
ABSTRACT

MA, YUE. A Multithreaded Real-time Robot for Embedded Design Space Exploration.
(Under the direction of Dr. Alexander Dean.)

This thesis introduces an autonomous robot platform for real-time scheduling exper-

imentation and benchmark suite to evaluate real-time optimizations and apply modern

task scheduling methods.

It makes two contributions. First, it presents a reference hardware and software design

for a line-following, obstacle-avoiding and maze-solving robot. This robot is based on a

small commercially-available product. The software is structured as a multithreaded real-

time system for use in evaluating scheduling approaches for cost-sensitive and resource-

constrained applications. Second, it provides a detailed design space exploration showing

the costs (processor speed and memory) of different scheduling approaches (static vs.

dynamic and non-preemptive vs. preemptive).

It also measures and analyzes each task’s timing information and explores the mini-

mum microcontroller clock speed under different scheduling approaches.
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Chapter 1

Introduction

Scheduling approaches overview

Normally, we can split different scheduling approaches into static approaches and dynamic

approaches depending on whether we can schedule the tasks in different orders based

on importance. A static approach schedules the tasks by specific and fixed order and

we cannot change this order at any time, such as round robin scheduling. A dynamic

approach schedules tasks based on importance (priority). Based on when the scheduler

should schedule the next task to run, we have non-preemptive scheduling and preemptive

scheduling approaches. In non-preemptive scheduling, the scheduler schedules the next

task to run only when current task finishes. In preemptive scheduling, the scheduler

schedules the next task to run when it needs to. Based on different methods that scheduler

uses to decide how to schedule the next task, we have Rate Monotonic (RM) scheduling

and Earliest Deadline First (EDF) scheduling approaches. In RM scheduling, tasks

have fixed priorities which are decided by their periods. In EDF scheduling, tasks have

dynamic priorities which are decided by whose deadline is the earliest from current time.

Our robot

In this thesis, we build an autonomous multithreaded real-time robot platform to explore

embedded design space. We can use this robot to evaluate real-time optimization and

apply different scheduling approaches to see the corresponding costs.

This robot is based on a small commercially-available robot called 3pi designed by

Pololu Corporations. It has an Atmel ATmega168 microcontroller which has some limi-

tations for further implementation and expansion. First, it only has a very small 16KB
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flash memory so it is difficult for us to do some relatively complicated computation like

dead reckoning information calculation and it is also difficult for us to port a real-time

operating system to achieve multithread in this microcontroller. Second, it has very lim-

ited available pins, so we cannot add much hardware to the robot. But it still has many

advantages such as built-in motors, wheels and five digital sensors which make the robot

more autonomous and functional.

Connecting the 3pi robot to the LPC-H2888 board will bring us a small autonomous

robot body and a multithreaded real-time robot heart. We can perform real-time schedul-

ing experimentation on the robot. It is also very expandable so that we can add any

hardware we need and implement the corresponding task to control the hardware since

we run FreeRTOS (a real-time operating system) on the LPC2888 microcontroller.

The rest of the thesis is organized as follow:

Chapter 2 shows some related work of different scheduling approaches and some re-

lated robots implementation.

Chapter 3 introduces the detailed hardware parts and software architecture design

of the robot and their connections and relationship such as how they interact with each

other.

Chapter 4 builds a test environment to get each task’s timing information using

practical approach and theoretical approach.

Chapter 5 presents an analysis of schedulability based on different scheduling methods

and explores the minimum microcontroller clock speed of the system under different

scheduling approaches.

Chapter 6 shows the work we may take if we continue this project in the future.
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Chapter 2

Related Work

Schedulability analysis

Research on schedulability analysis of different scheduling approaches is wide and deep

over the past 30 years for both static and dynamic priority scheduling approaches. [1]

shows what the least upper bound to processor utilization is for a set of tasks with fixed

priority order, if the tasks are schedulable. We can then use the least upper bound to

test the schedulability under preemptive Rate Monotonic (RM) scheduling approach. It

also shows that full processor utilization can be achieved by dynamically assigning the

priories on the basis of their current deadlines which we can use to test the schedula-

bility under preemptive Earliest Deadline First (EDF) scheduling approach. [2] shows

a necessary and sufficient condition for schedulability under non-idling non-preemptive

EDF scheduling approach. [3] shows that RM priority assignment is optimal for non-

preemptive scheduling when each task’s relative deadline is equal to its period. We can

use this result to test the schedulability under non-preemptive RM scheduling approach.

[4] shows how to check the schedulability under static scheduling approach with helper

interrupts.

Robot implementation

[5] provides a robot for line-following and maze-solving competitions which we use as our

base platform in this project. [6] builds a robot that moves in any required direction

while keeping record of its actual position and angle with respect to a reference starting

point but without any line or ground mark to guide the robot using Atmel 89C52 micro-

controller and Solarbotics L293D motor driver. [7] describes how to implement a simple,
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but robust, optical wheel encoder system on a TJ-PRO robot platform from Mekatronix

that uses hobby servomechanism or servo for two-wheel differential drive. [8] shows some

basic concepts of dead reckoning in the real world.
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Chapter 3

Design Description

3.1 Hardware Description

Figure 3.1 shows the real photo of the robot we build in this project. We will focus on

introducing the parts we add or the changes we make to the 3pi robot in this chapter.

Figure 3.1: Robot we build in this project
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3.1.1 3pi Robot

The 3pi robot is a small autonomous mobile robot designed by Pololu Corporation. It

features two micro metal gear motors, five digital reflectance sensors, one 8× 2 character

LCD, one buzzer, and three user pushbuttons. It is based on an Atmel ATmega168 mi-

crocontroller (8-bit AVR architecture) running at up to 20MHz with 16KB flash memory

and 1KB SRAM. In this project, we mainly use the ATmega168 microcontroller, two

gear motors and five digital reflectance sensors from the original 3pi robot.

3.1.2 Odometers

We add two odometers made of two analog reflectance sensors to the 3pi robot in order

to monitor the black and white stripes which we stick on the two wheels (Figure 3.2).

This allows us to get the wheel rotation information to calculate how much the robot

moves which can be used for calculating the dead reckoning information. Details please

refer to section Dead Reckoning Control Task.

Figure 3.2: Wheel encoder disc

3.1.3 LPC-H2888 Board

The LPC-H2888 board is based on a microcontroller (32-bit ARM7TDMI-S processor)

called NXP LPC2888 running at up to 60MHz with 1MB flash memory and 64KB SRAM.

It is powered by 5V provided by the 3pi robot. We run FreeRTOS on this microcontroller

to achieve multithreads and real-time system approach. This board is the core master

microcontroller in this project. The 3pi robot is more like a slave who gathers and reports

information to the master microcontroller and waits for commands for the next action.
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3.1.4 LCD

The LCD we use is a basic 8×2 character LCD which has a standard HD44780 parallel in-

terface. It will display the dead reckoning position coordinates while the robot is running.

This LCD is connected to LPC-H2888 board through the the LPC2888 microcontroller’s

LCD interface.

3.1.5 Sonar Range Finder

The sonar range finder can detect objects from 0m to 6.45m (21.2ft) with a resolution of

2.5cm (1in) for distances beyond 15cm (6in). It runs on 3.3V provided by the LPC-H2888

board. The analog output is 6.45mV/inch ((Vcc/512)/inch) when the input voltage is

3.3V. We use it to detect obstacles while the robot is running so that the robot will do

some actions to avoid the obstacles. Details please refer to section Sonar Control Task.

3.1.6 Hardware Summary

Figure 3.3 shows all the hardware parts in this project and how they interact with

each other. The relationship and connections among the different parts are described as

follows:

We make a maze using a black line on a white board so the ATmega168 microcontroller

can monitor the five digital reflectance sensors to detect the line information, and then

it will send the information back to the LPC2888 microcontroller through the UART

connection. Then the LPC2888 microcontroller will send a movement command or a

difference parameter (a parameter to adjust two wheels speed) back to tell the robot

what the next movement is or the speed at which it should operate.

The same thing happens for the two odometers. After the ATmega168 microcontroller

gets the wheel stripe information through ADC, it will send it to the LCP2888 micro-

controller. But it is only one way communication that the ATmega168 microcontroller

does not need to wait for any response. After the LPC2888 microcontroller gets the

corresponding wheel rotation information it will calculate the coordinates of the robot

and display them on the LCD. The last part is the sonar range finder. The LPC2888

microcontroller will read the range information through the ADC and if there is an ob-

stacle in front of the robot, it will send the corresponding command to the ATmega168

microcontroller to control the robot to avoid the obstacle.
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Figure 3.3: Hardware architecture
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3.2 Software Description

Figure 3.4 shows all the tasks running on the ATmega168 microcontroller and LPC2888

microcontroller and their interactions. The task on the ATmega168 microcontroller side

runs under static scheduling with an interrupt. The tasks on the LPC2888 microcontroller

side run on FreeRTOS which provides multithreaded scheduling.

3.2.1 Tasks on ATmega168 MCU

In the following task and ISR, we use some basic interface functions from the 3pi robot

library such as sending and receiving data through UART, setting motor speed and

getting ADC value etc. to help us achieve the functions we need.

Robot Control Task

This task is running on the ATmega168 microcontroller. Its main function is getting

the line information through the five digital reflectance sensors, sending them to the

LPC2888 microcontroller and waiting for response commands to drive the robot. There

are two types of commands: one type is movement command, such as “turn left”, “turn

right” and “turn around” etc. The first part of Table 3.1 shows the movement commands

to control the robot.

Table 3.1: Commands to control the robot

Command byte Command Description

0x62 ‘b’: turn around setMotors(50, -50), wait 750ms
0x64 ‘d’: stop setMotors(0, 0), wait for button action
0x65 ‘e’: go straight a litte bit setMotors(50, 50), wait 15ms
0x66 ‘f’: go straight more setMotors(50, 50), wait 100ms
0x6C ‘l’: turn left setMotors(-50, 50), wait 375ms
0x72 ‘r’: turn right setMotors(50, -50), wait 375ms
0x73 ‘s’: go straight do nothing, keep original speed

0x00 - 0x32 difference parameter adjust speed by this parameter
0xCE - 0xFF
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Figure 3.4: Software architecture
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After decoding the commands, it will set a fixed speed to the two motors to achieve

the corresponding movement. The other type of command is used for controlling the

robot to follow the line. The value of each command is a number from -50 to 50 which

is used to adjust the speeds of the two wheels. We use a simple PID control here, so the

speeds of the two wheels are dynamic. The detail of this implementation is described

in section Maze Control Task. The second part of Table 3.1 shows all the difference

parameter commands to control the robot.

Below is how we set the wheel speed based on the difference parameter which the

ATmega168 microcontroller receives:

i f (cmd < 0)

setMotors ( le f tWheelSpeed + cmd , rightWheelSpeed ) ;

else

setMotors ( le ftWheelSpeed , rightWheelSpeed − cmd ) ;

In this project, we set the values of the “leftWheelSpeed” and “rightWheelSpeed” at

50 (15cm/s). The maximum value is 255 which means the maximum speed of the robot

is 1m/s.

Interrupt Service Routine

The ISR in the ATmega168 microcontroller side is triggered by a timer every 4ms. It will

check the values of the two analog reflectance sensors and send them to the LPC2888

microcontroller. Since we only set the maximum speed of the wheels at 50 which is

15cm/s and about 15ms/stripe, 4ms frequency is fast enough to catch every stripe.

3.2.2 Tasks on LPC2888 MCU (FreeRTOS)

In this section, when we implement the functions for PID control and maze solving, we

refer to the algorithm used in the original 3pi robot.

Interrupt Service Routine

The ISR in the LPC2888 microcontroller side is only triggered by UART receiving buffer

getting data or transmitting buffer becoming empty.
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Based on section 3.2.1 Tasks on ATmega168 MCU we know there are two kinds of

information that the LPC2888 microcontroller will receive. One is the line information,

and the other is the wheels information. When the ATmega168 microcontroller side

sends these two kinds of information, it will pack them in the corresponding format by

adding headers, disassembling data and sending them in order. Because UART can only

transmit one byte of data at one time, we need to disassemble the data whose value is

larger than 255 by sending the low 8-bit data first and then the high 8-bit data of a 16-bit

“int” type value. The two different types of format are described in Table 3.2.

Table 3.2: Two types of packet format

Packet name Line Information Wheels Information
Header byte 0x81 0x82
Data byte 1 Low byte of “position” Left wheel sensor (Sensor 6)
Data byte 2 High byte of “position” Right wheel sensor (Sensor 7)
Data byte 3 Sensor 1
Data byte 4 Sensor 2
Data byte 5 Sensor 3
Data byte 6 Sensor 4
Data byte 7 Sensor 5

Based on the five digital reflectance sensors, we calculate where the line is as the

“position” variable. Its value is from 0 to 4000. 0 means the line is right under sensor

1 and 4000 means the line is right under sensor 5. If the line is out of the range of the

sensors, its value may be 0 or 4000 which depends on from which side the robot goes off

the line.

The ISR will check the header byte of each packet, and then send the data bytes into

a receiving queue in order, and then set the corresponding header’s semaphore (line or

wheels). All the other things like decoding the package and reassembling the data etc.

will be done in the UART control task. We need to keep the execution time in ISR as

short as possible, because the ISR is triggered very frequently.
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UART Control Task

Every time this task runs, it will check the line information and wheels information

semaphores to see if they are ready in the receiving queue. If they are, it will extract

the data bytes from the receiving queue in order, reassemble them and send them to the

corresponding queues (line information queue and wheels information queue). If not, it

will exit and reenter to check again based on the task’s period while the task is running.

There are four reasons why we do not let this task suspend after finishing processing

the data and resume it in the ISR when the data in receive queue is ready. First, in

FreeRTOS or other real-time operating system, suspending or resuming a task may take

longer time than the normal function we have in this task and during that time it will

disable all the interrupts which may cause it to miss some input data or other unfore-

seen errors. Second, we should make ISR execution time as short as possible. Third,

although the way we implement the system means it needs to check line information

and wheels information semaphores every time the task starts running, it takes less time

than suspending and resuming tasks. Fourth, it meets the assumption “All tasks are

independent” we use to analyze the schedulability in chapter 5.

Sonar Control Task

This task will get the sonar value through the 10-bit ADC which works in continuous

conversion mode. Because the reading rate of the sonar range finder is 20Hz (50ms), we

do not need to keep this task running all the time, therefore we can set a delay after

every reading. We choose 40ms here which can allow enough time to read every sonar’s

value, so the period of this task is about 40ms.

In order to avoid some misreading, we set a counter to count the number of values

it has read. In this way, we know during a certain time if most of the values fall into

“obstacle found” range. If so, it guarantees that it finds an obstacle. Here we can set

the count to 10 so that it has enough time to do some action before hits the obstacle.

If it detects an obstacle, it will set the obstacle semaphore, and then the maze control

task will handle this to send a command to the ATmega168 microcontroller to avoid the

obstacle.
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Dead Reckoning Control Task

This task mainly focuses on calculating the dead reckoning information. Every time it

runs, it will check if there are some wheels data in the wheels information queue. If so, it

will extract the data and calculate the coordinate of the robot based on the information.

Here are two models that are used in different situations. One is only for line-following

and obstacle-avoiding. In this model, the track can be any shape, such as round, rectangle

or any other irregular shape. Because the resolution of the wheel stripe is limited, in

order to calculate more accurate coordinates, we do not use PID control in this model

which means we do not set the speed of the two wheels at the same time. We only set

one wheel’s speed at one time and keep this wheel rotating some time, so we can require

more accurate stripe information for calculation. But we may have less line tracking

ability. In this model we display the coordinates and angle information on the LCD.

The other model we use is for maze-solving. The lines of a maze we build are all

perpendicular, so we do not need the same stripe catching ability as the one in former

model. Instead, we need more strong line tracking ability in order not to enter an

intersection with an angle. If it enters an intersection with an angle, it cannot detect

the intersection precisely using the five digital reflectance sensors we have in the robot,

so we use PID control here which will be described in the next section to enhance line

tracking ability. At this point, it is difficult to calculate the angle information based on

the resolution we have in the wheel stripe if the line is not straight, so we only display

the coordinates on LCD. Since all the lines are perpendicular, there is indeed no need to

calculate the angle or direction.

Maze Control Task

This is a core task in this project. It mainly includes three functions: line following,

maze learning and maze solving. We will describe them separately.

Line Following Function When the robot follows the line, this function runs like a

task. First, it will keep checking if there are some line data in the line information queue.

If so, it then will check if the obstacle semaphore is set. If it is set, it will return from this

function and enter the maze learning function to do some actions to avoid the obstacle.

In the maze solving model, we just simply let the robot turn around. In the normal line

following model, it will go off the line and bypasses the obstacle by running a cycle until
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it goes back to the line. If the obstacle semaphore is not set, it will use a simple PID

control method to calculate the speed difference parameter in order to control the robot

to follow the line. We use the following equations to get the difference parameter:

difference = proportional/60 + integral/30000 + derivative/2

This “difference parameter” is one type of the commands we discuss in section 3.2.1

Tasks on ATmega168 MCU. It should be between -50 and 50 because the robot’s maxi-

mum speed is set to 50. The other variables we calculate as follows:

proportional = position− 2000

integral =
∑

proportional

derivative = proportional − lastProportional

The parameters for adjusting such as “60”, “30000”, and “2” are all based on exper-

iment and observation. The value of “proportional” has the largest effect to the final

difference value. For example, if we reduce the parameter “60” to “10”, the reaction of

the robot to the line will be very big so that the robot will turn sharply to go back the

line if it is off the line. If we increase the parameter “60” to “100”, the reaction of the

robot to the line will be very small which means it will take more time to go back to the

line if the robot goes off the line.

After getting the difference parameter, this function will send it to the ATmega168

microcontroller and then go back to the very beginning to run the loop again.

This function also analyzes the values of five digital reflectance sensors. If an in-

tersection is found, it will return and go to the maze learning function to do further

analysis.

Maze Learning Function If it jumps to this function, there may be two reasons: one

is that the robot detects an obstacle. To handle this, it will simply send a command byte

‘b’ to the ATmega168 microcontroller to tell it we should turn around now. The other is

that it has found an intersection. Then it will detect the details of this intersection. To

solve the maze, we use “right hand rule” here. Wherever and whenever the robot enters

an intersection, it will go to the most right turn. Doing this will let the robot finally reach

the destination if the maze is a non-loop maze. After turning, it will record the turn
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direction for simplifying the path which is used for solving the maze and determining

angle or direction which is used for the dead reckoning task to calculate the coordinates.

Every time the robot finishes turning, this function will simplify the paths, so the record

always keeps the shortest path from starting point to current location.

Maze Solving Function This function is relatively simple. When the robot redoes

the maze and faces an intersection, it will jump to this function. It will help decide which

turn the robot should take based on the simplified path record, so when the robot redoes

the maze, it will follow the shortest path.

LCD Display Task

Since in this project we only have the coordinates information to be displayed on the

LCD, we do not need use semaphores. When this task finishes running, it will be delayed

for about 250ms. To achieve this we add a 250ms delay at the end of this task, so the

coordinates information will be displayed about every half second which is the period of

this task.

3.2.3 Software Summary

We will focus on the five tasks and an ISR on the LPC2888 microcontroller side, because

they are running on FreeRTOS so we can achieve multithread scheduling among them.

They are also the key things to reduce the microcontroller clock speed under a certain

scheduling policy. In the next chapter we will discuss how to measure their execution

times in theoretical and practical approaches.
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Chapter 4

Experiments and Results

In this chapter we use two traditional approaches to estimate each task’s execution time

including BCET (Best Case Execution Time) and WCET (Worst Case Execution Time)

in our robot platform. Especially after getting the WCET bounds, we can apply differ-

ent scheduling policies to the system based on schedulability. We can also reduce the

microcontroller’s clock speed to minimum under different scheduling policies because we

know the WCET bound and each task’s period in certain clock speed.

The first approach is a measurement-based WCET analysis which means we need to

measure each task’s execution time while the program is running in the real environment.

In this project, we let the robot solve a real maze and measure each task’s BCET and

WCET through a timer. Sometimes for safety reason, when using this approach, people

need to add a margin of e.g. 20% for considering the WCET. However, this approach may

be highly unsafe since we cannot guarantee when the robot solves our maze, it will really

lead to worst-case behavior of each task. But this is also the simplest way to estimate

WCET especially we may not have proper tools for the right instruction set, compiler or

real-time operating system (FreeRTOS here) to conduct static program timing analysis.

The second approach is static timing analysis using a tool to analyze the program’s

code and to calculate the WCET and the WCEP (Worst Case Execution Path). We use

a tool called ARMSAT which is designed for analyzing static timing for ARM processor

platform (ARM7TDMI). Because of the limitation of ARMSAT and our program running

on a relatively complicated real-time operating system, we cannot fully rely on this tool

to do the analysis. For some small basic blocks of our program, we still use measurement-

based WCET analysis, so this approach is actually a combined method to estimate the
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WCET. But the estimation is still referable since we analyze most of the codes using the

theoretical method. If the WCET we get from theoretical approach is larger than that

from practical approach, we can use it as the final WCET for analysis. We will present

more details in section 4.2 Theoretical Approach.

4.1 Practical Approach

4.1.1 Environment

Figure 4.1 shows a simple maze we build for the robot to test and estimate timing

information. Although it is simple, it includes all the possible intersections such as four-

way, left turn three-way, right turn three-way, left turn two-way, right turn two-way and

dead end etc. The black area made by three short tapes is the ending point. If we use

the lower right entrance as the starting point, the robot will go through the whole maze

since we use the “right hand rule” here.

Figure 4.1: Maze we build for estimating timing information
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4.1.2 Method

Task Period

To decide the microcontroller utilization and to get the minimum clock speed for the

program based on different scheduling policies, we need to know each task’s period. We

can also assume the period is also the task’s deadline in order to meet the assumptions

for analysis in chapter 5. Here is how we get the periods. We set a counter to each of

the five tasks and let the robot follow the line. Then we use a stopwatch to get the total

time and from the counter we can get the total counts for each task, so now we know

what the period of each task is by dividing the total time by the total counts.

After getting these real average periods, for analysis convenience and safety, we will

fix these periods by some proper larger values. That is although these tasks run at larger

periods, they still work well. For the sonar control task, the sonar range finder’s read

rate is only 20Hz that is 50ms. In order to save the microcontroller utilization and also

get the sonar reading result on time, we can set the delay time to 40ms, so the period

should be about 40ms. The LCD display task is almost the same. We add a 250ms delay

at the end of the task, so the period is about 250ms. We choose 250ms because we need

to consider both user experience and task utilization which means this period should not

be too big or too small. For the maze control task, we fix the period to 5ms for safety

and convenient analysis reasons. Also because of the wheels data arriving every 4ms,

we fix the period of the dead reckoning control task at 4ms although it may not run so

frequently. For the UART control task, since it checks both line data semaphore and

wheels data semaphore every time it runs, we just need to set the period at a certain

value which is less than the minimum value between the period of the maze control task

and the period of the dead reckoning control task, so we fix the period at 3ms in order

to get the line data and wheels data from the ISR on time.

When we use non-preemptive scheduling policies, we need to add the ISR period

to each task’s WECT because the tasks can be preempted by the ISR, so we separate

the ISR from other tasks in the table. Its period equals 10bits / 115.2kbit/s = 86.7us.

115.2kbit/s is the UART speed. 10bits equals 1 date byte + 1 start bit + 1 stop bit.

Table 4.1 shows the period of each task.

Table 4.1 shows the period of each task.
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Table 4.1: Period of each task

Task Name Period

UART Control Task 3ms
Sonar Control Task 40ms
Dead Reckoning Control Task 4ms
Maze Control Task 5ms
LCD Display Task 250ms

ISR 86.7us

Task Execution Time

For estimating, we run the robot to solve the maze and measure the clock ticks for each

task using a timer. To help analysis, we do not only measure the five tasks’ execution

time, but also some important functions including the ISR in the program. We run the

LPC2888 microcontroller at 60MHz and ATmega168 microcontroller at 20MHz. We use

the following piece of code to count the clock ticks of the task or the function execution

time we want to estimate:

timerSetCount (1 , 600000000) ; // Res tar t t imer

// Put t a s k or func t i on to be measured here .

counterNew = 600000000 − timerGetCount ( 1 ) ;

i f ( counterMax == 0) {
counterMax = counterNew ;

counterMin = counterNew ;

} else {
i f ( counterNew < counterMin )

counterMin = counterNew ; // Get new minimum t i c k

else i f ( counterNew > counterMax )

counterMax = counterNew ; // Get new maximum t i c k

}
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Since our LPC2888 microcontroller’s clock speed is 60MHz, setting the counter to

600000000 means the timer can count up to 10 seconds. This is just for safety reasons,

and normally the timer will not count down to 0 because we do not have such long

tasks or functions even if they may be preempted. While solving the maze, each task

or function will run many times, so we always monitor to update the maximum and

minimum ticks. After solving the maze, we know the BCET and WCET of this round.

We measure three times for each task or function in order to get more accurate results.

Since our robot system is highly based on the input and output like the data trans-

mission between the ATmega168 microcontroller and the LPC2888 microcontroller, we

cannot simply simulate it in some debuggers. We have to test it in the real environment

in order to get results.

4.1.3 Results

Since each task or function has different situation, we discuss them separately below:

UART Control Task

The BCET of this task should happen when both of line information semaphore and

wheels information semaphore are not set, so the task will go back again when it runs

next time. The WCET should happen when both of line information semaphore and

wheels information semaphore are set and both spend the maximum time to receive all

the data bytes. Our test shows the BCET of this task is 200 ticks and the WCET is

17065 ticks.

Sonar Control Task

For this task, BCET should happen when an obstacle is found and the obstacle semaphore

is set. At this time, this task will do nothing and check the obstacle semaphore again

and again until it is set back to 0 by the maze control task. The WCET should exactly

happen when the “obstacle found” counter counts to 10 and set the obstacle semaphore.

Our test shows the BCET of this task is 165 ticks and the WCET is 1884 ticks.
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Dead Reckoning Control Task

For this task the BCET should happen when there is no wheels data in the wheels

information queue. The WCET should happen when it calculates the coordinate with

the most complicated data computation. Our test shows the BCET is 594 ticks and the

WCET is 3460 ticks.

Maze Control Task

When the robot enters an intersection, the ATmega168 microcontroller needs to perform

turning, so there is no input from the ATmega168 microcontroller which causes the UART

control task and dead reckoning control task not work during that time. When we say

BCET or WCET of this task, we mean the line following function which runs like a task

when the robot follows the mazes, so the scheduler actually schedules the line following

function. Our test shows the BCET of this function is 655 ticks and the WCET is 4476

ticks. We also record some other functions in this task to help us analyze. The BCET

of update angle function is 370 ticks and the WCET is 457 ticks. The BCET of turn

function is 719 ticks and the WCET is 2708 ticks. The BCET of select turn function is

316 ticks and the WCET is 358 ticks.

LCD Display Task

This task’s BCET and WCET are only based on the data we want to display. Our test

shows the BCET of the LCD display task is 66776 ticks and the WCET is 90351 ticks.

The variation is caused by displaying different characters on the LCD. In this project,

we only display the coordinates information on the LCD which only has numbers. If we

display letter characters, the WCET may be larger.

Interrupt Service Routine

In preemptive scheduling policies, the ISR is just like a highest priority task, it can

preempt any other tasks at any time no matter what scheduling policy we use. In non-

preemptive scheduling policies, we need to add the ISR’s WCET to each task in order to

get each task’s WCET. Although the ISR does not count as a task in these policies, if

we want to calculate the schedulability based on each task’s WCET, we have to consider

the ISR. We will discuss more details about this in the next chapter. Our test shows the
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BCET of the ISR is 487 ticks and the WCET is 2239 ticks. This does not include the

ISR overhead time, so we need to use a oscilloscope to check them. Besides the execution

time we need about extra 8us to call and return from the ISR.

4.1.4 Summary

Table 4.2 shows the results summary of each task or function in practical approach we

may use for analysis later.

Table 4.2: BCET and WCET using practical approach

Task or Function name Ticks (BCET, WCET) Time (BCET, WCET)

UART Control Task (200, 17065) (3.3us, 284.4us)
Sonar Control Task (165, 1884) (2.8us, 31.4us)
Dead Reckoning Control Task (594, 3460) (9.9us, 57.7us)
Maze Control Task (655, 4476) (10.9us, 74.6us)
Update Angle Function (370, 457) (6.2us, 7.6us)
Turn Function (719, 2708) (12.0us, 45.1us)
Select Turn Function (316, 358) (5.3us, 6.0us)
LCD Display Task (66776, 90351) (1.11ms, 1.51ms)
ISR (487, 2239) (8.1us, 37.3us)

4.2 Theoretical Approach

4.2.1 Limitation of Analysis Tool

Because of the limitation of ARMSAT, we cannot analyze all the tasks using ARMSAT. It

cannot analyze some inline assembly instructions which FreeRTOS uses in some functions,

so we have to measure these functions using the practical approach. There are mainly

four functions that need to be measured. Table 4.3 shows the four functions and their

BCET and WCET.
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Table 4.3: Functions we need to measure

Function name Ticks (BCET, WCET) Time (BCET, WCET)

Queue Send Function (1059, 1485) (17.6us, 24.8us)
Queue Receive Function (1107, 1435) (18.5us, 23.9us)
Enter Critical Section Functon (218, 229) (3.6us, 3.8us)
Exit Critical Section Functon (263, 263) (4.4us, 4.4us)

As their names imply, the queue functions are used to handle the queues and the

critical functions are used when we want some codes to be executed in a critical section

which will disable all the interrupts. We do not use ARMSAT to measure the LCD

display function and ISR because it cannot handle these tasks.

4.2.2 Results

Table 4.4 shows the results summary of each task or function in theoretical approach.

Table 4.4: BCET and WCET using theoretical approach

Task or Function name Ticks (BCET, WCET) Time (BCET, WCET)

UART Control Task (215, 17233) (3.6us, 287.2us)
Sonar Control Task (210, 751) (3.5us, 12.5us)
Dead Reckoning Control Task (1337, 5396) (22.3us, 89.9us)
Maze Control Task (1359, 6825) (22.7us, 113.8us)
Update Angle Function (304, 527) (5.1us, 8.8us)
Turn Function (1008, 4242) (16.8us, 70.7us)
Select Turn Function (231, 325) (3.9us, 5.4us)
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4.3 Summary

After comparing the two approaches, we choose the smaller BCET as the final BCET and

the longer WCET as the final WCET of each task between the two approaches. Table

4.5 shows the final timing results of each task we need to use in the next chapter.

Table 4.5: Final BCET and WCET of each task

Task or Function name Ticks (BCET, WCET) Time (BCET, WCET)

ISR (487, 2239) (8.1us, 37.3us)
UART Control Task (200, 17233) (3.3us, 287.2us)
Dead Reckoning Control Task (594, 5396) (9.9us, 89.9us)
Maze Control Task (655, 6825) (10.9us, 113.8us)
Sonar Control Task (165, 1884) (2.8us, 31.4us)
LCD Display Task (66776, 90351) (1.11ms, 1.51ms)
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Chapter 5

Analysis and Conclusion

In this chapter we will apply different scheduling approaches to our robot system mainly

on the LPC2888 microcontroller and test if the task set is schedulable (meet deadlines)

under the certain approach. Based on different approaches, we also try to reduce the

microcontroller clock speed to minimum while it is still schedulable.

5.1 Static Scheduling

Since we have an ISR which can be triggered at any time in the system, we cannot use

the pure static scheduling method which is without helper interrupts. But we can use

the normal static scheduling method with helper interrupts. In this scheduling policy

all tasks are in a large loop and each task has the same period, so in order to meet

every task’s deadline which equals the period based on our assumptions, the large loop’s

period should be less than 3ms which is the minimum period among the five tasks in our

case. The next equation from [4] gives us the way to check the schedulability under this

approach. Pm is the period of the main loop which equals 3ms. Ci is the execution time

of each task or ISR. Pi is the period of each ISR. Tasks start from 0 to N − 1 and ISRs

start from N to N +M − 1 assuming that we have N tasks and M ISRs.

i=N−1∑
i=0

Ci +
i=N+M−1∑

i=N

(⌈Pm
Pi

⌉
Ci

)
≤ Pm (5.1)

After applying our data to the equation, we know that
∑i=N−1

i=0 Ci+
∑i=N+M−1

i=N

(⌈
Pm

Pi

⌉
Ci
)

= 2032.3us+ 1290.7us = 3323us which is more than Pm = 3000us, so we cannot use this
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approach to schedule the five tasks we have. This is probably because the execution time

of LCD display task is relatively longer than other tasks comparing to the minimum task

period.

5.2 Dynamic Scheduling

Dynamic scheduling means the scheduler can select tasks to run based on different

scheduling policies such as static priority assignment and dynamic priority assignment.

We will use some equations in this chapter. In each of these equations, τi means

a periodic task. A set of tasks is represented by τ = {τi} and the tasks are sorted in

non-decreasing order by period. Each τi is associated with (Ti, Di, Ci) which separately

means period, relative deadline and worse case execution time (WCET). We define hp(τi)

as the subset of τ which has tasks with priority equal to or higher than τi.

Before applying different scheduling policies, we need to make some assumptions,

because if we do not do this, we cannot ensure the tasks meet their deadlines under

all circumstances. These assumptions are also optimistic and they may not be true in

practice. But they can help us to analyze problems more efficiently and more easily.

Another reason is that all the equations we use to test the schedulability in this chapter

are based on these assumptions.

All tasks are periodic

This is why we fix the period of each task in last chapter. We need know the fixed period

of each task to do further analysis. If a task’s period length varies during runtime based

on different execution times, we choose the fastest possible period.

Deadline of each task equals its period

In our case, the deadline of each task does equal its period. In some cases, if the deadline

is shorter than the period, we should use the deadline as the period.

All tasks are independent

This means that one task cannot block another task. In our case, although it seems that

the dead reckoning control task and maze control task have some data (wheel data and
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line data) dependencies on the UART control task, these tasks are all independent. It is

because they cannot block each other which means when dead reckoning control task or

maze control task is running and it finds that no data is available (semaphore is not set)

from the corresponding queues, it will keep running and exit, so it will not be blocked.

This is also why we use semaphore instead of resuming another task in a task when the

data is ready.

There is no scheduling overhead

This means we can ignore the time of switching between tasks and the time of context

switching. The ISR overhead time is also ignored. Why we do this is because comparing

to the shortest deadline, the switching time between tasks or the ISR overhead time is

much slower. For safety reason, we need to add some margin to our results because in

the real world these scheduling overhead cannot be ignored. We need make to sure our

analysis will apply when the robot is running in the real world.

5.2.1 Non-preemptive Scheduling

In non-preemptive scheduling, we do not treat ISR as a task, so in order to get the real

execution time of each task, we need to count the ISR execution time in each task. We

should also consider the worse case that when a task starts to run, the ISR immediately

preempts, so the ISR will preempt for the maximum times when the task is running. We

need to add these times back to each task’s WCET. Here the period of ISR we use is the

minimum period which is much (20 times) less than the real world period we observe.

The system is very safe to use these numbers. We use the following equation to calculate

the new WCET. Let LCM denote the lease common multiple of each task’s period that

is LCM = [Ci]. N means there are N tasks.

NewCi = OldCi +

[
dLCM
TISR
e∑j=N

j=1
LCM
Tj

]
× CISR

After using this method, we get the new WCET and estimated ticks of each task

sorted by period when the LPC2888 microcontroller runs at 60MHz showing in Table

5.1. The microcontroller utilization is 0.5858.
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Table 5.1: New WCET of each task for non-preemptive scheduling

Task or Function name WCET Ticks WCET Period

UART Control Task 48564 809.4us 3ms
Dead Reckoning Control Task 36726 612.1us 4ms
Maze Control Task 38160 636.0us 5ms
Sonar Control Task 33216 553.6us 40ms
LCD Display Task 121930 2032.2us 250ms

ISR 2239 37.3us 86.7us

Rate Monotonic Scheduling

We use the following Theorem 1 and Theorem 2 from [3] to decide if our task set is

schedulable or not.

Theorem 1. A periodic task set τ is schedulable using a fixed priority scheduler if

and only if

Ci
max +

∑
τj∈hp(τi)

⌊Di

Tj

⌋
Cj ≤ Di (5.2)

for ∀τi ∈ τ where Ci
max = max{Ck|k > i}.

Theorem 2. Rate monotonic is an optimal priority assignment for non-preemptively

scheduling periodic task sets with Di = Ti.

After applying our task data to Theorem 1, we know that our five tasks all meet the

requirement of equation (5.2), so they are schedulable according to Theorem 1. Now we

need to figure out what is the minimum microcontroller clock speed we can use so that

all the tasks are still schedulable.

We assume that if we reduce the microcontroller clock speed by n times, only each

task’s execution time (WCET) will increase by n as new WCET, so the equation in

Theorem 1 is changed to:

NewCi
max × n+

∑
τj∈hp(τi)

⌊Di

Tj

⌋
NewCj × n ≤ Di

After calculating the new Ci, we just need to find out the maximum n that when
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we apply our five task data to the equation, they all still meet the requirement. After

calculation we know the maximum n which is approximate 1.372 since we add some safe

margins when calculating, so the minimum clock speed we can get is 60MHz/1.372 =

43.732MHz if we use this RM scheduling approach.

Earliest Deadline First Scheduling

We use the following Corollary 3 from [2] to decide if our tasks set is schedulable or not.

Corollary 3. A periodic task set τ is schedulable using a non-preemptive earliest

deadline first scheduler if it satisfies

n∑
i=1

Ci
Ti
≤ 1 (5.3)

L ≥ Ci +
i−1∑
j=1

⌊L− 1

Tj

⌋
Cj (5.4)

for ∀i, 1 < i ≤ n; ∀L, T1 < L < Ti.

After applying our task data to Corollary 3, we know that our five tasks all meet the

requirement of equation (5.3) and (5.4), so they are schedulable according to Corollary

3. Now we need to figure out what is the minimum microcontroller clock speed we can

use so that all the tasks are still schedulable.

We assume that if we reduce the microcontroller clock speed by n times as before,

only each task’s execution time (WCET) will increase by n, so the equation in Corollary

3 is changed to:

n∑
i=1

NewCi
Ti

× n ≤ 1

L ≥ NewCi × n+
i−1∑
j=1

⌊L− 1

Tj

⌋
NewCj × n

After calculation, from the former equation we can get the maximum n which is 1.372,

so the minimum clock speed we can get is 60MHz/1.372 = 43.732MHz if we use this EDF

scheduling approach.
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5.2.2 Preemptive Scheduling

From the last chapter, we can get the WCET and WCET ticks of each task sorted by

period showing in Table 5.2. Since now we use preemptive scheduling method, we should

add ISR as a task, so now we have six tasks in total.

Table 5.2: WCET of each task for preemptive scheduling

Task or Function name WCET Ticks WCET Period

ISR 2239 37.3us 86.7us
UART Control Task 17233 287.2us 3ms
Dead Reckoning Control Task 3460 89.9us 4ms
Maze Control Task 6825 113.8us 5ms
Sonar Control Task 1884 31.4us 40ms
LCD Display Task 90351 1510us 250ms

Rate Monotonic Scheduling

We know that if the lowest priority task meets all its deadlines in the worst case, the

task set is schedulable, so we use the following equation to estimate the lowest priority

task’s response time to determine if it is schedulable.

a0 = Ci +
∑
j∈hp(i)

Cj

an+1 = Ci +
∑
j∈hp(i)

⌈an
τi

⌉
Cj

For each task set we iterate an until an = an+1. If an ≤ Di, it is schedulable.

Otherwise it is not schedulable.

After applying our tasks data to the equations above, we know that our six tasks all

meet the requirement, so they are schedulable.

We assume that if we reduce the microcontroller clock speed by n times, only each

task’s execution time (WCET) will increase by n times at this time, so the equation
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above is changed to:

a0 = Ci × n+
∑
j∈hp(i)

Cj × n

an+1 = Ci × n+
∑
j∈hp(i)

⌈an
τi

⌉
Cj × n

After calculation, from the equations above we can get the maximum n which is 1.572,

so the minimum clock speed we can get is 60MHz/1.572 = 38.217MHz if we use this RM

scheduling approach.

Earliest Deadline First Scheduling

For preemptive EDF scheduling, from [1] we know that periodic task set τ containing m

tasks is schedulable if and only if

m∑
i=1

Ci
Ti
≤ 1

It means if only the microcontroller utilization is less than or equals to 1, the tasks

set can be schedulable. In our case, the microcontroller utilization is 0.5785, so it can be

schedulable.

We assume that if we reduce the microcontroller clock speed by n times, only each

task’s execution time (WCET) will increase by n times at this time, so equation above

is changed to:

( m∑
i=1

Ci
Ti

)
× n ≤ 1

After calculation, from the equation above we can get the maximum n which is 1.7286,

so the minimum clock speed we can get is 60MHz/1.7286 = 34.710MHz if we use this

EDF scheduling approach.

5.3 Conclusion

In summary, Table 5.3 shows the minimum LPC2888 microcontroller clock speeds we can

reduce to under different scheduling policies.
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Table 5.3: Minimum clock speeds summary

Non-preemptive Preemptive
Rate Monotonic 43.732MHz 38.217MHz

Earliest Deadline First 43.732MHz 34.710MHz

From Table 5.3, in non-preemptive scheduling, we see the minimum clock speeds of

RM scheduling and EDF scheduling are exactly the same which means that sometimes

the schedulabilities of RM scheduling and EDF scheduling are the same according to

Theorem 1 and Theorem 2. This is because we assume that the deadline of each task

equals its period so that RM scheduling and EDF scheduling are the same in our case. In

preemptive scheduling, EDF scheduling is more optimal than RM scheduling. Preemptive

scheduling is more optimal than non-preemptive scheduling in both RM scheduling and

EDF scheduling.

It is obvious that earliest deadline first in preemptive scheduling is the most optimal

when the deadline of each task equals its period in our case.

We also implement the non-preemptive RM scheduling approach in FreeRTOS to

show that all tasks can meet their deadlines when the clock runs at lower speeds. In

our experiment, we can reduce the clock speed to 24MHz which is much lower than

43.732MHz from our theoretical calculation. This is because the period of ISR we use

for theoretical calculation is the minimum period which is much (20 times) less than the

real world period we observed. The ISR should be triggered much slower in the real

world when the robot is running. The minimum utilization bound of ISR is too high

which is 0.4302 in our theoretical calculation, but for safety reason we have to consider

the theoretical worst case.

If we want to optimize our system to get slower clock speed, we can reduce the UART

speed which will increase the ISR period in order to decrease the utilization bound of

ISR. But we need to make sure the communication between the two microcontrollers

still works fine under the slower UART speed. We can also reduce the execution time of

ISR by moving the decoding function to the UART control task. Although it will cause

increasing of the task execution time, the overall performance should improve since the

minimum period of the UART control task should be more than the minimum period of
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ISR which means we reduce a portion of the utilization bound of a more frequent running

task and add a same portion of utilization bound to a relative less frequent running task.

Although dynamic scheduling approach is better than static scheduling approach

based on schedulability, it also has some disadvantages comparing to static scheduling

approach. One major tradeoff is the RAM stack size. For instance, for static scheduling

approach, we only need one RAM stack because essentially we only have one task, but for

dynamic scheduling approach, we need five RAM stacks in our case whose total size may

be larger than that of static scheduling approach. Another factor is the code size. For

example, in preemptive approach, EDF scheduling is better than RM scheduling based

on schedulability, but it is more complicated and requires more code space. We also need

more time to implement the scheduler. Analyzing these tradeoffs in details is one of our

future works.
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Chapter 6

Future Work

Optimize and enhance the current tasks

The current tasks may not be optimal, so we will try to figure out how to optimize them

to achieve much slower microcontroller clock speed under different scheduling policies.

As what we have discussed in the last chapter, we can reduce the UART speed to reduce

the ISR utilization bound. We can also reduce the execution time of ISR by moving the

decoding function to the UART control task.

We will also enhance the dead reckoning algorithm such as adding more strips in the

wheel encoder disc to get more accurate wheel rotation information and using a more

complicated algorithm to get more accurate results. Building LCD display queues and

semaphores to allow more than one task to display data on the LCD may be another

thing to do to enhance the LCD control task.

For the sonar control task, we will change the current sonar range finder to a more

sensible senor to detect the obstacles. The current sonar range finder cannot distinguish

the distance less than 15cm.

Expand new tasks

We will add Bluetooth through the serial communication in order to allow the robot

to interact with computers. Splitting the maze control task is another way to add new

tasks. Now the task has three functions which can be split into three tasks.
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Work with ARMSAT

Now ARMSAT is not very compatible with our application. In order to get more accurate

static timing information of each task for better analysis, based on the limitations of

ARMSAT, we may try to help enhance ARMSAT which can work with FreeRTOS and

we will use our application to test ARMSAT. We also need to figure out why ARMSAT

gives us some inaccurate results in the last chapter, such as why the BCET is longer than

that we measure in the real world etc.

Apply stack analysis

We will find a way to measure the stack size in our implementation, so we can analyze

different stack sizes to see different memory usages based on different scheduling policies.
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Appendix A

Instructions to Build the Robot

A.1 Hardware Parts

3pi Robot

We use the 3pi robot from http://www.pololu.com. The newest version of 3pi robot uses

the ATmaga328 microcontroller which may cause a slight difference from what we build

in this project.

Odometers

We use two QTR-1A reflectance sensors from http://www.pololu.com. We connect the

VIN pins of the sensors to the VCC pins of the 3pi robot, the GND pins of the sensors to

the GND pins of the 3pi robot and the OUT pins of the sensors to the ADC6 pin and the

ADC7 pin of the 3pi robot respectively. Then we can use the ATmega168 microcontroller

to control the sensors. [21] provides more information about the QTR-1A reflectance

sensor.

LPC-H2888 Board

We use the LPC-H2888 board from http://www.microcontrollershop.com. We connect

the SUPPLY +5V pin and the SUPPLY GND pin of LPC-H2888 board to the VCC

pin and the GND pin of the 3pi robot respectively. Then we can power the LPC-H2888

board. We also connect the RXD pin and the TXD pin of the LPC-H2888 board to
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the PD1 pin and the PD0 pin of the 3pi robot respectively. Then we can communicate

between the two parts.

LCD

We use the LCD from the original 3pi robot. [12] and [18] provide the information about

how to connect the LCD to the LPC-H2888 board through the LCD interface. Then we

can use the LPC2888 microcontroller to control the LCD. [19] provides more information

about the LCD.

Sonar Range Finder

We use the Maxbotix LV-MaxSonar-EZ4 sonar range finder from http://www.pololu.com.

Then we connect the VCC pin, the GND pin and the AN pin of the sonar range finder

to the VREF(DADC) pin, the VCOM(DADC) pin and the AIN0 pin of the LPC-

H2888 board respectively. We also need to connect the VREF(DADC) pin and the

VCOM(DADC) pin to the SUPPLY 3.3V pin and the GND pin respectively. Then we

can use the LPC2888 microcontroller to control the sonar range finder. [20] provides

more information about the sonar range finder.

A.2 Software Parts

[5] shows how to install the toolchain for the ATmaga168 microcontroller (3pi robot).

[11] shows how to install the toolchain for the LPC2888 microcontroller (LPC-H2888

board). Then we can program the microcontrollers.
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