

A high performance, scalable RDBMS for

Big Data, high velocity OLTP and

realtime analytics

VoltDB, Inc.
www.voltdb.com

Follow VoltDB on Twitter @voltdb

The NewSQL database you’ll never outgrow

VoltDB Technical
Overview

The NewSQL database for high velocity applications

http://www.voltdb.com/
http://twitter.com/voltdb

VoltDB Technical Overview

1

Table of Contents

Overview ... 2

Why Traditional Databases Have Difficulty Scaling .. 4

The VoltDB Architecture ... 5

1. High-Throughput, Low-Latency SQL Database Operations ... 6

2. VoltDB Scaling Architecture .. 8

3. High Availability (HA) ... 9

4. Durability ... 10

5. Database Replication ... 11

6. Realtime Analytics ... 11

7. Provisioning, Management and Monitoring ... 12

8. VoltDB Studio for Rapid Application Development ... 13

9. Data Integration .. 14

10. Developing Applications with VoltDB .. 15

11. Getting Started .. 16

VoltDB Technical Overview

2

Overview

Created by database pioneer Michael Stonebraker along with senior computer scientists from MIT,

Yale, Brandeis and Brown universities, VoltDB is a blazingly fast relational database management

system (RDBMS) designed to run on modern scale-out computing infrastructures.

VoltDB is aimed at a new generation of high velocity database applications that require:

 Database throughput reaching millions of operations per second

 On demand scaling

 High availability, fault tolerance and database durability

 Realtime data analytics

The table below summarizes a few high-velocity application types. Some applications – financial trade

and telco CDR, for example – have been in production for decades. Others reflect markets that are

emerging from technology innovations and Web economies. New or old, these systems must ingest

high velocity data inputs, provide stateful data management, and support a range of realtime analytics

on that data. VoltDB is designed specifically to support these and many other similar applications.

Lower-frequency

operations

High-frequency

operations

Data

Source

Capital markets
Write/index all trades, store
tick data

Show consolidated risk
across traders

Call initiation request Real-time authorization Fraud detection/analysis

Inbound HTTP
requests

Visitor logging, analysis,
alerting

Traffic pattern analytics

Online game
Rank scores:
•Defined intervals
•Player “bests”

Leaderboard lookups

Real-time ad trading
systems

Match form factor,
placement criteria, bid/ask

Report ad performance
from exhaust stream

Mobile device location
sensor

Location updates, QoS,
transactions

Analytics on transactions

VoltDB Technical Overview

3

Unlike legacy RDBMS products and NoSQL data stores, VoltDB enables high-velocity applications
without requiring complex and costly sharding layers or compromising transactional data integrity
(ACID) to gain performance and scale:

This white paper is for technical readers. It explains:

 The reasons why traditional databases are difficult and expensive to scale

 VoltDB’s high throughput scale-out architecture and what makes it different

 VoltDB database design considerations and patterns

The paper also provides information to help product evaluators get started with VoltDB.

VoltDB Technical Overview

4

Why Traditional Databases Have Difficulty Scaling

Most traditional RDBMS products are based on decades-old

designs. They were conceived when OLTP databases

supported hundreds of concurrent data entry clerks using

an application during the normal work day. Today,

databases are expected to support hundreds of thousands

of users accessing applications through the Web –

24x7x365. In addition, an increasing percentage of data

originates from automated sources such as sensors,

scanners and software systems. Conventional databases

simply can’t scale to meet the throughput requirements of

“fire hose” data sources because they were designed to run

on older computing infrastructures and to handle modest transaction workloads. Thus, legacy RDBMS

products are plagued by overheads that can only be overcome by innovative designs and modern computing

platforms. The primary sources of overhead found in legacy RDBMS products are summarized below.

Logging: Traditional databases write data twice – once to the database and once to a data (“write ahead”)

log for durability. Moreover, the log must be flushed to disk to guarantee transaction durability. Logging is,

therefore, an expensive operation.

Locking: Before touching a record, a transaction must set a lock on it in the lock table to ensure that no

conflicting operations can be performed on that record. Locking is an overhead-intensive operation.

Latching: Updates to shared data structures (B-trees, the lock table, resource tables, etc.) must be done

carefully in a multi-threaded environment. Typically, latching is done with short-term duration latches,

which are another considerable consumer of CPU resources.

Buffer Management: Data in traditional systems is stored on fixed-size disk pages. A buffer pool manages

which set of disk pages is cached in memory at any given time. Records must be located on pages and the

field boundaries identified. Again, these operations are overhead intensive. Designed originally for data

integrity, buffer management prevents traditional databases from scaling to handle modern workloads.

VoltDB eliminates the overheads that plague traditional RDBMS products:

 Data and associated processing are partitioned together and distributed across the CPU cores

(“partitions”) of a shared-nothing hardware cluster.

 Data is held in main memory, eliminating the need for buffer management.

 Transactions execute sequentially in memory, eliminating the need for locking and latching.

 Synchronous multi-master replication provides built-in high availability.

 Command logging provides a high performance replacement for “write-ahead” data logging.

These innovations enable VoltDB to run magnitudes faster than traditional RDBMS products and to

scale linearly on low-cost clusters of commodity servers, all while maintaining ACID compliance.

VoltDB Technical Overview

5

The VoltDB Architecture

VoltDB is designed to optimize the VLSI designs of multi-core CPUs. It exploits clustered server topologies

and leverages increasingly abundant main memory to handle high velocity database workloads. VoltDB is a

fully ACID-compliant transactional database, relieving developers from having to write custom code to

process transactions and manage rollbacks (i.e., database “heavy lifting”).

VoltDB leverages the following architectural elements to achieve its performance and scalability gains:

 In-memory storage to maximize throughput, avoiding costly disk accesses

 Serializing all data access, thus avoiding overheads of traditional databases such as locking,

latching and buffer management

 Performance and scale through horizontal partitioning

 High availability through synchronous, multi-master replication (in VoltDB parlance, “K-safety”)

 Durability through an innovative combination of database snapshots and command logs that

store recoverable state information on persistent devices (i.e., spinning disks and/or SSDs)

The remainder of the paper describes how VoltDB works by explaining each of the following topics.

Section Topics

High-throughput, low-latency

SQL database operations

In-memory operation, stored procedure interface,

asynchronous/synchronous stored procedure execution and serial

transaction processing

VoltDB scaling architecture Partitioning, reference table replication, cluster transparency

High Availability (HA)
K-Safety, network fault detection, live node rejoin, snapshots,

command logging

Durability Snapshots and command logging for database crash recovery

Database Replication
Cluster-wide replication for disaster recovery, hot stand-by and

workload optimization

Realtime analytics Materialized views and distributed read optimizations

Provisioning, management &

monitoring

VoltDB Enterprise Manager and REST management API

VoltDB Studio for rapid

application development

Companion tool for popular IDEs that supports rapid iteration of

dev/test/tuning cycle

Data integration
Streaming export (including buffering and buffer overflow), and

Hadoop integration

Developing applications

with VoltDB

VoltDB- and community-created client libraries, JDBC and sample

reference implementations

VoltDB Technical Overview

6

1. High-Throughput, Low-Latency SQL Database Operations

The following architectural innovations enable VoltDB to process millions of operations per second with very

low latency:

In-memory Operation

Today’s standard, off-the-shelf servers can be equipped with hundreds of gigabytes of main memory;

there’s no longer a need for DBMS performance to be limited by spinning disks. VoltDB stores data in

memory and provides access to that data at memory speeds. In-memory processing eliminates disk

waits from within VoltDB transactions, along with the need for associated latching and buffer

management.

Stored Procedure Interface

Database access calls that travel the network between the application and the database can slow

performance and increase latencies. VoltDB eliminates this overhead via a high performance stored

procedure interface, so there is only one round trip between the client and server per transaction. In

VoltDB, each stored procedure is defined as a transaction. The stored procedure (i.e., transaction)

succeeds or rolls back as a whole, ensuring database consistency.

Traditional: salary := get_salary(employee_id);

VoltDB: callProcedure(asyncCallback, “get_salary”, employee_id);

Asynchronous/Synchronous Stored Procedure Execution

Conventional databases experience disk and user stalls within transactions. Rather than allow the CPU

to be idle during the stalls, those DBMSs interleave SQL execution from multiple transactions during

the waits so the CPU is always busy. This activity causes significant latching and locking overhead.

VoltDB doesn’t experience user stalls (since transactions happen within stored procedures) or disk

stalls (because VoltDB processes data in main memory). VoltDB thereby eliminates the overhead

associated with multi-threaded latching and locking.

A VoltDB database is composed of many in-memory execution engines called “partitions.” A partition

combines data and associated processing constructs. VoltDB automatically creates and distributes

these to the CPU cores in the cluster. Each VoltDB “site” is single-threaded and contains a queue of

transaction requests, which it executes sequentially — and exclusively — against its data.

VoltDB Technical Overview

7

Single Partition Transactions Multiple Partition Transactions

Each VoltDB partition operates

autonomously, freeing the rest of the

cluster to handle other requests in parallel.

When a procedure requires data from multiple

partitions, one node acts as a coordinator and

distributes the necessary work to the other nodes,

collects the results and completes the task.

Transactional integrity is maintained and the

architecture of multiple parallel partitions ensures

throughput is kept at a maximum.

By using serialized processing, VoltDB ensures transactional consistency without the overhead of

locking, latching, and transaction logs, while partitioning lets the database handle multiple requests in

parallel. By eliminating stalls via in-memory operations and stored procedure calls, VoltDB is able to

execute millions of SQL operations per second.

Work

Queue

execution engine

Table Data

Index Data

Txn N

…

Txn 2

Txn 3

Txn 1

VoltDB Cluster

Server

1

Partition 1 Partition 2 Partition 3

Server

2

Partition 4 Partition 5 Partition 6

Server

3

Partition 7 Partition 8 Partition 9

VoltDB Technical Overview

8

“VoltDB is very scalable; it

should scale to 120 partitions,

39 servers, and 1.6 million

complex transactions per

second at over 300 CPU cores.”

Baron Schwartz

Chief Performance Architect

Percona

2. VoltDB Scaling Architecture

A VoltDB database can be scaled bi-directionally – by increasing the

capacity of existing cluster nodes (scaling “up”) and by increasing the

number of nodes in a cluster (scaling “out”). Scaling up strategies

leverage VoltDB’s raw node speed properties and allows some multi-

partition transactions to execute at minimal (bus) latencies. Scaling out

strategies allow database throughput to be increased in linear fashion at

the lowest possible costs.

Regardless of approach, scaling a VoltDB database increases the number

of database partitions and execution queues. Scaling doesn't require

any changes to the database schema or application code, nor does it require replacing existing

hardware. As a general rule of thumb, the more processing cores (and therefore the more partitions)

in the cluster, the more transactions VoltDB completes per second, providing an easy, linear path for

handling a wide range of capacity and performance requirements.1

Partitioned versus Replicated Tables

Tables are partitioned in VoltDB by hashing primary key values. Performance is optimized by choosing

partitioning keys that match the way the data is most commonly accessed.

To further optimize performance, VoltDB allows selected tables to be replicated on all partitions of the

cluster. This strategy minimizes cross-partition join operations. For example, a retail merchandising

database that uses product codes as the primary key may have one table that simply correlates the

product code with the product's category and full name. Since this table is relatively small and does

not change frequently (unlike inventory and orders) it can be replicated to all partitions. This way

stored procedures can retrieve and return user-friendly product information when searching by

product code without impacting the performance of order and inventory updates and searches.

1
 Scalability benchmarks: http://www.mysqlperformanceblog.com/2011/02/28/is-voltdb-really-as-scalable-as-they-claim/

Partitioning is appropriate

for large tables (A, B, C)

while replication of small,

read-mostly tables (D)

improves performance.

http://www.mysqlperformanceblog.com/2011/02/28/is-voltdb-really-as-scalable-as-they-claim/

VoltDB Technical Overview

9

3. High Availability (HA)

Unlike most RDBMS products, which rely on third party solutions or expensive add-on features for HA,

VoltDB was designed from the ground up to provide “Tandem-style” fault tolerance. VoltDB’s HA

solution consists of three related capabilities: K-safety, network fault detection and live node rejoin.

K-safety

Technically, VoltDB delivers fault tolerance

through an innovative synchronous multi-

master replication strategy called “K-

safety”. When a database is configured for

K-safety, VoltDB automatically (and

transparently) replicates database

partitions so that the database can

withstand the loss of “K” nodes (due to

hardware or software problems) without

interrupting the database. For example, a

K value of zero means that there is no

replication; losing any server node will stop

the database. If there are two copies of

every partition (a K value of one), then the

cluster can withstand the loss of at least

one node (and possibly more) without

interruption in service. The replicated

partitions are fully functioning members of the cluster, including all read and write operations that

apply to those partitions. In other words, the replicas function as peers rather than in a master-slave

relationship.

During normal operations all work is executed synchronously on all replicas. If a node fails, the

database continues to function by executing work on the remaining replicas.

Network Fault Detection

When a network partition occurs (e.g., a network switch fails),

VoltDB nodes may become physically disconnected from each

other. Each side of the partition “thinks” the nodes on the other

side have gone down. With K-safety enabled, it’s possible that

both of the sub clusters have a complete copy of the database and

are technically able to continue operations. This “split brain”

scenario can cause significant data synchronization problems if it’s

not immediately detected.

VoltDB automatically detects network faults and takes appropriate

remedial steps to eliminate split-brain operations. When VoltDB

VoltDB Technical Overview

10

detects a network fault condition, it immediately evaluates which side of the partition should continue

operations and assigns all work to the “surviving” sub cluster. VoltDB also automatically snapshots the

data in the “orphaned” sub cluster and performs an orderly shutdown of those nodes. Once the

network partition has been repaired, the orphaned nodes can be reintroduced to the cluster, without

the need for a service window, using the Live Node Rejoin feature described below.

Live Node Rejoin

VoltDB nodes that have been taken offline (due to system failures or scheduled maintenance) can be

reintroduced to the running cluster via the “rejoin” operation. As a node first rejoins the cluster, it

retrieves a copy of the data for its partitions from its sibling nodes. While the rejoined node is

acquiring data and updates, its siblings continue to service database requests in a normal manner

(although sometimes at slightly lower performance, since they’re also doing work to bring the rejoining

node up to date). Once the rejoined node catches up with its siblings, it returns to normal operation

and begins accepting work, returning the cluster to its full K-safety and performance status.

4. Durability

While VoltDB’s HA capabilities significantly reduce the probability of database downtime, severe

hardware and software failures sometimes do occur. Recovery from systematic failures must happen

quickly and accurately. Also, systems administrators sometimes need to perform orderly database

shutdowns for scheduled maintenance. VoltDB provides high performance snapshotting and

command logging to support a wide range of database durability requirements.

Snapshots

At defined intervals, VoltDB writes database snapshots to disk. Snapshot files can be used to restore

the database to a previous, known state after a failure or scheduled service event. Snapshots are

guaranteed to be transactionally consistent at the point in time at which the snapshot was completed.

Importantly, snapshots pose minimal performance penalties on the database and can be configured to

run at scheduled intervals, including “continuously”.

Command Logging

Applications requiring 100% database recoverability can be easily configured to perform VoltDB

command logging – persistent storage of every stored procedure invocation that occurs between

database snapshots. In the event of a severe failure, the database can be recovered by restoring

snapshots and replaying the command logs (which VoltDB does automatically when the database is

restarted). VoltDB’s command logging feature is highly configurable, allowing system administrators to

choose the style of logging (synchronous or asynchronous), and the frequency with which command

logs are flushed to disk (fsynch). Thus, VoltDB databases can be configured to deliver the optimal

balance between throughput, latency and recoverability.

VoltDB Technical Overview

11

5. Database Replication

To complement HA and durability, VoltDB includes commercial-grade database replication capabilities

that allow VoltDB databases to be automatically replicated within and across data centers. Available in

the VoltDB Enterprise Edition, Database Replication ensures that every database transaction applied to

a master VoltDB database is asynchronously applied to a defined replica database. Following a

catastrophic crash, the database replica can be quickly and easily promoted to be the master, and all

traffic can be redirected to that cluster. Once the original master has been recovered, the process can

be easily reversed.

In addition to serving disaster recovery needs, Database Replication can also be used to maintain a hot

standby database (i.e., to eliminate service windows while doing systems maintenance) and for

workload optimization where, for example, write traffic is directed to the master VoltDB database, and

read traffic is directed to the replica.

6. Realtime Analytics

VoltDB can be used to reveal insights, trends and anomalies as they occur in real time. Advanced

VoltDB features like materialized views and optimized distributed reads allow data to be aggregated

and enriched to serve a variety of analysis, reporting and alerting needs. VoltDB integrates easily with

popular business intelligence tools to enable informative, realtime dashboards.

Distributed Read Operations

Some distributed datastores are inefficient at processing global read and summary operations. VoltDB

applies MapReduce-style processing to many distributed query plans, executing most work at each

partition. Thus, queries such as "SELECT COUNT(*), SUM(Total) FROM OrderTable" run

quickly and efficiently in VoltDB, even though OrderTable may be extensively partitioned across the

cluster.

Materialized Views

VoltDB’s materialized view feature offers the ability to maintain realtime aggregates, counters and

other interesting data derivations. Materialized views are useful for maintaining leader boards,

performing realtime pattern analysis and detection, and driving realtime monitoring events and alerts.

The CREATE VIEW statement is used to define a materialized view of a table with selected columns and

aggregates. The view is stored as a special table in the database and is maintained – without significant

performance costs – each time the underlying database table is updated. Because the view is

materialized, SELECTs on it will execute extremely efficiently.

VoltDB Technical Overview

12

7. Provisioning, Management and Monitoring

VoltDB provides enterprise-class tools and APIs to facilitate the provisioning, monitoring and

management of VoltDB database clusters.

VoltDB Enterprise Manager (VEM)

The VEM is a browser based console that allows people to manage VoltDB clusters from anywhere.

Using the VEM, there is no need to pre-install VoltDB on each node. The management console handles

distributing both the VoltDB software and the database catalogs to the cluster nodes. The console also

helps by providing a common interface for:

 Initiating and collecting snapshots

 Providing live statistics on database volume, latency, memory utilization and performance

 Comparing and updating the database catalog and schema

 Administering (dropping and rejoining) nodes in a highly available cluster

REST Management API

In addition to the VEM’s graphical interface, VoltDB exposes a REST ("Representational State Transfer")

programming interface, allowing database operations personnel to script any of the VEM functions for

further customization and simplification of the common database administration tasks.

VoltDB Technical Overview

13

8. VoltDB Studio for Rapid Application Development

VoltDB Studio is a browser-based environment that supports rapid development, testing and tuning of

VoltDB applications. Design to be used as a companion to popular IDEs, VoltDB Studio provides visual

tools for assisting most common development and test activities, including:

 Connecting to VoltDB databases

 Browsing schema and system objects

 Running ad-hoc queries and testing stored procedures

 Performing pre-deployment database performance analysis and tuning

 Browsing useful code snippets

VoltDB Studio is included in all VoltDB database distributions, and it’s accessible directly from within
the VoltDB Demo Dashboard application (discussed in the Getting Started section below).

VoltDB Technical Overview

14

9. Data Integration

In addition to supporting realtime analytics (see Section 5 above), VoltDB seamlessly integrates with

OLAP and Hadoop infrastructures, feeding data to those environments for deep analytical exploration.

This section discusses some of the VoltDB features that make integration fast and easy.

Streaming Exports

VoltDB is able to selectively export data as it is committed to the database. The target for exporting

data from VoltDB may be another database, a file (such as a sequential log), or a process (such as a

systems monitor). VoltDB enables streaming exports via “Export Tables,” special tables containing data

from columns from one or more physical tables in the database. As soon as data is inserted into the

Export Table, the data is sent through the connector to a receiving application.

VoltDB holds the Export Table data in a buffer until the export client fetches it. If the export client

does not keep up with the connector and the data queue fills up, VoltDB writes overflow data to disk

to ensure that all exported data is available to the client when it eventually resumes fetching. Export

overflow eliminates “impedance mismatch” situations that could occur between VoltDB and

downstream systems, where VoltDB is streaming data faster than the companion database can ingest.

Hadoop Integration

VoltDB is an excellent solution for handling data in

high velocity state; Hadoop is an excellent solution for

analyzing massive volumes of historical data. Thus, the

combination of VoltDB and Hadoop offer the flexibility

to handle a continuum of “fast” and “deep” data

applications.

VoltDB comes with an export client that automates

the process of exporting data from VoltDB to Hadoop.

VoltDB can integrate directly with HDFS or through

Hadoop’s Sqoop import technology. VoltDB’s

standard export client collects data from the VoltDB

cluster, de-serializes and buffers that data for

downstream delivery. The VoltDB export client

initiates downstream load processes and delivers data

to them, after which data is loaded into the target

Hadoop datastore.

VoltDB Technical Overview

15

10. Developing Applications with VoltDB

VoltDB includes client libraries that support native database access from a number of popular

programming languages. Many of the VoltDB client libraries are developed and maintained by the

VoltDB engineering team, but some are also contributed by VoltDB open source community members.

VoltDB-Provided Libraries

Community-Developed Libraries

 Java

 C++

 .NET (C#)

 Python

 PHP

 HTTP/JSON

 Erlang

 Ruby

 Node.js

JDBC Interface

In addition to the client libraries discussed above, VoltDB 2.0 (and higher) supports the JDBC API.

VoltDB’s JDBC interface allows users to process ad hoc SQL; it supports execution of prepared plans;

and it provides an alternative interface for invoking VoltDB stored procedures. The JDBC interface

provides standard return codes and also implements JDBC metadata classes for retrieval of database

catalog metadata.

Sample Apps and Reference Implementations

VoltDB also includes a growing collection of sample applications and reference implementations.

These resources are aimed at helping developers get up to speed and begin building VoltDB

applications quickly and, therefore, are provided with full source code.

 Voter – a sample application patterned after a well-known TV talent show contest, Voter

illustrates the basics of database partitioning, high volume write operations and realtime

analytics.

 VoltKV – a simple Key/Value interface for VoltDB, VoltKV illustrates how VoltDB can be used to

support applications that need the combined benefits of schema flexibility, high write

throughput and ACID transactions.

 VoltCache – a reference implementation that expands on the Key/Value store concept,

providing a memcached-like interface with support for data expiration, counters and advanced

operations. Because it leverages VoltDB's architecture, VoltCache is a no-hassle scale-out

caching model that eliminates node synchronization requirements and yields consistent

answers, throughput and latency to all client applications.

VoltDB Technical Overview

16

11. Getting Started

VoltDB is available in two distributions – Community Edition and Enterprise Edition. Community

Edition is open source (GPL3) and geared toward developers who are building, testing and tuning

VoltDB applications. Enterprise Edition is provided under VoltDB's commercial license and is intended

for organizations that are deploying VoltDB applications into production. VoltDB runs natively on

supported 64-bit Linux systems. Developers can also build VoltDB applications on 64-bit Mac OSX.

VoltDB’s main software downloads page, including client libraries and documentation, can be found

here. Pre-packaged evaluation versions of VoltDB are available for Amazon EC2 and VMWare:

VoltDB can be setup to run on a cluster of choice on Amazon EC2 within just a

few minutes. VoltDB for Amazon EC2 includes the VoltDB Demo Dashboard,

VoltDB Studio, sample applications and other developer resources. Get it here.

 The VoltDB VMware image can be executed using a variety of VMware players.

Although VoltDB is a 64-bit Linux application, VMware allows it to execute as a

virtualized image on other platforms such as Windows. Get it here.

VoltDB Demo Dashboard

The VoltDB Demo Dashboard is bundled with all

VoltDB distributions. It’s a useful tool for product

evaluators and developers who are new to VoltDB,

providing convenient access to a variety of

introductory resources, including sample apps,

reference implementations and VoltDB Studio from a

simple browser based interface. Source code for most

resources in the Demo Dashboard is readily accessible

in the VoltDB installation directory.

To learn more about VoltDB, visit www.voltdb.com. The links below also provide quick access to the

most popular technical content on our website. To discuss your high performance database needs

with a VoltDB engineer, please call Sales at +1.978.528.4660 or send us an email.

http://voltdb.com/products-services/downloads
http://voltdb.com/run-voltdb-aws
http://voltdb.com/run-voltdb-vmware
http://www.voltdb.com/
mailto:sales@voltdb.com?subject=Please%20Contact%20Me
http://voltdb.com/resources
http://voltdb.com/resources?quicktabs_3=1
http://voltdb.com/products-services/downloads
http://voltdb.com/voltdb-documentation
http://voltdb.com/blog
http://community.voltdb.com/
http://voltdb.com/run-voltdb-aws
http://voltdb.com/run-voltdb-vmware

