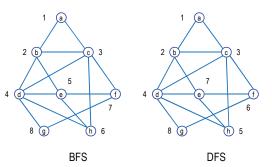
Greedy Algorithms

Design and Analysis of Algorithms

Andrei Bulatov

"Greed ... is good. Greed is right.
Greed works."
"Wall Street"

Graph Traversal, BFS and DFS



BFS and DFS

The running time of BFS and DFS is O(m+n) where n is the number of vertices in the graph, and m the number of edges

Algorithms - Greedy Algorithms

Bipartiteness

Use BFS to check if a graph is bipartite

Algorithms - Greedy Algorithms

----, -------

Shortest Path

Suppose that every arc e of a digraph G has length (or cost, or weight, or ...) len(e)

Then we can naturally define the length of a directed path in G, and the distance between any two nodes

The s-t-Shortest Path Problem

Instance

 $\label{eq:definition} \mbox{Digraph } \mbox{G} \mbox{ with lengths of arcs, and nodes } \mbox{s,t} \\ \mbox{Objective:}$

Find a shortest path between $\,s\,$ and $\,t\,$

Algorithms - Greedy Algorithms

Single Source Shortest Path

The Single Source Shortest Path Problem

Digraph G with lengths of arcs, and node s Objective:

Find shortest paths from s to all nodes of G

Greedy algorithm:

Attempts to build an optimal solution by small steps, optimizing locally, on each step

Algorithms - Greedy Algorithms

Dijkstra's Algorithm

Input: digraph G with lengths len, and node s Output: distance d(u) from s to every node uMethod:

let S be the set of explored nodes

for each $v \in S$ let d(v) be the distance from s to v

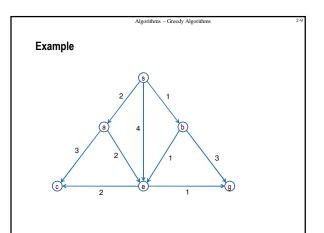
set $S:=\{s\}$ and d(s):=0while S≠V do

pick a node v not from S such that the value $d'(v) \coloneqq \min\nolimits_{e = (u,v), u \in S} \{d(u) + len(e)\}$

is minimal

set $S:=S\cup\{v\}$, and d(v):=d'(v)

endwhile



Algorithms - Greedy Algorithms

Questions

What if G is not connected? there are vertices unreachable from s?

How can we find shortest paths from s to nodes of G?

Algorithms - Greedy Algorithms

Dijkstra's Algorithm

Input: digraph G with lengths len, node s Output: distance d(u) from s to every node u and predecessor P(u) in the shortest path Method:

set $S:=\{s\}$, d(s):=0, and P(s):=nullwhile S≠V do

pick a node \boldsymbol{v} not from \boldsymbol{S} such that the value $d'(v) \coloneqq \min\nolimits_{e = (u,v), u \in S} \{d(u) + len(e)\}$

is minimal

set S:=S \cup {v} and d(v):=d'(v) set P(v) := u (providing the minimum)

endwhile

Algorithms - Dijkstra's Algorithm

Dijkstra's Algorithm Analysis: Soundness

Theorem

For any node v the path $s, \dots P(P(P(v))), P(P(v)), P(v), v$ is a shortest s - v path

Method: Algorithm stays ahead

Algorithms – Dijkstra's Algorithm 2

Soundness

Proof

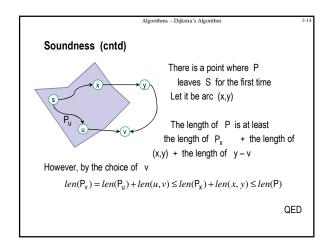
Induction on |S| Base case: If |S|=1, then $S=\{s\}$, and d(s)=0

Induction case:

Let $\ P_u$ denote the path $\ s, \ldots \ P(P(P(u))), \ P(P(u)), \ P(u), \ u$ Suppose the claim holds for $\ |S|=k, \ that is \ for any \ u \in S$. $\ P_u$ is the shortest path

Let v be added on the next step.

Consider any path P from s to v other than P_v



Algorithms - Dijkstra's Algorithm

2-15

Running Time

Let the given graph have n nodes and m arcs n iterations of the while loop

Straightforward implementation requires checking up to m arcs that gives O(mn) running time

Improvements:

For each node v store $d'(v):=\min_{e=(u,v),u\in S}\{d(u)+len(e)\}$ and update it every time S changes

When node $\,v\,$ is added to $\,S\,$ we need to change $\,deg(v)\,$ values $\,m\,$ changes total

O(m+n) `calls' Properly implemented this gives $O(m \log n)$

Recall heaps and priority queues