
WOW! eBook
www.wowebook.org

AI Crash Course

A fun and hands-on introduction to reinforcement
learning, deep learning, and artificial intelligence
with Python

Hadelin de Ponteves

BIRMINGHAM - MUMBAI

WOW! eBook
www.wowebook.org

AI Crash Course
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisition Editor: Jonathan Malysiak
Acquisition Editor – Peer Reviews: Suresh Jain
Content Development Editor: Alex Patterson
Project Editor: Kishor Rit
Technical Editor: Aniket Shetty
Proofreader: Safis Editing
Indexer: Rekha Nair
Presentation Designer: Sandip Tadge

First published: November 2019

Production reference: 1281119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-83864-535-9

www.packt.com

WOW! eBook
www.wowebook.org

http://www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks

and Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

WOW! eBook
www.wowebook.org

https://subscribe.packtpub.com/
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.packtpub.com/

Contributors

About the author
Hadelin de Ponteves is the co-founder and director of technology at BlueLife
AI, which leverages the power of cutting-edge Artificial Intelligence to empower
businesses to make massive profits by optimizing processes, maximizing efficiency,
and increasing profitability. Hadelin is also an online entrepreneur who has created
50+ top-rated educational e-courses on topics such as machine learning, deep
learning, artificial intelligence, and blockchain, which have reached over 700,000
subscribers in 204 countries.

First and foremost, I would like to thank Jan Warchocki for his
amazing contribution to the book. Jan is one of my top talented
students on Udemy, and I had the pleasure to work with him on
the creation of this book. He provided very smart feedback on
every chapter, added many brilliant examples to illustrate the theory
and practice for each of the AI models, and even brought his own
practical application in the last chapter, covering the most advanced
AI model of this book. Thanks to Jan, the book is richer in relevant
AI applications, and more complete in the theory. I give him my
highest thanks, and I have no doubt he will become a very talented
AI scientist with whom I will have the pleasure to collaborate again
on other projects.

Then I would like to thank my business partner and dear friend
Kirill Eremenko, who encouraged me to write this book. First, Kirill
gave me the inspiration to write a complete book on AI. But most
importantly, this book would never have been written without him.
Indeed, I was able to create this book thanks to the many years of
collaboration I had with Kirill producing our online courses.

WOW! eBook
www.wowebook.org

This book includes the top explanations and practical activities
of our courses, while seriously taking into account all of the most
recurrent feedback we collected from our students over the years.

I would also like to thank Alex Patterson, Jonathan Malysiak, and
David Barnes from the team at Packt. Alex did a tremendous job
improving the book, by reviewing and providing feedback on every
single paragraph, making sure everything is top quality from start
to finish. Jonathan was like a coach to me, helping me all the way
to make this book better and better. Sometimes some big challenges
had to be taken on during the creation of this book, and Jon was here
to encourage me every time to succeed in them. I am very grateful
to him for pushing me to write this book and achieve my highest
potential. David was the one to offer me this opportunity in the first
place. He came to me with a great idea, convincing me that it was
possible to convey the energy I have in my online courses into a
book. I accepted the challenge, and today I can say that he was right.
Thanks, David, for this brilliant idea.

And finally, I would like to thank the technical reviewers of this
book, who not only provided feedback on every chapter of the book,
but also made sure that all the code ran correctly. Thanks to them the
reader is better guided in the theory of the AI models, and also on
how to run all the different code in this book.

WOW! eBook
www.wowebook.org

About the reviewers
Valeriy Babushkin is the director of Data Science at X5 Retail Group, where
he leads a team of 80+ people in the area of natural language processing, machine
learning, computer vision, data analysis, and A/B testing. Valeriy is a Kaggle
competition grand master, ranking globally in the top 30, and also leads a data
science team at Yandex. He studied cybernetics in Moscow Polytechnical University
and mechatronics at Karlsruhe University of Applied Sciences and worked with
Packt as an author of the Python Machine Learning Tips, Tricks, and Techniques course.

Shrinivas Shetty is a budding data science and machine learning enthusiast. He
is a Master of Science graduate from Stevens Institute of Technology with a focus
in data engineering and business intelligence and analytics. He has been working
in the field of AI for a year, and he helps businesses solve problems and improve
efficiency using AI and machine learning techniques. He provides software services
using programming tools like Python and Scala to develop data science projects and
deploy them using data engineering principles. Apart from doing computer science
and using AI and machine learning to solve business use cases, he indulges his
long-time passion for e-sports (DOTA 2 and CS: GO anyone?).

I would like to thank my family (mom, dad, and younger brother)
for being a constant source of support and encouragement. I would
also like to thank my dear friends for inspiring me to push through
my limitations. It is a privilege to be in your company and a fortune
to have your support.

WOW! eBook
www.wowebook.org

[i]

Table of Contents
Preface vii
Chapter 1: Welcome to the Robot World 1

Beginning the AI journey 1
Four different AI models 2

The models in practice 3
Fundamentals 3
Thompson Sampling 3
Q-learning 3
Deep Q-learning 3
Deep convolutional Q-learning 4

Where can learning AI take you? 4
Energy 4
Healthcare 4
Transport and logistics 5
Education 5
Security 5
Employment 5
Smart homes and robots 5
Entertainment and happiness 6
Environment 6
Economy, business, and finance 6

Summary 7
Chapter 2: Discover Your AI Toolkit 9

The GitHub page 9
Colaboratory 11
Summary 15

WOW! eBook
www.wowebook.org

Table of Contents

[ii]

Chapter 3: Python Fundamentals –
Learn How to Code in Python 17

Displaying text 18
Exercise 18

Variables and operations 19
Exercise 20

Lists and arrays 20
Exercise 22

if statements and conditions 22
Exercise 23

for and while loops 24
Exercise 27

Functions 27
Exercise 28

Classes and objects 29
Exercise 31

Summary 31
Chapter 4: AI Foundation Techniques 33

What is Reinforcement Learning? 33
The five principles of Reinforcement Learning 34

Principle #1 – The input and output system 34
Principle #2 – The reward 35
Principle #3 – The AI environment 37
Principle #4 – The Markov decision process 37
Principle #5 – Training and inference 38

Training mode 38
Inference mode 39

Summary 40
Chapter 5: Your First AI Model – Beware the Bandits! 41

The multi-armed bandit problem 41
The Thompson Sampling model 42

Coding the model 43
Understanding the model 47
What is a distribution? 48
Tackling the MABP 52
The Thompson Sampling strategy in three steps 55
The final touch of shaping your Thompson Sampling intuition 56
Thompson Sampling against the standard model 57

Summary 58

WOW! eBook
www.wowebook.org

Table of Contents

[iii]

Chapter 6: AI for Sales and Advertising –
Sell like the Wolf of AI Street 59

Problem to solve 59
Building the environment inside a simulation 61

Running the simulation 64
Recap 66

AI solution and intuition refresher 66
AI solution 67
Intuition 68

Implementation 68
Thompson Sampling vs. Random Selection 69

Performance measure 69
Let's start coding 69
The final result 74

Summary 76
Chapter 7: Welcome to Q-Learning 77

The Maze 78
Beginnings 78
Building the environment 79

The states 79
The actions 80
The rewards 81

Building the AI 85
The Q-value 85
The temporal difference 86
The Bellman equation 87
Reinforcement intuition 88

The whole Q-learning process 88
Training mode 89
Inference mode 89

Summary 90
Chapter 8: AI for Logistics – Robots in a Warehouse 91

Building the environment 94
The states 94
The actions 95
The rewards 95
AI solution refresher 96

Initialization (first iteration) 96
Next iterations 96

Implementation 97
Part 1 – Building the environment 98
Part 2 – Building the AI Solution with Q-learning 101

WOW! eBook
www.wowebook.org

Table of Contents

[iv]

Part 3 – Going into production 103
Improvement 1 – Automating reward attribution 105
Improvement 2 – Adding an intermediate goal 108

Summary 111
Chapter 9: Going Pro with Artificial Brains – Deep Q-Learning 113

Predicting house prices 114
Uploading the dataset 114
Importing libraries 116
Excluding variables 117
Data preparation 119

Scaling data 119
Building the neural network 122
Training the neural network 123
Displaying results 123

Deep learning theory 125
The neuron 125

Biological neurons 125
Artificial neurons 127

The activation function 128
The threshold activation function 129
The sigmoid activation function 130
The rectifier activation function 131

How do neural networks work? 133
How do neural networks learn? 135
Forward-propagation and back-propagation 136
Gradient Descent 137

Batch gradient descent 140
Stochastic gradient descent 143
Mini-batch gradient descent 145

Deep Q-learning 145
The Softmax method 147
Deep Q-learning recap 149
Experience replay 149
The whole deep Q-learning algorithm 150

Summary 151
Chapter 10: AI for Autonomous Vehicles –
Build a Self-Driving Car 153

Building the environment 153
Defining the goal 156
Setting the parameters 160
The input states 163

WOW! eBook
www.wowebook.org

Table of Contents

[v]

The output actions 165
The rewards 166

AI solution refresher 168
Implementation 169

Step 1 – Importing the libraries 170
Step 2 – Creating the architecture of the neural network 171
Step 3 – Implementing experience replay 175
Step 4 – Implementing deep Q-learning 177

The demo 188
Installing Anaconda 189
Creating a virtual environment with Python 3.6 190
Installing PyTorch 192
Installing Kivy 194

Summary 205
Chapter 11: AI for Business –
Minimize Costs with Deep Q-Learning 207

Problem to solve 207
Building the environment 208

Parameters and variables of the server environment 208
Assumptions of the server environment 209

Assumption 1 – We can approximate the server temperature 209
Assumption 2 – We can approximate the energy costs 210

Simulation 211
Overall functioning 212
Defining the states 214
Defining the actions 214
Defining the rewards 215
Final simulation example 216

AI solution 220
The brain 221
Implementation 223
Step 1 – Building the environment 224
Step 2 – Building the brain 232

Without dropout 233
With dropout 237

Step 3 – Implementing the deep reinforcement learning algorithm 238
Step 4: Training the AI 245

No early stopping 246
Early stopping 254

Step 5 – Testing the AI 256
The demo 258

WOW! eBook
www.wowebook.org

Table of Contents

[vi]

Recap – The general AI framework/Blueprint 268
Summary 270

Chapter 12: Deep Convolutional Q-Learning 271
What are CNNs used for? 271
How do CNNs work? 273

Step 1 – Convolution 275
Step 2 – Max pooling 277
Step 3 – Flattening 280
Step 4 – Full connection 282

Deep convolutional Q-learning 284
Summary 285

Chapter 13: AI for Games – Become the Master at Snake 287
Problem to solve 288
Building the environment 288

Defining the states 289
Defining the actions 290
Defining the rewards 292

AI solution 293
The brain 293
The experience replay memory 295

Implementation 295
Step 1 – Building the environment 296
Step 2 – Building the brain 303
Step 3 – Building the experience replay memory 307
Step 4 – Training the AI 309
Step 5 – Testing the AI 315

The demo 317
Installation 317
The results 323

Summary 325
Chapter 14: Recap and Conclusion 327

Recap – The general AI framework/blueprint 327
Exploring what's next for you in AI 329

Practice, practice, and practice 329
Networking 330
Never stop learning 331

Other Books You May Enjoy 333
Index 337

WOW! eBook
www.wowebook.org

[vii]

Preface
Hello, data scientists and AI enthusiasts. For many years I've created online courses
on Artificial Intelligence (AI), which have been very successful and contributed well
to the AI community. However, something essential was missing. At one point,
so many AI courses were made that most of my students asked me for guidance
on how to take the courses. So instead of providing an order in which to take the
courses, I decided to create an all-in-one full guide to AI as a book, which would
include in a perfect structure all the best explanations and real-world practical
activities from my courses.

You see, my goal is to democratize AI and raise awareness among everyone of the
fact that AI is an accessible technology that can make a difference for the better in
this world. I am trying my best to spread knowledge around the world to get people
prepared for the future jobs and opportunities of this 21st century. And I thought
some people would learn AI much more efficiently from an all-in-one book they
can take anywhere, rather than completing tens of online courses that can be hard
to navigate. That being said, this book is also a great additional resource for those
people who do prefer, and take, online courses.

My simple hope for this book is that more people learn AI the right way, as a result
of me offering them this efficient alternative to online courses. I've succeeded at the
challenge of including the best of my training in a single book, and today I'm truly
happy to release it. I sincerely hope it will help more people land their dream job,
grow an amazing career in data science or AI, and bring beautiful solutions to the
tough challenges of this 21st century.

WOW! eBook
www.wowebook.org

Preface

[viii]

Who this book is for
Anyone interested in machine learning, deep learning, or AI.

People who aren't that comfortable with coding, but who are interested in AI
and want to apply it easily to real-world problems.

College or university students who want to start a career in data science or AI.

Data analysts who want to level up in AI.

Anyone who isn't satisfied with their job and wants to take the first steps toward a
career in data science.

Business owners who want to add value to their business by using powerful AI tools.

Entrepreneurs who are eager to learn how to leverage AI to optimize their business,
maximize profitability, and increase efficiency.

AI practitioners who want to know what projects they can offer to their employees.

Aspiring data scientists, looking for business cases to add to their portfolio.

Technology enthusiasts interested in leveraging machine learning and AI to solve
business problems.

Consultants who want to transition companies into being AI-driven businesses.

Students with at least high school knowledge in math, who want to start learning AI.

What this book covers
Chapter 1, Welcome to the Robot World, introduces you to the world of Artificial
Intelligence.

Chapter 2, Discover Your AI Toolkit, uncovers an easy-to-use toolkit of all the AI
models as Python files, ready to run thanks to the amazing Google Colaboratory
platform.

Chapter 3, Python Fundamentals – Learn How to Code in Python, provides the right
Python fundamentals and teaches you how to code in Python.

Chapter 4, AI Foundation Techniques, introduces you to reinforcement learning and its
five fundamental principles.

WOW! eBook
www.wowebook.org

Preface

[ix]

Chapter 5, Your First AI Model – Beware the Bandits!, teaches the theory of the multi-
armed bandit problem and how to solve it in the best way with the Thompson
Sampling AI model.

Chapter 6, AI for Sales and Advertising – Sell like the Wolf of AI Street, applies the
Thompson Sampling AI model of Chapter 5 to solve a real-world business problem
related to sales and advertising.

Chapter 7, Welcome to Q-Learning, introduces the theory of the Q-learning AI model.

Chapter 8, AI for Logistics – Robots in a Warehouse, applies the Q-learning AI model of
Chapter 7 to solve a real-world business problem related to logistics optimization.

Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning, introduces the
fundamentals of deep learning and the theory of the deep Q-learning AI model.

Chapter 10, AI for Autonomous Vehicles – Build a Self-Driving Car, applies the deep
Q-learning AI model of Chapter 9 to build a virtual self-driving car.

Chapter 11, AI for Business – Minimize Cost with Deep Q-Learning, applies the deep
Q-learning AI model of Chapter 9 to solve a real-world business problem related
to cost optimization.

Chapter 12, Deep Convolutional Q-Learning, introduces the fundamentals of
convolutional neural networks and the theory of the deep convolutional Q-learning
AI model.

Chapter 13, AI for Games – Become the Master at Snake, applies the deep convolutional
Q-learning AI model of Chapter 12 to beat the famous Snake video game

Chapter 14, Recap and Conclusion, concludes the book with a recap of how to create
an AI framework and some final words from the author about your future in the
world of AI.

To get the most out of this book
• You don't need to know much before we begin; the book contains refreshers

on all the prerequisites needed to understand the AI models. There's also
a full chapter on Python fundamentals to help you learn, if you need to,
how to code in Python.

• There are no required prior installations, since all the practical instructions
are provided from scratch in the book. You only need to have your computer
ready and switched on.

WOW! eBook
www.wowebook.org

Preface

[x]

• I recommend you have Google open while reading the book, so that you can
visit the links provided in the book as resources, and to check out the math
concepts behind the AI models of this book in more detail.

Download the example code files
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/AI-Crash-Course. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838645359_ColorImages.pdf.

WOW! eBook
www.wowebook.org

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/AI-Crash-Course
https://github.com/PacktPublishing/AI-Crash-Course
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838645359_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838645359_ColorImages.pdf

Preface

[xi]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "To get these numbers you can add together the lists
nPosReward and nNegReward."

A block of code is set as follows:

Creating the dataset
X = np.zeros((N, d))
for i in range(N):
 for j in range(d):
 if np.random.rand() < conversionRates[j]:
 X[i][j] = 1

When we wish to draw your attention to a particular line in a code block, we have
included the line numbers so that we can refer to them with precision:

80 self.last_state = new_state

81 self.last_action = new_action

82 self.last_reward = new_reward

83 return new_action

Any command-line input or output is written as follows:

conda install -c conda-forge keras

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

WOW! eBook
www.wowebook.org

Preface

[xii]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

WOW! eBook
www.wowebook.org

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

[1]

Welcome to the Robot World
"We are truly living in the most exciting time to be alive!" These words, by the great
tech entrepreneur Peter Diamandis, are even more true for people working in the
artificial intelligence (AI) ecosystem. There is a reason why AI jobs are considered
the sexiest jobs of the 21st century: besides being very well paid, AI is a fantastic
topic to work on.

AI is taking a more and more important place in the world, and today we can
find applications of it in almost all industries. This is not a temporary trend;
AI is here to stay. As the top AI leader and influencer Andrew Ng said, AI is the
new electricity. Just like the industrial revolution transformed lives and jobs in the
19th century, AI is about to do the same in this 21st century. Hence, the more you
understand and know how to use it, the more opportunities will open up to you.

To give you some important figures, according to a study done by
PricewaterhouseCoopers (PwC), AI could contribute up to $15.7 trillion to the
global economy by 2030, which is more than the current output of China and India
combined. So, you've definitely made a great choice to study this field. Welcome
to the incredible world of Artificial Intelligence!

In this chapter, you will begin your AI journey with a top-level view of everything
you'll learn from this book as you read and work through the chapters ahead with
me. Then, I'll help you understand where learning AI can take you, by going through
a variety of top industry applications for Artificial Intelligence.

Beginning the AI journey
Being a young AI scientist, I remember my first days in AI very well. This is
important because this book is a crash course in AI. You don't need any prior
knowledge of the field to work through the chapters.

WOW! eBook
www.wowebook.org

Welcome to the Robot World

[2]

In this book, I will explain the solid foundations of AI, while making sure to answer
all the questions that I had back when I started in this field in detail. This means that
everything will be explained step by step, and your learning process will follow a
smooth path, supported by the relevant logic.

Having the right information at your fingertips is not enough to successfully break into
the AI world. What you also need is energy, enthusiasm, and excitement. Even better,
you need passion, and ideally obsession, about the subject. As an experienced tutor of
online courses, I hope to pass on my knowledge and, most importantly, my passion.

In this book, you will go on a journey together with me, taking a path through
a world of exciting AI applications, including many real-world case studies in
the chapters. The applications will follow an increasing level of difficulty, from
the simplest model in AI, to a much more advanced level.

For each of the AI applications, I will focus mostly on the intuition needed to
understand them, and then, for those interested in the mathematics and pure theory
behind the application, I will provide those as an option. The reason why I choose to
focus on intuition rather than math is not only because I want to make this book easy
to understand for everyone, but also because, in order to perform well in AI today, it
is extremely important to have the right intuition. When you're solving a problem with
AI, you have to figure out which model best fits your problem environment, and you
can only do that when you have the proper intuition of how each AI model works.

Four different AI models
These AI models were chosen to be part of this book because they are used in a great
variety of industry applications and can solve many different real-world problems.
I'll just reveal their names here before we study them in depth across the book. The
four AI models you will learn everything about in this book are the following:

1. Thompson Sampling
2. Q-learning
3. Deep Q-learning
4. Deep convolutional Q-learning

For each of these four models, we will follow the same three-step approach:

1. Get an intuitive understanding of how it works.
2. Get all the math behind the theory.
3. Implement the model from scratch in Python.

WOW! eBook
www.wowebook.org

Chapter 1

[3]

I have followed this structure many times with my students, and I can tell you
that it works the best. The idea is simple: because you start with your intuition,
you won't get overwhelmed by the math, but will instead understand it more
easily. You'll also feel comfortable coding some models of which you both have
an intuitive understanding and in-depth theoretical knowledge.

The models in practice
All the way through this book you'll find practical examples to learn from or
implement yourself. Here's a list of the AI implementations you'll find in the
chapters of this course, which start in Chapter 3 after you get the tools you need
for your AI journey in Chapter 2.

Fundamentals
Chapter 3, Python Fundamentals – Learn How to Code in Python, contains the Python
coding fundamentals you'll need for this book. You can remind yourself, or learn
from scratch, how to code in Python.

Chapter 4, AI Foundation Techniques, contains a pseudocode example to illustrate
the five core principles of Artificial Intelligence.

Thompson Sampling
Chapter 5, Your First AI Model – Beware the Bandits!, contains introductory
code to illustrate the theory behind the Thompson Sampling AI model.

Chapter 6, AI for Sales and Advertising – Sell like the Wolf of AI Street, contains
a real-world implementation of the Thompson Sampling model, applied to
online advertising.

Q-learning
Chapter 7, Welcome to Q-Learning, contains pseudocode to illustrate the theory of the
Q-learning AI model.

Chapter 8, AI for Logistics – Robots in a Warehouse, contains a real-world
implementation of the Q-learning model, applied to process automation and
optimization.

Deep Q-learning
Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning, contains introductory
code to illustrate the theory behind Artificial Neural Networks.

WOW! eBook
www.wowebook.org

Welcome to the Robot World

[4]

Chapter 10, AI for Autonomous Vehicles – Build a Self-Driving Car, contains a real-world
implementation of the deep Q-learning model, applied to self-driving cars.

Chapter 11, AI for Business – Minimize Costs with Deep Q-Learning, contains another
real-world implementation of the deep Q-learning model, applied to energy and
business.

Deep convolutional Q-learning
Chapter 12, Deep Convolution Q-Learning, contains introductory code to illustrate the
implementation of a Convolutional Neural Network (CNN).

Chapter 13, AI for Video Games – Become the Master at Snake, contains a real-world
implementation of the deep convolutional Q-learning model applied to a game.

As you can see, every time you're introduced to a new model, you learn the intuition
first, then the math, and then you move to an implementation of the model. So, why
is learning how to implement these models worth your while?

Where can learning AI take you?
I'd like to motivate you by showing you that you made the right choice to learn
AI. To do this, I'll take you on a tour of all the incredible applications AI can and will
have in the 21st century. I have a vision of how AI can transform the world, and this
vision is structured around 10 areas.

Energy
In 2016, Google used AI to reduce energy consumption in its data centers by more
than 30%. If Google has done it for data centers, it could be done for an entire
city. By building a smart AI platform using Internet of Things (IoT) technology,
the consumption and distribution of energy can be optimized on a large scale.

Healthcare
AI has enormous promise for healthcare. It can already diagnose diseases, make
prescriptions, and design new drug formulas. Combining all these skills into a smart
healthcare platform will allow people to benefit from truly personalized medical
care. This would be amazing for society. The challenges in achieving this are not
only present in the technology, but also in getting access to anonymous patient
data, which so far is protected by regulations.

WOW! eBook
www.wowebook.org

Chapter 1

[5]

Transport and logistics
Self-driving vehicles are becoming a reality. There is still a lot to achieve, but the
technology is constantly improving. By building smart digital infrastructures, AI
will help reduce the number of accidents and considerably reduce traffic. Also, self-
driving delivery trucks and drones will speed up logistic processes, therefore boosting
the economy; mostly through one of its bigger engines, the e-commerce industry.

Education
Today, we live in the era of Massive Open Online Courses. Anyone can learn
anything online. This is great because the whole world can get access to an
education; but it's definitely not enough. A significant improvement would be the
personalization of education; everyone learns differently, and at different paces.
Some, namely extroverts, will prefer the classroom, while others, introverts, will
learn better at home. Some are more visual, while others are more auditory. Taking
these and other factors into account, AI is a powerful technology that could deliver
personalized training, optimizing everyone's learning curve.

Security
Computer vision has made tremendous technological progress. AI can now detect
faces with a high level of accuracy. Not only that, the number of security cameras is
increasing significantly. All this could be integrated into a global security platform
to reduce crime, increase public safety, and disincentivize people from breaking the
law. Besides this, AI and Machine Learning are powerful technologies already used
in fraud detection and prevention.

Employment
AI can build powerful recommender systems. We already see platforms of digital
recruitment, where AI matches the best candidates to jobs. This not only has a
positive impact on the economy, but also on people's happiness, since work makes
up more than half of a person's life.

Smart homes and robots
Smart homes, IoT, and connected objects are developing massively. Robots will assist
people in their homes, allowing humans to focus on more important activities like
their work or spending quality time with their family. They will also help elderly
people to live in their home independently, or even allow them to stay active at
work, for much longer.

WOW! eBook
www.wowebook.org

Welcome to the Robot World

[6]

Entertainment and happiness
One downside of technology today is that despite the fact people are so virtually
connected, they feel more and more lonely. Loneliness is something we must fight
against in this century, as it is very unhealthy for people. AI has a great role to play
in this fight, since it is again a powerful recommender system, which can not only
recommend relevant movies and songs to users, but also connect people through
recommended activities based on their past experiences and common interests.

Through a global smart platform of entertainment, AI technology could help like-
minded people to socialize and meet physically instead of virtually.

Another idea to fight loneliness is companion robots, which will be entering
homes more and more over the next decade. One branch of AI in the Research
and Development phase is emotion creation. This is the branch of AI that will
allow robots to show emotions and empathy, and therefore interact more
successfully with humans.

Environment
Using computer vision, machines could optimize waste sorting and redistribute the
cycles of trash more efficiently. Combining pure AI models with IoT can optimize
power and water consumption by individuals. Programs already exist on some
platforms that allow people to track their consumption in real time, therefore
collecting data. Integrating AI could minimize this consumption, or optimize the
distribution cycles for beneficial reuse. Combined with traffic reduction and the
development of autonomous vehicles, this will considerably reduce pollution,
which will create a healthier environment.

Economy, business, and finance
AI is taking the business world by storm. Earlier, I mentioned the study done
by PwC showing how AI could contribute up to $15 trillion to the global
economy in 2030 (https://www.pwc.com/gx/en/issues/data-and-analytics/
publications/artificial-intelligence-study.html). But how can AI
generate so much income? AI can bring significant added value to businesses
in three different ways: process automation, profit optimization, and innovation.
In my vision of an AI-driven economy, I see the majority of companies adopting
at least one AI technology, or having an AI department. In finance, we can already
see some jobs being replaced by robots. For example, the number of financial traders
was significantly reduced after the development of trading robots that perform well
on high-frequency trades.

WOW! eBook
www.wowebook.org

https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html?utm_source=ONTRAPORT-email-broadcast&utm_medium=ONTRAPORT-email-broadcast&utm_term=&utm_content=State+of+AI+%E2%80%93+In+Business&utm_campaign=28022019
https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html?utm_source=ONTRAPORT-email-broadcast&utm_medium=ONTRAPORT-email-broadcast&utm_term=&utm_content=State+of+AI+%E2%80%93+In+Business&utm_campaign=28022019
https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html?utm_source=ONTRAPORT-email-broadcast&utm_medium=ONTRAPORT-email-broadcast&utm_term=&utm_content=State+of+AI+%E2%80%93+In+Business&utm_campaign=28022019

Chapter 1

[7]

As you can see, the robot world has a lot of great directions for you to take. AI
is already in a dynamic place and it's picking up strong momentum as it moves
forward. My professional purpose is to democratize AI and incentivize people
to make a positive impact in this world thanks to AI—who knows, perhaps your
purpose will be to work with AI for the good of humanity. I'm sure that at least
one of these 10 applications resonates in you; if that's the case, work hard to become
an AI master and you will have the chance to make a difference.

If you are ready to break into AI, or simply want to increase your knowledge,
let's begin!

Summary
In this chapter, you began your AI journey and saw the vast land of opportunities
that will open to you. Perhaps you can already think of which industry application
might resonate the most in you, so you can become even more passionate about what
you do with AI and understand why you're doing it. In the next chapter, you will
uncover the AI toolkit you will use in this book.

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

[9]

Discover Your AI Toolkit
In the previous chapter, you began your AI journey. Before you continue it, you need
your AI toolkit. This book is not just theory; it also contains an easy-to-use toolkit
of all the AI models as Python files, ready to run thanks to the amazing Google
Colaboratory platform that you will also be introduced to in this chapter.

To fill your AI toolkit, I've prepared a GitHub page containing all the AI
implementations for you to download, and Google Colab links of the Python
notebooks containing the implementations, all ready to execute via an easy plug
and play process.

The GitHub page
You will find all the code for this book ready for you to download from the following
GitHub page:

https://github.com/PacktPublishing/AI-Crash-Course

WOW! eBook
www.wowebook.org

https://github.com/PacktPublishing/AI-Crash-Course

Discover Your AI Toolkit

[10]

To download the code, you simply need to click the Clone or download button,
and then Download Zip:

Figure 1: The GitHub repository

Then, once you've downloaded these codes, feel free to open them with your favorite
Python Integrated Development Environment (IDE), whether it's Jupyter Notebook,
Spyder, a simple text editor, or even your terminal.

WOW! eBook
www.wowebook.org

Chapter 2

[11]

If you've never coded with Python before and have no idea of how to open the files
with a Python editor, then no problem; I've prepared the best and simplest solution
for you: Colaboratory (or Google Colab).

Colaboratory
Colaboratory is a free and open source environment for Python development that
requires no setup and runs entirely on the cloud. It contains all the pre-installed
packages required for your AI implementations so that they are ready to run with
a simple plug and play process. By plug, I just mean to copy and paste the code
inside a new Colab file (I'll explain how to open one next), and by play, I just mean
to click on the play button (an example of that follows).

Here is the link to the main page of Colaboratory:

https://colab.research.google.com/notebooks/welcome.ipynb

You should get a page like this:

Figure 2: Colaboratory – main page

WOW! eBook
www.wowebook.org

https://colab.research.google.com/notebooks/welcome.ipynb

Discover Your AI Toolkit

[12]

Click File in the upper left, and then click New Python 3 notebook:

Figure 3: Colaboratory – opening a notebook

Then you will get this view. Paste your Python code inside the cell (red arrow).
That's the "plug" part:

Figure 4: Colaboratory – the "plug" part

I recommend using separate Colaboratory notebooks for each model in this book.

Now let's see the "play" part. Open the Thompson Sampling model in the Chapter
06 folder, implemented inside the thompson_sampling.py file:

WOW! eBook
www.wowebook.org

Chapter 2

[13]

Figure 5: GitHub – opening Thompson Sampling

Copy the whole code from inside the Python file; don't worry about understanding
the code (or the results) for now. It will all be explained, step by step, in Chapter 6,
AI for Sales and Advertising – Sell like the Wolf of AI Street:

Figure 6: GitHub – copying Thompson Sampling

WOW! eBook
www.wowebook.org

Discover Your AI Toolkit

[14]

Next, paste it into Colaboratory (in the cell highlighted by the arrow in Figure 4).
Then we get this:

Figure 7: Pasting Thompson Sampling

And now we are ready for the "play" part! Just click the "play" button below:

Figure 8: The "play" part

WOW! eBook
www.wowebook.org

Chapter 2

[15]

And the code will execute. Don't pay attention to the result now, as this will all
be explained in Chapter 6, AI for Sales and Advertising – Sell like the Wolf of AI Street.

You are all set! You now have an AI toolkit that will enable you to follow along
with every example in the book.

Before you begin your AI journey in earnest, you must make sure that you have
the right basic coding knowledge. This is truly important before becoming a master
at AI. If you have little or no experience with Python, make sure that you learn
Python in Chapter 3, Python Fundamentals – Learn How to Code in Python, as a last
preparation phase before you begin exploring the robot world.

Summary
In this chapter, you packed your luggage with our AI toolkit, which included
not only the many AI models of this book, but also the very user-friendly Google
Colaboratory environment. You saw how easy it was to plug and play our models
from GitHub to Colaboratory. Now you just need coding skills to make you ready
to begin the real journey. In the next chapter, you will have a chance to learn—
or brush up on—your Python fundamentals.

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

[17]

Python Fundamentals –
Learn How to Code in Python

This chapter is for people who have little or no experience with the Python
programming language. If you already know how to use for/while loops,
methods, and classes in Python, you can skip this chapter and you shouldn't have
any problems later on.

If, however, you have not used Python before, or have only barely used it, I strongly
recommend that you follow this guide. You'll learn how to code the elements of
Python I mentioned in the previous paragraph, you'll fully understand the codes
included in this book and you'll be able to code in Python on your own. I'll also give
you some additional exercises, called "homework" throughout the chapter, which
I strongly recommend that you do.

Before you begin, open your Python editor. I recommend using the Google Colab
notebook, introduced to you as part of your AI Toolkit in the previous chapter. All
the code, along with homework solutions, are provided on the GitHub page of this
book in Chapter 3 in their corresponding section folders. Inside them, you will
find two Python files: one (named the same as the section) is the code used in this
book, while the homework.py file is the solution to the exercise. Instructions for each
homework exercise will be provided at the end of each section.

In this chapter, we'll cover the following topics:

• Displaying text
• Variables and operations
• Lists and arrays
• if statements and conditions
• for and while loops

WOW! eBook
www.wowebook.org

Python Fundamentals – Learn How to Code in Python

[18]

• Functions
• Classes and objects

Especially if you're starting from scratch, cover each section in the order they're
presented here, and remember to try your hand at the homework. Let's get started!

Displaying text
We'll begin with the most popular way of introducing any programming language;
you'll learn how to display some text in the Python console. The console is a tool
that's part of every Python editor, which shows the information we want or displays
any errors that occurred (let's hope not to get any!).

The easiest way to show something in our console is to use the print() method, just
like this:

Displaying text
print('Hello world!')

The text above print, starting with #, is called a comment. Comments are excluded
when executing code and are only visible to you.

After running this short code in Google Colab, you'll see this displayed:

Hello world!

In conclusion, just put what you want to display into the brackets of the print
method – text surrounded by quotes, as in this example, or variables.

If you're curious about what variables are, that's great – you'll learn about them after
this exercise.

Exercise
Using only one print() method, try to display two or more lines.

Hint: Try using the \n symbol.

The solution is provided in the Chapter 03/Displaying Text/homework.py file on
the GitHub page.

WOW! eBook
www.wowebook.org

Chapter 3

[19]

Variables and operations
Variables are simply values that are allocated somewhere in the memory of our
computer. They are similar to variables in mathematics. They can be anything: text,
integers, or floats (a number with precision after the decimal point, such as 2.33).

To create a new variable, you only need to write this:

x = 2

In this case, we have named a variable x and set its value to 2.

As in mathematics, you can perform some operations on these variables. The most
common operations are addition, subtraction, multiplication, and division. The way
to write them in Python is like this:

x = x + 5 #x += 5

x = x - 3 #x -= 3

x = x * 2.5 #x *= 2.5

x = x / 3 #x /= 3

If you look at it for the first time, it doesn't make much sense—how can we write that
x = x + 5?

In Python, and in most code, the "=" notation doesn't mean the two terms are equal.
It means that we associate the new x value with the value of the old x, plus 5. It is
crucial to understand that this is not an equation, but rather the creation of a new
variable with the same name as the previous one.

You can also write these operations as shown on the right side, in the comments.
You'll usually see them written in this way, since it's more space efficient.

You can also perform these operations on other variables, for example:

y = 3
x += y
print(x)

Here, we created a new variable y and set it to 3. Then, we added it to our existing x.
Also, x will be displayed when you run this code.

WOW! eBook
www.wowebook.org

Python Fundamentals – Learn How to Code in Python

[20]

So, what does x turn out to be after all these operations? If you run the code, you'll
get this:

6.333333333333334

If you calculate these operations by hand, you will see that x does indeed equal 6.33.

Exercise
Try to find a way to raise one number to the power of another.

Hint: Try using the pow() built-in function for Python.

The solution is provided in the Chapter 03/Variables/homework.py file on the
GitHub page.

Lists and arrays
Lists and arrays can be represented with a table. Imagine a one-dimensional (1D)
vector or a matrix, and you have just imagined a list/array.

Lists and arrays can contain data in them. Data can be anything – variables, other
lists or arrays (these are called multi-dimensional lists/arrays), or objects of some
classes (we will learn about them later).

For example, this is a 1D list/array containing integers:

WOW! eBook
www.wowebook.org

Chapter 3

[21]

And this is an example of a two-dimensional (2D) list/array, also containing
integers:

In order to create a 2D list, you have to create a list of lists. Creating a list is very
simple, just like this:

L1 = list()
L2 = []

L3 = [3,4,1,6,7,5]
L4 = [[2, 9, -5], [-1, 0, 4], [3, 1, 2]]

Here we create four lists: L1, L2, L3 and L4. The first two lists are empty – they have
zero elements. The two subsequent lists have some predefined values in them. L3
is a one-dimensional list, same as the one in the first image. L4 is a two-dimensional
list, the same as in the second image. As you can see, L4 actually consists of three
smaller 1D lists.

Whenever I mention an array, I usually mean a "NumPy" array. NumPy is a Python
library (a library is a collection of pre-coded programs that allows you to perform
many actions without writing your code from scratch), widely used for list/array
operations. You can think of a NumPy array as a special kind of list, with lots of
additional functions.

To create a NumPy array, you have to specify a size and use an initialization method.
Here's an example:

import numpy as np
nparray = np.zeros((5,5))

In the first line, we import the NumPy library (as you can see, to import a library,
you need to write import) and by using as, we give NumPy the abbreviation np
to make it easier to use. Then, we create a new array that we call nparray, which
is a 2D array of size 5 x 5, full of zeros. The initialization method is the part after the
"."; in this case, we initialize this array as full of zeros, by using the function zeros.

WOW! eBook
www.wowebook.org

Python Fundamentals – Learn How to Code in Python

[22]

In order to get access to the values in a list or array, you need to give the index of
this value. For example, if you wanted to change the first element in the L3 list, you
would have to get its index. In Python, indexes start at 0, so you would need to write
L3[0]. In fact, you can write print(L3[0])and execute it, and you will see that,
as you might hope, the number 3 will be displayed.

Accessing a single value in a multi-dimensional list/array requires you to input
as many indexes as there are dimensions. For example, to get 0 from our L4 list,
we would have to write L4[1][1]. L4[1] would return the entire second row,
which is a list.

Exercise
Try to find the mean of all the numbers in the L4 list. There are multiple solutions.

Hint: The simplest solution makes use of the NumPy library. Check out some
of its functions here: https://docs.scipy.org/doc/numpy/reference/

The solution is provided in the Chapter 03/Lists and Arrays/homework.py
file on the GitHub page.

if statements and conditions
Now I would like to introduce you to a very useful tool in programming –
if conditions!

They are widely used to check whether a statement is true or not. If the given
statement is true, then some instructions for our code are followed.

I'll present this subject to you with some simple code that will tell us whether
a number is positive, negative, or equal to 0. The code's very short, so I'll show
you all of it at once:

a = 5
if a > 0:
 print('a is greater than 0')
elif a == 0:
 print('a is equal to 0')
else:
 print('a is lower than 0')

In the first line, we introduce a new variable called a and we give it a value of 5.
This is the variable whose value we are going to check.

WOW! eBook
www.wowebook.org

https://docs.scipy.org/doc/numpy/reference/

Chapter 3

[23]

In the next line we check if this variable is greater than 0. We do this by using an
if condition. If a is greater than 0, then we follow the instructions written in the
indented block; in this case, it is only displaying the message a is greater than 0.

Then, if the first condition fails, that is, if a is lower than or equal to 0, we go to the
next condition, which is introduced with elif (which is short for else if). This
statement will check whether a is equal to zero or not. If it is, we follow the indented
instruction, which will display a message displaying: a is equal to 0.

The final condition is introduced via else. Instructions included in an else
condition will always be followed when all other conditions fail. In this case, failing
both conditions would mean that a < 0, and therefore we would display a is lower
than 0.

It's easy to predict what our code will return. It will be the first instruction,
print('a is greater than 0'). And, in fact, once you run this code, this is what
you will get:

a is greater than 0

In brief, if is used to introduce statement checking and the first condition, elif is
used to check as many further conditions as we want, and else is a true statement
when all other statements fail.

It's also important to know that once one condition is true, no other conditions are
checked. So, in this case, once we enter the first condition and we see that it is true,
we no longer check other statements. If you would like to check other conditions,
you would need to replace the elif and else statements with new if statements.
A new if always checks a new condition; therefore, a condition included in an if is
always checked.

Exercise
Build a condition that will check if a number is divisible by 3 or not.

Hint: You can use a mathematical expression called modulo, which when used,
returns the remainder from the division between two numbers. In Python, modulo
is represented by %. For example:

5 % 3 = 2

71 % 5 = 1

The solution is provided in the Chapter 03/If Statements/homework.py file on
the GitHub page.

WOW! eBook
www.wowebook.org

Python Fundamentals – Learn How to Code in Python

[24]

for and while loops
You can think of a loop as continuously repeating the same instructions over and
over until some condition is satisfied that breaks this loop. For example, the previous
code was not a loop; since it was only executed once, we only checked a once.

There are two types of loops in Python:

• for loops
• while loops

for loops have a specific number of iterations. You can think of an iteration as
a single execution of the specific instructions included in the for loop. The number
of iterations tells the program how many times the instruction inside the loop should
be performed.

So, how do you create a for loop? Simply, just like this:

for i in range(1, 20):
 print(i)

We initialize this loop by writing for to specify the type of loop. Then we create
a variable i, that will be associated with integer values from range (1,20). This
means that when we enter this loop for the first time, i will be equal to 1, the second
time it will be equal to 2, and so on, all the way to 19. Why 19? That's because in
Python, upper bounds are excluded, so at the final iteration i will be equal to 19.
As for our instruction, in this case it's just showing the current i in our console
by using the print() method. It's also important to understand that the main
code does not progress until the for loop is finished.

This is what we get once we execute our code:

1

2

3

4

5

6

7

8

9

10

11

WOW! eBook
www.wowebook.org

Chapter 3

[25]

12

13

14

15

16

17

18

19

You can see that our code displayed every integer higher than 0 and lower than 20.

You can also use a for loop to iterate through elements of a list, in the following
way:

L3 = [3,4,1,6,7,5]
for element in L3:
 print(element)

Here we come back to our L3 1D list. This code iterates through every element in the
L3 list and displays it. If you run it, you will see all the elements of this array from 3
to 5.

while loops, on the other hand, need a condition to stop. They go on as long as
the given condition is satisfied. Take this while loop, for example:

stop = False
i = 0
while stop == False: # alternatively it can be "while not stop:"
 i += 1
 print(i)
 if i >= 19:
 stop = True

Here, we create a new variable called stop. This type of variable is called a bool,
since it can be assigned only two values – True or False. Then, we create a variable
called i that we'll use to count how many times our while loop is executed. Next, we
create a while loop that will go on as long as the variable stop is False; only once
stop is changed to True will the loop stop.

In the loop, we increase i by 1, display it, and check if it is greater or equal to 19. If it
is greater or equal to 19, we change stop to True; and as soon as we change stop to
True, the loop will break!

WOW! eBook
www.wowebook.org

Python Fundamentals – Learn How to Code in Python

[26]

After executing this code, you will see the exact same output as in the for loop
example, that is:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

It's also very important to know that you can stack for and while loops inside
each other. For example, to display all the elements from the 2D list L4 we created
previously, one after another, you would have to make one for loop that iterates
through every row, and then another for loop (inside the previous one) that iterates
through every value in this row. Something like this:

L4 = [[2, 9, -5], [-1, 0, 4], [3, 1, 2]]
for row in L4:
 for element in row:
 print(element)

And running this yields the following output:

2

9

-5

-1

WOW! eBook
www.wowebook.org

Chapter 3

[27]

0

4

3

1

2

This matches the L4 list.

In conclusion, for and while loops let us perform repetitive tasks with ease. for
loops always work on a predefined range; you know exactly when they will stop.
while loops work on an undefined range; just by looking at their stop condition,
you may not be able to judge how many iterations will happen. while loops work
as long as their particular condition is satisfied.

Exercise
Build both for and while loops that can calculate the factorial of a positive integer
variable.

Hint: Factorial is a mathematical function that returns the product of all positive
integers lower or equal to the argument of this function. This is the equation:

f(n) = n * (n – 1) * (n – 2) *...* 1

Where:

• f(n) – the factorial function
• n – the integer in question, the factorial of which we are searching for

This function is represented by ! in mathematics, for example:

5! = 5 * 4 * 3 * 2 * 1 = 120

4! = 4 * 3 * 2 * 1 = 24

The solution is provided in the Chapter 03/For and While Loops/homework.py
file on the GitHub page.

Functions
Functions are incredibly useful when you want to increase code readability. You can
think of them as blocks of code outside the main flow of code. Functions are executed
once they are called in the main code.

WOW! eBook
www.wowebook.org

Python Fundamentals – Learn How to Code in Python

[28]

You write a function like this:

def division(a, b):
 result = a / b
 return result

d = division(3, 5)
print(d)

The first three lines are a newly created function called division, and the last two
lines are part of the main code.

You can create a function by writing def and then writing the function's name. After
the name, you put brackets and within them write the arguments of the function;
these are some variables that you will be able to use inside of your function and
are a part of the connection between the main code and the function. In this case,
our function takes two arguments: a and b.

Then, once we enter our function, what we do is calculate a divided by b and call this
division result. Then, in the last line of our function, we say return so that when
we call this function in code, it will return a value. In this case, the returned value
is result.

Next, we go back to our main code and call our function. We do that by writing
division and then in the brackets we input two numbers that we would like to
divide. Remember, the division function returns a result of this division;
therefore, we create a variable, d, that will hold this returned value. In the last
line, we simply display d to see whether this code really works. If you run it,
you'll get the output:

0.6

As you can confirm by hand, 3 divided by 5 is indeed 0.6; you can test it on other
numbers as well.

In real-world code, functions can be much longer, and sometimes even call other
functions. You will see them used a lot, even in the other chapters of this book. They
also increase code readability, as you will see later; the code I've provided would be
impossible to understand without functions.

Exercise
Build a function to calculate the distance between two points on an x,y plane:
one with coordinates x1 and y1, and the other with coordinates x2 and y2.

WOW! eBook
www.wowebook.org

Chapter 3

[29]

Hint: You can use the following formula:

() ()2 21 2 1 2distance x x y y= − + −

The solution is provided in the Chapter 03/Functions/homework.py file on the
GitHub page.

Classes and objects
Classes, like functions, are another part of code that sits outside of the main code,
executed only when called in the main flow of code. Objects are instances of a
corresponding class, existing within the main flow of our code. To better understand
it, think of a class as a plan of something, for example, a plan of a car. It contains
information on how certain components look and work with each other. A class in
Python is a general plan of something.

You can think of objects as real-life constructions based on the plan. For example,
a real, working, and self-driving car would be an example of an object. You create
a plan of a car (which is a class) and then you build a car based on this plan (which
is an object). And of course, when you have a plan of something, you can create
as many copies as you want; for example, you can run a production line to
produce cars.

To give you more insight into classes, we will create a simple bot. We begin with
writing a class, like this:

class Bot():

 def __init__(self, posx, posy):
 self.posx = posx
 self.posy = posy

 def move(self, speedx, speedy):
 self.posx += speedx
 self.posy += speedy

We write class to specify that we are creating a new class, which we name Bot.
Then, a very important step is to write an __init__() method, which is a necessity
when creating a class. This function is called automatically whenever an object of this
class is created in the main flow of the code.

WOW! eBook
www.wowebook.org

Python Fundamentals – Learn How to Code in Python

[30]

All functions in a class need to take self as one argument. So, what is self? This
parameter specifies that this function and its variables, whose names are preceded by
self, are a part of this class. We will be able to call the self variables once we have
an object of this class. Our bot's __init__() method also takes two arguments, posx
and posy, which will be the initial position of our bot.

We have also created a method that will move our bot, by increasing or decreasing
its posx and posy. A method is a function tucked inside a class. You can think of it
as an instruction on how something has to work when we have a plan. For example,
going back to the example of a car, a method could define the way our engine or
gearbox works.

Now, you can create an object of this class. Remember, this will be a real-life object,
constructed on the basis of a plan (class). Before, the class was predefined and
didn't work along with your code. After you create an object, the class becomes an
integral part of your main code. We can achieve this by doing:

bot = Bot(3, 4)

This will create a new object of class Bot; we called this object bot. We also need
to specify the two arguments that the __init__() method of class Bot takes, which
are posx and posy. This isn't optional; when creating an object, you always have to
specify all the arguments given in the __init__() method.

Now, in the main code, you can move the bot and display its new position, like this:

bot.move(2, -1)
print(bot.posx, bot.posy)

In the first line, we use the move method from our Bot class. As you can see in its
definition, move takes two arguments. These two arguments specify, respectively, by
how much we will increase posx and posy. Then we just display the new posx and
posy. This is where self comes into action; if the variables posx and posy were not
preceded by self in our Bot class, we wouldn't have access to them via the method.
Running this code gives us this result:

5 3

As you can see from the result, our bot moved two units forward on the x axis and
one unit backward on the y axis. Remember, posx was set to 3 initially and has now
been increased by 2 using the move method from the Bot class; posy was set to 4
initially and has now been decreased by 1, with the use of the same move method.

One great advantage of taking the time to code a Bot class is that now we are able
to create as many bots as we want without making our code any longer. Simply
put, objects are copies of a class and we can create as many of them as we want.

WOW! eBook
www.wowebook.org

Chapter 3

[31]

In conclusion, you can think of a class as a collection of predefined instructions and
closed in methods, and you can think of an object as an instance of this class that
is accessible in our code and that runs along with it.

Exercise
Your final challenge will be to build a very simple car class. As arguments, a car
object should take the maximum velocity at which the car can move (unit in m/s), as
well as the acceleration at which the car is accelerating (unit in m/s2). I also challenge
you to build a method that will calculate the time it will take for the car to accelerate
from the current speed to the maximum speed, knowing the acceleration (use the
current speed as the argument of this method).

Hint: To calculate the time required, you can use the following equation:

()max currentV V
t

a
−

=

Where:

• t – time required to achieve the top speed
• maxV – maximum speed
• currentV – current speed
• a – acceleration

The solution is provided in the Chapter 03/Classes/homework.py file on the
GitHub page.

Summary
In this chapter, we covered the Python fundamentals that you'll need to keep up
with the code presented in this book, from sending a simple text display to the
console to writing your very first class in Python. You've now got all the skills you
need to continue on your AI journey; in Chapter 4, AI Foundation Techniques, we will
begin to study the foundational techniques of AI.

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

[33]

AI Foundation Techniques
In this chapter, you'll begin your study of AI theory in earnest. You'll start with an
introduction to a major branch of AI, called Reinforcement Learning, and the five
principles that underpin every Reinforcement Learning model. Those principles will
give you the theoretical understanding to make sense of every forthcoming AI model
in this book.

What is Reinforcement Learning?
When people refer to AI today, some of them think of Machine Learning,
while others think of Reinforcement Learning. I fall into the second category.
I always saw Machine Learning as statistical models that have the ability to learn
some correlations, from which they make predictions without being explicitly
programmed.

While this is, in some way, a form of AI, Machine Learning does not include the
process of taking actions and interacting with an environment like we humans do.
Indeed, as intelligent human beings, what we constantly keep doing is the following:

1. We observe some input, whether it's what we see with our eyes, what
we hear with our ears, or what we remember in our memory.

2. These inputs are then processed in our brain.
3. Eventually, we make decisions and take actions.

This process of interacting with an environment is what we are trying to reproduce
in terms of Artificial Intelligence. And to that extent, the branch of AI that works on
this is Reinforcement Learning. This is the closest match to the way we think; the
most advanced form of Artificial Intelligence, if we see AI as the science that tries to
mimic (or surpass) human intelligence.

WOW! eBook
www.wowebook.org

AI Foundation Techniques

[34]

Reinforcement Learning also has the most impressive results in business applications
of AI. For example, Alibaba leveraged Reinforcement Learning to increase its ROI
in online advertising by 240% without increasing their advertising budget (see
https://arxiv.org/pdf/1802.09756.pdf, page 9, Table 1 last row (DCMAB)).
We'll tackle the same industry application in this book!

The five principles of Reinforcement
Learning
Let's begin building the first pillars of your intuition into how Reinforcement
Learning works. These are the fundamental principles of Reinforcement Learning,
which will get you started with the right, solid basics in AI.

Here are the five principles:

1. Principle #1: The input and output system
2. Principle #2: The reward
3. Principle #3: The AI environment
4. Principle #4: The Markov decision process
5. Principle #5: Training and inference

In the following sections, you can read about each one in turn.

Principle #1 – The input and output system
The first step is to understand that today, all AI models are based on the common
principle of inputs and outputs. Every single form of Artificial Intelligence, including
Machine Learning models, ChatBots, recommender systems, robots, and of course
Reinforcement Learning models, will take something as input, and will return
another thing as output.

Figure 1: The input and output system

WOW! eBook
www.wowebook.org

https://arxiv.org/pdf/1802.09756.pdf

Chapter 4

[35]

In Reinforcement Learning, these inputs and outputs have a specific name: the input
is called the state, or input state. The output is the action performed by the AI. And
in the middle, we have nothing other than a function that takes a state as input and
returns an action as output. That function is called a policy. Remember the name,
"policy," because you will often see it in AI literature.

As an example, consider a self-driving car. Try to imagine what the input and output
would be in that case.

The input would be what the embedded computer vision system sees, and the
output would be the next move of the car: accelerate, slow down, turn left, turn
right, or brake. Note that the output at any time (t) could very well be several actions
performed at the same time. For instance, the self-driving car can accelerate while
at the same time turning left. In the same way, the input at each time (t) can be
composed of several elements: mainly the image observed by the computer vision
system, but also some parameters of the car such as the current speed, the amount
of gas remaining in the tank, and so on.

That's the very first important principle in Artificial Intelligence: it is an intelligent
system (a policy) that takes some elements as input, does its magic in the middle,
and returns some actions to perform as output. Remember that the inputs are also
called the states.

The next important principle is the reward.

Principle #2 – The reward
Every AI has its performance measured by a reward system. There's nothing
confusing about this; the reward is simply a metric that will tell the AI how well it
does over time.

The simplest example is a binary reward: 0 or 1. Imagine an AI that has to guess
an outcome. If the guess is right, the reward will be 1, and if the guess is wrong,
the reward will be 0. This could very well be the reward system defined for an
AI; it really can be as simple as that!

WOW! eBook
www.wowebook.org

AI Foundation Techniques

[36]

A reward doesn't have to be binary, however. It can be continuous. Consider
the famous game of Breakout:

Figure 2: The Breakout game

Imagine an AI playing this game. Try to work out what the reward would be
in that case. It could simply be the score; more precisely, the score would be the
accumulated reward over time in one game, and the rewards could be defined
as the derivative of that score.

This is one of the many ways we could define a reward system for that game.
Different AIs will have different reward structures; we will build five rewards
systems for five different real-world applications in this book.

With that in mind, remember this as well: the ultimate goal of the AI will always
be to maximize the accumulated reward over time.

Those are the first two basic, but fundamental, principles of Artificial Intelligence
as it exists today; the input and output system, and the reward. The next thing
to consider is the AI environment.

WOW! eBook
www.wowebook.org

Chapter 4

[37]

Principle #3 – The AI environment
The third principle is what we call an "AI environment." It is a very simple
framework where you define three things at each time (t):

• The input (the state)
• The output (the action)
• The reward (the performance metric)

For each and every single AI based on Reinforcement Learning that is built today,
we always define an environment composed of the preceding elements. It is,
however, important to understand that there are more than these three elements
in a given AI environment.

For example, if you are building an AI to beat a car racing game, the environment
will also contain the map and the gameplay of that game. Or, in the example of
a self-driving car, the environment will also contain all the roads along which the
AI is driving and the objects that surround those roads. But what you will always
find in common when building any AI, are the three elements of state, action, and
reward. The next principle, the Markov decision process, covers how they work
in practice.

Principle #4 – The Markov decision process
The Markov decision process, or MDP, is simply a process that models how the
AI interacts with the environment over time. The process starts at t = 0, and then,
at each next iteration, meaning at t = 1, t = 2, … t = n units of time (where the unit
can be anything, for example, 1 second), the AI follows the same format of transition:

1. The AI observes the current state, ts .
2. The AI performs the action, ta .
3. The AI receives the reward, (),t t tr R s a= .
4. The AI enters the following state, 𝑠𝑠𝑡𝑡+1 .

The goal of the AI is always the same in Reinforcement Learning: it is to maximize
the accumulated rewards over time, that is, the sum of all the (),t t tr R s a= received
at each transition.

WOW! eBook
www.wowebook.org

AI Foundation Techniques

[38]

The following graphic will help you visualize and remember an MDP better,
the basis of Reinforcement Learning models:

Figure 3: The Markov decision process

Now four essential pillars are already shaping your intuition of AI. Adding
a last important one completes the foundation of your understanding of AI.
The last principle is training and inference; in training, the AI learns, and in
inference, it predicts.

Principle #5 – Training and inference
The final principle you have to understand is the difference between training and
inference. When building an AI, there is a time for the training mode, and a separate
time for inference mode. I'll explain what that means starting with the training mode.

Training mode
Now you understand, from the three first principles, that the very first step of
building an AI is to build an environment in which the input states, the output
actions, and a system of rewards are clearly defined. From the fourth principle,
you also understand that inside this environment we will build an AI to interact
with it, trying to maximize the total reward accumulated over time.

WOW! eBook
www.wowebook.org

Chapter 4

[39]

To put it simply, there will be a preliminary (and long) period of time during which
the AI will be trained to do that. That period of time is called the training; we can
also say that the AI is in training mode. During that time, the AI tries to accomplish
a certain goal over and over again until it succeeds. After each attempt, the
parameters of the AI model are modified in order to do better at the next attempt.

For example, let's say you're building a self-driving car and you want it to go from
point A to point B. Let's also imagine that there are some obstacles that you want
your self-driving car to avoid. Here is how the training process happens:

1. You choose an AI model, which can be Thompson Sampling (Chapters 5 and
6), Q-learning (Chapters 7 and 8), deep Q-learning (Chapters 9, 10, and 11)
or even deep convolutional Q-learning (Chapters 12 and 13).

2. You initialize the parameters of the model.
3. Your AI tries to go from A to B (by observing the states and performing its

actions). During this first attempt, the closer it gets to B, the higher reward
you give to the AI. If it fails reaching B or hits an obstacle, you give the AI
a very bad reward. If it manages to reach B without hitting any obstacle,
you give the AI an extremely good reward. It's just like you would train
a dog to sit: you give the dog a treat or say "good boy" (positive reward) if
the dog sits. And you give the dog whatever small punishment you need to
if the dog disobeys (negative reward). That process is training, and it works
the same way in Reinforcement Learning.

4. At the end of the attempt (also called an episode), you modify the parameters
of the model in order to do better next time. The parameters are modified
intelligently, either iteratively through equations (Q-Learning), or by using
Machine Learning and Deep Learning techniques such as stochastic gradient
descent or backpropagation. All these techniques will be covered in this
book.

5. You repeat steps 3 and 4 again, and again, until you reach the desired
performance; that is, until you have your fully non-dangerous autonomous
car!

So, that's training. Now, how about inference?

Inference mode
Inference mode simply comes after your AI is fully trained and ready to perform
well. It will simply consist of interacting with the environment by performing the
actions to accomplish the goal the AI was trained to achieve before in training mode.
In inference mode, no parameters are modified at the end of each episode.

WOW! eBook
www.wowebook.org

AI Foundation Techniques

[40]

For example, imagine you have an AI company that builds customized AI solutions
for businesses, and one of your clients asked you to build an AI to optimize the flows
in a smart grid. First, you'd enter an R&D phase during which you would train your
AI to optimize these flows (training mode), and as soon as you reached a good level
of performance, you'd deliver your AI to your client and go into production. Your AI
would regulate the flows in the smart grid only by observing the current states of the
grid and performing the actions it has been trained to do. That's inference mode.

Sometimes, the environment is subject to change, in which case you have to alternate
fast between training and inference modes so that your AI can adapt to the new
changes in the environment. An even better solution is to train your AI model
every day, and go into inference mode with the most recently trained model.

That was the last fundamental principle common to every AI. Congratulations –
now you already have a solid basic understanding of Artificial Intelligence! Since
you have that, you are ready to tackle your very first AI model in the next chapter:
a simple yet very powerful one, still widely used today in business and marketing,
to solve a problem that has the delightful name of the multi-armed bandit problem.

Summary
In this chapter, you learned the five fundamental principles of Artificial Intelligence
from a Reinforcement Learning perspective. Firstly, an AI is a system that takes an
observation (values, images, or any data) as input, and returns an action to perform
as output (principle #1). Then, there is a reward system that helps it measure its
performance. The AI will learn through trial and error based on the reward it gets
over time (principle #2). The input (state), the output (action), and the reward system
define the AI environment (principle #3). The AI interacts with this environment
through the Markov decision process (principle #4). Finally, in training mode, the
AI learns how to maximize its total reward by updating its parameters through
the iterations, and in inference mode, the AI simply performs its actions over full
episodes without updating any of its parameters – that is to say, without learning
(principle #5).

In the next chapter, you will learn about Thompson Sampling, a simple
Reinforcement Learning model, and use it to solve the multi-armed bandit problem.

WOW! eBook
www.wowebook.org

[41]

Your First AI Model –
Beware the Bandits!

In this chapter, you'll get to grips with your very first AI model! You're going to
make a model that will solve the very well-known multi-armed bandit problem.
This is a classic problem in AI, and it's also widely encountered in many real-world
business problems.

The multi-armed bandit problem
Imagine you are in Las Vegas, in your favorite casino. You are in a room containing
five slot machines. For each of them the game is the same: you bet a certain amount
of money, say 1 dollar, you pull the arm, and then the machine will either take your
money, or give you twice your money back. Remember the rewards we talked about
in the previous chapter? Let's say that if the machine takes your money, your reward
is -1, and if the machine returns you twice your money, your reward is +1.

As you can see, you're already starting to define an AI environment, which I'll
remind you is absolutely fundamental when solving a problem with AI. So far, the
AI isn't there, but it will come soon. You always start by defining the environment.

You've defined the rewards; you'll define the states (inputs) and actions (outputs)
later. Now, still in the process of defining the environment, let's say that you know,
somehow, that one of these machines has a higher probability of giving you a +1
reward than the others when you pull its arm. It doesn't matter how you know this
info, but it must be part of the problem assumptions. Rest assured, this assumption
is always naturally verified in the real-world business problems mentioned above
where the multi-armed bandit problem can be applied.

WOW! eBook
www.wowebook.org

Your First AI Model – Beware the Bandits!

[42]

Your goal, as in any AI environment, is to obtain the highest accumulated reward
during your time of play. Let's say you are going to bet 1,000 dollars in total,
meaning that you are going to bet 1 dollar, 1,000 times, each time by pulling the arm
of any of these five slot machines. The question is:

What should be your strategy, so that after having played 1,000 times, you get the
maximum amount of money to take home with you?

The first step of your strategy must be to figure out, in the minimum number of
plays, which of these five slot machines has the highest chance of giving you a 1
reward. In other words, you have to quickly figure out the slot machine with the
highest success rate. Then, as soon as you figure it out, you simply need to keep
playing on that most successful slot machine.

Finding the most successful slot machine is not hard; one simple strategy could be to
play 100 times on each of these five slot machines and then, at the end, look at which
of them gave you more money. Statistically, this gives you a good chance of finding
that most generous slot machine.

All the challenge is in "quickly". The hardest part is to find the best slot machine
in a minimum number of trials. This is where your first AI model comes into play.

The Thompson Sampling model
You're going to build this model straight away. Right now, you'll build a simple
implementation of this method, and later you will be shown the theory behind it.
Let's get right into it!

As we defined previously, our problem is trying to find the best slot machine with
the highest winning chance out of many. A not-so-optimal solution would be to play
100 rounds on each of our slot machines and see which one has the highest winning
rate. A better solution is a method called Thompson Sampling.

I won't go too deeply into the theory behind it; we'll cover that later. For now, it is
enough to say that Thompson Sampling uses a distribution function (distributions
will be explained further in this chapter), called Beta, that takes two arguments. For
simplicity's sake, let's say that the higher the first argument is, the better our slot
machine is, and the higher the second argument is, the worse our slot machine is.

Therefore, we can define this function as:

𝑥𝑥 = 𝛽𝛽(𝑎𝑎, 𝑏𝑏)

WOW! eBook
www.wowebook.org

Chapter 5

[43]

where:

• x – a random choice from our Beta distribution
• β – our Beta function
• a – the first argument
• b – the second argument

Don't worry if you don't understand this entirely quite yet; you'll read all about
it later.

Coding the model
Let's start coding our solution. All this code is also available on the GitHub page
of this book in the Chapter 05 folder. Here we go with the first code section:

Importing the libraries
import numpy as np

You'll only need one library, called NumPy. This is a very useful library, helping
when we are dealing with multi-dimensional arrays and lists in general. Give it the
abbreviation np, which is the industry standard, so that it will be easier to use.

Now we have to understand something very important. You are creating a simulation
whose aim is to simulate real-life situations. In reality, every slot machine gives us
some chance of winning, and some machines have it higher than others. Therefore,
when simulating this environment, you have to do the same thing. It is important
to remember, however, that our AI will not know these predefined winning rates.
It cannot just read them and judge, based on these rates, which machine is the best.

For this example, let's call this list of winning chances conversionRates.

Setting conversion rates and the number of samples
conversionRates = [0.15, 0.04, 0.13, 0.11, 0.05]
N = 10000
d = len(conversionRates)

Here, you have five slot machines. They have some win chance; for example, slot
machine no. 1 offers a 15% chance of a win. Then you create a number of samples,
N. Remember, you are performing a simulation, so you need to have a predefined
dataset that will tell you whether you won or not when you're playing. You also
introduce a variable, d, which is the length of your conversion rates list; that is, the
number of slot machines. It's useful to use short variable names like that, because the
code would be longer and less readable otherwise.

WOW! eBook
www.wowebook.org

Your First AI Model – Beware the Bandits!

[44]

Do you have an idea of what you should do next? You are running a simulation, so
you need to have a predefined set of wins and losses for every slot machine for every
sample. I highly recommend that you try to do this on your own. You need to have
a set that will tell you if at some timestep i you have won or not by playing a certain
slot machine. The answer is in the next snippet of code.

Creating the dataset
X = np.zeros((N, d))
for i in range(N):
 for j in range(d):
 if np.random.rand() < conversionRates[j]:
 X[i][j] = 1

In the first line, you create a 2d-array full of zeros, of size N * d. This means
that you've created an array with N (in this case 10000) rows and d (in this case
5) columns. Then, in a for loop, you iterate through every row in that 2d-array
X. In a nested for loop, you iterate through each column in that row. In line 5 of
the preceding code snippet, for each slot machine (each column), we check if a
random float number from range (0,1) is smaller than the conversion rate for the
corresponding slot machine.

That's just like playing the slot machine; since there is an equal chance of getting any
float number from this range, the chances of getting a number smaller than x (where
x is also in range (0,1)) is equal to x. For example, for d = 0.15, there are 15 instances
out of 100 of getting a smaller float number than 0.15, and thus a 15% chance of
returning a high reward for slot machine 1. In other words, if the random float is
smaller, then that means you will win if you play this certain machine at this certain
timestep.

To make sure you understand, if one of the N samples from your dataset X looks like
this: [0, 1, 0, 0, 1], you would win at that point in time by playing slot machine
no. 2 or no. 5.

Next, you need to create two arrays that will count how many times you have lost
and won by playing each slot machine, like this:

Making arrays to count our losses and wins
nPosReward = np.zeros(d)
nNegReward = np.zeros(d)

WOW! eBook
www.wowebook.org

Chapter 5

[45]

Name them nPosReward (number of wins) and nNegReward (number of losses).

Now that you have made a simulation set and these two counters, you can start
coding some Thompson Sampling. Keep in mind that the theory, as well as another
example, will be covered later.

Next, initialize a for loop that will iterate through every sample in our dataset
and choose the best slot machine. Initially, only create two variables, one called
selected, which will tell you which slot machine was chosen, and maxRandom,
which you will use to get the highest Beta distribution guess across all slot machines:

Taking our best slot machine through beta distribution and updating
its losses and wins
for i in range(N):
 selected = 0
 maxRandom = 0

So now you can get to the core of Thompson Sampling. You'll take random guesses
from our Beta distribution and find the highest value across all your slot machines.

You can use a method taken from NumPy, called np.random.beta(a,b), that
returns this random guess. Knowing that, try to find the highest guess and the best
machine on your own! It is totally fine if you fail—we haven't covered the theory
yet—and I will provide you with an answer. Good luck!

I hope you've given it a try. Whether it's worked out for you or not, here's my
answer:

 for j in range(d):
 randomBeta = np.random.beta(nPosReward[j] + 1, nNegReward[j] +
1)
 if randomBeta > maxRandom:
 maxRandom = randomBeta
 selected = j

WOW! eBook
www.wowebook.org

Your First AI Model – Beware the Bandits!

[46]

You haven't missed anything—this is all the code needed for this task. You create
a for loop to iterate through every slot machine and find the best one. For each slot
machine of index j (remember that you are still in the bigger for loop with index i),
you take a random draw, called randomBeta, from our Beta distribution, and check if
it is greater than maxRandom.

If it is, then you reassign maxRandom to be equal to randomBeta, and set selected
to be equal to the index of this new highest-guess slot machine j. It is also worth
mentioning what the a and b arguments of the Beta function are in this case; they're
the number of wins and losses we've had on the specific slot machine. Remember,
the bigger the first argument, the better, and the higher our random guess will be;
the bigger the second argument, the worse, and the lower our random guess will be.

Now that you have selected the best slot machine, what do you think you should
do next?

You have to update your nPosReward or nNegReward depending on whether you
have won or not. We can do that with this code:

 if X[i][selected] == 1:
 nPosReward[selected] += 1
 else:
 nNegReward[selected] += 1

Here, you can see the use of the X array you created earlier. You check if you have
won this round by checking if there's a 1 in the appropriate place in your X array. If
you win, you update the index corresponding to the selected machine in nPosReward
by adding 1. If you lose, however, you update nNegReward by adding 1 in the same
index there. You can clearly see that if you win, next time, your random guess from
the Beta distribution for that machine will be higher; and if you lose, it will be lower.

This code works already, although it is worth adding a few lines of code to display
which slot machine your code considers the best:

Showing which slot machine is considered the best
nSelected = nPosReward + nNegReward
for i in range(d):
 print('Machine number ' + str(i + 1) + ' was selected ' +
str(nSelected[i]) + ' times')
print('Conclusion: Best machine is machine number ' + str(np.
argmax(nSelected) + 1))

WOW! eBook
www.wowebook.org

Chapter 5

[47]

Here, you simply display how many times each slot machine was chosen by your
algorithm. To get these numbers you can add together the lists nPosReward and
nNegReward. In the final line, you show which machine was chosen the highest
number of times, making it the slot machine that is considered the best.

Now, you can just run your code and see the results:

Machine number 1 was selected 7927.0 times

Machine number 2 was selected 82.0 times

Machine number 3 was selected 1622.0 times

Machine number 4 was selected 306.0 times

Machine number 5 was selected 63.0 times

Conclusion: Best machine is machine number 1

As we can see, your algorithm quickly found out that machine no. 1 is the best. It did
it in around 2,000 rounds (2,000 samples in your X set).

Understanding the model
Thompson Sampling is, by far, the best model for this kind of problem; at the end of
this chapter, you will see a comparison with another method. Here's how it works its
magic. The first thing we do, when finding the best slot machine, is obviously to play
the arm of each of the five slot machines one by one. So here we go:

Round 1: We play the arm of slot machine number 1. Let's say we get reward 0.

Round 2: We play the arm of slot machine number 2. Let's say we get reward 1.

Round 3: We play the arm of slot machine number 3. Let's say we get reward 0.

Round 4: We play the arm of slot machine number 4. Let's say we get reward 0.

Round 5: We play the arm of slot machine number 5. Let's say we get reward 1.

Now, why do you think we had to do this? We only did that to collect some starting
information from each of the slot machines. This information will be needed in
future rounds.

Now, things start to get interesting. What are we going to do at round 6? Which arm
are we going to play?

WOW! eBook
www.wowebook.org

Your First AI Model – Beware the Bandits!

[48]

Well, we need to look back at what happened during the first five rounds. For each
slot machine, we introduce two new variables, one that counts the number of times
the slot machine returned a 0 reward, and another one that counts the number of
times the slot machine returned a 1 reward.

Let's denote these variables as ()0
iN n and ()1

iN n , where ()0
iN n is the number of times

slot machine number i returned reward 0 up to round n, and ()1
iN n is the number of

times slot machine number i returned reward 1 up to round n. These two variables
are denoted by nNegReward and nPosReward in our code. So, based on what we've
obtained so far at round 5, let's give some values examples of these variables:

()0
1 1 1N = means that slot machine 1 has returned 1 loss over 1 round.

()1
1 1 0N = means that slot machine 1 has returned 0 wins over 1 round.

()0
2 1 0N = means that slot machine 2 has returned 0 losses over 1 round.

()1
2 1 1N = means that slot machine 2 has returned 1 win over 1 round.

()0
5 4 0N = means that slot machine 5 has returned 0 losses over 4 rounds.

()1
5 4 0N = means that slot machine 5 has returned 0 wins over 4 rounds.

()0
5 5 0N = means that slot machine 5 has returned 0 losses over 5 rounds.

()1
5 5 1N = means that slot machine 5 has returned 1 win over 5 rounds.

Alright, that was the easy part. The good news is that we've created all the variables
we needed for our AI. The bad news is that now comes the hard part, the math. If
you think math is good news, I like your spirit; but don't worry if you don't like
math, I won't let you down.

What is a distribution?
The next step of our AI journey is to introduce distributions in mathematics. For
this, I'll give you a simple definition with my own words, not the very formal ones
you find in math books. I want to make sure everybody understands. Here it is: the
distribution of a variable is a function that will give, for each value in the possible
range of values the variable could take, the probability that this variable is equal to
that value.

WOW! eBook
www.wowebook.org

Chapter 5

[49]

Let's really understand what it is through an example:

Figure 1: The normal distribution

In the preceding graph, you can see an example of a distribution. Now, remember
in the definition I gave you, I mentioned two measures: "range of values the variable
could take", and "probability that this variable is equal to that value". In any
distribution, on the x-axis you have the range of values the variable could take, and
on the y-axis you have the probability that the variable is equal to each value.

Don't worry if this isn't clear yet. To extend our example, let's say that on the
preceding graph, this variable is the annual salary people have in a specific country.

On the x-axis, we would have the range of annual salaries from the minimum wage
to the maximum wage, let's say from 15,000 dollars to 150,000 dollars. And on the
y-axis, we would have the probabilities that a person would have that salary.

Now it should make more sense. For the low salaries, the curve is low, meaning that
the probability that an individual earns a salary of around 15,000 dollars is low.

Then, up to the center of the x-axis, marked as µ, which is the average of the salaries,
the probabilities of people's salaries increase. Let's say that µ is equal to 45,000
dollars. We intuitively understand that the probability that an individual in a specific
country earns 45,000 dollars per year is the highest, simply because the majority of
people earn something in the region of 45,000 dollars per year. And that's exactly
why the distribution in the graph is the highest at this salary.

WOW! eBook
www.wowebook.org

Your First AI Model – Beware the Bandits!

[50]

The higher we go above an annual salary of 45,000 dollars, the fewer people we'll
find earning such salaries, and therefore the probability of people earning such
salaries will decrease, until we go beyond an annual salary of 150,000 dollars, where
very few people earn that much, therefore leading to a close-to-zero probability.

Alright, that was the distribution explained intuitively. Now, you have to know
that there are many types of distributions: Gaussian distributions (that look like
the preceding graph), normal distributions (Gaussian distribution of mean 0 and
variance 1), Beta distributions, and many more.

That's the next step: Beta distributions. The Beta distribution is at the heart of the
AI we built to solve our bandit problem. Here are what Beta distributions look like:

Figure 2: Three Beta distributions

Let's do some practice to make sure you understand how distributions work.
Imagine these three distributions correspond to three different countries, and again
let's say that they are the distributions of salaries in these countries. Which country
has the highest salaries? Is it the purple one, the green one, or the yellow one?
The answer is the yellow one, of course! It is in this country that we have positive
probabilities for the highest salaries (remember, the salaries are on the x-axis, and the
probabilities are on the y-axis).

That was just a quick test to make sure you were with me. Now, you don't have to
remember the exact formula of a Beta distribution, but you do have to know that it
has two parameters and how they impact the distribution. Don't forget that this was
already mentioned when we solved the problem in practice, now it is explained in
much more detail.

If we denote these two parameters as a and b again, we can denote the Beta
distribution with the following:

𝑦𝑦 = 𝛽𝛽(𝑥𝑥, 𝑎𝑎, 𝑏𝑏)

WOW! eBook
www.wowebook.org

Chapter 5

[51]

You might be asking what just happened—Why did x appear? Don't worry, we
will demystify all this. In the formula above, y is the probability, β is a function of x
only, x is the salary, and ,a b are the two parameters present in any Beta distribution.
Again, you don't have to know the exact definition of the function β , but just keep in
mind the shape of its curve as given in the preceding graph.

However, what is really important for you to understand now is the role of the two
parameters a and b. Following are the two points that you must know and visualize
in your head:

1. Given two Beta distributions with the same parameter b, the one having
a larger parameter a will be shifted more to the right.

2. Given two Beta distributions with the same parameter a, the one having
a larger parameter b will be shifted more to the left.

That's it! That's enough to have an intuitive understanding of how our AI will solve
the Bandit problem. In other words, the larger the parameter a, the more it will shift
the Beta distribution to the right, and the larger the parameter b, the more it will shift
the Beta distribution to the left.

Let's practice this! If I give you the following three Beta distributions:

1. ()1,5β

2. ()5,1β

3. ()3,3β

Could you tell me which of the three Beta distributions in the following graph they
would approximately look like?

Figure 3: Three Beta distributions

Based on the two statements above, ()1,5β is the purple one, ()5,1β is the yellow one,
and ()3,3β is the green one. Congratulations to you if you guessed that right!

Now you are ready to solve our bandit problem. But let me ask you a question first,
which might lead you to understand the magic faster than this book:

WOW! eBook
www.wowebook.org

Your First AI Model – Beware the Bandits!

[52]

If, instead of the salaries in a country, the x-axis contained the success rates of the
machines in the casino, and if each of the three Beta distributions represented one
particular slot machine, which one would you choose to bet your 1,000 dollars?

You would choose the yellow one!

Of course! This distribution has positive probabilities for the highest conversion
rates, since it is the one most shifted to the right.

This was already discussed in the previous code section of this chapter; I told you
there that the higher the first parameter, the better the slot machine. Indeed, the Beta
distribution will be shifted more to the right, meaning that this slot machine has a
higher chance of giving us a win. Additionally, the higher the second parameter, the
worse the slot machine is and now, the Beta distribution will be shifted to the left,
meaning that this machine has a lower chance of us winning.

And now another question, before we solve our bandit problem. Remembering that
you have five slot machines to play with, try to answer this question: if the five slot
machines are associated with the following five Beta distributions of success rates:

()1,3β , ()1,5β , ()3,3β , ()5,3β , and ()5,1β ,

Which one would you pick to bet your 1,000 dollars?

The answer is ()5,1β !

Of course, again! Because it is the one with the largest parameter a and the lowest
parameter b, therefore the most shifted to the right, and hence the one having the
positive probabilities for the highest conversion rates.

If you are still with me, you are definitely ready to understand the AI magic. If not,
please read through this section again. In the next section, I will finally reveal what
happens next after Round 5.

Tackling the MABP
What we are going to do from now on before playing each round is to associate each
slot machine with a specific Beta distribution. At each round n, the slot machine
number i (i=1,2,3,4,5) will be associated with the following Beta distribution:

() ()()1 01, 1i iN n N nβ + +

WOW! eBook
www.wowebook.org

Chapter 5

[53]

Here, you should recall the following:

• ()1
iN n is the number of times the slot machine number i returned a 1 reward

up to round n.
• ()0

iN n is the number of times the slot machine number i returned a 0 reward
up to round n.

Remember, in the Beta distribution (),a bβ , the higher the parameter a, the more that
shifts the distribution to the right. The higher the parameter b, the more that shifts
the distribution to the left. Therefore, since at each round n and for each slot machine,
the parameter a is the number of times (plus 1) it returned 1 up to round n,
and the parameter b is the number of times (plus 1) it returned 0 up to round n, then
that means the following: the more the slot machine returns 1 (success), the more
its distribution will be shifted to the right; and the more the slot machine returns 0
(failure), the more its distribution will be shifted to the left.

Congratulations if you figured out what a and b should be on your own. We already
used them in the practical tutorial above; we had two arrays, nPosReward and
nNegReward, that correspond to ()1

iN n and ()0
iN n respectively.

Once you understand this, try to figure out the strategy before I give you the
solution.

Alright, you are about to see the magic. What we are going to do, before playing
the arm at each round, is take a random draw from each of the five distributions
corresponding to the five slot machines. In case you're not clear what that means, I'll
explain. Let me show you again the graph of the three Beta distributions:

Figure 4: Three Beta distributions

What did I mean by taking a random draw? First, remember that for our bandit
problem, on the x-axis, we have the success rates from 0 to 1. For example, x = 0.25
means that the machine returns a 1 reward (success) 25% of the time. Then, on the
y-axis, we still have the probabilities to have these success rates.

WOW! eBook
www.wowebook.org

Your First AI Model – Beware the Bandits!

[54]

Let's focus on one distribution, for example, the purple one. What would it mean to
take a random draw from that distribution? That would mean very simply that we
randomly pick a value on the x-axis where the distribution is positive, such that the x
values where the probability is the highest will get the highest chance to be picked.
For example, let's say the top of the purple curve corresponds to x = 0.2 and
y = 0.35.

Then, taking a random draw from that purple distribution means that we will have
a 35% chance to pick a success rate of 20%. To generalize this, let's say that ()purpley xβ=
is the function associated with the purple distribution, so taking a random draw
from that purple distribution means that for each success rate x on the x-axis, we
will have ()purple xβ chance of picking x. That is what "to take a random draw from a
distribution" means, and this is also called "to sample a distribution".

Now that you understand this, let's see where we left off. We said that before playing
the arm at each round, we were going to take a random draw from each of the five
distributions corresponding to the five slot machines. We thus obtain five values
on the x-axis, each one corresponding to each of the five slot machines. Then, here
comes the crucial question, the one that will tell whether you have the right intuition
about the strategy.

According to you, which slot machine are you going to play, based on the
observation of these five values? I really want you to take some time to answer this
question, because right now, we are at the heart of the strategy (you can also have a
look at our previously written code). The answer can be found in the next paragraph.

I really hope you tried figuring this out by yourself: the slot machine that you are
going to play next is the one for which we got the highest of the five random draws.
Why? Because the highest random draws correspond to the highest success rate, and
for this highest success rate, the Beta distribution associated with the slot machine
picked has positive probabilities around that highest success rate.

Since we want to maximize the success rate of the machines we play (because we
want to make money), we must pick the slot machine for which the Beta distribution
has positive probabilities around the highest success rates. In the following graph,
that's the yellow distribution.

WOW! eBook
www.wowebook.org

Chapter 5

[55]

Figure 5: Three Beta distributions

Now, we must take a step back. I've been in your situation many times when I am
learning something new and technical, which sometimes felt overwhelming. In that
case, the best move is to take a step back, which is exactly what we are going to do
now by giving a recap of the strategy and its intuition.

The Thompson Sampling strategy in three
steps
After we play each of the five slot machines over the first five rounds, here's what the
AI will do at each round n:

1. For each slot machine i (i=1,2,3,4,5), we take a random draw ()i nθ from its
Beta distribution:
() () ()()1 01, 1i i in N n N nθ β + +∼

where:
()1

iN n is the number of times the slot machine number i returned a 1 reward
up to round n.

()0
iN n is the number of times the slot machine number i returned a 0 reward

up to round n.

2. We pull the arm of the slot machine ()s n that has the highest sampled ()i nθ :
𝑠𝑠(𝑛𝑛) = argmax

𝑖𝑖=1,2,3,4,5
(𝜃𝜃𝑖𝑖(𝑛𝑛))

3. We don't forget to update () ()1
s nN n or () ()0

s nN n :

If the played slot machine ()s n returned a 1 reward:

() () () ()1 1: 1s n s nN n N n= +

If the played slot machine ()s n returned a 0 reward:

() () () ()0 0: 1s n s nN n N n= +

WOW! eBook
www.wowebook.org

Your First AI Model – Beware the Bandits!

[56]

Then, we repeat these three steps at each round until we spend our 1,000 dollars.
This strategy, called Thompson Sampling, is a basic but powerful model of a specific
branch of AI, called Reinforcement Learning.

The final touch of shaping your Thompson
Sampling
intuition
Your intuition about why and how this works should be as follows (try to keep it in
mind or visualize it on the graphic):

Each slot machine has its own Beta distribution. Over the rounds, the Beta
distribution of the slot machine with the highest conversion rate will be
progressively shifted to the right, and the Beta distributions of the strategies with
lower conversion rates will be progressively shifted to the left (Steps 1 and 3).
Therefore, because of Step 2, the slot machine with the highest conversion rate will
be selected more and more.

And voilà! Congratulations—you just learned about a powerful AI model, a massive
step in your journey. To see Thompson Sampling in action and check that it indeed
works, I won't force you to go to a casino and try it out; We'll apply it to another real-
life model in Chapter 6, AI for Sales and Advertising – Sell like the Wolf of AI Street.

Finally, let me finish this theory tutorial with a question for you. Remember earlier
in the book I told you that any AI we build today takes as input a state, returns
as output an action to play, and, after playing the action, gets a reward (positive
or negative). For this particular bandit problem, what are the input states, the
actions played, and the rewards received? Think about this before reading the
next paragraph.

Here we go with the answer:

• The input state is the exact round we've reached, including the information
of the two parameters () ()1

s nN n and () ()0
s nN n .

• The output action is the arm we pull from the selected slot machine.
• The reward is 1 or 0, 1 if the slot machine returns twice our dollar invested,

and 0 if we lose our dollar.

WOW! eBook
www.wowebook.org

Chapter 5

[57]

Congratulations to you if you answered that one correctly, and for tackling this
first AI model, Thompson Sampling. And don't forget, in Chapter 6, AI for Sales and
Advertising – Sell like the Wolf of AI Street, we put this into practice to solve a real-
world business problem.

Thompson Sampling against the standard
model
When I learned Thompson Sampling for the first time, I had one main question in
my mind: is it really that good? In fact, if you were to run the standard model (by
"standard model" I mean playing every slot machine a certain number of times) and
Thompson Sampling separately you might not see much difference; you would likely
come to the conclusion that they work pretty much as well as each other.

To check whether it is true that Thompson Sampling isn't any better, I implemented
a code to test both solutions on many different scenarios. The changes included:
number of samples (200 or 1,000 or 5,000), number of slot machines (from 3 to 20), and
conversion rate ranges (ranges in which conversion rates could be set: 0-0.1; 0-0.3; 0-0.5).

Every scenario was tested 100 times to compute the accuracy of each model.

The results and the code used are provided in the resultsModified.xlsx and
comparison.py files, respectively, in Chapter 05 of this book's GitHub page. Here,
you can see some graphs taken from this Excel file that show the performance of both
models:

Figure 6: Accuracy vs. Number of slot machines (200 samples)

WOW! eBook
www.wowebook.org

Your First AI Model – Beware the Bandits!

[58]

This first graph in Figure 6 illustrates the accuracy of both models depending on the
number of slot machines. The number of samples was set to 200 and the conversion
rate ranges were set to 0-0.1, meaning that the differences between these rates were
minor. This is the toughest setting for this comparison. Overall, Thompson Sampling
performed better than the standard model (22% better).

Figure 7: Accuracy vs. Number of slot machines (5,000 samples)

This second graph in Figure 7 shows the performance under the easiest conditions.
The number of samples was set to 5,000 and the conversion rate ranges were set to
0-0.5, meaning that the differences were clearly visible. The overall drop of accuracy
for Thompson Sampling is smaller than the drop in accuracy for the standard
solution. Thompson Sampling performed significantly better this time (41% better).

Taking all scenarios into consideration, Thompson Sampling achieved a mean
accuracy of 57% and the standard model achieved 43% accuracy. This is a significant
difference taking into account the fact that very tough scenarios were tested (for
example, only 200 samples, a range of 0-0.1, and 20 slot machines).

Summary
Thompson Sampling is a powerful sampling technique that enables you to quickly
figure out the highest of a number of unknown conversion rates. It is always applied
in the same frame, called the multi-armed bandit problem, which in the classic sense
is composed of several slot machines, each one having a different conversion rate of
positive outcomes. We had a first glance at how this AI solves this problem better
and faster than standard methods.

In the next chapter, we will perform a full practical activity where we will see
how the multi-armed bandit frame can easily model a business problem—online
advertising—and how Thompson Sampling can bring significant added value.

WOW! eBook
www.wowebook.org

[59]

AI for Sales and Advertising –
Sell like the Wolf of AI Street

Now it's time to put your new skills into practice, start coding, and shape up your AI
skills! You've learned all about Thompson Sampling, and now it's time to implement
this AI model to solve a real-world problem, maximizing the sales of an e-commerce
business.

In this practical exercise, you'll really take action and build the AI yourself to solve
the problem. It's really important that you stay active in this chapter, because this is
where you will have the chance to learn by doing, which is the most effective way
to learn something; practice truly makes perfect. In other words, I want you to be
the hero of this AI adventure. You, and not me. Ready?

Problem to solve
Imagine an e-commerce business that has millions of customers. These customers
are people buying products on the website from time to time, getting those products
delivered to their homes. The business is doing well, but the board of executives has
decided to follow an action plan to maximize revenue.

This plan consists of offering the customers the option to subscribe to a premium
plan, which will give them benefits like reduced prices, special deals, and so on. This
premium plan is offered at a yearly price of $200, and the goal of this e-commerce
business is, of course, to get the maximum number of customers to subscribe to this
premium plan. Let's do some quick math to give us some motivation for building an
AI to maximize the revenue of this business.

WOW! eBook
www.wowebook.org

AI for Sales and Advertising – Sell like the Wolf of AI Street

[60]

Let's say that this e-commerce business has 100 million customers. Now consider
two strategies to convert the customers to the premium plan: a bad one, with a
conversion rate of 1%, and a good one, with a conversion rate of 11%. If the business
deploys the bad strategy, in one year it will make a total of: 100,000,000 × 0.01 × 200 =
$200,000,000 in extra revenue from the premium plan subscriptions.

On the other hand, if the business deploys the good strategy, in one year it will
make a total of: 100,000,000 × 0.11 × 200 = $2,200,000,000 in extra revenue from the
premium plan subscriptions. By figuring out the best strategy to deploy, the business
maximizes its revenue by making 2 billion extra dollars.

In this Utopian example, we only had two strategies, and besides, we knew their
conversion rates. In our case study, we will be facing nine different strategies. Our
AI will have no idea of which is the best one, and absolutely no prior information
on any of their conversion rates.

We will, however, make the assumption that each of these nine strategies does have
a fixed conversion rate. These strategies were carefully and smartly elaborated by the
marketing team, and each of them has the same goal: convert the maximum number
of clients to the premium plan. However, these nine strategies are all different. They
have different forms, different packages, different ads, and different special deals to
convince and persuade the clients to subscribe to the premium plan. Of course, the
marketing team has no idea of which of these nine strategies will turn out to be the
best one. Let's sum up the differences in features of these nine strategies:

Figure 1: The nine strategies – Which one sells best?

WOW! eBook
www.wowebook.org

Chapter 6

[61]

The marketing team wants to figure out which strategy has the highest conversion
rate as soon as possible, and by spending the minimum amount. They know that
finding and deploying the best strategy can significantly increase the business's
revenue. The marketing experts have also chosen not to send an email directly to
their 100 million customers, because that would be costly and would risk spamming
too many customers. Instead, they will subtly look for that best strategy through
online learning. What is online learning? It consists of deploying a different strategy
each time a customer browses the e-commerce website.

As the customer navigates the website, they will suddenly get a pop-up ad, suggesting
to them that they subscribe to the premium plan. For each customer browsing the
website, only one of the nine strategies will be displayed. Then the user will choose,
or not, to take action and subscribe to the premium plan. If the customer subscribes,
the strategy is a success; otherwise, it is a failure. The more customers we do this with,
the more feedback we collect, and the better idea we get of what the best strategy is.

But of course, we will not figure this out manually, visually, or with some simple
math. Instead we want to implement the smartest algorithm that will figure out
what the best strategy is in the shortest time. That's for the same two reasons: firstly,
because deploying each strategy has a cost (for example, coming from the pop-up
ad); and secondly, because the company wants to annoy the fewest customers with
their ad.

Building the environment inside
a simulation
This section is quite special, because there's something crucial to understand which
is not obvious at first sight. The reason for this warning is my experience in teaching
this subject; many of my students had issues understanding why we have to do
a simulation here, for this whole problem.

It was the same for me when I started! If you already understand why we have to
make a simulation, that's great—it means you already have online learning under
your skin. If not, follow me here and let me explain carefully.

To understand, let's start by explaining what would happen in real life: you
would simply display the "call to action" pop-up ad of one of the nine strategies to
customers who are navigating the website, and you'd do this one customer at a time.
You'd have to do it one customer at a time, customer after customer, because for each
customer you need to collect their response: whether or not the customer subscribes
to the premium plan. If the customer does, the reward is 1. If not, the reward is 0. It
would go like this:

WOW! eBook
www.wowebook.org

AI for Sales and Advertising – Sell like the Wolf of AI Street

[62]

Round 1: We display Ad 1 of Strategy 1 to a customer, Customer 1, and we check to
see if the customer chooses to subscribe. If yes, we get a 1 reward, if no, we get a 0
reward. After collecting our reward, we move on to the next customer (next round).

Round 2: We display Ad 2 of Strategy 2 to a new customer, Customer 2, and we check
to see if the customer chooses to subscribe. If yes, we get a 1 reward, if no, we get a 0
reward. After collecting our reward, we move on to the next customer (next round).

…

Round 9: We display Ad 9 of Strategy 9 to a new customer, Customer 9, and we check
to see if the customer chooses to subscribe. If yes, we get a 1 reward, if no, we get a 0
reward. After collecting our reward, we move on to the next customer (next round).

Round 10: We finally start activating Thompson Sampling! We use the Thompson
Sampling AI to tell us which ad has the strongest magic touch to convert the
maximum customers to subscribe to the premium plan. We want that extra revenue!
The AI (powered by Thompson Sampling) selects one of the 9 ads to display to a new
customer, Customer 10, and then checks to see if the customer chooses to subscribe.
If yes, we get a 1 reward, if no, we get a 0 reward. After collecting our reward, we
move on to the next customer (next round).

Round 11: The AI (powered by Thompson Sampling) selects one of the 9 ads to
display to a new customer, say Customer 11, and then checks to see if the customer
chooses to subscribe. If yes, we get a 1 reward, if no, we get a 0 reward. After
collecting our reward, we move on to the next customer (next round).

OK, I'll stop! You get the idea. That continues on and on for hundreds of rounds, or
at least until the AI has found the best ad—the one with the highest conversion rate.

This is what would happen in real life. We don't need anything else at each round;
if you look at the Thompson Sampling algorithm, at each round it only needs the
number of times each ad has received a 1 reward in the previous rounds, and the
number of times each ad has received a 0 reward in the previous rounds. In conclusion,
and this is a very important conclusion: Thompson Sampling absolutely does not need
to know the conversion rates of the ads in order to figure out the best ad.

However, in order to simulate this application, we will need to attribute a conversion
rate to each of these ads. That's for the simple reason that if we don't do this, we will
never be able to verify that Thompson Sampling indeed found the best ad. This is
just to check that the AI works!

WOW! eBook
www.wowebook.org

Chapter 6

[63]

What we will do is attribute a different conversion rate to each of the nine strategies.
The purpose of this simulation will only be to check that the AI manages to catch
the best ad, with the highest conversion rate. Let me rephrase this as two essential
points:

1. Thompson Sampling at no time needs to know the conversion rates in order
to figure out the highest one.

2. The only reason we know the conversion rates in advance is because we are
doing a simulation, just to check that Thompson Sampling actually manages
to figure out the ad that has the highest conversion rate.

Now we've got that covered, let's finally set these conversion rates. We will assume
the nine strategies have the following conversion rates:

Figure 2: Conversion rates of the 9 strategies

Now, we behind the scenes know in advance which strategy has the highest
conversion rate: Strategy number 7. However, Thompson Sampling doesn't
know it. If you pay attention, you can see the fact that at no time does Thompson
Sampling use the conversion rates when running its algorithm over the rounds. It
only knows the number of successes (subscriptions) and failures (no subscriptions)
that have been accumulated over the previous rounds. You can see that most clearly
in the code.

WOW! eBook
www.wowebook.org

AI for Sales and Advertising – Sell like the Wolf of AI Street

[64]

Lastly, please make sure to keep in mind that in a real-life situation we would
have no idea of what these conversion rates might be. We only know them here for
simulation purposes, so that we can check in the end that our AI has managed to
figure out the best strategy—which in our simulation here is Strategy 7.

The next question is: how exactly are we going to run that simulation?

Running the simulation
First, let's recap the different components of the environment (state, action,
and reward):

1. The state is simply a specific customer onto whom we deploy a strategy and
show them the ad of that strategy.

2. The action is the strategy selected to be deployed on the customer.
3. The reward is 1 if the customer subscribes to the premium plan, and 0

otherwise.

Then, let's say that this e-commerce business wants to run the experiment of figuring
out the best strategy on 10,000 customers. Why the choice of 10,000? Because
statistically, this is a large enough sample size to represent the whole base of
customers. So, how are we going to simulate the response of 10,000 customers, based
on the conversion rates of the ads established before? We don't have a choice other
than to take a spreadsheet like Excel, or Google Sheets, and simulate how the 10,000
customers would respond to each of the 9 ads. Here's how we are going to do this;
it's a pretty nice trick.

We are going to create a matrix of 10,000 rows and 9 columns. Each row will
correspond to a specific customer, and each column will correspond to a specific
strategy. To be clear, let's say that:

Row 1 corresponds to Customer 1.

Row 2 corresponds to Customer 2.

…

Row 10000 corresponds to Customer 10000.

Column 1 corresponds to Strategy 1.

Column 2 corresponds to Strategy 2.

…

Column 9 corresponds to Strategy 9.

WOW! eBook
www.wowebook.org

Chapter 6

[65]

In the cells of this matrix, we'll place a reward of 1 or 0 depending on whether each
of these 10,000 customers would respond positively (subscription) or negatively (no
subscription) to each of the 9 strategies. Here's where the "pretty nice trick" comes
into play. In order to simulate the response of these 10,000 customers to the 9 ads
while considering the conversion rates of these ads, here is what we do:

For each customer (row) and for each strategy (column), we draw a random number
between 0 and 1. If this random number is lower than the conversion rate of the
strategy, the reward is 1. If this random number is higher than the conversion rate
of the strategy, the reward is 0. Why does that work? Because by doing so, we will
always have a p% chance of getting a 1, where p is the conversion rate of the strategy
deployed to that customer.

For example, let's take Strategy 4, which has a conversion rate of 0.16. For each of the
customers, we draw a random number between 0 and 1. That random number has
a 16% chance of being between 0 and 0.16, and a (100 – 16) = 84% chance of being
between 0.16 and 1. Therefore, since we get a 1 when our random number is between
0 and 0.16, and we get a 0 when our random number is between 0.16 and 1, then that
means we have a 16% chance of getting a 1, and an 84% chance of getting a zero.

That simulates exactly the fact that when Strategy 4 is deployed on a customer, that
same customer will have a 16% chance of subscribing to the premium plan; that
exactly corresponds to getting a 1 reward.

I hope you like the trick. It's pretty classic, but it's used very often in AI; it's
important for you to know about it. We apply that trick to each of the 10,000 x 9 pairs
of (customer, strategy) and we get the following matrix (this image only shows the
first 10 rows):

Figure 3: Simulated matrix of rewards

WOW! eBook
www.wowebook.org

AI for Sales and Advertising – Sell like the Wolf of AI Street

[66]

Let's go through the three first rows in detail:

1. The first customer (row of index 0) would not subscribe to the premium plan
after being approached by any strategy.

2. The second customer (row of index 1) would subscribe to the premium plan
after being approached by Strategy 5 or Strategy 7 only.

3. The third customer (row of index 2) would not subscribe to the premium
plan after being approached by any strategy.

We can already see in this preview that our little trick works; the ads with the
lowest conversion rates (Strategies 1, 6, and 9) have only 0 rewards for the 11 first
customers, while the ads with the highest conversion rates (Strategies 4 and 7) have
some 1 rewards already. Note that the indexes here in this Python table start at 0; it's
always like that in Python, and unfortunately there is nothing we can do about it.
Don't worry, though, you'll get used to it!

If you're a code lover, the code that generated this simulation is presented a little
further along in the chapter.

Our next step is to take a step back and recap.

Recap
We're ready to simulate the actions of Thompson Sampling on 10,000 customers
successively being approached by one of the 9 strategies, thanks to the preceding
matrix, which will exactly simulate the decision of the customer to subscribe or not
to the premium plan.

If the cell corresponding to a specific customer and a specific selected strategy has
a 1, that simulates a conversion by the customer to the premium plan. If the cell
has a 0, that simulates a rejection. Thompson Sampling will collect the feedback
of whether or not each of these customers subscribes to the premium plan, one
customer after the other. Then, thanks to its powerful algorithm, it will quickly
figure out the strategy with the highest conversion rate.

That strategy is the best one to be deployed on millions of customers, maximizing the
company's income from this new revenue stream.

AI solution and intuition refresher
Before you enjoy seeing your AI in action, let's refresh our memories and adapt the
whole Thompson Sampling AI model to this new problem.

WOW! eBook
www.wowebook.org

Chapter 6

[67]

By the way, if you don't like this e-commerce business application, feel totally free
to imagine yourself back into the casino, surrounded by nine slot machines having
the same conversion rates as the ones given to our strategies. It's exactly the same
scenario; the 9 strategies could very well be nine slot machines giving with the same
conversion rates either a 1 reward (making you money) or a 0 reward (taking your
money). Your goal would be to figure out as quickly as possible which slot machine
has the highest chance of giving you the jackpot! It's up to you. Feel free to either go
for Vegas or the AI Street, but as far as this chapter is concerned, I'll stick with our
e-commerce business.

For starters, let's remind ourselves that each time we show an ad to a new customer,
that's considered a new round, n, and we select one of our 9 strategies to attempt
a conversion (subscription to the premium plan). The goal is to figure out the best
strategy (associated with the ad with the highest conversion rate) in the lowest
number of rounds. Here's how Thompson Sampling does that:

AI solution
For each round n over 10,000 rounds, repeat the following three steps:

Step 1: For each strategy i, take a random draw from the following distribution:

() () ()()1 01, 1i i in N n N nθ β + +∼

where:

1. ()1
iN n is the number of times the strategy i has received a 1 reward up to

round n.
2. ()0

iN n is the number of times the strategy i has received a 0 reward up to
round n.

Step 2: Select the strategy ()s n that has the highest ()i nθ :

()
{ }

()()
1, ,9

argmax i
i

s n nθ
∈

=
…

Step 3: Update () ()1
s nN n and () ()0

s nN n according to the following conditions:

1. If the strategy selected ()s n received a 1 reward:

𝑁𝑁𝑠𝑠(𝑛𝑛)1 (𝑛𝑛) ≔ 𝑁𝑁𝑠𝑠(𝑛𝑛)1 (𝑛𝑛) + 1

WOW! eBook
www.wowebook.org

AI for Sales and Advertising – Sell like the Wolf of AI Street

[68]

2. If the strategy selected ()s n received a 0 reward:

() () () ()0 0: 1s n s nN n N n= +

Now we've seen the mathematical steps, let's remind ourselves of the intuition
behind them.

Intuition
Each strategy has its own Beta distribution. Over the rounds, the Beta distribution
of the strategy with the highest conversion rate will progressively be shifted to the
right, and the Beta distributions of the strategies with lower conversion rates will be
progressively shifted to the left (Steps 1 and 3). Therefore, in Step 2, the strategy with
the highest conversion rate will be selected more and more often. Here is a graph
displaying three Beta distributions of three strategies to help you visualize this:

Figure 4: Three Beta distributions

You've taken a step back and you've had a refresher; I think you're ready for the
implementation! In the next section, you'll put all that theory into practice—in other
words, into code.

Implementation
You'll develop the code as you work along this chapter, but keep in mind that I've
provided the whole implementation of Thompson Sampling for this application; you
have it available on the GitHub page (https://github.com/PacktPublishing/
AI-Crash-Course) of this book. If you want to try and run the code, you can do it
on Colaboratory, Spyder in Anaconda, or simply your favorite IDE.

WOW! eBook
www.wowebook.org

https://github.com/PacktPublishing/AI-Crash-Course
https://github.com/PacktPublishing/AI-Crash-Course

Chapter 6

[69]

Thompson Sampling vs. Random Selection
While implementing Thompson Sampling, you'll also implement the Random
Selection algorithm, which will simply select a random strategy at each round. This
will be your benchmark to evaluate the performance of your Thompson Sampling
model. Of course, Thompson Sampling and the Random Selection algorithm will be
competing on the same simulation, that is, on the same environment matrix.

Performance measure
In the end, after the whole simulation is done, you can assess the performance of
Thompson Sampling by computing the relative return, defined by the following
formula:

() ()TotalRewardof ThompsonSampling TotalRewardof RandomSelection
RelativeReturn

TotalRewardof RandomSelection
−

=

You'll also have the chance to plot the histogram of selected ads, just to check that the
strategy with the highest conversion rate (Strategy 7) was the one selected the most.

Let's start coding
First, import the three following required libraries:

1. numpy, which you will use to build the environment matrix.
2. matplotlib.pyplot, which you will use to plot the histogram.
3. random, which you will use to generate the random numbers needed for the

simulation.

Here is the extracted code from GitHub:

AI for Sales & Advertizing - Sell like the Wolf of AI Street

Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import random

Then set the parameters for the number of customers and strategies:

1. N = 10,000 customers.
2. d = 9 strategies.

WOW! eBook
www.wowebook.org

AI for Sales and Advertising – Sell like the Wolf of AI Street

[70]

Code:

Setting the parameters
N = 10000
d = 9

Then, create the simulation by building the environment matrix of 10,000 rows
corresponding to the customers and 9 columns corresponding to the strategies. At
each round, and for each strategy, you draw a random number between 0 and 1. If
this random number is lower than the conversion rate of the strategy, the reward will
be 1. Otherwise, it will be 0. The environment matrix is named X in the code.

Code:

Building the environment inside a simulation
conversion_rates = [0.05,0.13,0.09,0.16,0.11,0.04,0.20,0.08,0.01]
X = np.array(np.zeros([N,d]))
for i in range(N):
 for j in range(d):
 if np.random.rand() <= conversion_rates[j]:
 X[i,j] = 1

Now that the environment is ready, you can start implementing the AI. To do
so, the first step is to introduce and initialize the variables you will need for the
implementation:

1. strategies_selected_rs: A list that will contain the strategies selected
over the rounds by the Random Selection algorithm. Initialize it as an
empty list.

2. strategies_selected_ts: A list that will contain the strategies selected
over the rounds by the Thompson Sampling AI model. Initialize it as an
empty list.

3. total_rewards_rs: The total reward accumulated over the rounds by the
Random Selection algorithm. Initialize it as 0.

4. total_rewards_ts: The total reward accumulated over the rounds by the
Thompson Sampling AI model. Initialize it as 0.

5. number_of_rewards_1: A list of 9 elements which will contain for each
strategy the number of times it received a 1 reward. Initialize it as a list
of 9 zeros.

6. number_of_rewards_0: A list of 9 elements which will contain for each
strategy the number of times it received a 0 reward. Initialize it as a list
of 9 zeros.

WOW! eBook
www.wowebook.org

Chapter 6

[71]

Code:

Implementing Random Selection and Thompson Sampling
strategies_selected_rs = []
strategies_selected_ts = []
total_reward_rs = 0
total_reward_ts = 0
numbers_of_rewards_1 = [0] * d
numbers_of_rewards_0 = [0] * d

Then you need to begin the for loop that will iterate the 10,000 rows (that is,
the customers) of this environment matrix. At each round you'll get two separate
selections of the deployed strategy; one from the Random Selection algorithm, and
one from Thompson Sampling.

Let's start with the Random Selection algorithm, which simply selects a random
strategy in each round.

Code:

for n in range(0, N):
 # Random Selection
 strategy_rs = random.randrange(d)
 strategies_selected_rs.append(strategy_rs)
 reward_rs = X[n, strategy_rs]
 total_reward_rs = total_reward_rs + reward_rs

Next, you need to implement Thompson Sampling following exactly Steps 1, 2, and
3 provided previously. I recommend looking at these steps again before coding the
next part, and try to code by yourself before seeing my solution. That's the best way
you can progress; practice makes perfect. You have all the elements required to
code this; you even have similar code in Chapter 5, Your First AI Model – Beware the
Bandits!. Good luck! Here is the solution.

You should implement Thompson Sampling step by step, starting with the first step.
Let's remind ourselves of it:

Step 1: For each strategy i, take a random draw from the following distribution:

() () ()()1 01, 1i i in N n N nθ β + +∼

WOW! eBook
www.wowebook.org

AI for Sales and Advertising – Sell like the Wolf of AI Street

[72]

where:

1. ()1
iN n is the number of times the strategy i has received a 1 reward up to

round n
2. ()0

iN n is the number of times the strategy i has received a 0 reward up to
round n

Let's see how Step 1 is implemented.

Code a second for loop that iterates the 9 strategies, because you have to take a
random draw from the Beta distribution of each of the 9 strategies.

The random draws from the Beta distributions are generated by the betavariate()
function taken from the random library, which you imported at the beginning.

Code:

 # Thompson Sampling
 strategy_ts = 0
 max_random = 0
 for i in range(0, d):
 random_beta = random.betavariate(numbers_of_rewards_1[i] + 1,
numbers_of_rewards_0[i] + 1)

Now implement Step 2, that is:

Step 2: Select the strategy ()s n that has the highest ()i nθ :

()
{ }

()()
1, ,9

argmax i
i

s n nθ
∈

=
…

To implement Step 2, you stay in the second for loop which iterates the 9 strategies,
and use a simple trick with an if condition that will figure out the highest ()i nθ .

The trick is the following: while iterating the strategies, if you find a random draw
(random_beta) that is higher than the maximum of the random draws obtained so
far (max_random), then that maximum becomes equal to that higher random draw.

Code:

 # Thompson Sampling
 strategy_ts = 0
 max_random = 0
 for i in range(0, d):
 random_beta = random.betavariate(numbers_of_rewards_1[i] + 1,
numbers_of_rewards_0[i] + 1)

WOW! eBook
www.wowebook.org

Chapter 6

[73]

 if random_beta > max_random:
 max_random = random_beta
 strategy_ts = i
 reward_ts = X[n, strategy_ts]

And finally, let's implement Step 3, the easiest one:

Step 3: Update () ()1
s nN n and () ()0

s nN n according to the following conditions:

1. If the strategy selected ()s n received a 1 reward:

() () () ()1 1: 1s n s nN n N n= +

2. If the strategy selected ()s n received a 0 reward:

() () () ()0 0: 1s n s nN n N n= +

Implement that simply with the exact same two if conditions, translated into code.

Code:

 # Thompson Sampling
 strategy_ts = 0
 max_random = 0
 for i in range(0, d):
 random_beta = random.betavariate(numbers_of_rewards_1[i] + 1,
numbers_of_rewards_0[i] + 1)
 if random_beta > max_random:
 max_random = random_beta
 strategy_ts = i
 reward_ts = X[n, strategy_ts]
 if reward_ts == 1:
 numbers_of_rewards_1[strategy_ts] = numbers_of_
rewards_1[strategy_ts] + 1
 else:
 numbers_of_rewards_0[strategy_ts] = numbers_of_
rewards_0[strategy_ts] + 1

Next, don't forget to add the strategy selected in Step 2 to our list of strategies
(strategies_selected_ts), and also to compute the total reward accumulated over
the rounds by Thompson Sampling (total_reward_ts).

WOW! eBook
www.wowebook.org

AI for Sales and Advertising – Sell like the Wolf of AI Street

[74]

Code:

 # Thompson Sampling
 strategy_ts = 0
 max_random = 0
 for i in range(0, d):
 random_beta = random.betavariate(numbers_of_rewards_1[i] + 1,
numbers_of_rewards_0[i] + 1)
 if random_beta > max_random:
 max_random = random_beta
 strategy_ts = i
 reward_ts = X[n, strategy_ts]
 if reward_ts == 1:
 numbers_of_rewards_1[strategy_ts] = numbers_of_
rewards_1[strategy_ts] + 1
 else:
 numbers_of_rewards_0[strategy_ts] = numbers_of_
rewards_0[strategy_ts] + 1
 strategies_selected_ts.append(strategy_ts)
 total_reward_ts = total_reward_ts + reward_ts

Then compute the final score, which is the relative return of Thompson Sampling
with respect to our benchmark, which is Random Selection:

Code:

Computing the Relative Return
relative_return = (total_reward_ts - total_reward_rs) / total_reward_
rs * 100
print("Relative Return: {:.0f} %".format(relative_return))

The final result
By executing this code, I obtained a final relative return of 91%. In other words,
Thompson Sampling almost doubled the performance of my Random Selection
benchmark. Not too bad!

Finally, plot a histogram of the selected strategies to check that Strategy 7 (at
index 6) was the one most selected, since it is the one with the highest conversion
rate. To do this, use the hist() function from the matplotlib library.

Code:

Plotting the Histogram of Selections
plt.hist(strategies_selected_ts)
plt.title('Histogram of Selections')

WOW! eBook
www.wowebook.org

Chapter 6

[75]

plt.xlabel('Strategy')
plt.ylabel('Number of times the strategy was selected')
plt.show()

This is the most exciting time—the code is complete (congrats by the way), and you
can enjoy the results. Having the final relative return is nice, but finishing with a
clean visualization plot is even better. And that's what you get by executing the
final code:

Figure 5: Histogram of Selections

You can see that the strategy at index 6, Strategy 7, was by far selected the most.
Thompson Sampling was quickly able to identify it as the best strategy. In fact, if
you re-run the same code but with only 1,000 customers, you'll see that Thompson
Sampling is still able to identify Strategy 7 as the best one.

Thompson Sampling did an amazing job for this e-commerce business. Not only was
it able to identify the best strategy in a small number of rounds—that means fewer
customers, which saves on advertising and operating costs—but also it was able to
clearly figure out the strategy with the highest conversion rate.

WOW! eBook
www.wowebook.org

AI for Sales and Advertising – Sell like the Wolf of AI Street

[76]

If this e-commerce business has, for example, 50 million customers, and if the
premium plan has a price of $200 per year, then deploying this best strategy with a
conversion rate of 20 % would lead to generate an extra revenue of 50,000,000 × 0.2 ×
$200 = $2 billion!

In other words, Thompson Sampling clearly and quickly smashed the sales and
advertising for this e-commerce business, so much so that we really can call it the
wolf of AI Street.

Now, take a break, you deserve it. Get refreshed, and as soon as you are recharged
and all set for a new AI adventure, I'll be here ready as well to start the next chapter.
See you back soon!

Summary
In this first practical tutorial, you implemented Thompson Sampling to solve the
multi-armed bandit problem as applied to an advertising campaign. Thompson
Sampling was able to find the best business strategy quickly, something which
Random Selection was unable to do. In total you generated 91% of relative return,
which, after making some assumptions, would generate an extra 2 billion dollars in
revenue. You did that in just one file in less than 60 lines of code. Quite astounding,
right?

WOW! eBook
www.wowebook.org

[77]

Welcome to Q-Learning
Ladies and gentlemen, things are about to get even more interesting than before.
The next model we are about to tackle is at the heart of many AIs built today; robots,
autonomous vehicles, and even AI players of video games. They all use Q-learning at
the core of their model. Some of them even combine Q-learning with deep learning,
making a highly advanced version of Q-learning called deep Q-learning, which we
will cover in Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning.

All of the AI fundamentals still apply to Q-learning, as follows:

1. Q-learning is a Reinforcement Learning model.
2. Q-learning works on the inputs (states) and outputs (actions) principle.
3. Q-learning works on a predefined environment, including the states

(the inputs), the actions (the outputs), and the rewards.
4. Q-learning is modeled by a Markov decision process.
5. Q-learning uses a training mode, during which the parameters that are

learned are called the Q-values, and an inference mode.

Now we can add two more fundamentals, this time specific to Q-learning:

1. There are a finite number of states (there is not an infinity of possible inputs).
2. There are a finite number of actions (only a certain number of actions can

be performed).

That's all! There are no more fundamentals to keep in mind; now we can really
dig into Q-learning, which you'll see is not that hard and really quite intuitive.

WOW! eBook
www.wowebook.org

Welcome to Q-Learning

[78]

To explain Q-learning, we'll use an example so that you won't get lost inside pure
theory, and so that you can visualize what's happening. On that note: welcome to
the Maze.

The Maze
You are going to learn how Q-learning works inside a maze. Let's draw our maze
right away; here it is:

Figure 1: The Maze

I know, it's the simplest maze you have ever seen. That's important for the sake of
simplicity, so that you can mostly focus on how the AI works its magic. Imagine if
you got lost in this chapter because of the maze and not because of the AI formulas!
The important thing is that you have a clear maze, and you can visualize how the
AI might manage to find its way from the beginning to the end.

Speaking of the beginning and the end, imagine a little robot inside this maze,
starting at point E (Entrance). Its goal is to find the quickest way to point G (Goal).
We humans can figure that out in no time, but that's only because our maze is
so simple. What you are going to build is an AI that can go from a starting point
to an ending point, regardless of how complex the maze is. Let's get started!

Beginnings
Here is a question for you: what do you think is going to be the very first step?

I'll give you three possible answers:

1. We start writing some math equations.

WOW! eBook
www.wowebook.org

Chapter 7

[79]

2. We build the environment.
3. We try to make it work with Thompson Sampling (the AI model of the

previous chapter).

The correct answer is…

2. We build the environment.

That was easy, but I wanted to highlight that in a question to make sure you keep
in mind that this must always be the first step when building an AI. After clearly
understanding the problem, the first step of building your AI solution is always
to set up the environment.

That begs a further question:

What steps, exactly, are you going to take when building that environment?

Try to remember the answer—you've already learned this—and then read on for
a recap.

1. Firstly, you'll define the states (the inputs of your AI).
2. Secondly, you'll define the actions that can be performed (the outputs

of your AI).
3. Thirdly, you'll define the rewards. Remember, the reward is what the

AI gets after performing an action in a certain state.

Now we've secured the basics, so you can tackle that first step of defining the
environment.

Building the environment
To build the environment, we need to define the states, the actions, and the rewards.

The states
Let's begin with the states. What do you think are going to be the states for this
problem? Remember, the states are the inputs of your AI. And they should contain
enough information for the AI to be able to take an action that will lead it to its final
goal (reaching point E).

In this model, we don't have too much of a choice. The state, at a specific time or
specific iteration, is simply going to be the position of the AI at that time. In other
words, it is going to be the letter of the location, from A to L, where the AI is in at
a specific time.

WOW! eBook
www.wowebook.org

Welcome to Q-Learning

[80]

As you might guess, the next step after building the environment will be writing the
mathematical equations at the heart of the AI, and to help you with that, it makes
it much easier to encode the states into unique integers instead of keeping them
as letters. That's exactly what we are going to do, with the following mapping:

Figure 2: Location to state mapping

Notice that we abide by the first specific fundamental of Q-learning, that is: there are
a finite number of states.

Let's move on to the actions.

The actions
The actions are simply going to be the next moves the AI can make to go from one
location to the next. For example, let's say the AI is in location J; the possible actions
that the AI can perform are to go to I, to F, or to K. Again, since you'll be working
with math equations, you can encode these actions with the same indexes as for
the states.

Following the example where the AI is in location J at a specific time, the possible
actions that the AI can perform are 5, 8, and 10, according to our previous mapping
above: the index 5 corresponds to F, the index 8 corresponds to I, and the index
10 corresponds to K.

WOW! eBook
www.wowebook.org

Chapter 7

[81]

Hence, the possible actions are simply the indexes of the different locations that
can be reached:

Possible actions = {0,1,2,3,4,5,6,7,8,9,10,11}

Notice that again, we abide by the second specific fundamental of Q-learning, that is:
there are a finite number of actions.

Now obviously, when in a specific location, there are some actions that the AI cannot
perform. Taking the same previous example, if the AI is in location J, it can perform
the actions 5, 8, and 10, but it cannot perform the other actions. You can make sure to
specify that by attributing a 0 reward to the actions it cannot perform, and a 1 reward
to the actions it can perform. That brings us to the rewards.

The rewards
You're almost done with your environment—last, but not least, you have to define
a system of rewards. More specifically, you have to define a reward function R that
takes as input a state s and an action a, and returns a numerical reward r that the
AI will get by performing the action a in the state s:

R: (s, a) � r∈R

So, how can you build such a function for our case study? Here, it is simple. Since
there are a discrete and finite number of states (the indexes from 0 to 11), as well
as a discrete and finite number of actions (same indexes from 0 to 11), the best way
to build your reward function R is to simply make a matrix.

Your reward function will be a matrix of exactly 12 rows and 12 columns, where the
rows correspond to the states, and the columns correspond to the actions. That way,
in your function R: (s, a) � r∈R, s will be the row index of the matrix, a will be the
column index of the matrix, and r will be the cell of index (s, a) in the matrix.

To build this reward matrix, what you first have to do is attribute, for each of the
12 locations, a 0 reward to the actions that the robot cannot perform, and a 1 reward
to the actions the robot can perform. By doing that for each of the 12 locations, you
will end up with a matrix of rewards. Let's build it step by step, starting with the
first location: location A.

WOW! eBook
www.wowebook.org

Welcome to Q-Learning

[82]

When in location A, the robot can only go to location B. Therefore, since location
A has index 0 (first row of the matrix) and location B has index 1 (second column of
the matrix), the first row of the matrix of rewards will get a 1 on the second column,
and a 0 on all the other columns, like so:

Figure 3: Rewards matrix – Step 1

Let's move on to location B. When in location B, the robot can only go to three
different locations: A, C, and F. Since B has index 1 (second row), and A, C, and
F have respective indexes 0, 2, and 5 (1st, 3rd, and 6th column), then the second
row of the matrix of rewards will get a 1 on the 1st, 3rd, and 6th columns, and
0 on all the other columns:

Figure 4: Rewards matrix – Step 2

WOW! eBook
www.wowebook.org

Chapter 7

[83]

C (of index 2) is only connected to B and G (of indexes 1 and 6) so the third row of
the matrix of rewards is:

Figure 5: Rewards matrix – Step 3

By doing the same for all the other locations, you eventually get your final matrix
of rewards:

Figure 6: Rewards matrix - Step 4

WOW! eBook
www.wowebook.org

Welcome to Q-Learning

[84]

And that's how you initialize the matrix of rewards.

But wait—you're not actually finished. There is one final thing you need to do.
It's a step that's crucial to understand. In fact, let me ask you another question,
the ultimate one, which will check if your intuition is already shaping up:

How can you let the AI know that it has to go to that top priority location G?

It's easy—you do it simply by playing with the rewards. You must keep in mind that
with Reinforcement Learning, everything works from the rewards. If you attribute
a high reward to location G, for example 1000, then the AI will automatically try to
go and catch that high reward, simply because it is larger than the rewards of the
other locations.

In short, and it's a fundamental point to understand and remember in Reinforcement
Learning in general, the AI is always looking for the highest reward. That's why
the trick to reach location G is simply to attribute it a higher reward than the other
locations.

For now, manually put a high reward (1000) inside the cell corresponding to location
G, because it is the goal location where we want our AI to go. Since location G has an
index of 6, we put a 1000 reward on the cell of row 6 and column 6. Accordingly, our
matrix of rewards becomes:

Figure 7: Rewards matrix - Step 5

You have defined the rewards! You did it by simply building this matrix of rewards.
It is important to understand that this is usually the way we define the system of
rewards when doing Q-learning.

WOW! eBook
www.wowebook.org

Chapter 7

[85]

In Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning, which is about
deep Q-learning, you will see that we will proceed very differently and build the
environment much more easily. In fact, deep Q-learning is the advanced version
of Q-learning that is widely used today in AI, far more than the simple Q-learning
model itself. But you have to tackle Q-learning first, in depth, in order to be ready for
deep Q-learning.

Since you've defined the states, the actions, and the rewards, you have finished
building the environment. This means you are ready to tackle the next step, where
you will build the AI itself that will do its magic inside this environment that you've
just defined.

Building the AI
Now that you have built an environment in which you clearly defined the goal with
a relevant system of rewards, it's time to build the AI. I hope you're ready for a little
math.

I'll break down this second step into several sub-steps, leading you to the final
Q-learning model. To that end, we'll cover three important concepts at the heart
of Q-learning, in the following order:

1. The Q-value
2. The temporal difference
3. The Bellman equation

Let's get started by learning about the Q-value.

The Q-value
Before you start getting into the details of Q-learning, I need to explain the concept of
the Q-value. Here's how it works:

To each couple of state and action (s, a), we are going to associate a numeric value
Q(s, a):

() (): , ,Q s S a A Q s a∈ ∈ ∈� �

We will say that Q(s, a) is "the Q-value of the action a performed in the state s."

Now I know the sort of questions you might be asking in your head: What does this
Q-value mean? What does it represent? How do I even compute it? These were some
of the questions I had in my mind when I first learned Q-learning.

In order to answer these questions, I need to introduce the temporal difference.

WOW! eBook
www.wowebook.org

Welcome to Q-Learning

[86]

The temporal difference
This is where the math really comes in. Let's say we are in a specific state ts ,
at a specific time t. Let's just perform an action randomly, any of them. That brings us
to the next state 𝑠𝑠𝑡𝑡+1 and we get the reward (),t tR s a .

The temporal difference at time t, denoted by (),t t tTD s a , is the difference between:

1. () ()()1, max ,t t t
a

R s a Q s a++ γ , that is, the reward (),t tR s a obtained by

performing the action ta in the state ts , plus the Q-value of the best action
performed in the future state 𝑠𝑠𝑡𝑡+1 , discounted by a factor []0,1γ∈ , called
the discount factor

2. and (),t tQ s a , that is, the Q-value of the action ta performed in the state ts .

This leads to:

() () ()() ()1, , max , ,t t t t t t t t
a

TD s a R s a Q s a Q s a+= + γ −

You might think that's great, that you understand all the terms, but you're probably
also thinking "But what does that all mean?" Don't worry—that's exactly what I was
thinking when I was learning this.

I'm going to explain while at the same time improving your AI intuition. The first
thing to understand is that the temporal difference represents how well the AI is
learning. Here's how it works exactly, with respect to the training process (during
which the Q-values are learned):

1. At the beginning of the training, the Q-values are set to zero. Since the AI
is looking to get the good rewards (here 1 or 1000), it is looking for the
high temporal differences (see the formula of TD). Accordingly, if in the
first iterations, (),t t tTD s a is high, the AI gets a "pleasant surprise" because
that means the AI was able to find a good reward. On the other hand,
if (),t t tTD s a is small, the AI gets a "frustration."

2. When the AI gets a great reward, the specific Q-value of the (state, action)
that led to that great reward increases, so the AI can remember how it got to
that high reward (you'll see exactly how it increases in the next section). For
example, let's say that it was the action ta performed in the state ts that led to
that high reward (),t tR s a . That would mean the Q-value (),t tQ s a increases
automatically (remember, you'll see how in the next section). Those increased
Q-values are important information, because they indicate to the AI which
transitions lead to the good rewards.

WOW! eBook
www.wowebook.org

Chapter 7

[87]

3. The next step of the AI is not only to look for the great rewards, but also to
look at the same time for the high Q-values. Why? Because the high Q-values
are the ones that lead to the great reward. In fact, the high Q-values are
the ones that lead to higher Q-values, themselves leading to even higher
Q-values, themselves leading eventually to the highest reward (1000). That's
the role of ()()1max ,t

a
Q s a+γ in the temporal difference formula. Everything

will become crystal clear when you put this into practice. The AI looks for the
high Q-values, and as soon as it finds them, the Q-values of the (state, action)
that led to these high Q-values will increase again, since they indicate the
right path towards the goal.

4. At some point, the AI will know all the transitions that lead to the good
rewards and high Q-values. Since the Q-values of these transitions have
already been increased over time, the temporal differences decrease in the
end. In fact, the closer we get to the final goal, the smaller the temporal
differences become.

In conclusion, the temporal difference is like a temporary intrinsic reward, of which
the AI will try to find the large values at the beginning of the training. Eventually,
the AI will minimize this reward as it gets to the end of the training—that is, as it
gets closer to the final goal.

That's exactly the intuition of the temporal difference you must have in mind,
because it will really help you understand the magic of Q-learning. Speaking
of that magic, we are about to reveal the last piece of the puzzle.

Now you understand that the AI will iterate some updates of the Q-values towards
the high temporal differences, which are ultimately decreased. But how does it do
that? There is a specific answer to that question—the Bellman equation, the most
famous equation in Reinforcement Learning.

The Bellman equation
In order to perform better and better actions that will lead the AI to reach its
goal, you have to increase the Q-values of actions when you find high temporal
differences. Only one question remains: How will the AI update these Q-values?
Richard Bellman, a pioneer of Reinforcement Learning, created the answer. At each
iteration, you update the Q-values from time t-1 (previous iteration) to t (current
iteration) through the following equation, called the Bellman equation:

𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑇𝑇𝐷𝐷𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)

WOW! eBook
www.wowebook.org

Welcome to Q-Learning

[88]

where 𝛼𝛼 ϵ ℝ is the learning rate, which dictates how fast the learning of the Q-values
goes. Its value is usually between 0 and 1, for example, 0.75. The lower the value of 𝛼𝛼 ,
the smaller the updates of the Q-values, and the longer the Q-learning will take. The
higher its value, the bigger the updates of the Q-values and the faster the Q-learning
will be. As you can clearly see in this equation, when the temporal difference

(),t t tTD s a is high, the Q-value (),t t tQ s a increases.

Reinforcement intuition
Now you have all the elements of Q-learning—congratulations, by the way—
let's connect the dots between all these elements to reinforce your AI intuition.

The Q-values measure the accumulation of "good surprise" or "frustration" associated
with the couple of action and state (),t ts a .

In the "good surprise" case of a high temporal difference, the AI is reinforced,
and in the "frustration" case of a low temporal difference, the AI is weakened.

We want to learn the Q-values that will give the AI the maximum "good surprise,"
and that's exactly what the Bellman equation does by updating the Q-values at
each iteration.

You've learned quite a lot of new information, and even though you've finished with
an intuition section that connects the dots, that's not enough to get a really solid
grasp of Q-learning. The next step is to take a step back, and the best way to do that
is to go through the whole Q-learning process from start to finish so that it becomes
crystal clear in your head.

The whole Q-learning process
Let's summarize the different steps of the whole Q-learning process. To be clear,
the only purpose of this process is to update the Q-values over a certain number of
iterations until they are no longer updated (we refer to that point as convergence).

The number of iterations depends on the complexity of the problem. For our
problem, 1,000 will be enough, but for more complex problems you might want
to consider higher numbers such as 10,000. In short, the Q-learning process is
the part where we train our AI, and it's called Q-learning because it's the process
during which the Q-values are learned. Then I'll explain what happens for the
inference part (pure predictions), which comes, as always, after the training. The
full Q-learning process starts with training mode.

WOW! eBook
www.wowebook.org

Chapter 7

[89]

Training mode
Initialization (First iteration):

For all couples of states s and actions a, the Q-values are initialized to 0.

Next iterations:

At each iteration t ≥ 1, you repeat for a certain number of times (chosen by you the
developer) the following steps:

1. You select a random state ts from the possible states.
2. From that state, you perform a random action ta that can lead to a next

possible state, that is, such that (), 0t tR s a > .
3. You reach the next state 𝑠𝑠𝑡𝑡+1 and you get the reward (),t tR s a .
4. You compute the temporal difference (),t t tTD s a :

() () ()() ()1, , max , ,t t t t t t t t
a

TD s a R s a Q s a Q s a+= + γ −

5. You update the Q-value by applying the Bellman equation:

𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑇𝑇𝐷𝐷𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)

At the end of this process, you have obtained Q-values that no longer update. That
means only one thing; you are ready to hack the maze by going into inference mode.

Inference mode
The training is complete, and now begins the inference. To remind you, the inference
part is when you have a fully trained model with which you are going to make
predictions. In our maze, the predictions that you are going to make are the actions to
perform to take you from start (Location E) to finish (Location G). So, the question is:

How are you going to use the learned Q-values to perform the actions?

Good news; for Q-learning this is very simple. When in a certain state ts , you simply
perform the action ta that has the highest Q-value for that state ts :

()()argmax ,t t
a

a Q s a=

WOW! eBook
www.wowebook.org

Welcome to Q-Learning

[90]

That's all—by doing this at each location (each state), you get to your final
destination through the shortest route. We'll implement this and see the result
in the practical activities or the next chapter.

Summary
In this chapter we studied the Q-learning model, which is only applied to
environments that have a finite number of input states and a finite number
of possible actions to perform.

When performing Q-learning, the AI learns Q-values through an iterative process,
so that the higher the Q-value of a (state, action) pair, the closer the AI gets to the
top reward.

At each iteration the Q-values are updated through the Bellman equation, which
simply consists of adding the temporal difference, discounted by a learning rate
factor. We will get to work on a full practical Q-learning activity in the next chapter,
applied to a real-world business problem.

WOW! eBook
www.wowebook.org

[91]

AI for Logistics – Robots
in a Warehouse

It's time for the next step on our AI journey. I told you at the beginning of this book
that AI has tremendous value to bring to transport and logistics, with self-driving
delivery vehicles that speed up logistical processes. They're a huge boost to the
economy through the e-commerce industry.

In this new chapter, we'll build an AI for just that kind of application. The model
we'll use for this will, of course, be Q-learning (we're saving deep Q-learning for the
self-driving car). Q-learning is a simple, but powerful, AI model that can optimize
the flows of movement in a warehouse, which is the real-world problem you'll solve
here. In order to facilitate this journey, you'll work on an environment you're already
familiar with: the maze we saw in the previous chapter.

The difference is that, this time, the maze will actually be the warehouse of
a business. It could be any business: an e-commerce business, a retail business,
or any business that sells products to customers and that has a warehouse to store
large amounts of products to be sold.

WOW! eBook
www.wowebook.org

AI for Logistics – Robots in a Warehouse

[92]

Let's have a look again at this maze, now a warehouse:

Figure 1: The warehouse

Inside this warehouse, the products are stored in 12 different locations, labeled by
the following letters from A to L:

Figure 2: Locations in the warehouse

WOW! eBook
www.wowebook.org

Chapter 8

[93]

When orders are placed by customers, a robot moves around the warehouse to
collect the products for delivery. That will be your AI! Here's what it looks like:

Figure 3: Warehouse robot

The 12 locations are all connected to a computer system, which ranks in real time the
product collection priorities for these 12 locations. As an example, let's say that at
a specific time, t, it returns the following ranking:

Figure 4: Top priority locations

WOW! eBook
www.wowebook.org

AI for Logistics – Robots in a Warehouse

[94]

Location G has priority 1, which means it's the top priority, as it contains a product
that must be collected and delivered immediately. Our robot must move to location
G by the shortest route depending on where it is. Our goal is to actually build an
AI that will return that shortest route, wherever the robot is.

But we could do even better. Here, locations K and L are in the top 3 priorities.
Hence, it would be great to implement an option for our robot to go via some
intermediary locations before reaching its final top priority location.

The way the system computes the priorities of the locations is outside the scope of
this case study. The reason for this is that there can be many ways, from simple rules
or algorithms, to deterministic computations, to machine learning, to compute these
priorities. But most of these ways would not be AI as we know it today. What we
really want to focus on in this exercise is the core AI, encompassing Reinforcement
Learning and Q-learning. We can just say for the purposes of this example that
location G is the top priority because one of the most loyal platinum-level customers
of the company placed an urgent order of a product stored in location G, which
therefore must be delivered as soon as possible.

In conclusion, our mission is to build an AI that will always take the shortest route
to the top priority location, whatever the location it starts from, and have the option
to go by an intermediary location which is in the top three priorities.

Building the environment
When building an AI, the first thing we always have to do is define the environment.
Defining an environment always requires the following three elements:

• Defining the states
• Defining the actions
• Defining the rewards

These three elements have already been defined in the previous chapter on
Q-learning, but let's quickly remind ourselves what they are.

The states
The state, at a specific time t, is the location where the robot is at that time t.
However, remember, you have to encode the location names so that our AI can
do the math.

WOW! eBook
www.wowebook.org

Chapter 8

[95]

At the risk of disappointing you, given all the crazy hype about AI, let's remain
realistic and understand that Q-learning is nothing more than a bunch of math
equations; just like any other AI model. Let's make the encoding integers start at 0,
simply because indexes in Python start at 0:

Figure 5: Location to state mapping

The actions
The actions are the next possible destinations to which the robot can go. You can
encode these destinations with the same indexes as the states. Hence, the total list
of actions that the AI can perform is the following:

actions = [0,1,2,3,4,5,6,7,8,9,10,11]

The rewards
Remember, when in a specific location, there are some actions that the robot cannot
perform. For example, if the robot is in location J, it can perform the actions 5, 8,
and 10, but it cannot perform the other actions. You can specify that by attributing
a reward of 0 to the actions it cannot perform, and a reward of 1 to the actions it can
perform.

WOW! eBook
www.wowebook.org

AI for Logistics – Robots in a Warehouse

[96]

That brings you to building the following matrix of rewards:

Figure 6: Rewards matrix

AI solution refresher
It never hurts to get a little refresher of a model before implementing it! Let's remind
ourselves of the steps of the Q-learning process; this time, adapting it to your new
problem. Let's welcome Q-learning back on stage:

Initialization (first iteration)
For all pairs of states s and actions a, the Q-values are initialized to 0:

()For allstates 0, ,11and actions 0, ,11: , 0s a Q s a= = =… …

Next iterations
At each iteration t ≥ 1, the AI will repeat the following steps:

1. It selects a random state ts from the possible states:

()random 0,1,2,3,4,5,6,7,8,9,10,11ts =

WOW! eBook
www.wowebook.org

Chapter 8

[97]

2. It performs a random action ta that can lead to a next possible state, that
is, such that (), 0t tR s a > :

() ()random 0,1,2,3,4,5,6,7,8,9,10,11 s.t. , 0t t ta R s a= >

3. It reaches the next state 1ts + and gets the reward (),t tR s a .
4. It computes the temporal difference (),t t tTD s a :

() () ()() ()1, , max , ,t t t t t t t t
a

TD s a R s a Q s a Q s a+= + γ −

5. It updates the Q-value by applying the Bellman equation:

𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑇𝑇𝐷𝐷𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)

We repeat these steps over 1,000 iterations. Why 1,000? The choice of 1,000 comes
from my experimentation with this particular environment. I chose a number that's
large enough for the Q-values to converge over the training. 100 wasn't large enough,
but 1,000 was. Usually, you can just pick a very large number, for example, 5,000,
and you will get convergence (that is, the Q-values will no longer update). However,
that depends on the complexity of the problem. If you are dealing with a much
more complex environment, for example, if you had hundreds of locations in the
warehouse, you'd need a much higher number of training iterations.

That's the whole process. Now, you're going to implement it in Python from scratch!

Are you ready? Let's do this.

Implementation
Alright, let's smash this. But first, try to smash this yourself without me. Of course,
this is a journey we'll take together, but I really don't mind if you take some steps
ahead of me. The faster you become independent in AI, the sooner you'll do wonders
with it. Try to implement the Q-learning process mentioned previously, exactly as it
is. It's okay if you don't implement everything; what matters is that you try.

That's enough coaching; no matter how successful you were, let's go through the
solution.

WOW! eBook
www.wowebook.org

AI for Logistics – Robots in a Warehouse

[98]

First, start by importing the libraries that you'll use in this implementation. There's
only one needed this time: the numpy library, which offers a practical way of working
with arrays and mathematical operations. Give it the shortcut np.

AI for Logistics - Robots in a warehouse

Importing the libraries
import numpy as np

Then, set the parameters of your model. These include the discount factor γ and the
learning rate 𝛼𝛼 , which are the only parameters of the Q-learning model. Give them
the values of 0.75 and 0.9 respectively, which I've arbitrarily picked but are usually
a good choice. These are decent values to start with if you don't know what to use.
However, you'll get the same result with similar values.

Setting the parameters gamma and alpha for the Q-Learning
gamma = 0.75
alpha = 0.9

The two previous code sections were simply the introductory sections, before you
really start to build your AI model. The next step is to start the first part of our
implementation.

Try to remember what you have to do now, as a first general step of building an AI.

You build the environment!

I just wanted to highlight that, once again; it's really compulsory. The environment
will be the first part of your code:

Part 1 – Building the environment
Let's look at the whole structure of this implementation so that you can take a step
back already. Your code will be structured in three parts:

• Part 1 – Building the environment
• Part 2 – Building the AI solution with Q-learning (training)
• Part 3 – Going into production (inference)

WOW! eBook
www.wowebook.org

Chapter 8

[99]

Let's start with part 1. For that, you define the states, the actions, and the rewards.
Begin by defining the states, with a Python dictionary mapping the location's names
(in letters from A to L) into the states (in indexes from 0 to 11). Call this dictionary
location_to_state:

PART 1 - BUILDING THE ENVIRONMENT

Defining the states
location_to_state = {'A': 0,
 'B': 1,
 'C': 2,
 'D': 3,
 'E': 4,
 'F': 5,
 'G': 6,
 'H': 7,
 'I': 8,
 'J': 9,
 'K': 10,
 'L': 11}

Then, define the actions with a simple list of indexes from 0 to 11. Remember that
each action index corresponds to the next location where that action leads to:

Defining the actions
actions = [0,1,2,3,4,5,6,7,8,9,10,11]

Finally, define the rewards, by creating a matrix of rewards where the rows
correspond to the current states ts , the columns correspond to the actions ta leading
to the next state 1ts + , and the cells contain the rewards (),t tR s a . If a cell (),t ts a
contains a 1, that means the AI can perform the action ta from the current state, ts
to reach the next state 1ts + . If a cell (),t ts a contains a 0, that means the AI cannot
perform the action ta from the current state ts to reach any next state 1ts + .

Now, you might remember this very important question, the answer of which is at
the heart of Reinforcement Learning.

How will you let the AI know that it has to go to that top priority location G?

Everything works with the reward.

WOW! eBook
www.wowebook.org

AI for Logistics – Robots in a Warehouse

[100]

I must insist, again, that you remember this. If you attribute a high reward to
location G, then the AI, through the Q-learning process, will learn to catch that high
reward in the most efficient way because it is larger than the rewards of getting to
the other locations.

Remember this very important rule: the AI, when it is powered by Q-learning
(or deep Q-learning, as you'll soon learn), will always learn to reach the highest
reward by the quickest route that does not penalize the AI with negative rewards.
That's why the trick to reach location G is simply to attribute it a higher reward than
the other locations.

Start by manually putting a high reward, which can be any high number as long as
it is larger than 1, inside the cell corresponding to location G; location G is the top
priority location where the robot has to go in order to collect the products.

Since location G has encoded index state 6, put a 1000 reward in the cell of row 6 and
column 6. Later on, we will improve your solution by implementing an automatic
way of going to the top priority location, without having to manually update the
matrix of rewards and leaving it initialized with 0s and 1s just as it should be. For
now, here's your matrix of rewards, including the manual update.

Defining the rewards
R = np.array([[0,1,0,0,0,0,0,0,0,0,0,0],
 [1,0,1,0,0,1,0,0,0,0,0,0],
 [0,1,0,0,0,0,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,1,0,0,0,0],
 [0,0,0,0,0,0,0,0,1,0,0,0],
 [0,1,0,0,0,0,0,0,0,1,0,0],
 [0,0,1,0,0,0,1000,1,0,0,0,0],
 [0,0,0,1,0,0,1,0,0,0,0,1],
 [0,0,0,0,1,0,0,0,0,1,0,0],
 [0,0,0,0,0,1,0,0,1,0,1,0],
 [0,0,0,0,0,0,0,0,0,1,0,1],
 [0,0,0,0,0,0,0,1,0,0,1,0]])

That completes this first part. Now, let's begin the second part of your
implementation.

WOW! eBook
www.wowebook.org

Chapter 8

[101]

Part 2 – Building the AI Solution with
Q-learning
To build your AI solution, follow the Q-learning algorithm exactly as it was provided
previously. If you had any trouble when you tried implementing Q-learning on your
own, now is your chance for revenge. Literally, all that's about to follow is only and
exactly the same Q-learning process translated into code.

Now you've got that in your mind, try coding it on your own again. You can do it!

Congratulations if you tried, no matter how it came out. Next, let's check if you got
it right.

First, initialize all the Q-values by creating your matrix of Q-values full of 0s, in
which the rows correspond to the current states ts , the columns correspond to the
actions ta leading to the next state 1ts + , and the cells contain the Q-values 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) .

PART 2 - BUILDING THE AI SOLUTION WITH Q-LEARNING

Initializing the Q-values
Q = np.array(np.zeros([12,12]))

Then implement the Q-learning process with a for loop over 1,000 iterations,
repeating the exact same steps of the Q-learning process 1,000 times.

Implementing the Q-Learning process
for i in range(1000):
 current_state = np.random.randint(0,12)
 playable_actions = []
 for j in range(12):
 if R[current_state, j] > 0:
 playable_actions.append(j)
 next_state = np.random.choice(playable_actions)
 TD = R[current_state, next_state] + gamma * Q[next_state,
np.argmax(Q[next_state,])] - Q[current_state, next_state]
 Q[current_state, next_state] = Q[current_state, next_state] +
alpha * TD

WOW! eBook
www.wowebook.org

AI for Logistics – Robots in a Warehouse

[102]

Now you've reached the first really exciting step of the journey. You're actually ready
to launch the Q-learning process and get your final Q-values. Execute the whole code
you've implemented so far, and visualize the Q-values with the following simple
print statements:

print("Q-values:")
print(Q.astype(int))

Here's what I got:

Q-values:

[[0 1661 0 0 0 0 0 0 0 0 0 0]

 [1246 0 2213 0 0 1246 0 0 0 0 0 0]

 [0 1661 0 0 0 0 2970 0 0 0 0 0]

 [0 0 0 0 0 0 0 2225 0 0 0 0]

 [0 0 0 0 0 0 0 0 703 0 0 0]

 [0 1661 0 0 0 0 0 0 0 931 0 0]

 [0 0 2213 0 0 0 3968 2225 0 0 0 0]

 [0 0 0 1661 0 0 2968 0 0 0 0 1670]

 [0 0 0 0 528 0 0 0 0 936 0 0]

 [0 0 0 0 0 1246 0 0 703 0 1246 0]

 [0 0 0 0 0 0 0 0 0 936 0 1661]

 [0 0 0 0 0 0 0 2225 0 0 1246 0]]

If you're working on Spyder in Anaconda, then for more visual clarity you can even
check the matrix of Q-values directly in Variable Explorer, by double-clicking on
Q. Then, to get the Q-values as integers, you can click on Format and enter a float
formatting of %.0f. You get the following, which is a bit clearer since you can see
the indexes of the rows and columns in your Q matrix:

Figure 7: Matrix of Q-values

WOW! eBook
www.wowebook.org

Chapter 8

[103]

Now that you have your matrix of Q-values, you're ready to go into production—
you can move on to the third part of the implementation.

Part 3 – Going into production
In other words, you're going into inference mode! In this part, you'll compute the
optimal path from any starting location to any ending top priority location. The idea
here is to implement a route function, that takes as inputs a starting location and
an ending location and that returns as output the shortest route inside a Python list.
The starting location corresponds to wherever our autonomous warehouse robot is
at a given time, and the ending location corresponds to where the robot has to go as
a top priority.

Since you'll want to input the locations with their names (in letters), as opposed
to their states (in indexes), you'll need a dictionary that maps the location states
(in indexes) to the location names (in letters). That's the first thing to do here in this
third part, using a trick to invert your previous dictionary, location_to_state,
since you simply want to get the exact inverse mapping from this dictionary:

PART 3 - GOING INTO PRODUCTION

Making a mapping from the states to the locations
state_to_location = {state: location for location, state in location_
to_state.items()}

Now, please focus— if the dots haven't perfectly connected in your mind, now is the
time when they will. I'll show you the exact steps of how the robot manages to figure
out the shortest route.

Your robot is going to go from location E to location G. Here's the explanation of
exactly how it does that—I'll enumerate the different steps of the process. Follow
along on the matrix of Q-values as I explain:

1. The AI starts at the starting location E.
2. The AI gets the state of location E, which according to your location_to_

state mapping is 0 4s = .
3. On the row of index 0 4s = in our matrix of Q-values, the AI chooses the

column that has the maximum Q-value (703).
4. This column has index 8, so the AI performs the action of index 8, which

leads it to the next state 1 8ts + = .
5. The AI gets the location of state 8, which according to our state_to_

location mapping is location I. Since the next location is location I, I is
appended to the AI's list containing the optimal path.

WOW! eBook
www.wowebook.org

AI for Logistics – Robots in a Warehouse

[104]

6. Then, starting from the new location I, the AI repeats the same previous five
steps until it reaches our final destination, location G.

That's it! That's exactly what you have to implement. You have to generalize this to
any starting and ending locations, and the best way to do that is through a function
taking two inputs:

1. starting_location: The location at which the AI starts
2. ending_location: The top priority location to which it has to go

and returning the optimal route. Since we're talking about a route, you can call
that function route().

An important thing to understand inside this route() function is that since you
don't know how many locations the AI will have to go through between the starting
and ending locations, you have to make a while loop which will repeat the 5-step
process described previously, and that will stop as soon as it reaches the top priority
end location.

Making the final function that will return the optimal route
def route(starting_location, ending_location):
 route = [starting_location]
 next_location = starting_location
 while (next_location != ending_location):
 starting_state = location_to_state[starting_location]
 next_state = np.argmax(Q[starting_state,])
 next_location = state_to_location[next_state]
 route.append(next_location)
 starting_location = next_location
 return route

Congratulations! Your AI is now ready. Not only does it have the training process
implemented, but also the code to run in inference mode. The only thing that's not
great so far is that you still have to manually update the matrix of rewards; but no
worries, we'll get to that later on. Before we get to that, let's first check that you have
an intermediary victory here, and then we can get to work on improvements.

Printing the final route
print('Route:')
route('E', 'G')

WOW! eBook
www.wowebook.org

Chapter 8

[105]

The following is the output:

Route:

Out[1]: ['E', 'I', 'J', 'F', 'B', 'C', 'G']

Out[2]: ['E', 'I', 'J', 'K', 'L', 'H', 'G']

That's perfect—I ran the code twice when testing it to go from E to G, which is why
you see the two preceding outputs. The two possible optimal paths were returned:
one passing by F, and the other one passing by K.

That's a good start. You have a first version of your AI model that functions well.
Now let's improve your AI, and take it to the next level.

You can improve the AI in two ways. Firstly, by automating the reward attribution
to the top priority location so that you don't have to do it manually. Secondly, by
adding a feature that gives the AI the option to go by an intermediate location before
going to the top priority location—that intermediate location should be in the top
three priority locations.

In our top priority locations ranking, the second top priority location is location K.
Therefore, in order to optimize the warehouse flows, your autonomous warehouse
robot must go via location K to collect products on its way to the top priority location
G. One way to do this is to have the option to go by an intermediate location in the
process of your route() function. This is exactly what you'll implement as a second
improvement.

First, let's implement the first improvement, the one that automates the reward
attribution.

Improvement 1 – Automating reward
attribution
The way to do this is in three steps.

Step 1: Go back to the original matrix of rewards, as it was before with only 1s and
0s. Part 1 of the code becomes the following, and will be included in the final code:

PART 1 - BUILDING THE ENVIRONMENT

Defining the states
location_to_state = {'A': 0,
 'B': 1,
 'C': 2,
 'D': 3,

WOW! eBook
www.wowebook.org

AI for Logistics – Robots in a Warehouse

[106]

 'E': 4,
 'F': 5,
 'G': 6,
 'H': 7,
 'I': 8,
 'J': 9,
 'K': 10,
 'L': 11}

Defining the actions
actions = [0,1,2,3,4,5,6,7,8,9,10,11]

Defining the rewards
R = np.array([[0,1,0,0,0,0,0,0,0,0,0,0],
 [1,0,1,0,0,1,0,0,0,0,0,0],
 [0,1,0,0,0,0,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,1,0,0,0,0],
 [0,0,0,0,0,0,0,0,1,0,0,0],
 [0,1,0,0,0,0,0,0,0,1,0,0],
 [0,0,1,0,0,0,1,1,0,0,0,0],
 [0,0,0,1,0,0,1,0,0,0,0,1],
 [0,0,0,0,1,0,0,0,0,1,0,0],
 [0,0,0,0,0,1,0,0,1,0,1,0],
 [0,0,0,0,0,0,0,0,0,1,0,1],
 [0,0,0,0,0,0,0,1,0,0,1,0]])

Step 2: In part 2 of the code, make a copy (call it R_new) of your rewards matrix,
inside which the route() function can automatically update the reward in the cell
of the ending location.

Why do you have to make a copy? Because you have to keep the original matrix of
rewards initialized with 1s and 0s for future modifications when you want to go to
a new priority location. So, how will the route() function automatically update
the reward in the cell of the ending location? That's an easy one: since the ending
location is one of the inputs of the route() function, then by using your location_
to_state dictionary, you can very easily find that cell and update its reward to
1000. Here's how you do that:

Making a function that returns the shortest route from a starting
to ending location
def route(starting_location, ending_location):
 R_new = np.copy(R)

WOW! eBook
www.wowebook.org

Chapter 8

[107]

 ending_state = location_to_state[ending_location]
 R_new[ending_state, ending_state] = 1000

Step 3: You must include the whole Q-learning algorithm (including the initialization
step) inside the route() function, right after we make that update of the reward
in your copy (R_new) of the rewards matrix. In your previous implementation,
the Q-learning process happened on the original version of the rewards matrix.
Now that original version needs to stay as it is, that is, initialized to 1s and 0s only.
Therefore, you must include the Q-learning process inside the route() function, and
make it happen on your copy of the rewards matrix R_new, instead of the original
rewards matrix R. Here's how you do that:

Making a function that returns the shortest route from a starting to
ending location
def route(starting_location, ending_location):
 R_new = np.copy(R)
 ending_state = location_to_state[ending_location]
 R_new[ending_state, ending_state] = 1000
 Q = np.array(np.zeros([12,12]))
 for i in range(1000):
 current_state = np.random.randint(0,12)
 playable_actions = []
 for j in range(12):
 if R_new[current_state, j] > 0:
 playable_actions.append(j)
 next_state = np.random.choice(playable_actions)
 TD = R_new[current_state, next_state] + gamma * Q[next_state,
np.argmax(Q[next_state,])] - Q[current_state, next_state]
 Q[current_state, next_state] = Q[current_state, next_state] +
alpha * TD
 route = [starting_location]
 next_location = starting_location
 while (next_location != ending_location):
 starting_state = location_to_state[starting_location]
 next_state = np.argmax(Q[starting_state,])
 next_location = state_to_location[next_state]
 route.append(next_location)
 starting_location = next_location
 return route

WOW! eBook
www.wowebook.org

AI for Logistics – Robots in a Warehouse

[108]

Perfect; part 2 is now ready! Here's part 2 of the final code in full:

PART 2 - BUILDING THE AI SOLUTION WITH Q-LEARNING

Making a mapping from the states to the locations
state_to_location = {state: location for location, state in location_
to_state.items()}

Making a function that returns the shortest route from a starting to
ending location
def route(starting_location, ending_location):
 R_new = np.copy(R)
 ending_state = location_to_state[ending_location]
 R_new[ending_state, ending_state] = 1000
 Q = np.array(np.zeros([12,12]))
 for i in range(1000):
 current_state = np.random.randint(0,12)
 playable_actions = []
 for j in range(12):
 if R_new[current_state, j] > 0:
 playable_actions.append(j)
 next_state = np.random.choice(playable_actions)
 TD = R_new[current_state, next_state] + gamma * Q[next_state,
np.argmax(Q[next_state,])] - Q[current_state, next_state]
 Q[current_state, next_state] = Q[current_state, next_state] +
alpha * TD
 route = [starting_location]
 next_location = starting_location
 while (next_location != ending_location):
 starting_state = location_to_state[starting_location]
 next_state = np.argmax(Q[starting_state,])
 next_location = state_to_location[next_state]
 route.append(next_location)
 starting_location = next_location
 return route

If you execute this new code several times with the start and end points of E and G,
you'll get the same two possible optimal paths as before. You can also play around
with the route() function and try out different starting and ending points. Try it out!

Improvement 2 – Adding an intermediate goal
Now, let's tackle the second improvement. There are three possible solutions to the
problem of adding the option to go by the intermediate location K, the second top
priority location. When you see them, you'll understand what I meant when I told
you that everything in Reinforcement Learning works by the rewards.

WOW! eBook
www.wowebook.org

Chapter 8

[109]

Only one of the solutions works from every starting point, but I'd like to give you all
three solutions to help reinforce your intuition. To help with that, here's a reminder
of our warehouse layout:

Figure 8: Locations in the warehouse

Solution 1: Give a high reward to the action leading from location J to location K.
This high reward must be larger than 1, and below 1,000. It must be larger than 1 so
that the Q-learning process favors the action leading from J to K, as opposed to the
action leading from J to F, which has a reward of 1. It must also be below 1,000 so
that the highest reward stays on the top priority location, to make sure the AI ends
up there. For example, in your rewards matrix you can give a high reward of 500 to
the cell in the row of index 9 and the column of index 10, since that cell corresponds
to the action leading from location J (state index 9) to location K (state index 10).
That way, your AI robot will always go by location K when going from location
E to location G. Here's how the matrix of rewards would look in that case:

Defining the rewards
R = np.array([[0,1,0,0,0,0,0,0,0,0,0,0],
 [1,0,1,0,0,1,0,0,0,0,0,0],
 [0,1,0,0,0,0,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,1,0,0,0,0],
 [0,0,0,0,0,0,0,0,1,0,0,0],
 [0,1,0,0,0,0,0,0,0,1,0,0],
 [0,0,1,0,0,0,1,1,0,0,0,0],
 [0,0,0,1,0,0,1,0,0,0,0,1],
 [0,0,0,0,1,0,0,0,0,1,0,0],
 [0,0,0,0,0,1,0,0,1,0,500,0],
 [0,0,0,0,0,0,0,0,0,1,0,1],
 [0,0,0,0,0,0,0,1,0,0,1,0]])

WOW! eBook
www.wowebook.org

AI for Logistics – Robots in a Warehouse

[110]

This solution does not work in every case, and actually only works for starting points
E, I, and J. That's because the 500 weight can only affect the decision of the AI as to
whether or not it should go from J to K; it doesn't change how likely it is for the AI
to go to J in the first place.

Solution 2: Give a bad reward to the action leading from location J to location F.
This bad reward just has to be below 0. By punishing this action with a bad reward,
the Q-learning process will never favor the action leading from J to F. For example,
in your rewards matrix, you can give a bad reward of -500 to the cell in the row
of index 9 and the column of index 5, since that cell corresponds to the action
leading from location J (state index 9) to location F (state index 5). That way, your
autonomous warehouse robot will never go from location J to location F on its way
to location G. Here's how the matrix of rewards would look in that case:

Defining the rewards
R = np.array([[0,1,0,0,0,0,0,0,0,0,0,0],
 [1,0,1,0,0,1,0,0,0,0,0,0],
 [0,1,0,0,0,0,1,0,0,0,0,0],
 [0,0,0,0,0,0,0,1,0,0,0,0],
 [0,0,0,0,0,0,0,0,1,0,0,0],
 [0,1,0,0,0,0,0,0,0,1,0,0],
 [0,0,1,0,0,0,1,1,0,0,0,0],
 [0,0,0,1,0,0,1,0,0,0,0,1],
 [0,0,0,0,1,0,0,0,0,1,0,0],
 [0,0,0,0,0,-500,0,0,1,0,1,0],
 [0,0,0,0,0,0,0,0,0,1,0,1],
 [0,0,0,0,0,0,0,1,0,0,1,0]])

This solution does not work in every case, and actually only works for starting points
E, I, and J. Just as in solution 1, that's because the -500 weight can only affect the
decision of the AI as to whether or not it should go from J to F; it doesn't change
how likely it is for the AI to go to J in the first place.

Solution 3: Make an additional best_route() function, taking as inputs the three
starting, intermediary, and ending locations, which will call your previous route()
function twice; the first time from the starting location to the intermediary location,
and a second time from the intermediary location to the ending location.

The first two solutions are easy to implement manually, but tricky to implement
automatically. It is easy to automatically get the index of the intermediary location
via which you want the AI to go, but it's difficult to get the index of the location that
leads to that intermediary location, since it depends on the starting location and
ending location. If you try to implement either the first or second solution, you'll
see what I mean. Besides, solutions 1 and 2 do not work as global solutions.

WOW! eBook
www.wowebook.org

Chapter 8

[111]

Only solution 3 guarantees that the AI will visit an intermediate location before
going to the final location.

Accordingly, we'll implement solution 3, which can be coded in just two extra lines
of code, and which I included in Part 3 – Going into production:

PART 3 - GOING INTO PRODUCTION

Making the final function that returns the optimal route
def best_route(starting_location, intermediary_location, ending_
location):
 return route(starting_location, intermediary_location) +
route(intermediary_location, ending_location)[1:]

Printing the final route
print('Route:')
best_route('E', 'K', 'G')

Easy, right? Sometimes, the best solutions are the simplest ones. That's definitely the
case here. As you can see, included in Part 3 is the code that runs the ultimate test.
This test will be successful if the AI goes through location K while taking the shortest
route from location E to location G. To test it, execute this whole new code as many
times as you want; you'll always get the same, expected output:

Route:

['E', 'I', 'J', 'K', 'L', 'H', 'G']

Congratulations! You've developed a fully functional AI, powered by Q-learning,
which solves an optimization problem for logistics. Using this AI robot, we can now
go from any location to any new top priority location, while optimizing our paths
to collect products in a second priority intermediary location. Not bad! If you get
bored with logistics, feel free to imagine yourself back in the maze, and try the best_
route() function with whatever starting and ending points you would like, so you
can see how flexible the AI you've created is. Have fun with it! And, of course, you
have the full code available for you on the GitHub page.

Summary
In this chapter, you've implemented a Q-learning solution to a business problem.
You had to find the best route to a certain location in your warehouse. Not only
have you done that, but you've also implemented additional code that allowed
your AI to make as many intermediary stops as you wanted. Based on the obtained
rewards, your AI was able to find the best route going through these stops. That was
Q-learning for warehouse robots. Now, let's move on to deep Q-learning!

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

[113]

Going Pro with Artificial
Brains – Deep Q-Learning

This next AI model is fantastic, because it is the first AI model that is really inspired
by human intelligence. I hope you're ready to go pro on the next exciting step in your
AI journey; this book is not only a crash course on AI, but also an introduction to
deep learning.

Today, some of the top AI models integrate deep learning. They form a new branch
of AI called deep Reinforcement Learning. The model we'll cover in this chapter
belongs to that branch, and is called deep Q-learning. You already know what
Q-learning is all about, but you might not know anything about deep learning and
Artificial Neural Networks (ANNs); we'll start with them. Of course, if you are an
expert in deep learning, you can skip the first sections of this chapter, but consider
that a little refresher never hurt anyone.

Before we start going through the theory, you'll begin with real, working code
written in Python. You'll create some AI first, and then I'll help you understand it
afterwards. Right now, we're going to build an ANN to predict house prices.

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[114]

Predicting house prices
What we want to do is predict how much a certain house might cost, based on some
variables. In order to do so you need to follow these four steps:

1. Get some historical data on house sales; for this example, you'll use a dataset
of about 20,000 houses in Seattle.

2. Import this data to your code while applying some scaling to your variables
(I'll explain scaling to you as we go).

3. Build an Artificial Neural Network using any library—you'll use Keras, as it
is simple and reliable.

4. Train your ANN and get the results.

Now that you know the structure of your future code, you can start writing it. Since
all the libraries that you'll use are available in Google Colab, you can easily use it to
perform this task.

Uploading the dataset
Start by creating a new Google Colab notebook. Once we have created your new
notebook, before you start coding anything, you have to upload your dataset. You
can find this dataset, called kc_house_data.csv, on the GitHub repository in the
Chapter 09 folder.

Figure 1: GitHub – Chapter 09

WOW! eBook
www.wowebook.org

Chapter 9

[115]

Once you have done that, you can upload it to Colab by doing the following:

1. Click this little arrow here:

Figure 2: Google Colab – Uploading files (1/3)

2. In the window that pops up, go to Files. You should get something like this:

Figure 3: Google Colab – Uploading files (2/3)

3. Click on UPLOAD and then select the file location where you saved the
kc_house_data dataset.

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[116]

4. After you have done that, you should get a new folder with our dataset,
like this:

Figure 4: Google Colab – Uploading files (3/3)

Great! Now you can start coding.

Importing libraries
Every time you start coding something you ought to begin by importing the
necessary libraries. Therefore, we start our code with these lines:

3 # Importing the libraries

4 import pandas as pd

5 import numpy as np

6 import keras

7 from sklearn.model_selection import train_test_split

8 from sklearn.preprocessing import MinMaxScaler

9 from keras.layers import Dense, Dropout

10 from keras.models import Sequential

11 from keras.optimizers import Adam

In lines 4 and 5, after the comment, you import the pandas and numpy libraries.
Pandas will help you read the dataset and NumPy is very useful when you're
dealing with arrays or lists; you'll use it to drop some unnecessary columns from
your dataset.

In the two subsequent lines you import two useful tools from the Scikit-Learn
library. The first one is a tool that will help split the dataset into a training set and
a test set (you should always have both of them; the AI model is trained on the
training set and then tested on the test set) and the second one is a scaler that will
help you later when scaling values.

WOW! eBook
www.wowebook.org

Chapter 9

[117]

Lines 9, 10, and 11 are responsible for importing the keras library, which you'll use
in order to build a neural network. Each of these tools is used later in the code.

Now that you have imported your libraries you can read the dataset. Do it by using
the Pandas library you imported before, with this one line:

13 # Importing the dataset

14 dataset = pd.read_csv('kc_house_data.csv')

Since you used pd as an abbreviation for the Pandas library when you imported it,
you can use it to shorten your code. After you call the Pandas library with pd, you
can use one of its functions, read_csv, which, as the name suggests, reads csv files.
Then in the brackets you input the file name, which in your case is kc_house_data.
csv. No other arguments are needed.

Now I have a little exercise for you! Have a look at the dataset and try to judge which
of the variables will matter for our price prediction. Believe me, not all of them are
relevant. I strongly suggest that you try to do it alone even though we'll discuss them
in the next section.

Excluding variables
Were you able to discern which variables are necessary and which are not? Don't
worry if not; we'll explain them and their relevance right now.

The following table explains every column in our dataset:

Variable Description

Id Unique ID for each household

Date Date when the house was sold

Price How much the house cost when sold

Bedrooms Number of bedrooms

Bathrooms Number of bathrooms; 0.5 represents room with a toilet
but no shower

Sqft_living Square footage of the apartment's interior living space

Sqft_lot Square footage of the land space

Floors Number of floors

Waterfront 0 if the apartment doesn't overlooking the waterfront, 1
if it does

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[118]

Variable Description

View Value in the range 0-4 depending on how good the view
of the property is

Condition Value from 1-5 defining the condition of the property

Grade Value from 1-13 indicating the design and construction
of the building

Sqft_above The square footage of the interior housing space that is
above ground level

Sqft_basement The square footage of the basement

Yr_built Year when the house was built

Yr_renovated Year when the house was renovated (0 if wasn't)

Zipcode Zip code of the area house is located in

Lat Latitude

Long Longitude

Sqft_living15 The square footage of the interior housing living space
for the nearest 15 neighbors

Sqft_lot15 Square footage of the land lots of the nearest 15
neighbors

It turns out that from those 21 variables, only 18 count. That is because unique,
category-like values do not have any impact on your prediction. That includes Id,
Date, and Zipcode. Price is the target of your prediction, and therefore you should
get rid of that from your variables as well. After all that, you have 17 independent
variables.

Now that we have explained all the variables and decided which are relevant
and which are not, you can go back to your code. You're going to exclude these
unnecessary variables and split the dataset into the features and the target (in our
case the target is price).

16 # Getting separately the features and the targets

17 X = dataset.iloc[:, 3:].values

18 X = X[:, np.r_[0:13,14:18]]

19 y = dataset.iloc[:, 2].values

WOW! eBook
www.wowebook.org

Chapter 9

[119]

On line 17, you take all rows and all columns starting with the fourth one (since
you're excluding Id, Date, Price) from your dataset and call this new set X. You use
.iloc to slice the dataset, and then take .values to change it to a NumPy object.
These will be your features.

Next you need to exclude Zipcode, which quite unfortunately is in the middle of the
features set. That's why you have to use a NumPy function (np.r_) that separates
X, excludes the columns you choose (in this case it is column 14. 13 is the index of
this column, since indexes in Python start with zero; it's also worth mentioning that
upper bounds are excluded in Python notation, which is why we write 0:13), and
then connects them once again to form a new array. In the next line, you get the
target of your prediction and call it y. This corresponds to the third column in your
dataset, that is, Price.

Data preparation
Now that you've separated your important features and target, you can split your
X and y into training and test sets. We do that with the following line:

21 # Splitting the dataset into a training set and a test set

22 X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size = 0.2, random_state = 0)

This is very important when doing any kind of machine learning. You always have
to have a training set on which you train your model, and a test set on which you test
it. You perform that operation using the train_test_split function you imported
before. After doing that, you get X_train, which is of equal size to y_train, and
each of them are exactly 80% of our previous X and y set. X_test and y_test are
made up of the remaining 20% of X and y.

Now that you have both a training set and a test set, what do you think the next step
is? Well, you have to scale your data.

Scaling data
Now you might be wondering why on earth you have to perform such an operation.
You already have the data, so why not build and train the neural network already?

There's a problem with that; if we leave the data as it is, you'll notice that your ANN
does not learn. The reason for that is because different variables will impact your
prediction more or less depending on their values.

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[120]

Take this graph illustrating what I mean, based on a property that has 3 bedrooms
and 1,350 square feet of living area.

Figure 5: Example for 3 bedrooms and 1350 square feet of living area

You can clearly see that the number of bedrooms won't affect the prediction as
much as Sqft_living will. Even we humans cannot see any difference between zero
bedrooms and three bedrooms on this graph.

One of many solutions to this problem is to scale all variables to be in a range
between 0 and 1. We achieve this by calculating this equation:

min
scaled

max min

x xx
x x
−

=
−

where:

• x – the value we are scaling in our case every value in a column
• xmin – minimum value across all in a column
• xmax – maximum value across all in a column
• xscaled – x after performing scaling

WOW! eBook
www.wowebook.org

Chapter 9

[121]

After performing this scaling, our previous graph now looks something like this:

Figure 6: Same graph after scaling

Now we can undoubtedly say that the number of bedrooms will have a similar
impact to Sqft_living. We can clearly see the difference between zero bedrooms
and three bedrooms.

So, how do we implement that in code? Since you know the equation, I recommend
that you try to do it yourself. Don't worry if you fail; I'll show you a very simple way
to do it in the next paragraph.

If you were able to scale the data on your own, then congratulations! If not, follow
along through this next section to see the answer. You might have noticed that you
imported a class of Scikit-learn library called MinMaxScaler. You can use that class
to scale the variables with the following code:

24 # Scaling the features

25 xscaler = MinMaxScaler(feature_range = (0,1))

26 X_train = xscaler.fit_transform(X_train)

27 X_test = xscaler.transform(X_test)

28

29 # Scaling the target

30 yscaler = MinMaxScaler(feature_range = (0,1))

31 y_train = yscaler.fit_transform(y_train.reshape(-1,1))

32 y_test = yscaler.transform(y_test.reshape(-1,1))

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[122]

This code creates two scalers, one to scale the features and one to scale the targets.
Call them xscaler and yscaler. The feature_range argument is the range to
which you want your data to be scaled (from 0 to 1 in your case).

Then you use the fit_transform method, which scales X_train and y_train and
adjusts the scalers based on these sets (fit part of this method sets xmin and xmax).
After that you use the transform method to scale X_test and y_test without
adjusting yscaler and xscaler.

When scaling the y variables, you have to reshape them by using .reshape(-1,1) in
order to create a fake second dimension (so the code can treat this one-dimensional
array as a two-dimensional array with one column). We need this fake second
dimension to avoid a format error.

If you still do not understand why we have to use scaling, please read this section
once again. It'll also get clearer once we go through the theory.

Finally, you can proceed to building a neural network! Keep in mind that all the
theory behind it will be covered later in the chapter, so don't be scared if you have
trouble understanding something.

Building the neural network
To build the neural network, you can use a highly reliable and easy to use library
called Keras. Let's get straight into coding it:

34 # Building the Artificial Neural Network

35 model = Sequential()

36 model.add(Dense(units = 64, kernel_initializer = 'uniform',
activation = 'relu', input_dim = 17))

37 model.add(Dense(units = 16, kernel_initializer = 'uniform',
activation = 'relu'))

38 model.add(Dense(units = 1, kernel_initializer = 'uniform',
activation = 'relu'))

39 model.compile(optimizer = Adam(lr = 0.001), loss = 'mse',
metrics = ['mean_absolute_error'])

In line 35 of the code block you instantiate your model by using the Sequential
class from the Keras library.

Next, you add a line that adds a new layer with 64 neurons to your neural network.
kernel_initializer is an argument that defines the way the initial weights are
created in the layer, activation is the activation function of this layer and input_
dim is the size of the input; in your case, these are the 17 features that define how
much a house costs.

WOW! eBook
www.wowebook.org

Chapter 9

[123]

Next, you add two more layers, one with 16 neurons and one with 1 neuron that will
be the output of the neural network.

In the final line of this snippet you use the compile method, which describes how
you want to train your net. Inside this compile method, optimizer is the tool that
performs backpropagation, lr is the learning rate—the speed at which the weights
in the ANN are updated. loss is how you want to calculate the error of the output (I
have decided to go for the mean squared error mse), and metrics is just a value that
will help you visualize performance—you can use mean absolute error.

If you don't know what I'm talking about right now, what activations, losses, and
optimizers are, you don't have to worry. You'll understand them soon, when we get
to the theory later in the chapter.

Training the neural network
Now that you've built your model, you can finally train it!

41 # Training the Artificial Neural Network

42 model.fit(X_train, y_train, batch_size = 32, epochs = 100,
validation_data = (X_test, y_test))

This simple one-liner is responsible for learning.

As the first two arguments of this fit method, you input X_train and y_train which
are the sets your model will be trained on. Then you have an argument called batch_
size; this defines after how many records in your dataset you update your weights
(loss is summed up and back-propagated after batch_size inputs). Next you have
epochs, and this value defines how many times you teach your model on the entire
X_train and y_train set. The final argument is validation_data, and there, as you
can see, you put X_test and y_test. This means that after every epoch, your model
will be tested on this set, but it won't learn from it.

Displaying results
You're nearly there; you have just one last non-obligatory step to take. You calculate
the absolute error on the test set and see its real, unscaled predictions (actual prices,
not in the range (0,1)).

44 # Making predictions on the test set while reversing the scaling

45 y_test = yscaler.inverse_transform(y_test)

46 prediction = yscaler.inverse_transform(model.predict(X_test))

47

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[124]

48 # Computing the error rate

49 error = abs(prediction - y_test)/y_test

50 print(np.mean(error))

You rescale back your y_test on line 45. Then, you make a prediction on your test
set of features and rescale it back too, since the predictions are also scaled down.

In the last two lines you calculate the absolute error using the formula:

100%
prediction actualValue

Error
actualValue

−
= ∗

Since both prediction and y_test are NumPy arrays, you can divide them by simply
using the / symbol. In the last line, you calculate the mean error using a NumPy
function.

Superb! Now that you have it all finished, you can finally run this code and see
the results.

Figure 7: Results

As you can see in the last line, your result is shown. In my case the average error was
13.5%. That is a really good result!

Now we can get into the theory behind deep learning, and find out how a neural
network really works.

WOW! eBook
www.wowebook.org

Chapter 9

[125]

Deep learning theory
Here is our plan of attack to go pro and tackle deep learning:

1. The neuron
2. The activation function
3. How do neural networks work?
4. How do neural networks learn?
5. Forward-propagation and back-propagation
6. Gradient descent, including Batch, Stochastic, and Mini-Batch methods

I hope you're excited about this section—deep learning is an awesome and powerful
field to study.

The neuron
The neuron is the basic building block of Artificial Neural Networks, and they are
based on the neuron cells found the brain.

Biological neurons
In the following images are real-life neurons that have been smeared onto a slide,
colored a little bit, and observed through a microscope:

Figure 8: The neuron

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[126]

As you can see, they have the structure of a central body with lots of different
branches coming out of it. The question is: How can we recreate that in a machine?
We really want to recreate it in a machine, since the whole purpose of deep learning
is to mimic how the human brain works in the hope that by doing so we create
something amazing: a powerful infrastructure for learning machines.

Why do we hope for that? Because the human brain just happens to be one of the
most powerful learning tools on the planet. We hope that if we recreate it, then we'll
have something just as awesome as that.

Our challenge right now, our very first step in creating artificial neural networks, is
to recreate a neuron. So how do we do it? Well, first of all let's take a closer look at
what a neuron actually is.

In 1899, the neuroscientist Santiago Ramón y Cajal dyed neurons in actual brain
tissue, and looked at them under a microscope. While he was looking at them, he
drew what he saw, which was something very much like the slides we looked at
before. Today, technology has advanced quite a lot, allowing us to see neurons much
more closely and in more detail. That means that we can draw what they look like
diagrammatically:

Figure 9: The neuron's structure

This neuron exchanges signals between its neighbor neurons. The dendrites are the
receivers of the signal and the axon is the transmitter of the signal.

The dendrites of the neuron are connected to the axons of other neurons above
it. When the neuron fires, the signal travels down its axon and passes on to the
dendrites of the next neuron. That is how they are connected, and how a neuron
works. Now we can move from neuroscience to technology.

WOW! eBook
www.wowebook.org

Chapter 9

[127]

Artificial neurons
Here's how a neuron is represented inside an Artificial Neural Network:

Figure 10: An Artificial Neural Network with a single neuron

Just like a human neuron, it gets some input signals and it has an output signal. The
blue arrow connecting the input signals to the neuron, and the neuron to the output
signal, are like the synapses in the human neuron.

Here in the artificial neuron, what exactly are the input and output signals going
to be? The input signals are the scaled independent variables composing the
states of the environment. For example, in the server cooling practical example
we'll code later in this book (Chapter 11, AI for Business – Minimize Costs with Deep
Q-Learning), these are the temperature of the server, the number of users, and the
rate of data transmission. The output signal is the output values, which in a deep
Q-learning model are always the Q-Values. Knowing all that, we can make a general
representation of a neuron for machines:

Figure 11: Neuron – The output values

To finish describing the neuron, we need to add the last element missing from this
representation, which is also the most important one: the weights.

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[128]

Each synapse (blue arrow) is attributed a weight. The larger the weight, the stronger
the signal is through the synapse. What is fundamental to understand is that these
weights are what the machine updates over time to improve its predictions. Let's add
them to the previous graphic, to make sure you can visualize them well:

Figure 12: Neuron – The weights

That's the neuron. The next thing to understand is the activation function; the way
the neuron decides what output to produce given a set of inputs.

The activation function
The activation function is the function � , operating inside the neuron, that takes
as inputs the linear sum of the input values multiplied by their associated weights,
and that returns the output value as shown in the following graphic:

Figure 13: The activation function

WOW! eBook
www.wowebook.org

Chapter 9

[129]

such that:

1

m

i i
i

y w xφ
=

 =

∑

Your next question is probably: what exactly is the function �?

There can be many of them, but here we'll describe the three most used ones,
including the one you'll use in the practical activity:

1. The threshold activation function
2. The sigmoid activation function
3. The rectifier activation function

Let's push your expertise further by having a look at them one by one.

The threshold activation function
The threshold activation function is simply defined by the following:

𝜙𝜙(𝑥𝑥) = 1 if 𝑥𝑥 ≥ 0

𝜙𝜙(𝑥𝑥) = 0 if 𝑥𝑥 < 0

and can be represented by the following curve:

Figure 14: The threshold activation function

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[130]

This means that the signal passing through the neuron is discontinuous, and will
only be activated if:

∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 0
𝑚𝑚

𝑖𝑖=1

Now let's have a look at the next activation function: the sigmoid activation
function. The sigmoid activation function is the most effective and widely used one
in Artificial Neural Networks, but mostly in the last hidden layer that leads to the
output layer.

The sigmoid activation function
The sigmoid activation function is defined by the following:

() 1
1 xx
e

φ −=
+

and can be represented by the following curve:

Figure 15: The sigmoid activation function

WOW! eBook
www.wowebook.org

Chapter 9

[131]

This means that the signal passing through the neuron is continuous and will always
be activated. And the higher the value of:

1

m

i i
i
w x

=
∑

the stronger the signal.

Now let's have a look at another widely used activation function: the rectifier
activation function. You'll find it in most of the deep neural networks, but mostly
inside the early hidden layers, as opposed to the sigmoid function, which is rather
used for the last hidden layer leading to the output layer.

The rectifier activation function
The rectifier activation function is simply defined by the following:

() ()max ,0x xφ =

and is therefore represented by the following curve:

Figure 16: The rectifier activation function

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[132]

This means that the signal passing through the neuron is continuous, and will only
be activated if:

∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 0
𝑚𝑚

𝑖𝑖=1

The higher the weighted sum of inputs, the stronger the signal.

That raises the question: which activation function should you choose, or, as it's
more frequently asked, how do you know which one to choose?

The good news is that the answer is simple. It actually depends on what gets
returned as the dependent variable. If it's a binary outcome, 0 or 1, then a good
choice would be the threshold activation function. If what you want returned is the
probability that the dependent variable is 1, then the sigmoid activation function is
an excellent choice, since its sigmoid curve is a perfect fit to model probabilities.

To recap, here's the small blueprint highlighted in this figure:

Figure 17: Activation function blueprint

Remember, the rectifier activation function should be used within the hidden layers of
a deep neural network with more than one hidden layer, and the sigmoid activation
function should be used in the last hidden layer leading to the output layer.

WOW! eBook
www.wowebook.org

Chapter 9

[133]

Let's highlight this in the following figure so that you can visualize it and remember
it better:

Figure 18: Different activation functions in different layers

We're progressing fast! You already know quite a lot about deep learning. It's not
over yet though—let's move on to the next section to explain how neural networks
actually work.

How do neural networks work?
To explain this, let's go back to the problem of predicting real estate prices. We had
some independent variables which we were using to predict the price of houses and
apartments. For simplicity's sake, and to be able to represent everything in a graph,
let's say that our only independent variables (our predictors) are the following:

1. Area (square feet)
2. Number of bedrooms
3. Distance to city (miles)
4. Age

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[134]

Our dependent variable is the apartment price that we're predicting. Here's how the
magic works in deep learning.

A weight is attributed to each of the independent, scaled variables in such a way that
the higher the weight is, the more of an effect the independent variable will have on
the dependent variable; that is, the stronger a predictor it will be of the dependent
variable.

As soon as new inputs enter the neural network, the signals are forward-propagated
from each of the inputs, reaching the neurons of the hidden layer.

Inside each neuron of the hidden layer, the activation function is applied, so that
the lower the weight of the input, the more the activation function blocks the signal
coming from that input, and the higher the weight of that input, the more the
activation function lets that signal go through.

Finally, all the signals coming from the hidden neurons, more or less blocked by the
activation functions, are forward propagated to the output layer, to return the final
outcome: the price prediction.

Here's a visualization of how that neural network works:

Figure 19: How Neural Networks work – Example in real estate price prediction

That covers half of the story. Now we know how a neural network works, we need
to find out how it learns.

WOW! eBook
www.wowebook.org

Chapter 9

[135]

How do neural networks learn?
Neural networks learn by updating, over many iterations, the weights of all the
inputs and hidden neurons (when having several hidden layers), always towards the
same goal: to reduce the loss error between the predictions and the actual values.

In order for neural networks to learn, we need the actual values, which are also
called the targets. In our preceding example about real estate pricing, the actual
values are the real prices of the houses and apartments taken from our dataset. These
real prices depend on the independent variables listed previously (area, number of
bedrooms, distance to city, and age), and the neural network learns to make better
predictions of these prices, by running the following process:

1. The neural network forward propagates the signals coming from the inputs;
independent variables 1x , 2x , 3x and 4x .

2. Then it gets the predicted price ŷ in the output layer.
3. Then it computes the loss error, C, between the predicted price ŷ (prediction)

and the actual price y (target):

()21 ˆ
2

C y y= −

4. Then this loss error is back-propagated inside the neural network, from right
to left in our representation.

5. Then, on each of the neurons, the neural network runs a technique called
gradient descent (which we will discuss in the next section) to update the
weights in the direction of loss reduction, that is, into new weights which
reduce the loss error C.

6. Then this whole process is repeated many times, with each time new inputs
and new targets, until we get the desired performance (early stopping) or the
last iteration (the number of iterations chosen in the implementation).

Let's show the two main phases, forward-propagation and back-propagation, of this
whole process in two separate graphics in the next section.

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[136]

Forward-propagation and back-propagation
Phase 1: Forward-propagation:

Here's how the signal is forward-propagated throughout the artificial neural
network, from the inputs to the output:

Figure 20: Forward-propagation

Once the signal's been propagated through the entire network, the loss error C is
calculated so that it can be back-propagated.

Phase 2: Back-propagation:

And after forward-propagation comes back-propagation, during which the loss error
C is propagated back into the neural network from the output to the inputs.

Figure 21: Back-propagation

WOW! eBook
www.wowebook.org

Chapter 9

[137]

During back-propagation, the weights are updated to reduce the loss error C
between the predictions (output value) and the targets (actual value). How are they
updated? This is where gradient descent comes into play.

Gradient Descent
Gradient descent is an optimization technique that helps us find the minimum of a
cost function, like the preceding loss error C we had:

()21 ˆ
2

C y y= −

Let's visualize it in the most intuitive way, like the following ball in a bowl (with
a little math sprinkled on top):

Figure 22: Gradient Descent (1/4)

Imagine this is a cross section of a bowl, into which we drop a small red ball and let
it find its way down to the bottom of the bowl. After some time, it will stop rolling,
when it finds the sweet spot at the bottom of the bowl.

You can think about gradient descent in the same way. It starts somewhere in the
bowl (initial values of parameters) and tries to find the bottom of the bowl, or in
other words, the minimum of a cost function.

Let's go through the example that is shown in the preceding image. The initial values
of the parameters have set our ball at the position shown. Based on that we get some
predictions, which we compare to our target values. The difference between these
two sets is our loss for the current set of parameters.

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[138]

Then we calculate the first derivative of the cost function, with respect to the
parameters. This is where the name gradient comes from. Here, this first derivative
gives us the slope of the tangent to the curve where the ball is. If the gradient of the
slope is negative, like on the preceding image, we take the next step to the right side.
If the gradient of the slope is positive, we take the next step to the left side.

The name descent thus comes from the fact that we always take the next step that
points downhill, as represented in the following graphic:

Figure 23: Gradient Descent (2/4)

In the next position our ball rests on a positive slope, so we have to take the next step
to the left:

Figure 24: Gradient Descent (3/4)

WOW! eBook
www.wowebook.org

Chapter 9

[139]

Eventually, by repeating the same steps, the ball will end up at the bottom of the bowl:

Figure 25: Gradient Descent (4/4)

And that's it! That's how gradient descent operates in one dimension (one parameter).
Now you might ask: "Great, but how does this scale?" We saw an example of
one-dimensional optimization, but what about two or even three dimensions?

It's an excellent question. gradient descent guarantees that this approach scales on
as many dimensions as needed, provided the cost function is convex. In fact, if the
cost function is convex, gradient descent will find the absolute minimum of the cost
function. Following is an example in two dimensions:

Figure 26: Gradient Descent – Convergence guaranteed for convex cost functions

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[140]

However, if the cost function is not convex, gradient descent will only find a local
minimum. Here is an example in three dimensions:

Figure 27: Example of non-convergence (right) for a non-convex function (left)

Now that we understand what gradient descent is all about, we can study the most
advanced and most effective versions of it:

1. Batch gradient descent
2. Stochastic gradient descent
3. Mini-batch gradient descent

"Gradient descent", "batch gradient descent", "mini batch gradient descent",
"stochastic gradient descent," there are so many terms and someone like you who's
just starting may find themselves very confused. Don't worry—I've got your back.

The main difference between all of these versions of gradient descent is just the way
we feed our data to a model, and how often we update our parameters (weights) to
move our small red ball. Let's start by explaining batch gradient descent.

Batch gradient descent
Batch gradient descent is when we have a batch of inputs (as opposed to a single input)
feeding the neural network, forward-propagating them to obtain in the end a batch of
predictions, which themselves are compared to a batch of targets. The global loss error
between the predictions and the targets of the two batches is then computed as the
sum of the loss errors between each prediction and its associated target.

WOW! eBook
www.wowebook.org

Chapter 9

[141]

That global loss is back-propagated into the neural network, where gradient descent
or stochastic gradient descent is performed to update all the weights, according to
how much they were responsible for that global loss error.

Here is an example of batch gradient descent. The problem to solve is about
predicting the score (from 0 to 100 %) students get in an exam, based on the time
spent studying (Study Hrs) and the time spent sleeping (Sleep Hrs):

Figure 28: Batch Gradient Descent

An important thing to note on this preceding graphic is that these are not multiple
neural networks, but a single one represented by separate weight updates. As we can
see in this example of batch gradient descent, we feed all of our data into the model
at once.

This produces collective updates of the weights and fast optimization of the network.
However, there is a bad side to this as well. There is, once again, the possibility of
getting stuck in a local minimum, as we can see in the following graphic:

Figure 29: Getting stuck in a local minimum

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[142]

We explained the reason why this happens a bit earlier: it is because the cost function
in the preceding graphic is not convex, and this type of optimization (simple gradient
descent) requires the cost function to be convex. If that is not the case, we can find
ourselves stuck in a local minimum and never find the global minimum with the
optimal parameters. On the other hand, here is an example of a convex cost function,
the same one as we saw earlier:

Figure 30: An example of a convex function

In simple terms, a function is convex if it has only one global minimum. And
the graph of a convex function has the bowl shape. However, in most problems,
including business problems, the cost function will not be convex (as in the following
graphic example in 3D), and thus not allow simple gradient descent to perform well.
This is where stochastic gradient descent comes into play.

Figure 31: Example of non-convergence (right) for a non-convex function (left)

WOW! eBook
www.wowebook.org

Chapter 9

[143]

Stochastic gradient descent
Stochastic Gradient Descent (SGD) comes to save the day. It provides better results
overall, preventing the algorithm from getting stuck in a local minimum. However,
as its name suggests, it is stochastic, or in other words, random.

Because of this property, no matter how many times you run the algorithm, the
process will always be slightly different, regardless of the initialization.

SGD does not run on the whole dataset at once, but instead input by input. The
process goes like this:

1. Input a single observation.
2. Forward propagate that input to get a single prediction.
3. Compute the loss error between the prediction (output) and the target (actual

value).
4. Back-propagate the loss error into the neural network.
5. Update the weights with gradient descent.
6. Repeat steps 1 to 5 through the whole dataset.

Let's show the first three iterations on the first three single inputs for the example we
looked at earlier, predicting the scores in an exam:

First input row of observation:

Figure 32: Stochastic Gradient Descent – First input row of observation

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[144]

Second input row of observation:

Figure 33: Stochastic Gradient Descent – Second input row of observation

Third input row of observation:

Figure 34: Stochastic Gradient Descent – Third input row of observation

Each of the preceding three graphics is an example of one weight's update run by
SGD. As we can see, each time we only input a single row of observation from our
dataset to the neural network, then we update the weights accordingly and proceed
to the next input row of observation.

At first glance, SGD seems slower, because we input each row separately. In reality,
it's much faster, because we don't have to load the whole dataset in the memory, nor
wait for the whole dataset to pass through the model updating the weights.

WOW! eBook
www.wowebook.org

Chapter 9

[145]

To finish this section, let's recap the difference between batch gradient descent and
SGD with the following graphic:

Figure 35: Batch Gradient Descent vs. Stochastic Gradient Descent

Now we can consider a middle-ground approach; mini-batch gradient descent.

Mini-batch gradient descent
Mini-batch gradient descent uses the best from both worlds, combining batch
gradient descent with SGD. This is done by feeding the artificial neural network
with small batches of data, instead of feeding single input rows of observations
one by one or the whole dataset at once.

This approach is faster than classic SGD, and still prevents you from getting stuck
in a local minimum. Mini-batch gradient descent also helps if you don't have enough
computing resources to load the whole dataset in the memory, or enough processing
power to get the full benefit of SGD.

That's all for neural networks! Now you're ready to combine your knowledge of
neural networks with your knowledge of Q-learning.

Deep Q-learning
You've toured the foundations of deep learning, and you already know Q-learning;
since deep Q-learning consists of combining Q-learning and deep learning, you're
ready to get an intuitive grasp of deep Q-learning and crush it.

Before we start, try to guess some of how this is going to work. I would like you to
take a moment and think about how you could integrate Q-learning into an ANN.

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[146]

First things first, you might have guessed what the inputs and outputs of the neural
network are going to be. The input of the artificial neural network is of course
going to be the input state, which could be a 1-dimensional vector encoding what
is happening in the environment, or an image (like the ones seen by a self-driving
car). And the output is going to be the set of Q-values for each action, meaning it is
going to be a 1-dimensional vector of several Q-values, one for each action that can
be performed. Then, just like before, the AI takes the action that has the maximum
Q-value, and performs it.

Very simply, that means that instead of predicting the Q-values through iterative
updates with the Bellman equation (simple Q-learning), we'll predict them with an
ANN that takes as inputs the input states, and returns as output the Q-values of the
different actions.

That raises the question: it's good that we know what to predict, but what are going
to be the targets (actual values) of these predictions when we are training the AI?
As a reminder, the target is the actual value, or what you want your prediction to be
ideally: the closer your prediction is to the target, the more it is correct. That's why
we compute the loss error C between the prediction and the target, in order to reduce
it through back-propagation with stochastic or mini-batch gradient descent.

When we were doing simple property price prediction, it was obvious what the
targets were. They were simply the prices in the dataset that were available to us.
But what about the targets of Q-values when you are training a self-driving car, for
example? It's not that obvious, even though it is an explicit function of the Q-values
and the reward.

The answer is a fundamental formula in deep Q-learning. The target of an input state
ts is:

() ()()1, max ,t t t
a

R s a Q s a++ γ

where (),t tR s a is the last reward obtained and γ is the discount factor, as seen
previously.

Do you recognize the formula of the target? If you remember Q-learning, you should
have no problem answering this question.

WOW! eBook
www.wowebook.org

Chapter 9

[147]

It's in the temporal difference, of course! Remember, the temporal difference is
defined by:

() () ()() ()1, , max , ,t t t t t t t t
a

TD s a R s a Q s a Q s a+= + γ −

So now it's obvious. The target is simply the first element at the left of the temporal
difference:

() ()()1Target = , max ,t t t
a

R s a Q s a++ γ

so that we get:

() (), Target , Target Predictiont t t t tTD s a Q s a= − = −

Note that at the beginning, the Q-values are null, so the target is simply the reward.

There's one more piece to the puzzle before we can say that we really understand
deep Q-learning; the Softmax method.

The Softmax method
This is the missing piece before we're ready to assemble everything for deep
Q-learning. The Softmax method is the way we're going to select the action to
perform after predicting the Q-values. In Q-learning, that was simple; the action
performed was the one with the highest Q-value. That was the argmax method.
In deep Q-learning, things are different. The problems are usually more complex,
and so, in order to find an optimal solution, we must go through a process
called Exploration.

Exploration consists of the following: instead of performing the action that has
the maximum Q-value (which is called Exploitation), we're going to give each action
a probability proportional to its Q-value, such that the higher the Q-value, the higher
the probability. This creates, exactly, a distribution of the performable actions.
Then finally, the action performed will be selected as a random draw from that
distribution. Let me explain with an example.

Let's imagine we are building a self-driving car (we actually will, in Chapter 10, AI
for Autonomous Vehicles - Build a Self-Driving Car). Let's say that the possible actions
to perform are simple: move forward, turn left or turn right.

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[148]

Then, at a specific time, let's say that our AI predicts the following Q-values:

Move Forward Turn Left Turn Right

24 38 11

The way we can create the distribution of probabilities we need is by dividing each
Q-value by the sum of the three Q-values, which results each time in the probability
of a particular action. Let's perform those sums:

Probability of Moving Forward = 24
24 + 38 + 11 = 33%

Probability of Turning Left = 38
24 + 38 + 11 = 52%

11Probability of TurningRight 15%
24 38 11

= =
+ +

Perfect—the probabilities sum to 1 and they are proportional to the Q-values. That
gives us a distribution of the actions. To perform an action, the Softmax method
takes a random draw from this distribution, such that:

• The action of Moving Forward has a 33% chance of being selected.
• The action of Turning Left has a 52% chance of being selected.
• The action of Turning Right has a 15% chance of being selected.

Can you feel the difference between Softmax and argmax, and do you understand
why it is called Exploration instead of Exploitation? With argmax, the action Turn
Left would be the one performed with absolute certainty. That's Exploitation. But
with Softmax, even though the action Turn Left is the one with the highest chance
of being selected, there's still a chance that the other actions might be selected.

Now, of course, the question is: why do we want to do that? It's simply because
we want to explore the other actions, in case they lead to transitions resulting in
higher rewards than we would obtain with pure exploitation. That often happens
with complex problems, which are the ones for which deep Q-learning is used to
find a solution. deep Q-learning finds that solution thanks to its advanced model,
but also through exploration of the actions. This is a technique in AI called Policy
Exploration.

As before, the next step is a step back. We're going to recap how deep Q-learning
works.

WOW! eBook
www.wowebook.org

Chapter 9

[149]

Deep Q-learning recap
Deep Q-learning consists of combining Q-learning with an ANN.

Inputs are encoded vectors, each one defining a state of the environment. These
inputs go into an ANN, where the output contains the predicted Q-values for each
action.

More precisely, if there are n possible actions the AI could take, the output of
the artificial neural network is a 1D vector comprised of n elements, each one
corresponding to the Q-values of each action that could be performed in the current
state. Then, the action performed is chosen via the Softmax method.

Hence, in each state ts :

1. The prediction is the Q-value (),t tQ s a , where ta is performed by the Softmax
method.

2. The target is () ()()1, max ,t t t
a

R s a Q s a++ γ .

3. The loss error between the prediction and the target is the square of the
temporal difference:

() ()() () ()
2

2
1

1 1Loss = , max , , ,
2 2t t t t t t t t

a
R s a Q s a Q s a TD s a+
 + γ − =

This loss error is back-propagated into the neural network, and the weights are
updated according to how much they contributed to the error, through stochastic
or mini-batch gradient descent.

Experience replay
You might noticed that so far we have only considered transitions from one state

ts to the next state 1ts + . The problem with this is that ts is most of the time very
correlated with 1ts + ; therefore, the neural network is not learning much.

This could be improved if, instead of only considering the last transition each time,
we considered the last m transitions, where m is a large number. This set of the last m
transitions is what is called the experience replay memory, or simply memory. From
this memory we sample some random transitions into small batches. Then we train
the neural network with these batches to then update the weights through mini-
batch gradient descent.

WOW! eBook
www.wowebook.org

Going Pro with Artificial Brains – Deep Q-Learning

[150]

The whole deep Q-learning algorithm
Let's summarize the different steps of the whole deep Q-learning process.

Initialization:

1. Initialize the memory of the experience replay to an empty list M.
2. Choose a maximum size for the memory.

At each time t, we repeat the following process, until the end of the epoch:

1. Predict the Q-values of the current state ts .
2. Perform the action selected by the Softmax method:

(){ }Softmax ,t ta
a Q s a=

3. Get the reward (),t tR s a .
4. Reach the next state 1ts + .
5. Append the transition ()1, , ,t t t ts a r s + to the memory M.
6. Take a random batch B M⊂ of transitions. For all the transitions

()1, , ,
B B B Bt t t ts a r s + of the random batch B:

 ° Get the predictions: (),
B Bt tQ s a

 ° Get the targets: () ()()1, max ,
B B Bt t t

a
R s a Q s a++ γ

 ° Compute the loss between the predictions and the targets, over the whole
batch B:

() ()() () ()
2 2

1
1 1Loss = , max , , ,
2 2B B B B B B B Bt t t t t t t t

aB B
R s a Q s a Q s a TD s a+
 + γ − =
 ∑ ∑

 ° Back-propagate this loss error back into the neural network, and through
stochastic gradient descent, update the weights according to how much
they contributed to the loss error.

WOW! eBook
www.wowebook.org

Chapter 9

[151]

You've just unlocked the full deep Q-learning process! That means that you are now
able to build powerful real-world AI applications in many fields. Here's a tour of
some of the applications where deep Q-learning can create significant added value:

1. Energy: It was a deep Q-learning model that the DeepMind AI used to
reduce Google's Data Center cooling bill by 40%. Also, deep Q-learning can
optimize the functioning of smart grids; in other words, it can make smart
grids even smarter.

2. Transport: Deep Q-learning can optimize traffic light control in order to
reduce traffic.

3. Autonomous Vehicles: Deep Q-learning can be used to build self-driving
cars, which we will illustrate in the next chapter of this book.

4. Robotics: Today, many advanced robots are built with deep Q-learning.
5. And much more: Chemistry, recommender systems, advertising, and many

more—even video games, as you'll discover in Chapter 13, AI for Games –
Become the Master at Snake, when you use deep convolutional Q-learning
to train an AI to play Snake.

Summary
You learned a lot in this chapter; we first discussed ANNs. ANNs are built
from neurons put in multiple layers. Each neuron from one layer is connected
to every neuron from the previous layer, and every layer has its own activation
function—a function that decides how much each output signal should be blocked.

The step in which an ANN works out the prediction is called forward-propagation
and the step in which it learns is called back-propagation. There are three main types
of back-propagation: batch gradient descent, stochastic gradient descent, and the
best one, mini-batch gradient descent, which mixes the advantages of both previous
methods.

The last thing we talked about in this chapter was deep Q-learning. This method
uses Neural Networks to predict the Q-Values of taking certain actions. We also
mentioned the experience replay memory, which stores a huge chunk of experience
for our AI.

In the next chapter, you'll put all of this into practice by coding your very own self-
driving car.

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

[153]

AI for Autonomous Vehicles –
Build a Self-Driving Car

I'm really pumped up for you to start this new chapter. It's probably the most
challenging, and most fun, adventure we'll have in this book. You're literally
about to build a self-driving car from scratch, on a 2D map, using the powerful
deep Q-learning model. I think that's incredibly exciting!

Think fast; what's our first step?

If you answered "building the environment," you're absolutely right. I hope that's
getting so familiar to you that you answered before I even finished the question.
Let's start by building an environment in which a car can learn how to drive by itself.

Building the environment
This time, we have much more to define than just the states, actions, and rewards.
Building a self-driving car is a seriously complex problem. Now, I'm not going to ask
you to go to your garage and turn yourself into a hybrid AI mechanic; you're simply
going to build a virtual self-driving car that moves around a 2D map.

You'll build this 2D map inside a Kivy web app. Kivy is a free and open source
Python framework, used for the development of applications like games, or really
any kind of mobile app. Check out the website here: https://kivy.org/#home.

The whole environment for this project is built with Kivy, from start to finish. The
development of the map and the virtual car has nothing to do with AI, so we won't
go line by line through the code that implements it.

WOW! eBook
www.wowebook.org

https://kivy.org/#home

AI for Autonomous Vehicles – Build a Self-Driving Car

[154]

However, I am going to describe the features of the map. For those of you curious to
know about exactly how the map is built, I've provided a fully commented Python
file in the GitHub named map_commented.py that builds the environment from
scratch with a full explanation.

Before we look at all the features, let's have a look at this map with the little virtual
car inside:

Figure 1: The map

The first thing you'll notice is a black screen, which is the Kivy user interface. You
build your games or apps inside this interface. As you might guess, it's actually the
container of the whole environment.

You can see something weird inside, a white rectangle with three colored dots
in front of it. Well, that's the car! My apologies for not being a better artist, but it's
important to keep things simple. The white little rectangle is the shape of the car,
and the three little dots are the sensors of the car. Why do we need sensors? Because
on this map, we will have the option to build roads, delimited by sand, which the car
will have to avoid going through.

To put some sand on the map, simply keep pressing left with your mouse and draw
whatever you want. It doesn't have to just be roads; you can add some obstacles as
well. In any case, the car will have to avoid going through the sand.

WOW! eBook
www.wowebook.org

Chapter 10

[155]

If you remember that everything works from the rewards, I'm sure you already
know how to make that happen; it's by penalizing the self-driving car with a bad
reward when it goes onto the sand. We'll take care of that later. In the meantime,
let's have a look at one of my nice drawings of roads with sand:

Figure 2: Map with a drawn road

The sensors are there to detect the sand, so the car can avoid it. The blue sensor
covers an area at the left of the car, the red sensor covers an area at the front of the
car, and the yellow sensor covers an area at the right of the car.

Finally, there are three buttons to click on at the bottom left corner of the screen,
which are:

clear: Removes all the sand drawn on the map

save: Saves the weights (parameters) of the AI

load: Loads the last saved weights

Now we've had a look at our little map, let's move on to defining our goals.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[156]

Defining the goal
We understand that our goal is to build a self-driving car. Good. But how are
we going to formalize that goal, in terms of AI and reinforcement learning? Your
intuition should hopefully make you think about the rewards we're going to set.
I agree—we're going to give a high reward to our car if it manages to self-drive.
But how can we tell that it's managing to self-drive?

We've got plenty of ways to evaluate this. For example, we could simply draw some
obstacles on the map, and train our self-driving car to move around the map without
hitting the obstacles. That's a simple challenge, but we could try something a little
more fun. Remember the road I drew earlier? How about we train our car to go from
the upper left corner of the map, to the bottom right corner, through any road we
build between these two spots? That's a real challenge, and that's what we'll do. Let's
imagine that the map is a city, where the upper left corner is the Airport, and the
bottom right corner is Downtown:

Figure 3: The two destinations – Airport and Downtown

WOW! eBook
www.wowebook.org

Chapter 10

[157]

Now we can clearly formulate a goal; to train the self-driving car to make round
trips between the Airport and Downtown. As soon as it reaches the Airport, it will
then have to go to Downtown, and as soon as it reaches Downtown, it will then
have to go to the Airport. More than that, it should be able to make these round trips
along any road connecting these two locations. It should also be able to cope with
any obstacles along that road it has to avoid. Here is an example of another, more
challenging road:

Figure 4: A more challenging road

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[158]

If you think that road look too easy, here's a more challenging example; this time
with not only a more difficult road but also many obstacles:

Figure 5: An even more challenging road

As a final example, I want to share this last map, designed by one of my students,
which could belong in the movie Inception:

WOW! eBook
www.wowebook.org

Chapter 10

[159]

Figure 6: The most challenging road ever

If you look closely, it's still a path that goes from Airport to Downtown and vice
versa, just much more challenging. The AI we create will be able to cope with any
of these maps.

I hope you find that as exciting as I do! Keep that level of energy up, because we
have quite a lot of work to do.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[160]

Setting the parameters
Before you define the input states, the output actions, and the rewards, you must set
all of the parameters of the map and the car that will be part of your environment.
The inputs, outputs, and rewards are all functions of these parameters. Let's list them
all, using the same names as in the code, so that you can easily understand the file
map.py:

1. angle: The angle between the x-axis of the map and the axis of the car
2. rotation: The last rotation made by the car (we will see later that when

playing an action, the car makes a rotation)
3. pos = (self.car.x, self.car.y): The position of the car (self.car.x is the

x-coordinate of the car, self.car.y is the y-coordinate of the car)
4. velocity = (velocity_x, velocity_y): The velocity vector of the car
5. sensor1 = (sensor1_x, sensor1_y): The position of the first sensor
6. sensor2 = (sensor2_x, sensor2_y): The position of the second sensor
7. sensor3 = (sensor3_x, sensor3_y): The position of the third sensor
8. signal1: The signal received by sensor 1
9. signal2: The signal received by sensor 2
10. signal3: The signal received by sensor 3

Now let's slow down; we've got to define how these signals are computed. The
signals are a measure of the density of sand around their sensor. How are you going
to compute that density? You start by introducing a new variable, called sand, which
you initialize as an array that has as many cells as our graphic interface has pixels.
Simply put, the sand array is the black map itself and the pixels are the cells of the
array. Then, each cell of the sand array will get a 1 if there is sand, and a 0 if there
is not.

For example, here the sand array has only 1s in its first few rows, and the rest
is all 0s:

WOW! eBook
www.wowebook.org

Chapter 10

[161]

Figure 7: The map with only sand in the first rows

I know the border is a little wobbly—like I said, I'm no great artist—and that just
means those rows of the sand array would have 1s where the sand is and 0s where
there's no sand.

Now that you have this sand array it's very easy to compute the density of sand
around each sensor. You surround your sensor by a square of 20 by 20 cells (which
the sensor reads from the sand array), then you count the number of ones in these
cells, and finally you divide that number by the total number of cells in that square,
that is, 20 x 20 = 400 cells.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[162]

Since the sand array only contains 1s (where there's sand) and 0s (where there's no
sand), we can very easily count the number of 1s by simply summing the cells of the
sand array in this 20 by 20 square. That gives us exactly the density of sand around
each sensor, and that's what's computed at lines 81, 82, and 83 in the map.py file:

81 self.signal1 = int(np.sum(sand[int(self.sensor1_x)-
10:int(self.sensor1_x)+10, int(self.sensor1_y)-10:int(self.
sensor1_y)+10]))/400.

82 self.signal2 = int(np.sum(sand[int(self.sensor2_x)-
10:int(self.sensor2_x)+10, int(self.sensor2_y)-10:int(self.
sensor2_y)+10]))/400.

83 self.signal3 = int(np.sum(sand[int(self.sensor3_x)-
10:int(self.sensor3_x)+10, int(self.sensor3_y)-10:int(self.
sensor3_y)+10]))/400.

Now that we've covered how the signals are computed, let's continue with the rest
of the parameters. The last parameters, which I've highlighted in the list below, are
important because they're the last pieces that we need to reveal the final input state
vector. Here they are:

1. goal_x: The x-coordinate of the goal (which can either be the Airport or
Downtown)

2. goal_y: The y-coordinate of the goal (which can either be the Airport or
Downtown)

3. xx = (goal_x - self.car.x): The difference of x-coordinates between the goal
and the car

4. yy = (goal_y - self.car.y): The difference of y-coordinates between the goal
and the car

5. orientation: The angle that measures the direction of the car with respect
to the goal

Let's slow down again for a moment. We need to know how orientation is computed;
it's the angle between the axis of the car (the velocity vector from our first list
of parameters) and the axis that joins the goal and the center of the car. The goal has
the coordinates (goal_x, goal_y) and the center of the car has the coordinates (self.
car.x, self.car.y). For example, if the car is heading perfectly toward the goal,
then orientation = 0°. If you're curious as to how we can compute the angle between
the two axes in Python, here's the code that gets the orientation (lines 126, 127, and
128 in the map.py file):

126 xx = goal_x - self.car.x

127 yy = goal_y - self.car.y

128 orientation = Vector(*self.car.velocity).
angle((xx,yy))/180.

WOW! eBook
www.wowebook.org

Chapter 10

[163]

Good news—we're finally ready to define the main pillars of the environment.
I'm talking, of course, about the input states, the actions, and the rewards.

Before I define them, try to guess what they're going to be. Check out all the
preceding parameters again, and remember the goal: making round trips between
two locations, the Airport and Downtown, while avoiding any obstacles along the
road. The solution's in the next section.

The input states
What do you think the input states are? You might have answered "the position
of the car." In that case, the input state would be a vector of two elements, the
coordinates of the car: self.car.x and self.car.y.

That's a good start. From the intuition and foundation techniques of deep Q-learning
you learned in Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning, you know
that when you're doing deep Q-learning, the input state doesn't have to be a single
element as in Q-learning. In fact, in deep Q-learning the input state can be a vector
of many elements, allowing you to supply many sources of information to your AI
to help it predict smart actions to play.

We can do better than just supplying the car position coordinates. They tell us where
the self-driving car is located, but there's another parameter that's better, simpler,
and more directly related to the goal. I'm talking about the orientation variable.
The orientation is a single input that directly tells us if we are pointed in the right
direction, toward the goal. If we have that orientation, we don't need the car position
coordinates at all to navigate toward the goal; we can just change the orientation by
a certain angle to point the car more in the direction of the goal. The actions that the
AI performs will be what changes that orientation. We'll discuss those in the next
section.

We have the first element of our input state: the orientation.

But that's not enough. Remember that we also have another goal, or, should I say,
constraint. Our car needs to stay on the road and avoid any obstacles along that road.

The input state can even be bigger than a simple vector: it can be
an image! In that case, the AI model is called deep convolutional
Q-learning. It's the same as deep Q-learning, except that you add a
convolutional neural network at the entrance of the neural network
that allows your AI (machine) to visualize images. We'll cover this
technique in Chapter 12, Deep Convolution Q-Learning.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[164]

In the input state, we need information telling the AI whether it is about to move
off the road or hit an obstacle. Try and work it out for yourself—do we have a way
to get this information?

The solution is the sensors. Remember that our car has three sensors giving us
signals about how much sand is around them. The blue sensor tells us if there's any
sand at the left of the car, the red sensor tells us if there is any sand in front of the
car, and the yellow sensor tells us if there is any sand at the right of the car. The
signals of these sensors are already coded into three variables: signal1, signal2,
and signal3. These signals will tell the AI if it's about to hit some obstacle or about
to get out of the road, since the road is delimited by sand.

That's the rest of the information you need for your input state. With these four
elements, signal1, signal2, signal3, and orientation, you have everything
you need to be able to drive from one location to another, while staying on the road,
and without hitting any obstacles.

In conclusion, here's what the input state is going to be at each time:

Input state = (orientation, signal1, signal2, signal3)

And that's exactly what's coded at line 129 in the map.py file:

129 state = [orientation, self.car.signal1, self.car.
signal2, self.car.signal3]

state is the variable name given to the input state.

We've covered the input state; now let's tackle the actions.

Don't worry too much about the code syntax difference between
signal, self.signal, and self.car.signal; they're all the
same. The reason we use these different variables is because the AI
is coded with classes (as in Object Oriented Programming (OOP)),
which allows us to create several self-driving cars on the same map.

If you do want to have several self-driving cars on your map, for
example, if you want them racing, then you can distinguish the cars
better thanks to self.car.signal. For example, if you have two
cars, you can name the two objects car1 and car2 so that you can
distinguish the first sensor signals of the two cars, by using self.
car1.signal1 and self.car2.signal1. In this chapter, we
just have one car, so whether we use signal1, car.signal1 or
self.car.signal1, we get the same thing.

WOW! eBook
www.wowebook.org

Chapter 10

[165]

The output actions
I've already briefly mentioned or suggested what the actions are going to be. Given
our input state, it's easy to guess. Naturally, since you're building a self-driving car,
you might think that the actions should be: move forward, turn left, or turn right.
You'd be absolutely right! That's exactly what the actions are going to be.

Not only is this intuitive, but it aligns extremely well with our choice of input states.
They contain the orientation variable that tells us if we're aimed in the right
direction toward the goal. Simply put, if the orientation input tells us our car
is pointed in the right direction, we perform the action of moving forward. If the
orientation input tells us that the goal is on the right of our car, we perform the
action of turning right. Finally, if the orientation tells us that the goal is on the
left of our car, we perform the action of turning left.

At the same time, if any of the signals spot some sand around the car, the car will
turn left or right to avoid it. The three possible actions of move forward, turn left,
and turn right make logical sense with the goal, constraint, and input states we
have, and we can define them as the three following rotations:

rotations = [turn 0° (that is, move forward), turn 20° to the left, turn 20° to the right]

The choice of 20° is quite arbitrary. You could very well choose 10°, 30°, or 40°.
I'd avoid more than 40°, because then your car would have twitchy, fidgety
movements, and wouldn't look like a smoothly moving car.

However, the actions the ANN outputs will not be 0°, 20°, and -20°; they will be 0,
1 and 2.

actions = [0, 1, 2]

It's always better to use simple categories like those when you're dealing with the
output of an artificial neural network. Since 0, 1, and 2 will be the actions the AI
returns, how do you think we end up with the rotations?

You'll use a simple mapping, called action2rotation in our code, which maps the
actions 0, 1, 2 to the respective rotations of 0°, 20°, -20°. This is exactly what's coded
on lines 34 and 131 of the map.py file:

34 action2rotation = [0,20,-20]

131 rotation = action2rotation[action]

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[166]

Now, let's move on to the rewards. This one's going to be fun, because this is where
you decide how you want to reward or punish your car. Try to figure out how
by yourself first, and then take a look at the solution in the following section.

The rewards
To define the system of rewards, we have to answer the following questions:

• In which cases do we give the AI a good reward? How good for each case?
• In which cases do we give the AI a bad reward? How bad for each case?

To answer these questions, we must simply remember what the goal and
constraints are:

• The goal is to make round trips between the Airport and Downtown.
• The constraints are to stay on the road and avoid obstacles if any. In other

words, the constraint is to stay away from the sand.

Hence, based on this goal and constraints, the answers to our preceding
questions are:

1. We give the AI a good reward when it gets closer to the destination.
2. We give the AI a bad reward when it gets further away from the destination.
3. We give the AI a bad reward if it's about to drive onto some sand.

That's it! That should work, because these good and bad rewards have a direct effect
on the goal and constraints.

To answer the second part of each question, how good and how bad the reward
should be for each case, we'll play the tough card; it's often more effective. The tough
card consists of punishing the car more when it makes mistakes than we reward it
when it does well. In other words, the bad reward is going to be stronger than the
good reward.

This works well in reinforcement learning, but that doesn't mean you should do
the same with your dog or your kids. When you're dealing with a biological system,
the other way around (high good reward and small bad reward) is a much more
effective way to train or educate. Just food for thought.

On that note, here are the rewards we'll give in each case:

1. The AI gets a bad reward of -1 if it drives onto some sand. Nasty!
2. The AI gets a bad reward of -0.2 if it moves away from the destination.
3. The AI gets a good reward of 0.1 if it moves closer to the destination.

WOW! eBook
www.wowebook.org

Chapter 10

[167]

The reason we attribute the worst reward (-1) to the case when the car drives onto
some sand makes sense. Driving onto sand is what we absolutely want to avoid.
The sand on the map represents obstacles in real life; in real life, you would train
your self-driving car not to hit any obstacle, so as to avoid any accident. To do so,
we penalize the AI with a highly bad reward when it does hit an obstacle during
its training.

How's that translated that into code? That's easy; you just take your sand array and
check if the car has just moved onto a cell that contains a 1. If it does, that means the
car has moved onto some sand and must therefore get a bad reward of -1. That's
exactly what's coded here at lines 138, 139, and 140 of the map.py file (including an
update of the car velocity vector, which not only updates the speed by slowing the
car down to 1, but also updates the direction of the car by a certain angle, self.car.
angle):

138 if sand[int(self.car.x),int(self.car.y)] > 0:

139 self.car.velocity = Vector(1, 0).rotate(self.car.
angle)

140 reward = -1

Then for the other reward attributions, you just have to complete the if condition
preceding with an else, which will say what happens in the case where the car has
not driven onto some sand.

In that case, you start a new if and else condition, saying that if the car has moved
away from the destination, you give it a bad reward of -0.2, and, if the car has
moved closer to the destination, you give it a good reward of 0.1. The way you
measure if the car is getting away from or closer to the goal is by comparing two
distances put into two separate variables: last_distance, which is the previous
distance between the car and the destination at time t-1, and distance, which is
the current distance between the car and the destination at time t. If you put all that
together, you get the following code, which completes the preceding lines of code:

138 if sand[int(self.car.x),int(self.car.y)] > 0:

139 self.car.velocity = Vector(1, 0).rotate(self.car.
angle)

140 reward = -1

141 else:

142 self.car.velocity = Vector(6, 0).rotate(self.car.
angle)

143 reward = -0.2

144 if distance < last_distance:

145 reward = 0.1

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[168]

To keep the car from trying to veer off the map, lines 147 to 158 of the map.py file
punish the AI with a bad reward of -1 if the self-driving car gets within 10 pixels
of any of the map's 4 borders of the map. Finally, lines 160 to 162 of the map.py file
update the goal, switching it from the Airport to Downtown, or vice versa, anytime
the car gets within 100 pixels of the current goal.

AI solution refresher
Let's refresh our memory by reminding ourselves of the steps of the deep Q-learning
process, while adapting them to our self-driving car application.

Initialization:

1. The memory of the experience replay is initialized to an empty list, called
memory in the code.

2. The maximum size of the memory is set, called capacity in the code.

At each time t, the AI repeats the following process, until the end of the epoch:

1. The AI predicts the Q-values of the current state st. Therefore, since three
actions can be played (0 <-> 0°, 1 <-> 20°, or 2 <-> -20°), it gets three
predicted Q-values.

2. The AI performs an action selected by the Softmax method (see Chapter 5,
Your First AI Model – Beware the Bandits!):

(){ }Softmax ,t ta
a Q s a=

3. The AI receives a reward (),t tR s a , which is one of -1, -0.2 or +0.1.
4. The AI reaches the next state 1ts + , which is composed of the next three signals

from the three sensors, plus the orientation of the car.
5. The AI appends the transition ()1, , ,t t t ts a r s + to the memory.
6. The AI takes a random batch B M⊂ of transitions. For all the transitions

()1, , ,
B B B Bt t t ts a r s + of the random batch B:

 ° The AI gets the predictions: (),
B Bt tQ s a

 ° The AI gets the targets: () ()()1, max ,
B B Bt t t

a
R s a Q s aγ ++

 ° The AI computes the loss between the predictions and the targets over
the whole batch B:

WOW! eBook
www.wowebook.org

Chapter 10

[169]

() ()() () ()
2 2

1
1 1, max , , ,
2 2B B B B B B B Bt t t t t t t t

aB B
Loss R s a Q s a Q s a TD s aγ +

 = + − =
 ∑ ∑

 ° Finally, the AI backpropagates this loss error into the neural network,
and through stochastic gradient descent updates the weights according
to how much they contributed to the loss error.

Implementation
Now it's time for the implementation! The first thing you need is a professional
toolkit, because you're not going to build an artificial brain with simple Python
libraries. What you need is an advanced framework, which allows fast computation
for the training of neural networks.

Today, the best frameworks to build and train AIs are TensorFlow (by Google)
and PyTorch (by Facebook). How should you choose between the two? They're both
great to work with and equally powerful. They both have dynamic graphs, which
allow the fast computation of the gradients of complex functions needed to train the
model during backpropagation with mini-batch gradient descent. Really, it doesn't
matter which framework you choose; both work very well for our self-driving
car. As far as I'm concerned, I have slightly more experience with PyTorch, so I'm
going to opt for PyTorch and that's how the example in this chapter will continue
to play out.

To take a step back, our self-driving car implementation is composed of three Python
files:

1. car.kv, which contains the Kivy objects (rectangle shape of the car and the
three sensors)

2. map.py, which builds the environment (map, car, input states, output actions,
rewards)

3. deep_q_learning.py, which builds and trains the AI through deep
Q-learning

We've already covered the major elements of map.py, and now we're about to tackle
deep_q_learning.py, where you'll not only build an artificial neural network, but
also implement the deep Q-learning training process. Let's get started!

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[170]

Step 1 – Importing the libraries
As usual, you start by importing the libraries and modules you need to build your
AI. These include:

1. os: The operating system library, used to load the saved AI models.
2. random: Used to sample some random transitions from the memory for

experience replay.
3. torch: The main library from PyTorch, which will be used to build our

neural network with tensors, as opposed to simple matrices like numpy
arrays. While a matrix is a 2-D array, a tensor can be a n-dimensional array,
with more than just a single number in its cells. Here's a diagram so you can
clearly understand the difference between a matrix and a tensor:

1 2 5 6
3 4 7 81 2

3 4 9 10 13 14
11 12 15 16

Matrix Tensor

4. torch.nn: The nn module from the torch library, used to build the fully
connected layers in the artificial neural network of our AI.

5. torch.nn.functional: The functional sub-module from the nn module,
used to call the activation functions (rectifier and Softmax), as well as the loss
function for backpropagation.

6. torch.optim: The optim module from the torch library, used to call the
Adam optimizer, which computes the gradients of the loss with respect to
the weights and updates those weights in directions that reduce the loss.

7. torch.autograd: The autograd module from the torch library, used to call
the Variable class, which associates each tensor and its gradient into the
same variable.

That makes up your first code section:

1 # AI for Autonomous Vehicles - Build a Self-Driving Car

2

3 # Importing the libraries

4

WOW! eBook
www.wowebook.org

Chapter 10

[171]

5 import os

6 import random

7 import torch

8 import torch.nn as nn

9 import torch.nn.functional as F

10 import torch.optim as optim

11 from torch.autograd import Variable

Step 2 – Creating the architecture of the
neural network
This code section is where you really become the architect of the brain in your
AI. You're about to build the input layer, the fully connected layers, and the output
layer, while choosing some activation functions that will forward-propagate the
signal inside the brain.

First, you build this brain inside a class, which we are going to call Network.

What is a class? Let's explain that before we explain why you're using one. A class is
an advanced structure in Python that contains the instructions of an object we want
to build. Taking the example of your neural network (the object), these instructions
include how many layers you want, how many neurons you want inside each layer,
which activation function you choose, and so on. These parameters define your
artificial brain and are all gathered in what we call the __init__() method, which
is what we always start with when building a class. But that's not all—a class can
also contain tools, called methods, which are functions that either perform some
operations or return something. Your Network class will contain one method, which
forward-propagates the signal inside the neural network and returns the predicted
Q-values. Call this method forward.

Now, why use a class? That's because building a class allows you to create as many
objects (also called instances) as you want, and easily switch from one to another by
just changing the arguments of the class. For example, your Network class contains
two arguments: input_size (the number of inputs) and nb_actions (the number
of actions). If you ever want to build an AI with more inputs (besides the signals
and the orientation) or more outputs (you could add an action that brakes the car),
you'll do it in a flash thanks to the advanced structure of the class. It's super practical,
and if you're not already familiar with classes you'll have to get familiar with them.
Nearly all AI implementations are done with classes.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[172]

That was just a short technical aside to make sure I don't lose anybody on the way.
Now let's build this class. As there are many important elements to explain in the
code, and since you're probably new to PyTorch, I'll show you the code first and then
explain it line by line from the deep_q_learning.py file:

13 # Creating the architecture of the Neural Network

14

15 class Network(nn.Module):

16

17 def __init__(self, input_size, nb_action):

18 super(Network, self).__init__()

19 self.input_size = input_size

20 self.nb_action = nb_action

21 self.fc1 = nn.Linear(input_size, 30)

22 self.fc2 = nn.Linear(30, nb_action)

23

24 def forward(self, state):

25 x = F.relu(self.fc1(state))

26 q_values = self.fc2(x)

27 return q_values

Line 15: You introduce the Network class. In the parenthesis of this class, you can
see nn.Module. That means you're calling the Module class, which is an existing class
taken from the nn module, in order to get all the properties and tools of the Module
class and use them inside your Network class. This trick of calling another existing
class inside a new class is called inheritance.

Line 17: You start with the __init__() method, which defines all the parameters
(number of inputs, number of outputs, and so on) of your artificial neural network.
You can see three arguments: self, input_size, and nb_action.self refer to the
object, that is, to the future instance of the class that will be created after the class is
done. Any time you see self before a variable, and separated by a dot (like self.
variable), that means the variable belongs to the object. That should clear up any
mystery about self!

Then, input_size is the number of inputs in your input state vector (thus 4), and
nb_action is the number of output actions (thus 3). What's important to understand
is that the arguments (other than self) of the __init__() method are the ones you
will enter when creating the future object, which is the future artificial brain of
your AI.

WOW! eBook
www.wowebook.org

Chapter 10

[173]

Line 18: You use the super() function to activate the inheritance (explained in Line
15), inside the __init__() method.

Line 19: Here you introduce the first object variable, self.input_size, set equal to
the argument input_size (which will later be entered as 4, since the input state has
4 elements).

Line 20: You introduce the second object variable, self.nb_action, set equal to the
argument nb_action (which will later be entered as 3, since there are three actions
that can be performed).

Line 21: You introduce the third object variable, self.fc1, which is the first full
connection between the input layer (composed of the input state) and the hidden
layer. That first full connection is created as an object of the nn.Linear class, which
takes two arguments: the first one is the number of elements in the left layer (the
input layer), so input_size is the right argument to use, and the second one is the
number of hidden neurons in the right layer (the hidden layer). Here, you choose to
have 30 neurons, and therefore the second argument is 30. The choice of 30 is purely
arbitrary, and the self-driving car could work well with any other numbers.

Line 22: You introduce the fourth object variable, self.fc2, which is the second
full connection between the hidden layer (composed of 30 hidden neurons) and
the output layer. It could have been a full connection with a new hidden layer,
but your problem is not complex enough to need more than one hidden layer, so
you'll just have one hidden layer in your artificial brain. Just like before, that second
full connection is created as an object of the nn.Linear class, which takes two
arguments: the first one is the number of elements in the left layer (the hidden layer),
therefore 30, and the second one is the number of hidden neurons in the right layer
(the output layer), therefore 3.

Line 24: You start building the first and only method of the class, the forward
method, which will propagate the signal from the input layer to the output layer,
after which it will return the predicted Q-values. This forward method takes two
arguments: self, because you'll use the object variables inside the forward method,
and state, the input state vector composed of four elements (orientation plus the
three signals).

Line 25: You forward propagate the signal from the input layer to the hidden layer
while activating the signal with a rectifier activation function, also called ReLU
(Rectified Linear Unit). You do this in two steps. First, the forward propagation from
the input layer to the hidden layer is done by calling the first full connection self.
fc1 with the input state vector state as input: self.fc1(state).

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[174]

That returns the hidden layer. And then we call the relu function with that hidden
layer as input to break the linearity of the signal the following way:

Figure 8: The Rectifier activation function

The purpose of the ReLU layer is to break linearity by creating non-linear operations
along the fully connected layers. You'll want to have that, because you're trying to
solve a nonlinear problem. Finally, F.relu(self.fc1(state)) returns x, the hidden
layer with a nonlinear signal.

Line 26: You forward-propagate the signal from the hidden layer to the output layer
containing the Q-values. In the same way as the previous line, this is done by calling
the second full connection self.fc2 with the hidden layer x as input: self.fc2(x).
That returns the Q-values, which you name q_values. Here, no activation function is
needed because you'll select the action to play with Softmax, later, in another class.

Line 27: Finally, here, the forward method returns the Q-values.

Let's have a look at what you've just created!

Figure 9: The neural network (the brain) of our AI

WOW! eBook
www.wowebook.org

Chapter 10

[175]

self.fc1 are all the blue connection lines between the Input Layer and the Hidden
Layer.

self.fc2 are all the blue connection lines between the Hidden Layer and the
Output Layer.

That should help you visualize the full connections better. Great job!

Step 3 – Implementing experience replay
Time for the next step! You'll now build another class, which builds the memory
object for experience replay (as seen in Chapter 5, Your First AI Model – Beware the
Bandits!). Call this class ReplayMemory. Let's have a look at the code first and then
I'll explain everything line by line from the deep_q_learning.py file.

29 # Implementing Experience Replay

30

31 class ReplayMemory(object):

32

33 def __init__(self, capacity):

34 self.capacity = capacity

35 self.memory = []

36

37 def push(self, event):

38 self.memory.append(event)

39 if len(self.memory) > self.capacity:

40 del self.memory[0]

41

42 def sample(self, batch_size):

43 samples = zip(*random.sample(self.memory, batch_size))

44 return map(lambda x: Variable(torch.cat(x, 0)), samples)

Line 31: You introduce the ReplayMemory class. This time you don't need to inherit
from any other class, so just input object in the parenthesis of the class.

Line 33: As always, you start with the __init__() method, which only takes two
arguments: self, the object, and capacity, the maximum size of the memory.

Line 34: You introduce the first object variable, self.capacity, set equal to the
argument capacity, which will be entered later when creating an object of the class.

Line 35: You introduce the second object variable, self.memory, initialized as an
empty list.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[176]

Line 37: You start building the first tool of the class, the push method, which takes
a transition as input and adds it to the memory. However, if adding that transition
exceeds the memory's capacity, the push method also deletes the first element of the
memory. The event argument you can see is the transition to be added.

Line 38: Using the append function, you add the transition to the memory.

Line 39: You start an if condition that checks if the length of the memory
(meaning its number of transitions) is larger than the capacity.

Line 40: If that is indeed the case, you delete the first element of the memory.

Line 42: You start building the second tool of the class, the sample method, which
samples some random transitions from the experience replay memory. It takes
batch_size as input, which is the size of the batches of transitions with which
you'll train your neural network.

Remember how it works: instead of forward-propagating single input states into
the neural network and updating the weights after each transition resulting from
the input state, you forward-propagate small batches of input states and update the
weights after backpropagating the same whole batches of transitions with mini-batch
gradient descent. That's different from stochastic gradient descent (weight update
every single input) and batch gradient descent (weight update every batch of inputs)
as explained in Chapter 9, Going Pro with Artificial Brains – Deep Q-Learning:

Figure 10: Batch gradient descent versus stochastic gradient descent

Line 43: You sample some random transitions from the memory and put them into
a batch of size batch_size. For example, if batch_size = 100, you sample 100
random transitions from the memory. The sampling is done with the sample()
function from the random library. Then, zip(*list) is used to regroup the states,
actions, and rewards into separate batches of the same size (batch_size), in order
to put the sampled transitions into the format expected by PyTorch (the Variable
format, which comes next in Line 44).

WOW! eBook
www.wowebook.org

Chapter 10

[177]

This is probably a good time to take a step back. Let's see what Line 43 gives you:

Figure 11: The batches of last states, actions, rewards, and next states

Line 44: Using the map() function, wrap each sample into a torch Variable
object (as Variable() is actually a class), so that each tensor inside the samples is
associated to a gradient. Simply put, you can see a torch Variable as an advanced
structure that encompasses a tensor and a gradient.

This is the beauty of PyTorch. These torch Variables are all in a dynamic
graph which allows fast computation of the gradient of complex functions.
Those fast computations are required for the weight updates happening during
backpropagation with mini-batch gradient descent. Inside the Variable class we see
torch.cat(x,0). That's just a concatenation trick, along the vertical axis, to put the
samples in the format expected by the Variable class.

The most important thing to remember is this: when training a neural network with
PyTorch, we always work with torch Variables, as opposed to just tensors. You
can find more details about this in the PyTorch documentation.

Step 4 – Implementing deep Q-learning
You've made it! You're finally about to start coding the whole deep Q-learning
process. Again, you'll wrap all of it into a class, this time called Dqn, as in deep
Q-network. This is your final run before the finish line. Let's smash this.

This time, the class is quite long so I'll show and explain the lines of code method
by method from the deep_q_learning.py file. Here's the first one, the __init__()
method:

46 # Implementing Deep Q-Learning

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[178]

47

48 class Dqn(object):

49

50 def __init__(self, input_size, nb_action, gamma):

51 self.gamma = gamma

52 self.model = Network(input_size, nb_action)

53 self.memory = ReplayMemory(capacity = 100000)

54 self.optimizer = optim.Adam(params = self.model.
parameters())

55 self.last_state = torch.Tensor(input_size).unsqueeze(0)

56 self.last_action = 0

57 self.last_reward = 0

Line 48: You introduce the Dqn class. You don't need to inherit from any other class
so just input object in the parenthesis of the class.

Line 50: As always, you start with the __init__() method, which this time takes
four arguments:

1. self: The object
2. input_size: The number of inputs in the input state vector (that is, 4)
3. nb_action: The number of actions (that is, 3)
4. gamma: The discount factor in the temporal difference formula

Line 51: You introduce the first object variable, self.gamma, set equal to the
argument gamma (which will be entered later when you create an object of the
Dqn class).

Line 52: You introduce the second object variable, self.model, an object of the
Network class you built before. This object is your neural network; in other words,
the brain of our AI. When creating this object, you input the two arguments of the
__init__() method in the Network class, which are input_size and nb_action.
You'll enter their real values (respectively 4 and 3) later, when creating an object
of the Dqn class.

Line 53: You introduce the third object variable, self.memory, as an object of the
ReplayMemory class you built before. This object is the experience replay memory.
Since the __init__ method of the ReplayMemory class only expects one argument,
the capacity, that's exactly what you input here as 100,000. In other words, you're
creating a memory of size 100,000, which means that instead of remembering just the
last transition, the AI will remember the last 100,000 transitions.

WOW! eBook
www.wowebook.org

Chapter 10

[179]

Line 54: You introduce the fourth object variable, self.optimizer, as an object
of the Adam class, which is an existing class built in the torch.optim module. This
object is the optimizer, which updates the weights through mini-batch gradient
descent during backpropagation. In the arguments, keep most of the default
parameter values (you can check them in the PyTorch documentation) and only
enter the model parameters (the params argument), which you access with self.
model.parameters, one of the attributes of the nn.Module class from which the
Network class inherits.

Line 55: You introduce the fifth object variable, self.last_state, which will be
the last state in each (last state, action, reward, next state) transition. This last state is
initialized as an object of the Tensor class from the torch library, into which you only
have to enter the input_size argument. Then .unsqueeze(0) is used to create an
additional dimension at index 0, which will correspond to the batch. This allows us
to do something like this, matching each last state to the appropriate batch:

Figure 12: Adding a dimension for the batch

Line 56: You introduce the sixth object variable, self.last_action, initialized
as 0, which is the last action played at each iteration.

Line 57: We introduce the last object variable, self.last_reward, initialized as 0,
which is the last reward received after playing the last action self.last_action,
in the last state self.last_state.

Now, you're all good for the __init__ method. Let's move on to the next code
section with the next method: the select_action method, which selects the action
to play at each iteration using Softmax.

59 def select_action(self, state):

60 probs = F.softmax(self.model(Variable(state))*100)

61 action = probs.multinomial(len(probs))

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[180]

62 return action.data[0,0]

Line 59: You start defining the select_action method, which takes as input an
input state vector (orientation, signal 1, signal 2, signal 3), and returns as output
the selected action to play.

Line 60: You get the probabilities of the three actions thanks to the Softmax function
taken from the torch.nn.functional module. This Softmax function takes the
Q-values as input, which are exactly returned by self.model(Variable(state)).
Remember, self.model is an object of the Network class, which has the forward
method, which takes as input an input state tensor wrapped into a torch Variable,
and returns as output the Q-values for the three actions.

Multiplying the Q-values by a number (here 100) inside softmax is a good trick to
remember: it allows you to regulate the Exploration versus Exploitation. The lower
that number is, the more you'll explore, and therefore the longer it will take to get
optimized actions. Here, the problem's not too complex, so choose a large number
(100) in order to have confident actions and a smooth trajectory to the goal. You'll
clearly see the difference if you remove *100 from the code. Simply put, with the
*100, you'll see a car sure of itself; without the *100, you'll see a car fidgeting.

Line 61: You take a random draw from the distribution of actions created by the
softmax function at line 60, by calling the multinomial() function from your
probabilities probs.

Line 62: You return the selected action to perform, which you access in action.
data[0,0]. The returned action has an advanced tensor structure, and the action
index (0, 1, or 2) that you're interested in is located in the data attribute of the action
tensor at the first cell of indexes [0,0].

Let's move on to the next code section, the learn method. This one is pretty
interesting because it's where the heart of deep Q-learning beats. It's in this method
that we compute the temporal difference, and accordingly the loss, and update the
weights with our optimizer in order to reduce that loss. That's why this method is
called learn, because it is here that the AI learns to perform better and better actions
that increase the accumulated reward. Let's continue:

Geek note: Usually we would specify that we call the forward
method this way – self.model.forward(Variable(state)) –
but since forward is the only method of the Network class, it is
sufficient to just call self.model.

WOW! eBook
www.wowebook.org

Chapter 10

[181]

64 def learn(self, batch_states, batch_actions, batch_rewards,
batch_next_states):

65 batch_outputs = self.model(batch_states).gather(1, batch_
actions.unsqueeze(1)).squeeze(1)

66 batch_next_outputs = self.model(batch_next_states).
detach().max(1)[0]

67 batch_targets = batch_rewards + self.gamma * batch_next_
outputs

68 td_loss = F.smooth_l1_loss(batch_outputs, batch_targets)

69 self.optimizer.zero_grad()

70 td_loss.backward()

71 self.optimizer.step()

Line 64: You start by defining the learn() method, which takes as inputs the batches
of the four elements composing a transition (input state, action, reward, next state):

1. batch_states: A batch of input states.
2. batch_actions: A batch of actions played.
3. batch_rewards: A batch of the rewards received.
4. batch_next_states: A batch of the next states reached.

Before I explain Lines 65, 66, and 67, let's take a step back and see what you'll
have to do. As you know, the goal of this learn method is to update the weights
in directions that reduce the back-propagated loss at each iteration of the training.
First let's remind ourselves of the formula for the loss:

() ()() () ()
2 2

1
1 1, max , , ,
2 2B B B B B B B Bt t t t t t t t

aB B
Loss R s a Q s a Q s a TD s aγ +

 = + − =
 ∑ ∑

Inside the formula for the loss, we clearly recognize the outputs (predicted Q-values)
and the targets:

()Batch of outputs : ,
B Bt tQ s a

() ()()1Batch of targets : , max ,
B B Bt t t

a
R s a Q s aγ ++

Therefore, to compute the loss, you proceed this way over the next four lines of code:

Line 65: You collect the batch of outputs, (),
B Bt tQ s a .

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[182]

Line 66: You compute the ()()1max ,
Bta

Q s a+ part of the targets, which you call batch_
next_outputs.

Line 67: You get the batch of targets.

Line 68: Since you have the outputs and targets, you're ready to get the loss.

Now let's do this in detail.

Line 65: You collect the batch of outputs (),
B Bt tQ s a , meaning the predicted Q-values

of the input states and the actions played in the batch. Getting them takes several
steps. First, you call self.model(batch_states), which, as seen in Line 60, returns
the Q-values of each input state in batch_states and for all the three actions 0, 1,
and 2. To help you visualize it better, it returns something like this:

Figure 13: What is returned by self.model(batch_states)

You only want the predicted Q-values for the selected actions from the batch of
outputs, which are found in the batch of actions batch_actions. That's exactly what
the .gather(1, batch_actions.unsqueeze(1)).squeeze(1) trick does: for each
input state of the batch, it picks the Q-value that corresponds to the action that was
selected in the batch of actions. To help visualize this better, let's suppose the batch
of actions is the following:

WOW! eBook
www.wowebook.org

Chapter 10

[183]

Figure 14: Batch of actions

Then you would get the following batch of outputs composed of the red Q-values:

Figure 15: Batch of outputs

I hope this is clear; I'm doing my best not to lose you along the way.

Line 66: Now you get the ()()1max ,
Bta

Q s a+ part of the target. Call this batch_next_
outputs; you get it in two steps. First, call self.model(batch_next_states) to get
the predicted Q-values for each next state of the batch of next states and for each of
the three actions. Then, for each next state of the batch, take the maximum of the
three Q-values using .detach().max(1)[0]. That gives you the batch of the

()()1max ,
Bta

Q s a+
 values part of the targets.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[184]

Line 67: Since you have the batch of rewards (),
B Bt tR s a (it's part of the arguments),

and since you just got the batch of the ()()1max ,
Bta

Q s a+ values part of the targets at
Line 66, then you're ready to get the batch of targets:

() ()()1Batch of targets : , max ,
B B Bt t t

a
R s a Q s aγ ++

That's exactly what you do at Line 67, by summing batch_rewards and batch_
next_outputs multiplied by self.gamma, one of the object variables in the Dqn
class. Now you have both the batch of outputs and the batch of targets, so you're
ready to get the loss.

Line 68: Let's remind ourselves of the formula for the loss:

() ()() ()
2

1
1 , max , ,
2 B B B B Bt t t t t

aB
Loss R s a Q s a Q s aγ +

 = + −
 ∑

()21 Target Output
2 B

Loss = −∑

()21 ,
2 B B Bt t t

B
Loss TD s a= ∑

Therefore, in order to get the loss, you just have to get the sum of the squared
differences between our targets and outputs in the batch. That's exactly what the
smooth_l1_loss function will do. Taken from the torch.nn.functional module,
it takes as inputs the two batches of outputs and targets and returns the loss as
given in the preceding formula. In the code, call this loss td_loss as in temporal
difference loss.

Excellent progress! Now that you have the loss, representing the error between the
predictions and the targets, you're ready to backpropagate this loss into the neural
network and update our weights to reduce this loss through mini-batch gradient
descent. That's why the next step to take here is to use your optimizer, which is the
tool that will perform the updates to the weights.

Line 69: You first initialize the gradients, by calling the zero_grad() method from
your self.optimizer object (zero_grad is a method of the Adam class), which will
basically set all the gradients of the weights to zero.

WOW! eBook
www.wowebook.org

Chapter 10

[185]

Line 70: You backpropagate the loss error td_loss into the neural network by
calling the backward() function from td_loss.

Line 71: You perform the weights updates by calling the step() method from your
self.optimizer object (step is a method of the Adam class).

Congratulations! You've built yourself a tool in the Dqn class that will train your car
to drive better. You've done the toughest part. Now all you have left to do is to wrap
things up into a last method, called update, which will simply update the weights
after reaching a new state.

Now, in case you are thinking, "but isn't what I've already done with the learn
method?," well, you're right; but you need to make an extra function that will
update the weights at the right time. The right time to update the weights is right
after our AI reaches a new state. Simply put, this final update method you're about
to implement will connect the dots between the learn method and the dynamic
environment.

That's the finish line! Are you ready? Here's the code:

73 def update(self, new_state, new_reward):

74 new_state = torch.Tensor(new_state).float().unsqueeze(0)

75 self.memory.push((self.last_state, torch.
LongTensor([int(self.last_action)]), torch.Tensor([self.last_
reward]), new_state))

76 new_action = self.select_action(new_state)

77 if len(self.memory.memory) > 100:

78 batch_states, batch_actions, batch_rewards, batch_
next_states = self.memory.sample(100)

79 self.learn(batch_states, batch_actions, batch_rewards,
batch_next_states)

80 self.last_state = new_state

81 self.last_action = new_action

82 self.last_reward = new_reward

83 return new_action

Line 73: You introduce the update() method, which takes as input the new state
reached and the new reward received right after playing an action. This new state
entered here will be the state variable you can see in Line 129 of the map.py file and
this new reward will be the reward variable you can see in Lines 138 to 145 of the
map.py file. This update method performs some operations including the weights
updates and, in the end, returns the new action to perform.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[186]

Line 74: You first convert the new state into a torch tensor and unsqueeze it to
create an additional dimension (placed first in index 0) corresponding to the batch.
To ease future operations, you also make sure that all the elements of the new state
(orientation plus the three signals) are converted into floats by adding .float().

Line 75: Using the push() method from your memory object, add a new transition
to the memory. This new transition is composed of:

1. self.last_state: The last state reached before reaching that new state
2. self.last_action: The last action played that led to that new state
3. self.last_reward: The last reward received after performing that last

action
4. new_state: The new state that was just reached

All the elements of this new transition are converted into torch tensors.

Line 76: Using the select_action() method from your Dqn class, perform a new
action from the new state just reached.

Line 77: Check if the size of the memory is larger than 100. In self.memory.memory,
the first memory is the object created at Line 53 and the second memory is the variable
object introduced at Line 35.

Line 78: If that's the case, sample 100 transitions from the memory, using the
sample() method from your self.memory object. This returns four batches
of size 100:

1. batch_states: The batch of current states (current at the time of the
transition).

2. batch_actions: The batch of actions performed in the current states.
3. batch_rewards: The batch of rewards received after playing the actions

of batch_actions in the current states of batch_states.
4. batch_next_states: The batch of next states reached after playing the

actions of batch_actions in the current states of batch_states.

Line 79: Still in the if condition, proceed to the weights updates using the learn()
method called from the same Dqn class, with the four previous batches as inputs.

Line 80: Update the last state reached, self.last_state, which becomes new_
state.

Line 81: Update the last action performed, self.last_action, which becomes new_
action.

WOW! eBook
www.wowebook.org

Chapter 10

[187]

Line 82: Update the last reward received, self.last_reward, which becomes new_
reward.

Line 83: Return the new action performed.

That's it for the update() method! I hope you can see how we connected the dots.
Now, to connect the dots even better, let's see where and how you call that update
method in the map.py file.

First, before calling that update() method, you have to create an object of the Dqn
class, which here is called brain. That's exactly what you do in Line 33 of the map.
py file.

33 brain = Dqn(4,3,0.9)

The arguments entered here are the three arguments we see in the __init__()
method of the Dqn class:

• 4 is the number of elements in the input state (input_size).
• 3 is the number of possible actions (nb_action).
• 0.9 is the discount factor (gamma).

Then, from this brain object, you call on the update() method in Line 130 of the
map.py file, right after reaching a new state, called state in the code:

129 state = [orientation, self.car.signal1, self.car.
signal2, self.car.signal3]

130 action = brain.update(state, reward)

Going back to your Dqn class, you need two extra methods:

1. The save() method, which saves the weights of the AI's network after their
last updates. This method will be called as soon as you click the save button
while running the map. The weights of your AI will be then saved and put
into a file named last_brain.pth, which will automatically be populated
in the folder that contains your Python files. That's what allows you to have
a pre-trained AI.

2. The load() method, which loads the saved weights in the last_brain.pth
file. This method will be called as soon as you click the load button while
running the map. It allows you to start the map with a pre-trained self-
driving car, without having to wait for it to train.

These last two methods aren't AI-related, so we won't spend time explaining each
line of their code. Still, it's good for you to be able to recognize these two tools in
case you want to use them for another AI model that you build with PyTorch.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[188]

Here's how they're implemented:

85 def save(self):

86 torch.save({'state_dict': self.model.state_dict(),

87 'optimizer' : self.optimizer.state_dict(),

88 }, 'last_brain.pth')

89

90 def load(self):

91 if os.path.isfile('last_brain.pth'):

92 print("=> loading checkpoint... ")

93 checkpoint = torch.load('last_brain.pth')

94 self.model.load_state_dict(checkpoint['state_dict'])

95 self.optimizer.load_state_
dict(checkpoint['optimizer'])

96 print("done !")

97 else:

98 print("no checkpoint found...")

Congratulations!

That's right! You've finished this 100 lines of code implementation of the AI inside
our self-driving car. That's quite an accomplishment, especially when coding deep
Q-learning for the first time. You really can be proud to have gone this far.

After all this hard work, you definitely deserve to have some fun, and I think it'll be
the most fun to watch the result of your hard work. In other words, you're about to
see your self-driving car in action! I remember I was so excited the first time I ran
this. You'll feel it too; it's pretty cool!

The demo
I have some good news and some bad news.

I'll start with the bad news: we can't run the map.py file with a simple plug and play
on Google Colab. The reason for that is that Kivy is very tricky to install through
Colab. So, we'll go for the classic method of running a Python file: through the
terminal.

The good news is that once we install Kivy and PyTorch through the terminal,
you'll have a fantastic demo!

WOW! eBook
www.wowebook.org

Chapter 10

[189]

Let's install everything we need to run our self-driving car. Here's what we have
to install, in the following order:

1. Anaconda: A free and open source distribution of Python that offers an easy
way to install packages thanks to the conda command. This is what we'll use
to install PyTorch and Kivy.

2. Virtual environment with Python 3.6: Anaconda is installed with Python 3.7
or higher; however, that 3.7 version is not compatible with Kivy. We'll create
a virtual environment in which we install Python 3.6, a version compatible
with both Kivy and our implementation. Don't worry if that sounds
intimidating, I'll give you all the details you need to set this up.

3. PyTorch: Then, inside the virtual environment, we'll install PyTorch, the AI
framework used to build our deep Q-network. We'll install a specific version
of PyTorch that's compatible with our implementation, so that everyone can
be on the same page and run it with no issues. PyTorch upgrades sometimes
include changes in the names of the modules, which can make an old
implementation incompatible with the newest PyTorch versions. Here,
we know we have the right PyTorch version for our implementation.

4. Kivy: To finish, still inside the virtual environment, we'll install Kivy,
the open source Python framework on which we will run our map.

Let's start with Anaconda.

Installing Anaconda
On Google, or your favorite browser, go to www.anaconda.com. On the Anaconda
website, click Download on the upper right corner of the screen. Scroll down and
you'll find the Python versions to download:

Figure 16: Installing Anaconda – Step 2

WOW! eBook
www.wowebook.org

http://www.anaconda.com

AI for Autonomous Vehicles – Build a Self-Driving Car

[190]

At the top, make sure that your system (Windows, macOS, or Linux) is correctly
selected. If it is, click the Download button in the Python 3.7 version box. This will
download Anaconda with Python 3.7.

Then double-click the downloaded file and keep clicking Continue and Agree
to install, until the end. If you're prompted to choose who or how to install it for,
choose install for me only.

Creating a virtual environment with
Python 3.6
Now that Anaconda's installed, you can create a virtual environment, named
selfdrivingcar, with Python 3.6 installed. To do this you need to open
a terminal and enter some commands. Here's how to open it for the three systems:

1. For Linux users, just press Ctrl + Alt + T.
2. For Mac users, press Cmd + Space, and then in the Spotlight Search enter

Terminal.
3. For Windows users, click the Windows button at the lower left corner

of your screen, find anaconda in the list of programs, and click to open
Anaconda prompt. A black window will open; that's the terminal you'll
use to install the packages.

Inside the terminal, enter the following command:

conda create -n selfdrivingcar python=3.6

Just like so:

This command creates a virtual environment called selfdrivingcar with Python
3.6 and other packages installed.

After pressing Enter, you'll get this in a few seconds:

WOW! eBook
www.wowebook.org

Chapter 10

[191]

Press y to proceed. This will download and extract the packages. After a few
seconds, you'll get this, which marks the end of the installation:

Then we're going to activate the selfdrivingcar virtual environment, meaning
we're going to get inside it in order to install PyTorch and Kivy within the
selfdrivingcar virtual environment.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[192]

As you can see just preceding, to activate the environment, we will enter the
following command:

conda activate selfdrivingcar

Enter that command, and then you'll get inside the virtual environment:

Now we can see (selfdrivingcar) before my computer's name, hadelins-
macbook-pro, which means we are inside the selfdrivingcar virtual environment.

We're ready for the next steps, which are the installation of PyTorch and Kivy inside
this virtual environment. Don't close your terminal, or when you open it again you'll
be back in the main environment.

Installing PyTorch
Now we're going to install PyTorch inside the virtual environment by entering the
following command:

conda install pytorch==0.3.1 -c pytorch

Just like so:

WOW! eBook
www.wowebook.org

Chapter 10

[193]

After a few seconds, we get this:

Press y again, and then press Enter.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[194]

After a few seconds, PyTorch is installed:

Installing Kivy
Now let's proceed to Kivy. In the same virtual environment, we're going to install
Kivy by entering the following command:

conda install -c conda-forge/label/cf201901 kivy

Again, we get this:

WOW! eBook
www.wowebook.org

Chapter 10

[195]

Enter y again, and after a few seconds more, Kivy is installed.

Now I have some terrific news for you: you're ready to run the self-driving car! To
do that, we need to run our code in the terminal, still inside our virtual environment.

If you already closed your terminal, then when you open it again
enter the conda activate selfdrivingcar command in order
to get back inside the virtual environment.

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[196]

So, let's run the code! If you haven't already, download the whole repository
by clicking the Clone or download button on the GitHub page:

(https://github.com/PacktPublishing/AI-Crash-Course)

Figure 17: The GitHub repository

WOW! eBook
www.wowebook.org

https://github.com/PacktPublishing/AI-Crash-Course

Chapter 10

[197]

Then unzip it and move the unzipped folder to your desktop, just like so:

Now go into Chapter 10 and select and copy all the files inside:

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[198]

Then, because we're only interested in these files right now, and to simplify the
command lines in the terminal, paste these files inside the main AI-Crash-Course-
master folder and remove all the rest, which we don't need, so that you eventually
end up with this:

Now we're going to access this folder from the terminal. Since we put the repository
folder in the desktop, we will find it in a flash. Back into the terminal, enter ls (l as in
lion) to see in which folder you are in your machine:

WOW! eBook
www.wowebook.org

Chapter 10

[199]

I can see that I'm in my main root folder, which contains the Desktop folder. It
should usually be the case for you too. So now we're going to go into the Desktop
folder by entering the following command:

cd Desktop

Enter ls again and check that you indeed see the AI-Crash-Course-master folder:

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[200]

Then go into the AI-Crash-Course-master folder by entering the following
command:

cd AI-Crash-Course-master

Perfect! Now we're in the right spot! By entering ls again, you can see all the files
of the repo, including the map.py file, which is the one we have to run to see our
self-driving car in action!

If by any chance you had trouble getting to this point, that may be because your
main root folder doesn't contain your Desktop folder. If that's the case, just put the
AI-Crash-Course-master repo folder inside one of the folders that you see when
entering the ls command in the terminal, and redo the same process.

WOW! eBook
www.wowebook.org

Chapter 10

[201]

What you have to do is just find and enter the AI-Crash-Course-master folder
with the cd commands. That's it! Don't forget to make sure your AI-Crash-Course-
master folder only contains the self-driving car files:

Now you're only one command line away from running your self-driving car. I hope
you're excited to see the results of your hard work; I know exactly how you feel, I
was in your shoes not so long ago!

So, without further ado, let's enter the final command, right now. It's this:

python map.py

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[202]

As soon as you enter it, the map with the car will pop up just like so:

Figure 18: The map

For the first minute or so, your self-driving car will explore its actions by performing
nonsense movements; you might see it spinning around. After each 100 movements,
the weights inside the neural network of the AI get updated, and the car improves
its actions to get higher rewards. And suddenly, maybe after another 30 seconds or
so, you should see your car making round trips between the Airport and Downtown,
which I highlighted here again:

WOW! eBook
www.wowebook.org

Chapter 10

[203]

Figure 19: The destinations

Now have some fun! Draw some obstacles on the map to see if the car avoids them.

On my side I have just drawn this, and after a few more minutes of training, I can
clearly see the car avoiding the obstacles:

Figure 20: Road with obstacles

WOW! eBook
www.wowebook.org

AI for Autonomous Vehicles – Build a Self-Driving Car

[204]

And you can have even more fun! By, for example, drawing a road like so:

Figure 21: The road of the demo

After a few minutes of training, the car becomes able to self-drive along that road,
while making many road trips between the Airport and Downtown.

Quick question for you: how did you program the car to travel between the
destinations?

You did it by giving a small positive reward to the AI when the car gets closer to the
goal. That's programmed in rows 144 and 145 inside the map.py file:

144 if distance < last_distance:

145 reward = 0.1

Congratulations to you for completing this massive chapter on this not-so-basic
self-driving car application! I hope you had fun, and that you feel proud to have
mastered such an advanced model in deep reinforcement learning.

WOW! eBook
www.wowebook.org

Chapter 10

[205]

Summary
In this chapter, we learned how to build a deep Q-learning model to drive a self-
driving car. As inputs it took the information from the three sensors and its current
orientation. As outputs it decided the Q-values for each of the actions of going
straight, turning left, or turning right. As for the rewards, we punished it badly for
hitting the sand, punished it slightly for going in the wrong direction, and rewarded
it slightly for going in the right direction. We made the AI implementation in
PyTorch and used Kivy for the graphics. To run all of this we used the Anaconda
environment.

Now take a long break, you deserve it! I'll see you in the next chapter for our next
AI challenge, where this time we will solve a real-world business problem with cost
implications running into the millions.

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

[207]

AI for Business – Minimize
Costs with Deep Q-Learning

It's great that you can implement a deep Q-learning model to build a self-driving
car. Really, once again, huge congratulations to you for that. But I also want you
to be able to use deep Q-learning to solve a real-world business problem. With this
next application, you'll be more than ready to add value to your work or business
by leveraging AI. Even though we'll once again use a specific application, this
chapter will provide you with a general AI framework, a blueprint containing the
general steps of the process you have to follow when solving a real-world problem
with deep Q-learning. This chapter is very important to you and for your career;
I don't want you to close this book before you feel confident with the skills you'll
learn here. Let's smash this next application together!

Problem to solve
When I said we were going to solve a real-world business problem, I didn't overstate
the problem; the problem we're about to tackle with deep Q-learning is very similar
to the following, which was solved in the real world via deep Q-learning.

In 2016, DeepMind AI minimized a big part of Google's yearly costs by reducing
the Google Data Center's cooling bill by 40% using their DQN AI model (deep
Q-learning). Check the link here:

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-
cooling-bill-40/

In this case study, we'll do something very similar. We'll set up our own server
environment, and we'll build an AI that controls the cooling and heating of the
server so that it stays in an optimal range of temperatures while using the minimum
of energy, therefore minimizing the costs.

WOW! eBook
www.wowebook.org

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

AI for Business – Minimize Costs with Deep Q-Learning

[208]

Just as the DeepMind AI did, our goal will be to achieve at least 40% energy savings!
Are you ready for this? Let's bring it on!

As ever, my first question to you is: What's our first step?

I'm sure by this point I don't need to spell out the answer. Let's get straight
to building our environment!

Building the environment
Before we define the states, actions, and rewards, we need to set up the server and
explain how it operates. We'll do that in several steps:

1. First, we'll list all the environment parameters and variables by which the
server is controlled.

2. After that we'll set the essential assumptions of the problem, on which your
AI will rely to provide a solution.

3. Then we'll specify how you'll simulate the whole process.
4. Finally, we'll explain the overall functioning of the server, and how the

AI plays its role.

Parameters and variables of the server
environment
Here is a list of all the parameters, which keep their values fixed, of the server
environment:

1. The average atmospheric temperature for each month.
2. The optimal temperature range of the server, which we'll set as 18 C,24 C

� � .
3. The minimum temperature, below which the server fails to operate, which

we'll set as 20 C− � .
4. The maximum temperature, above which the server fails to operate, which

we'll set as 80 C� .
5. The minimum number of users in the server, which we'll set as 10.
6. The maximum number of users in the server, which we'll set as 100.
7. The maximum change of users in the server per minute, which we'll set as 5;

so every minute, the server can only have a change of 5 extra users or 5 fewer
users at most.

8. The minimum rate of data transmission in the server, which we'll set as 20.

WOW! eBook
www.wowebook.org

Chapter 11

[209]

9. The maximum rate of data transmission in the server, which we'll set as 300.
10. The maximum change of the rate of data transmission per minute, which

we'll set as 10; so every minute, the rate of data transmission can only
change by a maximum value of 10 in either direction.

Next, we'll list all the variables, which have values that fluctuate over time, of the
server environment:

1. The temperature of the server at a given minute.
2. The number of users connected to the server at a given minute.
3. The rate of data transmission at a given minute.
4. The energy spent by the AI onto the server (to cool it down or heat it up)

at a given minute.
5. The energy that would be spent by the server's integrated cooling system

to automatically bring the server's temperature back to the optimal range,
whenever the server's temperature goes outside this optimal range. This is
to keep track of how much energy a non-AI system would use, so we can
compare our AI system to it.

All these parameters and variables will be part of the environment, and will
influence the actions of our AI.

Next, we'll explain the two core assumptions of the environment. It's important to
understand that these assumptions are not AI related, but just used to simplify the
environment so that we can focus on creating a functional AI solution.

Assumptions of the server environment
We'll rely on the following two essential assumptions:

Assumption 1 – We can approximate the server
temperature
The temperature of the server can be approximated through Multiple Linear
Regression, that is, by a linear function of the atmospheric temperature, the number
of users and the rate of data transmission, like so:

server temperature = 0b + 1b × atmospheric temperature + 2b × number of users + 3b × rate
of data transmission

where 0b ∈�, 1 0b > , 2 0b > , and 3 0b > .

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[210]

The raison d'être of this assumption and the reason why 1 0b > , 2 0b > , and 3 0b >
are intuitive to understand. It makes sense that when the atmospheric temperature
increases, the temperature of the server increases. The more users that are connected
to the server, the more energy the server has to spend handling them, and therefore
the higher the temperature of the server will be. Finally, the more data is transmitted
inside the server, the more energy the server has to spend processing it, and
therefore the higher the temperature of the server will be.

For simplicity's sake, we can just suppose that these correlations are linear. However,
you could absolutely run the same simulation by assuming they were quadratic
or logarithmic, and altering the code to reflect those equations. This is just my
simulation of a virtual server environment; feel free to tweak it as you like!

Let's assume further that after performing this Multiple Linear Regression,
we obtained the following values of the coefficients: 0 0b = , 1 1b = , 2 1.25b = , and
3 1.25b = . Accordingly:

server temperature = atmospheric temperature + 1.25× number of users + 1.25× rate of data
transmission

Now, if we were facing this problem in real life, we could get the dataset of
temperatures for our server and calculate these values directly. Here, we're just
assuming values that are easy to code and understand, because our goal in this
chapter is not to perfectly model a real server; it's to go through the steps of solving
a real-world problem with AI.

Assumption 2 – We can approximate the energy
costs
The energy spent by any cooling system, either our AI or the server's integrated
cooling system that we'll compare our AI to, that changes the server's temperature
from tT to 1tT + within 1 unit of time (in our case 1 minute), can be approximated again
through regression by a linear function of the server's absolute temperature change,
as so:

1t t t tE T T Tα β α β+= ∆ + = − +

where:

1. tE is the energy spent by the system on the server between times t and 1t +
minute.

2. tT∆ is the change in the server's temperature caused by the system, between
times t and 1t + minute.

WOW! eBook
www.wowebook.org

Chapter 11

[211]

3. tT is the temperature of the server at time t.
4. 1tT + is the temperature of the server at time 1t + minute.
5. 0α > .
6. β ∈�.

Let's explain why it intuitively makes sense to make this assumption with 0α > .
That's simply because the more the AI or the old-fashioned integrated cooling
system heats up or cools down the server, the more energy it spends to achieve
that heat transfer.

For example, imagine the server suddenly has overheating issues and just reached
80�C; then within one unit of time (1 minute), either system will need much more
energy to bring the server's temperature back to its optimal temperature, 24�C, than
to bring it back to 50�C.

For simplicity's sake, in this example we suppose that these correlations are linear,
instead of calculating true values from a real dataset. In case you're wondering why
we take the absolute value, that's simply because when the AI cools down the server,

1t tT T+ < , so 0T∆ < . Since an energy cost is always positive, we have to take the
absolute value of T∆ .

Keeping our desired simplicity in mind, we'll assume that the results of the
regression are 1α = and 0β = , so that we get the following final equation based
on Assumption 2:

1t t t tE T T T+= ∆ = −

thus:

1 1ift t t t tE T T T T+ += − > , that is, if the server is heated up,

1 1ift t t t tE T T T T+ += − < , that is, if the server is cooled down.

Now we've got our assumptions covered, let's explain how we'll simulate the
operation of the server, with users logging on and off and data coming in and out.

Simulation
The number of users and the rate of data transmission will randomly fluctuate, to
simulate the unpredictable user activity and data requirements of an actual server.
This leads to randomness in the temperature. The AI needs to learn how much
cooling or heating power it should transfer to the server so as to not deteriorate
the server performance, and at the same time, expend as little energy as possible
by optimizing its heat transfer.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[212]

Now that we have the full picture, I'll explain the overall functioning of the server
and the AI inside this environment.

Overall functioning
Inside a data center, we're dealing with a specific server that is controlled by the
parameters and variables listed previously. Every minute, some new users log on to
the server and some current users log off, therefore updating the number of active
users in the server. Also, every minute some new data is transmitted into the server,
and some existing data is transmitted outside the server, therefore updating the rate
of data transmission happening inside the server.

Hence, based on Assumption 1 given earlier, the temperature of the server is updated
every minute. Now please focus, because this is where you'll understand the huge
role the AI has to play on the server.

Two possible systems can regulate the temperature of the server: the AI, or the
server's integrated cooling system. The server's integrated cooling system is an
unintelligent system that automatically brings the server's temperature back
inside its optimal temperature range.

Every minute, the server's temperature is updated. If the server is using the
integrated cooling system, that system watches to see what happens; that update can
either leave the temperature within the range of optimal temperatures (18 C,24 C

� �),
or move it outside this range. If it goes outside the optimal range, for example to 30�
C, the server's integrated cooling system automatically brings the temperature back
to the closest bound of the optimal range, in this case 24�C. For the purposes of our
simulation, we're assuming that no matter how big the change in temperature is, the
integrated cooling system can bring it back into the optimal range in under a minute.
This is, obviously, an unrealistic assumption, but the purpose of this chapter is for
you to build a functioning AI capable of solving the problem, not to perfectly
simulate the thermal dynamics of a real server. Once we've completed our example
together, I highly recommend that you tinker with the code and try to make it more
realistic; for now, to keep things simple, we'll believe in our magically effective
integrated cooling system.

If the server is instead using the AI, then in that case the server's integrated cooling
system is deactivated and it is the AI itself that updates the temperature of the server
to regulate it the best way. The AI changes the temperature after making some prior
predictions, not in a purely deterministic way as with the unintelligent integrated
cooling system. Before there's an update to the number of users and the rate of data
transmission, causing a change in the temperature of the server, the AI predicts if it
should cool down the server, do nothing, or heat up the server, and acts. Then the
temperature change happens and the AI reiterates.

WOW! eBook
www.wowebook.org

Chapter 11

[213]

Since these two systems are distinct from one another, we can evaluate them
separately to compare their performance; to train or run the AI on a server, while
keeping track of how much energy the integrated cooling system would have used
in the same circumstances.

That brings us to the energy. Remember that one primary goal of the AI is to lower
the energy cost of running this server. Accordingly, our AI has to try and use less
energy than the unintelligent cooling system would use on the server. Since, based
on Assumption 2 given preceding, the energy spent on the server (by any system) is
proportional to the change of temperature within one unit of time:

1t t t tE T T T+= ∆ = −

thus:

1 1ift t t t tE T T T T+ += − > , that is, if the server is heated up,

1 1ift t t t tE T T T T+ += − < , that is, if the server is cooled down,

then that means that the energy saved by the AI at each iteration t (each minute)
is equal to the difference in absolute changes of temperatures caused in the server
between the unintelligent server's integrated cooling system and the AI from t and
1t + :

Energy saved by the AI between t and 1t +

= |∆𝑇𝑇𝑡𝑡
Server′s Integrated Cooling System| − |∆𝑇𝑇𝑡𝑡

AI|

noAI AI
t tT T= ∆ − ∆

where:

1. noAI
tT∆ is the change of temperature that the server's integrated cooling

system would cause in the server during the iteration t, that is, from t to 1t +
minute.

2. AI
tT∆ is the change of temperature that the AI would cause in the server

during the iteration t, that is, from t to 1t + minute.

The AIs goal is to save as much as it can every minute, therefore saving the
maximum total energy over 1 full year of simulation, and eventually saving the
business the maximum cost possible on their cooling/heating electricity bill. That's
how we do business in the 21st century; with AI!

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[214]

Now that we fully understand how our server environment works, and how it's
simulated, it's time to proceed with what absolutely must be done when defining
an AI environment. You know the next steps already:

1. Defining the states.
2. Defining the actions.
3. Defining the rewards.

Defining the states
Remember, when you're doing deep Q-learning, the input state is always a 1D
vector. (Unless you are doing deep convolutional Q-learning, in which case the
input state is a 2D image, but that's getting ahead of ourselves! Wait for Chapter 12,
Deep Convolution Q-Learning). So, what will the input state vector be in this server
environment? What information will it contain in order to describe well enough
each state of the environment? These are the questions you must ask yourself
when modeling an AI problem and building the environment. Try to answer these
questions first on your own and figure out the input state vector in this case, and you
can find out what we're using in the next paragraph. Hint: have a look again at the
variable defined preceding.

The input state ts at time t is composed of the following three elements:

1. The temperature of the server at time t
2. The number of users in the server at time t
3. The rate of data transmission in the server at time t

Thus, the input state will be an input vector of these three elements. Our future
AI will take this vector as input, and will return an action to perform at each time, t.
Speaking of the actions, what are they going to be? Let's find out.

Defining the actions
To figure out which actions to perform, we need to remember the goal, which is to
optimally regulate the temperature of the server. The actions are simply going to be
the temperature changes that the AI can cause inside the server, in order to heat it up
or cool it down. In deep Q-learning, the actions must always be discrete; they can't
be plucked from a range, we need a defined number of possible actions. Therefore,
we'll consider five possible temperature changes, from 3− �C to 3+ �C, so that we end
up with five possible actions that the AI can perform to regulate the temperature of
the server:

WOW! eBook
www.wowebook.org

Chapter 11

[215]

Figure 1: Defining the actions

Great. Finally, let's see how we're going to reward and punish our AI.

Defining the rewards
You might have guessed from the earlier Overall functioning section what the reward
is going to be. The reward at iteration t is the energy saved by the AI, with respect to
how much energy the server's integrated cooling system would have spent; that is,
the difference between the energy that the unintelligent cooling system would spend
if the AI was deactivated, and the energy that the AI spends on the server:

noAI AIRewardt t tE E= −

Since according to Assumption 2, the energy spent is equal to the change of
the temperature induced in the server (by any system, including the AI or the
unintelligent cooling system):

1t t t tE T T T+= ∆ = −

thus:

1 1ift t t t tE T T T T+ += − > , if the server is heated up,

1 1ift t t t tE T T T T+ += − < , if the server is cooled down,

then we receive a reward at time t that is the difference in the change of temperature
caused in the server between unintelligent cooling system (that is when there is no
AI) and the AI:

Energy saved by the AI between t and 1t +

noAI AI
t tE E= −

noAI AI
t tT T= ∆ − ∆

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[216]

where:

1. noAI
tT∆ is the change of temperature that the server's integrated cooling

system would cause in the server during the iteration t, that is, from t to
1t + minute.

2. AI
tT∆ is the change of temperature that the AI would cause in the server

during the iteration t, that is, from t to 1t + minute.

Important note: It's important to understand that the systems (our AI and the
server's integrated cooling system) will be evaluated separately, in order to compute
the rewards. Since at each time point the actions of the two different systems lead to
different temperatures, we have to keep track of the two temperatures separately, as
AI
tT and noAI

tT . In other words, we're performing two separate simulations at the same
time, following the same fluctuations of users and data; one for the AI, and one for
the server's integrated cooling system.

To complete this section, we'll do a small simulation of 2 iterations (that is,
2 minutes) as an example to make everything crystal clear.

Final simulation example
Let's say that we're at time 4 : 00t = pm, and that the temperature of the server
is 28tT = �C, both with the AI and without it. At this exact time, the AI predicts an
action: 0, 1, 2, 3 or 4. Since, right now, the server's temperature is outside the optimal
temperature range, 18 C,24 C

� � , the AI will probably predict actions 0, 1 or 2. Let's say
that it predicts 1, which corresponds to cooling the server down by 1.5�C. Therefore,
between 4 : 00t = pm and 1 4 : 01t + = pm, the AI makes the server's temperature go
from AI 28 CtT = � to AI

1 26.5 CtT + = � :

AI
tT∆

AI AI
1t tT T+= −

26.5 28= −

1.5 C= − �

Thus, based on Assumption 2, the energy spent by the AI on the server is:

AI

tE

WOW! eBook
www.wowebook.org

Chapter 11

[217]

AI
tT= ∆

1.5Joules=

Now only one piece of information is missing to compute the reward: the energy
that the server's integrated cooling system would have spent if the AI was
deactivated between 4:00 pm and 4:01 pm. Remember that this unintelligent cooling
system automatically brings the server's temperature back to the closest bound of
the optimal temperature range 18 C,24 C

� � . Since at 4 : 00t = pm the temperature
was 28tT = �C, then the closest bound of the optimal temperature range at that time
was 24�C. Thus, the server's integrated cooling system would have changed the
temperature from 28 CtT = � to 1 24 CtT + = � , and the server's temperature change
that would have occurred if there was no AI is:

noAI
tT∆

noAI noAI
1t tT T+= −

24 28= −

4 C= − �

Based on Assumption 2, the energy that the unintelligent cooling system would have
spent if there was no AI is:

noAI
tE

noAI
tT= ∆

noAI
tT= ∆4Joules

In conclusion, the reward the AI gets after playing this action at time 4 : 00t = pm is:

Reward
noAI AI
t tE E= −

4 1.5= −

2.5=

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[218]

I'm sure you'll have noticed that as it stands, our AI system doesn't involve itself
with the optimal range of temperatures for the server; as I've mentioned before,
everything comes from the rewards, and the AI doesn't get any reward for being
inside the optimal range or any penalty for being outside it. Once we've built the AI
completely, I recommend that you play around with the code and try adding some
rewards or penalties that get the AI to stick close to the optimal range; but for now,
to keep things simple and get our AI up and running, we'll leave the reward as
entirely linked to energy saved.

Then, between 4 : 00t = pm and 1 4 : 01t + = pm, new things happen: some new
users log on to the server, some existing users log off, some new data transmits
into the server, and some existing data transmits out. Based on Assumption 1, these
factors make the server's temperature change. Let's say that overall, they increase the
server's temperature by 5�C:

IntrinsicTemperature 5t C∆ = �

Now, remember that we're evaluating two systems separately: our AI, and the
server's integrated cooling system. Therefore we must compute the two temperatures
we would get with each of these two systems separately, one without the other, at
1 4 : 01t + = pm. Let's start with the AI.

The temperature we get at 1 4 : 01t + = pm when the AI is activated is:

AI
1tT +

AI AI IntrinsicTemperaturet t tT T= +∆ + ∆

28 (1.5) 5= + − +

31.5 C= �

And the temperature we get at 1 4 : 01t + = pm if the AI is not activated is:

noAI
1tT +

noAI noAI IntrinsicTemperaturet t tT T= + ∆ + ∆

28 (4) 5= + − +

29 C= �

WOW! eBook
www.wowebook.org

Chapter 11

[219]

Now we have our two separate temperatures, which are AI
1 29.5tT C+ = �= 31.5°C when the AI is

activated, and noAI
1 27tT C+ = �= 29°C when the AI is not activated.

Let's simulate what happens between 1 4 : 01t + = pm and 2 4 : 02t + = pm. Again,
our AI will make a prediction, and since the server is heating up, let's say it predicts
action 0, which corresponds to cooling down the server by 3 C� , bringing it down to
AI
2 28.5tT C+ = � . Therefore, the energy spent by the AI between 1 4 : 01t + = pm and
2 4 : 02t + = pm is:

AI
1tE +

AI
1tT += ∆

28.5 31.5= −

3Joules=

Now regarding the server's integrated cooling system (that is, when there is no AI),
since at 1 4 : 01t + = pm we had 𝑇𝑇𝑡𝑡+1noAI = 29°𝐶𝐶 , then the closest bound of the optimal
range of temperatures is still 24 Co , and so the energy that the server's unintelligent
cooling system would spend between 1 4 : 01t + = pm and 2 4 : 02t + = pm is:

noAI
1tE +

noAI
1tT += ∆

24 29= −

5Joules=

Hence the reward obtained between 1 4 : 01t + = pm and 2 4 : 02t + = pm, which is
only and entirely based on the amount of energy saved, is:

Reward
noAI AI
1 1t tE E+ += −

5 3= −

2=
Finally, the total reward obtained between 4 : 00t = pm and 2 4 : 02t + = pm is:

TotalReward

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[220]

() ()= Reward obtained between t and t+1 + Rewardobtained between t+1and t+2

2.5 2= +

4.5=
That was an example of the whole process happening for two minutes. In our
implementation we'll run the same process over 1000 epochs of 5-month periods
for the training, and then, once our AI is trained, we'll run the same process over
1 full year of simulation for the testing.

Now that we've defined and built the environment in detail, it's time for our AI to
take action! This is where deep Q-learning comes into play. Our model will be more
advanced than the previous one because I'm introducing some new tricks, called
dropout and early stopping, which are great techniques for you to have in your
toolkit; they usually improve the training performance of deep Q-learning.

Don't forget, you'll also get an AI Blueprint, which will allow you to adapt what we
do here to any other business problem that you want to solve with deep Q-learning.

Ready? Let's smash this.

AI solution
Let's start by reminding ourselves of the whole deep Q-learning model, while
adapting it to this case study, so that you don't have to scroll or turn many pages
back into the previous chapters. Repetition is never bad; it sticks the knowledge
into our heads more firmly. Here's the deep Q-learning algorithm for you again:

Initialization:

1. The memory of the experience replay is initialized to an empty list, called
memory in the code (the dqn.py Python file in the Chapter 11 folder of the
GitHub repo).

2. We choose a maximum size for the memory, called max_memory in the code
(the dqn.py Python file in the Chapter 11 folder of the GitHub repo).

At each time t (each minute), we repeat the following process, until the end of the
epoch:

1. We predict the Q-values of the current state ts . Since five actions can be
performed (0 == Cooling 3°C, 1 == Cooling 1.5°C, 2 == No Heat Transfer,
3 == Heating 1.5°C, 4 == Heating 3°C), we get five predicted Q-values.

WOW! eBook
www.wowebook.org

Chapter 11

[221]

2. We perform the action selected by the argmax method, which simply consists
of selecting the action that has the highest of the five predicted Q-values:

(){ }argmax ,t t
a

a Q s a=

3. We get the reward (),t tR s a , which is the difference noAI AI
t tE E− .

4. We reach the next state 𝑠𝑠𝑡𝑡+1 , which is composed of the three following
elements:
 ° The temperature of the server at time 1t +
 ° The number of users in the server at time 1t +
 ° The rate of data transmission in the server at time 1t +

5. We append the transition ()1, , ,t t t ts a r s + in the memory.
6. We take a random batch B M⊂ of transitions. For all the transitions

()1, , ,
B B B Bt t t ts a r s + of the random batch B:

 ° We get the predictions: (),
B Bt tQ s a

 ° We get the targets: 𝑅𝑅(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵) + 𝛾𝛾max
𝑎𝑎

(𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵+1, 𝑎𝑎))
 ° We compute the loss between the predictions and the targets over the

whole batch B:

Loss = 1
2∑(𝑅𝑅(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵) + 𝛾𝛾max

𝑎𝑎
(𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵+1, 𝑎𝑎)) − 𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵))

2
= 1
2∑𝑇𝑇𝐷𝐷𝑡𝑡𝐵𝐵(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵)2

𝐵𝐵𝐵𝐵

And then finally we backpropagate this loss error back into the neural network, and
through stochastic gradient descent we update the weights according to how much
they contributed to the loss error.

I hope the refresher was refreshing! Let's move on to the brain of the outfit.

The brain
By the brain, I mean of course the artificial neural network of our AI.

Our brain will be a fully connected neural network, composed of two hidden layers,
the first one with 64 neurons, and the second one with 32 neurons. As a reminder,
this neural network takes as inputs the states of the environment, and returns as
outputs the Q-values for each of the five possible actions.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[222]

This particular design of a neural network, with two hidden layers of 64 and
32 neurons respectively, is considered something of a classic architecture.
It's suitable to solve a lot of problems, and it will work well for us here.

This artificial brain will be trained with a Mean Squared Error (MSE) loss, and
an Adam optimizer. The choice for the MSE loss is because we want to measure and
reduce the squared difference between the predicted value and the target value, and
the Adam optimizer is a classic optimizer used, in practice, by default.

Here is what this artificial brain looks like:

Figure 2: The artificial brain of our AI

This artificial brain looks complex to create, but we can build it very easily thanks
to the amazing Keras library. In the last chapter, we used PyTorch because it's the
neural network library I'm more familiar with; but I want you to be able to use as
many AI tools as possible, so in this chapter we're going to power on with Keras.
Here's a preview of the full implementation containing the part that builds this
brain all by itself (taken from the brain_nodropout.py file):

BUILDING THE BRAIN

class Brain(object):

 # BUILDING A FULLY CONNECTED NEURAL NETWORK DIRECTLY INSIDE THE
INIT METHOD

 def __init__(self, learning_rate = 0.001, number_actions = 5):
 self.learning_rate = learning_rate

WOW! eBook
www.wowebook.org

Chapter 11

[223]

 # BUILDING THE INPUT LAYER COMPOSED OF THE INPUT STATE
 states = Input(shape = (3,))

 # BUILDING THE FULLY CONNECTED HIDDEN LAYERS
 x = Dense(units = 64, activation = 'sigmoid')(states)
 y = Dense(units = 32, activation = 'sigmoid')(x)

 # BUILDING THE OUTPUT LAYER, FULLY CONNECTED TO THE LAST
HIDDEN LAYER
 q_values = Dense(units = number_actions, activation =
'softmax')(y)

 # ASSEMBLING THE FULL ARCHITECTURE INSIDE A MODEL OBJECT
 self.model = Model(inputs = states, outputs = q_values)

 # COMPILING THE MODEL WITH A MEAN-SQUARED ERROR LOSS AND A
CHOSEN OPTIMIZER
 self.model.compile(loss = 'mse', optimizer = Adam(lr =
learning_rate))

As you can see, it only takes a couple of lines of code, and I'll explain every line
of that code to you in a later section. Now let's move on to the implementation.

Implementation
This implementation will be divided into five parts, each part having its own Python
file. You can find the full implementation in the Chapter 11 folder of the GitHub
repository. These five parts constitute the general AI framework, or AI Blueprint,
that should be followed whenever you build an environment to solve any business
problem with deep reinforcement learning.

Here they are, from Step 1 to Step 5:

• Step 1: Building the environment (environment.py)
• Step 2: Building the brain (brain_nodropout.py or brain_dropout.py)
• Step 3: Implementing the deep reinforcement learning algorithm, which

in our case is a deep Q-learning model (dqn.py)
• Step 4: Training the AI (training_noearlystopping.py or training_

earlystopping.py)
• Step 5: Testing the AI (testing.py)

In order, those are the main steps of the general AI framework.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[224]

We'll follow this AI Blueprint to implement the AI for our specific case in
the following five sections, each corresponding to one of these five main steps.
Within each step, we'll distinguish the sub-steps that are still part of the general
AI framework from the sub-steps that are specific to our project by writing the
titles of the code sections in capital letters for all the sub-steps of the general AI
framework, and in lowercase letters for all the sub-steps specific to our project.

That means that anytime you see a new code section where the title is written in
capital letters, then it is the next sub-step of the general AI framework, which you
should also follow when building an AI for your own business problem.

This next step, building the environment, is the largest Python implementation
file for this project. Make sure you're rested and your batteries are recharged,
and as soon as you are ready, let's tackle this together!

Step 1 – Building the environment
In this first step, we are going to build the environment inside a class. Why a class?
Because we would like our environment to be an object which we can easily create
with any values we choose for some parameters.

For example, we can create one environment object for a server that has a certain
number of connected users and a certain rate of data at a specific time, and another
environment object for a different server that has a different number of connected
users and a different rate of data. Thanks to the advanced structure of this class,
we can easily plug-and-play the environment objects we create on different servers
which have their own parameters, regulating their temperatures with several
different AIs, so that we can minimize the energy consumption of a whole data
center, just as Google DeepMind did for Google's data centers with its DQN
(deep Q-learning) algorithm.

This class follows the following sub-steps, which are part of the general AI
Framework inside Step 1 – Building the environment:

• Step 1-1: Introducing and initializing all the parameters and variables of the
environment.

• Step 1-2: Making a method that updates the environment right after the
AI plays an action.

• Step 1-3: Making a method that resets the environment.
• Step 1-4: Making a method that gives us at any time the current state, the last

reward obtained, and whether the game is over.

WOW! eBook
www.wowebook.org

Chapter 11

[225]

You'll find the whole implementation of this Environment class in this section.
Remember the most important thing: all the code sections with their titles written
in capital letters are steps of the general AI framework/Blueprint, and all the code
sections having their titles written in lowercase letters are specific to our case study.

The implementation of the environment has 144 lines of code. I won't explain each
line of code for two reasons:

1. It would make this chapter really overwhelming.
2. The code is very simple, is commented on for clarity, and just creates

everything we've defined so far in this chapter.

I'm confident you'll have no problems understanding it. Besides, the code section
titles and the chosen variable names are clear enough to understand the structure
and the flow of the code at face value. I'll walk you through the code broadly. Here
we go!

First, we start building the Environment class with its first method, the __init__
method, which introduces and initializes all the parameters and variables, as we
described earlier:

BUILDING THE ENVIRONMENT IN A CLASS

class Environment(object):

 # INTRODUCING AND INITIALIZING ALL THE PARAMETERS AND VARIABLES OF
THE ENVIRONMENT

 def __init__(self, optimal_temperature = (18.0, 24.0), initial_
month = 0, initial_number_users = 10, initial_rate_data = 60):
 self.monthly_atmospheric_temperatures = [1.0, 5.0, 7.0, 10.0,
11.0, 20.0, 23.0, 24.0, 22.0, 10.0, 5.0, 1.0]
 self.initial_month = initial_month
 self.atmospheric_temperature = self.monthly_atmospheric_
temperatures[initial_month]
 self.optimal_temperature = optimal_temperature
 self.min_temperature = -20
 self.max_temperature = 80
 self.min_number_users = 10
 self.max_number_users = 100
 self.max_update_users = 5
 self.min_rate_data = 20
 self.max_rate_data = 300
 self.max_update_data = 10
 self.initial_number_users = initial_number_users

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[226]

 self.current_number_users = initial_number_users
 self.initial_rate_data = initial_rate_data
 self.current_rate_data = initial_rate_data
 self.intrinsic_temperature = self.atmospheric_temperature +
1.25 * self.current_number_users + 1.25 * self.current_rate_data
 self.temperature_ai = self.intrinsic_temperature
 self.temperature_noai = (self.optimal_temperature[0] + self.
optimal_temperature[1]) / 2.0
 self.total_energy_ai = 0.0
 self.total_energy_noai = 0.0
 self.reward = 0.0
 self.game_over = 0
 self.train = 1

You'll notice the self.monthly_atmospheric_temperatures variable; that's a list
containing the average monthly atmospheric temperatures for each of the 12 months:
1°C in January, 5°C in February, 7°C in March, and so on.

The self.atmospheric_temperature variable is the current average atmospheric
temperature of the month we're in during the simulation, and it's initialized as the
atmospheric temperature of the initial month, which we'll set later as January.

The self.game_over variable tells the AI whether or not we should reset the
temperature of the server, in case it goes outside the allowed range of [-20°C, 80°C].
If it does, self.game_over will be set equal to 1, otherwise it will remain at 0.

Finally, the self.train variable tells us whether we're in training mode or inference
mode. If we're in training mode, self.train = 1. If we're in inference mode, self.
train = 0. The rest is just putting into code everything we defined in words at the
beginning of this chapter.

Let's move on!

Now, we make the second method, update_env, which updates the environment
after the AI performs an action. This method takes three arguments as inputs:

1. direction: A variable describing the direction of the heat transfer the AI
imposes on the server, like so: if direction == 1, the AI is heating up the
server. If direction == -1, the AI is cooling down the server. We'll need to
have the value of this direction before calling the update_env method, since
this method is called after the action is performed.

WOW! eBook
www.wowebook.org

Chapter 11

[227]

2. energy_ai: The energy spent by the AI to heat up or cool down the server at
this specific time when the action is played. Based on assumption 2, it will be
equal to the temperature change caused by the AI in the server.

3. month: Simply the month we're in at the specific time when the action is
played.

The first actions the program takes inside this method are to compute the reward.
Indeed, right after the action is played, we can immediately deduce the reward,
since it is the difference between the energy that the server's integrated system
would spend if there was no AI, and the energy spent by the AI:

 # MAKING A METHOD THAT UPDATES THE ENVIRONMENT RIGHT AFTER THE AI
PLAYS AN ACTION

 def update_env(self, direction, energy_ai, month):

 # GETTING THE REWARD

 # Computing the energy spent by the server's cooling system
when there is no AI
 energy_noai = 0
 if (self.temperature_noai < self.optimal_temperature[0]):
 energy_noai = self.optimal_temperature[0] - self.
temperature_noai
 self.temperature_noai = self.optimal_temperature[0]
 elif (self.temperature_noai > self.optimal_temperature[1]):
 energy_noai = self.temperature_noai - self.optimal_
temperature[1]
 self.temperature_noai = self.optimal_temperature[1]
 # Computing the Reward
 self.reward = energy_noai - energy_ai
 # Scaling the Reward
 self.reward = 1e-3 * self.reward

You have probably noticed that we choose to scale the reward at the end. In short,
scaling is bringing the values (here the rewards) down into a short range. For
example, normalization is a scaling technique where all the values are brought
down into a range between 0 and 1. Another widely used scaling technique is
standardization, which will be explained a bit later on.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[228]

Scaling is a common practice that is usually recommended in research papers when
performing deep reinforcement learning, as it stabilizes training and improves the
performance of the AI.

After getting the reward, we reach the next state. Remember that each state is
composed of the following elements:

1. The temperature of the server at time t
2. The number of users in the server at time t
3. The rate of data transmission in the server at time t

So, as we reach the next state, we update each of these elements one by one,
following the sub-steps highlighted as comments in this next code section:

 # GETTING THE NEXT STATE

 # Updating the atmospheric temperature
 self.atmospheric_temperature = self.monthly_atmospheric_
temperatures[month]
 # Updating the number of users
 self.current_number_users += np.random.randint(-self.max_
update_users, self.max_update_users)
 if (self.current_number_users > self.max_number_users):
 self.current_number_users = self.max_number_users
 elif (self.current_number_users < self.min_number_users):
 self.current_number_users = self.min_number_users
 # Updating the rate of data
 self.current_rate_data += np.random.randint(-self.max_update_
data, self.max_update_data)
 if (self.current_rate_data > self.max_rate_data):
 self.current_rate_data = self.max_rate_data
 elif (self.current_rate_data < self.min_rate_data):
 self.current_rate_data = self.min_rate_data
 # Computing the Delta of Intrinsic Temperature
 past_intrinsic_temperature = self.intrinsic_temperature
 self.intrinsic_temperature = self.atmospheric_temperature +
1.25 * self.current_number_users + 1.25 * self.current_rate_data
 delta_intrinsic_temperature = self.intrinsic_temperature -
past_intrinsic_temperature
 # Computing the Delta of Temperature caused by the AI
 if (direction == -1):
 delta_temperature_ai = -energy_ai

WOW! eBook
www.wowebook.org

Chapter 11

[229]

 elif (direction == 1):
 delta_temperature_ai = energy_ai
 # Updating the new Server's Temperature when there is the AI
 self.temperature_ai += delta_intrinsic_temperature + delta_
temperature_ai
 # Updating the new Server's Temperature when there is no AI
 self.temperature_noai += delta_intrinsic_temperature

Then, we update the self.game_over variable if needed, that is, if the temperature
of the server goes outside the allowed range of [-20°C, 80°C]. This can happen if the
server temperature goes below the minimum temperature of -20°C, or if the server
temperature goes higher than the maximum temperature of 80°C. Plus we do two
extra things: we bring the server temperature back into the optimal temperature
range (closest bound), and since doing this spends some energy, we update the total
energy spent by the AI (self.total_energy_ai). That's exactly what is coded in the
next code section:

 # GETTING GAME OVER

 if (self.temperature_ai < self.min_temperature):
 if (self.train == 1):
 self.game_over = 1
 else:
 self.total_energy_ai += self.optimal_temperature[0] -
self.temperature_ai
 self.temperature_ai = self.optimal_temperature[0]
 elif (self.temperature_ai > self.max_temperature):
 if (self.train == 1):
 self.game_over = 1
 else:
 self.total_energy_ai += self.temperature_ai - self.
optimal_temperature[1]
 self.temperature_ai = self.optimal_temperature[1]

Now, I know it seems unrealistic for the server to snap right back to 24 degrees from
80, or to 18 from -20, but this is an action the magically efficient integrated cooling
system we defined earlier is perfectly capable of. Think of it as the AI switching to
the integrated system for a moment in the case of a temperature disaster. Once again,
this is an area that will benefit enormously from your ongoing tinkering once we've
got the AI up and running; after that, you can play around with these figures as you
like in the interests of a more realistic server model.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[230]

Then, we update the two scores coming from the two separate simulations,
which are:

1. self.total_energy_ai: The total energy spent by the AI
2. self.total_energy_noai: The total energy spent by the server's integrated

cooling system when there is no AI.

 # UPDATING THE SCORES

 # Updating the Total Energy spent by the AI
 self.total_energy_ai += energy_ai
 # Updating the Total Energy spent by the server's cooling
system when there is no AI
 self.total_energy_noai += energy_noai

Then to improve the performance, we scale the next state by scaling each of its three
elements (server temperature, number of users, and data transmission rate). To do
so, we perform a simple standardization scaling technique, which simply consists of
subtracting the minimum value of the variable, and then dividing by the maximum
delta of the variable:

 # SCALING THE NEXT STATE

 scaled_temperature_ai = (self.temperature_ai - self.min_
temperature) / (self.max_temperature - self.min_temperature)
 scaled_number_users = (self.current_number_users - self.min_
number_users) / (self.max_number_users - self.min_number_users)
 scaled_rate_data = (self.current_rate_data - self.min_rate_
data) / (self.max_rate_data - self.min_rate_data)
 next_state = np.matrix([scaled_temperature_ai, scaled_number_
users, scaled_rate_data])

Finally, we end this update_env method by returning the next state, the reward
received, and whether the game is over or not:

 # RETURNING THE NEXT STATE, THE REWARD, AND GAME OVER

 return next_state, self.reward, self.game_over

Great! We're done with this long, but important, method that updates the
environment at each time step (each minute). Now there are two final and very easy
methods to go: one that resets the environment, and one that gives us three pieces
of information at any time: the current state, the last reward received, and whether
or not the game is over.

WOW! eBook
www.wowebook.org

Chapter 11

[231]

Here's the reset method, which resets the environment when a new training
episode starts, by resetting all the variables of the environment to their originally
initialized values:

 # MAKING A METHOD THAT RESETS THE ENVIRONMENT

 def reset(self, new_month):
 self.atmospheric_temperature = self.monthly_atmospheric_
temperatures[new_month]
 self.initial_month = new_month
 self.current_number_users = self.initial_number_users
 self.current_rate_data = self.initial_rate_data
 self.intrinsic_temperature = self.atmospheric_temperature +
1.25 * self.current_number_users + 1.25 * self.current_rate_data
 self.temperature_ai = self.intrinsic_temperature
 self.temperature_noai = (self.optimal_temperature[0] + self.
optimal_temperature[1]) / 2.0
 self.total_energy_ai = 0.0
 self.total_energy_noai = 0.0
 self.reward = 0.0
 self.game_over = 0
 self.train = 1

Finally, here's the observe method, which lets us know at any given time the current
state, the last reward received, and whether the game is over:

 # MAKING A METHOD THAT GIVES US AT ANY TIME THE CURRENT STATE, THE
LAST REWARD AND WHETHER THE GAME IS OVER

 def observe(self):
 scaled_temperature_ai = (self.temperature_ai - self.min_
temperature) / (self.max_temperature - self.min_temperature)
 scaled_number_users = (self.current_number_users - self.min_
number_users) / (self.max_number_users - self.min_number_users)
 scaled_rate_data = (self.current_rate_data - self.min_rate_
data) / (self.max_rate_data - self.min_rate_data)
 current_state = np.matrix([scaled_temperature_ai, scaled_
number_users, scaled_rate_data])
 return current_state, self.reward, self.game_over

Awesome! We're done with the first step of the implementation, building the
environment. Now let's move on to the next step and start building the brain.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[232]

Step 2 – Building the brain
In this step, we're going to build the artificial brain of our AI, which is nothing other
than a fully connected neural network. Here it is again:

Figure 3: The artificial brain of our AI

We'll build this artificial brain inside a class for the same reason as before, which
is to allow us to create several artificial brains, for different servers inside a data
center. Maybe some servers will need different artificial brains with different hyper-
parameters than other servers. That's why, thanks to this class/object advanced
Python structure, we can easily switch from one brain to another, to regulate the
temperature of a new server that requires an AI with different neural network
parameters. That's the beauty of Object-Oriented Programming (OOP).

We're building this artificial brain with the amazing Keras library. From this library,
we use the Dense() class to create our two fully connected hidden layers, the first
one from 64 hidden neurons, and the second one from 32 neurons. Remember, this
is a classic neural network architecture often used by default, as common practice,
and seen in many research papers. At the end, we use the Dense() class again to
return the Q-values, which are the outputs of the artificial neural network.

Later on, when we code the training and testing files, we'll use the argmax method
to select the action that has the maximum Q-value. Then, we assemble all the
components of the brain, including the inputs and outputs, by creating it as an object
of the Model() class (which is very useful in that we can save and load a model with
specific weights). Finally, we'll compile it with a mean squared error loss and an
Adam optimizer. I'll explain all this in more detail later.

WOW! eBook
www.wowebook.org

Chapter 11

[233]

Here are the new steps of the general AI framework:

• Step 2-1: Build the input layer, composed of the input states.
• Step 2-2: Build a defined number of hidden layers with a defined number

of neurons inside each layer, fully connected to the input layer and between
each other.

• Step 2-3: Build the output layer, fully connected to the last hidden layer.
• Step 2-4: Assemble the full architecture inside a model object.
• Step 2-5: Compile the model with a mean squared error loss function and

a chosen optimizer.

The implementation of this is presented to you in a choice of two different files:

1. brain_nodropout.py: An implementation file that builds the artificial brain
without the dropout regularization technique (I'll explain what it is very
soon).

2. brain_dropout.py: An implementation file that builds the artificial brain
with the dropout regularization technique.

First let me give you the implementation without dropout, and then I'll provide one
with dropout and explain it.

Without dropout
Here is the full implementation of the artificial brain, without any dropout
regularization technique:

1 # AI for Business - Minimize cost with Deep Q-Learning

2 # Building the Brain without Dropout

3

4 # Importing the libraries

5 from keras.layers import Input, Dense

6 from keras.models import Model

7 from keras.optimizers import Adam

8

9 # BUILDING THE BRAIN

10

11 class Brain(object):

12

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[234]

13 # BUILDING A FULLY CONNECTED NEURAL NETWORK DIRECTLY INSIDE
THE INIT METHOD

14

15 def __init__(self, learning_rate = 0.001, number_actions =
5):

16 self.learning_rate = learning_rate

17

18 # BUILDING THE INPUT LAYER COMPOSED OF THE INPUT STATE

19 states = Input(shape = (3,))

20

21 # BUILDING THE FULLY CONNECTED HIDDEN LAYERS

22 x = Dense(units = 64, activation = 'sigmoid')(states)

23 y = Dense(units = 32, activation = 'sigmoid')(x)

24

25 # BUILDING THE OUTPUT LAYER, FULLY CONNECTED TO THE LAST
HIDDEN LAYER

26 q_values = Dense(units = number_actions, activation =
'softmax')(y)

27

28 # ASSEMBLING THE FULL ARCHITECTURE INSIDE A MODEL OBJECT

29 self.model = Model(inputs = states, outputs = q_values)

30

31 # COMPILING THE MODEL WITH A MEAN-SQUARED ERROR LOSS AND
A CHOSEN OPTIMIZER

32 self.model.compile(loss = 'mse', optimizer = Adam(lr =
learning_rate))

Now, let's go through the code in detail.

Line 5: We import the Input and Dense classes from the layers module in the
keras library. The Input class allows us to build the input layer, and the Dense class
allows us to build the fully-connected layers.

Line 6: We import the Model class from the models module in the keras library. It
allows us to build the whole neural network model by assembling its different layers.

WOW! eBook
www.wowebook.org

Chapter 11

[235]

Line 7: We import the Adam class from the optimizers module in the keras library.
It allows us to use the Adam optimizer, used to update the weights of the neural
network through stochastic gradient descent, when backpropagating the loss error
in each iteration of the training.

Line 11: We introduce the Brain class, which will contain not only the whole
architecture of the artificial neural network, but also the connection of the model
to the loss (Mean-Squared Error) and the Adam optimizer.

Line 15: We introduce the __init__ method, which will be the only method of
this class. We define the whole architecture of the neural network inside it, just
by creating successive variables which together assemble the neural network. This
method takes as inputs two arguments:

1. The learning rate (learning_rate), which is a measure of how fast you want
the neural network to learn (the higher the learning rate, the faster the neural
network learns; but at the cost of quality). The default value is 0.001.

2. The number of actions (number_actions), which is of course the number
of actions that our AI can perform. Now you might be thinking: why do
we need to put that as an argument? Well that's just in case you want to
build another AI that can perform more or fewer actions. In which case you
would simply need to change the value of the argument and that's it. Pretty
practical, isn't it?

Line 16: We create an object variable for the learning rate, self.learning_rate,
initialized as the value of the learning_rate argument provided in the __init__
method (therefore the argument of the Brain class when we create the object in the
future).

Line 19: We create the input states layer, called states, as an object of the Input
class. Into this Input class we enter one argument, shape = (3,), which simply
tells that the input layer is a 1D vector composed of three elements (the server
temperature, the number of users, and the data transmission rate).

Line 22: We create the first fully-connected hidden layer, called x, as an object of the
Dense class, which takes as input two arguments:

1. units: The number of hidden neurons we want to have in this first hidden
layer. Here, we choose to have 64 hidden neurons.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[236]

2. activation: The activation function used to pass on the signal when
forward-propagating the inputs into this first hidden layer. Here we choose,
by default, a sigmoid activation function, which is as follows:

Figure 4: The sigmoid activation function

The ReLU activation function would also have worked well here; I encourage you
to experiment! Note also how the connection from the input layer to this first hidden
layer is made by calling the states variable right after the Dense class.

Line 23: We create the second fully-connected hidden layer, called y, as an object
of the Dense class, which takes as input the same two arguments:

1. units: The number of hidden neurons we want to have in this second hidden
layer. This time we choose to have 32 hidden neurons.

2. activation: The activation function used to pass on the signal when
forward-propagating the inputs into this first hidden layer. Here, again,
we choose a sigmoid activation function.

Note once again how the connection from the first hidden layer to this second hidden
layer is made by calling the x variable right after the Dense class.

Line 26: We create the output layer, called q_values, fully connected to the second
hidden layer, as an object of the Dense class. This time, we input number_actions
units since the output layer contains the actions to play, and a softmax activation
function, as seen in Chapter 5, Your First AI Model – Beware the Bandits!, on the deep
Q-learning theory.

Line 29: Using the Model class, we assemble the successive layers of the neural
network, by just inputting the states as the inputs, and the q_values as the
outputs.

WOW! eBook
www.wowebook.org

Chapter 11

[237]

Line 32: Using the compile method taken from the Model class, we connect our
model to the Mean-Squared Error loss and the Adam optimizer. The latter takes
the learning_rate argument as input.

With dropout
It'll be valuable for you to add one more powerful technique to your toolkit: dropout.

Dropout is a regularization technique that prevents overfitting, which is the situation
where the AI model performs well on the training set, but poorly on the test set.
Dropout simply consists of deactivating a randomly selected portion of neurons
during each step of forward- and back-propagation. That means not all the neurons
learn the same way, which prevents the neural network from overfitting the training
data.

Adding dropout is very easy with keras. You simply need to call the Dropout
class right after the Dense class, and input the proportion of neurons you want
to deactivate, like so:

AI for Business - Minimize cost with Deep Q-Learning
Building the Brain with Dropout

Importing the libraries
from keras.layers import Input, Dense, Dropout
from keras.models import Model
from keras.optimizers import Adam

BUILDING THE BRAIN

class Brain(object):

 # BUILDING A FULLY CONNECTED NEURAL NETWORK DIRECTLY INSIDE THE
INIT METHOD

 def __init__(self, learning_rate = 0.001, number_actions = 5):
 self.learning_rate = learning_rate

 # BUILDING THE INPUT LAYER COMPOSED OF THE INPUT STATE
 states = Input(shape = (3,))

 # BUILDING THE FIRST FULLY CONNECTED HIDDEN LAYER WITH DROPOUT
ACTIVATED
 x = Dense(units = 64, activation = 'sigmoid')(states)
 x = Dropout(rate = 0.1)(x)

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[238]

 # BUILDING THE SECOND FULLY CONNECTED HIDDEN LAYER WITH
DROPOUT ACTIVATED
 y = Dense(units = 32, activation = 'sigmoid')(x)
 y = Dropout(rate = 0.1)(y)

 # BUILDING THE OUTPUT LAYER, FULLY CONNECTED TO THE LAST
HIDDEN LAYER
 q_values = Dense(units = number_actions, activation =
'softmax')(y)

 # ASSEMBLING THE FULL ARCHITECTURE INSIDE A MODEL OBJECT
 self.model = Model(inputs = states, outputs = q_values)

 # COMPILING THE MODEL WITH A MEAN-SQUARED ERROR LOSS AND A
CHOSEN OPTIMIZER
 self.model.compile(loss = 'mse', optimizer = Adam(lr =
learning_rate))

Here, we apply dropout to the first and second fully-connected layers, by
deactivating 10% of their neurons each. Now, let's move on to the next step
of our general AI framework: Step 3 – Implementing the deep reinforcement
learning algorithm.

Step 3 – Implementing the deep reinforcement
learning algorithm
In this new implementation (given in the dqn.py file), we simply have to follow the
deep Q-learning algorithm provided before. Hence, this implementation follows the
following sub-steps, which are part of the general AI framework:

• Step 3-1: Introduce and initialize all the parameters and variables of the deep
Q-learning model.

• Step 3-2: Make a method that builds the memory in experience replay.
• Step 3-3: Make a method that builds and returns two batches of 10 inputs

and 10 targets.

First, have a look at the whole code, and then I'll explain it line by line:

1 # AI for Business - Minimize cost with Deep Q-Learning

2 # Implementing Deep Q-Learning with Experience Replay

3

4 # Importing the libraries

WOW! eBook
www.wowebook.org

Chapter 11

[239]

5 import numpy as np

6

7 # IMPLEMENTING DEEP Q-LEARNING WITH EXPERIENCE REPLAY

8

9 class DQN(object):

10

11 # INTRODUCING AND INITIALIZING ALL THE PARAMETERS AND
VARIABLES OF THE DQN

12 def __init__(self, max_memory = 100, discount = 0.9):

13 self.memory = list()

14 self.max_memory = max_memory

15 self.discount = discount

16

17 # MAKING A METHOD THAT BUILDS THE MEMORY IN EXPERIENCE
REPLAY

18 def remember(self, transition, game_over):

19 self.memory.append([transition, game_over])

20 if len(self.memory) > self.max_memory:

21 del self.memory[0]

22

23 # MAKING A METHOD THAT BUILDS TWO BATCHES OF INPUTS AND
TARGETS BY EXTRACTING TRANSITIONS FROM THE MEMORY

24 def get_batch(self, model, batch_size = 10):

25 len_memory = len(self.memory)

26 num_inputs = self.memory[0][0][0].shape[1]

27 num_outputs = model.output_shape[-1]

28 inputs = np.zeros((min(len_memory, batch_size), num_
inputs))

29 targets = np.zeros((min(len_memory, batch_size), num_
outputs))

30 for i, idx in enumerate(np.random.randint(0, len_memory,
size = min(len_memory, batch_size))):

31 current_state, action, reward, next_state = self.
memory[idx][0]

32 game_over = self.memory[idx][1]

33 inputs[i] = current_state

34 targets[i] = model.predict(current_state)[0]

35 Q_sa = np.max(model.predict(next_state)[0])

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[240]

36 if game_over:

37 targets[i, action] = reward

38 else:

39 targets[i, action] = reward + self.discount *
Q_sa

40 return inputs, targets

Line 5: We import the numpy library, because we'll be working with numpy arrays.

Line 9: We introduce the DQN class (DQN stands for Deep Q-Network), which
contains the main parts of the deep Q-Learning algorithm, including experience
replay.

Line 12: We introduce the __init__ method, which creates the three following
object variables of the DQN model: the experience replay memory, the capacity
(maximum size of the memory), and the discount factor in the formula of the target.
It takes as arguments max_memory (the capacity) and discount (the discount factor),
in case we want to build other experience replay memories with different capacities,
or if we want to change the value of the discount factor in the computation of the
target. The default values of these arguments are respectively 100 and 0.9, which
were chosen arbitrarily and turned out to work quite well; these are good arguments
to experiment with, to see what difference it makes when you set them differently.

Line 13: We create the experience replay memory object variable, self.memory, and
we initialize it as an empty list.

Line 14: We create the object variable for the memory capacity, self.max_memory,
and we initialize it as the value of the max_memory argument.

Line 15: We create the object variable for the discount factor, self.discount, and
we initialize it as the value of the discount argument.

Line 18: We introduce the remember method, which takes as input a transition to
be added to the memory, and game_over, which states whether or not this transition
leads the server's temperature to go outside of the allowed range of temperatures.

Line 19: Using the append function called from the memory list, we add the transition
with the game_over boolean into the memory (in the last position).

Line 20: If, after adding this transition, the size of the memory exceeds the memory
capacity (self.max_memory).

Line 21: We delete the first element of the memory.

WOW! eBook
www.wowebook.org

Chapter 11

[241]

Line 24: We introduce the get_batch method, which takes as inputs the model we
built in the previous Python file (model) and a batch size (batch_size), and builds
two batches of inputs and targets by extracting 10 transitions from the memory
(if the batch size is 10).

Line 25: We get the current number of elements in the memory and put it into a new
variable, len_memory.

Line 26: We get the number of elements in the input state vector (which is 3), but
instead of directly entering 3, we access this number from the shape attribute of the
input state vector element of the memory, which we get by taking the [0][0][0]
indexes. Each element of the memory is structured as follows:

[[current_state, action, reward, next_state], game_over]

Thus in [0][0][0], the first [0] corresponds to the first element of the memory
(meaning the first transition), the second [0] corresponds to the tuple [current_
state, action, reward, next_state], and so the third [0] corresponds to the
current_state element of that tuple. Hence, self.memory[0][0][0] corresponds
to the first current state, and by adding .shape[1] we get the number of elements in
that input state vector. You might be wondering why we didn't enter 3 directly; that's
because we want to generalize this code to any input state vector dimension you
might want to have in your environment. For example, you might want to consider
an input state with more information about your server, such as the humidity.
Thanks to this line of code, you won't have to change anything regarding your new
number of state elements.

Line 27: We get the number of elements of the model output, meaning the number
of actions. Just like on the previous line, instead of entering directly 5, we generalize
by accessing this from the shape attribute called from our model object of the Model
class. -1 means that we get the last index of that shape attribute, where the number
of actions is contained.

Line 28: We introduce and initialize the batch of inputs as a numpy array, of batch_
size = 10 rows and 3 columns corresponding to input state elements, with only
zeros. If the memory doesn't have 10 transitions yet, the number of rows will just be
the length of the memory.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[242]

If the memory already has at least 10 transitions, what we get with this line of code is
the following:

Figure 5: Batch of inputs (1/2)

Line 29: We introduce and initialize the batch of targets as a numpy array of batch_
size = 10 rows and 5 columns corresponding to the five possible actions, with only
zeros. Just like before, if the memory doesn't have 10 transitions yet, the number
of rows will just be the length of the memory. If the memory already has at least
10 transitions, what we get with this line of code is the following:

Figure 6: Batch of targets (1/3)

Line 30: We do a double iteration inside the same for loop. The first iterative
variable i goes from 0 to the batch size (or up to len_memory if len_memory <
batch_size):

i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

That way, i will iterate each element of the batch. The second iterative variable idx
takes 10 random indexes of the memory, in order to extract 10 random transitions
from the memory. Inside the for loop, we populate the two batches of inputs and
targets with their right values by iterating through each of their elements.

WOW! eBook
www.wowebook.org

Chapter 11

[243]

Line 31: We get the transition of the sampled index idx from the memory, composed
of the current state, the action, the reward, and the next state. The reason we add [0]
is because an element of the memory is structured as follows:

[[current_state, action, reward, next_state], game_over]

We'll get the game_over value separately, in the next line of code.

Line 32: We get the game_over value corresponding to that same index idx of the
memory. As you can see, this time we add [1] on the end to get the second element
of a memory element:

[[current_state, action, reward, next_state], game_over]

Line 33: We populate the batch of inputs with all the current states, in order to get
this at the end of the for loop:

Figure 7: Batch of inputs (2/2)

Line 34: Now we start populating the batch of targets with the right values. First, we
populate it with all the Q-values (),

B Bt tQ s a that the model predicts for the different
state-action pairs: (current state, action 0), (current state, action 1), (current state,
action 2), (current state, action 3), and (current state, action 4). Thus we first get this
(at the end of the for loop):

Figure 8: Batch of targets (2/3)

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[244]

Remember that for the action that is played, the formula of the target must be
this one:

𝑅𝑅(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵) + 𝛾𝛾max
𝑎𝑎

(𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵+1, 𝑎𝑎))

What we do in the following lines of code is to put this formula into the column of
each action that was played within the 10 selected transitions. In other words, we
get this:

Figure 9: Batch of targets (3/3)

In that example, Action 1 was performed in the first transition (Target 1), Action
3 was performed in the second transition (Target 2), Action 0 was performed in
the third transition (Target 3), and so on. Let's populate this in the following lines
of code.

Line 35: We first start getting the ()()1max ,
Bta

Q s a+ part of the formula of the target:

𝑅𝑅(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵) + 𝛾𝛾max
𝑎𝑎

(𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵+1, 𝑎𝑎))

Line 36: We check if game_over = 1, meaning that the server has gone outside the
allowed range of server temperatures. Because if it has, there's actually no next state
(because we basically reset the environment by putting the server's temperature
back into the optimal range so we start from a new state); and therefore we shouldn't
consider ()()1max ,

Bta
Q s a+ .

Line 37: In that case, we only keep the (),
B Bt tR s a part of the target.

Line 38: However, if the game is not over (game_over = 0)...

WOW! eBook
www.wowebook.org

Chapter 11

[245]

Line 39: We keep the whole formula of the target, but of course only for the action
that was performed, meaning

Bt
a here:

𝑅𝑅(𝑠𝑠𝑡𝑡𝐵𝐵, 𝑎𝑎𝑡𝑡𝐵𝐵) + 𝛾𝛾max
𝑎𝑎

(𝑄𝑄(𝑠𝑠𝑡𝑡𝐵𝐵+1, 𝑎𝑎))

Hence, we get the following batch of targets, as you saw earlier:

Figure 10: Batch of targets (3/3)

Line 40: At last, we return the final batches of inputs and targets.

That was epic—you've successfully created an artificial brain. Now that you've done
it, we're ready to start the training.

Step 4: Training the AI
Now that our AI has a fully functional brain, it's time to train it. That's exactly what
we do in this fourth Python implementation. You actually have a choice of two files
to use for this:

1. training_noearlystopping.py, which trains your AI on a full 1000 epochs
of 5-months period.

2. training_earlystopping.py, which trains your AI on 1000 epochs as well,
but which can stop the training early if the performance no longer improves
over the iterations. This technique is called early stopping.

Both these implementations are long, but very simple. We start by setting all
the parameters, then we build the environment by creating an object of the
Environment() class, then we build the brain of the AI by creating an object of the
Brain() class, then we build the deep Q-learning model by creating an object of the
DQN() class, and finally we launch the training connecting all these objects together
over 1000 epochs of 5-month periods.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[246]

You'll notice in the training loop that we also do some exploration when performing
the actions, performing some random actions from time to time. In our case, this will
be done 30% of the time, since we use an exploration parameter 0.3∈= , and then we
force the AI to perform a random action when we draw a random value between 0
and 1 that is below 0.3∈= . The reason we do some exploration is because it improves
the deep reinforcement learning process, as we discussed in Chapter 9, Going Pro with
Artificial Brains – Deep Q-Learning, and the reason we don't use Softmax in this project
is just to give you a look at how to implement a different exploration method.

Later, you'll be introduced to another little improvement in the training_
noearlystopping.py file, where we use an early stopping technique which stops
the training early if there's no improvement in the performance.

Let's highlight the new steps which still belong to our general AI framework/
Blueprint:

• Step 4-1: Building the environment by creating an object of the Environment
class.

• Step 4-2: Building the artificial brain by creating an object of the Brain class.
• Step 4-3: Building the DQN model by creating an object of the DQN class.
• Step 4-4: Selecting the training mode.
• Step 4-5: Starting the training with a for loop over 100 epochs of 5-month

periods.
• Step 4-6: During each epoch we repeat the whole deep Q-learning process,

while also doing some exploration 30% of the time.

No early stopping
Ready to implement this? Maybe get a good coffee or tea first because this is going to
be a bit long (88 lines of code, but easy ones!). We'll start without early stopping and
then at the end I'll explain how to add the early stopping technique. The file to follow
along with is training_noearlystopping.py. Since this is pretty long, let's do it
section by section this time, starting with the first one:

1 # AI for Business - Minimize cost with Deep Q-Learning

2 # Training the AI without Early Stopping

3

4 # Importing the libraries and the other python files

5 import os

6 import numpy as np

7 import random as rn

WOW! eBook
www.wowebook.org

Chapter 11

[247]

8 import environment

9 import brain_nodropout

10 import dqn

Line 5: We import the os library, which will be used to set a seed for reproducibility
so that if you run the training several times, you'll get the same result each time.
You can, of course, choose to remove this when you tinker with the code yourself!

Line 6: We import the numpy library, since we'll work with numpy arrays.

Line 7: We import the random library, which we'll use to do some exploration.

Line 8: We import the environment.py file, implemented in Step 1, which contains
the whole defined environment.

Line 9: We import the brain_nodropout.py file, our artificial brain without dropout
that we implemented in Step 2. This contains the whole neural network of our AI.

Line 10: We import the dqn.py file implemented in Step 3, which contains the main
parts of the deep Q-learning algorithm, including experience replay.

Moving on to the next section:

12 # Setting seeds for reproducibility

13 os.environ['PYTHONHASHSEED'] = '0'

14 np.random.seed(42)

15 rn.seed(12345)

16

17 # SETTING THE PARAMETERS

18 epsilon = .3

19 number_actions = 5

20 direction_boundary = (number_actions - 1) / 2

21 number_epochs = 100

22 max_memory = 3000

23 batch_size = 512

24 temperature_step = 1.5

25

26 # BUILDING THE ENVIRONMENT BY SIMPLY CREATING AN OBJECT OF THE
ENVIRONMENT CLASS

27 env = environment.Environment(optimal_temperature = (18.0,
24.0), initial_month = 0, initial_number_users = 20, initial_
rate_data = 30)

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[248]

28

29 # BUILDING THE BRAIN BY SIMPLY CREATING AN OBJECT OF THE BRAIN
CLASS

30 brain = brain_nodropout.Brain(learning_rate = 0.00001, number_
actions = number_actions)

31

32 # BUILDING THE DQN MODEL BY SIMPLY CREATING AN OBJECT OF THE DQN
CLASS

33 dqn = dqn.DQN(max_memory = max_memory, discount = 0.9)

34

35 # CHOOSING THE MODE

36 train = True

Lines 13, 14, and 15: We set seeds for reproducibility, to get the same results after
several rounds of training. This is really only important so you can reproduce your
findings—if you don't need to do that, some people prefer them and others don't. If
you don't want the seeds you can just remove them.

Line 18: We introduce the exploration factor ∈, and we set it to 0.3, meaning that
there will be 30% of exploration (performing random actions) vs. 70% of exploitation
(performing the actions of the AI).

Line 19: We set the number of actions to 5.

Line 20: We set the direction boundary, meaning the action index below which
we cool down the server, and above which we heat up the server. Since actions
0 and 1 cool down the server, and actions 3 and 4 heat up the server, that direction
boundary is (5-1)/2 = 2, which corresponds to the action that transfers no heat to
the server (action 2).

Line 21: We set the number of training epochs to 100.

Line 22: We set the memory capacity, meaning its maximum size, to 3000.

Line 23: We set the batch size to 512.

Line 24: We introduce the temperature step, meaning the absolute temperature
change that the AI cause onto the server by playing actions 0, 1, 3, or 4. And that's
of course 1.5°C.

Line 27: We create the environment object, as an instance of the Environment class
which we call from the environment file. Inside this Environment class, we enter
all the arguments of the init method:

WOW! eBook
www.wowebook.org

Chapter 11

[249]

optimal_temperature = (18.0, 24.0),
initial_month = 0,
initial_number_users = 20,
initial_rate_data = 30

Line 30: We create the brain object as an instance of the Brain class, which we call
from the brain_nodropout file. Inside this Brain class, we enter all the arguments
of the init method:

learning_rate = 0.00001,
number_actions = number_actions

Line 33: We create the dqn object as an instance of the DQN class, which we call from
the dqn file. Inside this DQN class we enter all the arguments of the init method:

max_memory = max_memory,
discount = 0.9

Line 36: We set the training mode to True, because the next code section will contain
the big for loop that performs all the training.

All good so far? Don't forget to take a break or a step back by reading the previous
paragraphs again anytime you feel a bit overwhelmed or lost.

Now let's begin the big training loop; that's the last code section of this file:

38 # TRAINING THE AI

39 env.train = train

40 model = brain.model

41 if (env.train):

42 # STARTING THE LOOP OVER ALL THE EPOCHS (1 Epoch = 5 Months)

43 for epoch in range(1, number_epochs):

44 # INITIALIAZING ALL THE VARIABLES OF BOTH THE
ENVIRONMENT AND THE TRAINING LOOP

45 total_reward = 0

46 loss = 0.

47 new_month = np.random.randint(0, 12)

48 env.reset(new_month = new_month)

49 game_over = False

50 current_state, _, _ = env.observe()

51 timestep = 0

52 # STARTING THE LOOP OVER ALL THE TIMESTEPS (1 Timestep =
1 Minute) IN ONE EPOCH

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[250]

53 while ((not game_over) and timestep <= 5 * 30 * 24 *
60):

54 # PLAYING THE NEXT ACTION BY EXPLORATION

55 if np.random.rand() <= epsilon:

56 action = np.random.randint(0, number_actions)

57 if (action - direction_boundary < 0):

58 direction = -1

59 else:

60 direction = 1

61 energy_ai = abs(action - direction_boundary) *
temperature_step

62 # PLAYING THE NEXT ACTION BY INFERENCE

63 else:

64 q_values = model.predict(current_state)

65 action = np.argmax(q_values[0])

66 if (action - direction_boundary < 0):

67 direction = -1

68 else:

69 direction = 1

70 energy_ai = abs(action - direction_boundary) *
temperature_step

71 # UPDATING THE ENVIRONMENT AND REACHING THE NEXT
STATE

72 next_state, reward, game_over = env.update_
env(direction, energy_ai, (new_month + int(timestep/(30*24*60))
) % 12)

73 total_reward += reward

74 # STORING THIS NEW TRANSITION INTO THE MEMORY

75 dqn.remember([current_state, action, reward, next_
state], game_over)

76 # GATHERING IN TWO SEPARATE BATCHES THE INPUTS AND
THE TARGETS

77 inputs, targets = dqn.get_batch(model, batch_size =
batch_size)

78 # COMPUTING THE LOSS OVER THE TWO WHOLE BATCHES OF
INPUTS AND TARGETS

79 loss += model.train_on_batch(inputs, targets)

80 timestep += 1

81 current_state = next_state

82 # PRINTING THE TRAINING RESULTS FOR EACH EPOCH

83 print("\n")

WOW! eBook
www.wowebook.org

Chapter 11

[251]

84 print("Epoch: {:03d}/{:03d}".format(epoch, number_
epochs))

85 print("Total Energy spent with an AI: {:.0f}".
format(env.total_energy_ai))

86 print("Total Energy spent with no AI: {:.0f}".
format(env.total_energy_noai))

87 # SAVING THE MODEL

88 model.save("model.h5")

Line 39: We set the env.train object variable (this is a variable of our environment
object) to the value of the train variable entered just before, which is of course equal
to True, meaning we are indeed in training mode.

Line 40: We get the model from our brain object. This model contains the whole
architecture of the neural network, plus its optimizer. It also has extra practical
tools, like for example the save and load methods, which will allow us respectively
to save the weights after the training or load them anytime in the future.

Line 41: If we are in training mode…

Line 43: We start the main training for loop, iterating the training epochs from
1 to 100.

Line 45: We set the total reward (total reward accumulated over the training
iterations) to 0.

Line 46: We set the loss to 0 (0 because the loss will be a float).

Line 47: We set the starting month of the training, called new_month, to a random
integer between 0 and 11. For example, if the random integer is 2, we start the
training in March.

Line 48: By calling the reset method from our env object of the Environment
class built in Step 1, we reset the environment starting from that new_month.

Line 49: We set the game_over variable to False, because we're starting in the
allowed range of server temperatures.

Line 50: By calling the observe method from our env object of the Environment
class built in Step 1, we get the current state only, which is our starting state.

Line 51: We set the first timestep to 0. This is the first minute of the training.

Line 53: We start the while loop that will iterate all the timesteps (minutes) for the
whole period of the epoch, which is 5 months. Therefore, we iterate through 5 *
30 * 24 * 60 minutes; that is, 216,000 timesteps.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[252]

If, however, during those timesteps we go outside the allowed range of server
temperatures (that is, if game_over = 1), then we stop the epoch and we start
a new one.

Lines 55 to 61 make sure the AI performs a random action 30% of the time. This
is exploration. The trick to it in this case is to sample a random number between
0 and 1, and if this random number is between 0 and 0.3, the AI performs a random
action. That means the AI will perform a random action 30% of the time, because
this sampled number has a 30% chance to be between 0 and 0.3.

Line 55: If a sampled number between 0 and 1 is below 0.3∈= ...

Line 56: ... we play a random action index from 0 to 4.

Line 57: Now that we've just performed an action, we compute the direction and the
energy spent; remember that they're are the required arguments of the update_env
method of the Environment class, which we'll call later to update the environment.
The AI distinguishes between two cases by checking if the action is below or above
the direction boundary of 2. If the action is below the direction boundary of 2,
meaning the AI cools down the server...

Line 58: ...then the heating direction is equal to -1 (cooling down).

Line 59 and 60: Else the heating direction is equal to +1 (heating up).

Line 61: We compute the energy spent by the AI onto the server, which according
to Assumption 2 is:

|action - direction_boundary| * temperature_step = |action - 2| * 1.5 Joules

For example, if the action is 4, then the AI heats up the server by 3°C, and so
according to Assumption 2 the energy spent is 3 Joules. And we check indeed that
|4-2|*1.5 = 3.

Line 63: Now we play the actions by inference, meaning directly from our AI's
predictions. The inference starts from the else statement, which corresponds to
the if statement of line 55. This else corresponds to the situation where the sampled
number is between 0.3 and 1, which happens 70% of the time.

Line 64: By calling the predict method from our model object (predict is a pre-built
method of the Model class), we get the five predicted Q-values from our AI model.

Line 65: Using the argmax function from numpy, we select the action that has the
maximum Q-value among the five predicted ones at Line 64.

Lines 66 to 70: We do exactly the same as in Lines 57 to 61, but this time with the
action performed by inference.

WOW! eBook
www.wowebook.org

Chapter 11

[253]

Line 72: Now we have everything ready to update the environment. We call the
big update_env method made in the Environment class of Step 1, by inputting the
heating direction, the energy spent by the AI, and the month we're in at that specific
timestep of the while loop. We get in return the next state, the reward received, and
whether the game is over (that is, whether or not we went outside the optimal range
of server temperatures).

Line 73: We add this last reward received to the total reward.

Line 75: By calling the remember method from our dqn object of the DQN class built in
Step 3, we store the new transition [[current_state, action, reward, next_state],
game_over] into the memory.

Line 77: By calling the get_batch method from our dqn object of the DQN class built
in Step 3, we create two separate batches of inputs and targets, each one having
512 elements (since batch_size = 512).

Line 79: By calling the train_on_batch method from our model object (train_on_
batch is a pre-built method of the Model class), we compute the loss error between
the predictions and the targets over the whole batch. As a reminder, this loss error
is the mean-squared error loss. Then in this same line, we add this loss error to the
total loss of the epoch, in case we want to check how this total loss evolves over the
epochs during the training.

Line 80: We increment the timestep.

Line 81: We update the current state, which becomes the new state reached.

Line 83: We print a new line to separate out the training results so we can look them
over easily.

Line 84: We print the epoch reached (the one we are in at this specific moment of the
main training for loop).

Line 85: We print the total energy spent by the AI over that specific epoch (the one
we are in at this specific moment of the main training for loop).

Line 86: We print the total energy spent by the server's integrated cooling system
over that same specific epoch.

Line 88: We save the model's weights at the end of the training, in order to load them
in the future, anytime we want to use our pre-trained model to regulate a server's
temperature.

That's it for training our AI without early stopping; now let's have a look at what
you'd need to change to implement it.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[254]

Early stopping
Now open the training_earlystopping.py file. Compare it to the previous
file; all the lines of code from 1 to 40 are the same. Then, in the last code section,
TRAINING THE AI, we have the same process, to which is added the early stopping
technique. As a reminder, it consists of stopping the training if there's no more
improvement of the performance, which could be assessed two different ways:

1. If the total reward of an epoch no longer increases much over the epochs.
2. If the total loss of an epoch no longer decreases much over the epochs.

Let's see how we do this.

First, we introduce four new variables just before the main training for loop:

38 # TRAINING THE AI

39 env.train = train

40 model = brain.model

41 early_stopping = True

42 patience = 10

43 best_total_reward = -np.inf

44 patience_count = 0

45 if (env.train):

46 # STARTING THE LOOP OVER ALL THE EPOCHS (1 Epoch = 5 Months)

47 for epoch in range(1, number_epochs):

Line 41: We introduce a new variable, early_stopping, which is set equal to True
if we decide to activate the early stopping technique, meaning if we decide to stop
the training when the performance no longer improves.

Line 42: We introduce a new variable, patience, which is the number of epochs
we wait without performance improvement before stopping the training. Here we
choose a patience of 10 epochs, which means that if the best total reward of an epoch
doesn't increase during the next 10 epochs, we will stop the training.

Line 43: We introduce a new variable, best_total_reward, which is the best total
reward recorded over a full epoch. If we don't beat that best total reward before
10 epochs go by, the training stops. It's initialized to -np.inf, which represents
-infinity. That's just a trick to say that nothing can be lower than that best total
reward at the beginning. Then as soon as we get the first total reward over the first
epoch, best_total_reward becomes that first total reward.

WOW! eBook
www.wowebook.org

Chapter 11

[255]

Line 44: We introduce a new variable, patience_count, which is a counter starting
from 0, and is incremented by 1 each time the total reward of an epoch doesn't beat
the best total reward. If patience_count reaches 10 (the patience), we stop the
training. And if one epoch beats the best total reward, patience_count is reset to 0.

Then, the main training for loop is the same as before, but just before saving the
model we add the following:

91 # EARLY STOPPING

92 if (early_stopping):

93 if (total_reward <= best_total_reward):

94 patience_count += 1

95 elif (total_reward > best_total_reward):

96 best_total_reward = total_reward

97 patience_count = 0

98 if (patience_count >= patience):

99 print("Early Stopping")

100 break

101 # SAVING THE MODEL

102 model.save("model.h5")

Line 92: If the early_stopping variable is True, meaning if the early stopping
technique is activated…

Line 93: And if the total reward of the current epoch (we are still in the main training
for loop that iterates the epochs) is lower than the best total reward of an epoch
obtained so far…

Line 94: ...we increment the patience_count variable by 1.

Line 95: However, if the total reward of the current epoch is higher than the best
total reward of an epoch obtained so far…

Line 96: ...we update the best total reward, which becomes that new total reward
of the current epoch.

Line 97: ...and we reset the patience_count variable to 0.

Line 98: Then in a new if condition, we check that if the patience_count variable
goes higher than the patience of 10…

Line 99: ...we print Early Stopping,

Line 100: ...and we stop the main training for loop with a break statement.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[256]

That's the whole thing. Easy and intuitive, right? Now you know how to implement
early stopping.

After executing the code (I'll explain how to run this in a bit), we'll already see some
good performances from our AI during the training, spending less energy than the
server's integrated cooling system most of the time. But that's only training; now
we need to see if we get good performance from the AI on a new 1-year simulation.
That's where our next and final Python file comes into play.

Step 5 – Testing the AI
Now we need to test the performance of our AI in a brand-new situation. To
do so, we run a 1-year simulation in inference mode, meaning that there's no
training happening at any time. Our AI only returns predictions over a full year
of simulation. Then, thanks to our environment object, in the end we'll be able to
see the total energy spent by the AI over the full year, as well as the total energy
that would have been spent in the exact same year by the server's integrated cooling
system. Finally, we compare these two total energies spent, by computing their
relative difference (in %) which shows us precisely the total energy saved by the
AI. Buckle up for the final results—we'll reveal them very soon!

In terms of the AI blueprint, for the testing implementation we have almost the
same process as the training implementation, except that this time we don't need to
create a brain object nor a DQN model object; and, of course, we won't run the deep
Q-learning process over some training epochs. However, we do have to create a
new environment object, and instead of creating a brain, we'll load our artificial
brain with its pre-trained weights from the previous training that we executed in
Step 4 – Training the AI. Let's take a look at the final sub-steps of this final part of
the AI framework/Blueprint:

• Step 5-1: Build a new environment by creating an object of the Environment
class.

• Step 5-2: Load the artificial brain with its pre-trained weights from the
previous training.

• Step 5-3: Choose the inference mode.
• Step 5-4: Start the 1-year simulation.
• Step 5-5: In each iteration (each minute), our AI only performs the action that

results from its prediction, and no exploration or deep Q-learning training
happens whatsoever.

WOW! eBook
www.wowebook.org

Chapter 11

[257]

The implementation is a piece of cake to understand. It's actually the same as the
training file, except that:

1. Instead of creating a brain object from the Brain class, we load the pre-
trained weights resulting from the training.

2. Instead of running a training loop over 100 epochs of 5-month periods, we
run an inference loop over a single 12-month period. Inside this inference
loop, you'll find exactly the same code as the inference part of the training
for loop. You've got this!

Have a look at the full testing implementation in the following code:

AI for Business - Minimize cost with Deep Q-Learning
Testing the AI

Installing Keras
conda install -c conda-forge keras

Importing the libraries and the other python files
import os
import numpy as np
import random as rn
from keras.models import load_model
import environment

Setting seeds for reproducibility
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(42)
rn.seed(12345)

SETTING THE PARAMETERS
number_actions = 5
direction_boundary = (number_actions - 1) / 2
temperature_step = 1.5

BUILDING THE ENVIRONMENT BY SIMPLY CREATING AN OBJECT OF THE
ENVIRONMENT CLASS
env = environment.Environment(optimal_temperature = (18.0, 24.0),
initial_month = 0, initial_number_users = 20, initial_rate_data = 30)

LOADING A PRE-TRAINED BRAIN
model = load_model("model.h5")

CHOOSING THE MODE
train = False

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[258]

RUNNING A 1 YEAR SIMULATION IN INFERENCE MODE
env.train = train
current_state, _, _ = env.observe()
for timestep in range(0, 12 * 30 * 24 * 60):
 q_values = model.predict(current_state)
 action = np.argmax(q_values[0])
 if (action - direction_boundary < 0):
 direction = -1
 else:
 direction = 1
 energy_ai = abs(action - direction_boundary) * temperature_step
 next_state, reward, game_over = env.update_env(direction, energy_
ai, int(timestep / (30 * 24 * 60)))
 current_state = next_state

PRINTING THE TRAINING RESULTS FOR EACH EPOCH
print("\n")
print("Total Energy spent with an AI: {:.0f}".format(env.total_energy_
ai))
print("Total Energy spent with no AI: {:.0f}".format(env.total_energy_
noai))
print("ENERGY SAVED: {:.0f} %".format((env.total_energy_noai - env.
total_energy_ai) / env.total_energy_noai * 100))

Everything's more or less the same as before; we just removed the parts related to the
training.

The demo
Given the different files we have, make sure to understand that there are four
possible ways to run the program:

1. Without dropout and without early stopping
2. Without dropout and with early stopping
3. With dropout and without early stopping
4. With dropout and with early stopping

WOW! eBook
www.wowebook.org

Chapter 11

[259]

Then, for each of these four combinations, the way to run this is the same: we first
execute the training file, and then the testing file. In this demo section, we'll execute
the 4th option, with both dropout and early stopping.

Now how do we run this? We have two options: with or without Google Colab.

I'll explain how to do it on Google Colab, and I'll even give you a Google Colab file
where you only have to hit the play button. For those of you who want to execute
this without Colab, on your favorite Python IDE, or through the terminal, let me
explain how it's done. It's easy; you just need to download the main repository from
GitHub, then in your Python IDE set the right working directory folder, which is the
Chapter 11 folder, and then run the following two files in this order:

1. training_earlystopping.py, inside which you should make sure to import
brain_dropout at line 9. This will execute the training, and you'll have to
wait until that finishes (which will take about 10 minutes).

2. testing.py, which will test the model on one full year of data.

Now, back to Google Colab. First, open a new Colaboratory file, and call it Deep
Q-Learning for Business. Then add all your files from the Chapter 11 folder of
GitHub into this Colaboratory file, right here:

Figure 11: Google Colab – Step 1

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[260]

Unfortunately, it's not easy to add the different files manually. You can only do
this by using the os library, which we won't bother with. Instead, copy-paste the
five Python implementations in five different cells of our Colaboratory file, in the
following order:

1. A first cell containing the whole environment.py implementation.
2. A second cell containing the whole brain_dropout.py implementation.
3. A third cell containing the whole dqn.py implementation.
4. A fourth cell containing the whole training_earlystopping.py

implementation.
5. And a last cell containing the whole testing.py implementation.

Here's what it looks like, after adding some snazzy titles:

Figure 12: Google Colab – Step 2

WOW! eBook
www.wowebook.org

Chapter 11

[261]

Figure 13: Google Colab – Step 3

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[262]

Figure 14: Google Colab – Step 4

Figure 15: Google Colab – Step 5

WOW! eBook
www.wowebook.org

Chapter 11

[263]

Figure 16: Google Colab – Step 6

Now before we execute each of these cells in the order one through five, we need to
remove the import commands of the Python files. The reason for this is that now
that the implementations are in cells, they're like a single Python implementation,
and we don't have to import the interdependent files in every single cell. First,
remove the following three different rows in the training file:

Figure 17: Google Colab – Step 7

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[264]

After doing that, we end up with this:

Figure 18: Google Colab – Step 8

Then, since we removed these imports, we also have to remove the three filenames
for the environment, the brain, and the dqn, when creating the objects:

First the environment:

Figure 19: Google Colab – Step 9

Then the brain:

Figure 20: Google Colab – Step 10

And finally the dqn:

WOW! eBook
www.wowebook.org

Chapter 11

[265]

Figure 21: Google Colab – Step 11

Now the training file's good to go. In the testing file, we just have to remove two
things, the environment import at line 12:

Figure 22: Google Colab – Step 12

and the environment. at row 25:

Figure 23: Google Colab – Step 13

That's it; now you're all set! You're ready to literally hit the play button on each of the
cells from top to the bottom.

First, execute the first cell. After executing it, no output is displayed. That's fine!

Then execute the second cell:

Using TensorFlow backend.

After executing it, you can see the output Using TensorFlow backend.

Then execute the third cell, after which no output is displayed.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[266]

Now it gets a bit exciting! You're about to execute the training, and follow the
training performance in real time. Do this by executing the fourth cell. After
executing it, the training launches, and you should see the following results:

Figure 24: The output

Don't worry about those warnings, everything's running the way it should. Since
early stopping is activated, you'll reach the end of the training way before the 100
epochs, at the 15th epoch:

Figure 25: The output at the 15th epoch

WOW! eBook
www.wowebook.org

Chapter 11

[267]

Note that the pre-trained weights are saved in Files, in the model.h5 file:

Figure 26: The model.h5 file

The training results look promising. Most of the time the AI spends less energy than
the alternative server's integrated cooling system. Check that this is still the case with
a full test, on one new year of simulation.

Execute the final cell and when it finishes running, (which takes approximately
3 minutes), you obtain in the printed results that the total energy consumption
saved by the AI is…

Total Energy spent with an AI: 261985

Total Energy spent with no AI: 1978293

ENERGY SAVED: 87%

Total Energy saved by the AI = 87%

That's a lot of energy saved! Google DeepMind achieved similarly impressive results
in 2016. If you look up the results by searching "DeepMind reduces Google cooling
bill," you'll see that the result they achieved was 40%. Not bad! Of course, let's be
critical: their server/ data center environment is much more complex than our server
environment and has many more parameters, so even though they have one of the
most talented AI teams in the world, they could only reduce the cooling bill by less
than 50%.

Our environment's very simple, and if you dig into it (which I recommend you do)
you'll likely find that the variations of users and data, and therefore the variation of
temperature, follow a uniform distribution. Accordingly, the server's temperature
usually stays around the optimal range of temperatures. The AI understands that
well, and thus chooses most of the time to take no action and cause no change of
temperature, thus consuming very little energy.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[268]

I highly recommend that you play around with your server cooling model; make
it as complex as you like, and try out different rewards to see if you can cause
different behaviors.

Even though our environment is simple, you can be proud of your achievement.
What matters is that you were able to build a deep Q-learning model for a real-world
business problem. The environment itself is less important; what's most important
is that you know how to connect a deep reinforcement learning model to an
environment, and how to train the model inside.

Now, after your successes with the self-driving car plus this business application,
you know how to do just that!

What we've built is excellent for our business client, as our AI will seriously
reduce their costs. Remember that thanks to our object-oriented structure
(working with classes and objects), we could very easily take the objects created
in this implementation for one server, and then plug them into other servers, so that
in the end we end up lowering the total energy consumption of a whole data center!
That's how Google saved billions of dollars in energy-related costs, thanks to the DQN
model built by their DeepMind AI.

My heartiest congratulations to you for smashing this new application. You've just
made huge progress with your AI skills.

Finally, here's the link to the Colaboratory file with this whole implementation as
promised. You don't have to install anything, Keras and NumPy are already pre-
installed (this is the beauty of Google Colab!):

https://colab.research.google.com/drive/1KGAoT7S60OC3UGHNnrr_
FuN5Hcil0cHk

Before we finish this chapter and move onto the world of deep convolutional
Q-learning, let me give you a useful recap of the whole general AI blueprint when
building a deep reinforcement learning model.

Recap – The general AI framework/
Blueprint
Let's recap the whole AI Blueprint, so that you can print it out and put it on your wall.

Step 1: Building the environment

• Step 1-1: Introducing and initializing all the parameters and variables of the
environment.

WOW! eBook
www.wowebook.org

https://colab.research.google.com/drive/1KGAoT7S60OC3UGHNnrr_FuN5Hcil0cHk
https://colab.research.google.com/drive/1KGAoT7S60OC3UGHNnrr_FuN5Hcil0cHk

Chapter 11

[269]

• Step 1-2: Making a method that updates the environment right after the
AI plays an action.

• Step 1-3: Making a method that resets the environment.
• Step 1-4: Making a method that gives us at any time the current state,

the last reward obtained, and whether the game is over.

Step 2: Building the brain

• Step 2-1: Building the input layer composed of the input states.
• Step 2-2: Building the hidden layers with a chosen number of these layers

and neurons inside each, fully connected to the input layer and between each
other.

• Step 2-3: Building the output layer, fully connected to the last hidden layer.
• Step 2-4: Assembling the full architecture inside a model object.
• Step 2-5: Compiling the model with a mean squared error loss function and a

chosen optimizer (a good one is Adam).

Step 3: Implementing the deep reinforcement learning algorithm

• Step 3-1: Introducing and initializing all the parameters and variables of the
DQN model.

• Step 3-2: Making a method that builds the memory in experience replay.
• Step 3-3: Making a method that builds and returns two batches of 10 inputs

and 10 targets.

Step 4: Training the AI

• Step 4-1: Building the environment by creating an object of the Environment
class built in Step 1.

• Step 4-2: Building the artificial brain by creating an object of the Brain class
built in Step 2.

• Step 4-3: Building the DQN model by creating an object of the DQN class built
in Step 3.

• Step 4-4: Choosing the training mode.
• Step 4-5: Starting the training with a for loop over a chosen number of

epochs.
• Step 4-6: During each epoch we repeat the whole deep Q-learning process,

while also doing some exploration 30% of the time.

WOW! eBook
www.wowebook.org

AI for Business – Minimize Costs with Deep Q-Learning

[270]

Step 5: Testing the AI

• Step 5-1: Building a new environment by creating an object of the
Environment class built in Step 1.

• Step 5-2: Loading the artificial brain with its pre-trained weights from the
previous training.

• Step 5-3: Choosing the inference mode.
• Step 5-4: Starting the simulation.
• Step 5-5: At each iteration (each minute), our AI only plays the action that

results from its prediction, and no exploration or deep Q-learning training
is happening whatsoever.

Summary
In this chapter you re-applied deep Q-learning to a new business problem. You were
supposed to find the best strategy to cool down and heat up the server. Before you
started defining the AI strategy, you had to make some assumptions about your
environment, for example the way the temperature is calculated. As inputs to your
ANN, you had information about the server at any given time, like the temperature
and data transmission. As outputs, your AI predicted whether to cool down or heat
up our server by a certain amount. The reward was the energy saved with respect
to the other, traditional cooling system. Your AI was able to save 87% energy.

WOW! eBook
www.wowebook.org

[271]

Deep Convolutional
Q-Learning

Now that you understand how Artificial Neural Networks (ANNs) work,
you're ready to tackle an incredibly useful tool, mostly used when dealing with
images—Convolutional Neural Networks (CNNs). To put it simply, CNNs allow
your AI to see images in real time as if it had eyes.

We will tackle them in the following steps:

1. What are CNNs used for?
2. How do CNNs work?
3. Convolution
4. Max pooling
5. Flattening
6. Full connection

Once you've understood those steps, you'll understand CNNs, and how they can
be used in deep convolutional Q-learning.

What are CNNs used for?
CNNs are mostly used with images or videos, and sometimes with text to tackle
Natural Language Processing (NLP) problems. They are often used in object
recognition, for example, predicting whether there is a cat or a dog in a picture or
video. They are also often used with deep Q-learning (which we will discuss later
on), when the environment returns 2D states of itself, for example, when we are
trying to build a self-driving car that reads outputs from cameras around it.

WOW! eBook
www.wowebook.org

Deep Convolutional Q-Learning

[272]

Remember the example in Chapter 9, Going Pro with Artificial Brains - Deep Q-Learning,
where we were predicting houses' prices. As inputs, we had all of the values that
define a house (area, age, number of bedrooms, and so on), and as output, we had
the price of a house. In the case of CNNs, things are very similar. For example, if we
wanted to solve the same problem using CNNs, we would have images of houses as
inputs and the price of a house as output.

This diagram should illustrate what I mean:

Figure 1: Input Image – CNN – Output Label

As you can see, the input is an image that flows through a CNN and comes out
as an output. In the case of this diagram, the output is a class to which the image
corresponds. What do I mean by a class? For example, if we wanted to predict
whether the inputted image is a smiling face or a sad face, then one class would be
smiling face, and the other would be sad face. Our output should then correctly decide
to which class the input image corresponds.

Speaking of happy and sad faces, here's a diagram that represents it in more detail:

Figure 2: Two different classes to predict (Happy or Sad)

WOW! eBook
www.wowebook.org

Chapter 12

[273]

In the preceding example, we've run two images through a CNN. The first one is
a smiling face and the other one is a sad face. As I mentioned before, our network
predicts whether the image is a happy or a sad face.

I can imagine what you're thinking right now: how does it all work? What's inside
this black box we call a CNN? I'll answer these questions in the following sections.

How do CNNs work?
Before we can go deep into the structure of CNNs, we need to understand a couple
of points. I will introduce you to the first point with a question: how many
dimensions does a colored RGB image have?

The answer may surprise you: it's 3!

Why? Because every RGB image is, in fact, represented by three 2D images, each one
corresponding to a color in RGB architecture. So, there is one image corresponding
to red, one corresponding to green, and one to blue. Grayscale images are only 2D,
because they are represented by only one scale as there are no colors. The following
diagram should make it clearer:

Figure 3: RGB versus black and white images

As you can see, a colored image is represented by a 3D array. Each color has its own
layer in the picture, and this layer is called a channel. A grayscale (black and white)
image only has one channel and is, therefore, a 2D array.

WOW! eBook
www.wowebook.org

Deep Convolutional Q-Learning

[274]

As you probably know, images are made out of pixels. Each of these is represented
by a value that ranges from 0 to 255, where 0 is a pixel turned off and 255 is a fully
bright pixel. It's important to understand that when we say that a pixel has the value
(255, 255, 0), then that means this pixel is fully bright on the red and green channel
and turned off on the blue channel.

From now on, to understand everything better, we'll be dealing with very simple
images. In fact, our images will be grayscale (1 channel, 2D) and the pixels will either
be fully bright or turned off. In order to make pictures easier to read, we'll assign 1 to
a turned off pixel (black) and 0 to a fully bright one (white).

Going back to the case of happy and sad faces, this is what our 2D array representing
a happy face would look like:

Figure 4: The pixel representation

As you can see, we have an array where 0 corresponds to a white pixel and
1 corresponds to a black pixel. The picture on the right is our smiling face
represented by an array.

Now that we understand the foundations and that we've simplified the problem,
we're ready to tackle CNNs. In order to fully understand them, we need to split our
learning into the four steps that make up a CNN:

1. Convolution
2. Max pooling
3. Flattening
4. Full connection

Now we'll get to know each of these four steps one by one.

WOW! eBook
www.wowebook.org

Chapter 12

[275]

Step 1 – Convolution
This is the first crucial step of every CNN. In convolution, we apply something called
feature detectors to the inputted image. Why do we have to do so? This is because
all images contain certain features that define what is in the picture. For example,
to recognize which face is sad and which one is happy, we need to understand the
meaning of the shape of the mouth, which is a feature of this image. It's easier to
understand this from a diagram:

Figure 5: Step 1 – Convolution (1/5)

In the preceding diagram, we applied a feature detector, also known as a filter, to the
smiling face we had as input. As you can see, a filter is a 2D array with some values
inside. When we apply this feature detector to the image it covers (in this case it is a
3 x 3 grid), we check how many pixels from this part of the image match the filter's
pixels. Then we put this number into a new 2D array called feature map. In other
words, the more a part of the picture matches the picture detector, the higher the
number we put into the feature map.

Next, we slide the feature detector across the entire image. In the next iteration, this
is what will happen:

Figure 6: Step 1 – Convolution (2/5)

WOW! eBook
www.wowebook.org

Deep Convolutional Q-Learning

[276]

As you can see, we slide the filter one place to the right. This time, one pixel
matches in both the filter and in this part of the image. That's why we put 1 in
the feature map.

What do you think happens when we hit the boundary of this image? What would
you do? I'll show you what happens with these two diagrams:

Figure 7: Step 1 – Convolution (3/5)

Figure 8: Step 1 – Convolution (4/5)

Here, we had this exact situation: in the first image, our filter hits the boundary. It
turns out that our feature detector simply jumps to the next line.

The whole magic of the convolution wouldn't work if we had only one filter.
In reality, we use many filters, which produce many different feature maps. This
set of feature maps is called a convolution layer, or convolutional layer. Here's
a diagram to recap:

WOW! eBook
www.wowebook.org

Chapter 12

[277]

Figure 9: Step 1 – Convolution (5/5)

Here, we can see an input image to which many filters were applied. All together,
they create a convolutional layer from many feature maps. This is the first step when
building a CNN.

Now that we understand convolution, we can proceed to another important step—
max pooling.

Step 2 – Max pooling
This step in CNNs is responsible for lowering the size of each feature map. When
dealing with neural networks, we don't want to have too many inputs, otherwise
our network wouldn't be able to learn properly because of the high complexity.
Therefore, a method of reducing the size called max pooling needs to be introduced.
It lets us reduce the size without losing any important features, and it makes features
partially invariant to shifts (translations and rotations).

Technically, a max pooling algorithm is also based on an array sliding across the
entire feature map. In this case, we are not searching for any features but, rather,
for the maximum value in a specific area of a feature map.

WOW! eBook
www.wowebook.org

Deep Convolutional Q-Learning

[278]

Let me show you what I mean with this graphic:

Figure 10: Step 2 – Max pooling (1/5)

In this example, we're taking the feature map, obtained after the convolution step
we had before, and then we are running it through max pooling. As you can see,
we have a window of size 2 x 2 looking for the highest values in the part of feature
map it covers. In this case, it's 1.

Can you tell what will happen in the next iteration?

As you may have suspected, this window will slide to the right, although in
a slightly different way than before. It moves like this:

Figure 11: Step 2 – Max Pooling (2/5)

WOW! eBook
www.wowebook.org

Chapter 12

[279]

This window jumps its size to the right, which I hope you remember is different from
the convolution step, where the feature detector slid one cell at a time. In this case,
the highest value is 1 as well, and therefore we write 1 in the pooled feature map.

What happens this time when we hit the boundary of the feature map? Things look
slightly different from before once again. This is what happens:

Figure 12: Step 2 – Max pooling (3/5)

The window crosses the boundary and searches for the highest value in the part
of the feature map that is still inside the max pooling window. Yet again, the highest
value is 1.

But what happens now? After all, there's no space left to go to the right. There's also
only one row at the bottom left for max pooling. This is what the algorithm does:

Figure 13: Step 2 – Max pooling (4/5)

WOW! eBook
www.wowebook.org

Deep Convolutional Q-Learning

[280]

As we can see, it once again crosses the boundary and searches for the highest value
in what is inside the window. In this case, it is 0. This process is repeated until the
window hits the bottom right corner of the feature map. To recap what our CNN
looks like for now, have a look at the following diagram:

Figure 14: Step 2 – Max pooling (5/5)

We had a smiling face as input, then we ran it through convolution to obtain many
feature maps, called the convolutional layer. Now we've run all the feature maps
through max pooling and obtained many pooled feature maps, all together called
the pooling layer.

Now we can continue to the next step, which will let us input the pooling layer into
a neural network. This step is called flattening.

Step 3 – Flattening
This is a very short step. As the name may suggest, we change all the pooled feature
maps from 2D arrays to 1D ones. As I mentioned before, this will let us input the
image into a neural network with ease. So, how exactly will we achieve this? The
following diagram should help you understand:

WOW! eBook
www.wowebook.org

Chapter 12

[281]

Figure 15: Step 3 – Flattening (1/3)

Here we go back to the pooled feature map we obtained before. To flatten it, we take
pixel values starting from the top left, finishing at bottom right. An operation like
this returns a 1D array, containing the same values as the 2D array we started with.

But remember, we don't have one pooled feature map, we have an entire layer
of them. What do you think we should do with that?

The answer is simple: we put this entire layer into a single 1D flattened array, one
pooled feature map after another. Why does it have to be 1D? This is because ANNs
only accept 1D arrays as their inputs. All the layers in a traditional neural network
are 1D, which means that the input has to be 1D as well. Therefore, we flatten all the
pooled feature maps, like so:

Figure 16: Step 3 – Flattening (2/3)

WOW! eBook
www.wowebook.org

Deep Convolutional Q-Learning

[282]

We've taken the entire layer and transformed it into a single flattened 1D array.
We'll soon use this array as the input of a traditional neural network.

First, let's remind ourselves of what our model looks like now:

Figure 17: Step 3 – Flattening (3/3)

So, we have a Convolutional Layer, Pooling Layer, and a freshly added, flattened
1D layer. Now we can go back to a classic ANN, that is, a fully connected neural
network, and treat this last layer as an input for this network. This leads us to the
final step, full connection.

Step 4 – Full connection
The final step of creating a CNN is to connect it to a classic fully-connected neural
network. Remember that we already have a 1D array telling us in a compressed way
what the image looks like, so why not just use it as an input to a fully-connected
neural network? After all, it's the latter that's able to make predictions.

That's exactly what we do next, just like this:

WOW! eBook
www.wowebook.org

Chapter 12

[283]

Figure 18: Step 4 – Full connection

After flattening, we input those returned values straight into the fully-connected
neural network, which then yields the prediction—the output value.

You might be wondering how the back-propagation phase works now. In a CNN,
back-propagation not only updates the weights in the fully-connected neural
network, but also the filters used in the convolution step. The max pooling and
flattening steps will remain the same, as there is nothing to update there.

In conclusion, CNNs look for some specific features. This is why they're mostly
used when we are dealing with images, where searching for features is crucial.
For example, when trying to recognize a sad and a happy face, a CNN needs to
understand which mouth's shape means a sad face and which means a happy face.
In order to obtain an output, a CNN has to run these steps:

1. Convolution – Applying filters to the input image. This operation will find
the features our CNN is looking for and save them in a feature map.

2. Max pooling – Lowering the feature map size, by taking a maximum
value in a given area and saving these values in a new array called pooled
feature map.

WOW! eBook
www.wowebook.org

Deep Convolutional Q-Learning

[284]

3. Flattening – Changing the entire pooling layer (all pooled feature maps)
to a 1D vector. This will allow us to input this vector into a neural network.

4. Full connection – Creating a neural network, which takes as input a flattened
pooling layer and returns a value that we would like to predict. This last step
lets us make predictions.

Deep convolutional Q-learning
In the chapter on deep Q-learning (Chapter 9, Going Pro with Artificial Brains – Deep
Q-Learning), our inputs were vectors of encoded values defining the states of the
environment. When working with images or videos, encoded vectors aren't the
best inputs to describe a state (the input frame), simply because an encoded vector
doesn't preserve the spatial structure of an image. The spatial structure is important
because it gives us more information to help predict the next state, and predicting
the next state is essential for our AI to learn the correct next move.

Therefore, we need to preserve the spatial structure. To do that, our inputs must be
3D images (2D for the array of pixels plus one additional dimension for the colors,
as illustrated at the beginning of this chapter). For example, if we train an AI to play
a video game, the inputs are simply the images of the screen itself, exactly what a
human sees when playing the game.

Following this analogy, the AI acts like it has human eyes; it observes the input
images on the screen when playing the game. Those input images go into a CNN
(the eyes for a human), which detects the state in each image. Then they're forward-
propagated through the pooling layers where max pooling is applied. Then the
pooling layers are flattened into a 1D vector, which becomes the input of our deep
Q-learning network (the exact same one as in Chapter 9, Going Pro with Artificial
Brains – Deep Q-Learning). In the end, the same deep Q-learning process is run.

The following graph illustrates deep convolutional Q-learning applied to the famous
game of Doom:

WOW! eBook
www.wowebook.org

Chapter 12

[285]

Figure 19: Deep convolutional Q-learning for Doom

In summary, deep convolutional Q-learning is the same as deep Q-learning, with
the only differences being that the inputs are now images, and a CNN is added at
the beginning of the fully-connected deep Q-learning network to detect the states
of those images.

Summary
You've learned about another type of neural network—a Convolutional Neural
Network.

We established that this network is used mostly with images and searches for certain
features in these pictures. It uses three additional steps that ANNs don't have:
convolution, where we search for features; max pooling, where we shrink the image
in size; and flattening, where we flatten 2D images to a 1D vector so that we can
input it into a neural network.

In the next chapter, you'll build a deep convolutional Q-learning model to solve a
classic gaming problem: Snake.

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

[287]

AI for Games – Become
the Master at Snake

This is the last practical chapter; congratulations on finishing the previous ones!
I hope you really enjoyed them. Now, let's leave aside business problems and
self-driving cars. Let's have some fun by playing a popular game called Snake
and making an AI that teaches itself to play this game!

That's exactly what we'll do in this chapter. The model we'll implement is called
deep convolutional Q-learning, using a Convolutional Neural Network (CNN).

Our AI won't be perfect, and it won't fill in the entire map, but after some training
it will start playing at a level comparable with humans.

Let's start tackling this problem by looking at what the game looks like and what
the target is.

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[288]

Problem to solve
First, let's have a look at the game itself:

Figure 1: The Snake game

Does that look somewhat familiar to you?

I'm pretty convinced that it will; everyone's played Snake at least once in their life.

The game is pretty simple; it consists of a snake and an apple. We control the snake
and our aim is to eat as many apples as possible.

Sounds easy? Well, there's a small catch. Every time our snake eats an apple, our
snake gets larger by one tile. This means that the game is unbelievably simple at
the beginning, but it gets gradually harder, to the point where it becomes a strategic
game.

Also, when controlling our snake, we can't hit ourselves, nor the borders of the
board. This rather predictably results in us losing.

Now that we understand the problem, we can progress to the first step when
creating an AI – building the environment!

Building the environment
This time, as opposed to some of the other practical sections in this book, we don't
have to specify any variables or make any assumptions. We can just go straight to
the three crucial steps present in every deep Q-learning project:

1. Defining the states

WOW! eBook
www.wowebook.org

Chapter 13

[289]

2. Defining the actions
3. Defining the rewards

Let's begin!

Defining the states
In every previous example, our states were a 1D vector that represented some
values that define the environment. For example, for our self-driving car we
had the information gathered from the three sensors around the car and the
car's position. All of these were put into a single 1D array.

But what if we want to make something slightly more realistic? What if we want
the AI to see and gather information from the same source as we do? Well, that's
what we'll do in this chapter. Our AI will see exactly the same board as we see
when playing Snake!

The state of the game should be a 2D array representing the board of the game,
exactly the same thing that we can see.

There's just one problem with this solution. Take a look at the following image,
and see if you can answer the question: which way is our snake moving right now?

Figure 2: The Snake game

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[290]

If you said "I don't know," then you're exactly right.

Based on a single frame, we can't tell which way our snake is going. Therefore, we'll
need to stack multiple images, and then input all of them at once to a Convolutional
Neural Network. This will result in us having 3D states rather than 2D ones.

So, just to recap:

Figure 3: The AI vision

We'll have a 3D array, containing next game frames stacked on top of each other,
where the top one is the latest frame obtained from our game. Now, we can clearly
see which way our AI is moving; in this case it's going up, toward the apple.

Now that we have defined states, we can go the next step: defining the actions!

Defining the actions
When we play Snake on a phone or a website, there are four actions available for us
to take:

1. Go up
2. Go down

WOW! eBook
www.wowebook.org

Chapter 13

[291]

3. Go right
4. Go left

However, if the action we take would require the snake to make a 180° turn directly
back on itself, then the game blocks this action and the snake continues going in its
current direction.

In the preceding example, if we were to select action 2 – go down–our snake would
still continue going up, because going down is impossible as the snake can't make
a 180° turn directly back on itself.

It's worth noting that all of these actions are relative to the board, not the snake;
they're not affected by the current movement of the snake. Going up, down, right,
or left always means going up, down, right, or left with respect to the board, not
to the snake's current direction of movement.

Alright, so right now you might be in one of these two groups when it comes
to deciding what actions we model in our AI:

1. We can use these four same actions for our AI.
2. We can't use these same actions, because blocking certain moves will be

confusing for our AI. Instead, we should invent a way to tell the snake to
go left, go right, or keep going.

We actually can use these same actions for our AI!

Why won't it be confusing for our agent? That's because as long as our AI agent
gets rewards for the actions it chose, and not for the action ultimately performed
by the snake, then deep Q-learning will work and our AI will understand that in
the example above choosing either go up or go down results in the same outcome.

For example, let's say that the AI-controlled snake is currently going left. It chooses
action 3, go right; and because that would cause the snake to make a 180° turn back
on itself, instead the snake continues going left. Let's say that action means the snake
crashes into the wall and, as a result, dies. In order for this not to be confusing for
our agent, all we need to do is tell it that the action of go right caused it to crash,
even though the snake kept moving left.

Think of it as teaching an AI to play with the actual buttons on a phone. If you keep
trying to make your snake double back on itself when it's moving left, by pressing
the go right button over and over again, the game will keep ignoring the impossible
move you keep telling it to do, keep going left, and eventually crash. That's all the
AI needs to learn.

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[292]

This is because, remember, in deep Q-learning we only update the Q-values of the
action that the AI takes. If our snake is going left, and the AI decides to go right and
the snake dies, it needs to understand that the action of go right caused it to get the
negative reward, not the fact that the snake moved left; even though choosing the
action go left would cause the same outcome.

I hope you understand that the AI can use the same actions as we use when we play.
We can continue to the next, final step – defining the rewards!

Defining the rewards
This last step is pretty simple; we just need three rewards:

1. Reward for eating an apple
2. Reward for dying
3. The living penalty

The first two are hopefully easy to understand. After all, we want to encourage our
agent to eat as many apples as possible and therefore we will set its reward to be
positive. To be precise: eating an apple = +2

Meanwhile, we want to discourage our snake from dying. That's why we set that
reward to be a negative one. To be precise: dying = -1

Then comes the final reward: the living penalty.

What is that, and why is it necessary? We have to convince our agent that collecting
apples as quickly as possible, without dying, is a good idea. If we were to only have
the two rewards we've already defined, our agent would simply travel around the
entire map, hoping that at some point it finds an apple. It wouldn't understand that
it needs to collect apples as quickly as it can.

That's why we introduce the living penalty. It will slightly punish our AI for every
action it takes, unless this action leads to dying or collecting an apple. This will show
our agent that it needs to collect apples quickly, as only moves that collect an apple
lead to gaining a positive reward. So, how big this reward should be? Well, we don't
want to punish it too much. To be precise: living penalty =-0.03

If you want to tinker with these rewards, the absolute value of this reward should
always be relatively small compared to the other rewards, for dying (-1) and
collecting an apple (+2).

WOW! eBook
www.wowebook.org

Chapter 13

[293]

AI solution
As always, the AI solution for deep Q-learning consists of two parts:

1. Brain – the neural network that will learn and take actions
2. Experience replay memory – the memory that will store our experience;

the neural network will learn from this memory

Let's tackle those now!

The brain
This part of the AI solution will be responsible for teaching, storing, and evaluating
our neural network. To build it, we're going to use a CNN!

Why a CNN? When explaining the theory behind them, I mentioned that they're
often used when "our environment as state returns images," and that's exactly what
we're dealing with here. We've already established that the game state is going to be
a stacked 3D array containing the last few game frames.

In the previous chapter, we discussed that a CNN takes a 2D image as input, not
a stacked 3D array of images; but do you remember this graphic?

Figure 4: RGB images

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[294]

Here, I informed you that the RGB images are represented by 3D arrays that contain
every single 2D channel of this image. Does that sound familiar? We can use the very
same method for our problem. Just like each color in the RGB structure, we'll simply
input every game frame as a new channel, which will give us a 3D array, which we
will be able to input into a CNN.

In reality, CNNs usually only support 3D arrays as inputs. In order to input
a 2D array, you need to create a fake single channel that transforms a 2D array
into a 3D one.

When it comes to the CNN architecture, we'll have two convolution layers separated
by a pooling layer. One convolution layer will have 32 3x3 filters, and the other one
will have 64 2x2 filters. The pooling layer will shrink the size by 2, as the pooling
window size will be 2x2. Why such an architecture? It's a classic one, found in many
research papers, which I arbitrarily chose as common practice and which turned out
to work brilliantly.

Our neural network will have one hidden layer with 256 neurons, and an output
layer with 4 neurons; one for each of our possible outcome actions.

We also need to set two last parameters for our CNN – learning rate and input shape.

Learning rate, which was used in the previous examples, is a parameter that specifies
by how much we update the weights in the neural network. Too small and it won't
learn, too big and it won't learn for a different reason; the changes will be too big for
any optimization. I found through experimentation that a good learning rate for this
example is 0.0001.

We've already agreed that the input should be a 3D array containing last frames
obtained from our game. To be exact, we will not be reading pixels from our
screen. Instead, we'll read the direct 2D array that represents our game's screen
at a particular time.

As you've probably noticed, our game is built on a grid. In the example we are using,
the grid is 10x10. Then, inside the environment is an array with the same size (10x10),
telling us mathematically what the board looks like. For example, if we have part
of the snake in one cell, then we place the value 0.5 in the corresponding cell in our
2D array, which we will read. An apple is described as value 1 in this array.

Now that we know how we'll see one frame, we need to decide how many previous
frames we'll use when we describe the current game state. 2 should be enough,
since we can discern from that which way the snake is going, but to make sure,
we'll have 4.

WOW! eBook
www.wowebook.org

Chapter 13

[295]

Can you tell me exactly what shape our input to the CNN will be?

It'll be 10x10x4, which gives us a 3D array!

The experience replay memory
As defined in the theoretical chapter of deep Q-learning, we need to have a memory
that stores experience gathered during training.

We'll store the following data:

• Current state – The game state the AI was in when it performed an action
(what we inputted to our CNN)

• Action – Which action was undertaken
• Reward – The reward gained by performing this action on the current state
• Next state – What happened (how the state looked) after performing the

action
• Game over – Information about whether we have lost or not

Also, we always have to specify two parameters for every experience replay
memory:

• Memory size – The maximum size of our memory
• Gamma – The discount factor, existent in the Bellman equation

We'll set the memory size to 60,000 and the gamma parameter to 0.9.

There's one last thing to specify here.

I told you that our AI will learn from this memory, and that's true; but the AI won't
be learning from the entire memory. Rather, it will learn from a small batch taken
from it. The parameter that specifies this size will be called batch size, and in this
example, we'll set its value to 32. That means that our AI will learn every iteration
from a batch of this size taken from experience replay memory.

Now that you understand everything you have to code, you can get started!

Implementation
You'll implement the entire AI code and the Snake game in five files:

1. environment.py file – The file containing the environment (Snake game)
2. brain.py file – The file in which we build our CNN

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[296]

3. DQN.py – The file that builds the Experience Replay Memory
4. train.py – The file where we will train our AI to play Snake
5. test.py – The file where we will test our AI to see how well it performs

You can find all of them on the GitHub page along with a pre-trained model. To get
there, select Chapter 13 folder on the main page.

We'll go through each file in the same order. Let's start building the environment!

Step 1 – Building the environment
Start this first, important step by importing the libraries you'll need. Like this:

4 # Importing the libraries

5 import numpy as np

6 import pygame as pg

You'll only use two libraries: NumPy and PyGame. The former is really useful
when dealing with lists or arrays, and the latter will be used to build the entire
game – to draw the snake and the apple, and update the screen.

Now, let's create the Environment class which will contain all the information,
variables and methods that you need for your game. Why a class? This is because
it makes things easier for you later on. You'll be able to call specific methods
or variables from the object of this class.

The first method that you always have to have is the __init__ method, always
called when a new object of this class is created in the main code. To create this
class along with this __init__ method, you need to write:

8 # Initializing the Environment class

9 class Environment():

10

11 def __init__(self, waitTime):

12

13 # Defining the parameters

14 self.width = 880 # width of the game window

15 self.height = 880 # height of the game window

16 self.nRows = 10 # number of rows in our board

17 self.nColumns = 10 # number of columns in our
board

18 self.initSnakeLen = 2 # initial length of the snake

WOW! eBook
www.wowebook.org

Chapter 13

[297]

19 self.defReward = -0.03 # reward for taking an action
- The Living Penalty

20 self.negReward = -1. # reward for dying

21 self.posReward = 2. # reward for collecting an
apple

22 self.waitTime = waitTime # slowdown after taking an
action

23

24 if self.initSnakeLen > self.nRows / 2:

25 self.initSnakeLen = int(self.nRows / 2)

26

27 self.screen = pg.display.set_mode((self.width, self.
height))

28

29 self.snakePos = list()

30

31 # Creating the array that contains mathematical
representation of the game's board

32 self.screenMap = np.zeros((self.nRows, self.nColumns))

33

34 for i in range(self.initSnakeLen):

35 self.snakePos.append((int(self.nRows / 2) + i,
int(self.nColumns / 2)))

36 self.screenMap[int(self.nRows / 2) + i][int(self.
nColumns / 2)] = 0.5

37

38 self.applePos = self.placeApple()

39

40 self.drawScreen()

41

42 self.collected = False

43 self.lastMove = 0

You create a new class, the Environment() class, along with its __init__ method.
This method only takes one argument, which is waitTime. Then after defining the
method, create a list of constants, each of which is explained in the inline comments.
After that, you perform some initialization. You make sure the snake is half the
length of the screen or less on lines 24 and 25, and set the screen up on line 27. One
important thing to note is that you create the screenMap array on line 32, which
represents the board more mathematically. 0.5 in a cell means that this cell is taken
by the snake, and 1 in a cell means that this cell is taken by the apple.

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[298]

On lines 34 to 36, you place the snake in the middle of the screen, facing upward,
and then in the remaining lines you place an apple using the placeapple() method
(which we are about to define), draw the screen, set that the apple hasn't been
collected, and set that there's no last move.

That's the very first method completed. Now you can proceed to the next one:

 # Building a method that gets new, random position of an apple
 def placeApple(self):
 posx = np.random.randint(0, self.nColumns)
 posy = np.random.randint(0, self.nRows)
 while self.screenMap[posy][posx] == 0.5:
 posx = np.random.randint(0, self.nColumns)
 posy = np.random.randint(0, self.nRows)

 self.screenMap[posy][posx] = 1

 return (posy, posx)

This short method places an apple in a new, random spot in your screenMap array.
You'll need this method when our snake collects the apple and a new apple needs to
be placed. It also returns the random position of the new apple.

Then, you'll need a function that draws everything for you to see:

 # Making a function that draws everything for us to see
 def drawScreen(self):

 self.screen.fill((0, 0, 0))

 cellWidth = self.width / self.nColumns
 cellHeight = self.height / self.nRows

 for i in range(self.nRows):
 for j in range(self.nColumns):
 if self.screenMap[i][j] == 0.5:
 pg.draw.rect(self.screen, (255, 255, 255),
(j*cellWidth + 1, i*cellHeight + 1, cellWidth - 2, cellHeight - 2))
 elif self.screenMap[i][j] == 1:
 pg.draw.rect(self.screen, (255, 0, 0),
(j*cellWidth + 1, i*cellHeight + 1, cellWidth - 2, cellHeight - 2))

 pg.display.flip()

WOW! eBook
www.wowebook.org

Chapter 13

[299]

As you can see, the name of this method is drawScreen and it doesn't take any
arguments. Here you simply empty the entire screen, then fill it in with white tiles
where the snake is and with a red tile where the apple is. At the end, you update the
screen with pg.display.flip().

Now, you need a function that will update the snake's position and not the entire
environment:

 # A method that updates the snake's position
 def moveSnake(self, nextPos, col):

 self.snakePos.insert(0, nextPos)

 if not col:
 self.snakePos.pop(len(self.snakePos) - 1)

 self.screenMap = np.zeros((self.nRows, self.nColumns))

 for i in range(len(self.snakePos)):
 self.screenMap[self.snakePos[i][0]][self.snakePos[i][1]] =
0.5

 if col:
 self.applePos = self.placeApple()
 self.collected = True

 self.screenMap[self.applePos[0]][self.applePos[1]] = 1

You can see that this new method takes two arguments: nextPos and col.
The former tells you where the head of the snake will be after performing a certain
action. The latter will inform you whether the snake has collected an apple by taking
this action, or not. Remember that if the snake has collected an apple, then the length
of the snake increases by 1. If you go deep into this code, you can see that, but we
won't go into detail here since it's not so relevant for the AI. You can also see that
if the snake has collected an apple, a new one is spawned in a new spot.

Now, let's move on to the most important part of this code. You define a function
that will update the entire environment. It will move your snake, calculate the
reward, check if you lost, and return a new game frame. This is how it starts:

 # The main method that updates the environment
 def step(self, action):
 # action = 0 -> up
 # action = 1 -> down
 # action = 2 -> right

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[300]

 # action = 3 -> left

 # Resetting these parameters and setting the reward to the
living penalty
 gameOver = False
 reward = self.defReward
 self.collected = False

 for event in pg.event.get():
 if event.type == pg.QUIT:
 return

 snakeX = self.snakePos[0][1]
 snakeY = self.snakePos[0][0]

 # Checking if an action is playable and if not then it is
changed to the playable one
 if action == 1 and self.lastMove == 0:
 action = 0
 if action == 0 and self.lastMove == 1:
 action = 1
 if action == 3 and self.lastMove == 2:
 action = 2
 if action == 2 and self.lastMove == 3:
 action = 3

As you can see, this method is called step and it takes one argument: the action
that tells you which way you want the snake to be going. Just beneath the method's
definition, in the comments, you can see which action means which direction.

Then you reset some variables. You set gameOver to False as this bool variable will
tell you if you lost after performing this action. You set reward to defReward, as this
is the living penalty; it can change if we collect an apple or die later.

Then there's a for loop. It's there to make sure the PyGame window doesn't freeze;
this is a requirement of the PyGame library. It just has to be there.

snakeX and snakeY tell you what the head position of the snake is. It'll be used by
the algorithm later, to determine what happens after the head moves.

In the last few lines, you can see the algorithm that blocks impossible actions. Just to
recap, an impossible action is the one that requires the snake to make a 180° turn in
place. lastMove tells you which way the snake is going right now, and is compared
with action. If these lead to a contradiction, then action is set to lastMove.

WOW! eBook
www.wowebook.org

Chapter 13

[301]

Still inside this method, you update the snake position, check for game over, and
calculate the reward, like so:

 # Checking what happens when we take this action
 if action == 0:
 if snakeY > 0:
 if self.screenMap[snakeY - 1][snakeX] == 0.5:
 gameOver = True
 reward = self.negReward
 elif self.screenMap[snakeY - 1][snakeX] == 1:
 reward = self.posReward
 self.moveSnake((snakeY - 1, snakeX), True)
 elif self.screenMap[snakeY - 1][snakeX] == 0:
 self.moveSnake((snakeY - 1, snakeX), False)
 else:
 gameOver = True
 reward = self.negReward

Here you check what happens if the snake goes up. If the head of the snake is already
in the top row (row no. 0) then you've obviously lost, since the snake hits the wall.
So, reward is set to negReward and gameOver is set to True. Otherwise, you check
what lies ahead of the snake.

If the cell ahead already contains part of the snake's body, then you've lost. You
check that in the first if statement, then set gameOver to True and reward to
negReward.

Else if the cell ahead is an apple, then you set reward to posReward. You also update
the snake's position by calling the method you created just before this one.

Else if the cell ahead is empty, then you don't update reward in any way. You call
the same method again, but this time with the col argument set to False, since the
snake hasn't collected an apple. You go through the same process for every other
action. I won't go through every line, but have a look at the code:

 elif action == 1:
 if snakeY < self.nRows - 1:
 if self.screenMap[snakeY + 1][snakeX] == 0.5:
 gameOver = True
 reward = self.negReward
 elif self.screenMap[snakeY + 1][snakeX] == 1:
 reward = self.posReward
 self.moveSnake((snakeY + 1, snakeX), True)
 elif self.screenMap[snakeY + 1][snakeX] == 0:
 self.moveSnake((snakeY + 1, snakeX), False)
 else:

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[302]

 gameOver = True
 reward = self.negReward

 elif action == 2:
 if snakeX < self.nColumns - 1:
 if self.screenMap[snakeY][snakeX + 1] == 0.5:
 gameOver = True
 reward = self.negReward
 elif self.screenMap[snakeY][snakeX + 1] == 1:
 reward = self.posReward
 self.moveSnake((snakeY, snakeX + 1), True)
 elif self.screenMap[snakeY][snakeX + 1] == 0:
 self.moveSnake((snakeY, snakeX + 1), False)
 else:
 gameOver = True
 reward = self.negReward

 elif action == 3:
 if snakeX > 0:
 if self.screenMap[snakeY][snakeX - 1] == 0.5:
 gameOver = True
 reward = self.negReward
 elif self.screenMap[snakeY][snakeX - 1] == 1:
 reward = self.posReward
 self.moveSnake((snakeY, snakeX - 1), True)
 elif self.screenMap[snakeY][snakeX - 1] == 0:
 self.moveSnake((snakeY, snakeX - 1), False)
 else:
 gameOver = True
 reward = self.negReward

Simply handle every single action in the same way you did with the action of going
up. Check if the snake didn't hit the walls, check what lies ahead of the snake and
update the snake's position, reward, and gameOver accordingly.

There are two more steps in this method; let's jump straight into the first one:

 # Drawing the screen, updating last move and waiting the wait
time specified
 self.drawScreen()

 self.lastMove = action

 pg.time.wait(self.waitTime)

WOW! eBook
www.wowebook.org

Chapter 13

[303]

You update our screen by drawing the snake and the apple on it, then change
lastMove to action, since your snake has already moved and now it's moving
in the action direction.

The last step in this method is to return what the game looks like now, what the
reward is that was obtained, and whether you've lost, like this:

 # Returning the new frame of the game, the reward obtained
and whether the game has ended or not
 return self.screenMap, reward, gameOver

screenMap gives you the information you need about what the game looks like after
performing an action, reward gives you the collected reward from taking this action,
and gameOver tells you whether you lost or not.

That's it for this method! To have a complete Environment class, you only need
to make a function that will reset the environment, like this reset method:

 # Making a function that resets the environment
 def reset(self):
 self.screenMap = np.zeros((self.nRows, self.nColumns))
 self.snakePos = list()

 for i in range(self.initSnakeLen):
 self.snakePos.append((int(self.nRows / 2) + i, int(self.
nColumns / 2)))
 self.screenMap[int(self.nRows / 2) + i][int(self.nColumns
/ 2)] = 0.5

 self.screenMap[self.applePos[0]][self.applePos[1]] = 1

 self.lastMove = 0

It simply resets the game board (screenMap), as well as the snake's position, to the
default, which is the middle of the board. It also sets the apple's position to the same
as it was in the last round.

Congratulations! You've just finished building the environment. Now, we'll proceed
to the second step, building the brain.

Step 2 – Building the brain
This is where you'll build our brain with a Convolutional Neural Network.
You'll also set some parameters for its training and define a method that loads
a pre-trained model for testing.

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[304]

Let's begin!

As always, you start by importing the libraries that you'll use, like this:

Importing the libraries
import keras
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Conv2D, MaxPooling2D, Flatten
from keras.optimizers import Adam

As you've probably noticed, all of the classes are a part of the Keras library, which
is the one you're going to use in this chapter. Keras is actually the only library that
you'll use in this file. Let's go through each of these classes and methods right now:

1. Sequential – A class that allows you to initialize a neural network, and
defines the general structure of this network.

2. load_model – A function that loads a model from a file.
3. Dense – A class to create fully connected layers in an Artificial Neural

Network (ANN).
4. Dropout – A class that adds dropout to our network. You've seen it used

already, in Chapter 8, AI for Logistics – Robots in a Warehouse.
5. Conv2D – A class that builds convolution layers.
6. MaxPooling2D – A class that builds max pooling layers.
7. Flatten – A class that performs flattening, so that you'll have an input for

a classic ANN.
8. Adam – An optimizer, which will optimize your neural network. It's used

when training the CNN.

Now you've imported your library, you can continue by creating a class called
Brain, where all these classes and methods are used. Start by defining a class and
the __init__ method, like this:

Creating the Brain class
class Brain():

 def __init__(self, iS = (100,100,3), lr = 0.0005):

 self.learningRate = lr
 self.inputShape = iS
 self.numOutputs = 4
 self.model = Sequential()

WOW! eBook
www.wowebook.org

Chapter 13

[305]

You can see that the __init__ method takes two arguments: iS (input shape) and lr
(learning rate). Then you define some variables that will be associated with this class:
learningRate, inputShape, numOutputs. Set numOutputs to 4, as this is how many
actions our AI can take. Then, in the last line, create an empty model. To do this, use
the Sequential class, which we imported earlier.

Doing this will allow you to add all the layers that you need to the model. That's
exactly what you do with these lines:

20 # Adding layers to the model

21 self.model.add(Conv2D(32, (3,3), activation = 'relu',
input_shape = self.inputShape))

22

23 self.model.add(MaxPooling2D((2,2)))

24

25 self.model.add(Conv2D(64, (2,2), activation = 'relu'))

26

27 self.model.add(Flatten())

28

29 self.model.add(Dense(units = 256, activation = 'relu'))

30

31 self.model.add(Dense(units = self.numOutputs))

Let's break this code down into lines:

Line 21: You add a new convolution layer to your model. It has 32 3x3 filters with
the ReLU activation function. You need to specify the input shape here as well.
Remember that the input shape is one of the arguments of this function, and is saved
under the inputShape variable.

Line 23: You add a max pooling layer. The window's size is 2x2, which will shrink
our feature maps in size by 2.

Line 25: You add the second convolution layer. This time it has 64 2x2 filters,
with the same ReLU activation function. Why ReLU this time? I tried some other
activation functions experimentally, and it turned out that for this AI ReLU worked
the best.

Line 27: Having applied convolution, you receive new feature maps, which you
flatten to a 1D vector. That's exactly what this line does – it flattens 2D images to
a 1D vector, which you'll then be able to use as the input to your neural network.

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[306]

Line 29: Now, you're in the full connection step – you're building the traditional
ANN. This specific line adds a new hidden layer with 256 neurons and the ReLU
activation function to our model.

Line 31: You create the last layer in your neural network – the output layer. How big
is it? Well, it has to have as many neurons as there are actions that you can take. You
put that value under the numOutputs variable earlier, and the value is equal to 4. You
don't specify the activation function here, which means that the activation function
will be linear as a default. It turns out that in this case, during training, using a linear
output works better than a Softmax output; it makes the training more efficient.

You also have to compile your model. This will tell your code how to calculate the
error, and which optimizer to use when training your model. You can do it with this
single line:

 # Compiling the model
 self.model.compile(loss = 'mean_squared_error', optimizer =
Adam(lr = self.learningRate))

Here, you use a method that's a part of the Sequential class (that's why you can use
your model to call it) to do just that. The method is called compile and, in this case,
takes two arguments. loss is a function that tells the AI how to calculate the error
of your neural network; you'll use mean_squared_error. The second parameter is
the optimizer. You've already imported the Adam optimizer, and you use it here. The
learning rate for this optimizer was one of the arguments of the __init__ method of
this class, and its value is represented by the learningRate variable.

There's only one step left to do in this class – make a function that will load a model
from a file. You do it with this code:

 # Making a function that will load a model from a file
 def loadModel(self, filepath):
 self.model = load_model(filepath)
 return self.model

You can see that you've created a new function called loadModel, which takes
one argument – filepath. This parameter is the file path to the pre-trained model.
Once you've defined the function, you can actually load the model from this file
path. To do so, you use the load_model method, which you imported earlier. This
function takes the same argument – filepath. Then in the final line, you return the
loaded model.

Congratulations! You've just finished building the brain.

Let's advance on our path, and build the experience replay memory.

WOW! eBook
www.wowebook.org

Chapter 13

[307]

Step 3 – Building the experience replay
memory
You'll build this memory now, and later, you'll train your model from small batches
of this memory. The memory will contain information about the game state before
taking the action, the action that was taken, the reward gained, and the game state
after performing the action.

I have some excellent news for you – do you remember this code?

AI for Games - Beat the Snake game
Implementing Deep Q-Learning with Experience Replay

Importing the libraries
import numpy as np

IMPLEMENTING DEEP Q-LEARNING WITH EXPERIENCE REPLAY

class Dqn(object):

 # INTRODUCING AND INITIALIZING ALL THE PARAMETERS AND VARIABLES
OF THE DQN
 def __init__(self, max_memory = 100, discount = 0.9):
 self.memory = list()
 self.max_memory = max_memory
 self.discount = discount

 # MAKING A METHOD THAT BUILDS THE MEMORY IN EXPERIENCE REPLAY
 def remember(self, transition, game_over):
 self.memory.append([transition, game_over])
 if len(self.memory) > self.max_memory:
 del self.memory[0]

 # MAKING A METHOD THAT BUILDS TWO BATCHES OF INPUTS AND TARGETS BY
EXTRACTING TRANSITIONS FROM THE MEMORY
 def get_batch(self, model, batch_size = 10):
 len_memory = len(self.memory)
 num_inputs = self.memory[0][0][0].shape[1]
 num_outputs = model.output_shape[-1]
 inputs = np.zeros((min(len_memory, batch_size), num_inputs))
 targets = np.zeros((min(len_memory, batch_size), num_outputs))
 for i, idx in enumerate(np.random.randint(0, len_memory, size
= min(len_memory, batch_size))):
 current_state, action, reward, next_state = self.
memory[idx][0]

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[308]

 game_over = self.memory[idx][1]
 inputs[i] = current_state
 targets[i] = model.predict(current_state)[0]
 Q_sa = np.max(model.predict(next_state)[0])
 if game_over:
 targets[i, action] = reward
 else:
 targets[i, action] = reward + self.discount * Q_sa
 return inputs, targets

You'll use almost the same code, with only two small changes.

First, you get rid of this line:

 num_inputs = self.memory[0][0][0].shape[1]

And then change this line:

 inputs = np.zeros((min(len_memory, batch_size), num_inputs))

To this one:

 inputs = np.zeros((min(len_memory, batch_size), self.memory[0]
[0][0].shape[1],self.memory[0][0][0].shape[2],self.memory[0][0][0].
shape[3]))

Why did you have to do this? Well, you got rid of the first line since you no longer
have a 1D vector of inputs. Now you have a 3D array.

Then, if you look closely, you'll see that you didn't actually change inputs. Before,
you had a 2D array, one dimension of which was batch size and the other of which
was number of inputs. Now, things are very similar; the first dimension is once again
the batch size, and the last three correspond to the size of the input as well!

Since our input is now a 3D array, you wrote .shape[1], .shape[2], and
.shape[3]. What exactly are those shapes?

.shape[1] is the number of rows in the game (in your case 10). .shape[2] is the
number of columns in the game (in your case 10). .shape[3] is the number of last
frames stacked onto each other (in your case 4).

As you can see, you didn't really change anything. You just made the code work
for our 3D inputs.

I also renamed this dqn.py file to DQN.py and renamed the class DQN to Dqn.

That's that! That was probably much simpler than most of you expected it to be.

WOW! eBook
www.wowebook.org

Chapter 13

[309]

You can finally start training your model. We'll do that in the next section – training
the AI.

Step 4 – Training the AI
This is, by far, the most important step. Here we finally teach our AI to play Snake!

As always, start by importing the libraries you need:

Importing the libraries
from environment import Environment
from brain import Brain
from DQN import Dqn
import numpy as np
import matplotlib.pyplot as plt

In the first three lines you import the tools that you created earlier, including
the Brain, the Environment, and the experience replay memory.

Then, in the following two lines, you import the libraries that you'll use. These
include NumPy and Matplotlib. You'll already recognize the former; the latter
will be used to display your model's performance. To be specific, it will help you
display a graph that, every 100 games, will show you the average number of
apples collected.

That's all for this step. Now, define some hyperparameters for your code:

Defining the parameters
memSize = 60000
batchSize = 32
learningRate = 0.0001
gamma = 0.9
nLastStates = 4

epsilon = 1.
epsilonDecayRate = 0.0002
minEpsilon = 0.05

filepathToSave = 'model2.h5'

I'll explain them in this list:

1. memSize – The maximum size of your experience replay memory.
2. batchSize – The size of the batch of inputs and targets that you get at each

iteration from your experience replay memory for your model to train on.

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[310]

3. learningRate – The learning rate for your Adam optimizer in the Brain.
4. gamma – The discount factor for your experience replay memory.
5. nLastStates – How many last frames you save as your current state of

the game. Remember, you'll input a 3D array of size nRows x nColumns
x nLastStates to your CNN in the Brain.

6. epsilon – The initial epsilon, the chance of taking a random action.
7. epsilonDecayRate – By how much you decrease epsilon after every

single game/epoch.
8. minEpsilon – The lowest possible epsilon, after which it can't be adjusted

any lower.
9. filepathToSave – Where you want to save your model.

There you go – you've defined the hyperparameters. You'll use them later when you
write the rest of the code. Now, you have to create an environment, a brain, and an
experience replay memory:

Creating the Environment, the Brain and the Experience Replay Memory
env = Environment(0)
brain = Brain((env.nRows, env.nColumns, nLastStates), learningRate)
model = brain.model
dqn = Dqn(memSize, gamma)

You can see that in the first line you create an object of the Environment class. You
need to specify one variable here, which is the slowdown of your environment (wait
time between moves). You don't want any slowdown during the training, so you
input 0 here.

In the next line you create an object of the Brain class. It takes two arguments – the
input shape and the learning rate. As I've mentioned multiple times, the input shape
will be a 3D array of size nRows x nColumns x nLastStates, so that's what you type
in here. The second argument is the learning rate, and since you've created a variable
for that, you simply input the name of this variable – learningRate. After this line
you take the model of this Brain class and create an instance of this model in your
code. Keep things simple, and call it model.

In the last line you create an object of the Dqn class. It takes two arguments –
the maximum size of the memory, and the discount factor for the memory. You've
specified two variables, memSize and gamma, for just that, so you use them here.

Now, you need to write a function that will reset the states for your AI. You need it
because the states are quite complicated, and resetting them in the main code would
mess it up a lot. Here's what it looks like:

WOW! eBook
www.wowebook.org

Chapter 13

[311]

30 # Making a function that will initialize game states

31 def resetStates():

32 currentState = np.zeros((1, env.nRows, env.nColumns,
nLastStates))

33

34 for i in range(nLastStates):

35 currentState[:,:,:,i] = env.screenMap

36

37 return currentState, currentState

Let's break it down into separate lines:

Line 31: You define a new function called resetStates. It doesn't take any
arguments.

Line 32: You create a new array called currentState. It's full of zeros, but you may
ask why it's 4D; shouldn't the input be 3D as we said? You're absolutely right, and
it will be. The first dimension is called batch size and simply says how many inputs
you input to your neural network at once. You'll only input one array at a time, so
the first size is 1. The next three sizes correspond to the size of the input.

Lines 34-35: In a for loop, which will be executed nLastStates times, you set the
board for each layer in your 3D state to the current, initial look of the game board
from your environment. Every frame in your state will look the same initially, the
same way the board of the game looks when you start a game.

Line 37: This function will return two currentStates. Why? This is because you
need two game state arrays. One to represent the board before you've taken an
action, and one to represent the board after you've taken an action.

Now you can start writing the code for the entire training. First, create a couple
of useful variables, like this:

Starting the main loop
epoch = 0
scores = list()
maxNCollected = 0
nCollected = 0.
totNCollected = 0

epoch will tell you which epoch/game you're in right now. scores is a list in which
you save the average scores per game after every 100 games/epochs. maxNCollected
tells you the highest score obtained so far in the training, while nCollected is the
score in each game/epoch. The last variable, totNCollected, tells you how many
apples you've collected over 100 epochs/games.

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[312]

Now you start an important, infinite while loop, like this:

while True:
 # Resetting the environment and game states
 env.reset()
 currentState, nextState = resetStates()
 epoch += 1
 gameOver = False

Here, you iterate through every game, every epoch. That's why you restart the
environment in the first line, create new currentState and nextState in the next
line, increase epoch by one, and set gameOver to False as you obviously haven't
lost yet.

Note that this loop doesn't end; therefore, the training never stops. We do it this
way because we don't have a set goal for when to stop the training, since we haven't
defined what a satisfactory result for our AI would be. We could calculate the
average result, or a similar metric, but then training might take too long. I prefer
to keep the training going and you can just stop the training whenever you want.
A good time to stop is when the AI reaches an average of six apples per game,
or you can even go up to 12 apples per game if you want better performance.

You've started the first loop that will iterate through every epoch. Now you need to
create the second loop, where the AI performs actions, updates the environment, and
trains your CNN. Start it with these lines:

 # Starting the second loop in which we play the game and teach our
AI
 while not gameOver:

 # Choosing an action to play
 if np.random.rand() < epsilon:
 action = np.random.randint(0, 4)
 else:
 qvalues = model.predict(currentState)[0]
 action = np.argmax(qvalues)

As I mentioned, this is the loop in which your AI makes decisions, moves, and
updates the environment. You start off by initializing a while loop that will be
executed as long as you haven't lost; that is, as long as gameOver is set to False.

Then, you can see if conditions. This is where your AI will make decisions. If a
random value from range (0,1) is lower than the epsilon, then a random action will
be performed. Otherwise, you predict the Q-values based on the current state of the
game and from these Q-values you take the index with the highest Q-value. This will
be the action performed by your AI.

WOW! eBook
www.wowebook.org

Chapter 13

[313]

Then, you have to update your environment:

 # Updating the environment
 state, reward, gameOver = env.step(action)

You use the step method from your Environment class object. It takes one
argument, which is the action that you perform. It also returns the new frame
obtained from your game after performing this action along with the reward
obtained and the game over information. You'll use these variables soon.

Keep in mind, that this method returns a single 2D frame from your game. This
means that you have to add this new frame to your nextState and remove the
last one. You do this with these lines:

 # Adding new game frame to the next state and deleting the
oldest frame from next state
 state = np.reshape(state, (1, env.nRows, env.nColumns, 1))
 nextState = np.append(nextState, state, axis = 3)
 nextState = np.delete(nextState, 0, axis = 3)

As you can see, first you reshape state because it is 2D, while both currentState
and nextState are 4D. Then you add this new, reshaped frame to nextState along
the 3rd axis. Why 3rd? That's because the 3rd index refers to the 4th dimension of
this array, which keeps the 2D frames inside. In the last line you simply delete the
first frame from nextState, which has index 0 (the oldest frames are kept on the
lowest indexes).

Now, you can remember this transition in your experience replay memory, and train
your model from a random batch of this memory. You do that with these lines:

 # Remembering the transition and training our AI
 dqn.remember([currentState, action, reward, nextState],
gameOver)
 inputs, targets = dqn.get_batch(model, batchSize)
 model.train_on_batch(inputs, targets)

In the first line, you append this transition to the memory. It contains information
about the game state before taking the action (currentState), the action that was
taken (action), the reward gained (reward), and the game state after taking this
action (nextState). You also remember the gameOver status. In the following two
lines, you take a random batch of inputs and targets from your memory, and train
your model on them.

Having done that, you can check if your snake has collected an apple and update
currentState. You can do that with these lines:

 # Checking whether we have collected an apple and updating the
current state

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[314]

 if env.collected:
 nCollected += 1

 currentState = nextState

In the first two lines, you check whether the snake has collected an apple and if it
has, you increase nCollected. Then you update currentState by setting its values
to the ones of nextState.

Now, you can quit this loop. You still have a couple of things to do:

 # Checking if a record of apples eaten in a around was beaten and
if yes then saving the model
 if nCollected > maxNCollected and nCollected > 2:
 maxNCollected = nCollected
 model.save(filepathToSave)

 totNCollected += nCollected
 nCollected = 0

You check if you've beaten the record for the number of apples eaten in a round (this
number has to be bigger than 2) and if you did, you update the record and save your
current model to the file path you specified before. You also increase totNCollected
and reset nCollected to 0 for the next game.

Then, after 100 games, you show the average score, like this:

 # Showing the results each 100 games
 if epoch % 100 == 0 and epoch != 0:
 scores.append(totNCollected / 100)
 totNCollected = 0
 plt.plot(scores)
 plt.xlabel('Epoch / 100')
 plt.ylabel('Average Score')
 plt.savefig('stats.png')
 plt.close()

You have a list called scores, where you store the average score after 100 games.
You append a new value to it and then reset this value. Then you show scores on
a graph, using the Matplotlib library that you imported before. This graph is saved
in stats.png every 100 games/epochs.

Then you lower the epsilon, like so:

 # Lowering the epsilon
 if epsilon > minEpsilon:
 epsilon -= epsilonDecayRate

WOW! eBook
www.wowebook.org

Chapter 13

[315]

With the if condition, you make sure that the epsilon doesn't go lower than the
minimum threshold.

In the last line, you display some additional information about every single game,
like this:

 # Showing the results each game
 print('Epoch: ' + str(epoch) + ' Current Best: ' +
str(maxNCollected) + ' Epsilon: {:.5f}'.format(epsilon))

You display the current epoch (game), the current record for the number of apples
collected in one game, and the current epsilon.

That's it! Congratulations! You've just built a function that will train your model.
Remember that this training goes on infinitely until you decide it's finished. When
you're satisfied with it, you'll want to test it. For that, you need a short file to test
your model. Let's do it!

Step 5 – Testing the AI
This will be a very short section, so don't worry. You'll be running this code in just
a moment!

As always, you start by importing the libraries you need:

Importing the libraries
from environment import Environment
from brain import Brain
import numpy as np

This time you won't be using the DQN memory nor the Matplotlib library,
and therefore you don't import them.

You also need to specify some hyperparameters, like this:

Defining the parameters
nLastStates = 4
filepathToOpen = 'model.h5'
slowdown = 75

You'll need nLastStates later in this code. You also created a file path to the model
that you'll test. Finally, there's also a variable that you'll use to specify the wait time
after every move, so that you can clearly see how your AI performs.

Once again, you create some useful objects, like an Environment and a Brain:

Creating the Environment and the Brain

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[316]

env = Environment(slowdown)
brain = Brain((env.nRows, env.nColumns, nLastStates))
model = brain.loadModel(filepathToOpen)

Into the brackets of the Environment, you input the slowdown, because that's the
argument that this class takes. You also create an object of the Brain class, but this
time, you don't specify the learning rate, since you won't be training your model.
In the final line you load a pre-trained model using the loadModel method from the
Brain class. This method takes one argument, which is the file path from which you
load the model.

Once again, you need a function to reset states. You can use the same one as before,
so just copy and paste these lines:

Making a function that will reset game states
def resetStates():
 currentState = np.zeros((1, env.nRows, env.nColumns, nLastStates))

 for i in range(nLastStates):
 currentState[:,:,:,i] = env.screenMap

 return currentState, currentState

Now, you can enter the main while loop like before. This time, however, you won't
define any variables, since you don't need any:

Starting the main loop
while True:
 # Resetting the game and the game states
 env.reset()
 currentState, nextState = resetStates()
 gameOver = False

As you can see, you've started this infinite while loop. Once again, you have to
restart the environment, the states, and the game over, every iteration.

Now, you can enter the game's while loop, where you take actions, update the
environment, and so on:

 # Playing the game
 while not gameOver:

 # Choosing an action to play
 qvalues = model.predict(currentState)[0]
 action = np.argmax(qvalues)

WOW! eBook
www.wowebook.org

Chapter 13

[317]

This time, you don't need any if statements. After all, you're testing your AI, so you
mustn't have any random actions here.

Once again, you update the environment:

 # Updating the environment
 state, _, gameOver = env.step(action)

You don't really care about the reward, so just place "_" instead of reward. The
environment still returns the frame after taking an action, along with the information
about game over.

Due to this fact, you need to reshape your state and update nextState in the same
way as before:

 # Adding new game frame to next state and deleting the oldest
one from next state
 state = np.reshape(state, (1, env.nRows, env.nColumns, 1))
 nextState = np.append(nextState, state, axis = 3)
 nextState = np.delete(nextState, 0, axis = 3)

In the final line, you need to update currentState as you did in the other file:

 # Updating current state
 currentState = nextState

That's the end of coding for this section! This isn't, however, the end of this chapter.
You still have to run the code.

The demo
Unfortunately, due to PyGame not being supported by Google Colab, you'll need
to use Anaconda.

Thankfully, you should have it installed after Chapter 10, AI for Autonomous Vehicles –
Build a Self-Driving Car, so it'll be easier to install the required packages and libraries.

Installation
First, create a new virtual environment inside Anaconda. This time, I'll walk you
through the installation on the Anaconda Prompt from a PC, so that you can all see
how it's done from any system.

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[318]

Windows users, please open the Anaconda Prompt on your PC, and Mac/Linux
users, please open your Terminal on Mac/Linux. Then type:

conda create -n snake python=3.6

Just like so:

Then, hit Enter on your keyboard. You should get something more or less like this:

Type y on your keyboard and hit Enter once again. After everything gets installed,
type this in your Anaconda Prompt:

conda activate snake

WOW! eBook
www.wowebook.org

Chapter 13

[319]

And hit Enter once again. Now on the left, you should see snake written instead
of base. This means that you're in the newly created Anaconda environment.

Now you need to install the required libraries. The first one is Keras:

conda install -c conda-forge keras

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[320]

After writing that, hit Enter. When you get this:

Type y once again and hit Enter once again. Once you have it installed, you need
to install PyGame and Matplotlib.

The first one can be installed by entering pip install pygame, while the second
one can be installed by entering pip install matplotlib. The installation follows
the same procedure as you just took to install Keras.

Ok, now you can run your code!

If you've accidentally closed your Anaconda Prompt/Terminal for any reason, re-
open it and type in this to activate the snake environment that we have just created:

conda activate snake

WOW! eBook
www.wowebook.org

Chapter 13

[321]

And then hit Enter. I got a bunch of warnings after doing this, and you may see
similar warnings as well, but don't worry about them:

Now, you need to navigate this console to the folder that contains the file you want
to run, in this case train.py. I recommend that you put all the code of Chapter 13
in one folder called Snake on your desktop. Then you'll be able to follow the exact
instructions that I'll give you now. To navigate to this folder, you'll need to use cd
commands.

First, navigate to the desktop by running cd Desktop, like this:

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[322]

And then enter the Snake folder that you created. Just as with the previous
command, run cd Snake, like this:

You're getting super close. To train a new model, you need to type:

python train.py

And hit Enter. This is more or less what you should see:

WOW! eBook
www.wowebook.org

Chapter 13

[323]

You have both a window on the left with the game, and one on the right with the
terminal informing you about every game (every epoch).

Congratulations! You just smashed the code of this chapter and built an AI for Snake.
Be patient with it though! Training it may take up a couple of hours.

So, what kind of results can you expect?

The results
Firstly, make sure to follow the results also on your Anaconda Prompt/Terminal,
epoch by epoch. An epoch is one game played. After thousands of games (epochs),
you'll see the score increase, as well as the snake size increase.

After thousands of epochs of training, while the snake doesn't fill in the entire map,
your AI plays on a level comparable with humans. Here are some pictures after
25,000 epochs.

Figure 5: Results example 1

WOW! eBook
www.wowebook.org

AI for Games – Become the Master at Snake

[324]

Figure 6: Results example 2

You'll also get a graph created in the folder (stats.png) showing the average score
over the epochs. Here is the graph I got when training our AI over 25,000 epochs:

Figure 7: Average score over 25,000 epochs

You can see that our AI reached an average score of 10-11 per game. This isn't bad
considering that before training it knew absolutely nothing about the game.

WOW! eBook
www.wowebook.org

Chapter 13

[325]

You can also see the same results if you run the test.py file using the pre-trained
model model.h5 attached to this chapter in GitHub. To do this, you simply need
to enter in your Anaconda Prompt/Terminal (still in the same Snake folder on your
desktop that contains all the code of Chapter 13, and still inside the snake virtual
environment):

python test.py

If you want to test your model after training, you simply need to replace model.h5
with model2.h5 in the test.py file. That's because during the training the weights
of your AI's neural network will be saved into a file named model2.h5. Then re-enter
python test.py in your Anaconda Prompt/Terminal, and enjoy your own results.

Summary
In this last practical chapter of the book, we built a deep convolutional Q-Learning
model for Snake. Before we built anything, we had to define what our AI would see.
We established that we needed to stack multiple frames, so that our AI would see the
continuity of its moves. This was the input to our Convolutional Neural Network.
The outputs were the Q-values corresponding to each of the four possible moves:
going up, going down, going left, and going right. We rewarded our AI for eating an
apple, punished it for losing, and punished it slightly for performing any action (the
living penalty). Having run 25,000 games, we can see that our AI is able to eat 10-11
apples per game.

I hope you enjoyed it!

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

[327]

Recap and Conclusion
In this final chapter, I'll provide you with a recap of the general AI framework for
reference, and give you some words of advice as you take your work in AI to the
next level. You've come a long way, and there's so much further you can take your
AI studies in the future!

Recap – The general AI framework/
blueprint
Let's recap and provide the whole AI blueprint, so that you can refer to it whenever
you need. You can even print it out and put it on your wall!

Step 1 – Building the environment

1. Step 1-1: Introducing and initializing all the parameters and variables of the
environment.

2. Step 1-2: Making a method that updates the environment right after the
AI plays an action.

3. Step 1-3: Making a method that resets the environment.
4. Step 1-4: Making a method that gives us at any time the current state,

the last reward obtained, and whether the game is over.

Step 2 – Building the brain

1. Step 2-1: Building the input layer composed of the input states.
2. Step 2-2: Building the hidden layers with a chosen number of these layers

and neurons inside each, fully connected to the input layer and between each
other.

3. Step 2-3: Building the output layer, fully connected to the last hidden layer.

WOW! eBook
www.wowebook.org

Recap and Conclusion

[328]

4. Step 2-4: Assembling the full architecture inside a model object.
5. Step 2-5: Compiling the model with a mean-squared error loss function

and a chosen optimizer.

Step 3 – Implementing the Deep Reinforcement Learning algorithm

1. Step 3-1: Introducing and initializing all the parameters and variables of the
Deep Q-Learning neural Network (DQN) model.

2. Step 3-2: Making a method that builds the memory in experience replay.
3. Step 3-3: Making a method that builds and returns two batches of inputs and

targets, each one having batch_size elements.

Step 4 – Training the AI

1. Step 4-1: Building the environment by creating an object of the Environment
class built in Step 1.

2. Step 4-2: Building the artificial brain by creating an object of the Brain class
built in Step 2.

3. Step 4-3: Building the DQN model by creating an object of the DQN class built
in Step 3.

4. Step 4-4: Choosing the training mode.
5. Step 4-5: Starting the training with a for loop over a chosen number of

epochs.
6. Step 4-6: During each epoch, we repeat the whole deep Q-learning process,

while also doing some exploration 30% of the time.

Step 5 – Testing the AI

1. Step 5-1: Building a new environment by creating an object of the
Environment class built in Step 1.

2. Step 5-2: Loading the artificial brain with its pre-trained weights from the
previous training.

3. Step 5-3: Choosing the inference mode.
4. Step 5-4: Starting the simulation.
5. Step 5-5: At each iteration (each minute), our AI only plays the action that

results from its prediction, and no exploration or Deep Q-Learning training
is happening whatsoever.

WOW! eBook
www.wowebook.org

Chapter 14

[329]

Exploring what's next for you in AI
You've come such a long way! Let's take a last step back and see what knowledge
you've gained and what skills you've acquired:

• You have a solid intuition of Reinforcement Learning.
• You can use it to solve real-world problems.
• You can program in a way that sets you apart and puts you at the cutting

edge of AI.
• You can write systems that learn and improve over time.
• You have the solid basics that allow you to go further in AI.

Speaking of going further, the question is: how? How will you apply what
you've learned? What will you do next? First of all, your next step is:

Practice, practice, and practice
There are many ways to practice your AI skills. You can enter AI competitions
like the ones on Kaggle, which contain problems that can be solved with deep
reinforcement learning. You could build some new AIs like the one we created
for the self-driving car. For example, you could build an AI with Kivy that plays
the game of pong. There's a great AI platform, called OpenAI Gym, where you
can practice building AIs for many types of applications, including:

• An AI that plays Atari games (Breakout, Pacman, Space Invaders, and so on).
• An AI that plays car racing.
• An AI that plays the game Doom.
• Training a virtual robot on how to walk and run.

I really recommend that you check out the Open AI Gym website, with all these
fantastic applications you can work and practice on.

Going further, what would be the next step for you to take in making an impact in
this world? Do you remember the 10 application fields of AI that we identified and
explained in the introduction? Just pick your favorite! Pick the one that resonates
the most with you. Let's remind you what they were:

1. Energy
2. Healthcare
3. Transport and logistics

WOW! eBook
www.wowebook.org

Recap and Conclusion

[330]

4. Education
5. Security
6. Employment
7. Smart homes and robots
8. Entertainment and happiness
9. Environment
10. Economy and business

If you have an interest or passion in one of these fields, or even better some domain
knowledge, you can combine that with your new AI skills to solve some problems
in these industries. You can increase your impact by working with or in some tech
companies, or by building your own one. There will always be massive demand
for AI in each of these fields, which will always open many doors to you.

Speaking of open doors, that brings me to another next step I recommend to you.

Networking
Practicing is a necessity, but it's definitely not enough to make an impact with AI
in this world. You also have to network. Whether it's working for a tech company,
a company in another industry with an AI team, or for your own business, you
should always network. This will open new doors, seed new opportunities,
and increase your chances of success.

Networking today is easy. There are many AI events and conferences that you can
visit, and the closest one will never be too far from your place. If you can't get to
one, you can easily organize some AI meetups and after-work sessions yourself,
where you discuss AI with other passionate people. You can also create groups using
social media, where you can exchange ideas, brainstorm AI problems, and perhaps
establish new connections through which you form synergy. Again, the more you
network, the more you get all these benefits: connections, generated ideas, synergies,
opportunities, opened doors, and AI journeys.

I want to finish this book by giving you my best advice for your professional life.
The final recommendation I want to give you is the following.

WOW! eBook
www.wowebook.org

Chapter 14

[331]

Never stop learning
AI is a fast-evolving world so you must keep up to date on the latest state-of-the-art
features. This book doesn't cover the latest breakthroughs in AI, but has given you
the right basics and intuition for you to approach the latest developments in AI with
confidence.

The right basics are a necessity, but not enough for you to keep up over time. What
you must do is never stop learning. The good news is that it's easy to keep learning
today! There are many great MOOCs that cover the latest advanced models in AI,
as well as articles, research papers, blogs, not to mention YouTube videos where
you can find the entirety of whole AI theory explained from scratch up to the state-
of-the-art models. You have plenty of options to feed your brain with up-to-date AI
knowledge. Just make sure you don't pick the worst reviewed content, and you'll be
fine.

Let's recap. What are your next steps after this book?

1. Practice, practice, and practice.
2. Cross your AI skills with a field of application that resonates with you

the most.
3. Network.
4. Never stop learning.
5. And, of course, keep up the hard work!

Yes, hard work will always be essential. Remember this. Success is only the tip of the
iceberg, under which is hidden a tremendous amount of hard work. But don't worry;
as soon as you feel passionate about your work and the purpose you follow, work
will never be too hard. It will, in fact, feel effortless. That's why my recommendation
number 2 here is very important: if you manage to pick a domain that resonates with
your purpose, then you'll have found your way to make an impact with passion.
If your passion is pure AI, even better! Then you can leverage it to solve problems
and tackle challenges in several fields of applications, which gives you the amazing
opportunity to have a diversified career.

On that note, I want to wish you a fantastic and very successful career. It was a
great pleasure writing this book for you; my purpose is to democratize AI, and
raise awareness among everyone that AI is an accessible technology that can make
a difference for the better in this world. Thank you so much, and enjoy AI!

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili

ISBN: 978-1-78995-575-0

 ● Master the frameworks, models, and techniques that enable machines to 'learn'
from data

 ● Use scikit-learn for machine learning and TensorFlow for deep learning
 ● Apply machine learning to image classification, sentiment analysis, intelligent

web applications, and more

WOW! eBook
www.wowebook.org

https://www.packtpub.com/data/python-machine-learning-third-edition

[334]

Other Books You May Enjoy

 ● Build and train neural networks, GANs, and other models
 ● Add machine intelligence to web applications
 ● Clean and prepare data for machine learning
 ● Classify images using deep convolutional neural networks
 ● Best practices for evaluating and tuning models
 ● Predict continuous target outcomes using regression analysis
 ● Uncover hidden patterns and structures in data with clustering
 ● Dig deeper into textual and social media data using sentiment analysis

WOW! eBook
www.wowebook.org

[335]

Other Books You May Enjoy

Dancing with Qubits

Robert S. Sutor

ISBN: 978-1-83882-736-6

 ● See how Quantum Computing works, what makes it different, and why it could
be so powerful

 ● Discover the complex, mind-bending mechanics that underpin quantum systems
 ● Understand the necessary concepts behind classical and quantum computing
 ● Refresh and extend your grasp of computing, quantum theory, and quantum

computing
 ● Explore the main applications of quantum computing to scientific computing,

AI, and elsewhere
 ● Comprehend the detailed overview of qubits, quantum circuits, and quantum

algorithm

WOW! eBook
www.wowebook.org

https://www.packtpub.com/data/dancing-with-qubits

[336]

Other Books You May Enjoy

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

WOW! eBook
www.wowebook.org

[337]

Index
A
activation function

about 128, 129
rectifier activation function 131-133
sigmoid activation function 130, 131
threshold activation function 129

AI
networking 330
skills, practicing 329, 330

AI blueprint
Deep Reinforcement Learning algorithm,

implementing 328
environment, building 327
testing 328
training 328

AI, for cost implications
brain, building 269
environment, building 268
testing 270
training 269

AI models
about 2, 3
Deep Q-Learning 3
Q-Learning 3

AI, real-world business problem
about 220, 221
artificial neural network 221-223
brain, building 232, 233
deep reinforcement learning algorithm,

implementing 238-245
demonstrating 258-268
environment, building 224-231
implementation 223, 224
implementing, with dropout regularization

technique 237, 238

implementing, without dropout regularization
technique 233-237

testing 256-258
training 245, 246
training, with early stopping 254, 255
training, without early stopping 246-253

AI solution
building, with Q-Learning 101-103
overview 66, 67, 168, 169

AI solution refresher
about 96
initialization (first iteration) 96
iterations 96, 97

AI solution, Snake game
about 293
brain 293, 294
experience replay memory 295

Anaconda
about 189
installation link 189
installing 189, 190

argmax method 147
arrays 20-22
artificial intelligence (AI)

about 1, 4
adding, value to business 6
companion robots 6
education 5
employment 5
energy consumption 4
environment 6
global economy 6
healthcare 4
journey 1, 2
models 2
robots 5

WOW! eBook
www.wowebook.org

[338]

security 5
smart homes 5
transport and logistics 5

Artificial Neural Networks (ANNs) 113
artificial neuron 127, 128
assumptions, server environment

energy costs, approximating 210, 211
server temperature, approximating 209, 210

B
Batch Gradient Descent 140-142
biological neurons 125, 126

C
channel 273
classes

about 29, 30
car class exercise 31

Colaboratory
about 11-15
reference link 11

Convolutional Layer 276
Convolutional Neural Networks (CNNs)

about 4, 271
convolution 275, 276, 283
flattening 280-284
full connection 284
max pooling 278-283
using 271-273
working 273, 274

D
Deep Convolutional Q-Learning 4, 284, 285
Deep Learning

about 125
activation function 128, 129
back-propagation 136, 137
forward-propagation 136, 137
Gradient Descent 137
Neural Networks, learning 135
Neural Networks, working 133, 134
neuron 125

Deep Q-Learning
about 145, 146, 149
Softmax method 147, 148

steps, summarizing 150, 151
transitions 149

Deep Q-Learning for Business 259
Deep Q-Network (DQN) 240
dropout 220, 237

E
early stopping 220, 245
e-commerce business, issues 60, 61
environment, self-driving car

building 153-155
goal, defining 156-159
input states 163-165
output actions 165
parameters, setting 160-162
system of rewards, defining 166, 167

environment, Snake game
actions, defining 290-292
building 288
rewards, defining 292
states, defining 289, 290

Exploration 147

F
feature detectors 275
Feature Map 275
Flattening 280
for loops

about 24-26
exercise 27

functions
about 27, 28
exercise 28

G
GitHub page

about 9
reference link 9, 10

Gradient Descent
about 137-140
Batch Gradient Descent 140-142
Mini-Batch Gradient Descent 145
Stochastic Gradient Descent (SGD) 143-145

WOW! eBook
www.wowebook.org

[339]

H
house prices prediction

about 114
data preparation 119
data, scaling 119-122
dataset, uploading 114-116
libraries, importing 116, 117
Neural Network, building 122, 123
Neural Network, training 123
results, displaying 123, 124
variables, excluding 117, 118

I
if conditions

about 22, 23
exercise 23

if statements
about 22, 23
exercise 23

Integrated Development Environment
(IDE) 10

intermediate goal
adding 108-111

Internet of Things (IOT) 4
intuition 66-68

K
Kivy

about 189
installing 194-204
reference link 153

L
lists 20, 21

M
Markov Decision Process (MDP) 37, 38
max pooling 277, 278
maze

Q-Learning, applying 78
Mean Squared Error (MSE) 222
Mini-Batch Gradient Descent 145
Multi-Armed Bandit problem

about 41, 42
tackling 52-55

N
Natural Language Processing (NLP) 271
Neural Networks

learning 135
working 133, 134

neuron
about 125
artificial neurons 127, 128
biological neurons 125, 126

Numpy array
creating 21

Numpy library
about 21
functions, reference link 22

O
Object-Oriented Programming (OOP) 232
objects 29, 30
OpenAI Gym 329
operations 19

P
Pooled Feature Map 279
Pooling Layer 280
PricewaterhouseCoopers (PwC) 1
principles, Reinforcement Learning

about 34
AI Environment 37
inference mode 40
input and output system 34, 35
Markov Decision Process (MDP) 38
reward 35, 36
training and inference 38
training mode 38, 39

Python 3.6
used, for creating virtual

environment 190, 192
virtual environment 189

PyTorch
about 169, 189
installing 192, 193

WOW! eBook
www.wowebook.org

[340]

Q
Q-Learning

about 3, 91
AI fundamentals 77, 78
applying, to maze 78
implementing 97, 98
inference mode 103-105
used, for building AI Solution 101-103

Q-Learning, maze
actions 80, 81
AI, building 85
applying 78
Bellman equation 87, 88
environment, building 79
Q-value 85
reinforcement Intuition 88
rewards 81-84
states, defining 79
temporal difference 86, 87

Q-Learning process
about 88
inference mode 89
training mode 89

R
real-world business problem

environment, building 208
solving 207, 208

rectifier activation function 131
Reinforcement Learning

about 33, 34
principles 34
reference link 34

reward attribution
automating 105-108

S
self-driving car

Deep Q-Learning, implementing 177-188
demonstrating 189
environment, building 153
experience replay, implementing 175-177
implementing 169
Kivy, installing 194-204
libraries, importing 170

neural network architecture, creating 171-174
PyTorch, installing 192, 193
virtual environment, creating with Python 3.

190-192
server environment

actions, defining 214
assumptions 209
final simulation example 216-219
overall functioning 212-214
parameters 208
rewards, defining 215, 216
simulation 211
states, defining 214
variables 208

sigmoid activation function 130
simulation

environment, building 61-63
running 64-66

Snake game
about 288
AI, testing 315-317
AI, training 309-315
Anaconda Prompt, installing 318-323
brain, building 303-306
demonstrating 317
environment, building 288-303
experience replay memory, building 307, 308
implementing 295, 296
results 323-325

Softmax method 147
Standard model

versus Thompson Sampling model 57, 58
states 35
Stochastic Gradient Descent (SGD) 143-145

T
TensorFlow 169
text

displaying 18
displaying, with print() method 18

Thompson Sampling model
about 3, 42-48
actions, simulating 66
coding 43-73
distribution 48-52
implementation 68

WOW! eBook
www.wowebook.org

[341]

implementation, result 74, 75
Multi-Armed Bandit problem, tackling 52-55
shaping 56, 57
strategy 55, 56
versus Random Selection 69
versus Standard model 57, 58

Thompson Sampling model, versus Random
Selection

about 69
performance measure 69

threshold activation function 129, 130

V
variables 19

W
warehouse

about 92-94
environment, building 94
priority locations 94

warehouse environment
actions 95
AI solution refresher 96
building 98-100
building, elements 94
rewards 95
states 94

while loops 24-26

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Welcome to the Robot World
	Beginning the AI journey
	Four different AI models
	The models in practice
	Fundamentals
	Thompson Sampling
	Q-learning
	Deep Q-learning
	Deep convolutional Q-learning

	Where can learning AI take you?
	Energy
	Healthcare
	Transport and logistics
	Education
	Security
	Employment
	Smart homes and robots
	Entertainment and happiness
	Environment
	Economy, business, and finance

	Summary

	Chapter 2: Discover Your AI Toolkit
	The GitHub page
	Colaboratory
	Summary

	Chapter 3: Python Fundamentals – Learn How to Code in Python
	Displaying text
	Exercise

	Variables and operations
	Exercise

	Lists and arrays
	Exercise

	if statements and conditions
	Exercise

	for and while loops
	Exercise

	Functions
	Exercise

	Classes and objects
	Exercise

	Summary

	Chapter 4: AI Foundation Techniques
	What is Reinforcement Learning?
	The five principles of Reinforcement Learning
	Principle #1 – The input and output system
	Principle #2 – The reward
	Principle #3 – The AI environment
	Principle #4 – The Markov decision process
	Principle #5 – Training and inference
	Training mode
	Inference mode

	Summary

	Chapter 5: Your First AI Model – Beware the Bandits!
	The multi-armed bandit problem
	The Thompson Sampling model
	Coding the model
	Understanding the model
	What is a distribution?
	Tackling the MABP
	The Thompson Sampling strategy in three steps
	The final touch of shaping your Thompson Sampling intuition
	Thompson Sampling against the standard model

	Summary

	Chapter 6: AI for Sales and Advertising – Sell like the Wolf of AI Street
	Problem to solve
	Building the environment inside a simulation
	Running the simulation
	Recap

	AI solution and intuition refresher
	AI solution
	Intuition

	Implementation
	Thompson Sampling vs. Random Selection
	Performance measure

	Let's start coding
	The final result

	Summary

	Chapter 7: Welcome to Q-Learning
	The Maze
	Beginnings
	Building the environment
	The states
	The actions
	The rewards

	Building the AI
	The Q-value
	The temporal difference
	The Bellman equation
	Reinforcement intuition

	The whole Q-learning process
	Training mode
	Inference mode

	Summary

	Chapter 8: AI for Logistics – Robots in a Warehouse
	Building the environment
	The states
	The actions
	The rewards
	AI solution refresher
	Initialization (first iteration)
	Next iterations

	Implementation
	Part 1 – Building the environment
	Part 2 – Building the AI Solution with Q-learning
	Part 3 – Going into production
	Improvement 1 – Automating reward attribution
	Improvement 2 – Adding an intermediate goal

	Summary

	Chapter 9: Going Pro with Artificial Brains – Deep Q-Learning
	Predicting house prices
	Uploading the dataset
	Importing libraries
	Excluding variables
	Data preparation
	Scaling data

	Building the neural network
	Training the neural network
	Displaying results

	Deep learning theory
	The neuron
	Biological neurons
	Artificial neurons

	The activation function
	The threshold activation function
	The sigmoid activation function
	The rectifier activation function

	How do neural networks work?
	How do neural networks learn?
	Forward-propagation and back-propagation
	Gradient Descent
	Batch gradient descent
	Stochastic gradient descent
	Mini-batch gradient descent

	Deep Q-learning
	The Softmax method
	Deep Q-learning recap
	Experience replay
	The whole deep Q-learning algorithm

	Summary

	Chapter 10: AI for Autonomous Vehicles – Build a Self-Driving Car
	Building the environment
	Defining the goal
	Setting the parameters
	The input states
	The output actions
	The rewards

	AI solution refresher
	Implementation
	Step 1 – Importing the libraries
	Step 2 – Creating the architecture of the neural network
	Step 3 – Implementing experience replay
	Step 4 – Implementing deep Q-learning

	The demo
	Installing Anaconda
	Creating a virtual environment with Python 3.6
	Installing PyTorch
	Installing Kivy

	Summary

	Chapter 11: AI for Business – Minimize Costs with Deep Q-Learning
	Problem to solve
	Building the environment
	Parameters and variables of the server environment
	Assumptions of the server environment
	Assumption 1 – We can approximate the server temperature
	Assumption 2 – We can approximate the energy costs

	Simulation
	Overall functioning
	Defining the states
	Defining the actions
	Defining the rewards
	Final simulation example

	AI solution
	The brain
	Implementation
	Step 1 – Building the environment
	Step 2 – Building the brain
	Without dropout
	With dropout

	Step 3 – Implementing the deep reinforcement learning algorithm
	Step 4: Training the AI
	No early stopping
	Early stopping

	Step 5 – Testing the AI

	The demo
	Recap – The general AI framework/Blueprint
	Summary

	Chapter 12: Deep Convolutional Q-Learning
	What are CNNs used for?
	How do CNNs work?
	Step 1 – Convolution
	Step 2 – Max pooling
	Step 3 – Flattening
	Step 4 – Full connection

	Deep convolutional Q-learning
	Summary

	Chapter 13: AI for Games – Become the Master at Snake
	Problem to solve
	Building the environment
	Defining the states
	Defining the actions
	Defining the rewards

	AI solution
	The brain
	The experience replay memory

	Implementation
	Step 1 – Building the environment
	Step 2 – Building the brain
	Step 3 – Building the experience replay memory
	Step 4 – Training the AI
	Step 5 – Testing the AI

	The demo
	Installation
	The results

	Summary

	Chapter 14: Recap and Conclusion
	Recap – The general AI framework/blueprint
	Exploring what's next for you in AI
	Practice, practice, and practice
	Networking
	Never stop learning

	Other Books You May Enjoy
	Index

