
Supplemental Materials: refractive indices of materials used in this work

The materials used in this work include aluminum (Al), alumina (Al_2O_3) , gold (Au), and cobalt (Co). Al, Al_2O_3 , and Au are available in the FDTD material database, and their refractive indices plots are shown in Fig. R2 (a), (b), and (c), respectively. Co is not in the original material database and is imported based on Table RII.

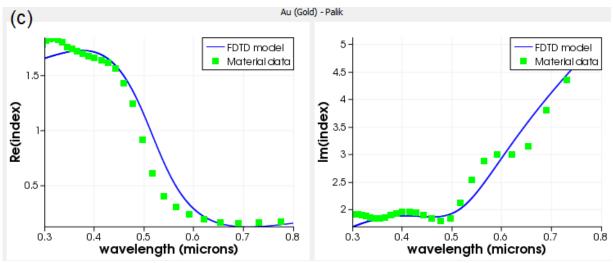


Fig. R2. Material refractive indices plots from FDTD material database: (a) Al (aluminum – CRC), (b) Al₂O₃ (alumina – Palik), and (c) Au (gold – Palik).

Table RII.	Refractive	indices	of Cobalt use	ed in this	simulation	work (lambda	is the
			wavelength,	unit: µn	1)		

lambda	n	k
0.25	1.22	1.74
0.26	1.22	1.80
0.27	1.22	1.86
0.28	1.21	1.94
0.29	1.21	2.02
0.30	1.22	2.11
0.31	1.23	2.19
0.32	1.24	2.27
0.33	1.26	2.36
0.34	1.28	2.45
0.35	1.30	2.53
0.36	1.31	2.61
0.37	1.33	2.70
0.38	1.35	2.81
0.39	1.41	2.91
0.40	1.46	3.00
0.41	1.50	3.08
0.42	1.56	3.17
0.43	1.61	3.25
0.44	1.67	3.32
0.45	1.73	3.40
0.46	1.79	3.47

	lambda	n	k
[0.47	1.84	3.53
[0.48	1.90	3.59
[0.49	1.96	3.65
[0.50	2.03	3.72
	0.51	2.09	3.78
	0.52	2.14	3.84
	0.53	2.20	3.88
	0.54	2.26	3.94
	0.55	2.32	3.98
	0.56	2.37	4.03
	0.57	2.43	4.08
	0.58	2.49	4.12
	0.59	2.55	4.16
	0.60	2.61	4.20
	0.61	2.68	4.24
	0.62	2.75	4.27
	0.63	2.80	4.30
	0.64	2.86	4.34
	0.65	2.91	4.37
	0.66	2.96	4.39
	0.67	3.02	4.41
	0.68	3.08	4.44

lambda	n	k
0.69	3.13	4.46
0.70	3.18	4.48
0.71	3.22	4.51
0.72	3.28	4.54
0.73	3.32	4.56
0.74	3.36	4.57
0.75	3.40	4.59
0.76	3.45	4.61
0.77	3.49	4.64
0.78	3.54	4.66
0.79	3.58	4.69
0.80	3.62	4.71
0.81	3.66	4.73
0.82	3.71	4.76
0.83	3.74	4.77
0.84	3.77	4.80
0.85	3.79	4.82
0.86	3.82	4.84
0.87	3.86	4.87
0.88	3.89	4.88
0.89	3.90	4.89
0.90	3.85	4.77