High Performance
Programming
with Qt5

Build cross-platform applications using concurrency, parallel
programming, and memory management

' i [b . - >
d M ‘
i K
" »
Bt
- v
"] ” L
-
r - L2 - 3

N

..,._
i at
S' l‘ '
Y = F
- -~

ﬂr

) ‘ www.packt.com
Marek Krajewski

Hands-On High Performance
Programming with Qt 5

Build cross-platform applications using concurrency, parallel
programming, and memory management

Marek Krajewski

BIRMINGHAM - MUMBAI

Hands-On High Performance Programming
with Qt 5

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shriram Shekhar

Content Development Editor: Anugraha Arunagiri
Technical Editor: Abin Sebastian

Copy Editor: Safis Editing

Project Coordinator: Ulhas Kambali

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Tom Scaria

Production Coordinator: Shraddha Falebhai

First edition: January 2019
Production reference: 1300119

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78953-124-4

www.packtpub.com

To my late father, who was a living example of the Polish intelligentsia tradition for me, and
to my sister (now we are even, I wrote a book too!)
To my wife, who convinced me to write this book and supported me on this long journey.

—Marek Krajewski

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Marek Krajewski has been programming in C++ since the mid 90s, and in Qt since 2008. In
his career, he has been involved with Unix and Windows system programming, client-
server systems, UMTS network management, Enterprise Java, satellite protocol decoding,
neural networks, image processing, DVB-T testing appliances, REST APIs, and embedded
Linux. He holds a Ph.D. in computer science and is currently working as an independent
programmer specializing in Qt, C++, GUISs, system programming, and communication
protocols. His other interests are off-piste skiing and Aikido, where he holds the rank of
second dan.

About the reviewer

Nibedit Dey is a techno-entrepreneur and innovator with over 8 years of experience in
building complex software-based products using Qt and C++. Before starting his
entrepreneurial journey, he worked for L&T and Tektronix in different research and
development roles. Additionally, he has reviewed The Modern C++ Challenge and Hands-on
GUI programming with C++ and Qt5 books for Packt.

I would like to thank the online programming communities, bloggers, and my peers from
earlier organizations, from whom I have learned a lot over the years.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

—_

Chapter 1: Understanding Performant Programs

Why performance is important
The price of performance optimization

Traditional wisdom and basic guidelines

Avoiding repeated computation
Avoiding paying the high price
Avoiding copying data around

General performance optimization approach

Modern processor architectures
Caches
Pipelining

Speculative execution and branch prediction

Out-of-order execution
Multicore
Additional instruction sets
Impact on performance
Keeping your caches hot
Don't confuse your branch predictor
Parallelizing your application
Summary
Questions
Further reading

Chapter 2: Profiling to Find Bottlenecks
Types of profilers
Instrumenting profilers
Sampling profilers
External counters
Note on Read Time-Stamp Counter
Platform and tools
Development environment
Profiling tools
Just use gprof?
Windows system tools
Program profiling tools
Visualizing performance data
Memory tools
Profiling CPU usage
Poor man's sampling technique

Table of Contents

Using Qt Creator's QML profiler
Using standalone CPU profilers
Reiterating sampling profiling's limitations
Investigating memory usage
Poor man's memory profiling
Using Qt Creator's heob integration
Manual instrumentation and benchmarks
Debug outputs
Benchmarks
Benchmarks in regression testing
Manual instrumentation
Further advanced tools
Event Tracing for Windows (ETW) and xperf
Installation
Recording and visualizing traces
Conclusion
GammaRay
Building GammaRay
When can we use it?
Other tools
Graphic profilers
Commercial Intel tools
Visual Studio tools
Summary

Questions

Chapter 3: Deep Dive into C++ and Performance

C++ philosophy and design
Problems with exceptions
Run-time overheads
Non-determinism
RTTI
Conclusion
Virtual functions
Traditional C++ optimizations
Low-hanging fruit
Temporaries
Return values and RVO
Conversions
Memory management
Basic truths
Replacing the global memory manager
Custom memory allocators
Where they do make sense
Stack allocators
Conclusion
Custom STL allocators
Template trickery

[ii]

Table of Contents

Template computations 79
Expression templates 80

CRTP for static polymorphism 81
Removing branches 82
C++11/14/17 and performance 83
Move semantics 83
Passing by value fashionable again 84
Compile time computations 84
Other improvements 86
What your compiler can do for you 87
Examples of compiler tricks 87
More on compiler optimizations 91
Inlining of functions 92

Loop unrolling and vectorization 92

What compilers do not like 93
Aliasing 93
External functions 94

How can you help the compiler? 95
Profile Guided Optimization 96

When compilers get overzealous 96
Optimization tools beyond compiler 98
Link time optimization and link time code generation 99
Workaround — unity builds 99
Beyond linkers 100
Summary 101
Questions 101
Further reading 102
Chapter 4: Using Data Structures and Algorithms Efficiently 103
Algorithms, data structures, and performance 104
Algorithm classes 104
Algorithmic complexity warning 106

Types of data structures 106
Arrays 106

Lists 107

Trees 107

Hash tables 108

Using Qt containers 109
General design 109
Implicit sharing 109
Relocatability 111
Container classes overview 111
Basic Qt containers 112

QList 112
QVarLengthArray 113
QCache 114

C++11 features 114

[iii]

Table of Contents

Memory management
Should we use Qt containers?
Qt algorithms, iterators, and gotchas
Iterators and iterations
Gotcha - accidental deep copies
Working with strings
Qt string classes
QByteArray
QString
QStringBuilder
Substring classes
More string advice
Interning
Hashing
Searching substrings
Fixing the size
Optimizing with algorithms and data structures
Optimizing with algorithms
Reusing other people's work
Optimizing with data structures
Be cache-friendly
Flatten your data structures
Improve access patterns
Structure of arrays
Polymorphism avoidance
Hot-cold data separation
Use a custom allocator
Fixed size containers
Write your own
Summary
Questions

Further reading

Chapter 5: An In-Depth Guide to Concurrency and Multithreading

Concurrency, parallelism, and multithreading
Problems with threads
More problems — false sharing
Threading support classes in Qt
Threads
Mutexes
Condition variables
Atomic variables
Thread local storage
Q_GLOBAL_STATIC
Threads, events, and QObjects
Events and event loop
QThreads and object affinities

115
116
116
117
117
119
119
119
120
120
121
121
121
122
123
123
124
124
126
126
127
128
128
128
129
129
130
130
131
131
131

132

134
134
136
137
139
140
140
141
142
142
142
143
143
144

[iv]

Table of Contents

Getting rid of the QThread class
Thread safety of Qt objects
Higher level Qt concurrency mechanisms
QThreadPool
QFuture
QFuturelnterface
Should we use it?
Map, filter, and reduce
Which concurrency class should | use?
Multithreading and performance
Costs of multithreading
Thread costs
Synchronization costs
QMutex implementation and performance
Atomic operation costs
Memory allocation costs
Qt's signals and slots performance
Speeding up programs with threads
Do not block the GUI thread
Use the correct number of threads
Avoid thread creation and switching cost
Avoid locking costs
Fine-grained locks
Lock coarsening
Duplicate or partition resources
Use concurrent data structures
Know your concurrent access patterns
Do not share any data
Double-checked locking and a note on static objects
Just switch to lock-free and be fine?
Lock-free performance
Progress guarantees
Messing with thread scheduling?
Use a share nothing architecture
Implementing a worker thread
Active object pattern
Command queue pattern
Beyond threading
User-space scheduling
Transactional memory
Continuations
Coroutines
Summary
Questions
Further reading

Chapter 6: Performance Failures and How to Overcome Them
Linear search storm
Context

148
148
148
149
149
151
152
153
155
156
156
156
157
157
157
158
158
159
159
160
160
160
161
161
162
163
163
163
164
165
165
166
167
168
168
169
170
170
170
171
171
172
173
174

174

176
176
177

[v]

Table of Contents

Problem 178
Solution 178
Conclusion 179
Results dialog window opening very slowly 179
Context 179
Problem 180
Solution 180
Conclusion 180
Increasing HTTP file transfer times 180
Context 181
Problem 181
Solution 182
Conclusion 183
Loading SVGs 183
Context 183
Problem 184
Solution 184
Conclusion 185
Quadratic algorithm trap 185
Context 186
Problem 186
Solution 186
Conclusion 186
Stalls when displaying widget with QML contents 187
Context 187
Problem 187
Solution 188
Conclusion 188
Too many items in view 188
Context 189
Problem 189
Solution 189
Conclusion 189
Two program startup stories 190
Time system calls 190
Font cache 190
Conclusion 191
Hardware shutting down after an error message 191
Context 191
Problem 191
Solution 191
Conclusion 192
Overly generic design 192
Context 192
Problem 193

[vi]

Table of Contents

Solution
Conclusion
Other examples

Summary
Questions
Further reading

Chapter 7: Understanding I/0 Performance and Overcoming Related

Problems
Reading and writing files in Qt
Basics of file I/O performance
Buffering and flushing
Tied and synchronized streams
Reading and writing
Seeking
Caching files
Qt's I/O classes
QFile
QTextStream and QDataStream
Other helper 1/O classes
QDebug and friends
Parsing XML and JSON at the speed of light
QtXml classes
QDomDocument
QXmISimpleReader
New stream classes in QtCore
Quick parsing of XML
Reading JSON
QJsonDocument's performance
Connecting databases
Basic example using SQLite
Some performance considerations
More about operating system interactions
Paging, swapping, and the TLB
Reading from disk
Completion ports
Summary
Questions
Further reading

Chapter 8: Optimizing Graphical Performance
Introduction to graphics performance
Graphics hardware's inner workings
What is a GPU?
OpenGL pipeline model
Performance of the graphics pipeline
CPU problems

193
193
193
194
195
195

196
197
197
197
198
199
200
200
201
201
202
204
204
205
206
206
207
207
208
209
210
210
210
21
212
212
213
214
214
214
215

216
217
217
217
219
221
223

[vii]

Table of Contents

Data transfer optimization
Costly GPU operations
Newer graphics programming APls
Qt graphics architecture and its history
The graphics API Zoo
Qt Widget
QGraphicalView
QOpenGLWidget
QVulkanWindow
Qt Quick
QtQuick Controls 1 and 2
Extending QML
Canvas 2D
QQuickPaintedltem
QQuickltem
QQuickFrameBufferObject
More APIs
Qt 3D
OpenGL drivers and Qt
Graphic drivers and performance
Setting the OpenGL implementation for QML
Qt Widget's performance
QPainter
Images
Optimized calls
OpenGL rendering with QOpenGLWidget
Images
Threading and context sharing
Usage of QPainter
QGraphicsView
Model/view framework
QML performance
Improvements in 5.9 and beyond
Measuring QML performance
Startup of a QML application
QML rendering
Scene graph optimizations
Scene graph and threading
Scene graph performance gotchas
Batching
Texture atlas
Occlusion, blending, and other costly operations
Antialiasing
Use caching
Which QML custom item should you choose?
JavaScript usage
Qt Quick Controls
Other modules
Qt 3D performance

223
223
224
224
225
225
226
227
228
229
230
230
230
231
232
233
234
235
237
237
239
240
240
240
241
242
242
242
243
243
243
244
245
246
248
249
249
251
251
251
252
252
252
253
253
253
254
254
255

[wiii]

Table of Contents

Hybrid web applications
Summary
Questions
Further reading

Chapter 9: Optimizing Network Performance

Introduction to networking
Transport layer
User Datagram Protocol (UDP)
Transmission Control Protocol (TCP)
A better TCP?
Application layer
Domain Name Service (DNS)
HyperText Transfer Protocol (HTTP)
Secure data transfer
A better HTTP?
Qt networking classes
TCP and UDP networking classes
QTcpServer and QTcpSocket
QUdpSocket
QAbstractSocket
QSslSocket
Other socket types
HTTP networking using Qt classes
DNS queries
Basic HTTP
HTTPS and other extensions
Qt WebSocket classes
Miscallaneous classes
Other higher-level communication classes
Qt WebChannel
Qt WebGL streaming
Qt remote objects
Improving network performance
General network performance techniques
Receiving buffers and copying
TCP performance
HTTP and HTTPS performance
Connection reuse
Resuming SSL connections
Preconnecting
Pipelining
Caching and compression
Using HTTP/2 and WebSocket
Advanced networking themes
Summary

Questions

255
256
256
257

258
259
260
260
260
262
262
262
263
264
265
265
265
266
267
268
270
271
271
271
272
273
274
275
275
275
275
276
276
276
277
278
279
280
280
281
281
282
283
284
285
286

[ix]

Table of Contents

Further reading

Chapter 10: Qt Performance on Embedded and Mobile Platforms
Challenges in embedded and mobile development

Basic performance themes
Run to idle
Some hardware data
Embedded hardware and performance
Qt usage in embedded and mobile worlds
Qt for embedded
Qt usage on embedded Linux
Qt's embedded tooling
Supported hardware
Example usage with Raspberry Pi
Qt for mobile
Android support in Qt Creator
Profiling Android applications
Mobile APlIs in Qit
Embedded Linux and Qt performance
Executable size
Minimizing assets
Power consumption
Start-up time
Using the current Qt version
Using loaders
3D asset conditioning
Linux start-up optimizations
Hardware matters
Graphical performance
Time series chart display
Qt Charts and OpenGL acceleration
Polyline simplifications
Floating-point considerations
Mobile-specific performance concerns
Executable size
Power usage
Mobile networking
Batch and piggyback
Consider a push model
Prefetch data
Reuse connections
Adapting to the current network connection type
Graphic hardware
Summary
Questions
Further reading

Chapter 11: Testing and Deploying Qt Applications

286

288
289
289
290
290
292
292
293
293
294
295
295
296
296
297
297
298
299
299
300
300
301
301
301
302
302
302
303
303
304
305
306
306
306
308
309
309
310
310
311
311
312
312

313
314

[x]

Table of Contents

Testing of Qt code 314
Unit testing 315

Qt Test 315

Test support in Qt Creator 317
Automated GUI testing 319

Squish 319

Example Squish test 320
Performance regression testing 323

Adding a gmlbench benchmark 323

Using Squish 324
Deploying Qt applications 325
Flying parts 325

Static versus dynamic builds 326
Deploying on Windows 327
Windows deployment tool 327

Installation and paths 327
Summary 328
Questions 329
Further reading 330
Assessments 331
Other Books You May Enjoy 347
Index 350

[xil

Preface

In today's world, programming knowledge appears to be scattered over a myriad of
locations—blog posts, Wikipedia articles, conference presentations, Twitter threads, Stack
Overflow questions, and the odd scientific paper to boot. Because of that, I was quite glad
when the publishers approached me with an idea for a book about Qt performance—at last,
a single place where program performance knowledge could be collected.

This book will try to give you an overview of program performance optimization
techniques and apply them in the context of Qt programming. Qt is a cross-platform and
cross-topic programming framework encompassing both GUI and system programming on
desktop, mobile, and embedded platforms. Hence, while discussing Qt's performance, we
will encounter a broad gamut of performance topics of every shade and color, and we will
do this not in an abstract manner, but using real-life examples.

Since Qt has many different versions and releases, we will concentrate on the current (as of
the time of writing) long-term support (LTS) version, namely, Qt 5.9, but will also

provide information regarding later Qt versions up to Qt 5.12. Fitting the high-performance
theme, we will mostly be using the epitome of high performance, that is Qt's underlying
C++ language, directly.

Moreover, in order to make this book approachable, we will use open source development
tools and a very widespread and relatively recent OS platform, namely, Microsoft
Windows 10.

I wanted to write a book that I would enjoy reading when I first started to learn about
performance years ago—we will start slowly, but then go deep, as I hope to provide you
with most of the knowledge required to write performant Qt programs.

Who this book is for

This book is intended for developers who wish to build highly performant Qt applications
for desktop and embedded devices using the C++ language. If you'd like to optimize the
performance of a Qt application that has already been written, you could also find this book
useful.

Preface

Furthermore, this book is aimed at intermediate-level Qt developers. While the intermediate
designation is a rather broad one, we define it here as the skill level of a programmer who
can implement simple Qt 5 programs using basic tooling. If you cannot do that, you should
probably read an introductory Qt 5 book first.

So, let us have a look at the C++, Qt, and programming knowledge that is assumed in this
book.

The Qt skills you will need include a basic knowledge of Qt Widgets, QML, and the signal-
slot mechanism. You should be able to work with the Qt Creator IDE as the development
environment. You should also be able to work on a Windows 10 computer.

As we will see, having a solid understanding of C++ is key to using Qt effectively.
However, this book doesn't concentrate on C++ language features, so you definitively don't
need to be an expert in C++ to read it.

You will, however, need to have some understanding of basic C++ features, such as object
orientation, exceptions, basic templates, auto variables, and simple lambdas. Be aware that
this book isn't about weird C++ language constructs, but rather tries to introduce you to a
broader topic of performance, while using C++ as a sharp tool.

You also don't have to be that proficient in computer science or hardware
architectures—we will always introduce the notions required as we go. The entry barrier
isn't that high, so if you've already done some Qt programming in C++, you can embark on
the journey.

What this book covers

Chapter 1, Understanding Performant Programs, introduces you to the world of performance,
discusses modern processor architectures, and recounts some traditional performance
wisdom.

Chapter 2, Profiling to Find Bottlenecks, looks at the tooling we use to diagnose performance
problems, concentrating specifically on the tools available on Windows.

Chapter 3, Deep Dive into C++ and Performance, takes a closer look at the C++ 11 language, its
general performance, the performance of its numerous features, and the role of compilers
and linkers in the performance game.

Chapter 4, Using Data Structures and Algorithms Efficiently, discusses the performance
impact of data structures and algorithms and then takes a closer look at the data structures
used by Qt in its API and the associated performance gotchas.

[2]

Preface

Chapter 5, An In-Depth Guide to Concurrency and Multithreading, describes multithreading
concepts, Qt multithreading classes and techniques, explains the multithreading is hard
mantra, and offers some techniques for minimizing multithreading costs and pitfalls.

Chapter 6, Performance Fails and How to Overcome Them, looks back at some performance
challenges I encountered during my work.

Chapter 7, Understanding 1/O Performance and Overcoming Related Problems, turns our
attention to the unglamorous theme of reading, writing, and parsing files, as well as
unexpected interactions with a number of OS mechanisms.

Chapter 8, Optimizing Graphical Performance, looks at the main usage scenario of
Qt—writing graphical Uls. We will learn about GPUs, and their performance and usage in
Qt. Later, we will have a look at the main classes of Qt Widgets and Qt Quick and will
discuss what their performance depends upon.

Chapter 9, Optimizing Network Performance, introduces basic networking concepts, the TCP
and HTTP protocols, the Qt classes supporting them, and the network optimization
techniques available in Qt.

Chapter 10, Qt Performance on Embedded and Mobile Platforms, looks at mobile and
embedded usage of Qt. It builds on the knowledge we acquired in the previous chapters to
examine the specific performance challenges faced by Qt on those platforms.

Chapter 11, Testing and Deploying Qt Applications, ends this book with a discussion of
testing and deployment tools and techniques.

To get the most out of this book

As already stated, this book is aimed at intermediate Qt developers. You should be able to
write small- to medium-sized Qt programs in C++ and QML using Qt Creator as an IDE on
Windows 10.

You don't need to install any software before you start. Instructions will be provided at the
point where specific software is needed. We will use exclusively open source programs so
you won't have to purchase any licences.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

[3]

Preface

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=L

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub

at https://github.com/PacktPublishing/Hands-On High Performance Programming
with ot 5.In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this

book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781789531244_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "As could be seen in the previous example, Qt Test defines macros to specify
pass/fail criteria for tests, namely, QCOMPARE () and QVERIFY ()."

[4]

Preface

A block of code is set as follows:

QSignalSpy spy (tstPushBtn, SIGNAL (clicked()));
QTest::mouseClick (tstPushBtn, Qt::LeftButton);
QCOMPARE (spy.count (), 1);

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Q0SignalSpy spy (tstPushBtn, SIGNAL(clicked()));
QTest::mouseClick (tstPushBtn, Qt::LeftButton);
QCOMPARE (spy.count (), 1);

Any command-line input or output is written as follows:

$ mkdir Qt
$ cd Ot

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Unfortunately, results displayed in the Test Result pane don't seem to work with QML
tests with the Qt Creator version used in this book. We have to run a QML test project in
the Projects view."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

[5]

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]

Understanding Performant
Programs

In this introductory chapter, we'll start this book with some general discussions about
program performance: why it's important, what are the factors that determine it, and how
programmers generally go about performance themes. We'll begin with a broad discussion
of performances' relevance in programming, before looking at some traditional
performance-related knowledge, and we'll finish this chapter with the impact modern CPU
architectures made in this field.

This chapter will therefore cover the following topics:

e Why performance is important: To motivate ourselves before diving into
technicalities

¢ Traditional wisdom and basic guidelines: Old and proven performance
knowledge

e Modern processor architectures: At least the performance-relevant parts of it

Why performance is important

Maybe you just started reading this book out of curiosity and you're asking yourself this
question: Why is performance important? Isn't that a thing of the past, when we didn't have
enough CPU power and memory, and when our networks were grinding to a halt? In
today's high-tech world, we have enough resources—the computers are so insanely fast!

Understanding Performant Programs Chapter 1

Well, in principle, you're right to some degree, but consider the following:

e A faster program runs more quickly, consuming less power along the way. This
is good for the planet (if you're running it in a big server farm) and good for your
user (if you're running it on a desktop computer).

¢ A faster program means that it can serve more requests in the same time than a
slower one. This is good for business, as you'll need to buy or lease fewer
machines to serve your customers, and, again, it's good for the planet!

e Faster software in today's business world's cut-throat competition means an
advantage in respect to your competitors. This is nowhere more evident than in
the world of automated trading (which is, by the way, dominated by C++), but
also the fact that sluggishly-loading websites and programs needing an eternity
to start won't be used that much!

¢ And, lastly, especially on mobile devices, we still have to cope with constrained
resources—network speed is finite (light speed) and battery life is finite too—and
as faster programs use less resources, they're good for users!

Our quest for performance will hence pursue a three-pronged objective: to save the planet,
to strengthen your business, and to make the life of users better—not a small feat I'd say!

The price of performance optimization

So, everything is rosy? Well, not quite, as there's a dark side to performance optimization
too. If we'll try to squeeze the last drops of performance from our hardware, we can end up
having unreadable, inflexible, unmaintainable, and hence outright ugly, code!

So, be aware that there are caveats and that there's a price to be paid. We must decide
whether we want to pay it, and at what point we'll stop the optimization to save the clarity
of our code.

Traditional wisdom and basic guidelines

When I started with programming (a long time ago), the pieces of advice about
performance optimization traditionally given to a newbie were the following;:

e Don't do it (yet)
¢ Premature optimization is the root of all evil
e First make it run, then make it right, then make it fast

[8]

Understanding Performant Programs Chapter 1

The first advice contained the yet only in its variant for the experts; the second was (and still
is) normally misquoted, leaving out the "in say 97% of the cases" part, and the third quote
gives you the impression that merely writing a program is already so difficult that fretting
about performance is a luxury. It's no wonder then that the normal approach to
performance was to fix it later!

But all of the adages nonetheless highlight an important insight—performance isn't
distributed evenly through your code. The 80-20, or maybe even the 90-10 rule, applies
here, because there are some hotspots where extreme care is needed, but we shouldn't try to
optimize every nook and cranny in our code. So, our first guideline will be premature
optimization—we should forget about it in, say, 95% of cases.

But what exactly are the 20%, 10%, or 5% of code where we shouldn't forget about it?
Another old-age programming wisdom states this—programmers are notoriously bad at
guessing performance bottlenecks.

So, we shouldn't try to predict the tight spot and measure the performance of a ready
program instead. This does sound a lot like the fix it later cowboy coder's approach. Well,
this book takes the stance that though premature optimization should be avoided,
nonetheless, premature pessimization should be avoided at all costs, as it's even worse!
However, avoiding premature pessimizations requires much detailed knowledge about
which language constructs, which framework use cases, and which architectural decisions
come with what kind of performance price tags. This book will try to provide this
knowledge in the context of the Qt framework.

But, first, let's talk about quite general principles that address the question of what should
be avoided, lest the performance degrades. As I see it, we can distill from the traditional
performance wisdom from the following basic common-sense advice:

e Don't do the same thing twice.
e Don't do slow things often.
¢ Don't copy data unnecessarily.

You'll agree that all that can't be good for performance? So, let's discuss these three simple
but fundamental insights in some more detail.

[9]

Understanding Performant Programs Chapter 1

Avoiding repeated computation

The techniques falling under the first point are concerned with unneeded repetition of
work. The basic counter measure here is caching, that is, saving the results of computation
for later use. A more extreme example of avoiding repletion of work is to precompute
results even before their first usage. This is normally achieved by hand-coded (or generated
by a script) precomputed tables or, if your programming language allows that, with
compile-time computation. In the latter case, we sacrifice compilation times for better run-
time performance. We'll have a look at C++ compile time techniques in Chapter 3,

Deep Dive into C++ and Performance.

Choosing the optimal algorithm and data structure also falls into that realm, as different
algorithms and data structures are optimized for different use cases, and you have to make
your choice wisely. We'll have a look at some gotchas pertaining Qt's own data structures
in Chapter 4, Using Data Structures and Algorithms Efficiently.

The very basic techniques such as pulling code out of a loop, such as the repeated
computations or initializations of local variables, fall into that class as well, but
I'm convinced you knew about this already.

Avoiding paying the high price

The techniques falling under the second point come into play if there's something we can't
avoid doing, but it has a pretty high cost tagged on to it. An example of this is interaction
with the operating system or hardware, such as writing data to a file or sending a packet
over the network. In this case, we resort to batching, also known in I/O context as
buffering—instead of writing or sending a couple of small chunks of data right away, we
first gather them and then write or send them together to avoid paying the high cost each
time.

On the other hand, we can apply techniques of this type too. In I/O or memory context, this
would be the prefetching of data, also known as read-ahead. When reading data from a
file, we read more than the user actually requested, hoping that the next portion of data
will be needed soon. In the networking context, there are examples of speculative pre-
resolving of Domain Name System (DNS) addresses when a user is hovering over a link
in browsers or even pre-connecting to such addresses. However, such measures can turn
into its counterpart when the prediction fails, and such techniques require very careful
tuning!

[10]

Understanding Performant Programs Chapter 1

Related techniques to be mentioned in this context are also avoidance of system calls and
avoidance of locking to spare the costs of system call and switching to the kernel context.

We'll see some applications of such techniques in last chapters of the book when we discuss
I/O, graphics , and networking.

Another example of when this rule can be used is memory management. General-purpose
memory allocators tend to incur rather high costs on single allocations, so the remedy is to
preallocate one big buffer at first and then use it for all needs of the program by managing
it by ourselves using a custom allocation strategy. If we additionally know how big our
objects are going to be, we can just allocate several buffer pools for different object sizes,
making the custom allocation strategy rather simple. Preallocating memory at the start used
to be a classic measure to improve the performance of memory intensive programs. We'll
discuss these technical C++ details in chapter 3, Deep Dive into C++ and Performance.

Avoiding copying data around

The techniques falling under the third point tend to be somehow of a lower-level nature.
The first example is avoiding copying data when passing parameters to a function call. A
suitable choice of data structure will avoid copying of data as well—just think about an
automatically growing vector. In many cases, we can use preallocation techniques to
prevent this (such as the reserve () method of std: : vector) or choose a different data
structure that will better match the intended use case.

Another common case when the copying of data can be a problem is string processing. Just
adding two strings together will, in the naive implementation, allocate a new one and copy
the contents of the two strings to be joined. And as much of programming contains some
string manipulations, this can be a big problem indeed! The remedy for that could be using
static string literals or just choosing a better library implementation for strings.

We'll discuss these themes in chapter 3, Deep Dive into C++ and Performance, and Chapter
4, Using Data Structures and Algorithms Efficiently.

Another example of this optimization rule is the holy grail of network programming—the
zero-copy sending and receiving of data. The idea is that data isn't copied between user
buffers and network stack before sending it out. Most modern network hardware supports
scatter-gather (also known as vectored I/O), where the data to be sent doesn't have to be

provided in a single contiguous buffer but can be made available as a series of separate
buffers.

[11]

Understanding Performant Programs Chapter 1

In that way, a user's data doesn't have to be consolidated before sending, sparing us
copying of data. The same principle can be applied to software APIs as well; for example,
Facebook's recent TSL 1.3 implementation (codename Fizz, open sourced) supports scatter-
gather API on library level!

General performance optimization approach

Up to now, we listed the following classic optimization techniques:

e Optimal algorithms

Optimal data structures

Caching
e Precomputed tables
Preallocation and custom allocators

Buffering and batching
Read-ahead

Copy avoidance
Finding a better library

With our current stand of knowledge, we can formulate the following general-performance
optimization procedure:

1. Write your code, avoiding unnecessary pessimizations where it doesn't cost
much, as in the following examples:
¢ Pass parameters by reference.
¢ Use reasonably good, widely known algorithms and data structures.

¢ Avoid copying data and unnecessary allocations.

This alone should give you a pretty decent baseline performance.

2. Measure the performance, find the tight spots, and use some of the standard
techniques listed. Then, measure again and iterate. This step must be done if the
performance of our program isn't satisfactory despite our sound programming
practices. Unfortunately, we can't know or anticipate everything that will happen
in the complex interplay of hardware and software—there can always be
surprises waiting for us.

3. If you still can't achieve good performance, then your hardware is probably too
slow. Even with performance optimization techniques, we still can't do magic,
sorry!

[12]

Understanding Performant Programs Chapter 1

The preceding advice looks quite reasonable, and you might ask: Are we done? That wasn't
that scary! Unfortunately, it's not the whole story. Enter the leaky abstraction of modern
processor architectures.

Modern processor architectures

All the classic performance advice and algorithmic foo stems from the times of simple CPU
setups, where processor and memory speeds were roughly equal. But then the processor
speeds exploded by increasing quite faithfully to the Moore law by 60% per year where
memory access times increased by only 10% and couldn't quite hold pace with them. The
problem is that the main memory (dynamic random-access memory (DRAM), contains
minuscule capacitors keeping an electrical charge to indicate the 1 bit and none to indicate
the 0 bit. This results in an inexpensive circuitry that doesn't have to be kept under voltage
but is working basically in the analog realm and can't profit that much from advances made
in the digital components.

The second change that occurred since then was the demise of Moore's law in its simple
form. Up to the early 2000s, CPU manufacturers steadily increased processor frequency
rates, making CPUs run faster and faster. That was achieved by increasing the number of
transistors packed on chips, and Moore's law predicted that number of transistors that can
be packed on a chip will double every 18 months. In simple terms, it was understood as
doubling the processor speed every two years.

This trend continued until processor manufacturers hit a physical barrier, the so-called
power wall—at some point, the densely packed transistors produced so much heat that they
couldn't be effectively cooled on consumer machines (high-end, expensive water-cooling
systems are, too expensive for a laptop or a mobile device), so a different approach to
increasing a CPU's performance had to be found.

Caches

The attempts to overcome these problems led to a slew of architectural innovations. First,
the impedance between CPU and memory speeds was fought using a classic optimization
technique we already know, namely, caching, on chip level. The on-chip static

RAM (SRAM) memory requires six transistors (forming a flip-flop) per bit, and all of them
must be kept under voltage. This means it's expensive and it drives the power consumption
up (take care not to hit that power wall!). In exchange, the memory access times are at
lightning speed, as all that is needed is to apply the current to the input and read the
output.

[13]

Understanding Performant Programs Chapter 1

So, the idea is to add a small caching stage of expensive but fast on-chip memory in front of
big, slow but inexpensive main memory. Meanwhile, modern CPUs can command up to
three levels of caches, commonly denoted with L1, L2, and L3 acronyms, decreasing in
density and speed but increasing in size as the cache level goes up. The figure below shows
us an overview of the memory hierarchy typically found in modern CPUs:

main memory

CPU s Llinstr
core .

o L,

oo

As of the time of this writing, access times for L1 caches are in the order of 3 cycles, L2 of 12
cycles, L3 of 38 cycles, and main memory is around 100-300 cycles. The main memory
access time is that high because the analog nature of DRAM requires, among other things,
periodic charge refreshing, pre-charging of the read line before reading, analog-digital
conversion, communication through memory controller unit (MCU), and so on.

Caches are organized in cache lines, which on the current Intel architectures are 64 bytes
long. Each cache update will hence fetch the entire cache line from main memory, doing a
kind of prefetching already at that level. Speaking about prefetching, Intel processors have
a special prefetch instruction we can invoke in assembler code for very low-level
optimizations.

In addition to data caches, there's also an instruction cache, because in the von Neumann
architecture, both are kept in the common memory. The instruction caches were added
to Intel Pentium Pro (P6) as an experiment, but they were never removed since then.

Pipelining
Another possibility to increase a processor's speed is the instruction level parallelism
(ILP), also known as superscalar computation.

[14]

Understanding Performant Programs Chapter 1

The processing of a CPU instruction can internally be split into several stages, such as
instruction fetch, decode, execute, and write-back. Before the Intel 486 processor, each
instruction has to be finished before the next can be started. With pipelining, when the first
stage of an instruction is ready, that instruction can be forwarded to the next stage, and the
next instruction's processing can begin with its first stage. In that manner, several
instructions can be in flight in parallel, keeping a processor's resources optimally utilized.
The next screenshot illustrates this principle, graphically, using a hypothetical four-stages
pipeline:

A instructions

L 3

time

4 instructions

L 2

time

The original Intel 486 pipeline was five stages long, but on modern processors, it can be
much longer. For example, the current Intel Atom processors command a pipeline of 16
stages.

That's all well and good, but, unfortunately, there are some problems lurking in the corners.

[15]

Understanding Performant Programs Chapter 1

Speculative execution and branch prediction

As long as the pipeline is pumping, everything is OK. But what if we encounter a
conditional branch? The pipeline has to wait till the result of the test is known, hence the
next instruction can be started only when the current one has finished. Welcome to the
pre-80,486 world! This is called a pipeline stall and defeats the whole purpose of
pipelining. And because every program is literally dotted with i f-then-else clauses,
something must be done here.

The solution manufacturers came up with was speculative execution: instead of idling, we
just start executing one of the branches speculatively. If we are lucky, we've just done the
right thing, but, if not, we discard our speculative work, and we are on even ground with
the pipeline stall case. As we decide randomly, we'll be right 50% of the time, and we just
seriously increased the throughput of the pipeline!

The only problem is that the branches of the i f clause are not equally probable! In most
cases, they're even highly unevenly distributed: one of them is the error branch; the other is
the normal case branch. But the processor doesn't know the meaning of the test, so what
can we do? The solution to that is branch predicting—the processor is learning about
branches in your code and can predict which branch will be taken on a given condition
rather well.

This got complicated quickly, didn't it? If you're thinking it, you're not alone. Not so long
ago, the programming world was shaken by disclosure of the Spectre and Meltdown
vulnerabilities, which allowed the attacker to see contents of the memory regions where
they don't have access rights. The first part of the exploit's to fool the branch predictor to
take the false branch for speculative execution. After the processor sees a disallowed access,
the instruction will be retired, but the protected data will be present in the cache, where
they can be guessed with some complicated techniques we won't discuss here. These bugs
basically put in question the processor optimizations of the last decade, as fixing them
would incur meaningful performance losses.

Considering that, we are all rather curious about how CPU architectures evolve next time,
aren't we?

Out-of-order execution

There's another refinement to the pipeline concept allowing an even higher utilization of a
CPU's resources. Namely, as processor manufacturers started to add redundant processing
units (Intel P6 already had two integer and two floating-point execution units), it became
possible to execute two instructions in parallel.

[16]

Understanding Performant Programs Chapter 1

Up until Pentium Pro (P6), instructions were fed into the pipeline in their order of
appearance. But if there's a data dependency between two consecutive instructions, then
they can't be processed in parallel, leaving the additional execution unit idle:

a=b+1; //1
c=a+5; //2
d=e + 10; // 3
f =d+ 15; // 4

The solution to this problem is to take the next independent instruction and execute it
before the dependent one. See the next diagram for a visual explanation:

A instructions A\ instructions
4 4
3 3
2 2
1 1
> >
time time

Here, on the left side, we see the traditional execution preserving the instruction order and,
on the right, parallel execution with reordering, where instruction 3 will be executed before
instruction 2.

Multicore

The problem of the power wall was in the end overcome by freezing or even decreasing
CPU frequencies but introducing parallelly working processor cores, adding more general
registers, vector processing single instruction multiple data (SIMD) registers, and
instructions. In a word, they either duplicated active processing units or added more
elements that don't have to be always under voltage. In that way, the density of the
transistors didn't have to be increased.

[17]

Understanding Performant Programs Chapter 1

When all of the CPU cores are placed on one chip, we have a symmetric multiprocessing
(SMP) CPU, because all cores can access their respective data within a local chip. The
counterpart to that is a non-uniform memory access (NUMA) system, where we have
several physically separate CPUs having their own internal caches. The memory access for
internal CPUs will then be much cheaper than the memory access to an external CPU.
Another problem is the cache coherence between the CPUs, which requires complicated
cache-coherence protocols and can take down performance. In the context of Qt's
application area, we normally encounter SMP machines, so we'll ignore NUMA in this
book.

In a multicore chip, the processing resources can be classified in core and

uncore ones—those which are duplicated for each core, and those that aren't and must be
shared. For example, the top-level cache (L3 or L2, depending on the processor) is an
uncore resource shared among processor cores.

One often-encountered notion is that of hyperthreading. This is another idea for increasing
a CPU's parallelism, and hence its resource utilization. A processor with hyperthreading
consists of two logical processors per core, each of which keeps its own internal state. The
parts of the processor where it holds its architectural state (for example, running,
interrupted, and halted) will be duplicated for each core, but the computation resources
will be shared among logical cores. The intent of that is to increase the utilization of the
processor's resources and prevent pipeline stalls, by borrowing resources from the stalled
logical core. The operating system then uses these two logical cores as physical ones and
has to be HTT-aware to optimally use such a system.

Strictly speaking, graphical-processing units (GPUs) are not a form of multicore, but we'll
mention them in this context, because processors can ship with integrated GPUs on board.
A GPU comprises many very simple processing units that can run massively parallel,
although simple, computations. Normally, they're used to accelerate graphic processing,
but they can be also used to speed up in general computations, such as the training of
neural networks in deep-learning applications. In a Qt context, however, we use GPUs only
for their graphical capabilities.

Additional instruction sets

As already mentioned, to increase processor performance chip, manufacturers started to
add more sophisticated instructions that can either vectorize computations or execute
algorithms that hitherto had to be implemented in application code.

[18]

