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A major breakthrough in the history of nonlinear par-
tial differential equations occurred in 2004 with Grig-
ori Yakovlevich Perelman’s proof of the Poincaré conjec-
ture and Thurston’s geometrization conjecture, which was 
based on years of work on the Ricci flow by Richard Hamil-
ton.

Thurston’s geometrization conjecture, considered to be 
one of the most important problems in topology, is a 
generalization of the Poincaré conjecture, stated by Henri 
Poincaré in 1904. The latter asserts that any closed simply 
connected three-dimensional manifold is topologically a three-
dimensional sphere. Simply connected means that any loop 
on the manifold can be contracted to a point. Analogous 
results in higher dimensions had been previously resolved 
by Stephen Smale (in dimensions 𝑛 ≥ 5)  and Michael 
Freedman (in dimension 𝑛 = 4), who both received the 
Fields Medal for their contributions to this problem. The 
three-dimensional case that Poincaré stated turned out to 
be the hardest of them all. Of the seven Millennium Prize 
Problems that were stated by the Clay Mathematics Insti-
tute on May 24, 2000, the Poincaré conjecture is the only
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one that has thus far been solved, though its proof was
envisioned by Richard S. Hamilton in the early 1980s.

The early 1980s was an exciting time for the devel-
opment of nonlinear elliptic and parabolic PDEs. The
fundamental work of N. Krylov and M. Safonov on the
Hölder regularity for elliptic and parabolic second-order
equations in nondivergence form was opening new fun-
damental directions for the development of fully nonlin-
ear equations. About the same time, geometric analysts
such as R. Hamilton, G. Huisken, R. Schoen, L. Simon,
K. Uhlenbeck, and S. T. Yau, among others, were develop-
ing new models of nonlinear elliptic and parabolic geo-
metric PDEs, aiming to approach fundamental problems
in topology and geometry.

During one of the discussions between Hamilton and
Yau the idea of using the Ricci flow for the resolution of
the Poincaré conjecture was considered. The Ricci flow is
the analogue of the heat equation on a Riemannian mani-
fold, evolving ametric defined on this manifold by its Ricci
curvature. Heuristically, the Ricci curvature is an intrinsic
quantity that measures how much a curved Riemannian
manifold deviates from flat Euclidean space in terms of
controlling the growth rate of the volume of metric balls
in the manifold. The diffusion character of the Ricci flow
tends to spread curvature out over the entire manifold.
Hence, one expects concentrations of large curvature to be
smoothed out, and in the long run the flow may converge
to a metric of constant curvature. A similar phenomenon
called the smoothing effect is one of the fundamental prop-
erties of the heat equation on ℝ𝑛, itself the simplest model
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Figure 1. The image on an ancient vase from Minoan Crete
dated 1500–2000 BC resembles an ancient solution to curve
shortening flow (see Figure 2).

of parabolic partial differential equations describing diffu-
sion of heat in a solid medium. However, the Ricci flow
is a nonlinear system of equations, and depending on the
initial metric it is likely to develop singularities in finite
time. A special approach with new techniques needed to
be introduced to carry out Hamilton’s idea.

Around the same time, Huisken started studying an-
other important geometric parabolic partial differential
equation, the mean curvature flow. This is an example of
a geometric flow of hypersurfaces in a Riemannian mani-
fold (e.g., smooth surfaces in three-dimensional Euclidean
space). Intuitively, a family of surfaces evolves undermean
curvature flow if the normal component of the velocity
at which a point on the surface moves is given by the
mean curvature of the surface. The mean curvature locally
describes the curvature of an embedded surface in some
ambient space, the simplest being Euclidean space. For a
curve embedded in a plane the mean curvature is just its
curvature, as is taught in calculus. It follows easily that the
mean curvature flowmoves in the direction where the area
decreases as fast as possible. It can be understood as an ex-
trinsic version of the heat equation on manifolds. Even

though the Ricci flow is an intrinsic flow while the mean
curvature flow is an extrinsic flow, they are both nonlinear
parabolic equations onmanifolds that sharemany similar-
ities in their behaviors. Hamilton often refers to them as
“fraternal twins.”

The first results on the Ricci flow [13] and the mean
curvature flow [15] marked the beginning of a remarkable
development of parabolic equations often referred to as
geometric flows. Other important examples of geometric
flows are the Gauss curvature flow, a fully nonlinear model
of Monge-Ampère type, and the inverse mean curvature flow,
another fully nonlinear flow that finds application in gen-
eral relativity. Despite remarkable recent developments,
many important problems remain to be addressed. Later
in the article, we will discuss some of these problems that
are related to singularities.

In Hamilton’s first paper on the Ricci flow, [13],
he showed that every closed simply connected three-
dimensional manifold that admits a metric of positive
Ricci curvature is diffeomorphic to the three-sphere. The
idea is to start with a Riemannian metric of positive Ricci
curvature and deform it by the Ricci flow. He showed that
after renormalizing the flow, to keep the volume of the
manifold with respect to the evolving metric constant, the
flow converges to the round three-sphere. This implies that
the initial manifold is diffeomorphic to the three-sphere.
Hamilton then wrote a series of papers developing the the-
ory of Ricci flow aiming towards a proof of the geometriza-
tion conjecture. Perelman completedHamilton’s program,
proving the geometrization conjecture in [18–20].

Briefly, the idea is to begin with any Riemannian metric
on a given closed three-manifold and flow it using the Ricci
flow equation in order to obtain ametric of constant curva-
ture. As remarked above, this idea worked perfectly in the
case when the manifold admits a metric of positive Ricci
curvature (see [13]). However, the general case is much
more complicated. While Hamilton showed that the Ricci
flow always admits a solution for a short time, if the topol-
ogy of the manifold is sufficiently complicated, then no
matter what we choose as an initial metric, the Ricci flow
solution will encounter finite-time singularities that may oc-
cur along proper subsets of the manifold. Hence, to ob-
tain the conclusion of the Poincaré or the geometrization
conjecture, one has to do the analysis past the first time a
singularity occurs. That is why we need the more general
Ricci flow with surgery, which was first introduced by Hamil-
ton in the context of four manifolds. From an analytical
point of view, surgery is introduced in order to cut out high
curvature regions where singularities occur and replace them
with geometrically nice regions. This allows us to restart
the Ricci flow with a new metric constructed at a singular
time. It is then necessary to show analytical and geomet-
ric estimates in order to control both the topology and the
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geometry of the surgery process. Let us remark here that
continuing after a singularity occurs is one of the fundamen-
tal problems in nonlinear time-dependent PDEs.

Hamilton introduced the Ricci flowwith surgery to deal
with singular regions as they develop, but he was unable to
prove this method “converged” in three dimensions. Perel-
man completed this in [18–20]. One of Perelman’s main
contributions was to describe all possible singularities in three
dimensions. More precisely, Perelman takes any compact,
simply connected, three-dimensional manifold without
boundary and starts to run the Ricci flow. This deforms the
manifold into round pieces with tubes between them. He
cuts the tubes and continues deforming the manifold un-
til he is left with a collection of round three-dimensional
spheres. He rebuilds the original manifold by connect-
ing the spheres together with three-dimensional cylinders,
showing that the manifold is, in fact, homeomorphic to
the sphere.

Singularity Formation and Ancient Solutions
One of the crucial ingredients in proving the Poincaré and
the geometrization conjectures using the Ricci flow is the
detailed analysis of singularity formation. This is achieved
through dilation arguments around a singularity. In [14],
Hamilton proved that if 𝑇max < ∞ is the maximal exis-
tence time of a smooth solution (𝑀𝑛, 𝑔(𝑡)) to the Ricci flow,
then the Riemannian curvature of metric 𝑔(⋅, 𝑡) blows up
as 𝑡 → 𝑇max, namely, lim sup𝑡→𝑇max

sup𝑀 |𝑅𝑚|𝑔(𝑡) = ∞.
The Riemannian curvature tensor assigns to each point on a
Riemannian manifold a tensor that measures the extent to
which the metric tensor is not locally isometric to that of
Euclidean space.

Assume that 𝑥𝑖 ∈ 𝑀 and 𝑡𝑖 → 𝑇max are sequences of
points and times so that lim𝑖→∞ |𝑅𝑚(𝑥𝑖, 𝑡𝑖)| = ∞. If we
rescale themetric 𝑔(⋅, 𝑡), defining the sequence of solutions

𝑔𝑖(⋅, 𝑡) = 𝐾𝑖 𝑔(⋅, 𝑡𝑖 + 𝑡 𝐾−1
𝑖 ),

where 𝐾𝑖 = |𝑅𝑚|(𝑥𝑖, 𝑡𝑖) and the sequences 𝑥𝑖 and 𝑡𝑖 are care-
fully chosen, we can obtain a smooth solution to the Ricci
flow in a limit. Note that we have

−𝑡𝑖 𝐾𝑖 ≤ 𝑡 < (𝑇max − 𝑡𝑖) 𝐾𝑖,

and hence the limiting solution exists for 𝑡 ∈ (−∞,𝑇0),
where 0 ≤ 𝑇0 ≤ +∞. Such solutions are called ancient so-
lutions. These are special solutions that play an important
role in singularity analysis of Ricci flow. Similar blow-up
analysis is used to study singularities in other geometric
flows as well as for other parabolic equations.

Definition (Ancient solutions). A solution to a parabolic
equation is called ancient if for some 𝑇0 ≤ +∞, it is defined
for all 𝑡 ∈ (−∞,𝑇0). In the special case that 𝑇0 = +∞, the
solution is called eternal.

In [18], Perelman made the remarkable discovery that
the Ricci flow is a gradient flow of a functional that is
monotone along the flow. Using this fact he proved his
important 𝜅-noncollapsing result, which provided a big step
forward in the singularity analysis and description of sin-
gularities in three-dimensional Ricci flow.

Definition (𝜅-noncollapsed property). A Riemannian
metric 𝑔 is said to be 𝜅-noncollapsed on the scale 𝜌 if for every
𝑟 < 𝜌 and every 𝑥 ∈ 𝐵(𝑝, 𝑟) such that |𝑅𝑚|(𝑥) ≤ 𝑟−2, the
metric ball 𝐵(𝑝, 𝑟) has volume at least 𝜅 𝑟𝑛.

Perelman proved that if 𝑀 is closed and 𝑇 < ∞, then
there exists a 𝜅 > 0 such that the Ricci flow solution 𝑔𝑖𝑗(𝑡)
is 𝜅-noncollapsed. An important corollary of this result
is that any complete ancient solution to the Ricci flow
that models singularities in the sense described above is
𝜅-noncollapsed on all scales for some 𝜅 > 0. This led Per-
leman to introduce the following definition.

Definition (𝜅-solution). Any 𝜅-noncollapsed ancient
complete Ricci flow solution with bounded and nonneg-
ative curvature operator is called a 𝜅-solution.

It is a consequence of known results that every three-
dimensional complete ancient solution to the Ricci flow
has bounded and nonnegative curvature and hence is a 𝜅-
solution. Perelman made the important observation that
the singularities of three-dimensional Ricci flow are always
modeled on 𝜅-solutions [19].

On the other hand, in [18] Perelman constructed a ro-
tationally symmetric ancient 𝜅-noncollapsed solution on
𝑆3 that is different from the three-sphere, which we will
refer to as Perelman’s solution. This ancient solution has
backward-in-time limits that are the Bryant soliton (the
unique rotationally symmetric steady Ricci soliton) and
the round cylinder 𝑆2×ℝ, depending on how the sequence
of points and times about which one rescales are chosen.
These are the only backward-in-time limits of Perelman’s
ancient solution. In [18] Perelman conjectured the follow-
ing classification of 𝜅-noncollapsed ancient solutions.

Conjecture. The only 𝜅-noncollapsed ancient solutions to the
three-dimensional Ricci flow are the contracting spheres, Perel-
man’s solution, the contracting round cylinders, and the unique
rotationally symmetric steady Ricci soliton, known to be the
Bryant soliton.

Aiming to resolve Perelman’s conjecture, the authors
and Hamilton initiated a research program to study the
classification of ancient solutions to geometric flows under nat-
ural geometric conditions such as noncollapsedness intro-
duced above, curvature bounds, or convexity properties in
the extrinsic case. More recently, the authors have also col-
laborated with S. Angenent and S. Brendle.

In what follows we will describe some of the main
classification results, starting from the heat equation on
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manifolds and ending with three-dimensional Ricci flow
as described above.
Ancient solutions to the heat equation on manifolds. A
well-known result by S. T. Yau dating back to 1975 asserts
that on a complete noncompact Riemannianmanifold𝑀𝑛

of dimension 𝑛 ≥ 2 with nonnegative Ricci curvature, any
positive harmonic function 𝑢must be constant. This is the
analogue of Liouville’s theorem for harmonic functions on
ℝ𝑛. A natural question is whether the analogue of Yau’s
theorem holds for positive ancient or eternal solutions of the
heat equation

𝑢𝑡 = Δ𝑢 on 𝑀𝑛 × (−∞,𝑇), 𝑇 ≤ ∞,
under the same assumptions on 𝑀𝑛. The answer to this
question is negative, as it can be easily seen by the eter-
nal solution to the heat equation on 𝑀 = ℝ1, given by
𝑢(𝑥, 𝑡) = 𝑒𝑥+𝑡. However, P. Souplet and Q. Zhang showed
that the analogue of Yau’s theorem holds under an extra
growth assumption at infinity. Namely, if 𝑢 is a positive
ancient solution to the heat equation on𝑀×(−∞,𝑇) such
that

𝑢(𝑥, 𝑡) = 𝑒𝑜(𝑑(𝑥)+√|𝑡|) as 𝑑(𝑥) → ∞,
then 𝑢 is a constant. Also, if 𝑢 is any ancient solution to the
heat equation such that

𝑢(𝑥, 𝑡) = 𝑜(𝑑(𝑥) + √|𝑡|) as 𝑑(𝑥) → ∞,
then 𝑢 is a constant. Note that this last estimate is also sharp
in the spatial direction due to the example 𝑢(𝑥, 𝑡) = 𝑥. The
result of Souplet and Zhang is based on local gradient esti-
mates for positive solutions (bounded or not) to the heat
equation. Such estimates, first introduced by P. Li and Yau
have played a fundamental role in the development of geo-
metric flows.
Semilinear heat equation on ℝ𝑛. The simplest model of
nonlinear diffusion is the semilinear diffusion equation

𝑢𝑡 = Δ𝑢 + |𝑢|𝑝−1𝑢 (1)

for different exponents 𝑝 > 1. This equation is often seen
as a prototype in the analysis of singularities of more complex
geometric flows such as the mean curvature flow and the
Ricci flow.

The nonlinearity in equation (1) with 𝑝 > 1 makes the
solution blow up at a finite time 𝑇 < +∞. This can be
easily observed by looking at the ODE 𝑢′(𝑡) = |𝑢|𝑝−1𝑢. If
a solution 𝑢 of (1) has a finite time singularity at a point
(𝑎, 𝑇), then

𝑤𝑎(𝑦, 𝜏)∶= (𝑇−𝑡)
1

𝑝−1 𝑢(𝑥, 𝑡), 𝑦 = 𝑥 − 𝑎
√𝑇 − 𝑡

, 𝜏 = − log(𝑇−𝑡),

satisfies equation (2). The study of 𝑢 near a blow-up point
(𝑎, 𝑇) is equivalent to the study of the long-time behavior
of the rescaled solution 𝑤𝑎. Given any sequence 𝜏𝑛 → ∞,
one defines the solutions 𝑤𝑛

𝑎 (𝑥, 𝜏) ∶= 𝑤𝑎(𝑥, 𝜏 + 𝜏𝑛), which
are defined on − log 𝑇 − 𝜏𝑛 ≤ 𝑡 < +∞. Standard regularity

theory for parabolic equations implies that, passing to a
subsequence, the sequence 𝑤𝑛

𝑎 converges, as 𝑛 → ∞, to an
eternal solution 𝑤 of equation

𝑤𝜏 = Δ𝑤− 𝑦
2 ⋅∇𝑤−

𝑤
𝑝 − 1 +𝑤

𝑝, (𝑦, 𝜏) ∈ ℝ𝑛 ×ℝ. (2)

The study of the long-time behavior of𝑤𝑎 is closely related
to the classification of eternal solutions of (2).

In [17], F. Merle and H. Zaag provided the classification
of positive bounded eternal solutions to equation (2) in the
range of exponents 1 < 𝑝 < (𝑛 + 2)/(𝑛 − 2) following the
previous well-known classification results by Y. Giga and
R. Kohn. More precisely, in [17] it is shown that if 𝑤 is
a nonnegative bounded eternal solution of equation (2),
then 𝑤 is independent of the spatial variable 𝑦 and hence

𝑤 = 0 or 𝑤 = 𝜅 or 𝑤(𝑠) = 𝜙(𝑠 − 𝑠0) for some 𝑠0 ∈ ℝ

with 𝜙(𝑠) = 𝜅(1 + 𝑒𝑠)−
1

(𝑝−1) .
The significance of the Merle–Zaag theorem is the clas-

sification of the eternal solutions to (2) that connect
the steady states lim𝜏→−∞𝑤(𝑦, 𝜏) = 𝑤−∞(𝑦) = 𝜅 and
lim𝜏→∞𝑤(𝑦, 𝜏) = 𝑤+∞(𝑦) = 0. These solutions are shown
to be independent of the spatial variable 𝑦, hence given by
𝜙(𝑠). Its proof is very involved and strongly relies on ana-
lyzing the behavior of the solution 𝑤(𝑦, 𝜏) near 𝜏 → −∞,
in terms of its projections on the positive, zero, and neg-
ative eigenspaces of the linearized operator ℒ𝑣 ∶= Δ𝑣 −
1
2
𝑦 ⋅ ∇𝑣 + 𝑣 at 𝑤 = 𝜅. Notice that in terms of 𝑤 ∶= 𝑣 − 𝜅,

equation (2) takes the form

𝑤𝜏 = ℒ𝑣 + 𝑓(𝑣) (3)

with superlinear error 𝑓(𝑣) ∶= (𝑣+𝜅)𝑝−𝜅𝑝−𝑝𝜅𝑝−1𝑣. Equa-
tion (2), with different nonlinear error functions 𝑓(𝑣), of-
ten arises in the analysis of singularities in geometric flows,
in particular in neck-pinches in the mean curvature flow
and the Ricci flow.
Ancient compact solutions to curve shortening flow and
Ricci flow on surfaces. The simplest geometric flow is the
evolution of curves Γ𝑡 ⊂ ℝ2 embedded in the plane by the
curve shortening flow. This is the evolution of an embedding
𝐹(⋅, 𝑡) ∶ 𝑀1 → ℝ1 with Γ𝑡 ∶= 𝐹(𝑀1, 𝑡) by the equation

𝜕𝐹
𝜕𝑡 = −𝜅 𝝂, (4)

which moves each point 𝑃 = 𝐹(𝑝, 𝑡) ∈ Γ𝑡 in the direction
of the inner normal vector 𝝂 to the curve at 𝑃 by a speed that
is equal to the curvature 𝜅 of the curve.

The curve shortening flow is well studied, and most
questions regarding the existence of the flow and its as-
ymptotic behavior have been well understood. M. Gage
in 1984 and Gage and Hamilton in 1984 showed that
the curve shortening flow shrinks closed convex curves em-
bedded in ℝ2 to points. In addition, the curve remains
convex and becomes asymptotically circular close to its
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extinction time. This is the one-dimensional analogue of
Huisken’s result for mean curvature flow in [15]. How-
ever, M. Grayson showed that the curve shortening flow
has a surprising and beautiful property not appearing in
any other flow: if the initial data Γ0 is any embedded closed
curve in ℝ2, then the solution Γ𝑡 of (4) does not develop
any singularities before it becomes strictly convex; then it
becomes circular as it shrinks to a point according to the
Gage–Hamilton result. This is in contrast with the higher-
dimensional mean curvature flow, known for developing
many exotic singularities that have been the subject of
study in recent years.

As a first step to understanding ancient solutions to non-
linear geometric flows, the authors together with Hamilton
established the classification of embedded ancient closed con-
vex solutions Γ𝑡 of the curve shortening flow in ℝ2, that is, so-
lutions defined for all 𝑡 ∈ (−∞,𝑇), for some 𝑇 < +∞. By
the Gage–Hamilton result discussed above, the family of
curves Γ𝑡 will become circular as they become extinct to a
point at time 𝑇.

Let 𝜃 be the angle between the tangent vector of Γ𝑡 and
the 𝑥 axis. For convex curves we can use 𝜃 as a parame-
ter and consider the evolution of the curvature 𝜅(𝜃, 𝑡) as a
2𝜋-periodic function of the angle 𝜃 and of time 𝑡. It was
computed by Gage–Hamilton that in this case 𝜅 evolves by
the quasilinear parabolic equation

𝜅𝑡 = 𝜅2 𝜅𝜃𝜃 + 𝜅3. (5)

It turns out that for convex curves the evolution of the fam-
ily Γ𝑡 is completely described by the evolution (5) of the
curvature 𝜅.

The ancient solution to (4) defined by

𝜅(𝜃, 𝑡) = 1
√2(𝑇 − 𝑡)

corresponds to a family of contracting circles. This solu-
tion belongs to the category of contracting self-similar
solutions (these are solutions of the flow whose shapes
change homothetically during the evolution). However,
Angenent discovered other compact ancient solutions to
(4) that are not self-similar. We refer to them as Angenent
ovals. They are given in closed form in terms of the curva-
ture 𝜅(𝜃, 𝑡) by

𝜅2(𝜃, 𝑡) = 𝜆( 1
1 − 𝑒−2𝜆(𝑇−𝑡) − sin2(𝜃 + 𝛾))

for two parameters 𝜆 > 0 and 𝛾 ∈ ℝ. These solutions
are not self-similar. It turns out that such ancient solutions
are typical in other flows as well, in particular in the mean
curvature flow and the Ricci flow in dimensions 𝑛 ≥ 2.

In [10] the authors jointly with Hamilton showed that
the only ancient embedded closed convex solutions to the curve
shortening flow in ℝ2 are either the family of contracting circles
or the Angenent ovals.

Figure 2. A nonconvex ancient solution to curve shortening
flow at times 𝑡1 < 𝑡2 < 𝑡3. Shots from a video created by
Sigurd Angenent.

The proof of this result uses the explicit form of the An-
genent ovals in an important way. It involves the mono-
tonicity of a certain Lyapunov functional that vanishes on
both the contracting circles and the Angenent ovals. By
analyzing the behavior as 𝑡 → −∞ and 𝑡 → 𝑇, one is
able to show that this Lyapunov functional is identically
equal to zero on any ancient convex solution. One then
deduces the desired classification result. It is crucial for
the proof that on an ancient convex solution the curvature
𝜅(𝜃, 𝑡) is monotone in 𝑡. This follows by Hamilton’s differ-
ential Harnack inequality, which implies that 𝜅𝑡 ≥ 0.

It turns out that the convexity assumption is necessary
in the classification result that was discussed above. In fact,
it is broadly believed that many exotic nonconvex ancient so-
lutions exist. Figure 2 shows shots from a computer simu-
lation created by Angenent that describes the evolution in
time of an ancient nonconvex solution to the curve shorten-
ing flow. The mathematical construction of this solution
has recently been done in a work of Angenent in collabora-
tion with Yongzhe Zhang, Ilyas Kahn, and Connor Olson.

It is broadly observed that the 𝑛-dimensional mean
curvature flow has many features similar to the (𝑛 +
1)-dimensional Ricci flow. Since the curve shortening
flow can be viewed as a one-dimensional mean curvature
flow, one expects that the classification problem discussed
above has an analogue in the two-dimensional Ricci flow. In
fact this was shown by the authors and Hamilton in [11].
The Ricci flow analogue of the Angenent ovals is the King
solution, which was discovered, much earlier in 1993, by
the applied mathematician J. R. King in the context of the
logarithmic fast diffusion equation. Similarly to the result in
[10] that was described above, it was shown in [11] that the
only ancient compact solutions of the Ricci flow on 𝑆2 are the
contracting spheres and the King solution. The proof of this
result also uses the explicit form of the King solution in an im-
portant way. However, it is much more complex. It com-
bines several analytical and geometric arguments, such as
monotonicity formulas, critical a priori estimates, blow-up
arguments, the maximum principle, and an isoperimetric
inequality. Let us remark that the King solution does not
satisfy the 𝜅-noncollapsed property. It is, as we say, a col-
lapsed solution. The result in [11] classifies all compact an-
cient solutions to the two-dimensional Ricci flow. In higher
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dimensions, the classification of collapsed ancient solutions is
still widely open.
Ancient noncollapsed solutions to mean curvature flow.
We have just discussed the classification of ancient solu-
tions to curve shortening flow and Ricci flow on surfaces,
and we saw that both results share some crucial similari-
ties. One of them is the fact that all ancient solutions un-
der consideration are given in explicit form. However, no
such property holds in the three-dimensional Ricci flow,
the original goal of our project. This property holds nei-
ther in its analogue, the two-dimensional mean curvature
flow, nor, more generally, in mean curvature flow in any
dimension 𝑛 ≥ 2, which will be discussed next.

We say that 𝑀𝑡 = 𝐹(𝑀𝑛, 𝑡), where 𝐹(⋅, 𝑡) ∶ 𝑀𝑛 → ℝ𝑛+1

is a solution to the mean curvature flow equation if

𝜕
𝜕𝑡𝐹 = −𝐻 𝜈,

where 𝐻 is the mean curvature of𝑀𝑡 and 𝜈 is the outward
unit normal vector. While this flow reduces to a quasilin-
ear parabolic equation, it can also be considered as the
heat equation on the evolving manifold 𝑀𝑡, as the above
equation can be rewritten in the form

𝜕
𝜕𝑡𝐹(𝑝, 𝑡) = Δ𝑀𝑡𝐹(𝑝, 𝑡).

We have already seen that Huisken in [15] showed that
if 𝑀0 ⊂ ℝ𝑛+1 is a closed convex embedded hypersur-
face, the mean curvature flow starting at 𝑀0 converges
to a round point. However, in contrast with the one-
dimensional case, in higher dimensions the convex case is
very special. In more general situations, without the con-
vexity assumption local singularities may likely occur. For
example, if 𝑀0 looks like a dumbbell, the neck pinches off;
that is, a blow-up limit around a singularity is a round
shrinking cylinder.

The maximum principle implies that the distance be-
tween twomean curvature flow solutions is nondecreasing
in time. As a consequence, a comparison argument with
shrinking spheres implies that every compact mean curva-
ture flow develops singularities in finite time. It is known that
at the first singular time 𝑇, the lim sup𝑡→𝑇 sup𝑀𝑡

|𝐴|(⋅, 𝑡) =
+∞. Huisken’s well-known monotonicity formula shows
that the integral of the 𝑛-dimensional backward heat ker-
nel decreases in time. This monotonicity formula has
played an essential role in singularity analysis until today.

In the context of mean curvature flow there are several
notions of weak solutions, which enable one to continue
the flow through singularities without performing surgery.
Such notions of weak solutions are still missing in gen-
eral in the context of Ricci flow. As we saw earlier, one
of the ways to continue the flow past the singular time in
both the Ricci flow and the mean curvature flow is the flow
with surgery. This includes cutting the hypersurface along

necks, gluing in caps, and continuing the flow of the pieces,
while the components of known geometry and topology
are discarded (see [16] and [9] for results of mean curva-
ture flow with surgery in different settings). Furthermore,
similar to the Ricci flow, the study of ancient solutions could
potentially help with surgeries in more general settings.
In fact, similar to Perelman’s famous work on the Ricci
flow [18], which shows that the high curvature regions are
modeled on ancient solutions with nonnegative curvature
and are 𝜅-noncollapsed, results were obtained for mean
curvature flow assuming mean convexity and embedded-
ness. One advantage of mean curvature flow with surgery
is that the entire discussion takes place in the framework
of smooth differential geometry, in contrast with other ap-
proaches of weak solutions.

In [1, 2], the authors and Angenent considered ancient
compact solutions to the mean curvature flow in dimen-
sions 𝑛 ≥ 2, i.e., solutions that are defined for 𝑡 ∈ (−∞,𝑇)
for some 𝑇 < +∞.

There is a notion of 𝛼-noncollapsed solutions to the
mean convex MCF, which is the analogue to Perelman’s
𝜅-noncollapsing condition for the Ricci flow. This was first in-
troduced by W. Sheng and X. J. Wang. The results that we
will mention below hold in any dimension, but for sim-
plicity we will focus only on the case of surfaces in ℝ3.

In recent important work, Brendle and K. Choi (see [8]
and references within) gave the complete classification of
noncompact ancient solutions to mean curvature flow on sur-
faces that are strictly convex. More precisely, they showed
that any noncompact and complete ancient solution to mean
curvature flow that is strictly convex and noncollapsed is the
Bowl soliton, up to scaling and ambient isometries. The Bowl
soliton is the unique rotationally symmetric, strictly con-
vex solution tomean curvature flow that translates with unit
speed. It has the approximate shape of a paraboloid, and
its mean curvature is largest at the tip.

In [1] and [2] we focused on ancient noncollapsed
closed solutions to themean curvature flow. Wang showed
in this case that the backward limit as 𝑡 → −∞ of the
rescaled flow is either a sphere or a cylinderℝ×𝑆2 of radius
√2.

It is known that if the backward limit is a sphere, then
the ancient solution has to be a family of shrinking spheres.
Hence, to classify ancient compact noncollapsed solutions
one may restrict to the ones that are non-self-similar. We
will refer to them as ancient ovals. Based on formal matched
asymptotics, Angenent conjectured the existence of an an-
cient oval solution defined on 𝑡 ∈ (−∞,𝑇) for some 𝑇 <
+∞, which as 𝑡 → −∞ becomes more and more oval in
the sense that it looks like a round cylinder ℝ × 𝑆2 in the
middle region and like a rotationally symmetric translat-
ing soliton (the Bowl soliton) near the tips. A variant of
this conjecture had been shown by B. White in 2003, but
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Figure 3. Behavior of ancient ovals and Perelman’s solution as
𝑡 → −∞, after scaling.

the approximate form of these solutions was not shown.
More recently, R. Haslhofer andO. Hershkovits carried out
White’s construction in more detail, including, in particu-
lar, the study of the geometry at the tips. We will refer to
them asWhite ancient ovals.

The main classification result of the authors with An-
genent in [2] establishes the uniqueness of ancient ovals.
More precisely, any ancient oval in ℝ3 is equal to the White
oval solution up to ambient isometries, scaling, and translations
in time. A similar result was shown to hold in any dimen-
sion 𝑛 ≥ 3 (see [2] for the detailed statement). The proof
has two steps: one first shows the rotational symmetry of
such solutions, and then one establishes the uniqueness
of rotationally symmetric ancient ovals. Analyzing the as-
ymptotic behavior as 𝑡 → −∞ of the rescaled ancient ovals
plays an important role in our proof. This was done in
[1], where the precise unique asymptotics were described
in each of the three regions: the parabolic region, the in-
termediate region, and the tip region (see Figure 3).

The above result deals with noncollapsed solutions. A
recent important work by T. Bourni, M. Langford, and
G. Tinaglia [4] addresses the uniqueness of ancient collapsed
mean curvature flow solutions under rotational symmetry.
This work opens new directions in the classification of col-
lapsed solutions.
The classification of 𝜅-solutions to three-dimensional
Ricci flow. We will next discuss recent works by the au-
thors and Brendle on the classification of noncollapsed so-
lutions to the three-dimensional Ricci flow, which finally re-
solves the conjecture by Perelman, as stated at the begin-
ning of this article.

We say that (𝑀, 𝑔(𝑡)) is a Ricci flow solution starting at
the initial metric 𝑔0 if it satisfies the equations

𝜕
𝜕𝑡𝑔𝑖𝑗 = −2𝑅𝑖𝑗 , 𝑔𝑖𝑗(⋅, 0) = 𝑔0𝑖𝑗(⋅),

where 𝑅𝑖𝑗 is the Ricci curvature.
In a recent important work, Brendle [5] resolved the

classification of ancient complete noncompact 𝜅-noncollapsed
solutions, showing that they are either the round cylin-
ders or steady Ricci solitons. After providing the classifica-
tion of those solutions under the assumption of rotational

symmetry, he shows that any three-dimensional
𝜅-noncollapsed noncompact ancient Ricci flow solution has to
be rotationally symmetric.

Regarding the classification of closed 𝜅-noncollapsed an-
cient solutions, Brendle in [6] has recently modified his ar-
guments from [5] to show that such solutions must be ro-
tationally symmetric. What remained for the resolution of
Perelman’s conjecture was the classification of rotationally
symmetric closed solutions. It turned out that such a result
could now be approached using the techniques that the au-
thors have developed over the years, in particular the tech-
niques from the mean curvature flow classification results
in [1,2].

Indeed, very recently in [12] the authors presented the
proof of the uniqueness under the assumption of reflection sym-
metry. In a forthcoming joint work, the authors with Bren-
dle are able to remove the reflection symmetry assump-
tion from the result above, leading to the complete classi-
fication of closed ancient 𝜅-noncollapsed solutions to the three-
dimensional Ricci flow, as envisioned by Perelman.

Our uniqueness result relies heavily on analyzing the
limits, as 𝑡 → −∞, of any given solution. We show that
such a limit either has to be a round sphere or has a round
cylinder as one of its backward limits. In the latter case, in
a joint work with Angenent [3], assuming reflection sym-
metry, the authors show that every three-dimensional 𝜅-
solution that has the round cylinder as one of its back-
ward limits has unique asymptotics. We describe the pre-
cise asymptotics in each of the three regions: the parabolic
region, the intermediate region, and the tip region. The
asymptotics are similar to those of two-dimensional mean
curvature flow ovals (see Figure 3).

Closing Remarks
We have seen that the surgery procedure in both the mean
curvature flow and the Ricci flow is important, since it al-
lows us to continue the flow past singularities in a smooth
framework. In the case of three-dimensional Ricci flow it
has been very well understood due to works by Perelman
and more recently by R. Bamler and B. Kleiner. The case of
mean curvature flow is well understood in any dimension,
under further assumptions on the initial surface.

In order to understand surgery in amore general setting,
in both flows one needs to fully capture all singularities
and regions of high curvature. To achieve this, one needs
to understand all limit flows, not only the tangent flows.
Potentially, there may be very complex limit flows that are
not solitons. Hence, a better understanding of ancient so-
lutions is needed. The classification of ancient solutions
in higher dimensions or under more general hypotheses is
still out of reach, but the techniques described above could
potentially lead to progress in that direction as well as to
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understanding ancient solutions and singularities in other
nonlinear parabolic partial differential equations.

In previous classifications of ancient solutions to geo-
metric flows, including those of the curve shortening flow
[10], the two-dimensional Ricci flow [11], and the non-
compact mean curvature flow [7, 8], an essential role was
played by the fact that all such solutions were either given
in closed form or were solitons (self-similar). One rea-
son that the new techniques developed in [1–3,12] are so
significant is that they overcome such a requirement and
potentially can be broadly used in various parabolic equa-
tions and, particularly, in geometric flows.
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