Greedy Algorithms

Design and Analysis of Algorithms
Andrei Bulatov

9/7/2016

‘Algorithms — Greedy Algorithms

“Greed ... is good. Greed is right.
Greed works.”
“Wall Street”

Algorithms — Greedy Algorithms 23

Graph Traversal, BFS and DFS

Algorithms — Greedy Algorithms

BFS and DFS

Theorem

The running time of BFS and DFS is O(m + n) where n is the
number of vertices in the graph, and m the number of edges

‘Algorithms — Greedy Algorithms 25

Bipartiteness

Use BFS to check if a graph is bipartite

‘Algorithms — Greedy Algorithms

Shortest Path

Suppose that every arc e of a digraph G has length
(or cost, or weight, or ...) len(e)

Then we can naturally define the length of a directed path in G,
and the distance between any two nodes

The s-t-Shortest Path Problem
Instance:

Digraph G with lengths of arcs, and nodes s,t
Objective:

Find a shortest path between s and t

9/7/2016

‘Algorithms — Greedy Algorithms 27

Single Source Shortest Path

The Single Source Shortest Path Problem
Instance:

Digraph G with lengths of arcs, and node s
Objective:

Find shortest paths from s to all nodes of G

Greedy algorithm:

Attempts to build an optimal solution by small steps, optimizing
locally, on each step

‘Algorithms — Greedy Algorithms 25

Dijkstra’s Algorithm

Input: digraph G with lengths Tlen, and node s
Output: distance d(u) from s to every node u
Method:

let S be the set of explored nodes

foreach v e S let d(v) be the distance from s to v

set S:={s} and d(s):=0
while szv do

pick a node v not from S such that the value

Algorithms — Greedy Algorithms 29

Example

d'(v):=min,_,) e s{d W) +len(e)}
is minimal
set S:=Su{v}, and d(v):=d’(v)
endwhile
Algorithms — Greedy Algorithms 210
Questions

What if G is not connected?
there are vertices unreachable from s?

How can we find shortest paths from s to nodes of G?

‘Algorithms — Greedy Algorithms T

Dijkstra’s Algorithm

Input: digraph G with lengths Ten, node s

Output: distance d(u) from s to every node u and

predecessor P(u) in the shortest path
Method:

set S:={s}, d(s):=0, and P(s):=null

while szv do

pick a node v not from S such that the value

d'(v):=min,_,) es1d @) +len(e)}

is minimal

set S:=Su{v} and d(v):=d’ (v)

set P(v):= u (providing the minimum)
endwhile

"Algorithms — Dijkstra’s Algorithm [XH

Dijkstra’s Algorithm Analysis: Soundness

Theorem
Forany node v the path s, ... P(P(P(v))), P(P(v)), P(v), v isa
shortest s - v path

Method: Algorithm stays ahead

9/7/2016

"Algorithms — Dijkstra’s Algorithm

Soundness

Proof
Induction on S|
Base case: If |S]=1, then S={s}, and d(s)=0
Induction case:
Let P, denote the path s, ... P(P(P(u))), P(P(u)), P(u), u
Suppose the claim holds for [S| =k, thatis forany ue S P, is
the shortest path
Let v be added on the next step.
Consider any path P from s to v otherthan P,

Algorithms — Dijkstra’s Algorithm 214

Soundness (cntd)

There is a point where P
leaves S for the first time
Letit be arc (x,y)

The length of P is at least
the lengthof P, + the length of
(x,y) + thelength of y-v
However, by the choice of v
len(P,) =len(P,) +len(u,v) < len(Py) +len(x, y) < len(P)

QED

Algorithms — Dijkstra’s Algorithm

Running Time

Let the given graph have n nodes and m arcs

n iterations of the while loop

Straightforward implementation requires checking up to m arcs
that gives O(mn) running time

Improvements:
For each node v store d'(v):= min,_,) e {d(u)+len(e)}
and update it every time S changes
When node v is added to S we need to change deg(v) values
m changes total
O(m+n) “calls’ Properly implemented this gives O(m log n)
\Recall heaps and priority queues \

