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ABSTRACT

A review of a moment tensor for describing a general seismic point source is
presented to show a second order moment tensor can be related to simpler seismic
source descriptions such as centers of expansion and double couples. A review of
literature is followed by detailed algebraic expansions of the moment tensor into
isotropic and deviatoric components. Specific numerical examples are provided in
the appendices for use in testing algorithms for moment tensor decomposition.

INTRODUCTION

A major research interest in seismology is the
description of the physics of seismic sources. A common
approach is the approximation of seismic sources by a
model of equivalent forces that correspond to the linear
wave equations neglecting non-linear effects in the near
source region (Geller, 1976; Aki and Richards, 1980; Ken-
nett, 1983; Bullen and Bolt, 1985). Equivalent forces are
defined as producing displacements at the earth's surface
that are identical to those from the actual forces of the
physical process at the source. The equivalent forces are
determined from observed seismograms that contain infor-
mations about the source and path and distortions due to
the recording. Hence, the principle problem of source stu-
dies is the isolation of the source effect by correcting for
instrument and path.

The classical method of describing seismic sources,
having small dimensions compared to the wavelengths of
interest (point source approximation) is by their strength
(magnitudes, seismic moment) and their fault plane solu-
tion (Honda, 1962; Hirasawa and Stauder, 1965;
Herrmann, 1975). Recently, seismic moment tensors have
been used routinely for describing seismic point sources
(e.g. Kanamori and Given, 1982; Dziewonski and Wood-
house, 1983b; Dziewonski et al. , 1983a-c, 1984a-c; Giar-
dini, 1984; EkstrZim and Dziewonski, 1985; Dziewonski
et al. , 1985a-d, 1986a-c, 1987a-f; EkstrOm et al , 1987;
Sipkin, 1987; PDE monthly listings published by NEIS).
Gilbert (1970) introduced moment tensors for calculating
the displacement at the free surface which can be
expressed as a sum of moment tensorelements times the
corresponding Green's function. An elastodynamic
Green's function is a displacement field due to an uni-
directional unit impulse, i.e. the Green's function is the
impulse response of the medium between source and
receiver. The response of the medium to any other time
function is the convolution (Arfken, 1985) of that time
function with the impulse response. The Green's function
depends on source and receiver coordinates, the earth
model, and is a tensor (Aki and Richards, 1980). The
linearity between the moment tensor and Green's function
elements was first used by Gilbert (1973) for calculating
moment tensor elements from observations (moment ten-
sor inversion). The concept of seismic moment tensors

was further extended by Backus and Mulcahy (1976), and
Backus (1977a, b). Moment tensors can be determined
from free oscillations of the earth (e.g. Gilbert and
Dziewonski, 1975), long-period surface waves (e.g.
McGowan, 1976; Mendiguren, 1977; Patton and Aki,
1979; Patton, 1980; Kanamori and Given, 1981, 1982;
Romanowicz, 1981; Lay et al., 1982; Nakanishi and
Kanamori, 1982, 1984) or long-period body waves (e.g.
Stump and Johnson, 1977; Strelitz, 1978, 1980; Ward,
1980a, b; Fitch et al., 1980; Fitch, 1981; Langston, 1981;
Dziewonski et al. , 1981; Dziewonski and Woodhouse,
1983a, b). Throughout this Student's Guide, we will
focus on second-rank, time independent moment tensors
(Appendix I). We refer to Dziewonski and Gilbert (1974),
Gilbert and Dziewonski (1975), Backus and Mulcahy
(1976), Backus (1977a), Stump and Johnson (1977), Strel-
itz (1980), Sipkin (1982), and Vasco and Johnson (1988)
for a description of time dependent moment tensors.
Higher order moment tensors are discussed by Backus and
Mulcahy (1976), Backus (1977a, b), and Dziewonski and
Woodhouse (1983a).

The reason that moment tensors are important is
that they completely describe in a first order approxima-
tion the equivalent forces of general seismic point sources.
The equivalent forces can be correlated to physical source
models such as sudden relative displacement at a fault
surface (elastic rebound model by H. F. Reid, 1910),
rapidly propagating metastable phase transitions (Evison,
1963), sudden volume collapse due to phase transitions, or
sudden volume increase due to explosions (Kennett, 1983;
Vasco and Johnson, 1988). The equivalent forces
representing a sudden displacement on a fault plane form
the familiar double couple. The equivalent forces of a sud-
den change in shear modulus in presence of axial strain
are represented by a linear vector dipole (Knopoff and
Randall, 1970). In conclusion, a seismic moment tensor is
a general concept, describing a variety of seismic source
models, the shear dislocation (double couple source) being
just one of them.

The equivalent forces can be determined from an
analysis of the eigenvalues and eigenvectors of the
moment tensor (Appendix I). The sum of the eigenvalues
of the moment tensor describes the volume change in the
source (isotropic component of the moment tensor). If the
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sum is positive, the isotropic component is due to an
explosion. The source has an implosive component if the
sum is negative. If the sum of the eigenvalues vanishes,
then the moment tensor has only deviatoric components.

The deviatoric moment tensor represents a pure double
couple source if one eigenvalue equals zero. If none of the
eigenvalues vanishes and their sum still equals zero, the
moment tensor can be decomposed into a major and
minor double couple (Kanamori and Given, 1981), or a
double couple and a compensated linear vector dipole
(CLVD) (Knopoff and Randall, 1970). A CLVD is a
dipole that is corrected for the effect of volume change,
describing seismic sources which have no volume change,
net force, or net moment. In general, a complete moment
tensor can be the superposition of an isotropic component
and three vector dipoles (or three CLVD's, or three double
couples, Ben-Menahem and Singh, 1981).

This Student's Guide is an extension of 'A student's
guide to the use of P- and S- wave data for focal mechan-
ism determination" (Herrmann, 1975). Hence, emphasis is
given illustrating the relations between classical fault
plane solutions and seismic moment tensors. Addressing
general seismic point sources, we provide examples of
moment tensor decompositions into basic equivalent
source representations, as contributions of dipoles or dou-
ble couple sources. Clarification of terms such as major
and minor double couple or compensated linear vector
dipole is provided. Moment tensor inversion schemes are
briefly summarized. In the appendices, examples of the
use of notation by different authors are given along with
some numerical results which are useful for testing com-
puter programs. Furthermore, the formulation of the
basic Green's functions by Herrmann and Wang (1985) is
connected to a simple moment tensor inversion scheme.

North

GENERAL ELASTODYNAMIC SOURCE
By using the representation theorem for seismic

sources (Aki and Richards, 1980), the observed displace-
ment do at an arbitrary position x at the time t due to a
distribution of equivalent body force densities, f k, in a
source region is

co

dn (x,t) = f f Gnk (x,t;r,t) f k (r,T) dV(r) dt , (1)
-co v

where Gnk are the components of the Green's function
containing the propagation effects, and V is the source
volume where f k are non-zero. We assume the summation
convention for repeated indices (Arfken, 1985). The sub-
script n indicates the component of the displacement.
Throughout, we will use the following coordinate system

(Figure 1): The x-axis points towards north, the y-axis
towards east, and the z-axis down (this system is right
handed). Then, e z , e y , and ex are the unit vectors
towards north, east, and vertically down, respectively.

By assuming that the Green's functions vary
smoothly within the source volume in the range of
moderate frequencies, the Green's functions can be
expanded into a Taylor series around a reference point to
facilitate the spatial integration in (1) (Kennett, 1983;
Arfken, 1985). The expansion is usually done around the
centroid r = e. The physical source region is character-
ized by the existence of the equivalent forces. These forces

z

Fig. 1. Definition of the Cartesian coordinates (x,y,z).
The origin is at the epicenter. Strike is measured
clockwise from north, dip from horizontal down,
and slip counterclockwise from horizontal. u and v
are the slip vector and fault normal, respectively
(modified after Aki and Richards, 1980).

arise due to differences between the model stress and the
actual physical stress (stress glut, Backus and Mulcahy,
1976). Outside the source region, the stress glut vanishes
as do the equivalent forces. The centroid of the stress
glut is then a weighted mean position of the physical
source region (Backus, 1977a; Aki and Richards, 1980;
Dziewonski and Woodhouse, 1983a). It seems that the
centroid of the stress glut gives a better position for the
equivalent point source of an earthquake than the hypo-
center which describes just the position of rupture initiali-
zation. The Taylor series expansion of the components of
the Green's function around this new reference point is

Gnk(x,t = (2)

E - (7.1 ,—W • • • (rim —el. ) G„ k . . . (x,t 4T)
m—o ml

The comma between indices in (2) describes partial deriva-
tives with respect to the coordinates after the comma.
We define the components of the time dependent force
moment tensor as :

Mkji 2 (e,T) = f (rig—e) • • (7.5. —ei )f k(r,t) dV. (3)
V

If conservation of linear momentum applies, such as for a
source in the interior of a body, then a term in Mk does
not exist in (3). With the Taylor expansion (2) and the
definition of the time dependent moment tensor (3), the
displacement (1) can be written as a sum of terms which
resolve additional details of the source (multipole expan-
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sion, Backus and Mulcahy, 1976; Stump and Johnson,
1977; Aki and Richards, 1980; Kennett, 1983; Dziewonski
and Woodhouse, 1983a; Vasco and Johnson, 1988):

dn(x,t) = (4)

x-,e<> 1 r„
j„,(Xlt 7e9 -0 * n, (e7 T)

1

where * denotes the temporal convolution. By using a
seismic signal that has much longer wavelengths than the
dimensions of the source (point source approximation), we
need to consider only the first term in (4) (Backus and
Mulcahy, 1976; Stump and Johnson, 1977). Note, that
single forces will not be present in (4) if there are no
externally applied forces (indigenous source). The total
force, linear and angular momentum must vanish for the
equivalent forces of an indigenous source (Backus and
Mulcahy, 1976). The conservation of angular momentum
for the equivalent forces leads to the symmetry of the
seismic moment tensor (Gilbert, 1970).

We assume that all components of the time depen-
dent seismic moment tensor in (4) have the same time
dependence s(t) (synchronous source, Silver and Jordan,

1982). Neglecting higher order terms, we get (Stump and
Johnson, 1977)

dn (x,t)= Mk1 [ Gnk,i * s(T)]	 (5)

Mk, are constants representing the components of the
second order seismic moment tensor M, usually termed
the moment tensor. Note that the displacement do is a
linear function of the moment tensor elements and the
terms in the square brackets. If the source time function
s (t) is a delta function, the only term left in the square
brackets is Gnk1 describing nine generalized couples. The
derivative of a Green's function component with respect
to the source coordinate e i is equivalent to a single couple
with arm in the ei direction. For k = j, i.e. force in the
same direction as the arm, the generalized couples are vec-
tor dipoles (Figure 2; Maruyama, 1964). Thus, the
moment tensor component Mkt gives the excitation of the
generalized (k,j) couple.

DOUBLE COUPLE SOURCES

The moment tensor components in (5) in an isotropic
medium for a double couple of equivalent forces are given
by

y

z	 z	 z

z
	 z	 z

z	 z
Fig. 2. The nine generalized couples representing Gnk j in (5) (modified

after Aki and Richards, 1980).
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Mkj =µ AA ( uk 	ui vk ) ,	
( 6 )

where it is the shear modulus, A is the area of the fault
plane, u denotes the slip vector on the fault surface, and
v is the vector normal to the fault plane (Ald and

Richards, 1980; Ben-Menahem and Singh, 1981). Note
that the contributions of the vector of the fault normal v
and the slip vector u are symmetric in (6). From the sym-
metry of M, we note that the roles of the vectors u and v
could be interchanged without affecting the displacement
field; i.e. the fault normal could equivalently be the slip
vector and vice versa. This well known fault plane - auxi-
liary plane ambiguity cannot be resolved from the seismic
radiation of a point source. Hence studies of locations of
aftershocks, surface faulting, rupture directivity, or static
final displacements (Backus, 1977a) need to be done in
order to resolve this ambiguity.

The term uk vj + ui vk in (6) forms a tensor, D,
describing a double couple. This tensor is real and sym-
metric, giving real eigenvalues and orthogonal eigenvec-
tors (Appendix I). The eigenvalues are proportional to (1,
0, -1). Hence, the characteristic properties of a moment
tensor representing a double couple are 1) one eigenvalue
of the moment tensor vanishes, and ii) the sum of the
eigenvalues vanishes, i.e. the trace of the moment tensor is
zero (the other two eigenvalues are constrained to equal
magnitude but opposite sign).

Let t, b, and p designate the orthogonal eigenvectors
to the above eigenvalues (Herrmann, 1975; Backus, 1977a;
Dziewonski and Woodhouse, 1983a).

t — 	  ( v + u )	 (7)

b=vXu	 (8)

p= 1 ( v — u ) .	 (0)

The tensor D corresponding to the terms in the brackets
in (6) can be diagonalized (principal axis transformation,
see Appendix I), where the eigenvectors give the directions
of the principal axes. The eigenvector b corresponding to
the eigenvalue zero gives the null-axis, the eigenvector t
corresponding to the positive eigenvalue gives the tension
axis, T, and the eigenvector p corresponding to the nega-
tive eigenvalue gives the pressure axis, P, of the tensor.
These axes can be related to the corresponding axes of the
fault plane solution, since we are focusing on pure double
couple sources. The P-axis is in the direction of max-
imum compressive motion on the fault surface; the T-axis
is the direction of maximum tensional motion. Note that
the P- and T-axes inferred from the motion on the fault
surface are not necessarily identical to the axes of
maximum tectonic stress, since the motion can be on a
preexisting plane of weakness rather than on a newly
formed fault plane that would correspond to the max-
imum tectonic stress (McKenzie, 1969). However, this
ambiguity cannot be resolved from the seismic radiation.
In order to determine the direction of maximum tectonic
stress, additional geological data such as in situ stress
measurements and frictional forces is necessary. Lacking
this kind of information, it is generally assumed that the
P- and T- axes found from the seismic wave radiation are
somewhat indicative of the direction of tectonic stress.

The double couple uk vj + uj IA can equivalently be
described by its eigenvectors (Gilbert, 1973).

uk Vj 	uj vk = tkti — Pj Pk
	

(10 )

= 0.5 [(tk + pk)(tj — pj )+(tk — pk)(tj	pj)]

Comparing the terms in (10), we find the relation between
tension and pressure axes and slip vector and fault normal
(Appendix I):

u=
1
 ( t	 p )	 (11)

1

V2 ( 
t — p) .	 (12)

The other nodal plane is defined by

1u=	 ( t — p )	 (13)

v=  1 ( t + p ) .	 (14)

If strike, ', dip, .5, and slip, X, of the faulting are
known, the slip vector u and the fault normal v are given
by (Aki and Richards, 1980)

u =	 cos X cos 1 + cos 8 sin X sin 4> ) ex

	

( cos X sin 4> — cos 8 sin X cos 1 ) e y 	(15)

— Ti sin S sin X e z ,

where u is the mean displacement on the fault plane. The
fault normal v is

v = —sin5 sin(I) ex 	sinS cos4> ey — toss e z . (16)

The scalar product of u and 1/ is zero. The strike of the
fault plane, f, is measured clockwise from north, with the
fault plane dipping to the right when looking along the

strike direction. Equivalently, the hanging wall is then to
the right (Figure 1). The dip, 8, is measured down from
the horizontal. The slip, X, is the angle between the strike
direction and the direction the hanging wall moved rela-
tive to the foot wall (the slip is positive when measured
counterclockwise as viewed from the hanging wall side).
The range of the fault orientation parameters are

0 < < 27r, 0 < 8 < -2, and —7r < X < ir (Herrmann,

1975; Aki and Richards, 1980). The scalar seismic
moment is

M, = µA Ti	 (17)

Equation (6) together with (15), (16), and (17) lead to
the Cartesian components of the symmetric moment ten-
sor in terms of strike, dip, and slip angles.

Mzx = —M0 (sin S cos X sin 24> + sin 28 sin X sin e 4>)

My y =	 (sin S cos X sin 24> — sin 28 sin X cost 4))

M„ Mo (sin 28 sin X)	 (18)

Mxy = M, (sin S cos X cos 24> + 0.5 sin 2.5 sin X sin 21)

Mzz = —M0 (cos S cos X cos 4 + cos 25 sin X sin 4))

My, = —M0 (cos S cos X sin 4> — cos 25 sin X cos 4))

Different notation of the moment tensor elements are dis-
cussed in Appendix II. In Appendix III, several simple
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moment tensors are related to fault plane solutions.
Body-wave and surface wave radiation patterns from a
source represented by a moment tensor are discussed by
Kennett (1988).

Since the seismic moment tensor is real and sym-
metric, a principal axis transformation can be found,
diagonalizing M (Appendix I). The diagonal elements are
the eigenvalues m, of M. Then, the scalar seismic moment
can be determined from a given moment tensor by

Mo = —21 ( Imi I + lm2 I (19)

where m 1 and m 2 are the largest eigenvalues (in the abso-
lute sense). The seismic moment can equivalently be
estimated by the relations (Silver and Jordan, 1982):

mo  
EMk)

2 

v 2mi2 

(20)

GENERAL SEISMIC POINT SOURCES
In this section, it is assumed that the seismic source

cannot be described by a pure double couple mechanism.
The moment tensor is represented as sum of an isotropic
part, which is a scalar times the identity matrix, and a
deviatoric part.

In order to derive a general formulation of the
moment tensor decomposition, let's consider the eigen-
values and orthonormal eigenvectors of the moment ten-
sor. Let m ; be the eigenvalue corresponding to the ortho-
normal eigenvector a, --= ((Liz ,a 1y ,a,,) T . Using the ortho-
normality of the eigenvectors (Appendix I, (A1.5)), we can
write the principal axis transformation of M in reverse
order as:

M=	 a2 a3
 J m

a lz a2z a3zm 0 0 a12 a ly a lz

= n-11 a2y a31 0 P'2 0  {a2, 122 1 a2z  •

a12 .a 2z a 3, 0 0 m 3 a 3, a31 a 3,

From (21), we find relations between components of the
eigenvectors and moment tensor elements:

a x + m 2i2
	

+ m 3 a 12

„, 2 + „„„ „, 2 ± m	2".2 142y	 3-.3y

„ 2	 2
alz + m 2 -22 . — 3 `. 3z

alz a ly	 a2x a 21 + m 3 a32 a31	(22)

	a lz a lz + M 2 a 2x a 2z	 3z+ m3 a 3, a

a 3„	a2z	 a3yaly alz	 a2y

The effect of the eigenvalue decomposition (21) is that a
new orthogonal coordinate system, given by the eigenvec-
tors, has been defined. In this new coordinate system, the
source excitation is completely described by a linear com-
bination of these orthogonal dipole sources.

m in (21) is the diagonalized moment tensor. The ele-
ments of m are the eigenvalues of M. We now define the

general moment tensor decomposition by rewriting m as

Ftr (M)	 0	 0
1m = 3
	

0 tr (M) 0
0	 0	 tr (M)

tr (M)	 0	 0
= {	 0	 tr(M)	 0  + rri

3
0	 0	 tr(M) i -1

where tr (M) = m i + m 2 + ni 3 is the trace of the
moment tensor and Trii is a set of diagonal matrices
whose sum yields the second term in (23). The purely
deviatoric eigenvalues m ;` of the moment tensor are

+ m2 + m3	 1
3	 3 

tr(M) .	 (24)m i = mi 	 — m,

The first term on the right hand side (RHS) of (23)
describes the isotropic part of the moment tensor. The
eigenvalues of the isotropic part of the moment tensor are
important for quantifying a volume change in the source.
The second term describes the deviatoric part of the
moment tensor consisting of purely deviatoric eigenvalues,
which are calculated by subtracting 1/3 tr (M) from each
eigenvalue of M. This deviatoric part of the moment ten-
sor can be further decomposed, where the number of
terms or the specific form of the decomposition will be
discussed in the next sections. Obviously, a multitude of
different decompositions are possible. In Appendix IV, we
give some numerical examples illustrating several methods
of moment tensor decomposition.

Vector Dipoles
A moment tensor can be decomposed into an isotro-

pic part and three vector dipoles. In equation (23) let N =
3 and

0 0 0	 0 0 0 0=	 0	 0

r
m2= 74 0, m3= 0 0 0. (25)

0 	0 0 0	 0 0 0 0 m;

Applying (21) to El , we get for the first deviatoric term
(i=1) in the decomposition

= mi a la i , (26)

where we identified the matrix as the dyadic ala i (Appen-
dix I). The dyadic a la i describes a dipole in the direction
of the eigenvector a l . By applying (21) to rri2 and rri3 in
(25), we get similar expressions involving a2a2 and a3a3 ,
describing the second and third deviatoric terms in the
decomposition. Finally, equation (21) can be written for
the decomposition into three linear vector dipoles along
the directions of the eigenvectors of M as

[al

a2

T

(21)

Mzx m 1

Myy ml

Mzz = m l

Mxy = m l

Mxz = m l

Myz ml

(23)
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1
M = —

3
(m 1+m2+m3) (27)	 which is identical to equation (4.56) in Ben-Menahem and

Singh (1981).

m i* 	a2a2-1-m; a3a3 ,

which is identical to (22) and equation (4.55) in Ben-
Menahem and Singh (1981).

Double Couples

Next, we decompose a moment tensor into an isotro-
pic part and three double couples. For the deviatoric part
in (23) let N = 6 and

m i
*

0	 0 m 1 0 0

—=
1

—
3

0 —m i* 0 1
,	 m2 = 3

0	 0 0

0 0	 0 0	 0

0	 0 2* 0	 0

M3 = 1
3

[00

m2	 0 1
 m4 = 3

0

rm

* 0 (28)

0 0	 —m2 0 0	 0

0 0	 0 3 0	 0

1115 = 1
3

0 —m3 0 1
m6 = 3

0 0	 0

0 0	 m3 0 0 M3

m—where each	 , is equivalent to a pure double couple
source (Appendix III). Notice that each double couple
consists of two linear vector dipoles (c.f. (25), (26) and
(28)), e.g. (m i* /3) (a la i — a2a2) for El . Each dipole con-
sists of two forces of equal strength but opposite direction
(c.f. Figure 2). Then, the double couple can be seen this
way: The first couple is formed by one force of each
dipole, one force pointing in the positive a 1 , the other in
the negative a2 direction. The corresponding other couple
is constructed by the complementary force of each dipole,
pointing toward the negative a 1 and positive a2 direction.

Using (21) with (23) and (28), we get the result that a
moment tensor can be decomposed into an isotropic part
and three double couples.

3

1	 1
M= —(m +m2+m3)I+-3--em 1 — m2) (a1a1—a2a2)

+ ,—	
3

(7n 2— 3) (a2a2—a3aQ)-1--(m 3—m 1 ) (a3a3—a 1a 1 ) ,

which is identical to equation (4.57) in Ben-Menahem and
Singh (1981).

CLVD

Alternatively, a moment tensor can be decomposed
into an isotropic part and three compensated linear vector
dipoles. Adding terms like Fri 1 and if i2 in (28) gives a
CLVD, 2a 1a 1 — a2a2 — a3a3. This CLVD represents a
dipole of strength 2 in the direction of the eigenvector a 1 ,
and two dipoles of unit strength in the directions of the
eigenvectors a2 and a3, respectively. The decomposition
can then be expressed as:

M= 1---(m 1 -Fm 2 -Fm 3)I+1m i (2a ia l —a2a2—a3a3 )	 (30)
3	 3

1m 2(2a2a2—a ja i—a3a3)±1
3 m

3(2a3a3—a la i—a2a2 ),
3

Major and Minor Couple

Next, we will decompose a moment tensor into an
isotropic component, a major and minor double couple.
The major couple seems to be the best approximation of a
general seismic source by a double couple (Appendix IV),
since the directions of the principal axes of the moment
tensor remain unchanged. The major double couple is con-
structed in the following way (Kanamori and Given, 1981;
Wallace, 1985): The eigenvector of the smallest eigenvalue
(in the absolute sense) is taken as the null-axis. Let's
assume that I m 3* I> Im 2* I>_ Im 1 I in (23). In (23), let
N=2 and use the deviatoric condition m 1* ±m 2* -km; = 0
to obtain

0

0

0

[ 0

—m;

0

0

0

m3
, m2 =

m1

0

0

0

—in 1

0

0

0

0

(31)

Applying (21) to Fri i , we get the first deviatoric term in
the decomposition which corresponds to a pure double
couple termed major couple.

0 0	 0	 aiTT

(32)Mm" = [ a i a2 a3 0 —7T/ 3	 2
0 0 M 3 a3

Instead of the major double couple, a best double couple
can be constructed similarly by replacing m; in (32) by
the average of the largest two eigenvalues (in the absolute
sense, Giardini, 1984). Applying (21) to n12 gives the
second deviatoric term in the decomposition which also
corresponds to a pure double couple termed minor couple.

mMIN = [a
i a2 a3 1E2

The complete decomposition is then:

1
M= —3 (m i±m2±m3)I

+ m 3* (a3a3—a2a2) +m (a 1 a 1 —a2a2 )

(34 )

Double Couple - CLVD

Following Knopoff and Randall (1970) and Fitch et
al. (1980), we can decompose a moment tensor into an iso-
tropic part, a double couple and a compensated linear vec-
tor dipole. Let's assume again that Im; I>Im2 l>1 774
in (23). We can write the deviatoric part in (23) as (N =
1) r

0

F 0 0

m i = m; 0 (F-1) 0 ,	 (35)

 0	 1

where F = - m i.* / m; and (F-1) = m; / 94. Note that
O<F<0.5. This constraint on F arises from the deviatoric
condition m 1* -Fm;+m; = 0. We can decompose (35)

(29)

=m 2
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into two parts representing a double couple and a CLVD

0	 0 0 —1	 0 0

m; (1 — 2F) 0 —1 0 + m; F 0	 —1 0 ,(36)

0	 0 1 0	 0 2

where we assumed	 that the	 same	 principal stresses
produce the double couple as well as the CLVD radiation.
The complete decomposition (21) is then:

M= 
3
—
1 (m i ±m 2 -Fm 3)I + m 3 (1-2F) (a3a3—a2a2 )	 (37)

m3 F (2a3a3—a2a2 —a la l ) .

To estimate the deviation of the seismic source from
the model of a pure double couple, Dziewonski et al.
(1981) used the parameter

(38)

where m in* ,n is the smallest eigenvalue (in the absolute
sense) and max is the largest (in the absolute sense),
given by (24). From (35), we see that 6 = F. For a pure
double couple source, ra m% = 0 and e = 0; for a pure
CLVD, e = 0.5. Alternatively, e can be expressed in per-
centages of CLVD (multiply c by 200. The percentage of
double couple is (1-2e) * 100). Dziewonski and Wood-
house (1983b, see also Giardini, 1984) investigated the
variation of e versus seismic moment and earthquake spa-
tial distribution on the surface of the earth.

MOMENT TENSOR INVERSION
There are various methods of inversion for moment

tensor elements. The inversion can be done in the time or
frequency domain. Different data (e.g. free oscillations,
surface- and body waves; different seismogram com-
ponents) can be used separately or combined. In addition,
certain a priori constraints such as tr (M) = 0, or Mx, =
Mr = 0 can be imposed to stabilize the inversion, result-
ing in a decrease in number of resolved moment tensor
elements. In this Student's Guide, we briefly outline cer-
tain approaches and refW to the original papers for
further reference.

Gilbert (1970) introduced the seismic moment tensor
for calculating the excitation of normal modes (Saito,
1967) of free oscillations of the earth. Gilbert (1973) sug-
gested an inversion scheme for moment tensor elements in
the frequency domain. Gilbert and Dziewonski (1975)
used free oscillation data for their moment tensor inver-
sion. Gilbert and Buland (1976) investigated on the smal-
lest number of stations necessary for a successful inversion
(see also Stump and Johnson, 1977). McCowan (1976),

Mendiguren (1977), Patton and Aki (1979), Patton (1980),
Romanowicz (1981), Kanamori and Given (1981, 1982),
Lay et al. (1982), Nakanishi and Kanamori (1982, 1984),
and Scott and Kanamori (1985) used long-period surface
waves (typically low pass filtered at 135 sec). Stump and
Johnson (1977), Strelitz (1978, 1980), Ward (1980a, b),
Fitch et al. (1980), Langston (1981), Dziewonski et al.
(1981), and Dziewonski and Woodhouse (1983a, b), used
moment tensor inversion for body wave data (typically
low pass filtered at 45 sec). A comparison between

moment tensors from surface waves and body waves was
done by Fitch et al. (1981). Dziewonski et al. (1981) sug-
gested an iterative inversion method, solving for the
moment tensor elements and the centroid location (Backus
and Mulcahy, 1976; Backus, 1977a; see Dziewonski and
Woodhouse, 1983a for a review). The reason for that
approach is that moment tensor elements trade off with
the location of the earthquake. The lateral heterogeneity
of the earth was considered in inversion methods by Pat-
ton (1980), Romanowicz (1981), Nakanishi and Kanamori
(1982), and Dziewonski et al (1984c).

The moment tensor inversion in the time domain can
use the formulation in (5) (e.g. Gilbert, 1970; McCowan,
1976; Stump and Johnson, 1977; Strelitz, 1978; Fitch
et al. , 1980; Ward, 1980b; Langston, 1981). If the source
time function is not known or the assumption of a syn-
chronous source is dropped (Sipkin, 1986), the frequency
domain approach is chosen (e.g. Gilbert, 1973; Dziewonski
and Gilbert, 1974; Gilbert and Dziewonski, 1975; Gilbert
and Buland, 1976; Mendiguren, 1977; Stump and John-
son, 1977; Patton and Aki, 1979; Patton, 1980; Ward,
1980a, Kanamori and Given, 1981; Romanowicz, 1981):

(x,f ) =-* Mki(f ) Gnk ,j(f ) • (39)

Both approaches, (5) and (39) lead to linear inversions in
the time or frequency domain, respectively. The advan-
tage of linear inversions is that a large number of fast
computational algorithms are available (e.g. Lawson and
Hanson, 1974; Press et al. , 1987). We can write either (5)
or (39) in matrix form:

. (40)

In the time domain, the vector d consists of n sampled
values of the observed ground displacement at various
arrival times, stations, and azimuths. G is a n X 6
matrix containing the Green's functions calculated using

an appropriate algorithm and earth model, and m is a
vector containing the 6 moment tensor elements to be
determined (Stump and Johnson, 1977). In the frequency
domain, (40) can be written separately for each frequency.
d consists of real and imaginary parts of the displacement
spectra. Weighting can be introduced which actually
smoothes the observed spectra subjectively (Mendiguren,
1977; see also Ward, 1980b for weighting of body-wave
data in the time domain). In the same way, G and Fri
contain real and imaginary parts. rTi contains also the
transform of the source time function of each moment
tensor element. If constraints are applied to the inversion,
then m can contain a smaller number of moment tensor
elements. In such a case, G has to be changed accordingly.
We refer to Aki and Richards (1980) for the details of
solving (40) for Fri (Note that (40) is identical to their
(12.83)).

The following presents an outline of the processing
steps in a moment tensor inversion. The first step is the
data acquisition and the preprocessing. We need data
with good signal to noise ratio that are unclipped and
that have a good coverage of the focal sphere (Satake,
1985). Glitches (non-seismic high amplitude spikes due to
non-linearity of instruments e.g. Dziewonski et al., 1981)
have to be identified and possibly removed. Analog data
have to be digitized. The effect of non-orthogonality of
the analog recorder must be corrected. The digitized

M min
E —

max
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record has to be interpolated and resampled with a con-
stant sampling rate. At this point, a comparison of the
sampled waveform with the original one can help to iden-
tify digitization errors. The horizontal components will
be rotated into radial and transverse components. Linear
trends have to be identified and removed. The instrument
effect is considered next (for WWSSN data see Hagiwara,
1958; for SRO data see McCowan and Lacoss, 1978; for
IDA data see Agnew et al., 1976). We can use either one
of the two approaches: i) we can remove the instrument
effect from the observed data and compare with theory or
ii) we can apply the instrument response to the synthetic
Green's functions and compare with observed data. The
nominal instrument response can be used or the calibra-
tion of the instrument can be checked by using f.e. the
calibration pulse on the record. In addition, the polarity
of the instruments should be verified, e.g. from records of
known nuclear explosions. High frequency noise in the
data is removed by low-pass filtering. Amplitudes are
corrected for geometrical spreading and reflections at the
free surface of the earth (Bullen and Bolt, 1985). For sur-
face waves, the moving window analysis (Landisman et
al., 1969) is applied in order to determine the group velo-
city dispersion. From this analysis, we can identify the
fundamental mode Rayleigh and Love waves which can
then be isolated.

Second, synthetic Green's functions are calculated.
Notice that the Green's functions are dependent on the
earth-model, the location of the point source (centroid of
the stress glut, or epicenter and focal depth), and the
receiver position.

The third step is the proper inversion, i.e. the solu-
tion of (40) (Aki and Richards, 1980). Usually, the inver-
sion is formulated as least squares problem (Gilbert, 1973;
Gilbert and Buland, 1976; Mendiguren, 1977; Stump and
Johnson, 1977). However, using other norms can have
advantages in situations where less sensitivity to gross
errors like polarity reversions is required (Claerbout and
Muir, 1973; Fitch et al., 1980; Patton, 1980).

The source time function in (5) is often assumed to
be a step function (Gilbert, 1970, 1973; McCowan, 1976;
Stump and Johnson, 197.7; Patton and Aki, 1979; Patton,
1980; Ward, 1980b; Dziewonski et al., 1981; Kanamori
and Given, 1981). Aiming at the recovery of source time
functions, Burdick and Mellman (1976) used a powerful
iterative waveform inversion method based on optimizing
the cross-correlation between observed, long-period body-
wave trains and synthetics. The same approach was used
by Wallace et al. , (1981) inorder to invert for fault plane
solutions. Other methods were employed by Strelitz (1980)
and Kikuchi and Kanamori (1982) for large earthquakes
(see also Lundgren et al. , 1988). Christensen and Ruff
(1985) reported on a trade-off between source time func-
tion and source depth for shallow events.

If the focal depth is not known, then a linear inver-
sion can be done for each depth out of a number of trial
depths. The most probable depth will minimize the qua-
dratic error between observed and theoretical waveforms
(Mendiguren, 1977; Patton and Aki, 1979; Patton, 1980;
Romanowicz, 1981). The influence of source depth on the
results of the moment tensor inversion was investigated
by Sipkin (1982; Dziewonski et al , 1987b). Differences in
source depth influence the relative excitation of normal

modes, causing systematic errors in the inversion.

Systematic errors in the inversion are also due to
deviations of the earth-model from the actual properties
of the earth, affecting the synthetic Green's functions.
This is a fundamental problem in the sense that we are
able to separate the source effect from the observed
seismogram only to a limited accuracy (Mendiguren, 1977;
Langston, 1981; Silver and Jordan, 1982; O'Connell and
Johnson, 1988). A major problem is the effect of lateral
heterogeneity of the earth (Engdahl and Kanamori, 1980;
Romanowicz, 1981; Gomberg and Masters, 1988; Snieder
and Romanowicz, 1988). For example, a relative change
of 0.5 % due to lateral heterogeneity can cause a misloca-
tion in the order of of 50 km at epicentral distances of
about 90 degrees (Dziewonski and Woodhouse, 1983b).
Giardini (1984) and Ekstr.5m and Dziewonski (1985)
reported on regional shifts in centroid positions due to
lateral heterogeneity. In the inversion, lateral hetero-
geneity is often neglected, i.e. the calculation of the
Green's functions is usually based on parallel layers of
lateral homogeneity (Harkrider, 1964, 1970; Langston and
Helmberger, 1975; Harkrider, 1976). Nakanishi and
Kanamori (1982) included the effect of lateral hetero-
geneity into the moment tensor inversion. Another
approach was developed for earthquakes within a small
source area: a calibration event is declared (mechanism
known); the spectral ratio of any earthquake in that
region and the calibration event will result in isolating the
difference in source effects - the influence of the path is
eliminated (Patton, 1980). It seems that the errors due to
lateral heterogeneity are usually large enough to make a
statistical significant detection of an isotropic component
of the moment tensor difficult (Okal and Geller, 1979;
Silver and Jordan, 1982; Vasco and Johnson, 1988).

Patton and Aki (1979) investigated the influence of
noise on the inversion of long-period surface wave data.
They found that additive noise such as background
recording noise does not severely affect the results of a
linear inversion. However, multiplicative noise (signal
generated noise) caused by focusing, defocusing, mul-
tipathing, higher mode or body wave interference, and
scattering distorts the inversion results significantly
(overestimation or underestimation of moment tensor ele-
ments, deviation from the source mechanism; Patton,
1980; Ward, 1980b). Finally, body waves of events with
moments larger than 1027 dyne-cm are severely affected by
finiteness of the source and directivity. If not corrected
for, an inversion can lead to severe errors in the moment
tensor elements (Dziewonski et al., 1981; Kanamori and
Given, 1981; Patton and Aki, 1979; Lay et al., 1982;
Giardini, 1984).

The inversion has only a limited resolution of
moment tensor elements for certain data. If we have spec-
tra of fundamental mode Rayleigh waves only, the con-
straint that the trace of the moment tensor vanishes (no
volume change) must be applied (Mendiguren, 1977; Pat-
ton and Aki, 1979). This constraint is linear. Another
constraint which is often applied in addition is that one
eigenvalue vanishes (approximating the source by a dou-
ble couple). This constraint is not linear (Strelitz, 1978;
Ward, 1980b). In such a case, the inversion is iterative,
using a linearized version of the constraints (Ward,
1980b). For earthquakes at shallow depths (less than
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about 30 km), the moment tensor elements Mx, and Myz

corresponding to vertical dip slip faulting are not well
constrained from long-period surface wave data since the
related excitation functions assume very small values near
the surface of the earth (Fitch et al., 1981; Dziewonski et
al., 1981; Kanamori and Given, 1981, 1982; Dziewonski
and Woodhouse, 1983a). In order to overcome this prob-
lem, additional independent data, such as fault strike
(observed surface breakage) can be introduced into the
inversion. Another approach is to constrain these
moment tensor elements to be zero. Thus, possible fault
mechanisms are restricted to vertical strike slip or 45
degree dip slip (Kanamori and Given, 1981, 1982).

In Appendix V, we relate the Green's functions in the
formulation of Herrmann and Wang (1985) to a simple
moment tensor inversion scheme. This inversion example
is aimed at testing computer programs.

CONCLUSION
A seismic moment tensor describes the equivalent

forces of a seismic point source. The eigenvectors are the
principal axes of the seismic moment tensor. For pure
double couple sources, the principal axis corresponding to
the negative eigenvalue is the pressure axis, the principal
axis corresponding to the positive eigenvalue is the tension
axis, and the principal axis corresponding to the eigen-
value zero gives the null axis. The pressure, tension, and
null axes can be displayed in the familiar focal mechanism
plot (fault plane solution). For general seismic sources, we
can decompose the seismic moment tensor. First, we can
separate out the isotropic component which describes the
volume change in the source. The leftover part of the
moment tensor has, in general, three nonvanishing
eigenvalues. This deviatoric part of the moment tensor
can be decomposed into a number of simple combinations
of equivalent forces. Obviously, there is no unique
moment tensor decomposition, i.e. unique model of
equivalent forces. We outlined methods of determining
moment tensor elements from observations, indicating
that recording noise as well as systematic errors due to an
insufficient knowledge of the Green's functions can intro-
duce errors into the moment tensor elements. This sug-
gests caution when apparent non-double couple sources
result from the inversion.

Randall and Knopoff (1970), Gilbert and Dziewonski
(1975), Dziewonski et al. (1981), Kanamori and Given
(1981, 1982), Dziewonski and Woodhouse (1983b), Giar-
dini (1984), and Scott and Kanamori (1985) reported that
some seismic sources cannot be described by a pure double
couple. One explanation is that some fault planes show a
complex geometry (Dziewonski and Woodhouse, 1983b).
Another explanation can be that some sources deviate
from the model of a sudden shear dislocation; they can be
due to a rapidly propagating phase transition (Knopoff
and Randall, 1970; Dziewonski and Woodhouse, 1983b).
However, the simple inversion experiment in Appendix V
pointed out that the deviation from a pure double couple
can also be due to the presence of noise in the data
(Stump and Johnson, 1977; Patton and Aki, 1979; Pat-
ton, 1980; Ward, 1980b; Wallace, 1985; O'Connell and
Johnson, 1988).
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APPENDIX I
In the following, we give some mathematical

definitions of tensors, the eigenvalue problem and dyadics
following Arfken (1985).

Let M be a moment tensor of second rank (order).
Then, M is represented as a 3X3 matrix in a given refer-
ence frame. Let apk be the cosine of the angle between the
p axis of another coordinate system and the k axis. Then
the components of M, Mki , transform into the new refer-
ence frame by the relation

Mpg = akp Mkj (A1.1)

where we need to sum over repeated indices (summation
convention).

Given a moment tensor M, let's assume that there is
a vector a and a scalar m such that

Ma=m a . (A1.2)

a is called eigenvector of M and m is the corresponding
eigenvalue. For calculating the eigenvalues and eigenvec-
tors of a given moment tensor (solving the eigenvalue
problem), we transform (A1.2)

(M — m I) a = 0 , (A1.3)

where I is the identity matrix. (A1.3) is a system of 3
simultaneous homogeneous linear equations in ak . Non-
trivial solutions are found by solving the secular equation
(characteristic polynomial)

det(M — m I) = 0 , (A1.4)

where "det' means the determinant. (A1.4) is a polyno-
mial of third degree. It has three real roots, i.e. eigen-
values, since the moment tensor is real and symmetric
(Faddeeva, 1959). Substituting each eigenvalue m 1 into
(A1.3) gives the corresponding eigenvector a,. The eigen-
vectors are orthogonal. Multiplying each eigenvector by
its inverse norm, we get the orthonormal eigenvectors,
renaming them as a,:

a, aj = 6,1 . (A1.5)

Knowing the eigenvectors, we can diagonalize M (princi-
pal axis transformation). Let A be the matrix whose
columns are the orthonormal eigenvectors of M. From
(A1.5), we see that A is orthogonal : AT = A- 1 . Then,
AT M A = m, where m is diagonal, consisting of the
eigenvalues of M.

We represent a dyadic by writing two vectors a and
b together as ab (see Appendix A in Ben-Menahem and
Singh, 1981). These two vectors forming the dyadic are
not operating on each other, but define a 3X3 matrix. Let

j, and k be unit vectors along a right handed Cartesian
coordinate system. The dyadic ab is defined as
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ab = (az i + ay j + az k) (bz i + by j + bz k)

= iiaz bx + ijaz by + ikaz b,

+ jiay bz + hay by + jkay bz

+ kiaz b x + kj a, by + kkaz bz

=

az 1),

ay br

a, bx

az by

ay by

az by

az 6,

ay 6,

az 6,

For a = b, we get (26). The multiplication of a vector c
from the left is

c • ij = [(ic z 	jcy 	kcz ) i]j = cz j	 (A1.7)

If the dyadic is symmetric, the multiplication of any vec-
tor with the dyadic is commutative, i.e. ab ba. In
general, we can understand a dyadic as a tensor of second
rank. By a proper choice of the coordinate system, a sym-
metric dyadic can always be transformed into diagonal
form (principal axis transformation). As an example, we
can rewrite (10) using dyadics (Gilbert, 1973):

uv vu = tt — pp	 (A1.8)

= 0.5 [(t+p)(t—p) + (t—p)(t+p)] •

APPENDIX II
The PDE monthly listings (NEIS) routinely publish

centroid moment tensor solutions in the notation of the
normal mode theory following Dziewonski et al. (1981).
For reference, the spherical moment tensor elements, f „
in the notation of Gilbert and Dziewonski (1975),
Dziewonski et al. (1981), and Dziewonski and Woodhouse
(1983a) are compared to the moment tensor elements as
given in (18) following Aki and Richards (1980).

f 1= Mrr = mzz

12 = Mee = Mzx

f 3 = MOO = MYY

f 4 = Mr e = Mxz	 (A2.1)

/ 5 = Mr(k = Myz

f 6 = Me0 = Mxy

where (r,19,0) are the geographical coordinates at the
source. 8 is the colatitude (0 = 0 at the north pole) and
ck is the longitude of the point source. The sign of the off-
diagonal moment tensor eleinents depend on the orienta-
tion of the coordinate system (Fitch et al., 1981). But the
eigenvalues and the eigenvectors of the moment tensor in
the formulation of (18) or (A2.1) are identical, which can
be shown by comparing the solutions to the secular equa-
tion (Appendix I). This result is expected since physical
laws should not depend on the choice of the reference
frame. The slip vector u and fault normal v are
(Dziewonski and Woodhouse, 1983a)

u = (— cos X cos 4> — cos 6. sin X sin (I) ) es

▪ u— ( cos X sin (I) — cos S sin X cos (I) ) eo 	(A2.2)

▪ u— sin X sin (5 e,. ,

and

APPENDIX III
In order to gain some experience in the relationships

between a moment tensor and a fault plane solution, three
simple focal mechanisms are discussed in detail. These
will be vertical strike slip, 45 degree dip slip, and vertical
dip slip faults. These three fault plane solutions form a
complete set : The seismic radiation from a dislocation on
a plane dipping an arbitrary angle (but striking north-
south) can be expressed as a linear combination of these
three solutions (Burridge et al., 1964; Ben-Menahem and
Singh, 1968).

Vertical strike slip fault
The following focal mechanism is assumed: (strike) (I)

= 0°, (dip) S = 90°, and (slip) X = 0°. From (15) and
(16), the slip vector on the fault plane is u = (1,0,0) and
the vector normal to the fault plane is v = (0,1,0). The
moment tensor can be determined from (18).

0	 Mo 0

M = Mo 0 0 (A3.1)
0	 0 0

The	 eigenvalues and	 eigenvectors of	 this tensor
(Example 4.6.1 in Arfken, 1985, see also Appendix I) are
shown in Table A.1 (The components of the eigenvectors
are north, east, and down).

TABLE A.1

EIGENVALUE EIGENVECTOR
0

Mo
-M,

( 0.0000,
( 0.7071,
(-0.7071,

0.0000,-1.0000)
0.7071, 0.0000)
0.7071, 0.0000)

The eigenvector b corresponding to the eigenvalue
zero is the null-axis, the eigenvector t corresponding to
the positive eigenvalue gives the tension axis, T, and the
eigenvector p corresponding to the negative eigenvalue
gives the pressure axis, P, of a focal mechanism.

The focal mechanism is obtained by using (7)-(14)
(Herrmann, 1975). For the trend and plunge (in degrees)
of the X-, Y-, null-, T-, and P-axes, we get (90, 0), (180,
0), (270, 90), (45, 0), and (135, 0), respectively. The trend
of both the P and T axes can be shifted by 180° (Figure
A.1a); i.e. the P-axis can also be described by (315°, 0°)
and the T-axis by (225°, 0°). This ambiguity can be fol-
lowed through to the moment tensor: The sign of an
eigenvector is not constrained by the solution of the eigen-
value problem (Arfken, 1985). However, any choice of
sign leads to the same focal mechanism.

Jost and Herrmann

v =-- sin S sin (I) ee + sin 6 cos I + cos 8 e r . (A2.3)

These two equations are identical to (4.122) in Ben-
Menahem and Singh (1981). The differences in sign com-
pared to (15) and (16) can be fully explained by noting

(A1.6) that e r = - e 0 , = ey , and es = - e x ; in other words,
es , eo , and e r are unit vectors towards south, east, and
up, respectively (defining a right handed system).
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Fig. A.1. Focal mechanisms of a vertical strike slip fault (strike = 0°, dip
= 90°, slip = 0° ), (a), a 45 degree dip slip fault (strike = 0°, dip
= 45°, slip = 90°), (b), and a vertical dip slip fault (strike = 0 ° ,
dip = 90°, slip = 90° ), (c) (Appendix III).

45 degree dip slip fault
The following focal mechanism is assumed: (strike) 43

= 0°, (dip) 6 = 45°, and (slip) X = 90°. From (15) and
(16), u = (0,-0.7071,-0.7071) and v = (0,0.7071,-0.7071).
The moment tensor is calculated from (18). 

TABLE A.3

EIGENVALUE

0
Mo

EIGENVECTOR 
(-1.0000, 0.0000, 0.0000)
( 0.0000, 0.7071,-0.7071)
( 0.0000, 0.7071, 0.7071)

0 0	 0
M = 0 -M0 0	 (A3.2)

0 Mo0 

The corresponding eigenvalues and eigenvectors are
shown in Table A.2.

TABLE A.2

EIGENVALUE EIGENVECTOR
0 (-1, 0, 0)

Mo ( 0, 0,-1)
-Mn ( 0, 1, 0)

The fault plane solution is obtained from (7)-(14)
(Herrmann, 1975). For the trend and plunge (in degrees)
of the X-, Y-, null-, T-, and P-axes, we get (00, 45), (270,
45), (360, 0), (180, 90), and (270, 0), respectively. The
trend of the P and null axes can be shifted by 180° (Fig-
ure A.1b) to (90 ° , 0 ° ) and (180 ° , 0°), respectively.

Vertical dip slip fault
The following focal mechanism is assumed: (strike) (I)

= 0°, (dip) 6 = 90°, and (slip) X = 90°. From (15) and
(16), u = (0,0,-1) and v = (0,1,0). The moment tensor is
calculated from (18).

The corresponding eigenvalues and eigenvectors are
shown in Table A.3.

The fault plane solution is obtained from (7)-(14)
(Herrmann, 1975). For the trend and plunge (in degrees)
of the X-, Y-, null-, T-, and P-axes, we get (0, 90), (90, 0),
(180, 0), (270, 45), and (90, 45), respectively. The trend
of the null axis can be shifted by 180° (Figure A.1c) to
(360 ° , 0° ).

APPENDIX IV

In the following, examples of the five methods of
moment tensor decomposition are presented.

In order to construct a moment tensor that does not
lead to a simple double couple mechanism, let

1 0 0
1\41 = 1 0 1 0 (A4.1)

0 0 1
0 1 0

M2 = 6 1 0 0
I

(A4.2)
0 0 0

0 0	 0
M3 = 3 0 -1 0 (A4.3)

0 0	 1

0 0	 0
M4 =1 0 0	 -1 (A4.4)

0 -1	 0

The first moment tensor represents an explosion, the
others are the familiar ones from Appendix III, represent-
ing a vertical strike-slip, a 45 degree dip-slip, and a verti-
cal dip-slip fault, respectively. All four moment tensors
are superimposed in order to describe a complex source
that is dominated by a vertical strike slip mechanism.
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The result is

M=
1
6
0

6
-2
-1

0
-1
4

 (A4.5)

Table A.4 shows the eigenvalues of (A4.5) and the
corresponding eigenvectors, which are the principal axes of
M.

TABLE A.4

EIGENVALUE EIGENVECTOR
3.8523 (-0.2938, -0.1397, -0.9456)
5.8904 ( 0.7352, 0.5992, -0.3170)

-6.7427 ( 0.6109, -0.7883, -0.0734)

0.3995

0.3396

-0.3220

-0.51091

-0.3220

-0.7936

Jost and Herrmann

Fig. A.2. Focal mechanisms of the double couples from the moment tensor
decomposition (Appendix IV). (a) major couple of the moment ten-
sor in (A4.5), elementary moment tensor EMT3 in (A4.6), and
second term on the RHS of (A4.9) (strike = 355°, dip = 80°, slip
= 16° ), (b) elementary moment tensor EMT2 in (A4.6) (strike =
125°, dip = 63°, slip = -95° ), (c) elementary moment tensor
EMT4 in (A4.6) (strike = 199°, dip = 44°, slip = 63°).

the eigenvector (-0.2938, -0.1397, -0.9456) with eigenvalue
2.9 as the null-axis. The fault plane solution of the major
double couple gives for the X-, Y-, null-, T-, and P-axes
(in degrees): (172, 16), (265, 10), (25, 71), (219, 18), and
(128, 4), respectively (Figure A.2a). The major double
couple gives a good estimate of the major contribution to
the faulting which is predominantly strike slip (compare
Figures A.la and A.2a).

Next, the moment tensor in (A4.5) is decomposed
into an isotropic part and three double couples following
(29) which is evaluated by using (26) together with the
data in Table A.4. The numbering of the eigenvalues and
eigenvectors in (29) follows the columns of Table A.4, but
that is not relevant to the solution. The calculation gives

The sum of the eigenvalues is equal to 3, which is the
expected value for the sum of the eigenvalues of (A4.1),
describing an explosion.

In order to calculate the deviatoric part of the given
moment tensor, the isotropic part is removed by subtract-
ing one third of the trace of (A4.5) from each diagonal ele-
ment. The solution to the corresponding eigenvalue prob-
lem leads to the same eigenvectors as above. This
indicates that the principal axes of the complete moment
tensor are the same as the principal axes of the
corresponding deviatoric tensor. The deviatoric eigen-
values are 2.8523, 4.8904, and -7.7427 in the order of
Table A.4 (see (24)). From (38), e = 0.37, i.e. the given
moment tensor has a double couple component of 26 %
and a CLVD component of 74 %.

For the determination of the major couple from (32),
we identify the eigenvector (0.6109, -0.7883, -0.0734)
corresponding to the deviatoric eigenvalue of -7.7 as the
P-axis, the eigenvector (0.7352, 0.5992, -0.3170)
corresponding to the eigenvalue of 4.9 as the T-axis, and

1 0 0	 0.4542

M= 1 0 1 0+ 0.6794 0.3995

{

0 0 1	 -0.5109

[ 0 1673 0.9221 -0.1882

+ 4.2110 0 9221 -0.2623 -0.2477

-0.1882 -0.2477 0.0951

-0.2869 0.5226 0.3227

+ 3.5316 0.5226 -0.6019 0.0743 .

0.3227	 0.0743 0.8887

This equation is identical to (A4.5). The first ele-
mentary moment tensor (EMT1) on the RHS of (A4.6)
describes the explosion (isotropic component of (A4.5))
and is identical to (A4.1). The last three elementary
moment tensors on the RHS (EMT2, EMT3, EMT4,
respectively) represent pure double couple sources since
the eigenvalues of each tensor is 0 and ± 1. The three ele-
mentary moment tensors have identical eigenvectors
which are the same vectors as shown in Table A.4.
However, the correlation between eigenvector and eigen-
value (i.e. null-, P-, and T-axes) varies. Note that replac-

(A4.6)
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ing Mk) by -Mkt switches the sign of the eigenvalues
(leaving the eigenvectors untouched), which is identical to
interchanging the P- and T-axes.

From the eigenvalues and the eigenvectors, the fault
plane solution for each elementary moment tensor is
determined and shown in Table A.S.

TABLE A.5

EMT3 EMT3 EMT4 EMT4
TRD PLG TRD PLG
(deg.) (deg.) (deg.) (deg.)

The focal mechanisms corresponding to EMT2 -
EMT4 are shown in Figures A.2b, A.2a, and A.2c, respec-
tively. Note that the positions of the axes remain fixed in
these figures, where only the correlation to the eigenvalues
changes. The fault plane solution representing the third
elementary moment tensor EMT3 in (A4.6) is identical to
the fault plane solution of the major couple (Figure A.2a).
Notice that this solution has also the largest coefficient in
(A4.6). This solution is an approximation to the major
contributor of the moment tensor (Figure A.la and
(A4.2)). However, the other fault plane solutions (Figure
A.2b and A.2c) do not show similarities to the input fault
mechanisms (Figure A.lb and A.1c).

The seismic moments of the elementary moment ten-
sors are given by the coefficients in (A4.6). The sum of the
seismic moments of the elementary moment tensors is 1.4
times larger than the seismic moment of the composite
moment tensor in (A4.5).

Next, the moment tensor in equation (A4.5) is
decomposed into an isotropic part and three vector dipoles
following (27) which is evaluated by using (26) together
with Table A.4.

moments of the elementary moment tensors are given by
the coefficients in (A4.7) which are identical to the devia-
toric eigenvalues of (A4.5). This exercise demonstrated
that vector dipoles are related to the eigenvectors scaled
by the corresponding eigenvalue of a given moment ten-
sor, which makes an evaluation of (A4.7) obsolete.

Alternatively, the moment tensor in equation (A4.5)
can be decomposed into an isotropic part and three com-
pensated linear vector dipoles using (30).

M = 1 0 1 0 + 1.2841 0.1231
[ 0 0 1 

I. 0 0	 -0.7411

0.8336 -0.9415

0.1231

0.3963

[ 0 6215	 1.3216 -0.69911
+ 1.9635 1 3216 0.0773 -0.5697

- 0.6991 -0.5697 -0.6985

[ 0.1196 -1.4447 -0.1345
- 2.2476 -1.4447 0.8642 0.1734 .

- 0.1345 0.1734 -0.9838

This equation is identical to (A4.5). The seismic
moments of the elementary moment tensors are given by
the product of the respective coefficient and . The
eigenvalues and eigenvectors for (A4.8) are shown in
Table A.6, using the same notation as above. Note that
the eigenvectors are identical to those in Table A.4.

TABLE A.6

EMT
2

3

4

EIGENVALUE
-1
-1
2

-1
-1
2

-1
-1
2 

EIGENVECTOR 
( 0.6109,-0.7883,-0.0734)
( 0.7352, 0.5992,-0.3170)
(-0.2938,-0 1397,-0.9456)

(-0.2938,-0.1397,-0.9456)
( 0.6109,-0.7883,-0.0734)
( 0.7352, 0.5992,-0.3170)

( 0.7352, 0.5992,-0.3170)
(-0.2938,-0.1397,-0.9456)
( 0.6109,-0.7883,-0.0734)         

EMT2 EMT2
AXIS TRD PLG

(deg.)	 (deg.)
X
Y
NULL
T
P

36 26 172 16 324 38
226 63 265 10 109 46
128 4 25 71 219 18
219 18 219 18 25 71

25 71 128 4 128 4

M = 1

+ 4.8904

1 0
0 1.-0
0 0

0

1

0.5405
0.4405

+ 2.8523

0.3591
0.4405

0.0863 0.0410 0.2779
D.0410 0.0195 0.1321
0.2779 0.1321 0.8941

-0.23301
-0.1899

Next,
into an
ing (37),

M= 1

(A4.7)

the
isotropic
where
1 0 0
0 1 0+
0 0 1

moment
part, a

c = F =

2.0379

tensor in (A4.5) is decomposed
double couple and CLVD
0.3684.

0.1673	 0.9221	 -0.1882
0.9221	 -0.2623 -0.2477

-0.1882 -0.2477	 0.0951

follow-

-0.2330 -0.1899	 0.1005

0.3732	 -0.4816 -0.0448

[

0 1196	 -1.4447 -0.1345
-1.4447- 2.8523	 1.4447	 0.8642	 0.1734 .	 (A4.9)

- 7.7427 -0.4816	 0.6214	 0.0578  .	 -0.1345	 0.1734	 -0.9838
-0.0448	 0.0578	 0.0054 This equation is identical to (A4.5). 	 Notice that the

This equation is identical to (A4.5). In the notation
used above, each of the elementary moment tensors
EMT2, EMT3, and EMT4 have two eigenvalues equal to
zero, the third one equals one. EMT2 is represented by the
eigenvector (0.2938, 0.1397, 0.9456), EMT3 by (-0.7352,
-0.5992, 0.3170), and EMT4 by (0.6109, -0.7883, -0.0734).
These vector dipoles are mutually orthonormal. Notice
that these vector dipoles are identical to the eigenvectors
of equation (A4.5), which are the principal axes of the ten-
sor (Table A.4). EMT2 represents the null-, EMT3 the
tension-, and EMT4 the pressure axis. The seismic

second term on the RHS corresponds to EMT3 in (A4.6)
and to the major double couple. These three tensors all
have the same fault plane solution (Figure A.2a). The
third term in (A4.9) corresponds to EMT4 in (A4.8),
representing a CLVD (see Table A.6).

As final remark, let's consider the decomposition
equations (27), (29), and (30) for a simple double couple
source (e = 0 ), e.g. let m 1 = - m 2 = 1, and m 3 = 0.
Then, M = a lai - a2a2 for all three equations. That is,
we get one pure double couple out of the decomposition.
For a CLVD (e = 0.5), let's assume that m 1 = m 2 = - 1,
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and m 3 = 2. Then all three formulas give M = 2 a 3a3 -
a la i - a2a2 , representing one CLVD.

APPENDIX V
In this section, we relate the Green's functions in the

formulation of Herrmann and Wang (1985) to a moment
tensor inversion scheme. Following the theory given by
Herrmann and Wang (1985), the Fourier transformed dis-
placements at the free surface at the distance r from the
origin due to an arbitrarily oriented double couple
without moment is

dz (r ,z;:),cu) = ZSS A 1 ZDS A 2 ZDD A 3

dr (r	 = RSS A 1 RDS A 2 RDD A 3

d o (r ,z),c4)) = TSS A4 TDS A5 ,

where dz is the vertical displacement (positive upward), dr

is the radial displacement, and d 15 is the tangential dis-
placement (positive in a direction clockwise from north).
The functions ZSS, ZDS, ZDD, RSS, RDS, RDD, TSS,
and TDS together with ZEP and REP are the ten Green's
functions required to calculate a wave field due to an arbi-
trary point dislocation source or point explosion buried in
a plane layered medium (Wang and Herrmann, 1980;
Herrmann and Wang, 1985). As before, let u=(ux ,uy ,uz )
and v=(vz ,vy ,v,) be the dislocation vector and vector
normal to the fault plane, respectively. Note that (15) and
(16) are identical to the formulation used by Herrmann
and Wang (1985), where our u equals their f and our v
equals their n (1 = x-axis, 2 = y-axis, 3 = z-axis). Then

A i =(ux vz —uy vy ) cos(2az )+(ux vy d-uy vz ) sin(2 az)

A 2=(ux vz 1-u z vx ) cos( az )+(uy vz +uz vy ) sin(az)

A 3=u, vz

A 44u, vz —uy vy ) sin(2az )—(u x vy -Fuy vz ) cos(2az )

A 5=(ux vz ±uz vz ) sin(az )—(uy +uz vy ) cos(az ) ,

where az is the azimuth of observation. Equivalently,
1A 1 --= --2-(Mrx • Myy) cos(2az )+Mxy sin(2az )

A 2= Mx, cos( az )+Myz sin( az )az )

A 3= --12—(Mxx +Myy)

A 4= l(Mxx—Myy) sin(2 az )—Mxy cos(2 az)

A 5= -Myz cos(az)+Mx, sin(az)-.

These equations are identical to (A5.2) which can be
proven by using (18) together with (15) and (16). Note
that the coefficients given in (A5.3) agree with the
moment tensor elements as defined by Aki and Richards
(1980; (A5.3) differs in sign with the coefficients of Langs-
ton (1981) due to conventions on displacements and
Green's functions).

Note that either definition of the coefficients of the
Green's functions can be used for the calculation of the
displacement at the free surface, depending on whether
the focal mechanism or the moment tensor is given. Here,
equations (A5.3) and (A5.1) are used in order to develop
an inversion scheme for the moment tensor elements. We

regroup and assume the presence of an isotropic com-
ponent (ZEP *0, REP *0):

dz(r	
ZSS 	

= Mzx 	cos(2az) 
ZDD + ZEP

—
32

Alvy {—ZSS 

▪ --zz
{ZEP 

3

▪ Mxy [ZSS sin(2az )]

▪ M„ [ZDS cos(az )]

▪ Myz [ZDS sin(az))]

dr (r,z,w) = Mxx 
[RSS

	cos(2az)
 RDD

(2az) 	
+ REP  I

2	 2	 3

RDD REP 4_ Ai 	RSSn [  — 	cos(2az) 	  +
 2	 3

ii„. [REP I
+ '-. zz 3

▪ Mxy [RSS sin(2az) ]
	

(A5.5)

-I- Mx, [ RDS cos(az)

▪ Myz [RDS sin(az))]

[T2S sin(2 az ) I

[—T2SS sin(2az )1

▪ Mxy [—TSS cos(2az)]
	

(A5.6)

▪ Mxz [TDS sin(az))]

+ Myz [—TDS cos(az)] .

Equations (A5.4), (A5.5), and (A5.6) each set up a
moment tensor inversion scheme. Equations (A5.4) and
(A5.5) are formulated for the general case where the inver-
sion expects a moment tensor that is a composition of an
isotropic part and a deviatoric part. An inversion based
on transverse data, (A5.6), cannot resolve Mzz . In such a
case, we assume that the moment tensor is purely devia-
toric and constrain Mzz - (M.= Myy). The same con-
straint can be applied to (A5.4) and (A5.5) in the case of

(A5.1)

(A5.2)

cos(2 az)
ZDD ZEP 
2 

± 3

(A5.4)

d ,k(r ,z	 = Mxx

(A5.3)
	

▪ 

MYY
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an inversion that looks for a pure deviatoric moment ten-
sor (set formally ZEP = REP 0 in (A5.4) and (A5.5),
Dziewonski et al. , 1981).

From the last three equations we see that the
observed displacement at the free surface is a linear com-
bination of the station specific Green's functions, within
the square brackets, with the moment tensor elements as
scalar multipliers. We also note that if the source time
function is known and a point source approximation is
acceptable, the moment tensor elements are independent
of frequency (linear inversion) and similar equations arise
relating observed time histories to temporal Green's func-
tions within the square brackets.

Next, we performed a simple moment tensor inver-
sion using the vertical component of synthetic teleseismic
P-wave first motion peak amplitudes as suggested by
Stump and Johnson (1977). We assumed a pure devia-
toric source (ZEP = 0 in (A5.4)).

Let az i, azn be azimuths of n different stations.
Then the expressions in the square brackets of (A5.4)
define components of a matrix as a, i (azi) , a, 5(az,) for
the i-th azimuth. A system of linear equation arises:

ZDS

dz (az i ) a ii(azi) •	 • a 15 ( az i )
Mxx

Myy

Mxy (A5.7)

Mxz

dz (az„) ani (azn ) .	 . an5(azn ) Myz

For observations at more than 5 distinct azimuths,
the system (A5.7) is overdetermined. The solution can be
reached by the classical least squares approach. The five
moment tensor elements can be determined by using the
numerical stable singular value decomposition. We
imposed the deviatoric constraint M20 = - yy(Mxx M )*
Hence the inversion gives a purely deviatoric source.
However, we were not constraining one eigenvalue as zero
(double couple), letting the inversion tell us about double
couple and CLVD components. The eigenvalues and
eigenvectors can be calculated using the Householder
transformation with further QL decomposition. The
implementation of these numerical concepts was done
using code by Press et al. (1987).

In the following, some results of inverting synthetic
data are presented. First, Green's functions were calcu-
lated using a Haskell formalism for a simple half-space
model ( V p 8 km/sec , = 4.6 km/sec and p = 3.3
g/cm 3, h = 30 km ). Figure A.3 shows the three basic
Green's functions ZSS, ZDD, and ZDS. The assumed
focal mechanism (Figure A.4: strike = 180°, dip = 40°,
slip = 110°) is the same as used by Herrmann (1975, Fig-
ure 2). Teleseismic P-wave first motions were synthesized
at 12 equidistant azimuths (epicentral distance = 50° ).
Note that an instrument response was not included in the
synthetics. Due to the simple model and the fact that all
stations are equidistant from the source, a correction for
anelastic attenuation ( t * = 0.7 ) or geometrical spread-
ing is not required. A correction for an extended source is
not necessary since the moment used is 10 20 dyne-cm and
the duration of the source time function is 0.2 sec. We
used (A5.4) for time domain measurements.

6. 402E-09

Fig. A.3. Synthetic Green's functions ZSS, ZDD, and ZDS
(Herrmann and Wang, 1985) for a half-space model
( V = 8 km/sec, V8 = 4.6 km/sec, p = 3.3
g/cm 3, h = 30 km, t * = 0.7) calculated by using
the Haskell formalism. The time window ranges
from 4.0 to 55.1 sec (dt = 0.05 sec). Maximum
amplitudes are in cm (Appendix V).

Fig. A.4. Assumed focal mechanism for the synthetic
seismograms: strike = 180°, dip = 40°, slip =
110° (Appendix V).
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TABLE A.7: RESULTS OF THE MOMENT
TENSOR INVERSION (MAJOR COUPLE)

Case 0 Case I Case II Case III Case IV Case V

M 0 -0.037 -0.050 -0.109 -0.202 0.301

Myy -0.925 -0.902 -0.951 -0.966 -1.023 -1.091

M„ 0.925 0.939 1.002 1.075 1.225 0.791

Msy -0.220 -0.199 -0.200 -0.194 -0.176 0.257

M„ -0.262 -0.262 -0.260 -0.264 -0.257 -0.172

M5, -0.163 -0.168 -0.162 -0.168 -0.156 -0.324

EV(NULL) 0.00 -0.04 -0.05 -0.11 -0.20 0.26

EV(T) 1.00 1.01 1.07 1.14 1.28 0.92

EV(P) -1.00 -0.97 -1.02 -1.03 -1.08 -1.18

% of DC 100 92 90 81 69 56

% of CLVD 0 8 10 19 31 44

Me 1.00 0.99 1.04 1.09 1.19 1.07

STRIKE 180.0 179.5 179.2 177.8 176.4 211.8

DIP 40.0 39.7 40.1 39.9 40.5 40.8

SLIP 110.0 109.0 107.8 106.1 103.2 123.1

STRIKE 334.6 335.4 336.5 337.2 339.3 351.1

DIP 52.8 52.9 52.2 51.9 50.8 56.8

SLIP 74.0 74.9 75.6 77.0 79.0 64.8

T (TRD) 192.7 194.9 194.7 196.8 198.2 209.7

T (PLG) 75.6 76.2 77.1 78.1 80.0 67.3

P (TRD) 75.9 76.1 76.7 76.4 77.1 98.8

P (PLG) 6.6 6.7 6.2 6.1 5.2 8.5

For Case 0, moment tensor elements are calculated from (18) assuming a double couple source
(strike 180 ° , dip = 40°, slip = 110°). The eigenvalues of the moment tensor corresponding to
the null-, T-, and P-axes are shown as EV(NULL), EV(T), and EV(P), respectively. Equation (38)
is used to determine the percentage of double couple or CLVD from the eigenvalues of the moment
tensor. The seismic moment is calculated using (20). The orientation of the fault plane and auxili-
ary plane is given together with the trend and plunge of the T- and P-axes (Herrmann, 1975).
Cases I - IV are for additive pseudo-random noise ( 0 %, 14 %, 28 %, and 56 %, respectively) in
the synthetic seismograms at 12 different azimuths. Case V assumes that one of the 12 seismo-
grams has a reversed polarity (0 % pseudo random noise).

Table A.7 displays the inversion results for the major
couple. The moment tensor elements, the percentage of
double couple and CLVD, the seismic moment, and the
focal mechanism parameters-are shown. For Case 0, the
moment tensor elements were calculated from the given
fault plane solution and (18). Next, three experiments
were performed: 1.) synthetic seismograms were calculated
using the Haskell method (Case I). Figure A.5a shows the
vertical component of a synthetic seismogram at an
azimuth of 0 degrees. 2.) Different amounts of pseudo-
random noise were added to the synthetic seismograms
calculated in Case I with amplitudes of ± 0.25 X 10-9 cm
(Case II, Figure A.5b), ± 0.5 X 10-9 cm (Case III, Figure
A.5c), and ± 1.0 X 10 -9 cm (Case IV, Figure A.5d).
Averaged over the 12 azimuths, these noise levels
correspond to 14 %, 28 %, and 56 % pseudo-random
additive noise, respectively. 3.) The final experiment
(Case V) relates to possible polarity errors of seismo-

graphs. Hence it was assumed that one of the 12 seismo-
grams of Case I had a wrong polarity.

The theoretical focal parameters (Case 0) agree
within the measurement errors with the observed ones
(Case I). This justifies the technique. The effect of noise is
to severely distort the moment tensor elements. The iso-
tropic moment tensor components seem to be more sensi-
tive to noise than the deviatoric ones. Notice that the
moment tensor gains a contribution of a CLVD due to the
noise. The percentage of CLVD versus double couple
increases with increasing noise. The effect of random
noise on the fault plane solution that is derived from the
moment tensor elements is minor; i.e. the fault plane
solution for the major double couple is very close to the
original focal mechanism. However, with increasing noise,
the fault plane solution deteriorates. 8 % polarization
errors in otherwise perfect data lead to worse results than
56 % additive random noise (Case IV). A doubling of the
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