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Empirical Bayes estimation of semi-parametric hierarchical mixture models  

for unbiased characterization of polygenic disease architectures 

 

 

 Abstract 

Genome-wide association studies (GWAS) suggest that the genetic architecture of complex 

diseases consists of unexpectedly numerous variants with small effect sizes. However, the 

polygenic architectures of many diseases have not been well characterized due to lack of 

simple and fast methods for unbiased estimation of the underlying proportion of 

disease-associated variants and their effect-size distribution. Applying empirical Bayes 

estimation of semi-parametric hierarchical mixture models to GWAS summary statistics, we 

confirmed that schizophrenia was extremely polygenic (~40% risk variants of independent 

genome-wide SNPs, most within odds ratio (OR)=1.03), whereas rheumatoid arthritis was less 

polygenic (~4 to 8% risk variants, significant portion reaching OR=1.05 to 1.1). For rheumatoid 

arthritis, stratified estimations revealed that expression quantitative loci in blood explained 

large genetic variance, and low- and high-frequency derived alleles were prone to be risk and 

protective, respectively, suggesting a predominance of deleterious-risk and 

advantageous-protective mutation. Despite genetic correlation, effect-size distributions for 

schizophrenia and bipolar disorder differed across allele frequency. These analyses 

distinguished disease polygenic architectures and provided clues for etiological differences in 

complex diseases. 
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 Genome-wide association studies (GWAS) have identified numerous susceptibility 

variants for complex diseases1. The sets of variants identified from GWAS, however, can 

generally explain only a small proportion of the heritability estimated from family studies, the 

so called “missing heritability” problem2. Many researches have suggested that the variance 

explained by all SNPs in dense genotyping arrays, i.e., SNP heritability, often accounts for a 

large proportion of the family-based heritability3–11. 

Quantitative evaluation of the polygenic architecture, in particular, the estimation of 

the proportion of disease-associated SNPs and their effect-size distribution, is essential to 

further determine the source of observed heritability7,8,12–16. The estimation of these 

components also contributes to accurate power and sample size calculations of GWAS7,12,13,17–19 

and estimation of the predictive capability of disease risks12,15,16. 

However, we are still far from understanding the polygenic architecture of most 

complex diseases, because so far, there have been no feasible or fast methods to unbiasedly 

evaluate various polygenic architectures using the entire SNPs across the genome. Stahl et al. 

proposed estimating the proportion of disease-associated SNPs and the effect-size distribution 

using an approximate Bayesian polygenic analysis8. Its application, however, has been limited 

to few studies7,8 because of technical complexity and excess computational burden with many 

simulations. On the other hand, some authors estimated the effect-size distribution based on a 

power evaluation for SNPs reaching genome-wide significance13–15. This method, however, is to 

evaluate effect sizes only for those SNPs with relatively large effects, not all the 

disease-associated SNPs, requiring adjustment for the winner’s curse (selection bias in using 

top significant SNPs) in the effect-size estimation. 

To address the aforementioned limitations of the existing methods, we propose an 
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empirical Bayes estimation of semi-parametric hierarchical mixture models (SP-HMMs)20,21 of 

GWAS summary statistics on effect sizes, such as estimated log-odds ratios to associate 

genotypes with disease susceptibility (Online Methods). Mixture modelling refers to 

decomposing the underlying distribution of SNP-specific summary statistics into a non-null 

distribution for SNPs associated with disease occurrence, which corresponds to a signal 

component, and a null distribution for the remaining SNPs without association, which 

corresponds to a noise component, with a mixing probability or proportion of 

disease-associated SNPs, . For non-null distribution, semi-parametric hierarchical modelling 

incorporates standard asymptotic normality for summary statistics, while the true effect sizes 

follow a non-parametric prior distribution g. With an expectation-maximization (EM) 

algorithm22, we can unbiasedly estimate the prior probability  and distribution g using the 

data, i.e., empirical Bayes estimation. The empirical Bayes estimation of hierarchical mixture 

models is also applicable for SNP heritability estimation3 and adjustment for the winner's 

curse23. 

The features of our approach are summarized as follows: 1) the polygenic 

architecture for the entire set of SNPs, represented by  and g, can be flexibly and unbiasedly 

estimated, 2) it requires only summary data from GWAS (e.g., estimated log-odds ratios and 

standard error for individual SNPs are used), and 3) the estimation algorithm is easily 

implemented and fast. 

Throughout this paper, we fit the SP-HMM to summary data from 

meta-/mega-analyses for various diseases such as rheumatoid arthritis24, schizophrenia25, 

bipolar disorder26, and coronary artery disease27,28, to estimate the respective polygenic 

architectures and compare them across diseases. We also assess the liability-scale variance 

explained by SNPs based on this estimation. In order to obtain further insight into the 
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underlying polygenic architectures, our approach can be applied to SNPs belonging to 

important functional categories, such as expression quantitative trait loci (eQTL), coding, 

non-synonymous, promoter, 5’ or 3’ UTR, enhancer, and DNase I hypersensitivity sites29–32. We 

focus on eQTLs, as gene expression levels have been increasingly recognized as notable 

endophenotypes or important mediators between genetic variations and disease 

phenotypes29,30,33,34. Lastly, we also applied our method to GWAS data stratifying by derived 

allele frequency (DAF), rather than minor allele frequency (MAF)14,35,36. A minor allele with low 

MAF can represent an allele with high DAF possibly under positive selection, as well as an allele 

that is maintained at low DAF by negative selection. Thus, our DAF-based analysis facilitates 

interpretation from the perspective of population genetics37, possibly contributing to further 

understanding of the genetic etiology for complex diseases. 

 

RESULTS 

We first confirmed the adequacy of our estimation method in unbiasedly estimating the 

proportion of disease-associated SNPs, , and their effect-size distribution, g, in simulation 

experiments (Supplementary Note; Supplementary Table 1-2; Supplementary Fig. 1-17).The 

non-parametric estimation for g could flexibly capture various forms of the underlying 

effect-size distributions. 

For application to real GWAS datasets, we used publicly available summary statistics 

from large meta-/mega-GWAS for the four complex diseases (see Supplementary Tables 3 and 

4 for details of the GWAS data). In associating each genotype with disease susceptibility, we 

defined the effect size as a log-odds ratio of the derived allele relative to the ancestral allele, 

denoted by β. We obtained an estimate of β and its variance estimate from the summary data. 

The ancestral/derived alleles for each SNP were determined from dbSNP. 
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Estimated proportion of disease-associated SNPs and effect-size distribution 

To estimate the proportion of disease-associated SNPs, , and the effect-size distribution, g, 

based on independent SNPs, we used two pruned SNP sets: P-value-based and random-pruned 

sets. The P-value-based method preferentially selected SNPs with stronger associations (hence 

more closely linked to causal variants) while using other GWAS data to correct for selection 

bias (see Online Methods for details). The random-pruned method sampled SNPs randomly. In 

both methods, pruned SNPs with linkage disequilibrium (LD, 𝑟2 ≤ 0.1) were selected. Of note, 

one causal variant would not be redundantly tagged by SNPs in the pruned SNP sets, whereas 

not all causal variants would be well tagged by SNPs even in the P-value-based sets. Thus, the 

estimates �̂� × (the number of SNPs in the SNP sets) using the pruned sets would give 

conservative estimates of the number of causal variants. 

We fit the SP-HMM to the P-value-based pruned SNP sets in each GWAS (Table 1; Fig. 

1). For rheumatoid arthritis,  was estimated as 3.6% for Asian and 8.1% for European 

populations, which were lower than the other diseases. The estimates of  were larger for two 

psychiatric diseases: 43.0% for schizophrenia and 39.6% for bipolar disorder. For coronary 

artery disease, using CARDIoGRAM and C4D data,  was estimated to be 15.9% and 26.1%, 

respectively. 

With regard to the estimation of g, rheumatoid arthritis was shown to have a 

significant portion with larger effects, spanning to |β| = 0.05 (odds ratio of 0.95 or 1.05) or 

larger (Fig. 1). It is noteworthy that, for rheumatoid arthritis, the proportion of positive effects 

was clearly larger than that of negative effects, indicating that the derived alleles are more 

likely to be risk alleles for the disease. Bipolar disorder was also estimated to have a 

distribution with relatively large effects. In contrast, schizophrenia and coronary artery disease 
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was shown to have narrower distribution with very small effects. Schizophrenia was shown to 

have peaks around |β| = 0.05. 

The estimates of  for the random-pruned SNP sets were similar to those for the 

P-value-based SNP sets for each GWAS (Supplementary Table 5). For the estimation of 

effect-size distribution, �̂�, the absolute effect size, ||, tended to be slightly greater when using 

the P-value-based SNP sets than when using the random-pruned SNP set (Supplementary Fig. 

18). 

 

Liability-scale variance explained by SNPs 

Using the estimates of the polygenic architecture ( and g), together with disease prevalence 

and allele frequencies, we could immediately evaluate the liability-scale variance, V, explained 

by SNPs (i.e., SNP heritability). For evaluating V, the SP-HMM could directly model binary traits 

(i.e., disease occurrence) via log-odds ratios obtained from GWAS summary data. 

Using the P-value-based pruned SNP sets, for rheumatoid arthritis, the estimates of V 

were 14.0% for Asian and 20.2% for European data (Table 1). Based on the estimated variance 

of 12% explained by the major histocompatibility complex (MHC) region (removed from the 

SNP set) and family based heritability of 55% (Supplementary Table 1 of Stahl et al.8), SNPs 

explained 47.3% (= (0.14 + 0.12)/0.55) and 58.2% (= (0.20 + 0.12)/0.55) of the family based 

heritability for the Asian and European populations, respectively, which were generally 

consistent with the previous estimate of 65%8. The estimates of V in schizophrenia and bipolar 

disorder were 40.2% and 50%, respectively, which were higher but almost within the range of 

previously reported estimates of 23-43% and 37-47%, respectively, for these diseases5,7,9,10. 

For cardiovascular disease, the estimates of V from the CARDIoGRAM and C4D data were 

20.9% and 22.2%, respectively.  
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 The estimates of V for the P-value-based pruned SNP sets (Table 1) were greater than 

those for the random-pruned SNP sets, but the differences were not substantial except for 

bipolar disorder (Supplementary Table 5). 

 

Stratified estimation for eQTL/non-eQTL-SNPs 

In order to gain insights into mediator effects of gene expression level, we fit the SP-HMM to 

‘eQTL’ SNPs, detected as cis-eQTLs using peripheral blood samples38, and the remaining 

‘non-eQTL’-SNPs, separately (Fig. 2). All the SNPs in this analysis were selected to be nearly 

independent using a LD-pruning method based on LD (r2 > 0.1) (see Online Methods).  

For rheumatoid arthritis in Asian and European populations, the proportions of 

disease-associated SNPs in the eQTL-SNPs were estimated to be larger than that in the 

non-eQTL-SNPs (Fig. 2). In addition, the estimated effect-size distributions in terms of  g 

(frequencies in the entire set including both null and non-null SNPs) in Fig. 2 indicated that 

there was a significant portion of SNPs with large effects, |β| > 0.05, for the eQTL-SNPs, but a 

small portion for the non-eQTL-SNPs, suggesting that the set of eQTL-SNPs included more 

components with distinctive large effects for rheumatoid arthritis. For the other diseases, there 

was a tendency for the frequencies of disease-associated SNPs in the set of eQTL-SNPs to be 

larger than those of the non-eQTL-SNPs.  

We also estimated V for the eQTL-SNPs and non-eQTL-SNPs, separately 

(Supplementary Table 6). For rheumatoid arthritis, as expected from Fig. 2, the per-SNP 

variance for the eQTL-SNPs was much larger than for the non-eQTL-SNPs. Interestingly, 

although ‘eQTL’ was defined using European samples38, the enrichment of per-SNP variance 

(10.7-fold) in the eQTL-SNPs in the Asian population was larger than the 5.2-fold enrichment 

seen in the European population.  
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Estimation across derived allele frequencies 

The effect size estimation of GWAS data stratified with the derived allele frequency (DAF) could 

provide another perspective on polygenic architecture, which facilitates assessment based on 

population genetics (see Discussion). We classified all SNPs into five equally-sized DAF bins 

and estimated the effect-size distribution for each bin. For rheumatoid arthritis, the estimated 

distributions across the DAF bins were similar between Asian and European data (Figs. 3a, b). 

We observed peaks at positive effects, i.e., β > 0, for lower DAF bins, especially for DAF ≤ 0.2, 

and at negative effects for higher DAF bins, especially for DAF > 0.8. This indicates that 

low-frequency-derived and high-frequency-derived alleles are prone to act as risk and 

protective variants for disease occurrence, respectively. For coronary artery diseases, there was 

no substantial difference in the estimated effect-size distribution among DAF bins, compared 

with rheumatoid arthritis. For schizophrenia and bipolar disorder, we observed opposite 

tendencies: for schizophrenia, positive and negative effects were over-represented, especially 

at DAF < 0.2 and DAF > 0.8, respectively, whereas, for bipolar disorder, negative and positive 

effects were over-represented at DAF ≤ 0.2 and DAF > 0.8, respectively. 

 

DISCUSSION 

We have developed a simple and fast method for unbiasedly estimating the proportion of 

disease-associated variants and the effect-size distribution based on the empirical Bayes 

estimation of SP-HMM. The proposed method can effectively distinguish various polygenic 

architectures, including the degree of polygenicity, across diseases, and can also provide 

various perspectives of the polygenic architecture based on important variant categories such 

as DAF and eQTL. 
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Schizophrenia, which has been suspected to be highly polygenic39,40, was estimated to have ~ 

40% disease-associated variants with very small effects (most within |β| = 0.03) of 

independent SNPs in the genome (Table 1, Fig. 1, Supplementary Table 5, and Supplementary 

Fig. 19). This suggests at least ~ 40,000 causal variants exist in the genome, which does not 

contradict a recent study that estimated at least ~ 20,000 causal variants by a 

simulation-based method41. The highly polygenicity of schizophrenia have been also confirmed 

by the observation that local SNP heritability estimates in independent LD blocks for 

schizophrenia were the most ubiquitously distributed among seven complex diseases42. In 

contrast, rheumatoid arthritis was found to be less polygenic. Our estimates of , 3.6% for 

Asians and 8.1% for Europeans, were generally consistent with previous estimates of 2.7%8 or 

5.4%10 for Europeans, and the significant portion of the estimate for g ranged to |β| = 0.05 or 

even 0.1 (Table 1 and Fig. 1). In fact, the effect sizes of validated variants for rheumatoid 

arthritis were generally larger than those for schizophrenia24,25. Our estimate of g means that 

the effect sizes of variants that will be detected in future would also be relatively larger among 

complex diseases. For coronary artery disease, the degree of polygenicity was estimated to be 

between those of rheumatoid arthritis and the two psychiatric diseases. The estimate of  for 

CARDIoGRAM was larger than that for C4D particularly in the P-value based pruned SNP set. 

Since SNPs of C4D were pruned by using LD structure of European ancestry (see Online 

Method), LD remaining in Asian SNPs, possibly linked with one causal variant, might put 

upward the proportion of disease-associated SNP. 

In the rheumatoid arthritis stratification analysis based on eQTLs, we observed a high 

enrichment of per-SNP variance due to eQTLs determined by peripheral blood samples 

(Supplementary Table 6), similar to the enrichment on per-SNP variance by blood-specific 

DNaseI hypersensitivity sites (DHS)33, which were also strongly associated with expression 
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variation43. As peripheral blood samples include multiple types of leukocytes, the eQTLs have 

the potential to control immune-related gene expressions that are associated with the 

occurrence of rheumatoid arthritis. Although ‘eQTL’ was defined using European samples38, 

the enrichment of 10.7-fold in the Asian population was larger than the 5.7-fold enrichment 

observed in the European population. The same tendency has been observed for the validated 

100 non-MHC SNPs (Extended Data Fig. 5 in Okada et al.24). This might be explained by 

non-eQTL-SNPs with large effects, such as non-synonymous SNPs in genes PTPN22 (R620W) 

and TYK2 (P1104A), which exist in Europeans but are absent or exist to a lesser degree in 

Asian populations. Some eQTL-SNPs were estimated to have large effect size |β| > 0.05 (Fig. 2) 

in rheumatoid arthritis.  

The SP-HMM can also provide posterior effect-size estimates of individual SNPs based 

on the estimated genetic architecture, �̂� and �̂�.20,44 To evaluate individual eQTL-SNPs, we 

used the estimated genetic architecture as the prior and listed the top SNPs with larger 

posterior means of effect size, |β| > 0.05 (Supplementary Data Set 1). As this list includes 

eQTLs such as RNASET2 and ADO, which have not been previously linked to rheumatoid 

arthritis24, this approach might be effective for identifying disease associated eQTL-SNPs. For 

the other diseases, enrichments of per-SNP variance due to the eQTLs in peripheral blood cells 

were also observed. Since eQTL-SNPs are associated with immune-related gene expression, 

these observations were consistent with the fact that coronary artery disease is a chronic 

inflammatory disorder and that genetic overlap between immune diseases and schizophrenia 

has been previously reported45. However, it should be noted that precise estimation of the 

eQTL effects in these diseases needs additional eQTL data covering all the tissues and cells 

related to the diseases. 

Using DAF-stratified analysis for rheumatoid arthritis, we estimated more 
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risk/protective derived alleles in low/high DAF (Fig. 3). Simple models based on a theory of 

population genetics for DAF46 (see Supplementary Fig. 20) could help interpret results from 

the DAF analysis, and thus provide another perspective on the difference among diseases (see 

Supplementary Note for details). Among such models, the ‘deleterious-risk and 

advantageous-protective mutation’ model with weak selection was best fitted for rheumatoid 

arthritis (Supplementary Fig. 21). Because most of the risk genes for rheumatoid arthritis are 

implicated in immune system regulation24, these low- and high-derived alleles would tend to 

skew individual’s immune function towards either deleterious or beneficial directions. 

Meanwhile, this skewing may result in breaking the balance between immunity and tolerance, 

leading to rheumatoid arthritis.  

Although some authors have reported that bipolar disorder and schizophrenia share 

a large amount of genetic factors6,40, we observed opposite tendencies in the genetic 

architecture for these diseases: risk (protective) and protective (risk) derived alleles were 

over-represented, especially at DAF ≤  0.2 and DAF >  0.8 for schizophrenia (bipolar 

disorder) (Fig. 3). This paradoxical result was consistent with a previous report that, among 

low minor allele frequency (1-5%) SNPs, the R/P ratio (ratio of the number of detected 

variants with risk in minor allele to those with protective effect) for schizophrenia was 

significantly larger than one, while for bipolar disorder it was less than one (see Table 1 in 

Chan et al. 35). Again, applying the same population genetics models, it was found that both the 

‘deleterious-risk and advantageous-protective mutation’ and ‘deleterious-risk mutation’ 

models were better fitted for schizophrenia, whereas the ‘advantageous-risk and 

deleterious-protective mutation’ model was the best fitted for bipolar disorder 

(Supplementary Fig. 21). Recently, genetic correlations between creativity and both 

schizophrenia and bipolar disorder were reported, but they were much stronger for bipolar 
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disorder47,48. Taken together with our estimation, these results might provide a clue for 

resolving the shared and specific genetic etiologies between the two genetically related 

diseases. 

 Lastly, the SP-HMM and empirical Bayes method, which can provide fine 

characterization of genetic architecture, can also contribute to accurate power analysis of 

GWAS7,13 and estimation of predictive capability of disease risk15. The SP-HMM can also be 

extended to multi-dimensional settings, e.g., for quantification of sex in genetic architecture for 

a disease, or (antagonistic) pleiotropic genetic architecture in multiple diseases. This kind of 

multi-dimensional analysis is novel and could provide new perspectives on multi-dimensional 

genetic effects, e.g., through a two-dimensional visualization of effect-size distributions for 

schizophrenia and bipolar diseases. Such analyses will be reported in future reports. 
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ONLINE METHODS 

Semi-parametric hierarchical mixture model (SP-HMM)  

We defined the effect size, 𝛽𝑗, for the j-th SNP of the total m SNPs as the genotype log-odds 

ratio under the additive allele dosage model. We considered the dosage of ‘derived mutant’ 

alleles. Namely, the genotypes 𝐴𝐴, 𝐴𝑎, and 𝑎𝑎 in each SNP had dosages 𝑥𝑗  = 0, 1, and 2, 

respectively, where 𝑎 was the derived and A was the ancestral allele. 𝑌𝑗 = �̂�𝑗 was an estimate 

of log-odds ratio for the j-th SNP (e.g., the standard maximum likelihood estimate). For 𝑌𝑗’s, we 

assumed a mixture structure with two components, null and non-null SNPs, in terms of 

association with disease susceptibility. To be specific, 

𝑓𝑗(𝑦𝑗)   =    (1 − 𝜋)𝑓0𝑗(𝑦𝑗)      +      𝜋𝑓1𝑗(𝑦𝑗), 

where 𝑓0𝑗  and 𝑓1𝑗  are the probability densities for null and non-null SNPs, respectively, and  
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is the prior probability of being non-null. For null SNPs, we specified 𝑦𝑗  ~ 𝑓0𝑗(𝑦𝑗) = 𝑁 (0, �̂��̂�𝑗
) 

based on the asymptotic distribution of �̂�𝑗, where �̂��̂�𝑗
 is an empirical variance estimate of �̂�𝑗 

(e.g., the standard Wald-type variance estimate for �̂�𝑗). For non-null SNPs, we assumed the 

hierarchical structure: 𝑦𝑗|𝛽𝑗  ~ 𝑓1𝑗(𝑦𝑗|𝛽𝑗) = 𝑁 (𝛽𝑗 , �̂��̂�𝑗
)  and 𝛽𝑗  ~ 𝑔 , where the prior 

effect-size distribution g was unspecified. In this model, the standard asymptotic normality 

was assumed for �̂�𝑗  at the individual SNP level, while its true effect size j followed a 

non-parametric prior distribution g, forming a semi-parametric hierarchical mixture model 

(SP-HMM)20,21. The assumption that 𝑦𝑗’s are mutually independent would be reasonable for a 

set of LD-pruned SNPs. 

 

Empirical Bayes estimation 

We estimated the priors, 𝜋  and 𝑔 , in the SP-HMM based on the data by applying an 

expectation–maximization (EM) algorithm, called the smoothing-and-roughening algorithm22, 

to incorporate the non-parametric prior distribution g20,21. The non-parametric estimate of g 

was supported by fixed discrete mass points p = (p1, p2, ..., pB) at a series of nonzero points b = 

(b1, b2, ..., bB) (b1 < b2 <･･･< bB ). We specified a wide range for the mass points, such as b1 = –0.3 

to bB = 0.3 (0.74 to 1.35 in odds ratio), to support the effect-size distributions in many complex 

diseases. We set the number grid points as 120, such that b = (–0.300, –0.295, …, –0.005, 0.005, 

…, 0.295, 0.300). The initial value of 𝜋, 𝜋𝑖𝑛𝑖𝑡 , and the initial distribution of g, 𝑔𝑖𝑛𝑖𝑡 , were 

determined sequentially. Setting g to be uniformly distributed (i.e., pi=1/B for all i), the EM 

procedures for candidate initial values, 𝜋 = 0.1, 0.2, ..., or 0.9, were ran 200 times and the 

value of estimated 𝜋 with maximum likelihood was selected as 𝜋𝑖𝑛𝑖𝑡 . Then setting g to be 

uniformly distributed again, we got 𝑔𝑖𝑛𝑖𝑡  by the EM procedure with fixed 𝜋 = 𝜋𝑖𝑛𝑖𝑡(the EM 

iterations were stopped when the relative change of 𝜋 in one iteration was small < 0.005 % or 
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until 200 iterations). Setting 𝑔 = 𝑔𝑖𝑛𝑖𝑡  and 𝜋 = 𝜋𝑖𝑛𝑖𝑡 , the final (main EM algorithm was 

stopped after at least 2000 iterations when the relative changes in the estimate of  in one 

iteration were small (< 0.005 %) or iterations reached 2000 times. We applied a parametric 

bootstrap method based on the estimated SP-HMM to estimate standard errors of the estimate 

for 𝜋. 

 

Liability-scale variance explained by SNPs 

As shown by So et al 49, the log odds ratio, 𝛽𝑗, together with the allele frequency and the 

disease prevalence, were transformed to the variance explained by the j-th SNP, denoted as vj, 

in the liability threshold model. In the liability threshold model, we assumed that an underlying 

liability to disease follows a normal distribution and individuals that exceeded a threshold of 

liability, T, were affected with the disease. Individuals with the genotypes of AA, Aa, and aa at 

the j-th locus had liability distributions with different means, but the same residual variance. 

We let 𝑝𝑗 be the derived allele frequency and ℎ𝑗,𝑥𝑗
 be the frequency of genotype 𝑥𝑗  (𝑥𝑗 =

0, 1, 2) in the general population. Assuming the Hardy-Weinberg equilibrium in the population, 

the genotype frequencies are given by ℎ𝑗,0 = (1 − 𝑝𝑗)2, ℎ𝑗,1 = 2𝑝𝑗(1 − 𝑝𝑗), and ℎ𝑗,2 = 𝑝𝑗
2 . 

Using the overall mean liability, 𝜇𝑎𝑙𝑙 , and the mean liabilities of genotype 𝑥𝑗 , 𝜇𝑗,𝑥𝑗
, the 

variance explained by j-th SNP is given by 

𝑣𝑗
∗ = ∑ ℎ𝑗,𝑥𝑗

 (𝜇𝑗,𝑥𝑗
− 𝜇𝑎𝑙𝑙)2

2

𝑥𝑗=0
. 

For evaluating 𝜇𝑗,𝑥𝑗
, we used the penetrance of genotype 𝑥𝑗 , denoted by φ𝑗,𝑥𝑗

= 1/(1 +

𝑒−𝛼𝑗−𝛽𝑗𝑥𝑗) under the additive allele dosage model, where 𝛼𝑗  was determined under the 

constraint involving the disease prevalence K, 𝐾 = ∑ ℎ𝑗,𝑥𝑗
 𝜑𝑗,𝑥𝑗

2
𝑥𝑗=0 . Assuming that the residual 

variance of each genotype was 1, the mean liability of each genotype was given by 

𝛷−1 (1 − 𝜑𝑗,𝑥𝑗
) = 𝑇 − 𝜇𝑗,𝑥𝑗

 for 𝑥𝑗 = 0,1, and 2, 
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from which we obtained values of 𝜇𝑗,𝑥𝑗
, where 𝛷 was the cumulative distribution function of 

the standard normal distribution. Of note, one of the mean liabilities of genotypes can be set as 

an arbitrary value, as it does not affect the variance estimate. Finally, 𝑣𝑗 was obtained by 𝑣𝑗 =

𝑣𝑗
∗/(1 + 𝑣𝑗

∗). This corresponded to the variance under the standard liability threshold model 

with the unit total variance of liability, as is assumed in heritability estimation50,4 

We estimated the distribution of vj for non-null effects using the estimated effect-size 

distribution �̂� , together with using allele frequencies and the prevalences. The allele 

frequencies were retrieved from the 1000 Genome phase III51 and the same prevalences as 

previously assumed in estimating SNP heritability were used8,9. Then, the point estimate of vj, 

�̂�𝑗, was gained as the product of the estimate �̂� and the mean of the estimated distribution of 

vj for non-null effects. The total liability-scale variance, V, explained by the pruned SNP sets, 

was then estimated as a simple sum of �̂�𝑗 over all SNPs in the sets. 

 

GWAS data analysis 

The six sets of GWAS summary statistics that we used were available online (see URLs). The 

characteristics of individual GWASs are shown in Supplementary Tables 1 and 2. For 

rheumatoid arthritis, the MHC region (chromosome 6, 25 – 35 Mb) was removed. The 

derived/ancestral states of alleles were determined by using the dbSNP. 

We used two kinds of pruned SNP sets, P-value-based and random-pruned sets, in the 

non-stratified SP-HMM analysis (Table 1 and Fig. 1). To gain the P-value-based pruned set for a 

GWAS, we began by selecting the most strongly associated SNP, i.e., the SNP with the lowest P 

value, in a reference GWAS as a SNP of the pruned set, and all other SNPs in LD (r2 > 0.1) with 

the selected SNP were removed. The process was repeated until no SNPs remained. LD 

information was retrieved from the HapMap data base (HapMap phases I+II+III, release 27)52. 
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In selecting SNPs with strong associations for Asian rheumatoid arthritis GWAS, European 

rheumatoid arthritis GWAS data were used as a reference for association, and vice versa. For 

coronary artery disease, the data of two GWAS, CARDIoGRAM and C4D, were used reciprocally. 

For the two genetically correlated diseases, schizophrenia and bipolar disease, the data of two 

GWAS for the two diseases were used reciprocally. For the random-pruned sets, we included 

SNPs randomly, irrespective of degrees of association, i.e., P values in the reference GWAS data, 

such that no SNPs in the set were in r2 > 0.1. 

For stratified analysis by eQTL/non-eQTL-SNPs, we defined ‘eQTL SNP’ as cis-eQTL 

SNPs detected with false discovery rate < 0.5 using peripheral blood samples (Westra et al., 

2013). In the eQTL/non-eQTL-SNPs set analyzed, all the eQTL and non-eQTL SNPs were 

selected to be nearly independent of one another (r2 ≤ 0.1). In this data set, eQTL SNPs 

showing stronger associations (i.e., lower P values) with gene expressions were preferentially 

included, and LD pruning was conducted as in the P-value-based pruned sets. Non-eQTL SNPs 

were randomly selected. 

In DAF-stratified analysis, the allele frequencies of SNPs were determined by the 

1000 Genome phase III data51. For each DAF bin, we used 100,000 SNPs randomly selected 

from GWAS SNPs regardless of LD. This was because estimates of SP-HMM were unstable due 

to small number of SNPs (e.g., a few thousand SNPs) when LD pruned sets were used. Note that, 

in C4D GWAS, the numbers of SNPs used in 0.4 < DAF ≤ 0.6, 0.6 < DAF ≤ 0.8, and 0.8 < 

DAF were 94506, 70170, and 49116, respectively, since the SNPs of C4D GWAS was limited 

(Supplementary Table 2). The obtained results (i.e., estimates of  and g) using the pruned sets 

(data not shown) were close to those sampled regardless of LD, and both results had the same 

trends over DAF bins.  

For selecting high quality SNPs and LD information in the above section, HapMap data 
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of Japanese individuals in Tokyo (JPT) and European-ancestry individuals from Utah (CEU) 

were used for Asian rheumatoid arthritis GWAS data and the other GWAS data, respectively. 

Similarly, for information of allele frequencies, East Asian and European 1000 Genome Project 

data were used for Asian rheumatoid arthritis GWAS data and the other GWAS data, 

respectively. 
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Table 1 Estimated proportions of disease-associated SNPs, ො𝜋, and liability-scale 
variance explained by SNPs, 𝑉

ො𝜋 (SE a)
(%)

𝑉 (SE a)
(%)

Rheumatoid arthritis
(Asian)

3.6 (1.8) 14.0 (1.8)

Rheumatoid arthritis
(European)

8.1 (2.4) 20.2 (1.5)

Coronary artery disease
(CARDIoGRAM)

15.9 (3.7) 20.9 (1.3)

Coronary artery disease 
(C4D)

26.1 (3.5) 22.2 (1.4)

Schizophrenia 43.0 (1.1) 40.2 (0.7)

Bipolar disorder 39.6 (2.2) 50.0 (1.9)

Estimates for the P-value-based SNP sets are shown. For 𝑉 , disease 
prevalences are assumed to be 1% for rheumatoid arthritis and 
schizophrenia,  6% for coronary artery disease and 0.5% for bipolar disorder. 
aEstimated based on 100 parametric bootstrap samples based on the 
estimated SP-HMM. 
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Figure 1  Estimated effect-size distributions for disease-associated SNPs, ො𝑔. The P-value-based pruned 
SNP sets are used.
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Figure 2  Estimated effect size distributions for eQTL-SNPs and non-eQTL-SNPs, ො𝜋 × ො𝑔. Green and 
orange lines show the results for the eQTL-SNP and non-eQTL-SNP sets, respectively. Estimated 
proportions of disease-associated SNPs, ො𝜋,  correspond to the areas under the curves.
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Figure 3  Estimated effect size distributions , ො𝜋 × ො𝑔, by derived allele frequency (DAF) bins. The upper 
panels (heatmap colors) for each GWAS results show ො𝜋 × ො𝑔 . The lower panels show means of ො𝜋 × ො𝑔.
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Figure 3  Continued.
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Figure 3  Continued.
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