Sequence Alignment

Sequence Alignment

Design and Analysis of Algorithms
Andrei Bulatov

The Problem

Let M be an alignment between X and Y.

Each position of X or Y that is not matched in M is called a gap.

Each pair $(i,j) \in M$ such that $x_i \neq y_j$ is called a mismatch

The cost of M is given as follows:

- There is $\delta > 0$, a gap penalty. For each gap in M we incur a cost of δ - For each pair of letters p,q in the alphabet, there is a mismatch cost α_{pq} . For each $(i,j) \in M$ we pay the mismatch cost $\alpha_{x_iy_j}$. Usually, $\alpha_{pp} = 0$.

- The cost of M is the sum its gap penalties and mismatch costs

The Problem (cntd)

The Sequence Alignment Problem
Instance:
Sequences X and Y
Objective:
Find an alignment between X and Y of minimal cost.

Algorithms – Sequence Alignment

Dynamic Programming Approach

Lemma

Let M be any alignment of X and Y. If (m,n) ∉ M, then either the m-th position of X or the n-th position of Y is not matched in M.

Proof

Suppose that (m,n) ∉ M, and there are numbers i < m and j < n such that (m,j), (i,n) ∈ M.

However, this is a crossing pair.

QED

Algorithms - Sequence Alignment

The Idea

Corollary

In an optimal alignment M, at least one of the following is true

- (i) $(m,n) \in M$; or
- (ii) the m-th position of X is not matched; or
- (iii) the n-th position of Y is not matched.

Let OPT(i,j) denote the minimum cost of an alignment between

```
x_1, x_2, ..., x_i and y_1, y_2, ..., y_j
```

To get OPT(m,n) we

(i) pay $\alpha_{x_m y_n}$ and then align $x_1, x_2, \ldots, x_{m-1}$ and $y_1, y_2, \ldots, y_{n-1}$ as well as possible, to get

 $OPT(m,n) = OPT(m-1, n-1) + \alpha_{x_m y_n}$

Algorithms - Sequence Alignment

The Idea (cntd)

- (ii) pay a gap cost of δ since the m-th position of X is not matched, and then align $x_1, x_2, ..., x_{m-1}$ and $y_1, y_2, ..., y_n$ as well as possible, to get $OPT(m,n) = OPT(m-1,n) + \delta$
- (iii) pay a gap cost to get $OPT(m,n) = OPT(m,n-1) + \delta$

Lemma.

The minimum alignment cost satisfy the following recurrence $OPT(i, j) = \min\{OPT(i-1, j-1) + \alpha_{x_i y_i}, OPT(i-1, j) + \delta,$

$$OPT(i, j-1) + \delta$$

Moreover, (i,j) is in an optimal assignment for this subproblem if and only if the minimum is achieved by the first of these values.

Algorithms - Sequence Alignment

```
Alignment: Algorithm
```

```
Alignment(X,Y)
array M[0..m,0..n]
set M[i,0]:=i\delta for each i
set M[0,j]:=j\delta for each j
for i=1 to m do
    for j=1 to n do
     \texttt{set} \ \texttt{M[i,j]:=min\{M[i-1,j-1]+} \ \alpha_{x_iy_i}, \ \texttt{M[i-1,j]+} \delta,
                           M[i,j-1]+\delta
    endfor
endfor
return M[m,n]
```

Analysis

Theorem

The Alignment algorithm correctly finds a minimal alignment in O(mn) time

Proof

Soundness follows from previous arguments.

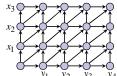
We fill up a $m \times n$ table and spend constant time on each entry

QED

Algorithms - Sequence Alignment

Graph Based Approach

Having $X=x_1,x_2,\ldots,x_m$ and $Y=y_1,y_2,\ldots,y_n$ construct a square grid-like graph



 G_{XY}

Weights:

 δ on each horizontal or vertical arc $\alpha_{x_i y_j}$ on the diagonal arc from (i,j) to (i + 1, j + 1)

Lemma

Let f(i,j) denote the minimum weight of a path from (0,0) to (i,j) in G_{XY} . Then for all i,j, we have f(i,j) = OPT(i,j)

Algorithms - Sequence Alignment

Graph Based Approach (cntd)

Proof

```
Induction on i + j.
 Base Case. If i + j = 0, then f(0,0) = 0 = OPT(0,0)
   Suppose the statement is true for all pairs (i', j') with i' + j' < i + j
   The last edge on the shortest path to (i,j) is from either (i-1, j-1),
     or (i - 1, j), or (i, j - 1).
   Therefore
f(i,j) = \min\{\alpha_{x_i y_j} + f(i-1,j-1), \delta + f(i-1,j), \delta + f(i,j-1)\}
  = \min\{\alpha_{x_iy_j}^{(i,j)} + OPT(i-1,j-1), \delta + OPT(i-1,j), \delta + OPT(i,j-1)\}
  = OPT(i, j)
```

Algorithms - Sequence Alignme

The Alignment algorithm uses O(mn) space, which may be too much

8-13

Space Saving Alignment: Algorithm

 $\begin{array}{lll} \text{Space-Saving-Alignment}(X,Y) \\ \text{array } & \texttt{B}[0..m,0..1] \\ \text{set } & \texttt{B}[\text{i},0] := \text{i} \delta \text{ for each i } /\text{*like column 0 of M} \\ \text{for } & \texttt{j=1 to n do} \\ \text{set } & \texttt{B}[0,1] := \text{j} \delta \\ \text{for } & \texttt{i=1 to m do} \\ \text{set } & \texttt{B}[\text{i},1] := \min\{\texttt{B}[\text{i}-1,0] + \alpha_{x_iy_j}, \ \texttt{B}[\text{i}-1,1] + \delta, \\ & \texttt{B}[\text{i},0] + \delta\} \\ \text{endfor} \\ \text{set } & \texttt{B}[0..m,0] := \texttt{B}[0..m,1] \end{array}$

Using an idea similar to that for the Shortest Path problem we can reduce space to linear

We store only two columns of the table Array B[0..m,0..1] will be used for this purpose

Sequence Alignment in Linear Space

Jgorithms - Sequence Alignment

8-15

Sequence Alignment in Linear Space (cntd)

The Space-Saving-Alignment algorithm runs in O(mn) time and uses O(m) space

Clearly, when the algorithm terminates B[m,1] contains the weight of the optimal alignment

But where is the alignment?

Somehow to find the alignment is more difficult than in the Shortest Path problem

Algorithms - Sequence Alignment II

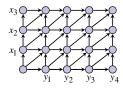
10.1

Backward Search

endfor

We introduce another function related to OPT

Let g(i,j) denote the length of a shortest path from (i,j) to (m,n)



Lemma

Then for all i,j, we have

$$g(i, j) = \min\{\alpha_{x_i, y_j} + g(i+1, j+1), \delta + g(i+1, j), \delta + g(i, j+1)\}$$

Algorithms - Sequence Alignment II

10-13

Backward Search (cntd)

Lemma

The length of the shortest corner-corner path in $\ G_{XY}$ that passes through (i,j) is $\mathbf{f}(\mathbf{i},\mathbf{j})+\mathbf{g}(\mathbf{i},\mathbf{j})$

Proof

Let k denote the length of a shortest corner-to-corner path that passes

It splits into to parts: from (0,0) to (i,j), and from (i,j) to (m,n)

The length of the first part is \geq f(i,j), the length of the second \geq g(i,j) Thus, k \geq f(i,j) + g(i,j)

Finally, the path consisting of the shortest path from (0,0) to (i,j) (it has length f(i,j)), and the shortest path from (i,j) to (m,n) has length exactly f(i,j) + g(i,j)

Algorithms - Sequence Alignment II

10-18

Backward Search (cntd)

Lemma

Let j be any number $0 \le j \le n,$ and let q be an index that minimizes f(q,j)+g(q,j). Then there is a corner-to-corner path of minimum length that passes through (q,j).

Proof

Let k denote the length of a shortest corner-to-corner path in G_{XY} Fix $j \in \{0, ..., n\}$.

The shortest path must use some node in the $\,j\text{-th}$ column. Suppose it is (p,j)

 $\label{eq:continuous_problem} Therefore \quad k = f(p,j) + g(p,j) \geq min_{q} \left\{ \, f(q,j) + g(q,j) \, \right\}$

If q is the node achieving the minimum, then k = f(q,j) + g(q,j) and by the previous Lemma there is a shortest path passing through (q,j)

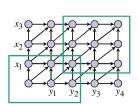
3

Algorithms - Sequence Alignment II

10-19

Divide and Conquer

The idea is to split $\ G_{XY}$ around the middle column and, using the previous Lemma find a node in this column that belongs to a shortest path



We use:

Alignment(X,Y)

Space-Saving-Alignment(X,Y)
Bckw-Space-Saving-Align(X,Y)

Global set P (for the path)

Algorithms - Sequence Alignment II

10-2

Divide and Conquer (cntd)

```
Divide-and-Conquer-Alignment(X,Y)
set m:=length(X), n:=length(Y)
if m≤2 or n≤2 do Alignment(X,Y)
set OPT:=∞ q:=1
for i=1 to m do
    set a:=Space-Saving-Alignment(X[1..i],Y[1..n/2])
    set b:=Bckw-Space-Saving-Align(X[i..m],Y[n/2+1..n])
    if a+b<OPT then do set OPT:=a+b set q:=i
endfor
add (q,n/2) to P
Divide-and-Conquer-Alignment(X[1..q],Y[1..n/2])
Divide-and-Conquer-Alignment(X[q..m],Y[n/2+1..n])</pre>
```

lgorithms - Sequence Alignment II

10.21

Analysis

Theorem

The Divide-and-Conquer-Alignment algorithm runs in O(mn) time and uses O(m+n) space

Proof

The space complexity is straightforward

Let T(m,n) denote the running time.

The algorithm spends O(mn) on executing Alignment, Space-Saving-Alignment and Bckw-Space-Saving-Align

Then it runs recursively on strings of length q, n/2, and m - q, n/2.

Thus $T(m,n) \le c \cdot mn + T(q,n/2) + T(m-q,n/2)$

 $T(m,2) \le c \cdot m,$ $T(2,n) \le c \cdot n$ Algorithms - Sequence Alignment II

Analysis (cntd)

Proof (cntd)

For a sanity check, suppose m = n

Then $T(n) \le 2 T(n/2) + cn^2$

By the Master Theorem $T(n) = O(n^2)$. So we expect T(m,n) = O(mn)

We prove that $T(m,n) \le k \cdot mn$ for some k.

Choosing $k \ge c$ we have the Basis Case:

 $T(m,2)=cm\leq 2km, \quad T(2,n)=2n\leq 2kn$

Suppose $T(m',n') \le k \cdot m'n'$ for all m',n' such that m'n' < mn

 $\begin{array}{rcl} T(m,n) & \leq & c \cdot mn \, + \, T(q,n/2) \, + \, T(m-q,\, n/2) \\ & \leq & c \cdot mn \, + \, kqn/2 \, + \, k(m-q)n/2 \end{array}$

= $c \cdot mn + kqn/2 + kmn/2 - kqn/2 = (c + k/2) \cdot mn$

Choose k = 2c