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Abstract

High frequency based estimation methods for a semiparametric pure-jump sub-
ordinated Brownian motion exposed to a small additive microstructure noise are de-
veloped building on the two-scales realized variations approach originally developed
by Zhang et al. (2005) for the estimation of the integrated variance of a continuous
Itô process. The proposed estimators are shown to be robust against the noise and,
surprisingly, to attain better rates of convergence than their precursors, method of
moment estimators, even in the absence of microstructure noise. Our main results
give approximate optimal values for the number K of regular sparse subsamples to be
used, which is an important tune-up parameter of the method. Finally, a data-driven
plug-in procedure is devised to implement the proposed estimators with the optimal
K-value. The developed estimators exhibit superior performance as illustrated by
Monte Carlo simulations and a real high-frequency data application.
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1 Introduction

In this paper, we develop estimation methods for a semiparametric subordinated Brownian

motion (SBM), whose sampling observations have been contaminated by a small additive

noise along the lines of the framework of Zhang et al. (2005). In addition to a “volatility”

parameter σ, which controls the variance of the increments of the process at regular time

intervals, a SBM is endowed with an additional parameter, hereafter denoted by κ, which

accounts for the tail heaviness of the increments’ distribution. Therefore, κ determines the

proneness of the process to produce extreme increment observations. Such a measure is

clearly of critical relevance in many applications such as to model extreme events in insur-

ance and risk management and optimal asset allocation in finance. The models considered

here are pure-jump Lévy models and σ is not the volatility of a continuous Itô process.

Nevertheless, given that σ2 is proportional to the variance of the increments of the process,

it is natural to refer to σ as the volatility parameter of the model.

As in the context of a regression model, the additive noise, typically called microstruc-

ture noise, can be seen as a modeling artifact to account for any deviations between the

observed process and the SBM model. However, in some circumstances, the noise can be

link to some specific physical mechanism such as in the case of bid/aks bounce effects in

tick by tick trading (cf. Roll (1984)). At low frequencies the microstructure noise is typi-

cally negligible (compared to the SBM’s increments), but at high-frequencies the noise is

significant and heavily tilts any estimates that do not account for it. The aim is then to

develop inference methods that are robust against potential microstructure noises.

The literature of statistical estimation methods under microstructure noise has grown

extensively during the last decade. See Aı̈t-Sahalia & Jacod (2014) for a recent in depth

survey on the topic and, also, Aı̈t-Sahalia et al. (2005), Zhang et al. (2005), Hansen & Lunde

(2006), Bandi & Russell (2008), Mykland & Zhang (2012) for a few seminal works in the

area. Most of these works have focused on the estimation of the integrated variance of a

semimartingale model. However, the problem of translating some of the proposed methods

into estimation methods for semiparametric models contaminated by additive noise, as it is

the case in the present work, has received much less attention in the literature, in particular,

when it comes to the estimation of a kurtosis type parameter. The performances of some
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classical parametric methods in the estimation of some popular parametric Lévy models

have been analyzed in a few works such as Seneta (2004), Ramezani & Zeng (2007), Behr

& Pötter (2009), and Figueroa-López et al. (2011), but none of them have incorporated

microstructure noise.

To motivate our estimation procedure, we start by considering Method of Moment

Estimators (MME) for σ2 and κ, in the absence of microstructure noise. Throughout the

remainder of the introduction, these estimators are respectively denoted by σ̂2
n,T and κ̂n,T ,

where n and T denote the number of observations and the sampling horizon, respectively.

MMEs and related estimators are widely used in high-frequency data analysis due to their

simplicity, computational efficiency, and known robustness against potential correlation

between observations. In order to establish asymptotic benchmarks for the convergence

rates of our proposed estimators, we characterize the asymptotic behavior of the MME

estimators, both in the absence and presence of microstructure noise, when δn = T/n, the

time span between observations, shrink to 0 (infill asymptotics) and T → ∞ (long-run

asymptotics). We identify the order O(T−1), as the rate of convergence of the estimators

under the absence of noise. Hence, a desirable objective is to develop estimators that are

able to achieve at least this rate of convergence in the presence of microstructure noise. An

asymptotic analysis of the estimators in the presence of noise allows to show that σ̂2
n,T →∞

and κ̂n,T → 0, as n→∞, both of which are stylized empirical properties of high-frequency

financial observations (see Section 5.4 below). Furthermore, it is shown that δnσ̂
2
n,T and

δ−1
n κ̂n,T converge to the second moment and the excess kurtosis of the microstructure noise,

respectively.

In order to develop estimators that are robust against a microstructure noise component,

we borrow ideas from Zhang et al. (2005)’s seminal approach based on combining the

realized quadratic variations at two-scales or frequencies. More concretely, there are three

main steps in this approach. First, the high-frequency sampling observations are divided

in K groups of observations taken at a lower frequency (sparse subsampling). Second, the

relevant estimators (say, realized quadratic variations) are applied to each group and the

resulting K point estimates are averaged. Finally, a bias correction step is necessary for

which one typically uses the estimators at the highest possible frequency.
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A fundamental problem in the approach described in the previous paragraph is how

to tune up the number of subgroups, K, which strongly affects the performance of the

estimators. We propose a method to find approximate optimal values for K under a white

microstructure noise setting. For the estimator of σ2, it is found that the optimal K takes

the form

K∗σ := n
2
3

(
6 (Eε4 + (Eε2)2)

T 2σ4

) 1
3

, (1.1)

where ε represents the additive microstructure noise associated to one observation of the

SBM. Interestingly, the optimal value (1.1) is consistent, but different from that proposed by

Zhang et al. (2005) in the context of a continuous Itô semimartingale1. It is also found that

the mean-squared error (MSE) of the resulting estimator (using K as above) attains a rate

of convergence Cσ (Eε4 + (Eε2)2)
1
3 n−

1
3T−

2
3 (up to a constant Cσ), which, since T/n → 0,

shows the surprising fact that the estimator converges at a rate of o(T−1), which is faster

than the rate attained by the MMEs in the absence of noise. For the estimation of κ, it is

found that the optimal K takes the form

K∗κ = n
4
5

(
5 Var ((ε2 − ε1)4)

3324T 4σ8

) 1
5

, (1.2)

while the mean-squared error of the resulting estimator converges at the rate of

CκVar
(
(ε2 − ε1)4

) 3
5 n−

3
5T−

2
5 ,

up to constant Cκ. Here, ε1 and ε2 represent the microstructure noise corresponding to two

different observations of the SBM. In particular, we again infer that the resulting estimator

attains a better MSE performance than the plain MME in the absence of noise.

In order to implement the estimators with the corresponding optimal choices of K∗, we

propose an iterative procedure in which an initial reasonable guess for σ2 is used to find K∗,

which in turn is used to improve the initial guess of σ, and so forth. The resulting estimators

exhibit superior finite-sample performance both on simulated and real high-frequency stock

data. In particular, we found that the estimators are quite stable as the sampling frequency

increases, when compared to their MME counterparts, which, as mentioned above, converge

to either 0 or ∞ for σ or κ, respectively.

1The optimal value of K proposed in Zhang et al. (2005) (see Eq. (58) and (63) therein) lacks the term

Eε4 in the numerator.
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The rest of the paper is organized as follows. In Section 2, we give the model and the

estimation framework. Section 3 introduces the method of moment estimators. Their in-fill

and long-run asymptotic behavior are analyzed in Section 3.2. Section 4 introduces the

estimators for σ and κ that are robust to a microstructure noise component together with

bias corrected versions of these with optimal selection of K. Section 5 shows the finite-

sample performance of the proposed estimators via simulations as well as their empirical

robustness using real high-frequency transaction data. Finally, the proofs of the paper are

deferred to the Appendix.

2 The model and the sampling scheme

In this section, we introduce the model used throughout the paper. We consider a subor-

dinated Brownian motion of the form

Xt = σW (τt) + θτt + bt, (2.1)

where σ, κ > 0, θ, b ∈ R, W := {W (t)}t≥0 is a standard Brownian motion, and {τt}t≥0 :=

{τ(t;κ)}t≥0 is an independent subordinator (i.e., a non-decreasing Lévy process) satisfying

the following conditions:

(i) Eτt = t, (ii) Var(τt) = κt, (iii) Eτ j1 <∞, j = 1, . . . , 8. (2.2)

The first condition is needed for identifiability purposes, while the second one allows to

interpret κ as a measure of the excess kurtosis. The condition (2.2-iii) is imposed so that

Xt admits finite moments of sufficiently large order. In financial applications, X is often

interpreted as the log-return process Xt = log(St/S0) of a risky asset with price process

{St}t≥0. In that case, τ plays the role of a random clock aimed at incorporating variations

in business “activity” through time. It is well known that the process X is a Lévy process

(see, e.g, Sato (1999)). Hereafter, ν will denote the Lévy measure of X, which controls

the jump behavior of the process in that ν((x, x + dx)) measures the expected number of

jumps with size near x per unit time.

Two prototypical examples of (2.1) are the Variance Gamma (VG) and the Normal

Inverse Gaussian (NIG) Lévy processes, which were proposed by Carr et al. (1998) and

5



Barndorff-Nielsen (1998), respectively. In the VG model, τ(t;κ) is Gamma distributed

with scale parameter β := κ and shape parameter α := t/κ, while in the NIG model τ(t;κ)

follows an Inverse Gaussian distribution with mean µ = 1 and shape parameter λ = 1/(tκ).

As seen from the formulas for their moments (see (3.1) below), the model’s parameters

have the following interpretation:

1. σ dictates the overall variability of the process’ increments or, in financial terms, the

log returns of the asset; in the “symmetric” case (θ = 0), σ2 is the variance of log

returns divided by the time span of the returns;

2. κ controls the kurtosis or the tail’s heaviness of the log return distribution; in the

symmetric case (θ = 0), κ is the excess kurtosis of log returns multiplied by the time

span of the returns;

3. b is a drift component in the calendar time;

4. θ is a drift component in the business time and controls the skewness of log returns.

Throughout the paper, we also assume that the log return process {Xt}t≥0 is sampled

during a time interval [0, T ] at evenly spaced times:

ti,n = ti := iδn, i = 1, . . . , n, where δn :=
T

n
. (2.3)

This sampling scheme is sometimes called calendar time sampling (c.f. Oomen (2006)).

Under the assumption of independence and stationarity of increments, we have at our

disposal a random sample

∆n
iX := Xiδn −X(i−1)δn , i = 1, . . . , n, (2.4)

of size n of the distribution of Xδn .

In real markets, high-frequency log returns exhibit certain stylized features, which can-

not be accurately explained by efficient models such as (2.4). There are different approaches

to model these features, widely termed as microstructure noise. Microstructure noises may

come from different sources, such as clustering noises, non-clustering noises such as bid/ask

bounce effects, and roundoff errors (cf. Campbell et al. (1997), Zeng (2003)). In what fol-

lows, we adopt a popular approach due to Zhang et al. (2005), where the net effect of
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the market microstructure is incorporated as an additive noise to the observed log-return

process:

X̃t := X̃(t) := Xt + εt, (2.5)

where {εt}t≥0 is assumed to be a centered process, independent of X. In particular, under

this setup, the log return observations at a frequency δn are given by

∆n
i X̃ := X̃iδn − X̃(i−1)δn = ∆n

iX + ε̃i,δn , (2.6)

where ε̃i,δ := εiδ− ε(i−1)δ can be interpreted as the contribution of the microstructure noise

to the observed increment ∆n
i X̃. In the simplest case, the noise {εt}t≥0 is a white noise;

i.e., the variables {εt}t≥0 are independent identically distributed with mean 0.

It is well known (and not surprising) that standard statistical methods do not perform

well when applied to high-frequency observations if the microstructure noise is not taken

into account. A standing problem is then to derive inference methods that are robust

against a wide range of microstructure noises. In Section 4, we proposed an approach to

address the latter problem, borrowing ideas from the seminal two-scales correction tech-

nique of Zhang et al. (2005) applied to Method of Moment Estimators (MME). Before that,

we first introduce the considered MMEs and carry on a simple infill asymptotic analysis of

the estimators both in the absence and presence of the microstructure noise.

3 Method of Moment Estimators

The Method of Moment Estimators (MME) are widely used to deal with high-frequency

data due to their simplicity, computational efficiency, and known robustness against po-

tential correlation between observations. For the general subordinated Brownian model

(2.2)-(2.1), the central moments can easily be computed in closed forms as

µ1(Xδ) := E(Xδ) = (θ + b)δ, µ2(Xδ) := Var(Xδ) = (σ2 + θ2κ)δ,

µ3(Xδ) := E(Xδ − EXδ)
3 =

(
3σ2θκ+ θ3c3(τ1)

)
δ, (3.1)

µ4(Xδ) := E(Xδ − EXδ)
4 =

(
3σ4κ+ 6σ2θ2c3(τ1) + θ4c4(τ1)

)
δ + 3µ2(Xδ)

2,

where, hereafter,

ck(Y ) :=
1

ik
dk

duk
lnE

(
eiuY

)∣∣∣∣
u=0

,
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represents the k-th cumulant of a r.v. Y . For the VG model, (c3(τ1), c4(τ1)) = (2κ2, 6κ3),

while for the NIG model, (c3(τ1), c4(τ1)) = (3κ2, 15κ3).

Throughout, we assume that θ = 0 or, more generally, that θ is negligible compare to

σ (see Remark 3.1 below for further discussion about this assumption). The assumption

that θ = 0 allows us to propose tractable expressions for the MME of the parameters σ2

and κ as follows:

σ̃2
n(X) :=

1

δn
µ̂2,n(X), κ̃n(X) :=

δn
3

µ̂4,n(X)

µ̂2
2,n(X)

− δn, (3.2)

where hereafter µ̂k,n(X) represents the sample central moment of kth order as defined by

µ̂k,n(X) :=
1

n

n∑
i=1

(
∆n
iX −∆nX

)k
, k ≥ 2, ∆nX :=

1

n

n∑
i=1

∆n
iX =

1

n
log

ST
S0

. (3.3)

We can further simplify the above statistics by omitting the terms of order O(δn) = O(1/n)

(in particular, we leave out the term δn in (3.2) and ∆nX in sample moments of (3.3)):

σ̂2
n(X) :=

1

T
[̂X,X]2, κ̂n(X) :=

δn
3

1
n

∑n
i=1 (∆n

iX)4(
1
n

∑n
i=1 (∆n

iX)2)2 =
1

3

T−1 [̂X,X]4(
T−1 [̂X,X]2

)2 , (3.4)

where above we have expressed the estimators in terms of the realized variations of order

2 and 4, which hereafter are defined by

[̂X,X]2 :=
n∑
i=1

(∆n
iX)2 , [̂X,X]4 =

n∑
i=1

(∆n
iX)4.

Remark 3.1 In the case that |θ| << σ (i.e., |θ| is negligible relative to σ), we can see the

estimators (3.2)-(3.4) as approximate Method of Moment Estimators. The assumption of

θ ≈ 0 has been suggested by some empirical literature (e.g., Seneta (2004), who in turns

cites Hurst et al. (1997)). Using MME and MLE and intraday high-frequency data, this was

also validated by Figueroa-López et al. (2011) for NIG and VG models. Under the latter

two frameworks, we can perform a simple experiment to assess this assumption. From the

formulas for µ2 and µ3 in (3.1) as well as the formula for c3(τ1) in the NIG and VG cases,

we have that
|µ3(Xδ)|
2µ2(Xδ)

≥ |θ|κ ≥ θ2κ,
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assuming that, as it is usually the case, |θ| ≤ 1. Therefore,

σ2

θ2κ
≥ 2µ2(Xδ)

2

δ|µ3(Xδ)|
− 1.

The following table reports the values of 2µ̂2,n(X)2

δ|µ̂3,n(X)| − 1 for a few stocks. Thus, for instance,

the value of 44 for 1 minute INTEL data suggests that σ2 is at least 44 times larger than

θ2κ and thus, we can assume that µ2(Xδ) ≈ σ2δ. One can do a similar analysis to justify

that µ4(Xδ) ≈ 3σ4κδ.

δ 5 sec 10 sec 30 sec 1 min 5 min 10 min 30 min

INTEL 144 82.4 57 44 26.7 24.7 13

CVX 3146.8 3023.8 8706.9 212.9 251.0 1231.5 175.3

CSCO 587.5 255.8 94.1 77.5 67.1 52.3 37.6

PFE 47.8 24.2 10.7 7.89 7.67 7.63 8.15

Table 1: Computation of 2µ̂2(X)2

δ|µ̂3(X)| − 1 for different stocks based on high-frequency data

during the year of 2005 (T = 252 days).

3.1 Simple infill properties in the absence of noise

We now proceed to show some “in-fill” (n → ∞ with fixed T ) asymptotic properties of

the estimators in (3.2)-(3.4). As above, in the sequel we assume that θ = 0 and neglect

O(δn) = O(1/n) terms. In that case, it is easy to see that

Eσ̂2
n = Eσ̃2

n = σ2 +O

(
1

n

)
, Var

(
σ̂2
n

)
= Var

(
σ̃2
n

)
=

3σ2κ

T
+O

(
1

n

)
. (3.5)

From the above formulas, we conclude the (not surprising) fact that, on a finite time

horizon, σ̂2
n is not a mean-squared consistent estimator for σ2, when the sampling frequency

increases, but the MSE is of order O(1/T ), as T →∞.

An analysis of the bias and variance of κ̂n and κ̃n is more complicated due to the non-

linearity of the sample kurtosis. However, we can deduce some interesting features of its

infill asymptotic behavior. First, we have

limP

n→∞
κ̂n = limP

n→∞
κ̃n =

1

3

1
T

∑
t≤T (∆Xt)

4(
1
T

∑
t≤T (∆Xt)

4)2 =: κ̂(T ), (3.6)
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where above ∆Xt = Xt−Xt− is the jump size of X at time t and the summations are over

the random countable set of times t for which ∆Xt 6= 0. The limit (3.6) follows from the

well-known formula
∑n

i=1

(
Xiδn −X(i−1)δn

)k P−→
∑

t≤T (∆Xt)
k, as n → ∞, valid for any

k ≥ 2 and a pure-jump Lévy process X. Furthermore, the convergence of the corresponding

moments also holds true since 0 ≤ δnµ̂4,n/µ̂
2
2,n ≤ δnn = T <∞, and, thus,

lim
n→∞

Eκ̂n = lim
n→∞

Eκ̃n = Eκ̂(T ) and lim
n→∞

Var (κ̂n) = lim
n→∞

Var (κ̃n) = Var
(
κ̂(T )

)
. (3.7)

The following result, whose proof is given in the Appendix, expands the expectation and

variance of κ̂(T ) above and shows that the MSE of κ̂(T ) is O(T−1), as T →∞.

Proposition 3.2 Let X be a general Lévy process with Lévy measure ν. Let ci := ci(X1)

be the ith cumulant of X1, κ := c4/3c
2
2, and suppose that

∫
|x|iν(dx) < ∞ for any i ≥ 2.

Then, as T →∞,

E κ̂(T ) = κ+
3c2

4 − 2c6c2

3c4
2

T−1 +O(T−2), (3.8)

E
(
κ̂(T ) − κ

)2
=
c8c2 − 4c4c6 + 4c2

4c2

9c5
2

T−1 +O(T−2). (3.9)

3.2 Properties of the MME under microstructure noise

In this part we characterize the effects of a microstructure noise component into the asymp-

totic properties of the MME introduced above. The results for the case of the volatility

estimators are classical and their proofs are given only for the sake of completeness. The

results for the estimators of the kurtosis parameter κ are not hard to get either but are less

known.

We adopt the setup introduced at the end of Section 2, under which the observed

log-returns are given by

∆n
i X̃ := X̃iδn − X̃(i−1)δn =

(
Xiδn −X(i−1)δn

)
+
(
εiδn − ε(i−1)δn

)
=: ∆n

iX + ε̃i,n. (3.10)

Furthermore, throughout we assume that, for each n, (ε̃i,n)i≥1 satisfies the following mild

assumption, for any positive integer k ≥ 1:

1

n

n∑
i=1

(ε̃i,n)k
P−→ mk(ε̃), (n→∞), for some mk(ε̃) ∈ R. (3.11)
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Obviously, the previous assumption covers the microstructure white-noise case, where

(εt)t≥0 are i.i.d., in which case mk(ε̃) := E
(

(ε̃1,n)k
)

. Note that ε̃ is not required to be

independent of the process X and, furthermore, we only need for X to be a pure-jump

semimartingale.

Let us first describe the infill asymptotic behavior of the estimators for σ2, introduced

in (3.2)-(3.4), but based on the noisy observations:

σ̃2
n(X̃) :=

1

δnn

n∑
i=1

(∆n
i X̃ −∆nX̃)2, σ̂2

n(X̃) :=
1

T
̂[
X̃, X̃

]
2

=
1

δnn

n∑
i=1

(∆n
i X̃)2. (3.12)

For future reference, let us state the following simple result that follows from applying

Cauchy’s inequality, the condition (3.11), and the fact that
∑n

i=1 |∆n
iX|2m

P→
∑

s≤T |∆Xs|2m.

Lemma 3.3 For arbitrary integers m ≥ 1 and k ≥ 0,

1

n

n∑
i=1

(∆n
iX)m(ε̃i,n)k

P−→ 0, as n→∞. (3.13)

We are now ready to analyze the asymptotic behavior of the estimators in (3.12). The

following result gives the in-fill asymptotic behavior of σ̂2
n(X̃) and σ̃2

n(X̃).

Proposition 3.4 Both estimators σ̂2
n(X̃) and σ̃2

n(X̃) admit the decomposition

σ̂2
n(X̃) = An +Bn, σ̃2

n(X̃) = Ãn + B̃n

where the r.v.’s above are such that

limP

n→∞
An = limP

n→∞
Ãn =

1

T

∑
s≤T

(∆Xs)
2, limP

n→∞
δnBn = m2(ε̃), limP

n→∞
δnB̃n = m2(ε̃)− (m1(ε̃))2.

Proof. We only give the proof for σ̃2
n := σ̃2

n(X̃). The proof for σ̂2
n(X̃) is identical. First

note that

σ̃2
n =

1

nδn

n∑
i=1

(∆n
iX −∆nX)2 +

1

nδn

n∑
i=1

(ε̃i,n − ε̃n)2 +
2

nδn

n∑
i=1

(∆n
iX −∆nX)(ε̃i,n − ε̃n)

=: Ãn + B̃n,1 + B̃n,2.

The term Ãn converges to T−1
∑

s≤T (∆Xs)
2, as n→∞, since

∑n
i=1(∆n

iX)2 →
∑

s≤T (∆Xs)
2

and ∆nX = OP (1/n). Clearly, (3.11) implies that δnB̃n,1 = n−1
∑n

i=1(ε̃i,n)2 −
(
ε̃n
)2
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converges to m2(ε̃) − (m1 (ε̃))2, in probability, when n → ∞. Also, using Lemma 3.3,

δnB̃n,2 = 2
n

∑n
i=1(∆n

iX)(ε̃i,n)− 2∆nX ε̃n goes to 0 in probability. 2

Next, let us consider the estimators for κ introduced in (3.2)-(3.4), but applied to the

noisy process X̃:

κ̃n(X̃) =
δn
3

(
µ̂4,n(X̃)

µ̂2
2,n(X̃)

− 3

)
, κ̂n(X̃) :=

T

3

̂[
X̃, X̃

]
4

̂[
X̃, X̃

]2
2

.

The following result states that, for large n, the above estimators behave asymptotically as

δnC, for some constant C, depending on the ergodic properties of the microstructure noise.

Proposition 3.5 There exist non-zero constants C and C̃ such that, as n→∞,

1

δn
κ̂n(X̃)

P−→ C,
1

δn
κ̃n(X̃)

P−→ C̃. (3.14)

Proof. We only give the proof for κ̃n := κ̃n(X̃). The proof for κ̂n(X̃) is similar. First,

observe that

µ̂2,n(X̃) =
1

n

n∑
i=1

(∆n
iX −∆nX)2 +

1

n

n∑
i=1

(ε̃i,n − ¯̃εn)2 +
2

n

n∑
i=1

(∆n
iX −∆nX)(ε̃i,n − ¯̃εn).

By Lemma 3.3, the first and third terms on the last expression above tend to 0 in probability,

while the second term converges to C̃0 := m2(ε̃)− (m1(ε̃))2 by (3.11). Similarly,

µ̂4,n(X̃) =
1

n

3∑
`=0

(
4

`

) n∑
i=1

(∆n
iX −∆nX)4−`(ε̃i,n − ¯̃εn)` +

1

n

n∑
i=1

(ε̃i,n − ¯̃εn)4,

and, again, by Lemma 3.3, all the terms in the first summation above tend to 0 in probabil-

ity, while the second term therein converges to C̃1 := m4(ε̃)−4m3(ε̃)m1(ε̃)+6m2(ε̃)m2
1(ε̃)−

3m4
1(ε̃), in light of our assumption (3.11). Therefore, the second limit in (3.14) follows with

C̃ := C̃1/3C̃
2
0 − 1. 2

Remark 3.6 As a consequence of the proof, it follows that, if m1(ε̃) = 0, then

C = C̃ =
m4(ε̃)

3 (m2(ε̃))2 .

In particular, if the microstructure noise (εt)t≥0 in (2.5) is white-noise, then the constant

coincides with the excess kurtosis, Eε̃4/3 (Eε̃2)
2
, of the random variable ε̃ := ε2 − ε1.
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4 Robust Method of Moments Estimators

In this section, we adapt the so-called two-scales bias correction technique of Zhang et al.

(2005) to develop estimators for σ2 and κ that are robust against microstructure noises.

Roughly, their approach consists of three main ingredients: sparse subsampling, averaging,

and bias correction. Let us first introduce some needed notation. Let Ḡn := {t0, t1, . . . , tn}

be the complete set of available sampling times as described in (2.3). For a subsample

G = {ti1 , . . . , tim} with i1 ≤ · · · ≤ im and a natural ` ∈ N, we define the `th-order realized

variation of the process X̃ over G as

[X̃, X̃]G` =
m−1∑
j=0

∣∣∣X̃(tij+1
)− X̃(tij)

∣∣∣` .
Next, we partition the grid Ḡn into K mutually exclusive regular sub grids as follows:

G(i)
n := G(i)

n,K := {ti−1, ti−1+K , ti−1+2K , . . . , ti−1+niK}, i = 1, . . . , K,

with ni := ni,K := [(n− i+ 1)/K]. As in Zhang et al. (2005), the key idea to improve the

estimators introduced in (3.4) consists of averaging the relevant realized variations over the

different sparse sub grids G(i)
n , instead of using only one realized variation over the complete

set Ḡn. Hence, for instance, for estimating σ2, we shall consider the estimator

σ̂2
n := σ̂2

n,K :=
1

K

K∑
i=1

1

Ti,K
[X̃, X̃]G

(i)
n

2 , (4.1)

where Ti,K := ti−1+niK − ti−1 = Kδnni. The estimator (4.1) is constructed by averaging

estimators of the form σ̂2(X̃) in (3.12) over sparse sub-grids. The above estimator cor-

responds to the so-called “second-best estimator” in Zhang et al. (2005). This estimator

can be improved in two ways. First, by correcting the bias of the estimator and, second,

by choosing the number of sub grids, K, in an “optimal” way. We analyze these two

approaches in the subsequent two subsections.

At this point it is convenient to recall that we are assuming the subordinated Brownian

motion model (2.1) with θ = 0. For simplicity, we also assume that b = 0, which won’t

affect much what follows since we are considering high-frequency type estimators and, thus,

the contribution of the drift is negligible in that case. Regarding the microstructure noise,
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we assume that the noise process {εt}t≥0 appearing in Eq. (2.5) is a centered stationary

process with finite moments of arbitrary order, independent of X. Furthermore, we assume

that, for any ` ∈ N,

lim
δ1,δ2→0

E
[
ε̃`δ2
]
− E

[
ε̃`δ1
]

δ2 − δ1

= 0; (4.2)

where hereafter ε̃δ denotes a random variable with the same distribution as ε̃t,δ := εt+δ−εt,

which does not depend on t. Note that (4.2) implies the existence of a constant m`(ε̃) ∈ R

such that

lim
δ→0

E
[
ε̃`δ
]

= m`(ε̃). (4.3)

The simplest case is the white noise, when the variables {εt}t≥0 are independent identically

distributed. In that case, {ε̃iδ,δ}i≥1 follows a stationary Moving Average (MA) process with

E (ε̃iδ,δ) = 0 and E
(
ε̃ 2
iδ,δ

)
= 2E (ε2

1).

4.1 Bias corrected estimators

In order to deduce the bias correction, we first adopt the white noise case, where {εt}t≥0

are i.i.d. In that case, the distribution of ε̃δ does not depend on δ. A random variable

with this distribution is denoted ε̃. We start by devising bias correction techniques for the

estimator (4.1). Clearly, from (3.1) and the independence of the noise ε̃ and the process

X, we have:

E
(
σ̂2
n,K

)
= σ2 + E

(
ε̃ 2
) 1

K

K∑
i=1

ni
Ti,K

= σ2 + E
(
ε̃ 2
) 1

Kδn
. (4.4)

The relation (4.4) shows that the bias of the estimator diverges to infinity when the time

span between observation δn := T/n tends to 0. To correct this issue, first note that (4.4)

also implies that

E
(
δnσ̂

2
n,1

)
= σ2δn + E

(
ε̃ 2
) n→∞−→ E

(
ε̃ 2
)
. (4.5)

Hence, a natural “bias-corrected” estimator would be

ˆ̃σ2
n := ˆ̃σ2

n,K := σ̂2
n,K −

1

Kδn
µ̂2,n(ε̃), (4.6)

where µ̂2,n(ε̃) := δnσ̂
2
n,1. However, from (4.4) with K = 1, we have:

E
(

ˆ̃σ2
n

)
= σ2 + E

(
ε̃ 2
) n

KT
− 1

K

(
σ2 + E

(
ε̃ 2
) n
T

)
=
K − 1

K
σ2,

14



which implies that ˆ̃σ2
n is not truly unbiased. Nevertheless, the above relationship yield the

following unbiased estimator for σ2:

ˆ̄σ2
n,K :=

K

K − 1
ˆ̃σn,K =

1

K − 1

K∑
i=1

1

Ti,K
[X̃, X̃]G

(i)
n

2 − 1

(K − 1)T
[X̃, X̃]Ḡn2 . (4.7)

The estimator (4.7) corresponds to the small-sample adjusted “First-Best Estimator” of

Zhang et al. (2005).

Proposition 4.1 Under a centered stationary noise process {εt}t≥0 independent of X,

E
(
ˆ̄σ2
n,K

)
= σ2 +

E
(
ε̃2
Kδn

)
− E

(
ε̃2
δn

)
δn(K − 1)

.

In particular, ˆ̄σ2
n,K is an asymptotically unbiased (respectively, unbiased) estimator for σ2

under the condition (4.2) (respectively, a white microstructure noise setting).

We now devise (approximate) bias-corrected estimators for κ. In order to separate the

problem of estimating κ and σ2, in this part we assume that σ is known. In practice, we

have to replace σ with an “accurate” estimate such as the estimator (4.7). Let us start by

considering the mean of the statistic

1

K

K∑
i=1

1

Ti,K

[
X̃, X̃

]G(i)n

4
,

which is the analog of (4.1). To this end, we use the fact that E (Xδ + ε̃)4 = 3σ4κδ +

6σ2E (ε̃ 2) δ + E (ε̃ 4) + 3σ4δ2, which is an easy consequence of (3.1) and the independence

of the noise ε̃ and X. In that case, we have

E

(
1

K

K∑
i=1

1

Ti,K
[X̃, X̃]G

(i)
n

4

)
= 3σ4κ+ 6σ2E

(
ε̃ 2
)

+
1

Kδn
E
(
ε̃ 4
)

+ 3σ4Kδn, (4.8)

This identifies the estimator

κ̂n,K :=
1

3σ4K

K∑
i=1

1

Ti,K
[X̃, X̃]G

(i)
n

4 −Kδn, (4.9)

as an unbiased estimator for κ in the absence of microstructure noise. However, as with

the estimate of σ, the bias of the above estimate blows up when δn → 0 due to the third
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term in (4.8). To correct this issue we need an estimate for E (ε̃4), which can be inferred

from the following limit

lim
n→∞

E
(
δn
T

[X̃, X̃]Ḡn4

)
= E

(
ε̃ 4
)
, (4.10)

which is an easy consequence of (4.8) with K = 1. Together with (4.5), these two suggests

the following estimate:

ˆ̃κn := κ̂n,K −
2

σ2
µ̂2,n(ε̃)− 1

3σ4Kδn
µ̂4,n(ε̃), (4.11)

where

µ̂2,n(ε̃) :=
δn
T

[X̃, X̃]Ḡn2 , µ̂4,n(ε̃) :=
δn
T

[X̃, X̃]Ḡn4 . (4.12)

However, as with the estimator ˆ̃σ2
n above, the above estimator is only asymptotically un-

biased for large n and K. The following result provides an unbiased estimator for κ based

on the realized variations of the process on two scales. The proof follows from (4.4) and

(4.8) and is omitted.

Proposition 4.2 Let

ˆ̄κn :=
1

3σ4(K − 1)

K∑
i=1

1

Ti,K
[X̃, X̃]G

(i)
n

4 − 1

3σ4(K − 1)T
[X̃, X̃]Ḡn4 (4.13)

− 2

nσ2
[X̃, X̃]Ḡn2 − (K − 1)δn.

Then, under a white microstructure noise independent of X, ˆ̄κn is an unbiased estimator

for κ. Furthermore, for a general centered stationary noise process, we have

E
(
ˆ̄κn
)

= κ+
2

σ2

K

K − 1

(
E
(
ε̃ 2
Kδn

)
− E

(
ε̃ 2
δn

))
+

1

3σ4

E
(
ε̃ 4
Kδn

)
− E

(
ε̃ 4
δn

)
δn(K − 1)

,

which shows that ˆ̄κn is asymptotically unbiased under condition (4.2).

4.2 Optimal selection of K

In this part, given a specified function b(K,n, T ), Ou(b(K,n, T )) means that there exists

a constant c, independent of K, n, and T , such that |Ou(b(K,n, T ))| ≤ cb(K,n, T ), for all

K, n, and T . We also assume the white-noise case where the microstructure noise {εt}t≥0

are centered i.i.d. r.v.’s.
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An important issue when using the two-scales procedure described in the previous sec-

tion is the selection of the number of subclasses, K. A natural approach to deal with

this issue consists of minimizing the variance of the relevant estimators over all K. This

procedure will yield an optimal K∗ for the number of subclasses. Let us first illustrate this

approach for the estimator σ̂2
n,K given in (4.1). The next result, whose proof is given in

Appendix A.2, gives the variance of σ̂2
n,K .

Theorem 4.3 The estimator (4.1) is such that

Var
(
σ̂2
n,K

)
=

4σ4K

3n
+

4nEε4

K2T 2
+

4σ4

3n
+

3σ4κ

T
+

2σ4

3Kn
+

8σ2E(ε2)

KT
(4.14)

+Ou

(
K2

n2

)
+Ou

(
K

Tn

)
+Ou

(
1

KT 2

)
.

Remark 4.4 As a consequence of (4.14), for a fixed arbitrary K and a high-frequency/long-

horizon sampling setup (Tn →∞ and δn = Tn/n→ 0), a sufficient asymptotic relationship

between T and δn for the estimator σ̂2
n,K to be mean square consistent is that δnTn →∞. If

K is chosen depending on n and T , as we intend to do next, the feasible values K := Kn,T

must be such that Kn,T/n→ 0 and n/(K2
n,TT

2)→ 0 as T →∞ and δn = T/n→ 0.

Now, we are ready to propose an approximately “optimal” K∗. To that end, let us first

recall from (4.4) that the bias of the estimator is

Bias
(
σ̂2
n,K

)
= 2Eε2 n

TK
. (4.15)

Together (4.14)-(4.15) implies that

MSE
(
σ̂2
n,K

)
=

4σ4K

3n
+

4σ4

3n
+

3σ4κ

T
+

2σ4

3Kn
+

8σ2E(ε2)

KT
+

4nEε4

K2T 2
+

4n2 (Eε2)
2

T 2K2
(4.16)

+Ou

(
K2

n2

)
+Ou

(
K

Tn

)
+Ou

(
1

KT 2

)
.

Our goal is to minimize the MSE with respect to K when n is large. Note that the only

term that is increasing in K is 4σ4K/3n, while out of the terms decreasing in K, the term

4n2 (Eε2)
2
/T 2K2 is the dominant (when n is large). It is then reasonable to consider only

these two terms leading to the “approximation”:

MSE
(
σ̂2
K

)
≈ 4σ4K

3n
+

4n2

T 2K2
(Eε2)2 =: MSE1

(
σ̂2
K

)
. (4.17)
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The right-hand side in the above expression attains its minimum at the value:

K∗1 = n

(
6(Eε2)2

T 2σ4

) 1
3

. (4.18)

Interestingly enough, the value above coincides with the optimal K∗ proposed in Zhang

et al. (2005) (see Eq. (8) therein). Plugging (4.18) in (4.16) and, since δ = T/n → 0, it

follows that

MSE
(
σ̂2
K∗1

)
= 2

4
3 3

1
3

(
Eε2
) 2

3 σ
8
3T−

2
3 + 3κσ4T−1 + o(T−1). (4.19)

In particular, the above expression shows that, in the presence of a microstructure noise

component, the rate of convergence reduces from O(T−1) to only O(T−2/3) and, further-

more, that the convergence is worst when σ, Eε2, and κ are larger.

The following result gives an estimate of the variance of the unbiased estimator (4.7).

Its proof is given in Appendix A.2.

Proposition 4.5 The estimator (4.7) is such that

Var
(
ˆ̄σ2
n,K

)
=

4σ4K

3n
+

4n (Eε4 + (Eε2)2)

T 2K2
+Ou

(
1

n

)
+Ou

( n

K3T 2

)
+Ou

(
1

TK

)
. (4.20)

As before, the previous result suggests to fix K so that to minimize the first two leading

terms in (4.20). Such a minimum is given by

K∗2 = n
2
3

(
6 (Eε4 + (Eε2)2)

T 2σ4

) 1
3

, (4.21)

which is similar2 (but not identical) to the analog optimal K∗ proposed in Zhang et al.

(2005) (see Eq. (58) & (63) therein). After plugging K∗2 in (4.20), the resultant estimator

attains the MSE:

MSE
(

ˆ̄σ2
K∗2

)
= 2

4
3 3

1
3

(
Eε4 + (Eε2)2

) 1
3 σ

8
3n−

1
3T−

2
3 + o(T−1). (4.22)

Interestingly enough, since T/n → 0, the estimator ˆ̄σ2
K∗1

attains the order o(T−1), which

was not achievable by the estimators σ̂2
K , even in the absence of microstructure noise, nor

by the standard estimators introduced in Section 3 (see (3.5)).

Now, we proceed to study the optimal selection problem of K for the estimator (4.9)

for κ. As with σ̂2
n,K , we first need to analyze the variance of the estimator.

2The optimal value of K proposed in Zhang et al. (2005) lacks the term Eε4 in the numerator.
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Theorem 4.6 The estimator (4.9) is such that

Var (κ̂n,K) =
64

5

T 2K3

n3
+Ou

(
T 2K2

n3

)
. (4.23)

We are now ready to propose a method to choose a value of K that approximately

minimizes the MSE of the estimator κ̂n,K . Let us first recall from (4.8) that the bias of the

estimator κ̂n,K is

Bias (κ̂n,K) = E (κ̂n,K)− κ = E
(
ε̃ 4
) n

TKσ4
+ 2

E (ε̃ 2)

σ2
. (4.24)

Together, (4.23)-(4.24) imply that

MSE (κ̂n,K) =
64

5

T 2K3

n3
+
n2 (Eε̃4)

2

T 2K2σ8
+ h.o.t., (4.25)

where h.o.t. mean “higher order terms”. It is then reasonable to select K so that the

leading terms of the MSE are minimized. The aforementioned minimum is reached at

K∗3 = n

(
5(Eε̃4)2

96T 4σ8

) 1
5

. (4.26)

Plugging (4.26) in (4.25), it follows that

MSE
(
κ̂K∗3

)
= (4)5

3
5 3−

3
5

(
Eε̃4
) 6

5 σ−
24
5 T−

2
5 + o

(
T−

2
5

)
,

whose rate of convergence to 0 is slower than the rate of O
(
T−2/3

)
attained by the estimator

σ̂2
K∗ .

Finally, we consider the unbiased estimator for κ introduced in Proposition 4.2. As

above, h.o.t. refers to higher order terms.

Theorem 4.7 The estimator (4.13) is such that

Var
(
ˆ̄κn,K

)
=

64

5

T 2K3

n3
+

2n

9σ8T 2K2
e(ε) + h.o.t., (4.27)

where e(ε) = Var ((ε2 − ε1)4).

The two terms on the right-hand side of (4.27) reach their minimum value at

K∗4 = n
4
5

(
5e(ε)

(27)(16)T 4σ8

) 1
5

. (4.28)
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After plugging K∗4 in (4.27), we obtain that

MSE
(
ˆ̄κK∗4
)

= 2
28
5 5−

2
5 3−

9
5 e(ε)

3
5σ−

24
5 n−

3
5T−

2
5 + o

(
T−1

)
,

which again, since T/n → 0, implies that MSE
(
ˆ̄κK∗4
)

= o(T−1). The aforementioned

result should be compared to (3.9), which essentially says that the estimator ˆ̄κK∗4 has better

efficiency than the continuous-time based estimator κ̂(T ), obtained by making n → ∞ in

the estimators κ̂n and κ̃n (see (3.6)). It is worth pointing out here that one can devise a

consistent estimator for e(ε) using the relationships

(i)
1

n
[X̃, X̃]Ḡn4

P−→ E (ε2 − ε1)4 , (ii)
1

n
[X̃, X̃]Ḡn8

P−→ E (ε2 − ε1)8 . (4.29)

Remark 4.8 It is natural to wonder if some types of central limit theorems are feasible for

the estimators considered here. In spite of the fact that we are considering a Lévy model,

whose increments are independent, the estimators cannot be written in terms of a row-wise

independent triangular array. For instance, consider the estimator σ̂n,K for σ introduced

in (4.1) and, for simplicity, assume that Ti,K = T , which asymptotically is satisfied, and

absence of microstructure noise. It can be shown that

1

K

K∑
i=1

[X,X]G
(i)
n

2 =
1

K

n−K∑
i=0

(Xti+K
−Xti)

2,

whose terms are correlated.

5 Numerical Performance and Empirical Evidence

In this section, we propose an iterative method to implement the estimators described in

the previous section, with the corresponding optimal choices of K∗. The main issue arises

from the fact that in order to accurately estimate σ, we need to choose K as in (4.21) (or

(4.18)), which precisely depends on what we want to estimate, σ. So, we propose to start

with an initial reasonable guess for σ2 to find K∗, which in turn is then used to improve the

initial guess of σ, and so forth. The finite-sample and empirical performance of the resulting

estimators are illustrated by simulation and a real high-frequency data application. For

briefness, in what follows we will make use of the following notation

K∗1(m2, σ) := n

(
6m2

2

T 2σ4

) 1
3

, K∗2(m2,m4, σ) := n
2
3

(
6 (m4 +m2

2)

T 2σ4

) 1
3

.
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For the simulation portion of this section, we consider a Variance Gamma (VG) model with

white Gaussian microstructure noise. The variance of the noise εt is denoted by %2 so that

the noise of the ith increment, ε̃i,n, is N (0, 2%2). Other parameters are set as: σ = 0.02,

κ = 0.3, and % = 0.005. The time unit here is a day. In particular, the above value of σ

corresponds to an annualized volatility of 0.02
√

252 = 0.31.

5.1 Estimators for σ

We compare the finite sample performance of the following estimators:

1. The estimator σ̂2
n,K given in (4.1) with K determined by a suitable estimate of the

optimal value K∗1 given in (4.18), as described next. As shown in Proposition 3.4 and

(4.5), a consistent and unbiased estimator for Eε2 = Eε̃2/2 is given:

%̂2 := Êε2 :=
1

2n
[X̃, X̃]Ḡn2 . (5.1)

The only missing ingredient for estimating (4.18) is an initial preliminary estimate

of σ2, which we will then proceed to improve via σ̂2
n,K∗ . Concretely, we propose the

following procedure. First, we evaluate the estimate K̂∗1 := K∗1(%̂2, σ0), where σ0 is an

initial “reasonable” value for the volatility. Second, we estimate σ via σ̂′1 := σ̂n,K̂∗1 .

Next, we use σ̂′1 to improve our estimate of K∗ by setting
ˆ̂
K∗1 := K∗1(%̂2, σ̂′1). Finally,

we set σ̂′′1 := σ̂
n,

ˆ̂
K∗1

2. We consider the bias-corrected estimator ˆ̄σ2
n,K introduced in (4.7), with a value of K

given by K̂∗1 as defined in the point 1 above. We denote this estimator σ̂′2. We also

analyze an iterative procedure similar to that in item 1, but using σ̂′2. Concretely, we

set σ̂′′2 = ˆ̄σ
n, ˆ̄K∗1

, where ˆ̄K∗1 := K∗1(%̂2, σ̂′2).

3. Finally, we also consider the estimator ˆ̄σ2
n,K introduced in (4.7) but using an estimate

of the optimal value K∗2 as defined in Eq. (4.21). Concretely, we set σ̂′3 = ˆ̄σn,K̂∗2 with

K̂∗2 := K∗2(%̂2, $̂, σ0), where σ0 is an initial reasonable value for σ and $̂ is a consistent

estimator for Eε4. Next, we improve the estimate of σ̂′3 by setting

σ̂′′3 := ˆ̄σ
n,

ˆ̂
K∗2
, with

ˆ̂
K∗2 := K∗2(%̂, $̂, σ̂′3). (5.2)
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To estimate Eε4, we use (4.12). Concretely, as shown in the proof of Proposition

3.5 and also in Eq. (4.10), the statistics m̂4,n(ε̃) := [X̃, X̃]Ḡn4 /n converges to E (ε̃4) =

2Eε4 + 6 (Eε2)
2
. Therefore, a consistent estimate for Eε4 is given by

$̂ := Êε4 :=
1

2n
[X̃, X̃]Ḡn4 − 3

(
Êε2
)2

.

The sample mean, standard deviation, and mean-squared error (MSE) based on 1000

simulations are presented in the Table 2. Here, we take T = 252 days and σ0 ≈ 0.063,

which corresponds to an annualized volatility of 1. As expected, the estimator σ̂′1 exhibits

a noticeable bias and that this bias is corrected by σ̂′2. However, σ̂′′3 is much more superior

to other considered estimators, which is consistent with the asymptotic results for the

mean-squared errors described in Eqs. (4.19) and (4.22).

δn σ̂′1 σ̂′′1 σ̂′2 σ̂′′2 σ̂′3 σ̂′′3

5 min

Mean 0.02274333 0.02066226 0.01998258 0.01988843 0.01999695 0.01999614

Std Dev 0.0006854182 0.0011434344 0.0007945224 0.0012479476 0.0008839566 0.0007044640

MSE 7.995654e-06 1.746024e-06 6.315694e-07 1.569822e-06 7.813885e-07 4.962843e-07

1 min

Mean 0.02288498 0.02066931 0.01995456 0.01984824 0.01997237 0.02000242

Std Dev 0.0006482329 0.0010605652 0.0007468549 0.0011609025 0.0007887707 0.0006469303

MSE 8.743311e-06 1.572774e-06 5.598574e-07 1.370725e-06 6.229225e-07 4.185247e-07

30 sec

Mean 0.02293765 0.02075251 0.01998865 0.01993685 0.02000009 0.02001709

Std Dev 0.0006537998 0.0010611910 0.0007515176 0.0011497640 0.0007185258 0.0006364266

MSE 9.057229e-06 1.692391e-06 5.649076e-07 1.325945e-06 5.162794e-07 4.053310e-07

1 sec

Mean 0.02296041 0.02076158 0.01998938 0.01994110 0.02000240 0.02000628

Std Dev 0.0006346972 0.0010546469 0.0007285086 0.0011415267 0.0006393828 0.0005973219

MSE 9.166839e-06 1.692287e-06 5.308377e-07 1.306553e-06 4.088161e-07 3.568328e-07

Table 2: Sample means, standard deviations, and mean-squared errors for different estima-

tors of σ = 0.02 based on 1000 simulations.

5.2 Estimators for κ

We compare the finite sample performance of the following three estimators, which are

respectively denoted by κ̂1, κ̂2, κ̂3.

1. The estimator κ̂n,K given in (4.9) with σ replaced with the estimate σ̂′′3 in Eq. (5.2)

and K determined by an estimate of the optimal value K∗3 given in (4.26) obtained

by replacing σ and Eε̃4 with σ̂′′3 and Eq. (4.29-i), respectively.
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2. The unbiased estimator ˆ̄κn defined in (4.13) with the same value of K as the previous

item. As before, we replace σ by the estimator σ̂′′3 .

3. Again, the unbiased estimator ˆ̄κn in (4.13) replacing σ with σ̂′′3 , but now the value

of K is given by (4.28). We replace σ therein with σ̂′′3 , while to estimate e(ε) =

Var ((ε2 − ε1)4), we exploit the limits in (4.29).

The sample mean, standard deviation, and mean-squared error (MSE) based on 1000

simulations are presented in Table 3. Here, we take T = 252 days and σ0 = 0.063. As

expected, the estimator κ̂3 has much better performance than any other estimator therein.

κ̂1 κ̂2 κ̂3 κ̂1 κ̂2 κ̂3

δn = 5 min δn = 1 min

Mean 0.57771957 0.29982420 0.29967835 0.57428966 0.29189326 0.29686684

Std Dev 0.1783289311 0.1832631941 0.0979104650 0.1571320926 0.1599275870 0.0758019358

MSE 1.089294e-01 3.358543e-02 9.586563e-03 9.992531e-02 2.564255e-02 5.755750e-03

δn = 30 sec δn = 1 sec

Mean 0.58111784 0.29929056 0.29677713 0.57371817 0.29046728 0.29455234

Std Dev 0.161799873 0.163678990 0.069347518 0.162874998 0.165066890 0.066836990

MSE 1.052064e-01 2.679132e-02 4.819465e-03 1.014499e-01 2.733795e-02 4.496860e-03

Table 3: Sample means, standard deviations, and mean-squared errors for different estima-

tor of κ = 0.3 based on 1000 simulations.

5.3 Rate of Convergence Analysis

In this section we study the rates of convergence of the standard errors of the unbiased

estimators ˆ̄σ2
n,K and ˆ̄κn,K as defined by Eqs. (4.7) and (4.13), when K is chosen according

to the optimal values (4.21) and (4.28), respectively. In particular, we want to assess our

claim that the convergence rates of the estimator’s variances are faster than T−1. To this

end, we plot log(V̂ar
(
ˆ̄σn,K∗2 ,T

)
) against log(T ) for T ’s ranging from 2 months to 2 years and

eight intraday sampling frequencies δn (see left panel in Figure 1). We also show the best

linear fit for each plot. Here, V̂ar
(
ˆ̄σn,K∗2 ,T

)
represents the sample variance of the estimator

ˆ̄σn,K∗2 ,T computed by Monte Carlo using 200 simulations. In Table 4, we also report the

95% confidence intervals for the slopes of the best linear fits (second column in the table).
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It is apparent that the linear fit is very good, which indicates that Var
(
ˆ̄σn,K∗2 ,T

)
∝ T−β,

for large T and some β > 0, and furthermore, the slope’s estimates indicate that the

convergence rate of Var
(
ˆ̄σn,K∗2 ,T

)
is slightly better than T−1 (the average rate is T−1.03).

We also perform the same analysis for the estimator σ̂′′3 , as described in Section 5.1, which

is designed to be a data-drive proxy of the oracle estimator ˆ̄σn,K∗2 ,T . The results are show in

the right panel of Figure 1 and the third column of Table 4. The average convergence rate

of Var (σ̂′′3) is T−1.045. Note that the CI’s indicate that the slope is significantly different

than −1 in almost all cases. We carry out the same analyses for the estimators for κ. The

graphs of log(V̂ar
(
ˆ̄κn,K∗4 ,T

)
and log(V̂ar (κ̂3) against log(T ) are shown in Figure 2. The CI’s

for the slope of the best linear fits are shown in Table 4 (last two columns). The average

convergence rate of the variance of ˆ̄κn,K∗4 ,T is T−1.15, while the average convergence rate of

the variance of κ̂3 is T−1.18.

δn log
(

V̂ar
(
ˆ̄σn,K∗

2

))
log
(

V̂ar (σ̂′′3 )
)

log
(

V̂ar
(
ˆ̄κn,K∗

4

))
log
(

V̂ar (κ̂3)
)

5 sec −1.036± 0.025 −1.032± 0.027 −1.234± 0.122 −1.219± 0.127

10 sec −1.053± 0.026 −1.040± 0.026 −1.272± 0.151 −1.219± 0.171

30 sec −1.031± 0.025 −1.058± 0.026 −1.22± 0.138 −1.197± 0.132

1 min −1.043± 0.032 −1.031± 0.032 −1.315± 0.158 −1.196± 0.178

10 min −1.001± 0.026 −0.998± 0.024 −1.086± 0.199 −1.229± 0.15

20 min −1.045± 0.030 −1.073± 0.026 −1.056± 0.099 −1.268± 0.187

30 min −1.028± 0.036 −1.076± 0.019 −0.931± 0.177 −1.056± 0.232

1 hr −1.041± 0.020 −1.053± 0.023 −1.124± 0.105 −1.072± 0.133

Table 4: 95% CI’s for the slope of the linear regression fit of log(V̂ar (sigma Estimator))

against log(T ) for T ∈ {2m, 3m, . . . , 24m}, and log(V̂ar (kappa Estimator)) against log(T )

for T ∈ {12m, 13m, . . . , 24m}.

5.4 Empirical study

We now proceed to analyze the performance of the proposed estimators when applied to

real data. As it was explained above and was theoretically verified by Propositions 3.4-3.5,
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Figure 1: Regression Analysis of log(V̂ar
(
ˆ̄σn,K∗2 ,T

)
against log(T ) (left panel) and

log
(

V̂ar (σ̂′′3)
)

(right panel) for T ∈ {2 m, 3 m, . . . , 24 m}, and δn = 5 sec (Red), δn =

10 sec (Blue), δn = 30 sec (Brown), δn = 1 min (Green), δn = 10 min (Purple), δn = 20 min

(Orange), δn = 30 min (Pink), and δn = 1 hr (Grey). The sample variance is computed

based on 200 simulations.
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Figure 2: Regression Analysis of log(V̂ar
(
ˆ̄κn,K∗2 ,T

)
against log(T ) (left panel) and

log
(

V̂ar (κ̂3)
)

(right panel) for T ∈ {12 m, 13 m, . . . , 24 m}, and δn = 5 sec (Red),

δn = 10 sec (Blue), δn = 30 sec (Brown), δn = 1 min (Green), δn = 10 min (Purple),

δn = 20 min (Orange), δn = 30 min (Pink), and δn = 1 hr (Gray). The sample variance is

computed based on 200 simulations.
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traditional estimators are not stable as the sampling frequency increases. Indeed, σ̂n and

σ̃n both diverge to ∞ while κ̂n and κ̃n converge to 0, as n → ∞. The objective is to

verify that the proposed estimators do not exhibit the aforementioned behaviors at very

high-frequencies.

We consider high-frequency stock data for several stocks during 2005, which were ob-

tained from the NYSE TAQ database of Wharton’s WRDS system. For briefness and

illustration purposes, we only show Intel (INTC) and Pfeizer (PFE). For these, we com-

pute the estimator %̂ defined in (5.1), the estimator σ̂n,K defined in (4.1) with K = 1, the

estimator ˆ̄σn,K defined in (4.7) with K =
ˆ̂
K∗1 as given in (5.2), the estimator κ̂n,K defined

in (4.9) with K = 1, and finally the estimator ˆ̄κn,K defined in (4.13) with K = K̂∗4 as given

in (4.28). In the case of κ̂n,1, we used σ = σ̂n,1. Both σ̂n,1 and κ̂n,1 represent the estimators

without any technique to alleviate the effect of the microstructure noise. As one can see in

Tables 5-6, the estimators ˆ̄σ and ˆ̄κ do not exhibit the drawbacks of the estimators σ̂ and κ̂

at high frequencies. As a conclusion of the empirical results therein, we deduce that Intel’s

stock exhibits an annualized volatility σ of about 0.014 ∗
√

252 = 0.22 per year, while its

excess kurtosis increases with 1/δ at a rate of about 0.5 (see item 2 above Eq. (2.4) for

the interpretation of κ). By comparison, even though the volatility of Pfizer’s stock is just

slightly larger (about 0.015 ∗
√

252 = 0.23), its excess kurtosis increases at a rate of about

2.3 with 1/δ, showing much more riskiness due to the much heavier tails of its return’s

distribution. This example illustrates the importance of considering a parameter which

measures the tail heaviness of the return distribution and not only its variance.
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%̂ σ̂n,1 ˆ̄σ
n,

ˆ̂
K∗

1

κ̂n,1 ˆ̄κn,K̂∗
4

20 min 0.002198811 0.013732969 0.013115165 0.772846688 0.645084939

10 min 0.001584536 0.013995671 0.013112833 0.589344904 0.727208959

5 min 0.001152404 0.014394983 0.013253727 0.495378704 0.768302688

1 min 0.0005581856 0.0155908617 0.0136519981 0.3499494734 0.7293149570

30 sec 0.0004113675 0.0162494093 0.0139405766 0.2817929514 0.6875741045

20 sec 0.0003483541 0.0168528945 0.0141596310 0.2566280373 0.6575495762

10 sec 0.0002712869 0.0185608431 0.0145174963 0.1831341414 0.5921934015

5 sec 0.0002174315 0.0210381061 0.0147818871 0.1084570206 0.4987667343

Table 5: Estimation of the parameters σ and κ of a subordinated Brownian motion with

microstructure noise for INTC (Intel) stock.

%̂ σ̂n,1 ˆ̄σ
n,

ˆ̂
K∗

1

κ̂n,1 ˆ̄κn,K̂∗
4

20 min 0.002310884 0.014432934 0.014279133 3.552809339 3.665645436

10 min 0.001678615 0.014826633 0.013921679 3.330420039 4.192632331

5 min 0.001223294 0.015280492 0.013758805 3.395593192 4.458814370

1 min 0.000581559 0.016243711 0.014289601 2.885849749 3.074717720

30 sec 0.0004379718 0.0173003060 0.0147847384 2.1009477905 2.5399891978

20 sec 0.0003733763 0.0180634325 0.0149589310 1.8189209947 2.3582752416

10 sec 0.0003021168 0.0206701623 0.0150440707 1.0395706194 2.3194219287

5 sec 0.0002547010 0.0246442060 0.0151395852 0.5255478783 2.3750789809

Table 6: Estimation of the parameters σ and κ of a subordinated Brownian motion with

microstructure noise for PFE (Pfeizer) stock.

A Proofs

A.1 Proof of Proposition 3.2.

We shall need the following standard result that can easily be shown using the moment

generating function for Poisson integrals (see, e.g., (Cont & Tankov, 2004, Chapter 2)):

Lemma A.1 Suppose that M is a Poisson random measure on an open domain of Rd

with mean measure m and let M̄(f) =
∫
f(z)(M − m)(dz) denote the integral of f with

respect the compensated random measure M̄ = M −m. If m(|f |k) :=
∫
|f(z)|km(dz) <∞,
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for k = 1, . . . , 5, then E
(
M̄(f)k

)
= m(fk), for k = 2, 3, E

(
M̄(f)4

)
= 3m(f 2)2 + m(f 4),

and E
(
M̄(f)5

)
= 10m(f 2)m(f 3) + m(f 5). Similarly, E

(
M̄(g)M̄(f)k

)
= m(gfk) and

E
(
M̄(g)M̄(f)3

)
= m(gf 3) + 3m(f 2)m(gf).

Lemma A.2 Let M be the jump measure of a Lévy process X with Lévy measure ν (i.e.,

M((s, t) × B) := #{u ∈ (s, t) : ∆Xu ∈ B}, for any s < t and B ∈ B(Rd)), and let

M̄(dt, dx) := M(dt, dx)−dtν(dx) be the corresponding compensated measure. Also, suppose

that f is such that
∫
|f(x)|kν(dx) <∞ for some k ≥ 2. Then, there exists a constant Ak(f)

such that, for any T ≥ 1,

E
∣∣∣∣ 1

T

∫ T

0

∫
f(x)M̄(dt, dx)

∣∣∣∣k ≤ Ak(f)T−k/2.

Proof. Throughout the proof, let M̄s,t(f) :=
∫ t
s

∫
f(x)M̄(dt, dx) and let [T ] be the integer

part of T . We need the following classical inequality (see (Bickel & Doksum, 2001, Lemma

5.3.1)):

E|Z̄n − µZ |k ≤ CkE|Z1|kn−k/2, (A.1)

where Z̄n = 1
n

∑n
i=1 Zi, µZ = EZ1, and {Zi}i are i.i.d. such that E|Z1|k < ∞. First, note

that

E
∣∣∣∣ 1

T
M̄0,T (f)

∣∣∣∣k ≤ 2kE
∣∣∣∣ [T ]

T

1

[T ]
M̄0,[T ] (f)

∣∣∣∣+ 2k
1

T k
E
∣∣M̄[T ],T (f)

∣∣k .
For the first term on the right-hand side above, we apply (A.1) with Zi := M̄i−1,i(f),

which are i.i.d. because M is a Poisson random measure. For the second term, we apply

Burkholder-Davis-Gundy inequality (see Protter (2004)) to get,

E
∣∣∣∣∫ T

[T ]

∫
f(x)M̄(dt, dx)

∣∣∣∣k ≤ Bk
kE
∣∣∣∣∫ 1

0

∫
f 2(x)M(dt, dx)

∣∣∣∣k/2 .
This completes the proof. 2

Proof of Proposition 3.2. Throughout the proof, M denotes the jump measure of

the Lévy process X; i.e., M((s, t) × B) := #{u ∈ (s, t) : ∆Xu ∈ B}, for any s < t and

B ∈ B(R). In particular, let us note that M is Poisson random measure with mean measure

dtν(dx) and
∑

t≤T (∆Xt)
` =

∫ t
0

∫
x`M(dt, dx). Let also M̄(dt, dx) := M(dt, dx) − dtν(dx)

be the corresponding compensated measure. Let us start by noting the identity

1

(1 + x)2
=

k−1∑
i=0

(−1)i(i+ 1)xi +
(−1)kxk

(1 + x)2
(k + 1 + kx), (A.2)
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and the notation

µ̂
(T )
k :=

1

T

∫ T

0

∫
xkM(dt, dx), D̂T :=

µ̂
(T )
2

c2(X1)
− 1.

In particular, κ̂(T ) = (1/3)µ̂
(T )
4 /(µ̂

(T )
2 )2. Then, we have the following decomposition:

Eκ̂(T ) =
1

3c2
2(X1)

E

{
µ̂

(T )
4

(1 + D̂T )2

}
=

1

3c2
2(X1)

E
{
µ̂

(T )
4

(
1− 2D̂T + 3D̂2

T − 4D̂3
T + 5D̂4

T − 6D̂5
T

)}
+

1

3
E
{
µ̂

(T )
4

(
µ̂

(T )
2

)−2 (
7 + 6D̂T

)
D̂6
T

}
=: LT +RT .

Let us first analyze the residual term RT using the following easy consequence of the triangle

inequality:

(µ̂
(T )
4 )1/2 =

1

T 1/2

(∑
s≤T

(∆Xs)
4

)1/2

≤ 1

T 1/2

∑
s≤T

(∆Xs)
2 = T 1/2µ

(T )
2 . (A.3)

Thus, since 7 + 6D̂T = 1 + 6(1 + D̂T ) = 1 + 6µ̂
(T )
2 /c2(X1) > 0, we have that

0 ≤ RT ≤
7T

3
E
(
D̂6
T

)
+

6T

3
E
(
D̂7
T

)
=

7T

3c6
2(X1)

E
(
µ̂

(T )
2 − c2(X1)

)6

+
6T

3c7
2(X1)

E
(
µ̂

(T )
2 − c2(X1)

)7

.

Using that Eµ̂(T )
2 = c2(X1) and Lemma A.2, RT = O(T−2). Similarly, using Lemma A.1,

the first four terms of LT (i.e. those multiplying D̂i
T up to i = 3) are given by

c4(X1)

3c2
2(X1)

− 2c6(X1)

3c3
2(X1)

T−1 +
c2

4(X1)

c4
2(X1)

T−1 +O(T−2).

The last two term of LT can be seen to be O(T−2) from Lemma A.2 and Cauchy inequality.

Indeed, ∣∣∣Eµ̂(T )
4 D̂4

T

∣∣∣ ≤ c4(X1)
∣∣∣ED̂4

T

∣∣∣+
1

c4
2(X1)

∣∣∣∣E(µ̂(T )
4 − c4(X1)

)(
µ̂

(T )
2 − c2(X1)

)4
∣∣∣∣

≤ Kc2T
−2 +

(
E
(
µ̂

(T )
4 − c4(X1)

)2

E
(
µ̂

(T )
2 − c2(X1)

)8
)1/2

,
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which is O(T−2) in light of Lemma A.2. We finally obtain that

Eκ̂n
n→∞−→ Eκ̂(T ) =

c4(X1)

3c2
2(X1)

− 2c6(X1)

3c3
2(X1)

T−1 +
c2

4(X1)

c4
2(X1)

T−1 +O(T−2).

In order to show the bound for the variance, we use again (A.2) to get

κ̂(T ) =
µ̂

(T )
4

3c2
2(X1)

(
1− 2D̂T + 3D̂2

T − 4D̂3
T

)
+

1

3

µ̂
(T )
4(

µ̂
(T )
2

)2

(
5 + 4D̂T

)
D̂4
T .

Then,

κ̂(T ) − c4(X1)

3c2
2(X1)

=
1

3c2
2(X1)

(
µ̂

(T )
4 − c4(X1)

)
− 2µ̂

(T )
4

3c2
2(X1)

D̂T +
µ̂

(T )
4

c2
2(X1)

D̂2
T

− 4µ̂
(T )
4

3c2
2(X1)

D̂3
T +

1

3

µ̂
(T )
4(

µ̂
(T )
2

)2

(
5 + 4D̂T

)
D̂4
T .

After expanding the squares, taking expectations both sides, and using Cauchy’s inequality

together with Lemmas A.1 and A.2, one can check that all the terms are at least O(T−2)

except possibly the following terms:

1

9c4
2(X1)

E
{(

µ̂
(T )
4 − c4(X1)

)2
}
− 4

9c4
2(X1)

E
{(
µ̂

(T )
4 − c4(X1)

)
µ̂

(T )
4 D̂T

}
+

4

9c4
2(X1)

E
{

(µ̂
(T )
4 )2D̂2

T

}
.

Subtracting c4(X1) from µ̂
(T )
4 in the second and third terms above, and using again Lemmas

A.1 and A.2, we can check that the above expression indeed coincides with the expression

in (3.9). 2

A.2 Proofs of Section 4.

Proof of Theorem 4.3. Throughout we write Ti for Ti,K . Clearly,

Var
(
σ̂2
n,K

)
=

2

K2

∑
1≤i<j≤K

1

TiTj
Cov

(
[X̃, X̃]G

(i)
n

2 , [X̃, X̃]G
(j)
n

2

)
+

1

K2

K∑
i=1

1

T 2
i

Var
(

[X̃, X̃]G
(i)
n

2

)
.

(A.4)
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Each covariance in the first term on the right hand side above is given by

Ai,j := Cov
(

[X̃, X̃]G
(i)
n

2 , [X̃, X̃]G
(j)
n

2

)
=

ni−1∑
q=0

nj−1∑
r=0

Cov

(∣∣∣X̃(ti−1+(q+1)K)− X̃(ti−1+qK)
∣∣∣2 , ∣∣∣X̃(tj−1+(r+1)K)− X̃(tj−1+rK)

∣∣∣2)
= niC ((K + i− j)δn) + (nj − 1)C ((j − i)δn) ,

where, for any u < t < t + δ < v, C(δ) := Cov

(∣∣∣X̃(t+ δ)− X̃(u)
∣∣∣2 , ∣∣∣X̃(v)− X̃(t)

∣∣∣2) ,
which can be proved to depend only on δ > 0. More specifically, note that C(δ) =

Cov
(
|S + U |2 , |S + V |2

)
, where S := X(t+ δ)−X(t), U := X(t)−X(u) + εt+δ − εu, and

V := X(v)−X(t+ δ) + εv − εt. Next, using that independence of S, U , and V ,

C(δ) = Var
(
S2
)

+ 2Cov
(
S2, SV

)
+ 2Cov

(
SU, S2

)
+ 4Cov (SU, SV )

= Var
(
S2
)

+ 2E(V )Cov
(
S2, S

)
+ 2E(U)Cov

(
S, S2

)
+ 4E(U)E(V )Var (S) .

Finally, using that EU = EV = 0 as well as the moment formulas in (3.1), C(δ) = Var (S2)

is given by C(δ) = 2σ4δ2 + 3σ4κδ. Using the previous formula together with the fact that

|n(nj−1)

Kninj
− 1| ≤ U K

n
and | n

Knj
− 1| ≤ U K

n
for some constant U (independent of n, K, i, T ,

and j), the first term in (A.4), which we denote A, can be computed as follows:

A =
2n

K3T 2

∑
1≤i<j≤K

(
2σ4(j − i)2δ2

n + 3σ4κ(j − i)δn
)

+
2n

K3T 2

∑
1≤i<j≤K

(
2σ4(K + i− j)2δ2

n + 3σ4κ(K + i− j)δn
)

+R

=
n

K

K − 1

KT 2

(
3σ4κKδn +

2

3
σ4K(2K − 1)δ2

n

)
+R1,

where R is such that

|R1| ≤
2U(K − 1)

KT 2

(
3σ4κKδn +

2

3
σ4K(2K − 1)δ2

n

)
. (A.5)
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Now, we consider the second term in (A.4), which we denote B. Each variance term of B

can be written as

Bi := Var
(

[X̃, X̃]G
(i)
n

2

)
=

ni−1∑
q=0

Var

(∣∣∣X̃(ti−1+(q+1)K)− X̃(ti−1+qK)
∣∣∣2)

+ 2

ni−2∑
q=0

Cov

(∣∣∣X̃(ti−1+(q+1)K)− X̃(ti−1+qK)
∣∣∣2 , ∣∣∣X̃(ti−1+(q+2)K)− X̃(ti−1+(q+1)K)

∣∣∣2) .
Next, using the relationships

Var

(∣∣∣X̃(t+ δ)− X̃(t)
∣∣∣2) = 2σ4δ2 + 3σ4κδ + 8σ2E

(
ε2
)
δ + 2E

(
ε2
)2

+ 2E
(
ε4
)

Cov

(∣∣∣X̃(t+ δ)− X̃(t)
∣∣∣2 , ∣∣∣X̃(v)− X̃(t+ δ)

∣∣∣2) = E
(
ε4
)
− E

(
ε2
)2
,

valid for any t < t+ δ < v, we get

Bi = ni
(
2σ4 (Kδn)2 + 3σ4κ (Kδn) + 8σ2E

(
ε2
)

(Kδn)
)

+ 2(2ni − 1)E
(
ε4
)

+ 2E
(
ε2
)2
.

(A.6)

Therefore, using that |1/ni−K/n| ≤ UK2/n2 and |1/n2
i−K2/n2| ≤ UK3/n3, for a constant

U independent of i, K, n, and T , we have B = C1 − C2 +R2, where

C1 =
n

K2T 2

(
2σ4 (Kδn)2 + 3σ4κ (Kδn) + 8σ2E

(
ε2
)

(Kδn) + 4E
(
ε4
))
,

C2 =
2

KT 2

(
E
(
ε4
)
− E

(
ε2
)2
)
,

and R2 = Ou ((K/n)C1) = Ou ((K/n)C2). Putting together A and B above,

Var
(
σ̂2
n,K

)
=

n

K

K − 1

KT 2

(
3σ4κKδn +

2

3
σ4K(2K − 1)δ2

n

)
+

n

K2T 2

(
2σ4 (Kδn)2 + 3σ4κ (Kδn) + 8σ2E

(
ε2
)

(Kδn) + 4E
(
ε4
))

− 2

KT 2

(
E
(
ε4
)
− E

(
ε2
)2
)

+R1 +R2. (A.7)

Recalling that δn = T/n and using (A.5), we get the expression (4.14). 2

Proof of Proposition 4.5. Let aK := K
K−1

and bK := 1
T (K−1)

. Clearly,

Var
(
ˆ̄σ2
n,K

)
= a2

KVar
(
σ̂2
n,K

)
+ b2

KVar
(

[X̃, X̃]Ḡn2

)
− 2aKbKCov

(
σ̂2
n,K , [X̃, X̃]Ḡn2

)
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From the expressions in Eqs. (A.6)-(A.7), we have

Var
(

[X̃, X̃]Ḡn2

)
= n

(
2σ4δ2

n + 3σ4κδn + 8σ2E
(
ε2
)
δn
)

+ 2(2n− 1)E
(
ε4
)

+ 2E
(
ε2
)2

Var
(
σ̂2
n,K

)
=

n

K

K − 1

KT 2

(
3σ4κKδn +

2

3
σ4K(2K − 1)δ2

n

)
+
n−K + 1

K2T 2

(
2σ4 (Kδn)2 + 3σ4κ (Kδn) + 8σ2E

(
ε2
)

(Kδn) + 4E
(
ε4
))

− 2

KT 2

(
E
(
ε4
)
− E

(
ε2
)2
)

+R1 +R2.

To compute the last covariance, let us first note that

Cov
(
σ̂2
n,K , [X̃, X̃]Ḡn2

)
=

1

K

K∑
i=1

1

Ti
Cov

(
[X̃, X̃]G

(i)
n

2 , [X̃, X̃]Ḡn2

)
=:

1

K

K∑
i=1

1

Ti
Bi. (A.8)

Each covariance term on the right hand side above can be computed as

Bi =

ni−1∑
q=0

n−1∑
r=0

Cov

(∣∣∣X̃(ti−1+(q+1)K)− X̃(ti−1+qK)
∣∣∣2 , ∣∣∣X̃(tr+1)− X̃(tr)

∣∣∣2)

= (ni − ei)
n−1∑
r=0

Cov

(∣∣∣X̃(ti−1+2K)− X̃(ti−1+K)
∣∣∣2 , ∣∣∣X̃(tr+1)− X̃(tr)

∣∣∣2)

+ ei

n−1∑
r=0

Cov

(∣∣∣X̃(tK)− X̃(t0)
∣∣∣2 , ∣∣∣X̃(tr+1)− X̃(tr)

∣∣∣2) ,
where above ei denote the number of subintervals in the set

{
[ti−1+qK , ti−1+(q+1)K ]

}ni−1

q=0

which intersect the end points 0 and T . Obviously,
∑K

i=1 ei = 2. Now, we use the following

formulas:

Cov
(
|X̃(v)− X̃(u)|2, |X̃(v′)− X̃(u′)|2

)
= 2σ4(v′ − u′)2 + 3κσ4(v′ − u′), u < u′ < v′ < v

Cov
(
|X̃(t)− X̃(s)|2, |X̃(u)− X̃(t)|2

)
= Eε4 − (Eε2)2, s < t < u.

We then get Bi = ni {K (2σ4δ2
n + 3κσ4δn) + 2(Eε4 − (Eε2)2)} − ei(Eε4 − (Eε2)2). Next,

Cov
(
σ̂2
n,K , [X̃, X̃]Ḡn2

)
=

n

KT

{
K
(
2σ4δ2

n + 3κσ4δn
)

+ 2(Eε4 − (Eε2)2)
}

+Ou

(
1

KT

)
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Putting together the previous relationships,

Var
(
ˆ̄σ2
n,K

)
= a2

KVar
(
σ̂2
n,K

)
+ b2

KVar
(

[X̃, X̃]Ḡn2

)
− 2aKbKCov

(
σ̂2
n,K , [X̃, X̃]Ḡn2

)
=

(
4σ4K

3n
+ 4

n

K2T 2
E(ε4)

)
+Ou

(
1

n

)
+Ou

( n

K3T 2

)
+

1

T 2K2

(
4nEε4

)
− 4n

T 2K2
(Eε4 − (Eε2)2) +Ou

(
1

TK

)
=

4σ4K

3n
+

4n (E (ε4) + (Eε2)2)

T 2K2
+Ou

(
1

n

)
+Ou

( n

K3T 2

)
+Ou

(
1

TK

)
.

2

Proof of Theorem 4.6. Let us first write the variance of the estimator as follows:

Var (κ̂n,K) =
2

9σ8K2

∑
1≤i<j≤K

1

TiTj
Cov

(
[X̃, X̃]G

(i)
n

4 , [X̃, X̃]G
(j)
n

4

)
+

1

9σ8K2

K∑
i=1

1

T 2
i

Var
(

[X̃, X̃]G
(i)
n

4

)
=: A+B. (A.9)

Let us first note that we can replace 1/(TiTj) = 1/(K2δ2
nninj) with 1/T 2 for any 1 ≤ i ≤

j ≤ K, since |1/(ninj) −K2/n2| ≤ UK3/n3, for a constant U independent of i, j,K, n, T ,

and, thus, ∣∣∣∣ 1

TiTj
− 1

T 2

∣∣∣∣ ≤ U
K

T 2n
. (A.10)

Next, each covariance in the first term of (A.14) can be computed as:

Ai,j := Cov
(

[X̃, X̃]G
(i)
n

4 , [X̃, X̃]G
(j)
n

4

)
=

ni−1∑
q=0

nj−1∑
r=0

Cov

(∣∣∣X̃(ti−1+(q+1)K)− X̃(ti−1+qK)
∣∣∣4 , ∣∣∣X̃(tj−1+(r+1)K)− X̃(tj−1+rK)

∣∣∣4)
= niCov

(∣∣∣X̃(ti−1+K)− X̃(ti−1)
∣∣∣4 , ∣∣∣X̃(tj−1+K)− X̃(tj−1)

∣∣∣4)
+ (nj − 1)Cov

(∣∣∣X̃(ti−1+2K)− X̃(ti−1+K)
∣∣∣4 , ∣∣∣X̃(tj−1+K)− X̃(tj−1)

∣∣∣4)
= niC ((j − i)δn, (K + i− j)δn, (j − i)δn)

+ (nj − 1)C ((K + i− j)δn, (j − i)δn, (K + i− j)δn) ,

where, for any t, s1, s2, s3 > 0,

C(s1, s2, s3) := Cov

(∣∣∣X̃t+s1+s2 − X̃t

∣∣∣4 , ∣∣∣X̃t+s1+s2+s3 − X̃t+s1

∣∣∣4) , (A.11)
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which again can be proved to be independent of t. Concretely, with the notation S :=

Xt+s1+s2 − Xt+s1 , U := Xt+s1 − Xt + εt+s1+s2 − εt, and V := Xt+s1+s2+s3 − Xt+s1+s2 +

εt+s1+s2+s3 − εt+s1

C(s1, s2, s3) = Cov
(
|S + U |4 , |S + V |4

)
= Var

(
S4
)

+ 6
[
E(U2) + E(V 2)

]
Cov

(
S4, S2

)
+ 36E(U2)E(V 2)Var

(
S2
)

+ 16E(U3)E(V 3)Var (S)

where above we used the independence of S, U , and V as well as the fact that EU = EV =

ESk = 0 for any odd positive integer k. Upon computation of the relevant moments of U

and V , we get

C(s1, s2, s3) = Var
(
X4
s2

)
+ 6

[
σ2(s1 + s3) + 4Eε2

]
Cov

(
X4
s2
, X2

s2

)
+ 62

(
σ2s1 + 2Eε

) (
σ2s3 + 2Eε

)
Var

(
X2
s2

)
+ 42

(
2Eε3

)2
Var (Xs2) . (A.12)

Note that

EXk
s = E

(
(σWτs)

k
)

= σkE
(
W k

1

)
E
(
τ k/2s

)
= σkE

(
W k

1

)sk/2 +

k/2−1∑
i=1

ak,is
i

 ,

for some constant ak,i’s. We now proceed to analyze each term separately:

• The contribution to A due to Var
(
X4
s2

)
can be written as:

A(1) :=
n

K

2

9σ8K2

∑
1≤i<j≤K

1

TiTj
Var

(
X4

(K+i−j)δn

)
+
n

K

2

9σ8K2

∑
1≤i<j≤K

1

TiTj
Var

(
X4

(j−i)δn

)
.

Using (A.10) and that Var (X4
t ) is a polynomial of degree 4 in t with the highest-degree

term being 96σ8t4,

A(1) =
n

K

192δ4
n

9K2T 2

( ∑
1≤i<j≤K

(K + i− j)4 +
∑

1≤i<j≤K

(j − i)4 +O
(
K5
))

=
192

5(9)

T 2K3

n3
+O

(
T 2K2

n3

)
.

• Let us analyze the contribution to A due to Var
(
X2
s2

)
. Using again (A.10) and the
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variance formula in (3.1), the leading term is given by:

A(2) := 62 n

K

2

9σ8K2

∑
1≤i<j≤K

1

TiTj

(
σ2(j − i)δn

)2
Var

(
X2

(K+i−j)δn

)
+ 62 n

K

2

9σ8K2T 2

∑
1≤i<j≤K

(
σ2(K + i− j)δn

)2
Var

(
X2

(j−i)δn

)
= 62 n

K

2

9σ8K2T 2

∑
1≤i<j≤K

(
σ2(j − i)δn

)2 (
3σ4κ(K + i− j)δn + 2σ4(K + i− j)2δ2

n

)
+ 62 n

K

2

9σ8K2T 2

∑
1≤i<j≤K

(
σ2(K + i− j)δn

)2 (
3σ4κ(j − i)δn + 2σ4(j − i)2δ2

n

)
=

(6)(4)(13)

5(9)

T 2K3

n3
+O

(
T 2K2

n3

)

• The contribution to A due to Cov
(
X4
s2
, X2

s2

)
has the following leading term:

A(3) := 6
n

K

2

9σ8K2T 2

∑
1≤i<j≤K

(
2σ2(j − i)δn

)
Cov

(
X2

(K+i−j)δn , X
4
(K+i−j)δn

)
+ 6

n

K

2

9σ8K2T 2

∑
1≤i<j≤K

(
2σ2(K + i− j)δn

)
Cov

(
X2

(j−i)δn , X
4
(j−i)δn

)
=

122(2)

(5)(4)(9)

T 2K3

n3
+O

(
T 2K2

n3

)
where above we used that Cov (X2

s , X
4
s ) = EX6

s − E(X2
s )E(X4

s ) = 12σ6s3 + h.o.t.,

where h.o.t. mean higher order terms.

• Finally, the contribution to A due to Var (Xs2) will generate a term of smaller order

than T 2K3/n3. Indeed,

A(4) := 42
(
2Eε3

)2 n

K

2

9σ8K2T 2

∑
1≤i<j≤K

(
Var

(
X(K+i−j)δn

)
+ Var

(
X(j−i)δn

))
=

42

9

(
2Eε3

)2 1

σ6T
.

Putting together the above relationships,

A =
192

5(9)

T 2K3

n3
+

(6)(4)(13)

5(9)

T 2K3

n3
+

62(2)

5(9)

T 2K3

n3
+ +O

(
T 2K2

n3

)
=

576

5(9)

T 2K3

n3
+O

(
T 2K2

n3

)
.
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Now, we consider the second term in (A.14), which we denote B. Each variance term,

Bi := Var
(
[X̃, X̃]G

(i)
n

4

)
, of B can be written as

Bi =

ni−1∑
q=0

Var

(∣∣∣X̃(ti−1+(q+1)K)− X̃(ti−1+qK)
∣∣∣4)

+ 2

ni−2∑
q=0

Cov

(∣∣∣X̃(ti−1+(q+1)K)− X̃(ti−1+qK)
∣∣∣4 , ∣∣∣X̃(ti−1+(q+2)K)− X̃(ti−1+(q+1)K)

∣∣∣4) .
Next, using arguments similar to those following (A.11),

Var

(∣∣∣X̃t+s − X̃t

∣∣∣4) = Var
(
|Xt+s −Xt|4

)
+ h.o.t. = 96σ8s4 + h.o.t., (A.13)

Cov

(∣∣∣X̃(t+ s1)− X̃(t)
∣∣∣4 , ∣∣∣X̃(t+ s1 + s2)− X̃(t+ s1)

∣∣∣4) = −36σ4Eε2s1s2 + h.o.t.

valid for any t, s1, s2 > 0 and where, again, h.o.t. means higher order terms. Therefore,

Bi = ni
(
96σ8 (Kδn)4)+ h.o.t. and, thus,

B =
96

9

K2T 2

n3
+ h.o.t.,

which shows that B = O(T 2K2/n3). Finally,

Var (κ̂n,K) =
576

5(9)

T 2K3

n3
+

96

9

K2T 2

n3
+O

(
KT

n2

)
,

which implies the result. 2

Proof of Theorem 4.7. Let aK := K
K−1

, bK := 1
3σ4T (K−1)

, and cK := 2
nσ2 so that

Var
(
ˆ̄κn
)

= a2
KVar (κ̂n,K) + b2

KVar
(

[X̃, X̃]Ḡn4

)
+ c2

KVar
(

[X̃, X̃]Ḡn2

)
− 2aKbKCov

(
κ̂n,K , [X̃, X̃]Ḡn4

)
− 2aKcKCov

(
κ̂n,K , [X̃, X̃]Ḡn2

)
+ 2bKcKCov

(
[X̃, X̃]Ḡn4 , [X̃, X̃]Ḡn2

)
As in the case of the variance of ˆ̄σn,K , we are looking for the terms having the highest

power of K and the terms with the highest power of n (and the least negative power of K).

For Var (κ̂n,K), the highest power of K is given in Eq. (4.23). To find the highest power of

n, we recall from the proof of Theorem 4.6 that the variance can be decomposed into two

terms, called A and B therein. The term with the highest power n in A is due to the term

42(2Eε3)2Var(Xs2) in (A.12) and is of order n0. In order to determine the term with the
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highest power of n in B, note that this will be due to the constant terms of the variance

and covariance in Eqs. (A.13). These are given by

Var

(∣∣∣X̃t+s − X̃t

∣∣∣4) = Var
(
(ε2 − ε1)4

)
+ h.o.t., (A.14)

Cov

(∣∣∣X̃(t+ s1)− X̃(t)
∣∣∣4 , ∣∣∣X̃(t+ s1 + s2)− X̃(t+ s1)

∣∣∣4) = Cov
(
|ε2 − ε1|4 , |ε3 − ε2|4

)
+ h.o.t.

where h.o.t. means higher order term (as powers of s, s1, and s2). These terms contribute

to B as follows:

B :=
1

9σ8K2T 2

K∑
i=1

Var
(

[X̃, X̃]G
(i)
n

4

)
=

n

9σ8K2T 2
d(ε) + h.o.t.,

where d(ε) := Var ((ε2 − ε1)4)+2Cov
(
|ε2 − ε1|4 , |ε3 − ε2|4

)
. Now we consider b2

KVar
(

[X̃, X̃]Ḡn4

)
.

As done with B, the term with the highest degree in n is n
9σ8T 2K2d(ε). Clearly, all the terms

in c2
KVar

(
[X̃, X̃]Ḡn2

)
are of higher order than n/(T 2K2). To compute Cov

(
κ̂2
n,K , [X̃, X̃]Ḡn4

)
,

let us first note that

Cov
(
κ̂n,K , [X̃, X̃]Ḡn4

)
=

1

3σ4K

K∑
i=1

1

Ti
Cov

(
[X̃, X̃]G

(i)
n

4 , [X̃, X̃]Ḡn4

)
. (A.15)

Each covariance term on the right hand side above, which is denoted Bi, is given by

Bi =

ni−1∑
q=0

n−1∑
r=0

Cov

(∣∣∣X̃(ti−1+(q+1)K)− X̃(ti−1+qK)
∣∣∣4 , ∣∣∣X̃(tr+1)− X̃(tr)

∣∣∣4)

= (ni − ei)
n−1∑
r=0

Cov

(∣∣∣X̃(ti−1+2K)− X̃(ti−1+K)
∣∣∣4 , ∣∣∣X̃(tr+1)− X̃(tr)

∣∣∣4)

+ ei

n−1∑
r=0

Cov

(∣∣∣X̃(tK)− X̃(t0)
∣∣∣4 , ∣∣∣X̃(tr+1)− X̃(tr)

∣∣∣4) ,
where above ei denote the number of subintervals in

{
[ti−1+qK , ti−1+(q+1)K ]

}ni−1

q=0
which

intersect the end points 0 and T . Now, it turns out that

Cov
(
|X̃(v)− X̃(u)|4, |X̃(v′)− X̃(u′)|4

)
� n−1, u < u′ < v′ < v (A.16)

Cov
(
|X̃(t)− X̃(s)|4, |X̃(u)− X̃(t)|4

)
= Cov

(
|ε2 − ε1|4, |ε3 − ε2|4

)
=: g(ε), s < t < u,

where here an � bn means limn→∞ an/bn ∈ R\{0}. We then conclude that Bi = 2nig(ε)−

eig(ε) + h.o.t.. Then, it is clear that

Cov
(
κ̂n,K , [X̃, X̃]Ḡn4

)
=

2

3σ4

n

TK
g(ε) + h.o.t.
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Therefore, the contribution here is − 4n
9σ8T 2K2 g(ε). Given that cK is of order n−1, it is

not hard to see that the term −2aKcKCov
(
κ̂n,K , [X̃, X̃]Ḡn2

)
is of an order smaller than n.

Finally, consider the term corresponding to Dn := Cov
(

[X̃, X̃]Ḡn4 , [X̃, X̃]Ḡn2

)
. Note that

Dn =
n−1∑
q=0

n−1∑
r=0

Cov

(∣∣∣X̃tq+1 − X̃tq

∣∣∣4 , ∣∣∣X̃tr+1 − X̃tr

∣∣∣2)
= n

(
Cov

(∣∣∣X̃t1 − X̃t0

∣∣∣4 , ∣∣∣X̃t1 − X̃t0

∣∣∣2)+ 2Cov

(∣∣∣X̃t1 − X̃t0

∣∣∣4 , ∣∣∣X̃t2 − X̃t1

∣∣∣2))
− 2Cov

(∣∣∣X̃t1 − X̃t0

∣∣∣4 , ∣∣∣X̃t2 − X̃t1

∣∣∣2)
Using (A.16), it is clear that Dn � n. Hence,

2bKcKCov
(

[X̃, X̃]Ḡn4 , [X̃, X̃]Ḡn2

)
� 2

3σ4TK
.

Finally, we obtain that

Var
(
ˆ̄κn,K

)
=

64

5

T 2K3

n3
+

n

9σ8K2T 2
d(ε) +

n

9σ8T 2K2
d(ε)− 4n

9σ8T 2K2
g(ε) + h.o.t.

which implies the result. 2
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