now. In a CNN, 
back-propagation not only updates the weights in the fully-connected neural 
network, but also the filters used in the convolution step. The max pooling and 
flattening steps will remain the same, as there is nothing to update there.

In conclusion, CNNs look for some specific features. This is why they're mostly 
used when we are dealing with images, where searching for features is crucial. 
For example, when trying to recognize a sad and a happy face, a CNN needs to 
understand which mouth's shape means a sad face and which means a happy face. 
In order to obtain an output, a CNN has to run these steps:

1. Convolution – Applying filters to the input image. This operation will find 
the features our CNN is looking for and save them in a feature map.

2. Max pooling – Lowering the feature map size, by taking a maximum 
value in a given area and saving these values in a new array called pooled 
feature map.
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3. Flattening – Changing the entire pooling layer (all pooled feature maps) 
to a 1D vector. This will allow us to input this vector into a neural network.

4. Full connection – Creating a neural network, which takes as input a flattened 
pooling layer and returns a value that we would like to predict. This last step 
lets us make predictions.

Deep convolutional Q-learning
In the chapter on deep Q-learning (Chapter 9, Going Pro with Artificial Brains – Deep 
Q-Learning), our inputs were vectors of encoded values defining the states of the 
environment. When working with images or videos, encoded vectors aren't the 
best inputs to describe a state (the input frame), simply because an encoded vector 
doesn't preserve the spatial structure of an image. The spatial structure is important 
because it gives us more information to help predict the next state, and predicting 
the next state is essential for our AI to learn the correct next move.

Therefore, we need to preserve the spatial structure. To do that, our inputs must be 
3D images (2D for the array of pixels plus one additional dimension for the colors, 
as illustrated at the beginning of this chapter). For example, if we train an AI to play 
a video game, the inputs are simply the images of the screen itself, exactly what a 
human sees when playing the game.

Following this analogy, the AI acts like it has human eyes; it observes the input 
images on the screen when playing the game. Those input images go into a CNN 
(the eyes for a human), which detects the state in each image. Then they're forward-
propagated through the pooling layers where max pooling is applied. Then the 
pooling layers are flattened into a 1D vector, which becomes the input of our deep 
Q-learning network (the exact same one as in Chapter 9, Going Pro with Artificial 
Brains – Deep Q-Learning). In the end, the same deep Q-learning process is run.

The following graph illustrates deep convolutional Q-learning applied to the famous 
game of Doom:
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Figure 19: Deep convolutional Q-learning for Doom

In summary, deep convolutional Q-learning is the same as deep Q-learning, with 
the only differences being that the inputs are now images, and a CNN is added at 
the beginning of the fully-connected deep Q-learning network to detect the states 
of those images.

Summary
You've learned about another type of neural network—a Convolutional Neural 
Network.

We established that this network is used mostly with images and searches for certain 
features in these pictures. It uses three additional steps that ANNs don't have: 
convolution, where we search for features; max pooling, where we shrink the image 
in size; and flattening, where we flatten 2D images to a 1D vector so that we can 
input it into a neural network.

In the next chapter, you'll build a deep convolutional Q-learning model to solve a 
classic gaming problem: Snake.
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AI for Games – Become 
the Master at Snake

This is the last practical chapter; congratulations on finishing the previous ones! 
I hope you really enjoyed them. Now, let's leave aside business problems and  
self-driving cars. Let's have some fun by playing a popular game called Snake 
and making an AI that teaches itself to play this game!

That's exactly what we'll do in this chapter. The model we'll implement is called 
deep convolutional Q-learning, using a Convolutional Neural Network (CNN).

Our AI won't be perfect, and it won't fill in the entire map, but after some training 
it will start playing at a level comparable with humans.

Let's start tackling this problem by looking at what the game looks like and what 
the target is.
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Problem to solve
First, let's have a look at the game itself:

Figure 1: The Snake game

Does that look somewhat familiar to you?

I'm pretty convinced that it will; everyone's played Snake at least once in their life.

The game is pretty simple; it consists of a snake and an apple. We control the snake 
and our aim is to eat as many apples as possible.

Sounds easy? Well, there's a small catch. Every time our snake eats an apple, our 
snake gets larger by one tile. This means that the game is unbelievably simple at 
the beginning, but it gets gradually harder, to the point where it becomes a strategic 
game.

Also, when controlling our snake, we can't hit ourselves, nor the borders of the 
board. This rather predictably results in us losing.

Now that we understand the problem, we can progress to the first step when 
creating an AI – building the environment!

Building the environment
This time, as opposed to some of the other practical sections in this book, we don't 
have to specify any variables or make any assumptions. We can just go straight to 
the three crucial steps present in every deep Q-learning project:

1. Defining the states
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2. Defining the actions
3. Defining the rewards

Let's begin!

Defining the states
In every previous example, our states were a 1D vector that represented some 
values that define the environment. For example, for our self-driving car we 
had the information gathered from the three sensors around the car and the 
car's position. All of these were put into a single 1D array.

But what if we want to make something slightly more realistic? What if we want 
the AI to see and gather information from the same source as we do? Well, that's 
what we'll do in this chapter. Our AI will see exactly the same board as we see 
when playing Snake!

The state of the game should be a 2D array representing the board of the game, 
exactly the same thing that we can see.

There's just one problem with this solution. Take a look at the following image, 
and see if you can answer the question: which way is our snake moving right now?

Figure 2: The Snake game
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If you said "I don't know," then you're exactly right.

Based on a single frame, we can't tell which way our snake is going. Therefore, we'll 
need to stack multiple images, and then input all of them at once to a Convolutional 
Neural Network. This will result in us having 3D states rather than 2D ones.

So, just to recap:

Figure 3: The AI vision

We'll have a 3D array, containing next game frames stacked on top of each other, 
where the top one is the latest frame obtained from our game. Now, we can clearly 
see which way our AI is moving; in this case it's going up, toward the apple.

Now that we have defined states, we can go the next step: defining the actions!

Defining the actions
When we play Snake on a phone or a website, there are four actions available for us 
to take:

1. Go up
2. Go down
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3. Go right
4. Go left

However, if the action we take would require the snake to make a 180° turn directly 
back on itself, then the game blocks this action and the snake continues going in its 
current direction.

In the preceding example, if we were to select action 2 – go down–our snake would 
still continue going up, because going down is impossible as the snake can't make 
a 180° turn directly back on itself.

It's worth noting that all of these actions are relative to the board, not the snake; 
they're not affected by the current movement of the snake. Going up, down, right, 
or left always means going up, down, right, or left with respect to the board, not 
to the snake's current direction of movement.

Alright, so right now you might be in one of these two groups when it comes 
to deciding what actions we model in our AI:

1. We can use these four same actions for our AI.
2. We can't use these same actions, because blocking certain moves will be 

confusing for our AI. Instead, we should invent a way to tell the snake to 
go left, go right, or keep going.

We actually can use these same actions for our AI!

Why won't it be confusing for our agent? That's because as long as our AI agent 
gets rewards for the actions it chose, and not for the action ultimately performed 
by the snake, then deep Q-learning will work and our AI will understand that in 
the example above choosing either go up or go down results in the same outcome.

For example, let's say that the AI-controlled snake is currently going left. It chooses 
action 3, go right; and because that would cause the snake to make a 180° turn back 
on itself, instead the snake continues going left. Let's say that action means the snake 
crashes into the wall and, as a result, dies. In order for this not to be confusing for 
our agent, all we need to do is tell it that the action of go right caused it to crash, 
even though the snake kept moving left.

Think of it as teaching an AI to play with the actual buttons on a phone. If you keep 
trying to make your snake double back on itself when it's moving left, by pressing 
the go right button over and over again, the game will keep ignoring the impossible 
move you keep telling it to do, keep going left, and eventually crash. That's all the 
AI needs to learn.
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This is because, remember, in deep Q-learning we only update the Q-values of the 
action that the AI takes. If our snake is going left, and the AI decides to go right and 
the snake dies, it needs to understand that the action of go right caused it to get the 
negative reward, not the fact that the snake moved left; even though choosing the 
action go left would cause the same outcome.

I hope you understand that the AI can use the same actions as we use when we play. 
We can continue to the next, final step – defining the rewards!

Defining the rewards
This last step is pretty simple; we just need three rewards:

1. Reward for eating an apple
2. Reward for dying
3. The living penalty

The first two are hopefully easy to understand. After all, we want to encourage our 
agent to eat as many apples as possible and therefore we will set its reward to be 
positive. To be precise: eating an apple = +2

Meanwhile, we want to discourage our snake from dying. That's why we set that 
reward to be a negative one. To be precise: dying = -1

Then comes the final reward: the living penalty.

What is that, and why is it necessary? We have to convince our agent that collecting 
apples as quickly as possible, without dying, is a good idea. If we were to only have 
the two rewards we've already defined, our agent would simply travel around the 
entire map, hoping that at some point it finds an apple. It wouldn't understand that 
it needs to collect apples as quickly as it can.

That's why we introduce the living penalty. It will slightly punish our AI for every 
action it takes, unless this action leads to dying or collecting an apple. This will show 
our agent that it needs to collect apples quickly, as only moves that collect an apple 
lead to gaining a positive reward. So, how big this reward should be? Well, we don't 
want to punish it too much. To be precise: living penalty =-0.03

If you want to tinker with these rewards, the absolute value of this reward should 
always be relatively small compared to the other rewards, for dying (-1) and 
collecting an apple (+2).
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AI solution
As always, the AI solution for deep Q-learning consists of two parts:

1. Brain – the neural network that will learn and take actions
2. Experience replay memory – the memory that will store our experience; 

the neural network will learn from this memory

Let's tackle those now!

The brain
This part of the AI solution will be responsible for teaching, storing, and evaluating 
our neural network. To build it, we're going to use a CNN!

Why a CNN? When explaining the theory behind them, I mentioned that they're 
often used when "our environment as state returns images," and that's exactly what 
we're dealing with here. We've already established that the game state is going to be 
a stacked 3D array containing the last few game frames.

In the previous chapter, we discussed that a CNN takes a 2D image as input, not 
a stacked 3D array of images; but do you remember this graphic?

Figure 4: RGB images
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Here, I informed you that the RGB images are represented by 3D arrays that contain 
every single 2D channel of this image. Does that sound familiar? We can use the very 
same method for our problem. Just like each color in the RGB structure, we'll simply 
input every game frame as a new channel, which will give us a 3D array, which we 
will be able to input into a CNN. 

In reality, CNNs usually only support 3D arrays as inputs. In order to input 
a 2D array, you need to create a fake single channel that transforms a 2D array 
into a 3D one.

When it comes to the CNN architecture, we'll have two convolution layers separated 
by a pooling layer. One convolution layer will have 32 3x3 filters, and the other one 
will have 64 2x2 filters. The pooling layer will shrink the size by 2, as the pooling 
window size will be 2x2. Why such an architecture? It's a classic one, found in many 
research papers, which I arbitrarily chose as common practice and which turned out 
to work brilliantly.

Our neural network will have one hidden layer with 256 neurons, and an output 
layer with 4 neurons; one for each of our possible outcome actions.

We also need to set two last parameters for our CNN – learning rate and input shape.

Learning rate, which was used in the previous examples, is a parameter that specifies 
by how much we update the weights in the neural network. Too small and it won't 
learn, too big and it won't learn for a different reason; the changes will be too big for 
any optimization. I found through experimentation that a good learning rate for this 
example is 0.0001.

We've already agreed that the input should be a 3D array containing last frames 
obtained from our game. To be exact, we will not be reading pixels from our 
screen. Instead, we'll read the direct 2D array that represents our game's screen 
at a particular time.

As you've probably noticed, our game is built on a grid. In the example we are using, 
the grid is 10x10. Then, inside the environment is an array with the same size (10x10), 
telling us mathematically what the board looks like. For example, if we have part 
of the snake in one cell, then we place the value 0.5 in the corresponding cell in our 
2D array, which we will read. An apple is described as value 1 in this array.

Now that we know how we'll see one frame, we need to decide how many previous 
frames we'll use when we describe the current game state. 2 should be enough, 
since we can discern from that which way the snake is going, but to make sure, 
we'll have 4.
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Can you tell me exactly what shape our input to the CNN will be?

It'll be 10x10x4, which gives us a 3D array!

The experience replay memory
As defined in the theoretical chapter of deep Q-learning, we need to have a memory 
that stores experience gathered during training.

We'll store the following data:

• Current state – The game state the AI was in when it performed an action 
(what we inputted to our CNN)

• Action – Which action was undertaken
• Reward – The reward gained by performing this action on the current state
• Next state – What happened (how the state looked) after performing the 

action
• Game over – Information about whether we have lost or not

Also, we always have to specify two parameters for every experience replay 
memory:

• Memory size – The maximum size of our memory
• Gamma – The discount factor, existent in the Bellman equation

We'll set the memory size to 60,000 and the gamma parameter to 0.9.

There's one last thing to specify here.

I told you that our AI will learn from this memory, and that's true; but the AI won't 
be learning from the entire memory. Rather, it will learn from a small batch taken 
from it. The parameter that specifies this size will be called batch size, and in this 
example, we'll set its value to 32. That means that our AI will learn every iteration 
from a batch of this size taken from experience replay memory.

Now that you understand everything you have to code, you can get started!

Implementation
You'll implement the entire AI code and the Snake game in five files:

1. environment.py file – The file containing the environment (Snake game)
2. brain.py file – The file in which we build our CNN
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3. DQN.py – The file that builds the Experience Replay Memory
4. train.py – The file where we will train our AI to play Snake
5. test.py – The file where we will test our AI to see how well it performs

You can find all of them on the GitHub page along with a pre-trained model. To get 
there, select Chapter 13 folder on the main page.

We'll go through each file in the same order. Let's start building the environment!

Step 1 – Building the environment
Start this first, important step by importing the libraries you'll need. Like this:

4 # Importing the libraries

5 import numpy as np

6 import pygame as pg

You'll only use two libraries: NumPy and PyGame. The former is really useful 
when dealing with lists or arrays, and the latter will be used to build the entire 
game – to draw the snake and the apple, and update the screen.

Now, let's create the Environment class which will contain all the information, 
variables and methods that you need for your game. Why a class? This is because 
it makes things easier for you later on. You'll be able to call specific methods 
or variables from the object of this class.

The first method that you always have to have is the __init__ method, always 
called when a new object of this class is created in the main code. To create this 
class along with this __init__ method, you need to write:

8 # Initializing the Environment class

9 class Environment():

10     

11     def __init__(self, waitTime):

12         

13         # Defining the parameters

14         self.width = 880            # width of the game window

15         self.height = 880           # height of the game window

16         self.nRows = 10             # number of rows in our board

17         self.nColumns = 10          # number of columns in our 
board

18         self.initSnakeLen = 2       # initial length of the snake
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19         self.defReward = -0.03      # reward for taking an action 
- The Living Penalty

20         self.negReward = -1.        # reward for dying

21         self.posReward = 2.         # reward for collecting an 
apple

22         self.waitTime = waitTime    # slowdown after taking an 
action

23         

24         if self.initSnakeLen > self.nRows / 2:

25             self.initSnakeLen = int(self.nRows / 2)

26         

27         self.screen = pg.display.set_mode((self.width, self.
height))

28         

29         self.snakePos = list()

30         

31         # Creating the array that contains mathematical 
representation of the game's board

32         self.screenMap = np.zeros((self.nRows, self.nColumns))

33         

34         for i in range(self.initSnakeLen):

35             self.snakePos.append((int(self.nRows / 2) + i, 
int(self.nColumns / 2)))

36             self.screenMap[int(self.nRows / 2) + i][int(self.
nColumns / 2)] = 0.5

37             

38         self.applePos = self.placeApple()

39         

40         self.drawScreen()

41         

42         self.collected = False

43         self.lastMove = 0

You create a new class, the Environment() class, along with its __init__ method. 
This method only takes one argument, which is waitTime. Then after defining the 
method, create a list of constants, each of which is explained in the inline comments. 
After that, you perform some initialization. You make sure the snake is half the 
length of the screen or less on lines 24 and 25, and set the screen up on line 27. One 
important thing to note is that you create the screenMap array on line 32, which 
represents the board more mathematically. 0.5 in a cell means that this cell is taken 
by the snake, and 1 in a cell means that this cell is taken by the apple.
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On lines 34 to 36, you place the snake in the middle of the screen, facing upward, 
and then in the remaining lines you place an apple using the placeapple() method 
(which we are about to define), draw the screen, set that the apple hasn't been 
collected, and set that there's no last move.

That's the very first method completed. Now you can proceed to the next one:

    # Building a method that gets new, random position of an apple
    def placeApple(self):
        posx = np.random.randint(0, self.nColumns)
        posy = np.random.randint(0, self.nRows)
        while self.screenMap[posy][posx] == 0.5:
            posx = np.random.randint(0, self.nColumns)
            posy = np.random.randint(0, self.nRows)
        
        self.screenMap[posy][posx] = 1
        
        return (posy, posx)

This short method places an apple in a new, random spot in your screenMap array. 
You'll need this method when our snake collects the apple and a new apple needs to 
be placed. It also returns the random position of the new apple.

Then, you'll need a function that draws everything for you to see:

    # Making a function that draws everything for us to see
    def drawScreen(self):
        
        self.screen.fill((0, 0, 0))
        
        cellWidth = self.width / self.nColumns
        cellHeight = self.height / self.nRows
        
        for i in range(self.nRows):
            for j in range(self.nColumns):
                if self.screenMap[i][j] == 0.5:
                    pg.draw.rect(self.screen, (255, 255, 255), 
(j*cellWidth + 1, i*cellHeight + 1, cellWidth - 2, cellHeight - 2))
                elif self.screenMap[i][j] == 1:
                    pg.draw.rect(self.screen, (255, 0, 0), 
(j*cellWidth + 1, i*cellHeight + 1, cellWidth - 2, cellHeight - 2))
                    
        pg.display.flip()
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As you can see, the name of this method is drawScreen and it doesn't take any 
arguments. Here you simply empty the entire screen, then fill it in with white tiles 
where the snake is and with a red tile where the apple is. At the end, you update the 
screen with pg.display.flip().

Now, you need a function that will update the snake's position and not the entire 
environment:

    # A method that updates the snake's position
    def moveSnake(self, nextPos, col):
        
        self.snakePos.insert(0, nextPos)
        
        if not col:
            self.snakePos.pop(len(self.snakePos) - 1)
        
        self.screenMap = np.zeros((self.nRows, self.nColumns))
        
        for i in range(len(self.snakePos)):
            self.screenMap[self.snakePos[i][0]][self.snakePos[i][1]] = 
0.5
        
        if col:
            self.applePos = self.placeApple()
            self.collected = True
            
        self.screenMap[self.applePos[0]][self.applePos[1]] = 1

You can see that this new method takes two arguments: nextPos and col. 
The former tells you where the head of the snake will be after performing a certain 
action. The latter will inform you whether the snake has collected an apple by taking 
this action, or not. Remember that if the snake has collected an apple, then the length 
of the snake increases by 1. If you go deep into this code, you can see that, but we 
won't go into detail here since it's not so relevant for the AI. You can also see that 
if the snake has collected an apple, a new one is spawned in a new spot.

Now, let's move on to the most important part of this code. You define a function 
that will update the entire environment. It will move your snake, calculate the 
reward, check if you lost, and return a new game frame. This is how it starts:

    # The main method that updates the environment
    def step(self, action):
        # action = 0 -> up
        # action = 1 -> down
        # action = 2 -> right
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        # action = 3 -> left
        
        # Resetting these parameters and setting the reward to the 
living penalty
        gameOver = False
        reward = self.defReward
        self.collected = False
        
        for event in pg.event.get():
            if event.type == pg.QUIT:
                return
        
        snakeX = self.snakePos[0][1]
        snakeY = self.snakePos[0][0]
        
        # Checking if an action is playable and if not then it is 
changed to the playable one
        if action == 1 and self.lastMove == 0:
            action = 0
        if action == 0 and self.lastMove == 1:
            action = 1
        if action == 3 and self.lastMove == 2:
            action = 2
        if action == 2 and self.lastMove == 3:
            action = 3

As you can see, this method is called step and it takes one argument: the action 
that tells you which way you want the snake to be going. Just beneath the method's 
definition, in the comments, you can see which action means which direction.

Then you reset some variables. You set gameOver to False as this bool variable will 
tell you if you lost after performing this action. You set reward to defReward, as this 
is the living penalty; it can change if we collect an apple or die later.

Then there's a for loop. It's there to make sure the PyGame window doesn't freeze; 
this is a requirement of the PyGame library. It just has to be there.

snakeX and snakeY tell you what the head position of the snake is. It'll be used by 
the algorithm later, to determine what happens after the head moves.

In the last few lines, you can see the algorithm that blocks impossible actions. Just to 
recap, an impossible action is the one that requires the snake to make a 180° turn in 
place. lastMove tells you which way the snake is going right now, and is compared 
with action. If these lead to a contradiction, then action is set to lastMove.
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Still inside this method, you update the snake position, check for game over, and 
calculate the reward, like so:

        # Checking what happens when we take this action
        if action == 0:
            if snakeY > 0:
                if self.screenMap[snakeY - 1][snakeX] == 0.5:
                    gameOver = True
                    reward = self.negReward
                elif self.screenMap[snakeY - 1][snakeX] == 1:
                    reward = self.posReward
                    self.moveSnake((snakeY - 1, snakeX), True)
                elif self.screenMap[snakeY - 1][snakeX] == 0:
                    self.moveSnake((snakeY - 1, snakeX), False)
            else:
                gameOver = True
                reward = self.negReward

Here you check what happens if the snake goes up. If the head of the snake is already 
in the top row (row no. 0) then you've obviously lost, since the snake hits the wall. 
So, reward is set to negReward and gameOver is set to True. Otherwise, you check 
what lies ahead of the snake.

If the cell ahead already contains part of the snake's body, then you've lost. You 
check that in the first if statement, then set gameOver to True and reward to 
negReward.

Else if the cell ahead is an apple, then you set reward to posReward. You also update 
the snake's position by calling the method you created just before this one.

Else if the cell ahead is empty, then you don't update reward in any way. You call 
the same method again, but this time with the col argument set to False, since the 
snake hasn't collected an apple. You go through the same process for every other 
action. I won't go through every line, but have a look at the code:

        elif action == 1:
            if snakeY < self.nRows - 1:
                if self.screenMap[snakeY + 1][snakeX] == 0.5:
                    gameOver = True
                    reward = self.negReward
                elif self.screenMap[snakeY + 1][snakeX] == 1:
                    reward = self.posReward
                    self.moveSnake((snakeY + 1, snakeX), True)
                elif self.screenMap[snakeY + 1][snakeX] == 0:
                    self.moveSnake((snakeY + 1, snakeX), False)
            else:
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                gameOver = True
                reward = self.negReward
                
        elif action == 2:
            if snakeX < self.nColumns - 1:
                if self.screenMap[snakeY][snakeX + 1] == 0.5:
                    gameOver = True
                    reward = self.negReward
                elif self.screenMap[snakeY][snakeX + 1] == 1:
                    reward = self.posReward
                    self.moveSnake((snakeY, snakeX + 1), True)
                elif self.screenMap[snakeY][snakeX + 1] == 0:
                    self.moveSnake((snakeY, snakeX + 1), False)
            else:
                gameOver = True
                reward = self.negReward 
        
        elif action == 3:
            if snakeX > 0:
                if self.screenMap[snakeY][snakeX - 1] == 0.5:
                    gameOver = True
                    reward = self.negReward
                elif self.screenMap[snakeY][snakeX - 1] == 1:
                    reward = self.posReward
                    self.moveSnake((snakeY, snakeX - 1), True)
                elif self.screenMap[snakeY][snakeX - 1] == 0:
                    self.moveSnake((snakeY, snakeX - 1), False)
            else:
                gameOver = True
                reward = self.negReward

Simply handle every single action in the same way you did with the action of going 
up. Check if the snake didn't hit the walls, check what lies ahead of the snake and 
update the snake's position, reward, and gameOver accordingly.

There are two more steps in this method; let's jump straight into the first one:

        # Drawing the screen, updating last move and waiting the wait 
time specified
        self.drawScreen()
        
        self.lastMove = action
        
        pg.time.wait(self.waitTime)
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You update our screen by drawing the snake and the apple on it, then change 
lastMove to action, since your snake has already moved and now it's moving 
in the action direction.

The last step in this method is to return what the game looks like now, what the 
reward is that was obtained, and whether you've lost, like this:

        # Returning the new frame of the game, the reward obtained 
and whether the game has ended or not
        return self.screenMap, reward, gameOver

screenMap gives you the information you need about what the game looks like after 
performing an action, reward gives you the collected reward from taking this action, 
and gameOver tells you whether you lost or not.

That's it for this method! To have a complete Environment class, you only need 
to make a function that will reset the environment, like this reset method:

    # Making a function that resets the environment
    def reset(self):
        self.screenMap  = np.zeros((self.nRows, self.nColumns))
        self.snakePos = list()
        
        for i in range(self.initSnakeLen):
            self.snakePos.append((int(self.nRows / 2) + i, int(self.
nColumns / 2)))
            self.screenMap[int(self.nRows / 2) + i][int(self.nColumns 
/ 2)] = 0.5
        
        self.screenMap[self.applePos[0]][self.applePos[1]] = 1
        
        self.lastMove = 0

It simply resets the game board (screenMap), as well as the snake's position, to the 
default, which is the middle of the board. It also sets the apple's position to the same 
as it was in the last round.

Congratulations! You've just finished building the environment. Now, we'll proceed 
to the second step, building the brain.

Step 2 – Building the brain
This is where you'll build our brain with a Convolutional Neural Network. 
You'll also set some parameters for its training and define a method that loads  
a pre-trained model for testing.
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Let's begin!

As always, you start by importing the libraries that you'll use, like this:

# Importing the libraries
import keras
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Conv2D, MaxPooling2D, Flatten
from keras.optimizers import Adam

As you've probably noticed, all of the classes are a part of the Keras library, which 
is the one you're going to use in this chapter. Keras is actually the only library that 
you'll use in this file. Let's go through each of these classes and methods right now:

1. Sequential – A class that allows you to initialize a neural network, and 
defines the general structure of this network.

2. load_model – A function that loads a model from a file.
3. Dense – A class to create fully connected layers in an Artificial Neural 

Network (ANN).
4. Dropout – A class that adds dropout to our network. You've seen it used 

already, in Chapter 8, AI for Logistics – Robots in a Warehouse.
5. Conv2D – A class that builds convolution layers.
6. MaxPooling2D – A class that builds max pooling layers.
7. Flatten – A class that performs flattening, so that you'll have an input for 

a classic ANN.
8. Adam – An optimizer, which will optimize your neural network. It's used 

when training the CNN.

Now you've imported your library, you can continue by creating a class called 
Brain, where all these classes and methods are used. Start by defining a class and 
the __init__ method, like this:

# Creating the Brain class
class Brain():
    
    def __init__(self, iS = (100,100,3), lr = 0.0005):
        
        self.learningRate = lr
        self.inputShape = iS
        self.numOutputs = 4
        self.model = Sequential()
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You can see that the __init__ method takes two arguments: iS (input shape) and lr 
(learning rate). Then you define some variables that will be associated with this class: 
learningRate, inputShape, numOutputs. Set numOutputs to 4, as this is how many 
actions our AI can take. Then, in the last line, create an empty model. To do this, use 
the Sequential class, which we imported earlier.

Doing this will allow you to add all the layers that you need to the model. That's 
exactly what you do with these lines:

20         # Adding layers to the model

21         self.model.add(Conv2D(32, (3,3), activation = 'relu', 
input_shape = self.inputShape))

22         

23         self.model.add(MaxPooling2D((2,2)))

24         

25         self.model.add(Conv2D(64, (2,2), activation = 'relu'))

26         

27         self.model.add(Flatten())

28         

29         self.model.add(Dense(units = 256, activation = 'relu'))

30         

31         self.model.add(Dense(units = self.numOutputs))

Let's break this code down into lines:

Line 21: You add a new convolution layer to your model. It has 32 3x3 filters with 
the ReLU activation function. You need to specify the input shape here as well. 
Remember that the input shape is one of the arguments of this function, and is saved 
under the inputShape variable.

Line 23: You add a max pooling layer. The window's size is 2x2, which will shrink 
our feature maps in size by 2.

Line 25: You add the second convolution layer. This time it has 64 2x2 filters, 
with the same ReLU activation function. Why ReLU this time? I tried some other 
activation functions experimentally, and it turned out that for this AI ReLU worked 
the best.

Line 27: Having applied convolution, you receive new feature maps, which you 
flatten to a 1D vector. That's exactly what this line does – it flattens 2D images to 
a 1D vector, which you'll then be able to use as the input to your neural network.
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Line 29: Now, you're in the full connection step – you're building the traditional 
ANN. This specific line adds a new hidden layer with 256 neurons and the ReLU 
activation function to our model.

Line 31: You create the last layer in your neural network – the output layer. How big 
is it? Well, it has to have as many neurons as there are actions that you can take. You 
put that value under the numOutputs variable earlier, and the value is equal to 4. You 
don't specify the activation function here, which means that the activation function 
will be linear as a default. It turns out that in this case, during training, using a linear 
output works better than a Softmax output; it makes the training more efficient.

You also have to compile your model. This will tell your code how to calculate the 
error, and which optimizer to use when training your model. You can do it with this 
single line:

        # Compiling the model
        self.model.compile(loss = 'mean_squared_error', optimizer = 
Adam(lr = self.learningRate))

Here, you use a method that's a part of the Sequential class (that's why you can use 
your model to call it) to do just that. The method is called compile and, in this case, 
takes two arguments. loss is a function that tells the AI how to calculate the error 
of your neural network; you'll use mean_squared_error. The second parameter is 
the optimizer. You've already imported the Adam optimizer, and you use it here. The 
learning rate for this optimizer was one of the arguments of the __init__ method of 
this class, and its value is represented by the learningRate variable.

There's only one step left to do in this class – make a function that will load a model 
from a file. You do it with this code:

    # Making a function that will load a model from a file
    def loadModel(self, filepath):
        self.model = load_model(filepath)
        return self.model

You can see that you've created a new function called loadModel, which takes 
one argument – filepath. This parameter is the file path to the pre-trained model. 
Once you've defined the function, you can actually load the model from this file 
path. To do so, you use the load_model method, which you imported earlier. This 
function takes the same argument – filepath. Then in the final line, you return the 
loaded model. 

Congratulations! You've just finished building the brain. 

Let's advance on our path, and build the experience replay memory.
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Step 3 – Building the experience replay 
memory
You'll build this memory now, and later, you'll train your model from small batches 
of this memory. The memory will contain information about the game state before 
taking the action, the action that was taken, the reward gained, and the game state 
after performing the action.

I have some excellent news for you – do you remember this code?

# AI for Games - Beat the Snake game
# Implementing Deep Q-Learning with Experience Replay

# Importing the libraries
import numpy as np

# IMPLEMENTING DEEP Q-LEARNING WITH EXPERIENCE REPLAY

class Dqn(object):
    
    # INTRODUCING AND INITIALIZING ALL THE PARAMETERS AND VARIABLES 
OF THE DQN
    def __init__(self, max_memory = 100, discount = 0.9):
        self.memory = list()
        self.max_memory = max_memory
        self.discount = discount

    # MAKING A METHOD THAT BUILDS THE MEMORY IN EXPERIENCE REPLAY
    def remember(self, transition, game_over):
        self.memory.append([transition, game_over])
        if len(self.memory) > self.max_memory:
            del self.memory[0]

    # MAKING A METHOD THAT BUILDS TWO BATCHES OF INPUTS AND TARGETS BY 
EXTRACTING TRANSITIONS FROM THE MEMORY
    def get_batch(self, model, batch_size = 10):
        len_memory = len(self.memory)
        num_inputs = self.memory[0][0][0].shape[1]
        num_outputs = model.output_shape[-1]
        inputs = np.zeros((min(len_memory, batch_size), num_inputs))
        targets = np.zeros((min(len_memory, batch_size), num_outputs))
        for i, idx in enumerate(np.random.randint(0, len_memory, size 
= min(len_memory, batch_size))):
            current_state, action, reward, next_state = self.
memory[idx][0]
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            game_over = self.memory[idx][1]
            inputs[i] = current_state
            targets[i] = model.predict(current_state)[0]
            Q_sa = np.max(model.predict(next_state)[0])
            if game_over:
                targets[i, action] = reward
            else:
                targets[i, action] = reward + self.discount * Q_sa
        return inputs, targets

You'll use almost the same code, with only two small changes.

First, you get rid of this line:

        num_inputs = self.memory[0][0][0].shape[1]

And then change this line:

        inputs = np.zeros((min(len_memory, batch_size), num_inputs))

To this one:

        inputs = np.zeros((min(len_memory, batch_size), self.memory[0]
[0][0].shape[1],self.memory[0][0][0].shape[2],self.memory[0][0][0].
shape[3]))

Why did you have to do this? Well, you got rid of the first line since you no longer 
have a 1D vector of inputs. Now you have a 3D array.

Then, if you look closely, you'll see that you didn't actually change inputs. Before, 
you had a 2D array, one dimension of which was batch size and the other of which 
was number of inputs. Now, things are very similar; the first dimension is once again 
the batch size, and the last three correspond to the size of the input as well!

Since our input is now a 3D array, you wrote .shape[1], .shape[2], and 
.shape[3]. What exactly are those shapes?

.shape[1] is the number of rows in the game (in your case 10). .shape[2] is the 
number of columns in the game (in your case 10). .shape[3] is the number of last 
frames stacked onto each other (in your case 4).

As you can see, you didn't really change anything. You just made the code work 
for our 3D inputs.

I also renamed this dqn.py file to DQN.py and renamed the class DQN to Dqn.

That's that! That was probably much simpler than most of you expected it to be.
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You can finally start training your model. We'll do that in the next section – training 
the AI.

Step 4 – Training the AI
This is, by far, the most important step. Here we finally teach our AI to play Snake!

As always, start by importing the libraries you need:

# Importing the libraries
from environment import Environment
from brain import Brain
from DQN import Dqn
import numpy as np
import matplotlib.pyplot as plt

In the first three lines you import the tools that you created earlier, including 
the Brain, the Environment, and the experience replay memory.

Then, in the following two lines, you import the libraries that you'll use. These 
include NumPy and Matplotlib. You'll already recognize the former; the latter 
will be used to display your model's performance. To be specific, it will help you 
display a graph that, every 100 games, will show you the average number of 
apples collected.

That's all for this step. Now, define some hyperparameters for your code:

# Defining the parameters
memSize = 60000
batchSize = 32
learningRate = 0.0001
gamma = 0.9
nLastStates = 4

epsilon = 1.
epsilonDecayRate = 0.0002
minEpsilon = 0.05

filepathToSave = 'model2.h5'

I'll explain them in this list:

1.  memSize – The maximum size of your experience replay memory.
2. batchSize – The size of the batch of inputs and targets that you get at each 

iteration from your experience replay memory for your model to train on.
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3. learningRate – The learning rate for your Adam optimizer in the Brain.
4. gamma – The discount factor for your experience replay memory.
5. nLastStates – How many last frames you save as your current state of 

the game. Remember, you'll input a 3D array of size nRows x nColumns 
x nLastStates to your CNN in the Brain.

6. epsilon – The initial epsilon, the chance of taking a random action.
7. epsilonDecayRate – By how much you decrease epsilon after every 

single game/epoch.
8. minEpsilon – The lowest possible epsilon, after which it can't be adjusted 

any lower.
9. filepathToSave – Where you want to save your model.

There you go – you've defined the hyperparameters. You'll use them later when you 
write the rest of the code. Now, you have to create an environment, a brain, and an 
experience replay memory:

# Creating the Environment, the Brain and the Experience Replay Memory
env = Environment(0)
brain = Brain((env.nRows, env.nColumns, nLastStates), learningRate)
model = brain.model
dqn = Dqn(memSize, gamma)

You can see that in the first line you create an object of the Environment class. You 
need to specify one variable here, which is the slowdown of your environment (wait 
time between moves). You don't want any slowdown during the training, so you 
input 0 here.

In the next line you create an object of the Brain class. It takes two arguments – the 
input shape and the learning rate. As I've mentioned multiple times, the input shape 
will be a 3D array of size nRows x nColumns x nLastStates, so that's what you type 
in here. The second argument is the learning rate, and since you've created a variable 
for that, you simply input the name of this variable – learningRate. After this line 
you take the model of this Brain class and create an instance of this model in your 
code. Keep things simple, and call it model.

In the last line you create an object of the Dqn class. It takes two arguments – 
the maximum size of the memory, and the discount factor for the memory. You've 
specified two variables, memSize and gamma, for just that, so you use them here.

Now, you need to write a function that will reset the states for your AI. You need it 
because the states are quite complicated, and resetting them in the main code would 
mess it up a lot. Here's what it looks like:
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30 # Making a function that will initialize game states

31 def resetStates():

32     currentState = np.zeros((1, env.nRows, env.nColumns, 
nLastStates))

33     

34     for i in range(nLastStates):

35         currentState[:,:,:,i] = env.screenMap

36     

37     return currentState, currentState

Let's break it down into separate lines:

Line 31: You define a new function called resetStates. It doesn't take any 
arguments.

Line 32: You create a new array called currentState. It's full of zeros, but you may 
ask why it's 4D; shouldn't the input be 3D as we said? You're absolutely right, and 
it will be. The first dimension is called batch size and simply says how many inputs 
you input to your neural network at once. You'll only input one array at a time, so 
the first size is 1. The next three sizes correspond to the size of the input.

Lines 34-35: In a for loop, which will be executed nLastStates times, you set the 
board for each layer in your 3D state to the current, initial look of the game board 
from your environment. Every frame in your state will look the same initially, the 
same way the board of the game looks when you start a game.

Line 37: This function will return two currentStates. Why? This is because you 
need two game state arrays. One to represent the board before you've taken an 
action, and one to represent the board after you've taken an action.

Now you can start writing the code for the entire training. First, create a couple 
of useful variables, like this:

# Starting the main loop
epoch = 0
scores = list()
maxNCollected = 0
nCollected = 0.
totNCollected = 0

epoch will tell you which epoch/game you're in right now. scores is a list in which 
you save the average scores per game after every 100 games/epochs. maxNCollected 
tells you the highest score obtained so far in the training, while nCollected is the 
score in each game/epoch. The last variable, totNCollected, tells you how many 
apples you've collected over 100 epochs/games.
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Now you start an important, infinite while loop, like this:

while True:
    # Resetting the environment and game states
    env.reset()
    currentState, nextState = resetStates()
    epoch += 1
    gameOver = False

Here, you iterate through every game, every epoch. That's why you restart the 
environment in the first line, create new currentState and nextState in the next 
line, increase epoch by one, and set gameOver to False as you obviously haven't 
lost yet.

Note that this loop doesn't end; therefore, the training never stops. We do it this 
way because we don't have a set goal for when to stop the training, since we haven't 
defined what a satisfactory result for our AI would be. We could calculate the 
average result, or a similar metric, but then training might take too long. I prefer 
to keep the training going and you can just stop the training whenever you want. 
A good time to stop is when the AI reaches an average of six apples per game, 
or you can even go up to 12 apples per game if you want better performance.

You've started the first loop that will iterate through every epoch. Now you need to 
create the second loop, where the AI performs actions, updates the environment, and 
trains your CNN. Start it with these lines:

    # Starting the second loop in which we play the game and teach our 
AI
    while not gameOver: 
        
        # Choosing an action to play
        if np.random.rand() < epsilon:
            action = np.random.randint(0, 4)
        else:
            qvalues = model.predict(currentState)[0]
            action = np.argmax(qvalues)

As I mentioned, this is the loop in which your AI makes decisions, moves, and 
updates the environment. You start off by initializing a while loop that will be 
executed as long as you haven't lost; that is, as long as gameOver is set to False.

Then, you can see if conditions. This is where your AI will make decisions. If a 
random value from range (0,1) is lower than the epsilon, then a random action will 
be performed. Otherwise, you predict the Q-values based on the current state of the 
game and from these Q-values you take the index with the highest Q-value. This will 
be the action performed by your AI.
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Then, you have to update your environment:

        # Updating the environment
        state, reward, gameOver = env.step(action)

You use the step method from your Environment class object. It takes one 
argument, which is the action that you perform. It also returns the new frame 
obtained from your game after performing this action along with the reward 
obtained and the game over information. You'll use these variables soon.

Keep in mind, that this method returns a single 2D frame from your game. This 
means that you have to add this new frame to your nextState and remove the 
last one. You do this with these lines:

        # Adding new game frame to the next state and deleting the 
oldest frame from next state
        state = np.reshape(state, (1, env.nRows, env.nColumns, 1))
        nextState = np.append(nextState, state, axis = 3)
        nextState = np.delete(nextState, 0, axis = 3)

As you can see, first you reshape state because it is 2D, while both currentState 
and nextState are 4D. Then you add this new, reshaped frame to nextState along 
the 3rd axis. Why 3rd? That's because the 3rd index refers to the 4th dimension of 
this array, which keeps the 2D frames inside. In the last line you simply delete the 
first frame from nextState, which has index 0 (the oldest frames are kept on the 
lowest indexes).

Now, you can remember this transition in your experience replay memory, and train 
your model from a random batch of this memory. You do that with these lines:

        # Remembering the transition and training our AI
        dqn.remember([currentState, action, reward, nextState], 
gameOver)
        inputs, targets = dqn.get_batch(model, batchSize)
        model.train_on_batch(inputs, targets)

In the first line, you append this transition to the memory. It contains information 
about the game state before taking the action (currentState), the action that was 
taken (action), the reward gained (reward), and the game state after taking this 
action (nextState). You also remember the gameOver status. In the following two 
lines, you take a random batch of inputs and targets from your memory, and train 
your model on them.

Having done that, you can check if your snake has collected an apple and update 
currentState. You can do that with these lines:

        # Checking whether we have collected an apple and updating the 
current state
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        if env.collected:
            nCollected += 1
        
        currentState = nextState

In the first two lines, you check whether the snake has collected an apple and if it 
has, you increase nCollected. Then you update currentState by setting its values 
to the ones of nextState.

Now, you can quit this loop. You still have a couple of things to do:

    # Checking if a record of apples eaten in a around was beaten and 
if yes then saving the model
    if nCollected > maxNCollected and nCollected > 2:
        maxNCollected = nCollected
        model.save(filepathToSave)
    
    totNCollected += nCollected
    nCollected = 0

You check if you've beaten the record for the number of apples eaten in a round (this 
number has to be bigger than 2) and if you did, you update the record and save your 
current model to the file path you specified before. You also increase totNCollected 
and reset nCollected to 0 for the next game.

Then, after 100 games, you show the average score, like this:

    # Showing the results each 100 games
    if epoch % 100 == 0 and epoch != 0:
        scores.append(totNCollected / 100)
        totNCollected = 0
        plt.plot(scores)
        plt.xlabel('Epoch / 100')
        plt.ylabel('Average Score')
        plt.savefig('stats.png')
        plt.close()

You have a list called scores, where you store the average score after 100 games. 
You append a new value to it and then reset this value. Then you show scores on 
a graph, using the Matplotlib library that you imported before. This graph is saved 
in stats.png every 100 games/epochs.

Then you lower the epsilon, like so:

    # Lowering the epsilon
    if epsilon > minEpsilon:
        epsilon -= epsilonDecayRate
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With the if condition, you make sure that the epsilon doesn't go lower than the 
minimum threshold.

In the last line, you display some additional information about every single game, 
like this:

    # Showing the results each game
    print('Epoch: ' + str(epoch) + ' Current Best: ' + 
str(maxNCollected) + ' Epsilon: {:.5f}'.format(epsilon))

You display the current epoch (game), the current record for the number of apples 
collected in one game, and the current epsilon.

That's it! Congratulations! You've just built a function that will train your model. 
Remember that this training goes on infinitely until you decide it's finished. When 
you're satisfied with it, you'll want to test it. For that, you need a short file to test 
your model. Let's do it!

Step 5 – Testing the AI
This will be a very short section, so don't worry. You'll be running this code in just 
a moment!

As always, you start by importing the libraries you need:

# Importing the libraries
from environment import Environment
from brain import Brain
import numpy as np

This time you won't be using the DQN memory nor the Matplotlib library, 
and therefore you don't import them.

You also need to specify some hyperparameters, like this:

# Defining the parameters
nLastStates = 4
filepathToOpen = 'model.h5'
slowdown = 75

You'll need nLastStates later in this code. You also created a file path to the model 
that you'll test. Finally, there's also a variable that you'll use to specify the wait time 
after every move, so that you can clearly see how your AI performs.

Once again, you create some useful objects, like an Environment and a Brain:

# Creating the Environment and the Brain
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env = Environment(slowdown)
brain = Brain((env.nRows, env.nColumns, nLastStates))
model = brain.loadModel(filepathToOpen)

Into the brackets of the Environment, you input the slowdown, because that's the 
argument that this class takes. You also create an object of the Brain class, but this 
time, you don't specify the learning rate, since you won't be training your model. 
In the final line you load a pre-trained model using the loadModel method from the 
Brain class. This method takes one argument, which is the file path from which you 
load the model.

Once again, you need a function to reset states. You can use the same one as before, 
so just copy and paste these lines:

# Making a function that will reset game states
def resetStates():
    currentState = np.zeros((1, env.nRows, env.nColumns, nLastStates))
    
    for i in range(nLastStates):
        currentState[:,:,:,i] = env.screenMap
   
    return currentState, currentState

Now, you can enter the main while loop like before. This time, however, you won't 
define any variables, since you don't need any:

# Starting the main loop
while True:
    # Resetting the game and the game states
    env.reset()
    currentState, nextState = resetStates()
    gameOver = False

As you can see, you've started this infinite while loop. Once again, you have to 
restart the environment, the states, and the game over, every iteration.

Now, you can enter the game's while loop, where you take actions, update the 
environment, and so on:

    # Playing the game
    while not gameOver: 
        
        # Choosing an action to play
        qvalues = model.predict(currentState)[0]
        action = np.argmax(qvalues)
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This time, you don't need any if statements. After all, you're testing your AI, so you 
mustn't have any random actions here.

Once again, you update the environment:

        # Updating the environment
        state, _, gameOver = env.step(action)

You don't really care about the reward, so just place "_" instead of reward. The 
environment still returns the frame after taking an action, along with the information 
about game over.

Due to this fact, you need to reshape your state and update nextState in the same 
way as before:

        # Adding new game frame to next state and deleting the oldest 
one from next state
        state = np.reshape(state, (1, env.nRows, env.nColumns, 1))
        nextState = np.append(nextState, state, axis = 3)
        nextState = np.delete(nextState, 0, axis = 3)

In the final line, you need to update currentState as you did in the other file:

        # Updating current state
        currentState = nextState

That's the end of coding for this section! This isn't, however, the end of this chapter. 
You still have to run the code.

The demo
Unfortunately, due to PyGame not being supported by Google Colab, you'll need 
to use Anaconda.

Thankfully, you should have it installed after Chapter 10, AI for Autonomous Vehicles – 
Build a Self-Driving Car, so it'll be easier to install the required packages and libraries.

Installation
First, create a new virtual environment inside Anaconda. This time, I'll walk you 
through the installation on the Anaconda Prompt from a PC, so that you can all see 
how it's done from any system.
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Windows users, please open the Anaconda Prompt on your PC, and Mac/Linux 
users, please open your Terminal on Mac/Linux. Then type:

conda create -n snake python=3.6

Just like so:

Then, hit Enter on your keyboard. You should get something more or less like this:

Type y on your keyboard and hit Enter once again. After everything gets installed, 
type this in your Anaconda Prompt:

conda activate snake
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And hit Enter once again. Now on the left, you should see snake written instead 
of base. This means that you're in the newly created Anaconda environment.

Now you need to install the required libraries. The first one is Keras:

conda install -c conda-forge keras
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After writing that, hit Enter. When you get this:

Type y once again and hit Enter once again. Once you have it installed, you need 
to install PyGame and Matplotlib.

The first one can be installed by entering pip install pygame, while the second 
one can be installed by entering pip install matplotlib. The installation follows 
the same procedure as you just took to install Keras.

Ok, now you can run your code!

If you've accidentally closed your Anaconda Prompt/Terminal for any reason, re-
open it and type in this to activate the snake environment that we have just created:

conda activate snake
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And then hit Enter. I got a bunch of warnings after doing this, and you may see 
similar warnings as well, but don't worry about them:

Now, you need to navigate this console to the folder that contains the file you want 
to run, in this case train.py. I recommend that you put all the code of Chapter 13 
in one folder called Snake on your desktop. Then you'll be able to follow the exact 
instructions that I'll give you now. To navigate to this folder, you'll need to use cd 
commands.

First, navigate to the desktop by running cd Desktop, like this:
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And then enter the Snake folder that you created. Just as with the previous 
command, run cd Snake, like this:

You're getting super close. To train a new model, you need to type:

python train.py

And hit Enter. This is more or less what you should see:
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You have both a window on the left with the game, and one on the right with the 
terminal informing you about every game (every epoch).

Congratulations! You just smashed the code of this chapter and built an AI for Snake. 
Be patient with it though! Training it may take up a couple of hours.

So, what kind of results can you expect?

The results
Firstly, make sure to follow the results also on your Anaconda Prompt/Terminal, 
epoch by epoch. An epoch is one game played. After thousands of games (epochs), 
you'll see the score increase, as well as the snake size increase.

After thousands of epochs of training, while the snake doesn't fill in the entire map, 
your AI plays on a level comparable with humans. Here are some pictures after 
25,000 epochs.

Figure 5: Results example 1

WOW! eBook 
www.wowebook.org



AI for Games – Become the Master at Snake

[ 324 ]

Figure 6: Results example 2

You'll also get a graph created in the folder (stats.png) showing the average score 
over the epochs. Here is the graph I got when training our AI over 25,000 epochs:

Figure 7: Average score over 25,000 epochs

You can see that our AI reached an average score of 10-11 per game. This isn't bad 
considering that before training it knew absolutely nothing about the game.
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You can also see the same results if you run the test.py file using the pre-trained 
model model.h5 attached to this chapter in GitHub. To do this, you simply need 
to enter in your Anaconda Prompt/Terminal (still in the same Snake folder on your 
desktop that contains all the code of Chapter 13, and still inside the snake virtual 
environment):

python test.py

If you want to test your model after training, you simply need to replace model.h5 
with model2.h5 in the test.py file. That's because during the training the weights 
of your AI's neural network will be saved into a file named model2.h5. Then re-enter 
python test.py in your Anaconda Prompt/Terminal, and enjoy your own results.

Summary
In this last practical chapter of the book, we built a deep convolutional Q-Learning 
model for Snake. Before we built anything, we had to define what our AI would see. 
We established that we needed to stack multiple frames, so that our AI would see the 
continuity of its moves. This was the input to our Convolutional Neural Network. 
The outputs were the Q-values corresponding to each of the four possible moves: 
going up, going down, going left, and going right. We rewarded our AI for eating an 
apple, punished it for losing, and punished it slightly for performing any action (the 
living penalty). Having run 25,000 games, we can see that our AI is able to eat 10-11 
apples per game.

I hope you enjoyed it!
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Recap and Conclusion
In this final chapter, I'll provide you with a recap of the general AI framework for 
reference, and give you some words of advice as you take your work in AI to the 
next level. You've come a long way, and there's so much further you can take your 
AI studies in the future!

Recap – The general AI framework/
blueprint
Let's recap and provide the whole AI blueprint, so that you can refer to it whenever 
you need. You can even print it out and put it on your wall!

Step 1 – Building the environment

1. Step 1-1: Introducing and initializing all the parameters and variables of the 
environment.

2. Step 1-2: Making a method that updates the environment right after the 
AI plays an action.

3. Step 1-3: Making a method that resets the environment.
4. Step 1-4: Making a method that gives us at any time the current state, 

the last reward obtained, and whether the game is over.

Step 2 – Building the brain

1. Step 2-1: Building the input layer composed of the input states.
2. Step 2-2: Building the hidden layers with a chosen number of these layers 

and neurons inside each, fully connected to the input layer and between each 
other.

3. Step 2-3: Building the output layer, fully connected to the last hidden layer.
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4. Step 2-4: Assembling the full architecture inside a model object.
5. Step 2-5: Compiling the model with a mean-squared error loss function 

and a chosen optimizer.

Step 3 – Implementing the Deep Reinforcement Learning algorithm

1. Step 3-1: Introducing and initializing all the parameters and variables of the 
Deep Q-Learning neural Network (DQN) model.

2. Step 3-2: Making a method that builds the memory in experience replay.
3. Step 3-3: Making a method that builds and returns two batches of inputs and 

targets, each one having batch_size elements.

Step 4 – Training the AI

1. Step 4-1: Building the environment by creating an object of the Environment 
class built in Step 1.

2. Step 4-2: Building the artificial brain by creating an object of the Brain class 
built in Step 2.

3. Step 4-3: Building the DQN model by creating an object of the DQN class built 
in Step 3.

4. Step 4-4: Choosing the training mode.
5. Step 4-5: Starting the training with a for loop over a chosen number of 

epochs.
6. Step 4-6: During each epoch, we repeat the whole deep Q-learning process, 

while also doing some exploration 30% of the time.

Step 5 – Testing the AI

1. Step 5-1: Building a new environment by creating an object of the 
Environment class built in Step 1.

2. Step 5-2: Loading the artificial brain with its pre-trained weights from the 
previous training.

3. Step 5-3: Choosing the inference mode.
4. Step 5-4: Starting the simulation.
5. Step 5-5: At each iteration (each minute), our AI only plays the action that 

results from its prediction, and no exploration or Deep Q-Learning training 
is happening whatsoever.

WOW! eBook 
www.wowebook.org



Chapter 14

[ 329 ]

Exploring what's next for you in AI
You've come such a long way! Let's take a last step back and see what knowledge 
you've gained and what skills you've acquired:

• You have a solid intuition of Reinforcement Learning.
• You can use it to solve real-world problems.
• You can program in a way that sets you apart and puts you at the cutting 

edge of AI.
• You can write systems that learn and improve over time.
• You have the solid basics that allow you to go further in AI.

Speaking of going further, the question is: how? How will you apply what 
you've learned? What will you do next? First of all, your next step is:

Practice, practice, and practice
There are many ways to practice your AI skills. You can enter AI competitions 
like the ones on Kaggle, which contain problems that can be solved with deep 
reinforcement learning. You could build some new AIs like the one we created 
for the self-driving car. For example, you could build an AI with Kivy that plays 
the game of pong. There's a great AI platform, called OpenAI Gym, where you 
can practice building AIs for many types of applications, including:

• An AI that plays Atari games (Breakout, Pacman, Space Invaders, and so on).
• An AI that plays car racing.
• An AI that plays the game Doom.
• Training a virtual robot on how to walk and run.

I really recommend that you check out the Open AI Gym website, with all these 
fantastic applications you can work and practice on.

Going further, what would be the next step for you to take in making an impact in 
this world? Do you remember the 10 application fields of AI that we identified and 
explained in the introduction? Just pick your favorite! Pick the one that resonates 
the most with you. Let's remind you what they were:

1. Energy
2. Healthcare
3. Transport and logistics
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4. Education
5. Security
6. Employment
7. Smart homes and robots
8. Entertainment and happiness
9. Environment
10. Economy and business

If you have an interest or passion in one of these fields, or even better some domain 
knowledge, you can combine that with your new AI skills to solve some problems 
in these industries. You can increase your impact by working with or in some tech 
companies, or by building your own one. There will always be massive demand 
for AI in each of these fields, which will always open many doors to you.

Speaking of open doors, that brings me to another next step I recommend to you.

Networking
Practicing is a necessity, but it's definitely not enough to make an impact with AI 
in this world. You also have to network. Whether it's working for a tech company, 
a company in another industry with an AI team, or for your own business, you 
should always network. This will open new doors, seed new opportunities, 
and increase your chances of success.

Networking today is easy. There are many AI events and conferences that you can 
visit, and the closest one will never be too far from your place. If you can't get to 
one, you can easily organize some AI meetups and after-work sessions yourself, 
where you discuss AI with other passionate people. You can also create groups using 
social media, where you can exchange ideas, brainstorm AI problems, and perhaps 
establish new connections through which you form synergy. Again, the more you 
network, the more you get all these benefits: connections, generated ideas, synergies, 
opportunities, opened doors, and AI journeys.

I want to finish this book by giving you my best advice for your professional life. 
The final recommendation I want to give you is the following.
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Never stop learning
AI is a fast-evolving world so you must keep up to date on the latest state-of-the-art 
features. This book doesn't cover the latest breakthroughs in AI, but has given you 
the right basics and intuition for you to approach the latest developments in AI with 
confidence.

The right basics are a necessity, but not enough for you to keep up over time. What 
you must do is never stop learning. The good news is that it's easy to keep learning 
today! There are many great MOOCs that cover the latest advanced models in AI, 
as well as articles, research papers, blogs, not to mention YouTube videos where 
you can find the entirety of whole AI theory explained from scratch up to the state-
of-the-art models. You have plenty of options to feed your brain with up-to-date AI 
knowledge. Just make sure you don't pick the worst reviewed content, and you'll be 
fine.

Let's recap. What are your next steps after this book?

1. Practice, practice, and practice.
2. Cross your AI skills with a field of application that resonates with you 

the most.
3. Network.
4. Never stop learning.
5. And, of course, keep up the hard work!

Yes, hard work will always be essential. Remember this. Success is only the tip of the 
iceberg, under which is hidden a tremendous amount of hard work. But don't worry; 
as soon as you feel passionate about your work and the purpose you follow, work 
will never be too hard. It will, in fact, feel effortless. That's why my recommendation 
number 2 here is very important: if you manage to pick a domain that resonates with 
your purpose, then you'll have found your way to make an impact with passion. 
If your passion is pure AI, even better! Then you can leverage it to solve problems 
and tackle challenges in several fields of applications, which gives you the amazing 
opportunity to have a diversified career.

On that note, I want to wish you a fantastic and very successful career. It was a 
great pleasure writing this book for you; my purpose is to democratize AI, and 
raise awareness among everyone that AI is an accessible technology that can make 
a difference for the better in this world. Thank you so much, and enjoy AI!
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